
 27

3 Related work

In the last few years, QoS issues in Web service technology gained importance in
ongoing research. This chapter gives an overview of selected major industrial and
academic efforts towards the specification and management of QoS for Web
services [20]. After discussing the state of the art in Web service technology, five
examples will give an impression of the variety of research in this area.

3.1 State of the art

In the standard Web service interaction model [21], a.k.a. Service Oriented
Architecture (SOA) [22], the functionality and information on where and how to
access Web services (i.e. under which universal resource identifier (URI) using
which protocol) is described in a WSDL file. This file is commonly referenced from
a UDDI registry for standardized service discovery.

A UDDI registry is basically a data base with UDDI logic and interfaces for
publishing and searching Web services [10]. Industrial categorization, contact
information, and technical information about services such as contact
information of a company or industry categories, can be stored and viewed there
by either using a Web interface or an application program interface (API).
However, entries are often inaccurate or expired [23] and UDDI does not provide

3 Related work 28

a mechanism for automatically updating the registry as services (and service
providers) change [24].

Since the communication between clients and UDDI is a client/server interaction,
UDDI can become a performance bottleneck in case of overloading or even
unavailability. Furthermore, [26] shows that performance considerations of
current UDDI implementations do have a major impact on the overall acceptance
of UDDI. Section 4.3 introduces the WS-QoS broker, which improves the
standard Web services interaction model.

A Web service can be described by its static functional attributes and its dynamic
non-functional parameters including QoS aspects. The different QoS aspects are
for example

• server performance including throughput, availability and reliability,

• network performance including bandwidth, jitter and delay,

• security and transactional support,

• configuration and management capabilities as well as

• cost.

With the emergence of functionally equivalent services implementing a common
service type (e.g. tModel in terms of UDDI), the non-functional QoS properties
associated with services will become distinctive criteria for the success of a
company offering e-business through Web services. It is also imaginable that a
business will offer its services in various classes of quality to meet different
customers’ requirements, according to what they might be willing to pay in
return. Therefore, the need to unambiguously specify both QoS properties and
different QoS levels in some kind of contract such as SLA and to prove the Web
services’ compliance arises.

In terms of SOA, Web services are building blocks from which more sophisticated
applications can be created. An introduction to current specifications for Web
service composition is given in [27]. Our WS-QoS framework does not deal with
service composition but can be well applied for looking up appropriate services in
a service composition process.

Three different phases of QoS management can be identified. Firstly, QoS
constraints on certain parts of a provided service are formulated in a specification.
Since the purpose of such a specification is to reinforce a certain level of QoS,
parameters are monitored by constant measurements at runtime. Finally, the
values measured have to be tested against the negotiated specification and
appropriate activities should be carried out in order to control the QoS
conformance ensuring a low violation rate. In case of violations, compensation
may be refunded to the service consumer.

The following subsection gives an overview of five selected major approaches
towards QoS specification and management for Web services, coming from both
the industry and the academia. The selected approaches cover SLA for Web

29 3 Related work

services, formal specifications of classes of services, Web service reputation, and
UDDI extension. These approaches are

• the Web Service Level Agreement (WSLA) developed by IBM [28],

• the Web Service Offering Language (WSOL) developed at Carleton
University, Canada [29],

• SLAng developed at University College London, UK [30],

• a UDDI eXtension (UX) developed at Nanyang Technological
University, Singapore [31], and

• UDDIe developed at Cardiff University, UK [24].

3.2 Approaches towards QoS specification and management for
Web services

All approaches that will be presented in this section deal with the specification
and management of QoS for Web services. Although they all target the same
issues, the proposed concepts are very different, which makes a direct comparison
and evaluation difficult. Generally, two basic ideas of a QoS-aware service
selection can be identified: The first type of concepts proposes a new
infrastructure for specifying QoS issues associated with Web services. The second
type deals with extending the functionality of UDDI either within or outside
UDDI by introducing an additional server or broker. While WSLA, WSOL and
SLAng are of the first type, UX, UDDIe, and WS-QoS belong to the second.

3.2.1 Web service level agreement

IBM’s Web Service Level Agreement (WSLA) framework fosters the idea of
individually negotiated customized service level agreements. A WSLA is an
agreement between a service provider and a customer and as such defines the
obligations of the parties involved. Primarily, it is the obligation of a service
provider to perform a service according to agreed-upon guarantees for the service
parameters on the technical level (such as availability, response time, and
throughput) [28].

The design goals of WSLA are a formal and flexible XML-based language for SLA
definitions between different organizations, a wide acceptance and applicability
to existing e-business systems and standards, nested relationships of service
clients and providers, delegation of monitoring tasks to third parties, and an
SLA-driven configuration of the managed resources, i.e. deriving configuration
settings directly from SLAs.

3.2.1.1 Service level specification

While a great variety of SLAs with different semantics of QoS parameters exist,
an SLA generally includes information on the parties involved, a reference to the
operational description of the service covered by the SLA, SLA parameters to be

3 Related work 30

monitored, the metrics and algorithms used to compute the SLA parameters as
well as the intended service level objectives (SLO) and appropriate actions to be
executed in case they are violated [28].

According to the WSLA XML schema a WSLA is divided into three sections:

In the “parties” section, signatory and supporting parties are introduced.

The “service description” section yields information on the service’s
characteristics and the parameters to be observed. Resource Metrics are derived
directly from the managed resources as specified in a Measurement Directive.
They can then be aggregated to Composite Metrics where a Function explains
how a composite metric is computed from input parameters which are either
resource metrics or composite metrics themselves. In an SLA Parameter the
retrieved metrics are put into the context of a specific customer, adding
information on who supplies the value and to whom it will be reported.

Finally, the third section “obligations” describes guarantees and constraints
imposed on the SLA parameters in the form of service level objectives (SLOs), i.e.
high/low watermarks for associated SLA parameters which are promised to be
met for a certain period of time. In the case of SLA violations, appropriate
compensating activities are defined in Action Guarantees.

3.2.1.2 Deployment and monitoring – the SLA lifecycle

The service customer and service provider are the signatory parties of a WSLA. A
trustworthy third party may be entrusted with the monitoring of the SLA
compliance. A WSLA’s management lifecycle consists of five stages, as shown in
Figure 4. These stages are:

1. The establishment of an SLA is negotiated with the help of an SLA
Establishment Service.

2. After the signatory parties have reviewed the SLA, relevant information in
form of Service Deployment Information (SDI) is deployed to the supporting
parties.

3. Based on the received SDI a Measurement Service collects the metrics
specified and reports them to a Condition Evaluation Service, which in
return computes the grade of compliance of the measured values with the
SLA parameters.

4. On reception of this information the Management Service will take
corrective management actions to deal with the occurrence of SLA
violations. Before carrying out any corrective action, the Management
Service has to consult the Business Entity for approval. The Business
Entity holds critical business information which is usually confidential.

5. The last stage is the termination of the customer/provider relationship.

31 3 Related work

Figure 4. The five stages of an SLA management lifecycle [32]

IBM’s SLA Compliance Monitor implements the Measurement, Condition
Evaluation and Deployment Service as described above. It is part of IBM’s
Emerging Technologies Toolkit [33].

3.2.2 Web service offering language (WSOL)

A research group from Carleton University in Canada has developed the notion of
providing various classes of service for one and the same functional service
specification, which differ in QoS level and management efforts. WSOL allows
the formal and unambiguous specification of prices, monetary penalties,
management responsibilities and third parties, especially accounting parties.

The main targets of the WSOL project are the creation of service offerings,
definition of QoS constraints, management statements, reusability, and a
mechanism called service offering dynamic relationship (SODR) allowing for
switching between services [29].

Another important design goal is a low run-time overhead achieved through
defining classes of services instead of individually managed SLAs. WSOL also
supports reusability of specifications. This is realized by means of the concept of

3 Related work 32

constraint groups and constraint group templates to include formerly defined
elements and import of elements defined in other WSOL files.

3.2.2.1 Service offering

Classes of service are a mechanism for the description and the differentiation of a
Web service and QoS associated with that Web service. While classes of service of
one Web service refer to the same functionalities which are defined in the same
WSDL file, they differ in QoS constraints and management statements. Different
classes of a service may imply different utilization of the underlying hardware
and software resources. A service offering can also be seen as a contract or SLA
and consists of several components as listed in Figure 5.

o domain (service-/port-/operation- name)

o condition (as Boolean expression)

o metrics (defined in external ontology)

o rules for metrics aggregation

o management entity for measurement

• statement

o domain (service-/port-/operation- name)

o <any definition>

• constraint group / instantiated CGT

o <any item listed above>

WSOL Service Offering:

• import / include of external specification

• subscription

• price

• penalty

• management responsibility

• constraints

Figure 5. Components of a WSOL service offering

3.2.2.2 Constraints

WSOL allows the specification of three categories of constraints: functional
constraints, non-functional (QoS) constraints, and access rights. A constraint is a
Boolean expression specifying a condition that is to be verified before and/or after
the execution of a Web service’s operation for which it is specified. Constraints

33 3 Related work

are defined by extending the generic constraint element. Functional constraints
such as pre- and post-conditions check some characteristics of message parts of
an invoked operation. Non-functional constraints describe guaranteed QoS
parameters such as performance, reliability and availability of a service. QoS
metrics and measurement units are defined in an external ontology. Finally,
access control constraints define conditions under which a consumer is admitted
for service invocation.

3.2.2.3 Management

Management information is described in WSOL statement elements including
pay-per-use price, monetary penalty, and management responsibility. A pay-per-
use price states the fee a consumer has to pay for the service usage and the
monetary penalty regulates the condition when the service provider violates the
assured QoS constraints. Management responsibility defines what party (the
consumer, the supplier, or a trusted third party) is responsible for monitoring a
particular constraint.

3.2.2.4 Reusability

There are a number of features enabling the reusability of existing specifications.
Existing WSOL documents can be imported for the reuse with the import
element. Constraints and statements that have already been defined can be
applied to a different scope by referencing and renaming them in an include
statement. Moreover, statements and constraints can be grouped into constraint
groups (CG) that can easily be referenced for alternative domains. This CG
Element allows for nesting definitions to an arbitrary level. An abstract
Constraint Group Template is defined in a CGT Statement and is instantiated
with concrete parameters.

3.2.2.5 Service offering dynamic relationship

Service Offering Dynamic Relationship (SODR), which is defined outside a WSOL
file, ensures the initiation of predefined management activities in case of
underperformance. The management activities are responsible for

• switching between service offerings,

• deactivating or reactivating existing service offerings, and

• the creation of new appropriate service offerings as well as

• the negotiation and selection of an appropriate replacement of service
offerings.

A Service Offering Relationship element specifies a current service offering, a
service offering appropriate for replacement and a sequence of constraints. A
violation of the constraints will trigger the specified change in the service offering.

3.2.3 SLAng

As an XML-based language for defining service level agreements, SLAng, was
developed at the University College London, UK. The main targets of SLAng are

3 Related work 34

to support inter-organizational service provisioning including storage, network,
middleware, and applications as well as the specification of non-functional
parameters at service level in order to enable QoS description and negotiation
[30].

At the moment SLAng can be used only for static SLAs, since it does not support
dynamic lookup of new services and update of non-functional service properties
at runtime.

3.2.3.1 Service provision reference model

Figure 6 depicts the service provisioning model of SLAng. The 3-tier architecture
consists of an application tier, a middle tier, and the underlying resources.
Applications consume underlying components or Web services abstracted by the
middle tier. The containers located in the middle tier support QoS negotiation,
establishment, and monitoring, while the components are an abstraction for
resources in the underlying resource tier. Network and storage facilities are
typically representatives of this tier.

Figure 6. SLAng's service provisioning reference model [30]

3.2.3.2 Structures

SLAng supports both horizontal and vertical SLAs. While a horizontal SLA is a
contract between peers in the same tier, a vertical SLA describes the usage of the
underlying layer.

35 3 Related work

There are seven different types of SLA definitions in SLAng, as shown in Figure
7. The vertical SLAs are related to application, hosting, persistence, and
communication, while the horizontal ones are related to services (between a
component and a Web service provider), container, and networking. Each kind of
SLA includes definitions of responsibilities of the service client and the service
providers, and mutual responsibilities.

Figure 7. Vertical and horizontal SLAs [30]

3.2.3.3 QoS semantics

The QoS semantics in SLAng are defined according to the different SLAs of the
performance properties. For example, the throughput of a database server and
the throughput of a component server are different concepts, although both
contribute to the overall QoS. Therefore, they are treated differently before being
composed [30].

3.2.4 UX

UX is an architecture providing QoS-aware and cross organizational support for
UDDI, developed at the School of Computer Engineering, Nanyang Technological
University, Singapore. The first goal of UX is to rate services with reputation in
order to allow service requestors to discover services with good quality. The
second one is to share the ratings among UX servers – the proposed extension of
UDDI – in different domains [31].

3 Related work 36

3.2.4.1 Approach

Reputation is measured through QoS feedback made by service customers. The
proposed UX server uses the clients’ reports containing response time,
terminating state, and cost to generate summaries in order to predict the
services’ future performance. The generated summary containing response time,
reliability, cost, timestamp, and report number is used to sort the query results.

The UX server is extended with an inquiry interface which is conforming to
standard UDDI. A lookup interface in UX allows to discover and to distribute
QoS summaries among different UX servers.

Figure 8 depicts the basic architecture of UX. When the UX server receives a
request (1), it will first search the local UDDI server for services (2). If the
number of appropriate services in the local registry is high enough, it will return
a list of results back to the service requestor; otherwise it will initiate a so-called
federated discovery in order to find more results.

Federated service discovery describes the ability to search QoS-aware services
among different UX servers across different domains. UX applies a protocol that
dynamically updates the links between cooperating servers over a WAN
according to different events happening, either to some servers, or to the
underlying WAN. The applied protocol is called Cooperating Server Graph (CSG)
model [34].

In the UX architecture, the UX server returns a list of appropriate services to the
service requestor, so that the service requestor has to process the suggested
service offers on receiving them. This approach may result in additional
processing time and increased configuration overhead at the client side.

37 3 Related work

Figure 8. UX architecture [31]

3.2.4.2 Verity

UX extends UDDI by the ability to predict services’ future performance based on
reputation, which is measured through QoS feedback made by service customers.
The users’ experience is shared in a local and inter-domain way. Since reputation
is mainly influenced by the user perception and can be furthermore manipulated
easily, a research group from Monash University, Australia, extended the
approach to reputation with a QoS attribute termed “verity” [35]. Verity is used
as an indicator of trustworthiness for the quality driven selection and
composition of services.

3.2.5 UDDIe

UDDIe [24] was developed at Cardiff University, UK. It extends UDDI’s
functionalities within UDDI. Service providers can associate their services with
QoS properties such as bandwidth, CPU, and memory requirements, which are
encoded in the service interface. They can make their services available for a
period of time by means of leasing. UDDIe introduced a concept allowing the
definition of three leasing types including finite, infinite, and future lease.
Furthermore, UDDIe supports qualifier-based search by introducing qualifiers
such as EQUALto, LESSthan, and GREATERthan.

3 Related work 38

3.2.5.1 Approach

UDDIe is implemented in the context of the G-QoSM framework for grid service
discovery [37]. A client application sends a request to the QoS broker of the G-
QoSM system. The broker is not part of UDDIe. It processes the request and
forwards them to the UDDIe registry. After receiving a list of services that
implement the particular service type, the broker selects the most appropriate
service for the client by applying a weighted average concept. Figure 9 shows a
code fragment of a client request with QoS requirements.

<?xml version="1.0" encoding="UTF-8"?>

<wsdl:definitions xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

....

targetNamespace="http://MyService-Interface">

<wsdl:messagename="printNameResponse">

</wsdl:message>

....

<QoS>

<service_cost> 5 </service_cost>

<network_bandwidth> 256K </network_bandwith>

<memory> 48MB </memory>

....

</QoS>

</wsdl:definitions>

Figure 9. Client request with QoS requirements in UDDIe [24]

QoS properties associated with a service are provided together with further
information about that service by the extended UDDI server. The QoS properties
are encoded in the service interface.

Since non-functional properties of a service such as price and performance are
subjects to frequent changes, repeated requests to a huge UDDI registry might
prove to be a bottleneck in the performance of service lookups. Because of these
facts the UDDI server is not the right place to store non-functional properties.
Furthermore, encoding non-functional properties into service interfaces should be
avoided, since otherwise the service interface would have to be recompiled each
time non-functional properties are changed. WDSL is designed to hold
information on functional aspects of a service which is not expected to be changed
often once designed. Therefore, a more flexible way can be to delegate the non-
functional description of a service from WSDL to an extra file so changes on non-
functional properties can take place without changing the WSDL.

39 3 Related work

3.3 Conclusion

Section 3.2 has described five different approaches towards the QoS-aware
specification and management of Web services. Common denominators of the
approaches are the use of XML and the conformance with the existing Web
service technologies such as WSDL and UDDI. While WSLA fosters individually
customized SLAs, WSOL introduces a formal specification of classes of service.
SLAng can be used for SLA specifications in general not only for Web services,
aiming at a wide usage. UX is able to select services based on reputation among
federated UX servers. UDDIe extends the standard UDDI API in order to
associate QoS properties with Web services.

In the following, we compare the introduced approaches based on different
aspects. We don’t give an overall assessment of each approach. The table gives
rather an overview of the main emphases of the introduced approaches.

Selected assessment criteria include requirement specification, class of service,
QoS aspects, QoS mapping, and flexibility:

Requirement specification: Both Web service clients and providers need
means to specify non-functional requirements and offers. The specification should
ensure the compatibility and comparability of the specifications done by clients
and service providers.

Class of service: QoS parameters differ in quality, quantity, and the
corresponding monetary charge. Grouping similar parameters into a class or
category that characterize a service will ease the utilization of the service.

QoS aspects: A Web services related framework should support more than the
classical QoS parameters such as jitter and bandwidth. Aspects such as security,
reliability, transaction as well as custom defined aspects should also be
considered.

QoS mapping: An overall QoS support requires QoS support during the whole
communication process, ranging from the QoS specification to monitoring at
runtime. QoS has also to be considered through the different layers in terms of
the Internet Model. Specifications in higher layers have to be carefully mapped
onto lower layers.

Flexibility: An approach should be easy to use, extensible, and standards
conforming.

The assessment of the introduced approaches is summarized in Table 1. The
symbols mean:

“++”: excellent concept

“+”: good concept

“O”: satisfying

“-“: poor or not available

3 Related work 40

Table 1. Assessment of the introduced approaches

 Requirements
specification

Class of
service

QoS
aspects

QoS
mapping

Flexibility

WSLA ++ O + - ++

WSOL ++ ++ + - +

SLang + - + - +

UX O - O - O

UDDIe O - O - O

