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ABSTRACT

The dynamics of proteins is characterized by infrequent complex re-
arrangements of the overall protein structure, so called conformational
changes. Experiments cannot observe conformational changes directly
with atomistic resolution so that computer simulations have to be
used for the detailed study of these processes. The rare occurrence
of conformational changes on timescales accessible by simulations re-
sults in a sampling problem. Obtaining reliable estimates for quantities
connected to rare transition events from simulation data is very diffi-
cult and can require prohibitively long running times for computations.
Markov state models can systematically integrate ensembles of short
trajectories and thus effectively parallelize the computational effort, but
the rare transition events still need to be spontaneously sampled in the
data.

Reversible Markov state models can be used to overcome the sam-
pling problem. Reliable estimates of probabilities for rare transitions
can be computed with a simulation effort that is orders of magnitudes
smaller than the average effort required to observe even a single rare
event. They arise naturally as a discrete space, finite data description
of metastable conformational processes.

In this thesis methods for the estimation and uncertainty quantifi-
cation of reversible Markov state models and a novel approach for the
estimation of transition probabilities from simulation data containing
rare events are developed. Estimators for reversible transition prob-
abilities are constructed using a maximum likelihood approach and
efficient algorithms for the solution of the arising optimization prob-
lem are developed. The method can also be applied in situations in
which additional information about stationary probabilities is available.
Uncertainty quantification for reversible Markov state models is facili-
tated using a Bayesian approach. An efficient Monte Carlo algorithm
for sampling of reversible transition matrices from the arising poste-
rior distribution is developed. A variant that can incorporate a priori
information about the stationary probabilities is also presented. Sta-
tionary probabilities can often be efficiently estimated from enhanced
sampling simulations which do not suffer from a sampling problem. For
many interesting metastable processes only one direction of the process
is rare while the reverse direction can be sampled efficiently for appro-
priately chosen initial conditions. Reversibility can be used to estimate
transition probabilities in situations in which only one direction of the
process of interest has been observed if information about the station-
ary probabilities of the process is available. So that enhanced sampling
simulations and short molecular dynamics trajectories can be system-
atically combined using reversible Markov state models.
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INTRODUCTION

Life emerges from a complex interplay of different biological processes
taking place on multiple scales. On the smallest scales all necessary
tasks are carried out by proteins - microscopic molecular machines
which perform a diverse set of functions. They aid in the production
and degradation of substances, are involved in transportation and sig-
nal transduction, generate mechanical forces from chemical reactions,
or clog together into stiff fibers to stabilize cells.

Proteins consist of thousands of atoms. They are sequences of amino
acids that fold into a specific three-dimensional structure - the protein’s
native state. The native state is not static. Long lived substructures, so
called conformations, are present in the native state. Random fluctua-
tions between conformations occur due to thermal activation. Confor-
mations correspond to regions of low energy which are separated by en-
ergetic barriers. The waiting time in one of the conformation increases
exponentially with the barrier height so that conformational changes
are rare events, cf. Figure 1.1. Conformational changes are important
for a protein’s function and its interaction with other molecules.

Conformational changes are complex processes involving large scale
rearrangements of the overall protein geometry and the forming and
breaking apart of substructures such as helices and beta sheets. Ex-
periments cannot probe proteins simultaneously in time and space on
scales necessary to resolve the interesting processes. Computer simu-
lations can achieve such a resolution, but they suffer from a severe
sampling problem. The elementary timestep for the integration of the
equations of motions is on the order of femtoseconds (1071%s) while
transitions between conformations occur on the order of microseconds
(107%s) or milliseconds (10~3s). Trajectories that sufficiently sample
the rare switching between conformations cannot be computed even by
the most powerful computers. Conformational changes often involve
multiple transition pathways with many long-lived intermediates so
that they cannot be described in terms of a simple reaction with a
single transition state.

Markov state models (MSM) describe conformation dynamics by a
directed network in which vertices (states) correspond to conformations
and edges correspond to conformational transitions. The probability for
a transition is encoded into the weight of the corresponding edge. The
network is modeled and parameterized using simulation data. Param-
eters for the network can be estimated using many short trajectories
which can be simulated in parallel. Still, reliable values for the transi-
tion probabilities can only be obtained from the trajectories, if all steps
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Figure 1.1: Conformation dynamics a) Conformations correspond to regions
of low energy. Arrows indicate the average waiting time for a transition. b)
Conformational trajectory, random fluctuations are due to thermal activation,
transitions between conformations are rare events.

of the forward and the reverse process have been sampled, so that the
network is connected in the forward and in the reverse direction.

Invariance of the equations of motions with respect to time-reversal
results in a detailed balance equation for the probabilities of the forward
and the reverse transition. This detailed balance condition is not satis-
fied if transition probabilities are estimated from relative frequencies of
transitions observed in the data. But, estimators that obey the detailed
balance equation lead to optimization problems which are difficult to
solve.

It is shown that estimators which obey the detailed balance equation
can be constructed if the transition probabilities are interpreted as
parameters of a statistical model. The parameters can be computed
using a maximum likelihood approach. An efficient algorithm for the
solution of the arising optimization problem is developed. The proposed
algorithm is superlinearly convergent, robust with respect to the input
data, and can be applied in situations in which the MSM contains a
large number of states.

Any data-driven approach needs to quantify the uncertainty of esti-
mated values. The parameters for the MSM are often estimated from
data that contains rare events so that estimates for their uncertainty
cannot be obtained using standard methods which are only valid asymp-
totically. Other inference methods which require to sample the set of
transition probabilities according to a high-dimensional probability dis-
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tribution have to be used. But, this is difficult for transition probabili-
ties which have to fulfill a detailed balance condition.

Uncertainty quantification for reversible MSMs is possible if a Bayes-
ian viewpoint is adopted. A probability distribution (posterior distribu-
tion) for reversible transition probabilities is constructed and a Monte
Carlo algorithm is developed to sample reversible transition matrices
from the posterior. The algorithm is efficient even in situations in which
the MSM contains a large number of states and computes reliable esti-
mates for data containing rare events.

The detailed balance condition can be used to efficiently estimate
transition probabilities in situations in which only one direction of the
process has been observed and stationary probabilities for the states
of the MSM are available. Stationary probabilities can be efficiently
estimated from enhanced sampling simulations which do not suffer from
a sampling problem. But, enhanced sampling simulations cannot be
used to estimate transition probabilities. A systematic approach for the
estimation of probabilities for rare transitions is outlined. Reversible
MSMs can be used to combine enhanced sampling simulations and
short relaxation trajectories generated by standard molecular dynamics
(MD) simulations. Reliable estimates of transition probabilities can be
obtained orders of magnitude before a single rare event would have
been observed on average.

Three examples for proteins adapted from [6, 41] are shown in Fig-
ure 1.2 and briefly discussed. The beta-2 adrenergic receptor (Fig-
ure 1.2a [40]) is located on the cell membrane and reacts to adrenaline
molecules released into the blood. When the receptor is stimulated by
an adrenaline molecule it undergoes a conformational change signaling
the cell to increase its activity leading, for example, to an increased
heart-rate. A beta blocker (shown in yellow) occupying the adrenalin
receptor site can be used to treat cardiac arrhythmia and can help to
protect from heart attacks.

The major histocompatibility complex (MHC-I, Figure 1.2b [39])
functions as a cell’s fingerprint. The MHC-I presents short fragments
(in red) of all proteins, which have been broken apart inside the cell,
on the cell-surface. The immune system can then sense infections and
abnormal cell-growth by scanning the fragments presented on the sur-
face. The MHC-I needs to bind and release these fragments with the
right affinity, so that the immune system can successfully read out the
cell’s fingerprint.

The human immunodeficiency virus (HIV) reverse transcriptase mol-
ecule (Figure 1.2¢ [38]) is used by HIV to insert genetic information
into the genome of the host cell. The genetic information of the virus
is encoded into ribonucleic acid (RNA), but the host cell’s genetic in-
formation is encoded into deoxyribonucleic acid (DNA). The reverse
transcriptase molecule can assemble a DNA counterpart to a piece of
viral RNA, which can then be inserted into the host cell’s genome. As-



4

INTRODUCTION

(a) Adrenergic receptor (c¢) HIV-transcriptase

Figure 1.2: Examples for proteins: HIV, MHC-I, and adrenalin-receptor.

sembly of viral DNA (green and blue) is performed in the claw-shaped
active site. Occupying or inducing conformational distortions in the ac-
tive site can bring the process of reverse transcription to a halt, slowing
the spread of the virus [125].

Evidence for the existence of conformations was found in experiments
probing the rebinding of carbon monoxide and dioxygen to myoglobin
after their removal by photodissociation. A conformation dependent re-
binding rate was able to explain the measured nonexponential decay of
unbound myoglobin indicating the existence of different conformational
states for bound myoglobin molecules in the ensemble prior to the pho-
todissociation pulse [3]. X-ray diffraction measurements and Mdssbauer
experiments found evidence for conformational flexibility in proteins in
the crystal state or in frozen solution [3, 36, 45, 53]. Nuclear magnetic
resonance (NMR) measurements revealed conformational flexibility on
the millisecond timescale [52].

A computational study of myoglobin [29] demonstrated that the na-
tive state of a protein consists of many local minima separated by
barriers. The existence of a sampling problem in molecular dynamics
simulations was pointed out in [19]. Many different approaches have
been developed to alleviate the sampling problem. A rigorous math-
ematical approach which allows to address the sampling problem for
conformation dynamics is the transfer operator approach [94, 95].

The atomistic motion of a protein subject to thermal fluctuations
can be described by a Markov process. A Markov process is a stochastic
process which instantly forgets its past. For molecular dynamics this
process is metastable, which means that the process tends to stay in a
subset of the state space for a long time before transitioning to another
subset in which it will again remain for a long time. The average time for
a transition is much shorter than the average time the process spends
in one of the metastable sets. Protein conformations correspond to
metastable sets of the dynamics.
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Figure 1.3: Probability transport by conformations dynamics. Part of the prob-
ability that is initially localized in the left well (reactant) is shifted to the
right well (product). At large times the density becomes invariant under the
dynamics (convergence to the equilibrium density).

As a result of metastability a finite length trajectory will contain
very few or no transitions between metastable sets. It will be impos-
sible to compute reliable values for the equilibrium probabilities from
such trajectories. The total time that the trajectory spends in each
conformation will depend sensitively on the starting point so that the
relative duration of stays cannot serve as a good approximation for
the equilibrium probabilities. Probabilities for transitions between con-
formations cannot be estimated reliably since the trajectory contains
only very few or no transition events. Such a trajectory is called non-
ergodic since averages over the state space cannot be approximated by
time-averages obtained from the trajectory.

As ergodic trajectories are computationally unavailable for meta-
stable systems a different approach to the computation of conformation
dynamics has to be used. Single trajectories are replaced by statistical
ensembles which can be described by probability densities. Evolution of
the ensemble results in a transport of probability, cf. Figure 1.3. A prob-
ability density that is supported on a metastable set will remain almost
invariant under the action of the dynamics on timescales smaller than
the characteristic timescale for the conformational process. For long
times any initial probability distribution is transported to the equilib-
rium distribution which is invariant under the action of the dynamics.

Transport of probability densities can be described by a transfer
operator Figure 1.4. The transfer operator is a bounded linear mapping
on an infinite dimensional space of suitable functions. Conformations
are sets whose characteristic functions are almost invariant under the
action of the transfer operator. Eigenvectors of the transfer operator

5
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Figure 1.4: Transfer operator. Matrix representation of the operator, large val-
ues are dark, small values are light. Each row is the probability density for
finding the system in an end state after a fixed lagtime, given that the system
was started in the state corresponding to the row index. At short times (left)
the probability for transitioning to an end state is approximately normally
distributed around the starting state. At longer times (middle) metastability
of the dynamics is reflected by a block structure of the operator. Blocks corre-
spond to conformations. For very long times (right) each row is given by the
equilibrium distribution of the dynamics.

corresponding to its dominant eigenvalues are almost constant on sets
corresponding to molecular conformations and they can be used to
identify them [23, 24].

Unfortunately the transfer operator for molecular dynamics is com-
putationally inaccessible in full detail. But, the operator can be dis-
cretized and the resulting matrix representation can be used to identify
molecular conformations and to extract interesting properties of the dy-
namics. Matrix elements of the discretized operator can be interpreted
as transition probabilities between sets if the process is reversible and
the space of molecular configurations is discretized by a finite num-
ber of nonoverlapping sets covering the space. Such a discretization of
the transfer operator is called a Markov state model, if the memory
that is introduced by the discretization of the process is removed by
choosing an appropriate lagtime. The matrix elements for the MSMs
can be estimated from an ensemble of short trajectories whose initial
configurations are distributed according to the stationary probabilities
of the dynamics [95]. Ensembles of short trajectories can be efficiently
simulated in parallel.

If the dynamics is reversible then the transfer operator is as a self-
adjoint operator on a suitably weighted space of square integrable func-
tions [95]. Suitable weights are the equilibrium probabilities for the
dynamics. For molecular dynamics they are given by the canonical dis-
tribution, i.e. the probabilities for molecular configurations in thermal
equilibrium with a heat bath.

Other approaches in which probabilities for conformational transi-
tions are estimated using an ensemble of short trajectories were also
developed. In [72, 75, 76] conformation dynamics was modeled by a
weighted network with edges representing the transition between sta-
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ble states of the system. The complexity of large scale conformational
changes could then be addressed by computing the best paths on the
network going from the reactant to the product state.

Transition path theory (TPT) [119] provides a rigorous framework
to study the statistical properties of reactive trajectories, which can be
used to study conformation dynamics. In [77] it was shown that a com-
bination of the transfer operator approach and transition path theory
using Markov state models made it possible to compute the interesting
folding pathways of a protein using only short simulations with starting
points that were not distributed according to the equilibrium weights
of the system.

The possibility to attack conformation dynamics by a massively dis-
tributed approach led to the development of the Folding@home project
[98, 100, 103] which allows users to donate idle processing time on
their home computers to scientists performing simulations of proteins.
Markov state models have been established as the unifying theoretical
framework for all approaches in which ensembles of molecular simula-
tions were used for computations of conformation dynamics [70, 82, 84,
93, 94, 102, 105], see [11] for a comprehensive survey.

Transition path sampling [10, 21], transition interface sampling [30],
and milestoning [33] can also be used to compute transition paths
from short simulation trajectories. In contrast to global approaches
like MSMs who construct a network of conformational transitions from
an ensemble of trajectories these methods are local. They need a priori
information about the transition end-states, and the transition path
needs to be resolved by the reaction coordinate, cores, or milestones,
which have to be defined beforehand.

Another approach to rare event sampling based on optimal control of
diffusion processes was outlined in [44]. An optimal nonequilibrium forc-
ing for the diffusion process is computed starting from an initial guess.
The optimal forcing can be used to estimate rare event probabilities
with zero statistical error. The method requires the a priori definition
of starting states and target sets and the nonequilibrium forcing has
to be approximated by a finite number of ansatz functions. In [120]
the optimal nonequilibrium forcing is computed via local solutions of a
partial differential equation associated to the optimal control problem.

Enhanced sampling methods can achieve an enormous speed up when
computing equilibrium expectations. They simulate the system using
an artificial dynamics that equilibrates more rapidly than the origi-
nal one. In umbrella sampling [110] the system is 'dragged’ over energy
barriers along a reaction coordinate parameterizing the interesting tran-
sitions. Replica exchange dynamics [104] couple the unbiased ensemble
with ensembles at higher temperatures at which the rare events occur
more frequently. Metadynamics [42, 59| fill up the free energy land-
scape according to the frequency of visits by the evolving trajectory.
The unbiased equilibrium probabilities can then be computed from the
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biased probabilities using statistical reweighting methods [5, 35, 57, 99,
106]. The dynamical properties of the unbiased ensemble, such as tran-
sition rates, relaxation time scales, and transition pathways however
cannot be estimated from the biased simulations.

The dynamical histogram reweighting analysis method (DHAM) [90]
and the discrete transition matrix reweighting analysis method ({TRAM)
[123, 124] enable the combination of enhanced sampling simulations and
standard (unbiased) molecular dynamics simulations into an estimator
for the transition probabilities of the unbiased ensemble which can the
be used to compute interesting dynamical properties like transition
rates, relaxation time scales, and transition pathways.

Computing statistical errors for MSMs is important since MSMs are
usually estimated from trajectories containing rare events. In [77, 101]
error estimates were obtained using the posterior ensemble of nonre-
versible transition matrices. This approach was extended to the poste-
rior ensemble of reversible transition matrices [4, 63, 65, 73]. Pertur-
bation approaches for the nonreversible posterior are outlined in [46,
88].

The probabilistic interpretation of the transfer operator in [95] re-
quires that the underlying Markov process is reversible. This property
is then carried over to the transition matrix of the Markov state model.
But the standard approach of estimating this matrix from simulation
data results in a transition matrix that is not reversible. Existing meth-
ods that use the transition matrix for a spectral clustering of the state
space [89] and the computation of dominant transition pathways [64]
do not require reversible transition matrices. But, a proof that spectral
clusters correspond to almost invariant sets has only been given in the
reversible case [48]. A reversible estimator can also have better asymp-
totic variance than the standard estimator [85]. The computation of
eigenvalues and eigenvectors of reversible matrices is also more robust
than the computation of eigenvalues and eigenvectors for nonreversible
matrices.

Maximum likelihood estimators that ensure reversibility lead to op-
timization problems that are solved by a self-consistent iteration [12,
84, 123]. The iteration can take a long time to converge and the con-
vergence behavior can be sensitive to the data that is used.

This thesis discusses efficient algorithms to estimate reversible tran-
sition matrices given observations of a Markov process. It is shown that
a duality argument from [123] can be used to transform the maximum
likelihood estimation problem into a constrained saddle-point problem.
The resulting saddle-point problem is then solved using a primal-dual
interior-point algorithm which can efficiently compute the maximum
likelihood estimator (MLE) for Markov chains with a large number of
states and is more robust than the previously used self-consistent itera-
tion. The algorithmic approach allows to tackle a number of problems
related to the estimation of reversible transition matrices, e.g. situa-
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tions in which a priori information about stationary probabilities of
the chain is available.

Uncertainty quantification for reversible Markov state models is dif-
ficult. The posterior distribution of reversible transition matrices is
supported on a high dimensional domain having a complicated shape.
Standard Monte Carlo methods cannot sample efficiently from the pos-
terior. The choice of prior is also problematic, the prior needs to ensure
that the posterior mass is concentrated around the true model even if
the likelihood is flat in some directions, i.e. only few observations of the
rare event are available in the data. Previous approaches to posterior
sampling of reversible transition matrices [63, 73] did not provide a
prior that was able to compute reliably uncertainties in situations in
which only limited sampling of a metastable system was available. Fur-
thermore the algorithms in [63, 73] suffered from long autocorrelation
times. Methods that use perturbation approaches are problematic be-
cause they use linear approximations to propagate errors. But, linear
approximations are only valid if posteriors are sharply peaked which is
unlikely to hold for metastable systems in the finite data regime. Com-
puting statistical errors is crucial for any data-driven approach since
they provide the only means to assess when sufficient data has been
used to estimate the model.

Methods for a reliable quantitative prediction of uncertainties for re-
versible MSMs are developed. A prior distribution ensuring that the
posterior mass is concentrated in the vicinity of the true model for sim-
ulation data containing rare events is constructed. An efficient Markov
chain Monte Carlo (MCMC) algorithm for sampling from the posterior
of reversible transition matrices is developed. Autocorrelation times for
the proposed algorithm are much smaller compared to a previous ap-
proach in [73]. The algorithm is computationally efficient and can be
applied to Markov models with a large number of states.

Kinetic quantities cannot be estimated using enhanced sampling
methods, but they can provide reliable estimates of stationary prob-
abilities. The detailed balance equation establishes a relation between
stationary probabilities and transition probabilities. This connection of-
fers the possibility to combine information from enhanced sampling sim-
ulations and standard molecular dynamics simulations. Furthermore
detailed balance relates the forward and the backward direction of a re-
versible Markov process. For metastable systems it is often much more
efficient to sample only one of the two directions. Enhanced sampling
data and standard simulations can be combined using the dTRAM
method but the resulting optimization problems are large and existing
algorithms that are based on a self-consistent iteration can take a long
time to converge.

The algorithmic strategy for the solution of the reversible MLE prob-
lem is extended to also cover the dTRAM problem. The proposed al-
gorithm can solve the dTRAM problem orders of magnitude faster
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than the self-consistent iteration proposed in [123]. The algorithm can
efficiently compute the dTRAM estimator for enhanced sampling simu-
lations at many different biasing conditions on large state spaces. Sim-
ilar to the reversible MLE problem a number of problems related to
dTRAM can be solved efficiently.

A systematic approach for the estimation of transition probabilities
for rare event systems using reversible MSMs is outlined. The method
combines enhanced sampling simulations and short relaxation trajecto-
ries to efficiently estimate probabilities for rare transitions. The method
uses the detailed balance condition to enable the estimation of a Markov
state model in situations in which only one direction of the interesting
process has been sampled and stationary probabilities for the states
of the MSM are available from enhanced sampling simulations. It is
demonstrated that the method can be used to obtain reliable estimates
orders of magnitude before a single rare event would have been observed
on average.

Reversible Markov state models are introduced as the discrete space,
finite data counterpart to the transfer operator for conformation dy-
namics. A systematic approach to incorporate reversibility into statisti-
cal estimation and uncertainty quantification is developed. Reversibility
of the discrete space transition matrix is not enforced for the sake of
coherence with the continuous theory alone. It is demonstrated that
reversibility can be a key asset in the efficient estimation of probabil-
ities for rare event transitions which previously was a computational
bottleneck for the successful application of Markov state models to
conformation dynamics.

OUTLINE

In Chapter 2 we introduce the transfer operator as a bounded linear
operator on a suitable space of functions and give a short introduc-
tion to molecular dynamics. We introduce Markov state models as the
discrete space counterpart to transfer operators and discuss maximum
likelihood estimation of transition matrices. A brief introduction to
Markov chain Monte Carlo methods, umbrella sampling, and statisti-
cal reweighting is also given.

Chapter 3 discusses reversible maximum likelihood estimation. A du-
ality argument is used to transform the reversible maximum likelihood
problem into a convex-concave program. An efficient algorithm for the
solution based on a primal-dual interior-point method for variational
inequalities is outlined. It is shown that the proposed algorithm can
significantly speed up the estimation compared to a commonly em-
ployed fixed-point iteration. The fixed-point iteration is very sensitive
to the data that is used in the estimation procedure in contrast to the
proposed algorithm. A new algorithm for the solution of the dTRAM
problem is presented. The outlined algorithm is orders of magnitude
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faster than a previously proposed fixed-point iteration. A decomposi-
tion method based on the Schur complement is used to solve the large
system of coupled nonlinear equations so that the dTRAM problem can
be efficiently solved even in situations in which data at many different
biasing conditions is used.

In Chapter 4 new methods for uncertainty quantification of reversible
Markov state models are developed. Uncertainties are computed using
a Monte Carlo approach. Transition matrices are sampled from the pos-
terior distribution and used to compute sample statistics of observables
of interest. It is shown that it is necessary to choose a prior distribution
that concentrates the posterior mass around the true model if data con-
taining rare events is used. A prior distribution on the set of reversible
transition matrices is constructed and a Gibbs sampling algorithm to
generate samples from the posterior is developed. A similar Gibbs sam-
pling algorithm is used to sample the posterior if the stationary vector
of the Markov chain is known a priori. An extension to situations in
which the stationary vector is known with a prescribed uncertainty is
developed. The method makes it possible to combine enhanced sam-
pling simulations and equilibrium molecular dynamics simulations into
an estimate of a reversible Markov state model. In contrast to previ-
ous methods the developed algorithm uses posterior adapted proposal
distributions for each Gibbs sampling update and has small autocorre-
lation times for relevant observables, so that the algorithm is efficient
and can be used for Markov state models with a large number of states.

Chapter 5 outlines a systematic approach for the estimation of tran-
sition probabilities for systems with rare events using reversible MSMs.
Using algorithms for the estimation (Chapter 3) and uncertainty quan-
tification (Chapter 4) it is demonstrated that a combination of en-
hanced sampling simulations and short relaxation trajectories can be
used to efficiently estimate probabilities for rare transitions. The method
is applied to a reversible Markov chain with few states, a Markov state
model for a metastable diffusion process in a doublewell potential, a
Markov state model for the conformation dynamics of a small peptide,
and a Markov state model for a non-Markovian projection of a discrete
state space dynamics modeling the diffusive motion of a neuronal vesi-
cle that can attach to a cell membrane. It is shown that the method
can be used to obtain reliable estimates orders of magnitude before a
single rare event would have been observed on average.
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Ideally, we would like to study the molecular system of interest under
biological conditions in atomistic detail. In most cases it is infeasible to
include the complex cellular environment into the simulation. Instead
we study the molecule at room temperature in a ’box’ of constant
volume. It is also necessary to explicitly simulate a fixed number of
water molecules surrounding the molecule to correctly capture solvent
effects which can be important for conformational processes [20] *.

From a perspective of statistical mechanics we study the canonical
ensemble for the simulated system. We are not only interested in com-
puting equilibrium expectations from equilibrium probabilities of the
ensemble. But, we also want to study the equilibrium dynamics (ther-
mal fluctuations) of the system. The equilibrium dynamics can be mod-
eled by a stochastic process, which is a stationary Markov process. The
Markov process is time-reversible, i.e. all n-point probabilities for the
forward and backward in time process in equilibrium are equal.

In molecular dynamics (MD) the fastest motions (bond vibrations)
happen on timescales of femtoseconds (10~'°s) while conformational
changes occur on microsecond (107%s) or milliseconds (1073s). Inte-
grators for MD allow stepsizes of at most some femtoseconds so that
conformation dynamics is not accessible via long trajectories due to its
rare event character.

Long trajectories have to be replaced by ensembles of short trajec-
tories and conformation dynamics has to be studied in terms of the
evolution of ensembles. The evolution of ensembles can be studied via
a transfer operator and conformations can be identified as sets in the
space of protein configurations which are almost invariant under the
action of this operator. This leads to a hybrid approach, where a projec-
tion of the high-dimensional transfer operator is estimated from short
trajectories giving rise to a transition matrix and interesting properties
of the operator are computed from the matrix.

As a result of reversibility the transfer operator fulfills a detailed bal-
ance condition. The operator can be regarded as a self-adjoint operator
on a weighted L2-space with weights given by the invariant measure of
the process. A statistical estimator for transition probabilities based on
relative frequencies of transitions observed in a finite ensemble of tra-
jectories will however result in a matrix which does not fulfill detailed
balance, so that an important property of the transfer operator is lost.
A reversible transition matrix can be obtained via a probabilistic inter-

For reasons of computational efficiency, water molecules are usually not resolved
in atomistic detail. Instead, most common water models are rigid, i.e. the relative
positions of oxygen and hydrogen atoms in the water molecule are fixed.

13
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pretation of the transfer operator leading to a constrained maximum
likelihood estimation problem. An efficient method for the solution of
this problem is developed in Chapter 3.

2.1 MOLECULAR DYNAMICS

In molecular dynamics the state space X is the phase space )y x (), C
R?¢ of coordinates ¢ € R% and momenta p € R The dimension d
is d = 3N for a system with N particles. Since we are interested in
systems with a fixed number of particles at constant temperature and
constant volume the invariant measure of the process is the canonical
distribution

(dz) = %exp(—,@H(m))dw. (2.1)

The parameter 3 is the inverse temperature and the constant Z ensur-
ing correct normalization is the partition function

Z:/deexp(—ﬁH(x)). (2.2)

The real valued function H (x) is the Hamiltonian, specifying the energy
of a state z = (¢, p)

H(z) = 50" M+ V(o) (2.3

The matrix M in the kinetic energy term is a diagonal matrix contain-
ing the particle masses and V(¢) is the molecular potential. Since H
contains no mixed p, g-terms the density corresponding to the canonical
measure factorizes

(@) = 5 exp(= 50 M) - exp(=8V (a). (2.4)
7 (p) mq(q)

In molecular dynamics the potential function has two parts. One for
short-range and one for long-range interactions

V(Q) = I/vshort<(]) + Viong(‘])~ (25)

Short-range or bonded interactions describe harmonic bond vibrations,
bending of bond-angles, rotation about dihedral angles, and deviations
from the planar geometry of certain groups [68]

Varort(0) = 3 M (d(g) — do)* + 32 % (0(0) — 00+

bonds angles
k
> (1 cos(nd(a) — do))+ (2.6)
dihedrals

> Swle) - o)

impropers
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Long-range or non-bonded interactions model van der Waals and elec-
trostatic interactions of particles separated by at least three bonds [68]

12 6
Vlong(Q) = Z 4€7Lj <%> - (O-ZJ) +

non-bonded qij dij
pairs (i, j) (2.7)

CiCj

non-bonded 47['6()%‘]‘

pairs (i, j)
A detailed discussion of the individual terms and parameters in (2.6)
and (2.7) can be found in [68].

It should be noted that the molecular potential is a simplified, empiri-
cal model facilitating a classical description of the quantum mechanical
interactions between nuclei and electrons in terms of the nuclei posi-
tions alone.

2.1.1  Langevin dynamics

Equations of motion for the molecular system at constant temperature
and constant volume can be derived using the Mori-Zwanzig projection
operator formalism [128]. The resulting equations of motion are closed,
i.e. all forces can be computed without information about the positions
and momenta of the particles in the environment. The interaction with
the environment is described via effective friction and stochastic forces
modeling the effect of random collisions with unresolved particles in
the environment. The resulting equations of motion are the Langevin
equations

Gg=Mp,

] B . (2.8)
p==VgV(g) = yM 'p+oW.

Equation (2.8) is a stochastic differential equations (SDE). The con-
stant ~ is the damping factor for the friction force, o is the noise inten-
sity of the stochastic force modeled by a d-dimensional Wiener process
Wy with mean (W;) = 0 and correlation (W, W) = 6(t — s). The so-
lution to the Langevin equation (2.8) is a time-homogeneous Markov
process.

If one of the following two conditions is satisfied

(P) Periodic system: Position space Q; C R? is periodic and the
potential V : (3, — IR is smooth

(B) Bounded system: Position space is 0, = R?, the potential V is
smooth, bounded from below and V(q) is growing at infinity as
|q||? for some positive integer I. Such systems are called bounded,
since the energy surfaces {z|H(x) = E} are bounded subsets of

X [95]-

15
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then the solution process has a unique invariant measure given by the
canonical measure 7 in equation (2.1). Inverse temperature (3, noise
intensity o, and damping factor v satisfy the following equation [8]

ot =3 (2.9)

2.1.2 Brownian dynamics

In the high friction limit v — oo the Langevin equation can be simpli-
fied to yield Smoluchowski or Brownian dynamics [8]

G=-VV(q)+\/2671W. (2.10)

The solution of (2.10) is a time-homogeneous Markov process. If condi-
tion (P) or (B) are satisfied then the canonical density 7, is the unique
invariant density for Brownian dynamics.

2.2 TRANSFER OPERATOR

This section reviews the transfer operator approach to molecular dy-
namics. The presentation closely follows [95].

Let (X, A, 1) be a probability space, where X C IR? is the state space,
A the Borel o-algebra on X and pu is a probability measure on A. If
the measure p is absolutely continuous with respect to the Lebesgue
measure dr on X then it has a density such that

u(A) = /Adxu(:):), VA e A.

This slight abuse of notation should not be too confusing. It will be
clear from the context if u is a density or a measure.

For a given measure pu we denote by LP(u) the usual LP space of
(real-valued) functions on X. The space L?(u) is a Hilbert space with
scalar product

(o) = [ n(deyu(e)o(@)

A time-homogeneous Markov process (X;):c; in continuous or dis-
crete time, I = R, or I = N can be defined in terms of a (stochastic)
transition function p: I x X x A — [0,1] 2 that satisfies the following
conditions

1. p(t,z,-) is a probability measure on A for every ¢t € I, z € X and
p(0,2, X \ {z}) = 0 for every z € X, i.e. p(0,z,-) is the Dirac
measure d, () for all z € X.

We assume that X; is measurable and nonsingular with respect to the base measure
f, ie. p(X;1(A)) =0 for all A € A with u(A) = 0.
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2. p(t,-, A) is measurable for every t € I, A€ A

3. p(+,z, A) satisfies the Chapman-Kolmogorov equation

plt+s.2,4) = [ plt.o,dy)p(s.y. 4) (21)
forallt,se I,z € X, and A e A

The transition function specifies the conditional probability for find-
ing the process (X;):cs after a time ¢ in the set A given that it was
started in x

P[Xsi: € Al X = 2] = p(t,z, A), Vs,t eI, Aec A (2.12)

Equation (2.12) is invariant with respect to the starting time s since
the process (X¢)ier is time-homogeneous.

The transition function describes the transport of probability mea-
sures. Let v be a probability measure on (X,.A) then

v (A) :/Xyg(da:)p(t,a;,A) (2.13)

is also a probability measure on (X,.A). 3

The transition function induces a linear operator P; : L'(u) — L'(p).
For p absolutely continuous with respect to the base measure p it is
defined as

(Pu)(y) = /X u(dz)u(@)p(t, z,y), Yu € L} (). (2.14)

In general p will not be absolutely continuous with respect to p.
The backward operator Ty : L™ (u) — L () is defined as

(Tw)(@) = [ plt.o.dy)o(y). Yo e L2(p). (235)

The integral in (2.15) is the conditional expectation value of the random
variable v(X}) for the process (X;);erstarting in z at t = 0,

(Tyv)(z) = E[v(X,)| X0 = 2. (2.16)

Under mild regularity conditions the operator T; is a well defined op-
erator on L>(u) and the transfer P, operator can be defined as the
adjoint of the backward operator T} [69].

The operator P; describes the time-evolution of probability densities
and T} describes the time-evolution of expectation values.

In the time-continuous setting, I = R{, the set (P;)ie; forms a
strongly continuous semigroup of transfer operators 4, i.e.

. o _ 1
%H)I(l) Ptu = u, Pt+su - jjtpsuv Vu € L/,L(X) (2'17)

The integral is well defined since the measurable function p(t, -, A) is bounded VA €

A.
(2.17) is a result of p(0,z, X \ {z}) = 0 for all x € X and the Chapman-Kolmogorov
equation (2.11)

17
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2.2.1 Invariant measures

Invariant measures are invariant under the action of the transfer func-
tion, i.e.

m(A) = /Xw(d:n)p(t,x,A), Vtel, Ae A. (2.18)

If we chose (X, A, ) as the probability space for the transfer operator
then the characteristic function of X is an invariant density of P,

Pixx =xx, Vtel. (2.19)

2.2.2 Detailed balance and reversibility

If the detailed balance equation holds for the transition function

/W(dﬂ:)p(t,x,B) :/ m(dx)p(t,z, A), VA,B e A (2.20)
A B

then the measure 7 is the invariant measure for the process and the
transfer operator is a self-adjoint operator on L?(7) 5, i.e.

(v, Pau)r = (P, u)r, Yu,v € L*(m). (2.21)

If the detailed balance equation (2.20) holds for a stationary Markov
process (Xi)er, i-e. (X¢)ter is a time-homogeneous process with initial
condition distributed according to its invariant measure, then all n-
point probabilities for the forward and the time-reversed process are
equal, i.e. forall t; <---<t, € I and for all Ay,..., A, € A

P(X:, € A1,..., Xy, € Ap) =P(X,, € Ay,..., X5, € An). (2.22)
Time-points for the time-reversed process on the right hand side of

(2.22) are given by s = t, — (tn—r1 —t1) [78].

2.2.3  Probabilistic interpretation

We can extend the definition for the conditional probability in (2.12)
to the case X; € B given that Xy € A,

p(t,A,B) =P[X; € B| Xy € A] = u(lA) /Au(d:r)p(t,x,B). (2.23)

Equation (2.23) can be interpreted as the following two step experiment
[95]

1. Preparation: Select from an ensemble distributed according to the
base measure p all systems in set A.

The inclusion LP(u) C L (u) for any p € [1, 00] follows from the Hélder inequality
since 4 is a finite measure, i.e p(X) < co.
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2. Measurement: Determine the relative frequency of selected sys-
tems ending up in the set B after time t.

The probability p(t, A, B) in (2.23) will in general depend on the cho-
sen base measure p. Since we are interested in equilibrium fluctuations
we assume from now on that the base measure is chosen as the invariant
measure of the process m, i.e. the initial ensemble in the experiment is
in equilibrium.

In terms of the transfer operator equation (2.23) can be expressed
as follows

(xB, PixA)u

1A B) = .
ol ) (XA, XA

(2.24)

2.2.4 Almost invariant sets

Almost invariant sets can now be characterized using the interpretation
of the set-to-set transition probability (2.23) via the above two step
experiment for the equilibrium ensemble.

A set C is almost invariant if the relative frequency of systems (in
equilibrium) staying in C' after some characteristic time-span ¢ is close
to 1:

C' almost invariant < p(t,C,C) ~ 1. (2.25)

In terms of the transfer operator almost invariance of a set C' means
that

Pixe = xc (2.26)

where ¢ is the characteristic function of the set C.

If the set C is invariant then Pyx¢c = xc, i.e. xX¢ is an eigenvector
corresponding to the eigenvalue A = 1. According to (2.26) x¢ is an
approximate eigenvector for an eigenvalue close to the eigenvalue A = 1.

The central idea of the transfer operator approach is: Identification of
invariant sets via eigenvectors corresponding to dominant eigenvalues,
i.e. eigenvalues close to the Perron eigenvalue A = 1. For a successful
identification strategy we require the following two conditions to hold
for the transfer operator:

(C1) P, is asymptotically stable: (P;)"u — xx as n — oo for every
density u € L'(7), i.e. the eigenvalue A = 1 is simple and domi-
nant.

(C2) The essential spectrum of P, i.e. the spectrum excluding eigenval-
ues of finite multiplicity, is strictly bounded away from the unit
circle |A| = 1.

Uniqueness of the invariant measure (simple eigenvalue A = 1) is
important since almost invariance is defined with respect to a selected
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measure which is assumed to uniquely represent the equilibrium en-
semble of the system of interest. Dominance of the eigenvalue A = 1
excludes other eigenvalues with |A\| = 1 so that any initial ensemble will
converge to the equilibrium ensemble. The condition for the essential
spectrum ensures that the dominant eigenvalues of P; can be used in
a computational approach to the identification of almost invariant sets

[95].
2.2.5 Transfer operator for molecular dynamics

This section reviews properties of the transfer operator for molecular
dynamics described by Langevin or Brownian dynamics. It is assumed
that either condition (P) or (B) is satisfied for the molecular potential.

The solution to the Langevin equation (2.8) is a time-homogeneous
Markov process (Xi)ier = (i, pt)ter with invariant measure 7 given
by the canonical measure in equation (2.1). The transition function p
for the Langevin process is absolutely continuous with respect to the
invariant measure for all ¢ > 0 and it induces a semi-group of transfer
operators (P;)er [8].

The corresponding transition kernel and the corresponding invariant
density fulfill the following extended detailed balance equation [96]

m(x)p(t,z,y) = 7(Ry)p(t, Ry, Rx), ¥Vt >0, z,y € X (2.27)

with momentum reversal operator Rz = R(q,p) = (¢, —p).

In most cases one is interested in the dynamics of molecular config-
urations, i.e. the induced process (q¢)tc;. The momenta p; are usually
ignored.

In [8] it was shown that for the Langevin equation (2.8) the induced
process (qt)ter is a Markov process with absolutely continuous transi-
tion function p satisfying the detailed balance equation

Wq(Ql)p(taQLQQ) = 7T(](qQ)p(t7 Q2>QI)7 vt > 07 q1,42 S Qq- (2-28)

As a result the corresponding spatial transition operator .S; is a self-
adjoint operator on L?(mg). If conditions (P) or (B) are fulfilled for the
potential then S; possesses the necessary spectral properties (C1) and
(C2) for identification of almost invariant sets [8].

The transition kernel for the spatial dynamics does not obey the
Chapman-Kolmogorov equation

p<t1 +t2,$,y> # /de(tl,Q?,Z)p(tg,Z,y). (2'29)

so that spatial transfer operators do not form a semigroup, Syt 7 S¢.Ss.
Observing that the relaxation of the momenta is significantly faster

than that of the positions it is argued in [9] that the position dynamics

is “almost Markovian” on timescales larger than a suitable lagtime 7

p(t+s,2,y) ~ /dzp(t,w,Z)p(s,z,y% Vi, s > 1. (2.30)
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As a result long-time predictions can be computed from the spatial
transfer operator S; with a time resolution coarser than the lagtime

Spt = (Sp)", Vt>7,neN. (2.31)

Brownian dynamics, i.e. the solution to equation (2.10), is a time-
homogeneous Markov process (q;)ier. The transition function for the
process is absolutely continuous with respect to canonical density 7,
from (2.4). The transition function satisfies the Chapman-Kolmogorov
equation (2.11) and induces a strongly continuous semigroup of (spatial)
transfer operators (S¢)¢er.

The transition kernel and the fulfills the detailed balance equation for
the transition function so that the transfer operator S; is a self-adjoint
operator on L?(m,).

If the potential fulfills either condition (P) or (B) then the transfer
operator for Brownian dynamics possesses again the desirable spectral
properties (C1) and (C2) for the identification of almost invariant sets

[95].
2.3 MARKOV STATE MODELS

The two step experiment outlined in Section 2.2.3 suggests the compu-
tation of p(t, A, B) in terms of relative frequencies

Nap(t)

p(t,A,B) = lim N, (2.32)

Ngp—o0
Where N4 is the total number of systems in the (equilibrium) ensemble
starting in A and Napg(¢) is the number of such systems that end up
in B after time t.

Previously, molecular conformations were identified as metastable
subsets of the state space (position space). In Section 2.2.4 it was out-
lined how such sets can be identified from eigenvectors corresponding
to the dominant eigenvalues of the transfer operator P;. Unfortunately
P, is almost never available directly.

The idea central to Markov state models (MSM) is to obtain a finite
dimensional approximation of P, in a way that allows to identify ma-
trix elements of the discretized operator with transition probabilities
between sets. These transition probabilities can then be estimated from
simulation data.

Let S1,..., 54 be a partition of the state space X into sets with

d
X=s S8 =0, i#j. (2.33)
i=1

Then a corresponding space of ansatz functions for a Galerkin dis-
cretization of P, is

V = span{xi,...,Xd}- (2.34)
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The function y is the characteristic function of the set Sj. The Galerkin
projection IT: L?(7) — V is

d
Xk7 2
E = E Uk Xk, Yu € L*(m). 2.
— Xkan) - Rk () (2:35)

The Galerkin projection of the transfer operator P, is

Xi» Pexj)w (PiXiy Xj)m
TIPTTu = 3y Xl o 5™y X My,
7 s Xi)n (Xi» Xi )

“ (2.36)
= ZXipijUj-
i,

For the second equality we have used that P; is self-adjoint on L?(7).
The matrix element p;; is the set-to-set transition probability from
equation (2.24)

(PiXiy Xj)m

pij = p(t,Si,Sj) = T o)

(2.37)

The transition matrix P = (p;;) inherits the following four important
properties from P; [95]:

(M1) The matrix P is (row-)stochastic, i.e. pjj > 0 and >-; p;; = 1 for
all 4,7 = 1,...,d. As a result all eigenvalues \ satisfy |A| < 1.

(M2) The row vector m = (71, ...,74) with m; = [g 7(dz) is a left in-
variant vector corresponding to the eigenvalue A = 1, i.e. 77 P =

T

.

(M3) The vector 7 satisfies the detailed balance equation for the tran-
sition matrix P, i.e. mp;; = mjpj; for all i, = 1,...,d. As a
result, the matrix P is symmetric with respect to the m-weighted
scalar product (u,v)r = >, muv;, i.e. (u, Pv); = (Pu,v), for
all u,v € R? so that all eigenvalues of the matrix P are real.

(My) If the transfer operator P, satisfies (C1), then the matrix P is
irreducible and aperiodic, i.e. the eigenvalue A = 1 is simple and
dominant so that the vector 7 is the unique stationary vector.

The projection IT destroys the semigroup property of (P;), i.e
I1P;; ,IT # (TTPIT) (ITP,IT) (2.38)

so that the n-step transition probabilities between sets can not be de-
scribed by powers of the transition matrix P

p(nt, Si,Sj) 75 (Pn)” (2-39)

One can however show that the semi-group property can be approx-
imately recovered for a suitable choice of lagtime 7, if the dominant
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eigenvectors of P; can be approximated by linear combinations of the
chosen ansatz functions. This implies that the chosen sets can approx-
imately resolve the slow processes with a time resolution coarse than
the lagtime 7 [84, 91].

A complete Markov state model is specified by sets (S;)¢_; for the
discretization, an appropriate lagtime 7 ensuring approximate Marko-
vianity of the projected operator, and the transition matrix P = I'1P, 11
estimated from data

MSM = {(S;)%,,7, P}. (2.40)

A Galerkin projection using a more general class of ansatz functions
can also be performed. Slow processes can then be computed using
variational methods [74, 79, 80]. But, the resulting matrix elements
cannot be interpreted as probabilities and have to be estimated via
equilibrium correlation functions.

2.4 MAXIMUM LIKELIHOOD ESTIMATION

Previously, we have seen that the matrix elements resulting from a
discretization of the transfer operator with characteristic functions can
be interpreted as conditional set-to-set transition probabilities which
can be estimated from simulation data.

Once the set-based discretization has been chosen the high-dimensional
time-series of configurations generated by the molecular dynamics sim-
ulation (g) is mapped to a time-series of integer labels (X;) via the
simple membership rule

@ eSS = Xy =i (2.41)

We assume that at a suitable lagtime 7 the resulting jump process
(Xk)keN, with X = Xj, is a time-homogeneous Markov chain on a
finite state space, i.e.

P(Xgi1] Xk, -+, X1, Xo) = P(Xg41[Xk), Yk € No. (2.42)

The matrix elements for the MSM are then given by the conditional
jump probabilities of the chain

pij = P(Xpy1 = j| Xy = i), Vi,j=1,...,d (2.43)

The probabilities p;; have to be estimated from a finite realization of
the chain Xy =1g,..., Xy = in.

An estimator p;; = p;j(Xo, ..., Xn) for the matrix elements p;; can
be found by maximizing a likelihood function. The resulting estimator
is called the maximum likelihood estimator (MLE). Under certain reg-
ularity conditions [34] the MLE has the following desirable asymptotic
properties:
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1. Consistency, i.e. the MLE converges to the true transition proba-
bilities

2. Normality, i.e. the asymptotic distribution of the MLE is a normal
distribution with mean given by the true transition probabilities

3. Efficiency, i.e. asymptotically the MLE is the best unbiased es-
timator for the transition probabilities - that is it has minimum
variance among all unbiased estimators

Using the Markov property of the process (Xj)ren, the likelihood
of observing a finite length random sequence Xj,..., Xy for a given
transition matrix P = (p;;) can be expressed as

N-1
P(Xo, X1, .., Xn|P) = [T P(Xp41] Xi)P(Xo). (2.44)

k=0
Denote by ¢;; = ¢;;(Xo, ..., Xn) the number of transitions in the se-
quence Xy, ..., Xy going from state ¢ to state j. Using the transition

counts ¢;; we can rearrange the product in (2.44)

P(Xo, X1,..., Xn|P) = P(Xo,C|P) = HpﬁlPXo (2.45)

Equation (2.45) shows that the likelihood of the sequence Xy, ..., Xy
is determined by the probability distribution of the initial state IP(Xy)
and the matrix of transition counts C' = (¢;;). The transition counts
¢i; are a minimal sufficient statistic for the transition probabilities p;;
if the distribution of the initial state is independent of the p;; which is
assumed from now on [2]. All information about the desired parameters
pi;j contained in Xo, ..., Xy can be minimally encoded into C'.

The maximum likelihood estimator P can be found by maximizing
the following log-likelihood over the set of all stochastic matrices

L(C|P) = cijlogpij. (2.46)
]
Using the method of Lagrange multipliers one can show that the MLE
is simply given by P = (p;;) [2] with

Cij

by = 5o (2.47)

The above argument can be extended to the case of an ensemble of
M independent finite length chains {(X1 )M, ..., (Xprx)et}. The
transition counts are then given by the transition counts accumulated
over all chains in the ensemble,

M
Cij = Z Clyij-
=1
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The integer ¢; ;; denotes the number of transitions from state i to state
j in the Il-th chain (Xl,k)iiviy The resulting MLE is again given by
equation (2.47).

The estimator in (2.47) is exact in the limit of an infinitely long
realization (N — oo) starting from a fixed initial state Xo = iy or
in the limit of an infinite ensemble of independent finite length chains
(M — oo, N € IN) under the condition that the probability to start in
state 4 is positive for alli =1,...,d [2].

For a finite observation of the chain the estimator in (2.47) is not re-
versible even if the chain (X )renN, is reversible. An important property
(M3) that holds asymptotically is violated when using the estimator in
equation (2.47) for any finite amount of data. A solution to the MLE
problem that ensures reversibility is presented in Chapter 3.

2.5 MARKOV CHAIN MONTE CARLO

The objective here is to generate samples from a target density 7(x),
r € X C R% To simplify the presentation we assume that X is a
connected set and that 7(x) > 0 for all x € X. The target density 7 is
possibly non-normalized but is integrable.

2.5.1 Rejection sampling

This section closely follows [25]. Rejection sampling relies on the ability
to generate samples from a proposal density p(x) with the property that
for a known constant ¢ > 0

m(x) < cp(x), Vo e X. (2.48)

The proposal density p(x) is possibly non-normalized but is integrable.
Samples from the target density 7 are then generated via proposals
sampled according to p. The proposal x is accepted if

m(z)
() (2.49)

u <

for a random v which is uniformly distributed in [0, 1], cf. Algorithm 1.
Rejection sampling is efficient whenever sampling from p is efficient and
the average number of rejections is small.

The following property of densities is central to the idea of rejection
sampling. Random points (z,y) with z ~ p(z), y = up(z) and u uni-
formly distributed in [0, 1] are uniformly distributed in the hypograph
of p, i.e. the area under the graph of p,

hyp p = {(z,9)[0 <y < p(x)}. (2.50)

Vice versa, if (z,y) is uniformly distributed over hyp p, then z is dis-
tributed according to p. The same applies to cp for any ¢ > 0.
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Algorithm 1 : Rejection method

Input : p, 7, c
Output : x
while True do

Generate z ~ p(z) and u uniformly in [0,1]
if u < 72 then
cp()
Return x

end
end

If p is a valid proposal density for m, i.e (2.48) holds for some ¢ > 0,
then hyp 7 is contained in hyp cp. In the rejection method we propose
points uniformly in hypcp accepting only points that lie in hyp = to
generate x distributed according to 7.

The acceptance probability p for the rejection method is inverse pro-
portional to the constant c,

7(x) 1
=P < = -, 2.51
p {u_cpm] ; (2.51)
The probability of accepting a sample after k proposals, i.e. after k — 1
rejections, is (1 — p)k~!
cessfully generating a sample is thus given by

p. The expected number of proposals for suc-

P i E(1-p)lt=c (2.52)
k=1

The optimal value ¢* should be as small as possible, so that

T
i o) =29

2.5.2  Metropolis Hastings algorithm

The presentation is similar to [17], but the material can be found in
almost every textbook on Monte Carlo sampling, e.g. [87]. For the
rejection method samples from the proposal density p are usually drawn
independently. The central idea of the Metropolis Hastings algorithm
is to regard the target density m as the invariant density of a Markov
chain with unknown transition function p. Knowledge of 7, i.e. the
ability to evaluate it for a given x, and a proposal generating transition
kernel ¢ are then used to generate a chain evolving according to p. The
algorithm is constructed such that m and p satisfy the detailed balance
equation (2.20) which ensures that the target density 7 is the invariant
density of the chain.

Starting from a valid initial point xg € X the algorithm generates a
sequence of points x1, ..., xxy which will asymptotically be distributed
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according to 7. In the (i + 1)-th step proposals y are sampled from the
proposal kernel g(z;,-). If the acceptance criterion

m(y)a(y, i) }

m(zi)q(xi,y) (2.54)

u < min {1,
is satisfied for a random u which is uniformly distributed in [0, 1] then
the chain moves to the proposed point, z;11 = y, otherwise the chain
remains at its current position, x;11 = x;, cf. Algorithm 2. The algo-
rithm is efficient whenever sampling from ¢ is efficient for all x € X
and the correlation between samples decays fast.

Algorithm 2 : Metropolis-Hastings algorithm

Input : g, 7, o, N
Output : z1,...,xN
fort=0,..., N—1do
Generate y ~ q(z;,y) and u uniformly in [0, 1]

if u < min{l, %((yxf;))} then

Tit1 =Y
else
Tit1 = X5
end
end
Samples z1, ...,z N generated from the Markov chain with transition

function p starting from a valid initial point g € X will asymptotically
be distributed according to  if the chain is m-irreducible and aperiodic
[87, Theorem 7.4]. This essentially holds for the Metropolis-Hastings
chain if the proposal density satisfies the following positivity condition
[87, Corollary 7.5]

q(z,y) >0, Yo,y € X. (2.55)

It is possible to establish convergence under weaker assumptions on m
and g, cf. [87, Corollary 7.7].

If 7 would already satisfy the detailed balance equation (2.20) for
our proposal kernel ¢ we would be done. In all other cases we modify
q via an acceptance kernel 0 < a(x,y) < 1 to ensure that the detailed
balance equation (2.20) holds for the resulting transition function p.
Rejecting a proposed move means keeping the current sample x so that
the transition function contains a point mass

p(z, A) = ryd,(A) + /Ady a(z,y)q(x,y). (2.56)
The acceptance kernel is given by the Metropolis-Hastings rule

7T(y)q(y,w)}

(@)l y) (2:57)

a(z,y) = min {1,

27



28

THEORY

and the rejection probability r, is given by

ry =1-— /Xdya(x,y)q(x,y). (2.58)

Central to the Metropolis-Hastings algorithm is the following idea:
If m(z)q(z,y) > 7(y)q(y,x) for some z,y € X then the chain evolving
according to ¢ moves from x to y too often and from y to x too seldom.
The acceptance kernel is chosen such that it corrects this imbalance, i.e.
the detailed balance equation 7(x)a(z,y)q(z,y) = 7(y)a(y,z)q(y, )
holds. Since the g-chain moves from y to x too seldom we always accept
the move from y to z, so that a(y,z) = 1 and a(z,y) = % < 1.

If the proposal kernel is symmetric, i.e. ¢(z,y) = ¢q(y, ), then the
acceptance probability (2.57) depends only on 7. The symmetric case
in which ¢(z,y) = ¢(Jz — y|) is called a random-walk proposal since
the candidate is the current value plus a proposal increment. The most
prominent distribution for the random-walk proposal is the Normal

distribution A'(0, 02) with zero mean and variance o2.

2.5.3  Gibbs sampling

The Gibbs sampler generates samples from the target distribution 7 via
successive updates of entries xy of a vector x = (z1,....z4) € X. En-
tries xj, are sampled in succession from their corresponding conditional
distributions

(k) = T(Tk|T1, - The1s T 1, - - - Ta)- (2.59)

Once the entry x; has been updated the next entry zp,q is sampled
conditioned on the previously updated coordinates. After a sweep over
all entries the algorithm returns a new vector, cf. Algorithm 3. The
algorithm is efficient whenever sampling from the set of conditionals
(mk)¢_, is efficient for all z € X and the correlation between samples
decays fast.

Algorithm 3 : Gibbs sampler

Input : , .CC(O), N
Output : x(l),...,x(N)
fori=1,...,N do

z =z
fork=1,...,d do
Uk ~ T(Yely1, - Uk—15 Thg 15 - - -5 Ta)
end
2(i+1) =y

end
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The update rule ensures that the resulting sequence of x1,...,xN
is asymptotically distributed according to m if the following positivity
condition holds for all k =1,...,d

(TR T, - o Th—1, Ykt 1y -+ -5 Yd) > 0, Va,y € X. (2.60)

Convergence can established under weaker assumptions, cf. [87, Corol-
lary 10.12].

2.5.4 Sampling errors

Most Monte Carlo methods are used to approximate expectation values
with respect to a target density m. For a given function f : X — R
interesting expectation values are for example mean and variance of
the function f

plf) = Elf] = [ dom(@)f(@), (2.612)
AH1f = B = plf))] = [ dea(@)(f@) = ulf)% (260)

If the dimension of X is large computation of these integrals by numer-
ical quadrature (grid-based methods) is often infeasible. The number
of operations (function evaluations, summations, etc.) grows exponen-
tially with the dimension of the domain X (curse of dimensionality).
The central idea of Monte Carlo is to generate samples z1,...,zN
distributed according to the target density m and to approximate the
expectation values by the following unbiased sample estimators

mlf] = % 3 Fla), (2.622)
k=1
1 N
32[f] = mZ(f(xk)—m[f])z. (2.62b)
k=1

The error incurred by the approximation goes to zero in the large sam-
ple limit (N — o0).

Successive samples from a Markov chain are not independent so we
can not compute the error of the mean using the central limit theorem
(CLT). The CLT asserts that the sample mean m[f] of N indepen-
dent and identically distributed random variables with finite expecta-
tion u[f] and variance o%[f] follows a normal distribution around the
expected value in the limit of large sample sizes (N — oo). The er-
ror of the mean is defined as the following standard deviation €2 =
E[(m[f] — p[f])?] which asymptotically satisfies

2 _ °[f]

€= (2.63)

A central limit theorem for reversible Markov chains [54] establishes
an analogous result: The sample mean of a reversible Markov chain
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is normally distributed around the true value asymptotically and the
error of the sample mean € is given by
2
2 _ o°|f]
€= ——=. (2.64)
Nef'f
The effective sample size Ng takes into account the dependency be-
tween samples from the Markov chain. It can be computed using the
integrated autocorrelation time 7y, which reduces the actual sample
size N according to

N
Negg = 9 . (265)
Tint
The integrated autocorrelation time is defined as
1 (o)
Tint = §+Zr[f](t). (2.66)
t=1

The function T'[f](¢) is the normalized autocorrelation function of the
process (ft) = (f(X¢)). For a stationary process it is defined as,

E[(fi = E[f]) (fi4r — E[f])]
o?[f] '

In most cases the function T'[f] is approximated using a set of N
samples of the Markov chain

Iifl(r) = (2.67)

Z m[f])(ferr —m[f]). (2.68)

t=1

This estimate of T'[f] is not unbiased. The unbiased estimate is multi-
plied by an additional factor 1 — 7/ N which suppresses values at large
values of 7. At large values of 7 the estimate a[f](7) will have large
errors since only (N — 7) samples are used to compute the estimate.

Simple summation of a[f](7) as in (2.66) is problematic since the
variance of a[f] does not go to zero as T goes to infinity. A possible
solution is to use an initial positive sequence estimator truncating the
sum once a[f](2m) + a[f](2m + 1) becomes negative for the first time.
If T'[f] can be described by a single exponential with decay time Texp
then one can show that 7t & Texp. An exponential fit to a[f] can then
be used to obtain 7int. A more thorough discussion of sampling errors
in Markov chain Monte Carlo simulations can be found in [37].

2.6 ENHANCED SAMPLING

The existence of metastable conformations makes it extremely difficult
to obtain accurate estimates of their stationary probabilities or the
transition probabilities between pairs of conformations from finite sim-
ulation data. Enhanced sampling techniques [42, 59, 104, 110, 111, 122]
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can accelerate the computation of stationary probabilities significantly
under certain circumstances.

If it is possible to find a reaction coordinate or collective variable, i.e.
a function that parameterizes the transition between conformations
then an efficient computation of the stationary probabilities can, in
many cases, be accomplished via the umbrella sampling method [110].

Formally such a collective variable is given by a mapping from the
high-dimensional space of molecular configurations X to the real num-

bers,

d: X - R. (2.69)
One can then define the equilibrium probability density of the collective
variable

7€) = 5 [ do exp(=BV (2))3(¢ ~ @ (x). (270)

The precise meaning of the above integral is provided by the coarea
formula [43]. The constant Z is the partition function ensuring correct
normalization

Z = /Xda: exp(—pV (z)). (2.71)

The free energy along the collective variable is then defined as

F() = —log (Zr(9)). (272)
With the help of the free energy the probability density can be cast
into the standard canonical form 7(§) = exp(—BF(£))/Z. For this
reason F'(§) is often called potential of mean force [43]. If £ is a mean-
ingful reaction coordinate that parameterizes the transition between
conformations then F(£) has a barrier for every transition between
conformations.

2.6.1  Umbrella sampling

A natural strategy for an enhanced sampling scheme is to force the
system to sample the barrier regions which would otherwise be only
very rarely visited. This can be achieved via an additional harmonic
potential u(® that forces the system to sample the vicinity of a given
value &, of the reaction coordinate

W) = £ (6~ ) (273)

The stiffness of the forcing potential k£ has to be large enough to restrain
the system in situations in which the free energy F'(£) has a steep slope
in a neighborhood of the umbrella center &,.
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The probability density along ¢ for the biased system 7(®) () can be
related to the unbiased one via

7)) = oy exp(—u(©) () (274)

Ule)(g)

where Z(®) is the partition function from (2.71) with V() replaced by
the biased potential V(@ (z) = V(z) + u(® (®(z)).

The biased density 7(@) can be estimated via umbrella sampling simu-
lations. The finite sample estimate of 7(® will only provide information
about 7 in a neighborhood of &,. We can recover 7 for a range of &
values by joining information obtained from biased simulations with
different centers (£(*)M, .

Using (2.74) we can in principle compute the unbiased from the bi-
ased density. Unfortunately, we also need all fractions Z/Z(® which
are almost never available a priori. Fortunately, we can still recover the
unbiased density using a statistical reweighting method. But, sufficient
overlap of the distributions sampled by adjacent umbrella simulations
is necessary to obtain meaningful results from the reweighting method.

The umbrella sampling method can be extended to multidimensional
collective variables ¥ : X — R”, but the number of biased simulations
required to cover the set of relevant values of the (multidimensional)
collective variable can quickly become unmanageable - the sufficient
overlap condition is also necessary in the multidimensional setting.

Finding an admissible value for the stiffness of the biasing potential
can also be a problem since the maximum steepness of the free energy
in the relevant range of values of the collective variable is not known
a priori. Finally, finding a good collective variable can be very difficult
- the mapping ® has to encode a potentially complicated transition
mechanism on a high-dimensional space of molecular configurations
into a single degree of freedom.

2.6.2  The weighted histogram analysis method

In this section we discuss the weighted histogram analysis method
(WHAM), one particular method for obtaining the unbiased density
70 (&) = 7(€) from a set of biased densities (7(®)(£))M_,. The biased
densities are not directly available but have to be estimated from sam-
ples generated by enhanced sampling simulations.

In order to apply the weighted histogram analysis method (WHAM)
[35, 58] we subdivide the relevant interval of values of the collective
variable @ into a number of bins [£y,&1), [€1,&2), -+, [€4-1,&4)- Then
we approximate all densities by densities that are piecewise constant
over the bin, i.e. 7(®(£) & 7T7;(a) (€)) for all £ € [&—1,&). Each density
(&) is thus approximated by a probability vector (7‘1’,5&)). The biasing
factors have also to be approximated by a piecewise constant function
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with values given by the vector (U, -(a)). We denote by cga) the number

(2
of samples from a simulation at condition « belonging to the i-th bin
[€i-1,&)-
The likelihood of observing the counts {(cgl));-izl, ey (CEM))le} from
independent simulations generating independent samples from the bi-
ased densities is then given by

I
=
%
S
B
N
2

IP(C(I),...,C(M)|7T(1),...,7T(M))

Q
I
—_

(2.75)
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The maximum likelihood estimation problem for WHAM is then

max) Z(Zc logﬂ )

w(0) X (a
subject to ij — 1. g X(a)U(a)w](p) (2.76)
J
X@ >, w( )< .

Where X(@) = (Z(®)~1 and wj(o) x ZT('J(-D) are the not necessarily
normalized weights for the unbiased ensemble.

Ignoring all inequality constraints and substituting 7(@) via the reweight-

ing condition we have the following Lagrangian for the equality con-
strained problem,

L= ZZC log( U;a)w](-o))
(2.77)
+y A (ZX 1)

Necessary conditions for a local optimum of (2.76) are

(@)
oL %€ () N~ pr(@), (0) _
X — xl(a) +A ;Ui Wi =
2.78
L Sact” \(@) x (@) (@) _ o
SO T =0
k k @

Rearranging expressions and using the normalization condition we have

S
J

0 _ IR | (2.79)
Yo (3;¢M) X0
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Plugging the expression for A\, into the first equation of (2.78) and using
it together with the second equation of (2.79) yields the set of WHAM-
equations, which are usually solved via a self-consistent iteration,

1
x&=_-_
ST .
o 2.80
wlgo) B > C;(C :

= > (ZJ Cga)) X(a)U]ga)'

Equation (2.76) is invariant under the change of variables 171](-0) = ij(o)
and X(® = A=1X(®) with A > 0, so that the solution to (2.76) is not
unique. This is also true for the WHAM-equations (2.80). But, the
self-consistent iteration has to be started from an initial guess which
removes this ambiguity. Still, care has to be taken to avoid over- or
underflow if a self-consistent iteration for (2.80) is implemented. It is
an open question how the choice of scaling affects the performance of
the algorithm and how to choose an optimal scaling. Below we show
how the self-consistent iteration of (2.80) can be avoided when solving
the WHAM problem (2.76) using a method outlined in [127].

The second equation in (2.79) can be used to eliminate the variables

w,(go). This results in the following minimization problem

?(15)1 - Z Z C§a) (log x(a) _ log (zﬁ: Z C,(f)X(ﬁ)U;B)) )
a j A

s.t. X@ >

(2.81)

It can be seen that (2.81) is still invariant under a global scaling, X (@) =
A~1X (@) This invariance can be removed by requiring, for example,
XM =1.

Introducing the counts per state n; = 3, cg-a) and the counts per en-
@)

semble mqy = 3_; cg , the piecewise constant biasing potentials u, =

log Uéa), and the log-space variables x, = log X (@) we can transform
(2.81) to

min - Zmaxa + Z njlog (Z exp(zg + ug j + log mﬁ))
[e% j B

F (2.82)

s. t. .%'1:0

where we have added the constraint 1 = 0 to enforce a unique solu-
tion. The problem (2.82) is a constrained convex optimization problem
which admits a unique solution. Once the optimal solution, z}, to (2.82)
has been found the desired unbiased weights w,(CO) can be computed ac-
cording to the second equation of (2.80),

WO _ i
k >0 exXp (o + Ua i + logme)

(2.83)
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A remarkable feature of the minimization problem in (2.82) is that
the number of unknowns is completely independent of the number of
bins that were used for the discretization of the collective variable. But,
the number of samples per umbrella necessary to visit all relevant bins
with the right frequency will still be sensitive to the total number of
bins.

The method can be easily extended to cover also a multidimensional
collective variable [57], but as discussed above the computational cost
for an exhaustive sampling of the relevant set of values can quickly
become a computational bottleneck.

The WHAM approach is not limited to umbrella sampling data. Any
set of enhanced sampling simulations can be analyzed as long as a
meaningful positive value for the reweighting transformation Ul-(a) can
be determined for all bins. Obviously, this excludes situations in which
Ul (€) is not approximately constant over the chosen bins. Reweight-
ing methods that do not require binning of the data have also been
developed to circumvent this problem [99, 106, 107, 121].

A severe limitation of the method is that samples have to be indepen-
dent. In most cases samples will be generated by MCMC or MD simula-
tions which generated correlated samples. As a result simulations have
to be long enough to serve as a source of approximately independent
samples which can prevent the use of many short trajectories which
can be efficiently simulated in parallel.

The discrete transition matrix reweighting method (dTRAM), a state
discrete reweighting method that can handle correlated samples is de-
scribed in [123, 124]. The method uses reversible Markov state models
for the reweighting procedure. The method is outlined below and an
algorithm for the efficient solution of the dTRAM problem is derived.

35






ESTIMATION OF REVERSIBLE MARKOV STATE
MODELS BY CONVEX-CONCAVE PROGRAMS

In this chapter efficient algorithms for the estimation of reversible tran-
sition matrices given observations of a Markov chain are developed.

Maximum likelihood estimation of transition probabilities satisfying
a detailed balance equation leads to a nonlinear program which is diffi-
cult to solve. The problem is nonconvex and the number of unknowns in
the problem scales quadratically in the number of states of the Markov
chain. Previously, the problem was solved by a self-consistent iteration
[12, 84, 123] which can take a long time to converge and whose conver-
gence behavior can be sensitive to the data that is used.

It is shown that a duality argument from [123] can be used to trans-
form the maximum likelihood estimation problem into a convex-concave
program which can be solved using a primal-dual interior-point method
for variational inequalities [86]. The resulting algorithm is superlinearly
convergent, robust with respect to the input data, and can be applied
to Markov chains with a large number of states. The algorithmic ap-
proach allows to tackle a number of problems related to the estimation
of reversible transition matrices, e.g. situations in which a priori infor-
mation about stationary probabilities of the chain is available.

Reversible transition probabilities for an unbiased ensemble can be
estimated from a combination of enhanced sampling simulations and
standard (unbiased) molecular dynamics simulations using the discrete
transition matrix reweighting analysis method (dTRAM) [123, 124].

The proposed method for the estimation of reversible transition prob-
abilities is extended to also cover the dTRAM problem. The algorithm
can efficiently compute the dTRAM estimator for enhanced sampling
simulations at many different biasing conditions and for Markov chains
on large state spaces. It is shown that the developed algorithm can
solve the dTRAM problem orders of magnitudes faster than the self-
consistent iteration proposed in [123]. The material presented in this
chapter has previously appeared in [114].

3.1 MARKOV CHAIN ESTIMATION

A Markov chain on a finite state space is completely characterized by
a square matrix of conditional probabilities, P = (p;;) € R"*™. The
entry p;; is the probability for the chain to make a transition to state
j given that it currently resides in state ¢. The matrix P is stochastic,
Le. > ;pij = 1 for all 4. If P is irreducible then there exists a unique
vector, m = (m;) € R™, of positive probabilities such that 7 is invariant
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under the action of P, 77 P = 7T The vector 7 is called the stationary
vector of the chain.

If there is a vector, 7, of probabilities for which P fulfills the following
detailed balance condition,

TiPij = T;Pji (3.1)

then the chain is a reversible Markov chain with stationary vector m,
[61].

In Markov chain estimation one is interested in finding an optimal
transition matrix estimate P from a given finite observation X =
{Xo, X1,...,Xn} of a Markov chain with unknown transition matrix.
The matrix of transition counts C' = (¢;;) together with the initial state
Xop = x is a minimal sufficient statistics for the transition matrix [2,
22]. The element c¢;; denotes the observed number of transitions be-
tween state ¢ and state j in X. The matrix P is optimal if it maximizes
the following log-likelihood

L(C‘P) = Zci]’ 1ngij. (32)
0.
For finite ensembles consisting of finite length observations one can
simply add the matrices of transition counts for each observation. The
accumulated counts together with the empirical measure of the initial
states is then a sufficient statistics for the finite ensemble of observa-
tions.

For reversible Markov chain estimation one constrains the general
Markov chain maximum likelihood estimation (MLE) problem to the
set of all stochastic matrices for which detailed balance with respect
to some vector of probabilities holds. Thus we can find the reversible
MLE transition matrix from the following nonlinear program,

21,119 - %: cij log pij
subject to py >0, Y py =1, m >0, Y m=1, (3-3)
J %

TiPij = TjPji-

In [123, 124] problem (3.3) has been extended to the discrete transi-
tion matrix reweighting analysis method ({ATRAM). For dTRAM, simu-
lation data at multiple thermodynamic states « = 0, ..., M is collected
in order to efficiently estimate the stationary vector at the unbiased
condition, o = 0. A positive reweighting transformation relates the sta-
tionary vector at the biased condition, a > 0, to the stationary vector
at the unbiased condition,

P U(a)ﬂfo) = exp(uga))ﬁgo). (3-4)

K3 K3

This coupling allows us to combine the information from all ensembles
into the estimate for 7(%),
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The dTRAM problem consists of reversible MLE problems for each

thermodynamic state coupled via the reweighting transformation (3.4).

The desired stationary vector can be obtained as the optimal point of
the following nonlinear program,

min - Z Z CE?) log pz(»;-l)
(@) plo) el

subject to pi) >0, Yop? =1, 7% >0, Y x =1, (3.5)

j i

) =0, 2 = B0
We show that the convex-concave reformulation of the reversible
MLE problem can be extended to derive an efficient numerical algo-
rithm for the solution of the d-TRAM problem. Additional structure in

the linear systems arising during the primal-dual iteration can be used
so that the problem can be solved efficiently for many coupled chains.

3.2 DUAL OF THE REVERSIBLE MLE PROBLEM

In [123] a duality argument was used to show that finding the MLE of
(3.3) for given positive weights ; is equivalent to the following concave
maximization problem,

max Z cijlog(miz; + mjx;) — Z cijlogm; — Z i
iy i i (3.6)
subject to x; > 0.

The x; correspond to the Lagrange multipliers for the row normaliza-
tion constraint in the primal problem (3.3). The optimal transition
probabilities can be recovered according to
cj e,

= L (37
The vector x* denotes the optimal point of (3.6) and the diagonal
entries pj; are determined by the row normalization condition. It is
clear that p;; is a proper probability irrespective of the normalization
of the weights since any scaling of m; cancels out in (3.7).

The problem (3.3) with fixed stationary vector is a convex mini-
mization problem. To show that strong duality holds we need to verify
Slater’s condition [13]. Since all inequality constraints are linear it suf-
fices to find a point pj; for which the objective function in (3.3) is
bounded and

pi; >0, ZP;} =1, mipj; = mipy;- (3-8)
J

Such a point can be constructed using the Metropolis-Hastings accep-
tance criterion. Let

0 = e =it vl = a5 (39
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and pf; = 1—3,,;pj;- Then (pj;) satisfies the conditions in (3.8)
and the value of the objective function in (3.3) is finite. Thus we can
obtain the optimal value of the primal problem from the dual function.
As usual we compute the dual function

g=(\,x) = mlin L.(P,\x) (3.10)
using the Lagrange function of the primal problem,
La(P, A x) ==Y cijlogpij + Y Nij(mipij — mipji)
ij ij
+ Z zi(pij — 1)
:—ZCU log pi; +Z mi(Nij — Nji) + @) pij
- Z -
The dual function is bounded from below only if x; > 0.

In [123] the inequality constraints on x; were not made explicit. The
non-negativity requirement can be seen from the following splitting of

(3.11)

the Lagrangian,

L.(P,\ ) Z cijlogpij + Z mi(Nij — Nji) + i) pij
i,j€l i,j€l (3 12)
+ Z (7[-1()\7/] ]z +x7, Dbij — sz
1,7¢1

with index set I = {(4, j)|ci; > 0} and the constraint p;; > 0. The value
minp L, is not bounded from below if m;(Aij — \j;) + z; < 0 for some
(i,7) ¢ I. Therefore z; > 0 for all (i,i) ¢ I. It is also not bounded from
below if m;(Aij — Aji) + x; < 0 for some (7,7) € I, so that z; > 0 for all

(i,7) € 1.
The first order condition for minp L is
0L, Cij
= —-— Aii — Ajs ; = 0. .
apij Pij + 7rz( ij ]z) +x; (3 13)

The optimal point p;; is thus given in terms of the multipliers A and z,

Cij

: 1
mi(Nij — Nji) + @ (314)

bij =
Using (3.14) we obtain an analytic expression for the dual function

gr(A\, ) ch log(mi(Nij — Nji) +24) — Zl’z + const.  (3.15)
i
The first order condition for maxy g is

89 Wicij ﬂ'jCji
— _ =0 .16
ONij  mi(Nig — Aji) +xi o mi(Nji — Nig) + 2y (316)
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and the optimal \ satisfies

Wicijxj — T;CjiT4
mimj(cij + ¢ji)

Aij — Nji = (3-17)
Plugging (3.17) into (3.14) we obtain the expression for the optimal
transition probabilities in (3.7) and we can express the optimal dual
value max) g(\, z) as

f(ﬂ', IL‘) = Z log(ma:j + le’i) — Z Cij log T — Z Zj. (318)
ij ij i
Using the function f in (3.18) the reformulation of the reversible
MLE problem, (3.3), as a saddle-point problem with constraints is

m}n max Z cijlog(mz; + mjx;) — Z cijlogmj — Z i
T G
subject to x; > 0, m; >0, Zm =1.

]

The objective in (3.19) is concave in = but non-convex in 7. The prob-
lem can however be easily cast into a convex-concave form by the fol-
lowing change of variables,

m; o e, (3.20)

and by replacing the normalization condition with the simpler con-
straint

y1 = 0. (3.21)

The constraint in (3.21) removes the invariance of the objective in (3.19)
with respect to a constant shift of y. Proper stationary probabilities 7;
can be obtained from the new variables y; according to (3.20) followed
by straightforward normalization. The variable y; is the negative free
energy of the state 7.

The final form of the dual reversible MLE problem is

max min  — Z cijlog (ze% + xje¥) + Z x; + Z CijY;
i i i,j (3.22)
subject to x; >0, y; = 0.

The objective in (3.22) is convex in z and concave in y. The feasible
set is convex so that (3.22) is a convex-concave program.

For a given state space with n states the original reversible MLE prob-
lem (3.3), a non-convex constrained minimization problem in O(n?)
unknowns, is reduced to a convex-concave programming problem in
O(n) unknowns with simple constraints.
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3.2.1  Scaling

We observe that the number of iterations needed for the solution of
(3.22) using the algorithm from [86] can be drastically reduced by
scaling the count-matrix by a constant factor v chosen as

-1
v = (n{c}x Cz’j) : (3.23)

With scaled entries &; = yc¢;; and scaled variables & = vz, §j = y we
have

F(,5) = ~vf(2,y) + const. (3-24)

The constraints in (3.22) are invariant under the scaling so that the
optimal point for (3.22) can be obtained from the optimal solution to
the scaled problem.

The resulting stationary probabilities as well as the transition prob-
abilities are invariant under the scaling,

Pij = Gy + i)t _ o & cjp)et = pij- (3.25)

jiegj + ;fjefli ;€Y + mjeyz‘

3.2.2  Special cases and extensions

The reversible estimation problem with fixed stationary vector

m}in - Z Cij logpij
i’j

subject to pi; >0, > pi; =1, mpij = mpji
J

(3.26)

is a convex problem and can efficiently be solved in its dual formulation
(3.6) using an interior-point method for convex programming problems.

The reversible estimation problem with partial information about
the stationary vector

r7rrl,i19 - %:Cij log pi;
subject to  p;; > 0, Zpij =1, m >0, Zm =1, (3.27)
j i

TiPij = TjPji, T = Vi 1 €1,

with Imot C {1,...,n} and given positive weights (1;);cs can be solved
via its dual

max mxin - Z cijlog (z;e% + xje) + Z 5 + Z CijY;
0. i %) (3.28)
subject to x; >0, y; =logy; i € 1.
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The reversible estimation problem with bound-constrained informa-
tion about the stationary vector

171717119 - izjcij log pij
subject to p;; > 0, Zpij =1, m >0, Zm =1, (3.29)
j i

TiDij = TjDji, M <m <& 1€ 1.

with I C {1,...,n} and given positive bounds (7;)icr, (& )ier can be
solved via the dual
max min - Z cijlog (z;€% 4 xje¥) + Z x; + Z CijY;
0. i %) (3-30)
subject to xz; >0, logn; <y; <log&; i € I.

The two problems (3.28), (3.30) are convex-concave programming
problems. Nonlinear, convex inequality and linear equality constraints
possibly coupling x and y can also be treated within the algorithmic
framework of [86]. A special case with possible interest for applications
are bound constraints on the integrated stationary weights on subsets
S C{l,...,n},

Y m <. (3-31)

€S
Equation (3.31) can be expressed in terms of variables y; as

log > e < loguy, (3-32)
ies

The logarithm of a sum of exponentials is a convex function, [13].

3.2.3 dTRAM

We can apply the duality argument to each thermodynamic state in
(3.5) and introduce the coupling between different ensembles, (3.4),
through linear equality constraints. The resulting convex-concave pro-
gramming problem is

y(a) Jj(a)

(@) 5 0, y(a) _ ?Jz@ _ ul(a) y(

subject to ,

% [

(3-33)

The number of iterations required to solve the dTRAM problem is
also greatly reduced by scaling each count-matrix according to

& =ci; (3-34)

a) o) o) o e! e
max min — ZZCU log (xf ) e¥s + xj( ) evs > + le( ) + Zcijyj(
a g5 ) ,J
0
1 ) — 0.
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with
7= max cff) (3-35)
As for the reversible MLE problem a larger class of related dTRAM
problems can be solved by augmenting the dual problem (3.33) with
convex constraints, e.g. - TRAM with partial or bound constrained in-
formation about the unbiased stationary vector. It must be ensured
that the additional constraints on the biased stationary probabilities
do not result in an infeasible problem, i.e. the reweighting condition
(3.4) and the constraints cannot be fulfilled simultaneously.

3.3 CONVEX-CONCAVE PROGRAMS

A convex-concave program is the following saddle point problem,

maxmin  f(z,y)

o (3-36)
subject to  (z,y) € K

with f convex in x, concave in y, and K C IR a convex set.
Convex-concave programs can be treated as special cases of finite-

dimensional variational inequality (VI) problems, [32]: For a given fea-

sible set L C R™ and a mapping ® : L — R™ find a point z* € K such

that

(z—29T®(2*) >0 VzeK. (3-37)

Any point z* satisfying (3.37) is a solution or optimal point for the VI.
The convex-concave program is cast into the VI-form by defining

@(z)z( Val(2,9) ) 2 = (2,9). (3.38)

_vyf(x7y)
A mapping P is said to be monotone if
(7 = 2)T(®(Z) - D(2)) >0 V,zeK. (3.39)

Monotonicity of (3.38) follows from the convex-concave property of f.
If I is a convex polyhedral set, i.e. solely defined in terms of linear
equalities and inequalities,

K={zeR"Az—-b=0, Gz —h <0}, (3.40)

then z solves the VI (3.37) if and only if there are vectors A, v, s, such
that the following Karush-Kuhn-Tucker (KKT) conditions are fulfilled
[32],

O(2)+ATv+GTA=0

Az—b=0
Gz—h+s=0 (3.41)
Ms=0

As>0
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The vectors A and v are dual variables associated with the inequal-
ity and equality constraints. The vector of slack variables, s = (h —
G~z), transforms the linear inequality constraints for z into simple non-
negativity constraints for s. Optimality conditions for convex K in stan-
dard form, i.e. defined by a finite number of linear equalities and convex
inequalities, are also available, cf. [32].

A direct application of a Newton type method to (3.41) ensuring
positivity of A and s is usually unsuccessful since the solution progress
rapidly stagnates once the iterates approach the boundary of the feasi-
ble set.

A possible strategy to circumvent this problem is numerical path-
following. Instead of attempting a direct solution of (3.41) path-following
proceeds by solving a sequence of problems with perturbed complemen-
tarity condition,

O(2)+ATv+GTA=0

Az—b=0
Gz—h+s=0 (3.42)

Ms=npu

As>0

tracing the central path of solutions z*(u) towards z*(0) with u — 07.
Perturbing the complementarity condition ensures that the boundary
of the feasible set is not reached prematurely and the iteration makes
good progress along the computed search direction.

Interior-point methods ensure the positivity of A and s at each step
of the iteration. If in addition a strictly feasible starting point Az(®) —
b=0, Gz —h+ 50 =0 is used then all iterates produced by the
algorithm lie in the interior of the feasible region.

Progress towards a solution of the perturbed KKT conditions (3.42)
is usually made by taking steps along the Newton direction computed
from the following linear system,

D®(z) AT GT 0 Az D(2)+ ATv +GTA
A 0 0 0 Av | Az —b
G 0 0 I AN | T Gz—h+s ’
0 0o S A As SAe — e
(3-43)

with diagonal matrices S = diag(s1, s2,...), A = diag(A1, A2, ... ), the
vector e = (1,1,...), and the perturbation parameter pu > 0.
We use the following short-hand notation for the dual residuum,

rq = ®(2) + ATv + GT ), (3.44)
the primal residuals,

rp1 = Az —0,

rp2 =Gz —h+s, (3-45)
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and the perturbed complementary slackness,

re(pn) = SAe — pe. (3-46)

Solving the linear system (3.43) is the most expensive part of the
algorithm. The sparse block structure of (3.43) can be used to signifi-
cantly speed up the solution process. Elimination of As and A\ reduces
(3.43) to the augmented system

H AT Az rqg+GTLr, o — GTS~1r,
o W, G
A 0 Av Tp,1

with diagonal matrix ¥ = S~!A and augmented Jacobian H = D® +
GTEZG. The increments A\ and As can be computed from Az,

As = —rpo — GAz

48
AN = —%As — S r.(p). (3-48)

For nonsingular H further elimination of Az from (3.47) is possible.
The resulting normal equations for Av are,

SAv =1y — AH 'rq. (3-49)

The vectors r; are the two components of the RHS of (3.47) and the
matrix S = (AH _IAT> is the Schur complement of H. The increment
Az can then be computed according to

Az =—H 1 (r + ATAV). (3.50)

A singular matrix H can for example occur for an equality-constrained
convex programming problem for which the objective is not strictly
convex. Even if the constraints ensure that the problem has a unique
solution, H will be singular so that the normal equations can not be
formed.

For convex programming problems a non-singular H can be efficiently
factorized using a symmetric positive-definite Cholesky factorization. In
the convex-concave case the Jacobian of the mapping ® is not symmet-

ric,

(3-51)

Ao VeVef(zy) VyVef(z,y)"
DCD( )_ ( _vyvzf(xay) _vyvyf<$’y) >

In that case the augmented system is not symmetric and the Cholesky
factorization can not be used.

A further speed-up in the computation of the Newton direction can
be achieved through the exploitation of sparse or block-sparse struc-
ture possibly present in D®, G, A. In this situation solution via an
iterative method can be particularly efficient if a good preconditioner
is available.
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3.4 THE RALPH-WRIGHT ALGORITHM

A primal-dual interior-point algorithm for the solution of monotone
variational inequalities is developed in [86]. The algorithm uses the
Newton system (3.43) to compute the search direction. At each step of
the iteration the following complementarity measure,

_ AT

= (3-52)
is computed from the current iterate (z, A, v, s). The integer m denotes
the total number of inequality constraints defining K. The scalar ji
measures the average violation of the complementarity condition AT's =
0 in (3.41). The perturbation parameter for the computation of the
search direction is then set to

w=of (3-53)

with o € [0, 1].

At each step of the iteration the affine scaling direction, o = 0, is
computed. A line-search ensures that the step remains in a neighbor-
hood N of the central path. The step is accepted only if it produces a
sufficiently large reduction of ji.

If the affine scaling step is unsuccessful the partial centering direc-
tion, o € (0, %], is computed. The line-search ensures an Armijo-type
sufficient decrease condition for fi while confining the new iterate to N.

The partial-centering step, aims at an equlibration of all complemen-
tarity products to a fraction of the current average complementarity, /i,
while the affine-scaling step tries to reduce all complementarity prod-
ucts to zero. Both steps aim to reduce the primal and dual residuals to
Z€ero.

The formal definition of the neighborhood N can be found in [86].
In addition to the positivity of A, s it is essentially characterized by
the requirement that the norm of the primal and dual residuals are
bounded from above by a multiple of i and that the minimum over all
complementarity products, A;s;, is bounded from below by a fraction
of the complementarity measure ji.

The matrix on left-hand side of (3.43) is independent of y. Solutions
for different values of u are cheaply available once the matrix on the
left-hand side has been factorized.

3.5 IMPLEMENTATION DETAILS

In order to apply the algorithm in [86] to the reversible MLE problem
(3.22) we transform the convex-concave program into the VI form using
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the mapping ® = (V. f, -V, f) in (3.38). The gradient of the objective
in (3.22) is given by

. . Yj
On f = —Z—(% RT3 e
J

reYi + xjelr
(3-54)

TReYs + xevk

8ykf = - Z (ij + Cjk x] ZCzk
J

For the computation of the Newton direction we also need the Jaco-
bian D®. The diagonal blocks are given by

(crj + cjk)e¥iebs (ckt + cu) eV et
Oy, O, f = T
1. O f EJ: (xpeY _|_33jeyk)2 k,l <xkeyz —|—xleyk)2’

0, 0, f = Z (ckj + cjk)xpeYi xjevr (crr + e ) wReYiaeve
(3-55)

and off-diagonal blocks are given by

ckj +cj)evrajeYs (crr + i) Tpedeet
kel —
(zre¥s + zjevk)? (zrev +x1e¥)? 7 (3 56)

Oy, 01 f = Z

01,0y, f = ayl&xkf.

It is straightforward to encode the equality and inequality constraints
n (3.22) into matrices A, G and vectors b, h.

A= (&n;q, 1,0,7.1. .,0), (3-57)
b=0, (3-58)
G = (~1,,0,), (3-59)
h=(0,...,0)T (3.60)

with I, the identity and 0,, the zero matrix in IR™*",

The Jacobian D® is singular because of the invariance of the objec-
tive f under a constant shift of y; this is also true for the augmented
Jacobian H since the inequalities act only on z. Therefore the normal
equations (3.49) cannot be formed and the search direction has to be
computed from the augmented system (3.47).

The blocks of D® have the same sparsity pattern as the matrix Cs =
C + CT. This matrix is usually sparse. The augmented Jacobian differs
from the original Jacobian only on the diagonal so that it is also sparse
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in a situation in which Cy is sparse. The equality constraints for the
reversible MLE problem do only affect the y variables, i.e. A = (0, 4,).
The augmented system, (3.47), can be cast into the following symmetric

form,
Hyw Hy, 0 Az by
ng —-Hy, —Ag Ay | =1 —b, |- (3.61)
0 —Ay 0 Av -b,

The augmented system matrix, W, on the left-hand side of (3.61) is
indefinite so that a symmetric indefinite factorization, [15], or the min-
imum residual (MINRES) method, [81], can be used to solve (3.61). If
an iterative method is used, a suitable preconditioner needs to remove
the ill-conditioning due to the ¥ = S~'A term in H. MINRES requires
a positive definite preconditioner. We use a positive definite diagonal
preconditioning matrix, 7', with diagonal entries,

il if Jwi| >0
ty; = fwiil i i . (3.62)
1 else

3.5.1 dTRAM

We can also apply the primal-dual interior-point method to the convex-
concave reformulation of the dTRAM problem, (3.33). The dTRAM
problem consists of a reversible MLE problem for each thermodynamic
state coupled via an equality constraint. The resulting VI-mapping for
dTRAM is given by the vector

O = (D, ..., D).

The entry @, is the mapping for the reversible MLE problem at ther-
modynamic state a. Since ®, depends only on variables (2(®),4(@)) the
Jacobian of ®, has a block-diagonal structure

Doy
DO =
Do,
The matrix D®, is the mapping for the reversible MLE problem at
thermodynamic state a. The linear inequality constraints at different
« are decoupled so that G is also block diagonal,
Go
G =
Gm

The block G(® is the matrix of inequality constraints at thermody-
namic state a,

Ga = (_Inaon)7
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and h = 0 is the corresponding right-hand side (RHS). The matrix for
the equality constraints has the following form,

Ay 0 ... 0

Al,O A L. 0

A= . o .
Amo 0 ... Ap

with Ag = (0,...,0,1,...,0) the constraint matrix for the unbiased
ensemble, a = 0, and A, = (0, I;,) the constraint matrix at condition
a # 0. The matrix Aqo = (0,, —I,) is the coupling matrix between
biased and unbiased ensemble. The corresponding RHS is

with by = 0, and b, = (uga)) the vector of energy differences with
respect to the unbiased condition.

The block-diagonal form of D® and G can be exploited for the so-
lution of the augmented system. The block diagonal structure of D®

and G implies a block diagonal structure for H,

Hy

H= : (3.63)
H,,

The block H,, = D®,, + GgZaGa is the augmented Jacobian at thermo-
dynamic state a. Using the block structure of H and A, the augmented
system (3.47) can be reordered resulting in the following linear system,

Wo B, ... Bl A& bo
Bl,O Wy o ... 0 Afl 61
: S : . - : (3-64)
Bno 0 ... W, JAYI™ b
The augmented system matrix at condition « is
H, AT

The coupling between the biased condition and the unbiased condition
is encoded in the matrix

0 0
B = ( oo O ) o #0. (3.66)
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The vector A, = (Azq, Avy,) is the resulting increment for the aug-
mented system at condition a. The vector b, in (3.64) is given by the
RHS of the augmented system at condition «,

_ ( P 4+ GT8,r) — GTS 1 (1) ) |

(0%
Tp1

S

(3.67)

The arrow-shaped structure of the linear system in (3.64) allows
us to apply the Schur complement method, [51, 126], to eliminate
A1, ..., A&y, and solve the following condensed system for A&y,

SAg = — (50 -y Bg,OWa_lEa> (3.68)
a=1

The Schur complement matrix is

S = (Wo - Z Biowa_lBa,o) . (3-69)
a=1
All other increments can be computed from A&y via

Ao = =Wy (ba+ Baoléo) (370)

For a system with n states at m thermodynamic conditions the
complexity for a direct factorization of the Newton system (3.43) is
O(m?n3). The Schur complement approach reduces complexity to O(mn?).
In addition, assembly of the Schur complement in (3.69) and solution
of (3.70) can be easily parallelized.

As for the reversible MLE case, the blocks of D®, have the same
sparsity pattern as the matrix Cs(a) = C@ 4 ¢@T The same is true
for the augmented Jacobian H, except for the diagonal. Since C’s(a)
is usually sparse we use a sparse LU method to factor the augmented
system matrices W, for a > 0. The direct assembly of the Schur comple-
ment in (3.69) is expensive since the computation of W; !B, o requires
O(n) solves.

If an iterative method is used to solve the condensed system (3.68)
one would like to avoid assembly of the Schur complement S in (3.69)
all together. Instead only few matrix-vector products involving S should
be computed. As for the reversible MLE case, we can transform the con-
densed system into a symmetric indefinite form and use MINRES to
obtain a solution. Obtaining a good preconditioner without explicit as-
sembly of S is difficult. We use the probing method outlined in [16] to
obtain an approximation of the diagonal of S using only few matrix-
vector products. We then construct a positive definite diagonal precon-
ditioning matrix T with entries

ti; = :
1 else
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The entry 5;; denotes the diagonal entry estimated by the probing ap-
proach.

The Schur complement based solution can also be applied to the
dTRAM problem with additional constraints whenever those constraints
do not couple different biasing conditions.

3.6 RESULTS

Below we report results for the primal-dual interior-point (Newton-IP)
and the self consistent iteration (SC-iteration) approach to solving the
reversible MLE and dTRAM problem. We compare the efficiency of
both algorithms for a number of examples. Using iterative methods for
the solution of the linear systems arising in the Newton-IP approach we
achieve a similar scaling behavior as for the SC-iteration. We demon-
strate that the Newton-IP approach offers a significant speedup for
nearly all examples.

3.6.1  Reversible MLE

In Table 3.1 we compare the performance of the algorithm for different
example data-sets. The count matrix was estimated from the full data
set using the sliding-window method [84]. The tolerance indicating con-
vergence was tol = 107'2 for both algorithms. Both methods exhibit a
subquadratic scaling in the number of states. The Newton-IP method
is able to achieve a significant speed-up over the SC-iteration for all
examples except for the pentapeptide data.

In Figure 3.1 we show the performance of both methods for the
alanine dipeptide system with 361 states. For the SC-iteration the
number of iterations required to converge to a given tolerance is very
variable across different data sets. The total number of iterations re-
quired to converge deteriorates with increasing amount of input data.
For the Newton-IP method the required number of iterations is consis-
tent across all data sets. Both methods exhibit subquadratic scaling in
the number of observed states.

3.6.2 dTRAM

In Table 3.2 we compare the performance of the Newton-IP and the
SC-iteration for different examples. The count matrix was estimated
from the full data set using the sliding-window method [84]. The toler-
ance indicating convergence was tol = 10719 for both algorithms. The
Newton-IP method is more efficient for all three examples and achieves
a dramatic speed-up (orders of magnitude). The Schur complement
probing approach is successful for the alanine and the doublewell um-
brella sampling example. For the multi-temperature example the Schur
complement was assembled and the condensed system was solved us-
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Sys. N N/n Newton-1P SC-iteration SC/
T T/t D T T/t D 1P
361 1.1 4.6 4.0
2134 5.9 7.3 6.4 1.0 751 16.2 1.6 10.2
3W
8190 3.8 568 7.7 1.5 400.3 5§53 1.2 7.0
29618 3.6 286.8 5.0 13 1076.9 27 0.8 3.8
292 0.7 4.2 6.3
Al 1059 3.6 4.2 6.4 14 32.3 7.8 1.6 7.6
3835 3.6 32.2 7.6 1.6 214.0 6.6 1.5 6.6
5826 1.5 61.8 19 1.6 3477 1.6 1.2 5.6
250 0.6 0.2 0.4
500 2.0 1.2 1.9 0.9 0.6 =24 13 0.5
P5
1000 2.0 3.6 3.0 16 1.0 1.8 0.9 0.3
2000 2.0 54 1.5 0.6 1.3 1.3 0.4 0.2
100 1.0 10.4 10.6
200 2.0 2.1 21 1.1 341 3.3 17 16.3
BD
500 2.5 58 2.8 11 1853 54 1.8 317
1000 2.0 13.9 2.4 1.3 3387 1.8 0.9 24.3

Table 3.1: Comparison of interior-point method and self-consistent iteration
for the reversible MLE problem. We report the number of states IV, the growth
factor for states N /n (n is the number of states in the previous row), the total
algorithm run time 7 (in seconds), the growth factor for run time 7'/t (¢ is
the run time in the previous row), the scaling exponent for run time with
increasing number of states p, (T < NP), and the speedup of the Newton-IP
method over the SC-iteration SC/IP. The scaling is subquadratic for both
methods. The Newton-IP algorithm achieves a significant speed-up over the
SC-iteration for all examples except the pentapeptide.
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Figure 3.1: Convergence of interior-point method and self-consistent iteration
for the reversible MLE problem. We show results for the Newton interior-point
method, a), and the self-consistent iteration, b) for the alanine dipeptide ex-
ample. Convergence is plotted for different data sets corresponding to different
amounts of total simulation time. The vector 7* is a reference stationary dis-
tribution obtained from the converged Newton interior-point method. The
Newton interior-point method converges superlinearly, the self-consistent iter-
ation converges linearly. The number of required iterations is very sensitive to
the input data set for the SC-iteration while the Newton-IP method is only
mildly affected.
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Figure 3.2: Scaling of interior-point method and self-consistent iteration for
reversible MLE problem. Both methods exhibit a subquadratic scaling in the
number of states. The Newton-IP method achieves a significant speed-up over
the SC-iteration.

ing a direct method. For the SC-iteration method the required time to
solve the multi-temperature example was very large so that computa-
tions were only carried out for two examples with a small number of
states.

Both methods scale linearly in the number of thermodynamic states.
The Newton-IP method with Schur complement probing scales at most
quadratic in the number of states. If the Schur complement is assembled
and factored by a direct method the scaling is between quadratic and
cubic. The SC-iteration exhibits quadratic scaling in the number of
states. The Newton-IP method achieves orders of magnitude speed-up
compared to the SC-iteration for all examples.

In Figure 3.3 we show performance of the Newton-IP and SC-iteration
for the doublewell umbrella-sampling example. The Newton-IP method
achieves a significant speed-up (up to two orders of magnitude) over
the SC-iteration.
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Sys. N M N/n  Newton-IP SC-iteration SC/IP
T T/t p T T/t p

Ala 202 40 34.0 1263.9 37.2

1521 40 5.2 202.4 6.0 11 66018.4 52.2 2.4 326.2

100 20 5.1 115.5 22.7

199 20 2.0 6.4 1.3 0.3 492.9 4.3 2.1 771
D2U

497 20 2.5 17.3 27 11 32584 6.6 21 188.7

990 20 2.0 48.3 2.8 1.5 13729.7 4.2 21 284.4
1978 20 2.0 193.1 4.0 2.0 59890.5 4.4 2.1  310.1

100 20 5.1 115.5 22.7

100 40 2.0 8.3 1.6 o.7 244.5 2.1 1.1 29.3
D2U

100 80 2.0 16.5 2.0 1.0 7211 2.9 1.6 43.8

100 100 1.2 20.9 1.3 1.1 1110.6 1.5 1.9 53.1

100 16 3.7 12223.2 3285.8
DaT 200 16 2.0 10.7 2.9 1.5 50446.2 4.1 2.0 4705.8

500 16 2.5 79.8 7.4 2.2
1000 16 2.0 [44.5 6.8 2.8

Table 3.2: Comparison of interior-point method and self-consistent iteration
for the dTRAM problem. We report the number of states N, the number of
thermodynamic state M, the growth factor for states N/n (n is the number
of states in the previous row), the total algorithm run time T (in seconds),
the growth factor for run time 7'/t (¢ is the run time in the previous row), the
scaling exponent for run time with increasing number of states p, (T < NP),
and the speedup of the Newton IP method over the SC method SC/IP. In one
case we report instead the growth factor of the number of thermodynamic
states M /m (m is the number of states in the previous row) and the scaling
exponent for run time with increasing number of thermodynamic states (1"
MP). Both method scale linearly in the number of thermodynamic states. The
Newton-IP method with Schur complement probing (alanine, doublewell with
umbrella sampling) scales at most quadratic in the number of states. If the
Schur complement is assembled and factored by a direct method (doublewell
with independent temperature sampling) the scaling is between quadratic and
cubic. The SC-iteration exhibits quadratic scaling in the number of states. The
Newton-IP method achieves orders of magnitude speed-up compared to the
SC-iteration for all examples.
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Figure 3.3: Scaling of interior-point method and self-consistent iteration for
the dTRAM problem. We show results for the doublewell potential with har-
monic umbrella forcing. a) Both methods exhibit quadratic scaling in the
number of states, but the Newton method is up to two orders of magnitude
faster then the sc iteration. b) Scaling is linear in the number of thermody-
namic states for both methods.
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BAYESIAN UNCERTAINTY QUANTIFICATION OF
REVERSIBLE MARKOV STATE MODELS

In this chapter methods for a reliable quantitative prediction of uncer-
tainties for reversible Markov state models are developed.

A Bayesian viewpoint is adopted and uncertainties are quantified us-
ing a posterior distribution on the set of transition matrices satisfying
a detailed balance condition. A new prior ensuring that the posterior
mass is concentrated around the true model even if only few observa-
tions of a rare event are present in the data is constructed.

An efficient Markov chain Monte Carlo algorithm for sampling from
the posterior distribution of reversible transition matrices is developed.
A variant that can incorporate a priori information about the sta-
tionary probabilities is also presented. Both algorithms exhibit much
smaller autocorrelation times than a previous approach in [73]. They
are computationally efficient and can be applied to Markov models with
a large number of states. The material presented in this chapter has
previously appeared in similar form in [113, 115].

4.1 THE POSTERIOR ENSEMBLE

Maximum likelihood estimation generates a point estimate, e.g. a sin-
gle transition matrix that maximizes the likelihood of observing the
given data. If some transition events are rare compared to the total
simulation time - a typical situation for metastable systems - then one
cannot expect that the estimate is a very accurate representation of
the true model. In such a situation the likelihood will be ’rather flat’
and observing the given data for a different model can be almost as
likely as for the maximum likelihood estimate. As a result there will
be an ensemble of models which is compatible with, i.e. giving similar
likelihood for, the given data.

A statistical analysis of the ensemble of possible models can reveal
useful information about the true model and help to quantify the un-
certainty one has to attribute to estimates. For that, we need to assign
probabilities to models after we have observed the data, i.e. a poste-
riori. These probabilities should also include a priori information and
assumptions about the model. This procedure has been formalized in
Bayesian statistics where the desired ensemble of models is character-
ized by the posterior probability distribution.
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Bayes’ formula relates the likelihood of an observation C' given a
probability model P to the posterior probability of the model given
the observation,

P(P|C) x P(P)P(C|P). (4.1)
—— N N —
posterior prior likelihood

The posterior accounts for the uncertainty coming from a finite obser-
vation. It incorporates a priori knowledge about the quantity of interest
using the prior probability.

If we are interested in an observable f that is a function of the
transition matrix then we would like to compute its mean and variance
from the posterior ensemble. Mean and variance of f are given by the
following expectation values with respect to the posterior probability,

plf) = Elf] = [ dPR(PIC)F(P). (42

o?f] = EI(f ~ ulf)*) = [dPPPIO)S(P) =l (4:3)

We might also be interested in the credible intervals which encompass
the true value of f with some probability, such as 0.683 (1o interval) or
0.95 (20 interval). The posterior probability distribution of the observ-
able, IP[f], is of interest if we want to study the distribution of possible
values of f.

As integrals (4.2) and (4.3) are high-dimensional we need to use
Monte Carlo methods to approximate them. We generate a sample of
transition matrices {P®} | distributed according to the posterior
and evaluate f for each sample, P®)_ Then we approximate mean and
variance by the unbiased estimators,

_ LN p
mif] = 5 3P, (1.4)
1 N
s[f] = N_1 Z(f(P(k)) —m[f])Q‘ (4-5)
k=1

Credible intervals are approximated by sample percentiles. The distri-
bution of f is approximated by a histogram of the sampled values.
Before we carry out posterior inference we need to address two issues:

1. Choice of the prior: Given n Markov states, transition matrices
have on the order of n? elements. If the choice of prior allows to
populate all these elements, including those for which no transi-
tion has been observed, the probability mass of the posterior will
be far away from the true model.



4.2 SAMPLING OF NONREVERSIBLE MATRICES

2. Efficiency of the sampler: For a given choice of prior and observa-
tion we need to generate samples that are distributed according to
the posterior on the high-dimensional space of transition matrices
in a reasonable time. This is especially problematic for reversible
Markov models due to the detailed balance constraint.

4.2 SAMPLING OF NONREVERSIBLE MATRICES

Let us first illustrate the effect of prior choice on Bayesian estimation
of nonreversible Markov models. A convenient functional form for the
prior is the Dirichlet prior

P(P) o« []T] piy (4.6)

where B = (b;;) is a matrix of prior-counts. For this choice, the poste-
rior is given by

P(PIC) o IT (TIP3 |- (4.7)

The value z;; = c¢;; + b;; is the posterior pseudo-count. In the non-
reversible case we can generate independent samples from (4.7) by draw-
ing rows of P*) independently from Dirichlet distributions I, p%” a
with Dirichlet parameters o;; = 2;; +1 = ¢;j + bj; + 1 [101], so that
posterior samples can be generated efficiently.

Choosing a uniform prior, b;; = 0, assigns equal prior probability to
all entries, p;;, in the posterior ensemble. But this a-priori assumption
can lead to serious problems when estimating quantities for meta-stable
systems.

Consider for example a birth-death chain consisting of two meta-
stable sets A = {1,...,m}, B={m+2,...,n}, separated by a kinetic
bottleneck, the transition state m 4 1. The transition matrix for this

chain is
1 1
2 2 0
3 0 2
1-107% o 107t
P = : 0 3 . (48)
10 0 1-10""
1 1
2 0 3
11
2 2

For barrier parameter b = 3, m = 50, and n = 101 the expected time
for hitting set B starting from state z = 1 is 2 - 10° steps.
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Let us now investigate the effect that the choice of prior has on the re-
sults of the posterior inference. We illustrate the effect for a simulation
of length L = 107. The true sampling distribution of the maximum
likelihood estimate can be estimated with arbitrary precision by re-
peating the simulation many times. For the expected hitting time 103
repetitions led to a 9o% percentile of [1.5, 2.7] - 10°.

In practice, we cannot afford to repeat the simulation many times
but would like to approximate the true value and its statistical un-
certainty from the given simulation data. Sampling the nonreversible
posterior given expected counts for a chain of length L = 107 with a
uniform prior, b;; = 0, results in non-zero transition probabilities for
elements p;; which are zero in the true transition matrix. As a result
artificial kinetic pathways circumventing the transition state appear in
the posterior ensemble which leads to a dramatic underestimation of
the mean first passage time. The estimate obtained from 10 posterior
samples for the 0% credible interval is [1.9, 2.0] - 103, and thus two
orders of magnitude smaller than the true value 2 - 10°.

Using the prior b;; = —1 suggested in Ref. [77] results in a 9o%
credible interval, [1.5,2.7] - 10°, which clearly covers the true value 2 -
10°. This choice leads to a posterior distribution in which sampled
transition matrices (p;;) have the same sparsity structure as the count
matrix C', i.e. p;; = 0if ¢;; = 0. As count matrices in the present context
are generally sparse, we call this prior briefly sparse prior. Apparently
the sparse prior leads to consistent credible intervals covering the true
value.

Fig. 4.1 shows the convergence of the 9o% credible interval for the
sparse and the uniform prior. The credible interval for the sparse prior
envelopes the true value already given little data. To achieve consis-
tency using the uniform prior requires simulations order of magnitudes
longer than the slowest process, thus rendering inference under this
prior unpractical.

Note that our prior induces a fixed sparsity structure. This concept
should not be confused with other sparsity inducing priors used for ex-
ample for Bayesian compressed sensing [49], where the sparsity pattern
is subject to uncertainty.

4.3 SAMPLING OF REVERSIBLE MATRICES

To carry out posterior inference we need to define a prior distribution.
A suitable prior distribution ensures that the posterior mass remains lo-
cated around the true model to counteract the effects we have observed
in the nonreversible case for a uniform prior. To define a prior distri-
bution for the ensemble of reversible matrices we work on the space of
joint (unconditional) probabilities. Then we have to generate reversible
matrices distributed according to the posterior.
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Figure 4.1: Convergence of the credible interval for nonreversible transition
matrix sampling. The dashed line indicates the true value. The 9o% credible
interval for the sparse prior covers the true value orders of magnitude before
the 90% credible interval for the uniform prior.

In the nonreversible case it was possible to generate independent
samples from the posterior. Independent sampling was possible because
for our choice of prior the posterior became a product of Dirichlet
distributions for which drawing independent samples is well established.

There is no known method to generate independently distributed
reversible transition matrices. Instead we use a Markov chain Monte
Carlo (MCMC) method to generate samples from the posterior of re-
versible matrices. The Markov chain generates an ensemble of transi-
tion matrices, {P*) Y|, via a set of updates advancing the chain from
P — p(+1) gtarting from a valid reversible matrix P(%). The update
process ensures that each sample Pk g reversible, i.e. fulfills the de-
tailed balance condition. But, the resulting samples will be correlated.

The updates proceed by random sampling of single entries of the
matrix so that our sampling procedure can be characterized as a Gibbs
sampler. A collective update of all entries is difficult since the detailed
balance condition together with the row normalization couples the en-
tries in a highly nontrivial way. Finally we discuss how sampling from
the conditional distributions arising in Gibbs sampling can be achieved.
It turns out that independent sampling is still possible for the diagonal
entries using the Beta distribution. The conditional distribution of the
off-diagonal entries can be sampled via a Metropolis-Hastings chain.
We show that the Gamma distribution is a good proposal distribution
if the parameters are adapted to match the conditional. Finally we dis-
cuss how we can recover from heavy tails of the conditional by a simple
Gaussian random walk in logspace.
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4.3.1  Prior

We replace the Dirichlet prior (4.6) with a prior for reversible sampling.
The prior ensures that the posterior mass remains located around the
true model. It serves to prevent the negative effects of artificial kinetic
pathways.

We perform sampling of reversible transition matrices on the space
of joint probabilities

Tij X TiPij (4~9)

For a reversible matrix we have x;; = z;;. We restrict use to the set of
independent variables with ¢ > j and keep them normalized to one,

inj =1. (4.10)

2]

We define a prior for reversible sampling on the set of X matrices
rather than on P,

P(X) o Hw?}jfl. (4.11)

127
The posterior for reversible sampling is then given as

P(xic) o Lo T (5 - (412)

(2] 1]

Below we will first discuss how to sample from (4.12) using general
prior counts, b;;. Then, we will consider the specific choice b;; = —1
and show that this choice has similar properties as the sparse prior in
the nonreversible case.

4.3.2 Algorithm

We use the following shorthand notation >y, Tk = 4, > g2 Tik = Ti,—j,
and ;> x;j = xo for sums over matrix entries.

Unfortunately the normalization condition enforces us to update all
coordinates together. Furthermore any single coordinate is restricted to
lie in [0,1). To circumvent this problem and enable sampling of single
coordinates we transform the posterior into new coordinates via the
following change of variables for fixed k, [,

l‘ij

Vi = . 4.1
i (413)

As a result vg; can take arbitrary positive values, vy > 0, and the result-
ing normalization condition is independent of the current coordinate,

Z ’Uij =1. (4.14)

i>j/(kl)
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The elements of P are then simply given by

o Yij
Pig Zkvik. <4.15)

As we show in Section B.1.1, the conditional distribution for the
diagonal element vy is

nn+1) -
Y(hl V) o6 (1 vfge) ~OF 5o 0 oy )05, (4.16)

The conditional distribution for the off-diagonal element vy, is

n(n+1) _
V(W V) o (14 vfy) ~ (ot =5y fepr+eantbu—1

(4.17)
(Vk,—1 + V) % (v, g + V) "V

We can perform Gibbs sampling as follows. Pick an entry (k,[) with
k > 1. Normalize all elements except vg; so that their sum is unity.
Generate vy, according to (4.16) for k¥ = [ and according to (4.17)
otherwise. Proceed to next element.

In practice one cannot draw independent samples from the condi-
tional in (4.17). Therefore one uses a proposal density g¢(vy,|V) to
propose an update. The proposed update is accepted with probabil-
ity min{1, pacc} with

Y (V| V)q(vi| V")
(v [V")q (v, V)

This approach will work for any choice of prior counts. Its efficiency

(4.18)

Pacc =

will crucially depend on the choice of proposal density.

We use the sparse prior, b;; = —1, with the hope to achieve simi-
lar good results as in the nonreversible case. For this choice the (1 +
v )—(bo+n(n;1)

kl

) prefactor drops out and the conditionals are scale in-
variant, v(vy,;|V) o y(avy,|aV’) for any o > 0. Since the transforma-
tion from V to P is also scale invariant we can drop the normalization
condition completely and set V' as new sample V*) once we accept it.

The conditional density degenerates to a point probability at zero if
¢k + ¢ = 0, which implies that b;; = —1 encodes the a priori belief
that any transition for which neither the forward direction nor the
backward direction has been observed in the data has zero probability
in the posterior ensemble. Thus, this prior enforces P to have the same
sparsity structure as the count matrix, like the choice b;; = —1 for
nonreversible sampling.

As shown in Section B.1.2 sampling of the diagonal elements can be
achieved by sampling a transformed variable from the Beta distribution

s ~ Beta(cg, cr—k)

;oS8 (419)
vkk - 1 _ S,Ukz_k
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For k # | we have no way to draw independent samples, but (v}, |V)
can be well approximated by a Gamma distribution matching the max-
imum point and the second derivative at the maximum. A Gamma
distribution can be efficiently sampled and we use it as a proposal dis-
tribution for Metropolis Hastings chain on the coordinate vy,

q(viy|V) = Gamma(vy|e, 5). (4.20)

In Section B.1.3 we show that parameters «, § achieving a match
are given by oo = —ho, B = —ho? with

—b+ Vb2 — 4ac

0= 5 (4.21a)
Crl + Clk Ck a
h=— + .21b
72 (o1 +0)2 " (0,_k+0)2 (4-21D)
a=cL+c—cp— (4.21c)
b= cpu,— + Vi, —1 — (cr + i) (Vi,—1 + vi,—k) (4.21d)
c= —(Ck;l + Clk)vk,—lvl,—k (4.21€)

and that the acceptance probability for the step is min{1, pse.} with

/

v
10g Pace = B(viy — vpr) + (ck + cr — @) log TM
, ! (4.22)
Uk, —1 + Vi Vl,—k + Vi
—cp log ————% — ¢;log ————2,
Vg, + Vgl v,k + Ukl

If the current value of vy; is in one of the heavy tails of the distribution
v(vj,|V'), the acceptance probability for the Gamma proposal can be
very small and the Markov chain can get stuck. To avoid this problem
we perform a second sampling step. We perform a Gaussian random
walk on log vy,

q(log vy, |V') = N (log v, 1),

where N (u1,0%) denotes the normal distribution with mean p and vari-
ance 02.We accept the random walk proposal with min{1, p,c.}. We
show in Section B.1.4 that

/ ! !
v Ve 1+ v v._+v
Kl k,—l kl l,—k kl
log pace = (ckH—clk)log— — ¢ log ——— — ¢ log ———%
Ukl Vg, 1 + Vgt v,k + Vgt

(4.23)

In summary the proposed Algorithm 4 is a Metropolis within Gibbs
MCMC algorithm with adapted proposal probabilities for each Gibbs
sampling step.
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Algorithm 4 : Reversible sampling algorithm
Input : C, VU)
Output : V+1)
for all indexes (k,1) with k > 1 and cg; + ¢ > 0 do
if £ = [ then
Sample v,(gjﬂ) according to (4.19)
else
Compute parameters «, (3, cf. (4.21)
v}, ~ Gammal(a, )
Compute paec from (4.22)

v}gf” = v}, with probability min{1, pacc}
LU+ (+1)
lk — Tkl

log v}, ~ N (log v,(€§+1), 1)

Compute paec from (4.23)
(3+1)

vy, = vy, with probability min{1, pacc}
(G+1) _  (G+1)
Uik T Ul
end

end

4.3.3 Validation

In Figure 4.2 we compare the histogram generated by Algorithm 4 with
analytical values for the posterior density for the following count matrix

5 2
C= ( 3 10 ) (4.24)

We can compare the histogram to the nonreversible posterior since any
2 x 2 transition matrix is reversible. For the nonreversible posterior
we use Dirichlet prior counts b;; = —1. We expect the analytical and
sampled densities to be equal. The histogram generated by Algorithm 4
is indeed distributed according to the analytical posterior.

4.3.4 Application

Here, we apply Algorithm 4 to molecular dynamics simulation data
of alanine dipeptide. We show that the sparse prior, (4.12) with prior
counts b;; = —1, leads to credible intervals containing the reference
value for different observables.

The system was simulated on GPU-hardware using the OpenMM
simulation package [27] using the amberggsb-ildn forcefield [62] and the
tipgp water model [50]. The cubic box of length 2.7nm contained a total
of 652 solvent molecules. We used Langevin equations at T = 300K
with a time-step of 2fs.
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Figure 4.2: Posterior density and histogram for sampling of reversible matrices.
We show results for a 2 x 2 count matrix. The sample histogram b) obtained
from Algorithm 4 approximates the analytical density a).

We apply the sampling algorithm to 1us of simulation data and use
the MLE for 10us of simulation data as reference value. The discretiza-
tion is a regular 20 x 20 grid for the ¢ and 1 dihedral angles. Transition
counts are obtained by sampling one count per lag time. We estimate
mean, 90% credible interval, and histogram from a sample of N = 10°
reversible matrices for all observables. As observables we use largest
relaxation timescales t; and expected hitting times 7(4 — B). We
compute ta, t3, t4, and 7(A — B) for three transitions between meta-
stable sets, Cs — C%*, Cs = ar, and C5 — ag.

In Figure 4.3 we show histograms for time scales and expected hit-
ting times computed from the posterior sample. Reference values and
sample mean are indicated by dashed and dotted lines. The 90% cred-
ible intervals, in gray, contain the reference value for all observables.
In Table 4.1 we report the reference value together with sample mean,
sample standard deviation, error of the mean and autocorrelation time.
The reference value can be found within two standard deviations from
the mean for all observables.

4.3.5 Efficiency

We compare the efficiency of Algorithm 4 with a previous algorithm
[73]. The previous algorithm also uses a Gibbs sampling strategy, but
instead of posterior adapted densities it uses uniform densities to pro-
pose updates. As a measure of efficiency we use autocorrelation times
for the largest relaxation timescale t5. We also report acceptance prob-
abilities for the current and the previous algorithm. We use the alanine
dipeptide data described in the previous section [CITE]. Autocorrela-
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Figure 4.3: Histograms for a sample of reversible matrices. Observables are
computed for a posterior sample generated by Algorithm 4. Figures a)-c) show
implied time-scales, and figures d)-f) show expected hitting times. Dashed
lines indicate the reference value, dotted lines indicate the sample mean. The
90% credible intervals are the shaded regions in gray. The reference value is
compatible with the posterior sample (credible interval) in all cases.

z m S €  teorr

ta 1462 1556 303 19.00 197

t3 71 73 1 0.01 10
ty 36 43 5 0.06 7
7(C5 — C4* 60.4 56.7 12.0 0.77 202

)
7(Cs = ar)  43.6  40.6 8.3 0.53 206
7(C5 = ag) 0.253 0.250 0.005 0.0004 218

Table 4.1: Posterior estimates for sampling of reversible matrices. The table
contains values for relaxation time scales ¢; (in ps) and and expected hitting
times (in ns). Mean m, standard deviation s, error of the mean e and autocor-
relation time teorr were estimated using N = 10° samples from the reversible
posterior. The reference value  is contained within two standard deviations
of the mean for all observables.
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algOl“it hm N Poftdiag Pdiag teorr
. 233 0.216 0.011 10881
previous
108  0.271 0.005 3241.9
2 0. .0 .
current 33 994 1 194.7

1108  0.995 1.0 242.6

Table 4.2: Acceptance probabilities and autocorrelation times for sampling
of reversible matrices. We show results for the current method, Algorithm 4,
and and a previous method, [73]. Acceptance probability for sampling of di-
agonal and off-diagonal elements, pofidiag, Pdiag, and autocorrelation time for
the slowest relaxation timescale teor were estimated from N = 106 posterior
samples for systems with n states. Acceptance probabilities for the current
method are nearly optimal. pqjag is extremely small for the previous method.
The autocorrelation times for the current algorithm are much smaller than
for the previous algorithm.

tion functions and autocorrelation times are computed from N = 10°
samples. Two differently fine discretizations were used, resulting in a
small and a large state space with n = 233 and n = 1108 states.

Figure 4.4 shows autocorrelation functions of to for both algorithms.
The autocorrelation functions for Algorithm 4 decay much faster than
those for the algorithm in [73]. Correlation between samples increases
significantly with increasing dimension for the previous algorithm while
the current algorithm is only mildly affected.

In Table 4.2 we report acceptance probabilities for the update of
diagonal and off-diagonal matrix elements for both algorithms. The
posterior adapted proposal steps in the current algorithm results in
very high acceptance probabilities for off-diagonal updates. Diagonal
elements can be sampled independently so that no rejection is neces-
sary. The previous algorithm has a very low acceptance probability for
the diagonal updates and the acceptance probability for the off-diagonal
element is significantly lower than for the current algorithm. Autocorre-
lation times for the current algorithm are more than a factor 5 shorter
for the small (233 state) system and more than a factor 13 shorter for
the large (1108 state) system. The autocorrelation time increases sig-
nificantly with increasing dimension for the previous algorithm while
the current algorithm is only mildly affected.

The autocorrelation time increases only mildly for matrices of in-
creased dimension for the current algorithm, there is a large increase
for the previous algorithm.

The diagonal update is the only step that modifies the stationary
vector in the previous algorithm. As a result it is mixing very poorly.
The smaller autocorrelation time for the current algorithm indicates a
higher efficiency compared to the previous algorithm. The mild depen-
dence on state space dimension indicates that it will also be useful for
large Markov models.
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Figure 4.4: Autocorrelation functions for sampling of reversible matrices. We
show results for the current method, Algorithm 4, (solid lines) and a previ-
ous method, [73], (dashed lines) for systems with n = 233 states (blue) and
n = 1108 states (green). For the previous algorithm the autocorrelation time
increases significantly for the larger system while the autocorrelation time for
the current algorithm is only mildly affected.

4.4 SAMPLING WITH A FIXED STATIONARY VECTOR

Our approach to sampling of reversible matrices with a given stationary
vector is very similar to the one outlined above for the sampling of
reversible matrices. We use the same prior, (4.11), as in the reversible
case. In contrast to the reversible case, we need to regularize some of
the diagonal prior counts and we need to ensure that the initial matrix
has positive diagonal entries to implement a working Gibbs sampler.

4.4.1  Prior

As before we use variables z;; = m;p;;. In contrast to the previous
algorithm, 7 is not changed by the Monte Carlo update but remains
fixed. We replace the normalization condition (4.10) by a constraint for
each row,

E :Bij = ;.
J

(4-25)
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All xy; in the strictly lower triangle (k > [) are used as independent
variables for Gibbs sampling. Given a valid X matrix, i.e. positive,
symmetric and obeying (4.25), we update it via

TR~ Ty (4.26a)
Tk — Tk + (T — T (4.26D)
Tik — Ty (4.26¢)
xy — xy + (T, — Tik)- (4.26d)

(4.26b) and (4.26d) ensure that the normalization condition (4.25)
holds for the new sample, while (4.26¢) restores the symmetry.
We sample z}, from the conditional distribution,

’Y(CC;CNX) X (ﬂfzz)ckﬁcl”bkl (Akl - Cvﬁsl)ckwbkk (Alk - x;cl)cll+bll , (4-27)

with parameter Ay = xip + xg-

We have seen that a correct choice of prior parameters was essential
in order to successfully apply the posterior sampling for meta stable
systems. As in the reversible case we will use by; = —1 for &k > [ to
enforce x; = 0 whenever ¢ + ¢ = 0. For ¢, > 0 we also use the
prior by, = —1.

In the case ¢y, = 0 we can not set by = —1. For ¢p. = 0 and
bir = —1 the conditional distribution (4.27) will degenerate to a point
mass at Ay so that x%k = 0 with probability one. As a result the k-th
row and column of X will remain fixed in the sampling process and the
resulting chain will not be ergodic. If we choose by, = 0 for all k with
cpr = 0 then xp, > 0 for all such k& and the posterior expectation will
be positive.

If the maximum likelihood estimate, &y, is zero for a k with cg, = 0
then the posterior expectation should also be small to minimize self-
transitions that are artificially stabilized by the sampling process. In
that case we propose to regularize the prior using a small positive pa-
rameter, € > 0, and set by, = —1 + €. Finally, if Zx; > 0 for a k with
cke = 0 we set by = 0 so that the expectation of (4.27) matches
the MLE of the one-dimensional likelihood function for x;, cf. Sec-
tion B.2.1.

In summary, we select the prior for reversible sampling with fixed
stationary vector as

-1 if g, >0
bk = q—1+e€ if P =0, cpp =0 (4.28)
0 ifﬁkk>0, cer =0

In addition we need to ensure that the Markov chain is started from
an initial state X(©) with strictly positive entries, xlg%) > 0, so that the
update (4.26) can be performed for each row.
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4.4.2 Algorithm

We now investigate how to efficiently sample from the conditional
(4.27). We assume, without loss of generality, that zy; < 2y and trans-
form x}, € (0, Ag;) into a new variable v' € [0, +00) via

! x;sl
= —, 4.2
In Section B.2.2 we show that the transformed conditional is
(V'] X) o (V) (1 4 v)%8 (1 + v) ~(arteztast2) (4.30)
with parameters
s
r=—" (1:310)
Ay,
§=— 4.31b
A (4-31b)
a1 = ¢y + g + by (4.31¢)
ag = i, + bk (4.31d)
az = ¢y + by (4.31¢)

We can again use a Gamma proposal density to approximate the
conditional (v’|X). In Section B.2.3 we show that the parameters for

the Gamma distribution are a = —ho, 8 = —ho? with
_ —b+ Vb —4ac
0= 5 (4.32a)
a
ay as as
h=—-—— — .32b
2 rro?  (0to)p (4-32b)
a=uaz+1 (4.32c¢)
1
s—1
c=r(a1+1) (4.32€)

and that the proposed value v’ has to be accepted with probability
min{1, pacc} where

/

!
10g Pace =BV —v) + (a1 + 1 — ) log%+a3 log :-—11-_1;
Lo (4-33)
— (a1 + az + a2+ 2) log TTo

In addition, to prevent the update algorithm from getting stuck in the
tails of v(v'|X) we also perform a Gaussian random walk on logv’. In
Section B.2.4 we show that the proposed step needs to be accepted
with probability min{1, pacc} where

/ + /
log pace =(a1 + 1) log % + aslog rTo

r+ov
1+

— 2)1 .
(a1+a2+a3+ )og 4o

(4-34)
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The proposed Algorithm 5 for sampling of reversible transition ma-
trices with fixed stationary vector can again be characterized as a Me-
tropolis within Gibbs MCMC algorithm with adapted proposal proba-
bilities.

Algorithm 5 : Reversible sampling algorithm with fixed stationary
vector
Input : C, 7, XU)
Output : XU+
x U+ = x ()
for all indexes (k,1) with k > 1 and cg + ¢, > 0 do
if xpr > x; then
Swap k with [
end

Compute parameters «, 3 using (4.32)
v ~ Gamma(a, 3)
Ty = Akl#,v/
Compute p,ec according to (4.33)
Update XU+ according to (4.26) with probability
min{1, pacc}
x0) = xU+1)
logv" ~ N (logv, 1)
Compute p,ec according to (4.34)
Ty = Aty
Update XU+ according to (4.26) with probability
min{1, pacc}
end

4.4.3 Validation

In Figure 4.5 we compare the histogram generated by Algorithm 5 with
analytical values for the posterior density. We use the 2 x 2 count ma-
trix in (4.24) and the stationary vector 7 = (0.25, 0.75) . The detailed
balance condition with fixed stationary vector enforces a linear depen-
dency between the transition matrix element pi2 and po;. The resulting
posterior is therefore restricted to the line mypio = mopo1. The projec-
tion onto pi2 contains the full information about the one-dimensional
posterior. The histogram generated by Algorithm 5 is distributed ac-
cording to the analytical posterior.

4.4.4 Application

We apply Algorithm 5 to molecular dynamics simulation data of alanine
dipeptide. We show that the sparse prior, (4.12) with prior counts in
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Figure 4.5: Posterior density and histogram for sampling of reversible matrices
with fixed stationary vector. We show results for a 2 x 2 count matrix. The
sample histogram obtained from Algorithm 5 approximates the analytical
density.

(4.28), leads to credible intervals containing the reference value for
different observables.

We use the setup described in Section 4.3.4. For the computation of
the reference value we use the MLE transition matrix of the full simu-
lation data reversible with respect to the input stationary distribution
for the posterior sampling.

The stationary distribution 7; was approximated by the relative fre-
quency of states which can be computed from the count matrix,

_ >k Cik
2k Cik .
It should be noted that a more accurate approximation for the sta-
tionary vector can be obtained from enhanced sampling simulations
targeted at rapidly generating a good estimate of the equilibrium prob-
abilities alone. See [113] for methods and applications that combine MD
simulations and enhanced sampling simulations in order to efficiently

(4-35)

T

compute rare-event kinetics.

In Figure 4.6 we show histograms for time scales and expected hit-
ting times computed from the posterior sample. Reference values and
sample mean are indicated by dashed and dotted lines. The 9g0% cred-
ible intervals, in gray, contain the reference value for all observables.
In Table 4.3 we report the reference value together with sample mean,
sample standard deviation, error of the mean, and autocorrelation time.
The reference value can be found within two standard deviations from
the mean for all observables.

The additional constraint imposed by fixing the stationary distribu-
tion is clearly reflected in smaller standard deviations for all shown ob-
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Figure 4.6: Histograms for a sample of reversible matrices with fixed station-
ary vector. Observables are computed for a posterior sample generated by
Algorithm 5. Figures a)-c) show implied time-scales and figures d)-f) show
expected hitting times. Dashed lines indicate the reference value, dotted lines
indicate the sample mean. The 9o% credible intervals are the shaded regions
in gray. The reference value is compatible with the posterior sample (credible
interval) in all cases.

servables compared to the reversible case, cf. Table 4.1. This indicates
that the stationary distribution can be a valuable source of information
for inference about kinetic quantities.

4.4.5 Efficiency

We compare the efficiency of Algorithm 5 with a previous algorithm
[73]. As a measure of efficiency we use autocorrelation times for the
largest relaxation timescale t3. We also report acceptance probabilities
for the current and the previous algorithm. The setup is identical to the
one outlined in Section 4.3.5, the stationary distribution is computed
using (4.35).

In Figure 4.7 we show autocorrelation functions of ¢ for both al-
gorithms. The autocorrelation functions for Algorithm 5 decay much
faster than those for the algorithm in [73]. Correlation between sam-
ples increases significantly with increasing dimension for the previous
algorithm while the current algorithm is only mildly affected.

Table 4.4 compares acceptance probabilities and autocorrelation times
for the two algorithms. For sampling with fixed stationary vector there
is no sampling step for the diagonal elements. Although the average
acceptance probabilities are only a factor of 3-4 better for our new al-
gorithm, the autocorrelation times are decreased by a factor 35 for the
small system (233 states) and over a factor 300 for the large system
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T m S € teorr

ta 1594 1520 196 0.6 1

t3 72 73 1 0.003 1

12 38 41 3 0.01 1

7(C5 — C%)  56.0 54.5 5.0 0.02 1
7(Cs = ar) 415 39.5 5.1 0.02 1

7(C5 — ag) 0.249 0.251 0.003 0.00001 1

Table 4.3: Posterior estimates for sampling of reversible matrices with fixed
stationary vector. The table contains values for relaxation time scales ¢; (in ps)
and and expected hitting times (in ns). Mean m, standard deviation s, error
of the mean e and autocorrelation time tcorr were estimated using N = 10°
samples from the reversible posterior. The reference value % is contained within
two standard deviations of the mean for all observables.

algorithm N Poffdiag Leorr

233 0.175 172.096
1108 0.230 > 1000

233 0.752  2.893
1108 0.706 3.157

previous

current

Table 4.4: Acceptance probabilities and autocorrelation times for sampling
of reversible matrices with fixed stationary vector. We show results for the
current method, Algorithm 5, and and a previous method, [73]. Acceptance
probability for sampling of off-diagonal elements pofrgiag and autocorrelation
time for the slowest relaxation timescale teop, were estimated from N = 109
posterior samples for systems with n states. For the previous algorithm the
autocorrelation time increases significantly for the larger system while the
autocorrelation time for the current algorithm is only mildly affected. Au-
tocorrelation function for the large system for the previous method did not
converge.

(1108 states). Again, the autocorrelation time increases significantly
with increasing dimension for the previous algorithm while the current
algorithm is only mildly affected.

The smaller autocorrelation time for the current algorithm indicates
a higher efficiency compared to the previous algorithm. The mild de-
pendence on state space dimension indicates that it will also be useful
for large Markov models.

4.5 INFERENCE USING AN UNCERTAIN STATIONARY VECTOR

We discuss how a priori information about the stationary vector can
be used in situations in which the stationary vector is not known with
absolute certainty. The situation we have in mind is one in which the
stationary vector can be estimated from another independent set of
enhanced sampling simulations that cannot be used to estimate the
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Figure 4.7: Autocorrelation function for reversible sampling with fixed sta-
tionary vector. We show results for the current method, Algorithm 5, (solid
lines) and a previous method, [73], (dashed lines) for systems with n = 233
states (blue) and n = 1108 states (green). For the previous algorithm the
autocorrelation time increases significantly for the larger system while the
autocorrelation time for the current algorithm is only mildly affected.

transition matrix. The stationary vector estimate is uncertain since
we use a finite amount of data. This finite sampling error should be
accounted for during posterior inference (of reversible matrices).

From a Bayesian viewpoint we have to combine two sources of evi-
dence. The observed count matrix C from standard equilibrium simu-
lations and the data from enhanced or biased sampling simulations F
used to estimate the stationary vector. We can sample the posterior
of reversible matrices with fixed stationary vector IP(P|r,C) using the
methods outlined in Section 4.4. An error model can be used to esti-
mate the uncertainty in the stationary vector. Such a model describes
the posterior of stationary vectors given the enhanced sampling data,

P(7|E). (4-36)

The posterior for reversible transition matrices under the combined
evidence IP(P|C, E) can be formally decomposed as

P(PIC,E) = [ dxP(PIC, 7, E)P(x|C, E). (4.37)

Assuming that the direct effect of the enhanced sampling information F
is negligible in the posterior of transition matrices with given stationary
vector,

P(P|C,7,E) ~P(P|C, ) (4-38)

and that the direct effect of observed transition counts C'is unimportant
compared to the enhanced sampling data used to obtain ,

P(7|C, E) ~ P(x|E) (4-39)
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we model the uncertainty encoded in (4.37) by inserting the two ap-
proximations (4.38), (4.39),

P(P|C, E) ~ /dw]P(P|C’,7r)]P(7T|E). (4.40)

Approximate sampling from IP(P|C, E') can now be achieved by draw-
ing a random sample {7, ... 7(M)} distributed according to a given
error model, (%) ~ P(7|E) and generating a sample of transition matri-
ces {Pl(k), ey P](\f)} from the constrained posterior Pi(k) ~P(P|C,x)
for each of the 7(%). The sample {Pl(l), . ,P](\,l),..., 1(M), .. .,P](VM)}
will then be approximately distributed according to P(P|C, E).






ESTIMATION OF RARE EVENT KINETICS

In this chapter a new approach for the estimation of probabilities for
rare transition events and related kinetic quantities is developed.

The detailed balance condition is used to estimate transition prob-
abilities in situations in which only one direction of the process of in-
terest has been observed and stationary probabilities for the process
are available. Reversible Markov state models are used to combine en-
hanced sampling simulations and short relaxation trajectories gener-
ated by standard molecular dynamics simulations so that kinetics for
rare event processes can be estimated without having to assume a rate
model. It is demonstrated that the method can be used to obtain re-
liable estimates orders of magnitudes before a single rare event would
have been observed on average. The material below has previously ap-
peared in similar form in [113].

5.1 EFFICIENT ESTIMATION VIA DETAILED BALANCE

There are many methods that allow to efficiently estimate the station-
ary vector, even in situations in which a direct estimation from a finite
observation of the Markov chain is infeasible due to the metastable na-
ture of the system. In such situations it is often possible to alter the
system dynamics in a controlled way such that the artificial dynamics
equilibrates more rapidly than the original one [42, 59, 104, 110, 111,
122]. The desired stationary vector of the original dynamics can then
be related to the stationary vector estimated from the altered process
5, 35, 57, 99, 106].

For given stationary vector (m;) detailed balance enforces a linear
dependence between the transition matrix element p;; and the element
pji- As an immediate consequence the relative standard deviation of
both elements is equal for the posterior of reversible transition matrices
(4.12) with fixed stationary vector

Vpii)  /V(pij) (5.)
E(pji) B ]E(pij) . >

In situations where we can efficiently sample one of the two transitions

(the fast one) and we know the stationary vector we obtain a reliable
estimate of the probability for the other transition (the slow one) by
virtue of the detailed balance condition. In other words a potential
speed-up can be achieved in situations for which p;; < pj; and we have
a priori knowledge about the stationary vector m = (m;).
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We show that (5.1) can be used to estimate kinetics for metastable
systems efficiently. The main idea is to combine a priori knowledge
about the stationary vector with short simulations providing evidence
for the probability of the fast transition. Enforcing detailed balance
with respect to the given stationary vector enables us to accurately es-
timate the probability for the slow transition without having to observe
it in simulations at all. Short simulations will usually start in a state of
high energy (low probability) and relax towards a state of low energy
(high probability).

We estimate kinetics and their uncertainties via the posterior of
Markov models for three different settings:

1. MSMs are sampled using only long unbiased simulations (nonre-
versible posterior (4.7))

2. MSMs are sampled using short relaxation trajectories and a priori
knowledge about the true stationary vector (reversible posterior
(4.12) with fixed stationary vector)

3. MSMs are sampled using short relaxation trajectories and en-
hanced sampling simulations (posterior with uncertain stationary
vector (4.40)).

For metastable systems we propose the following strategy for dis-
tributing initial conditions exploiting the information from the station-
ary vector. Once all metastable sets and all kinetic barriers separating
the sets have been identified using some enhanced sampling protocol,
short trajectories should be started on top of all barriers or in high-
energy metastable states. The length of the short trajectories needs to
be sufficient to relax towards the low-energy metastable states. The
method described here can be used to combine these data into an esti-
mate of the full rare event kinetics.

5.2 FINITE STATE SPACE MARKOV CHAIN

Consider a three-state Markov chain with the following transition ma-

trix
1—10"% 10°° 0
pP= 3 0 : : (5.2)
0 107 1—-10""

The parameter b > 0 can be thought of as the height of an energy
barrier between states one and three. The stationary vector for (5.2) is

1 (1, 1\
T=(1+107") 5,10 ) (5.3)

The vector m and the matrix P satisfy the detailed balance equation.



5.2 FINITE STATE SPACE MARKOV CHAIN

Any process starting in state one has an exponentially small proba-
bility of crossing over to state three. In fact a chain starting in state
one can reach state three only via state two, but the probability to go
from state one to state two is exponentially small in the barrier height
b. The reversed process, going from state two to state one, occurs much
faster. The same applies to state three and state two. The eigenvalues
of the matrix in (5.2) are

M=1 d=1-10" X\ =-107".
The slowest time-scale (largest relaxation time) in the system is given
by,

1 b
to = — ~ 10°.
2 log Ao

It is apparent from ¢y =~ p1_21 that estimates of t2 and of pjo have
similar relative standard deviation. The relative standard deviation e
for a matrix-element p;; for sampling from the unconstrained posterior

(4.7) is

1
e(pij) ~ e
For b = 4 and a single chain of length N ~ 7-10* steps starting in state
one we can on average expect c1o = 4 resulting in a relative standard
deviation of 50%. In order to decrease this down to 1% we need to
run a chain of length N ~ 50%-7-10% ~ 2-10® steps. This is clearly
an unsatisfactory situation and we would like to reduce the required
simulation effort to reach a given error level.

In comparison, for an ensemble of M short chains of length L starting
in state two one will on average observe a transition from state two
to state one for every second chain, ¢y = M /2, so that a relative
standard deviation of 1% for ps; can already be achieved for M ~ 10%,
with L < 10°. As a result, the total simulation effort can be reduced
by orders of magnitude.

We do not have explicit expressions for the relative standard devi-
ation of matrix elements p;; when sampling from the posterior of re-
versible transition matrices with fixed stationary vector. It is however
conceivable that the relative standard deviation of po; can be reduced
in the same way (€(p21) scales as 1/,/ca1). The relation (5.1) guarantees
that a small relative standard deviation for the probability ps; will also
result in a small relative standard deviation for the small probability
P12.

In Figure 5.1 we compare the mean value and the relative standard
deviation for a system with barrier parameter b = 4. For the long
chain estimates are obtained via the nonreversible posterior (4.7). For
the ensemble of short relaxation trajectories estimates are obtained via
the reversible posterior (4.12) with fixed stationary vector. The long
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chain was started in state one while the short trajectories were started
in state two. It is apparent that using short relaxation trajectories
together with a priori information about the stationary vector results in
a three orders of magnitude smaller simulation effort for the estimation
of to with a prescribed error. In particular, estimation of to can be
conducted orders of magnitude before a direct simulation would on
average encounter a single transition event.

This effect is even more pronounced when choosing b = 9 so that
estimation via long trajectories sampling the rare event is hopeless.
Using short relaxation trajectories in combination with the stationary
vector one can accurately estimate to with a total simulation effort of
N = 103 steps, c.f. Figure 5.2. A good estimate can be obtained six
orders of magnitude before on average a single rare event would have
occurred.

5.3 DOUBLE-WELL POTENTIAL

In the next example the Markov state model is an approximation of a
continuous-valued stochastic process - Brownian dynamics in a double-
well potential. The potential is given by the following expression

V(z) = (2* —0%)* + 50(%%3 — o?x). (5-4)

The two minima of the potential at £o are separated by a maximum
at —do /4, cf. Figure 5.3. The dynamics is governed by the following
stochastic differential equation (SDE),

The increments dW; are the increments of the Wiener process. The in-
verse temperature 3 = (kgT')~! controls the intensity of the stochastic

fluctuations.
The SDE (5.5) defines a process where X; sample from the canonical

distribution,
m(z) = Z(8) e V1. (5.6)

The temperature dependent constant Z(3) is the partition function en-
suring correct normalization, [ dz 7(x) = 1. Spectral properties of this
Markov process, such as the largest relaxation time scale can be com-
puted from a spatial discretization of its associated transition kernel,
cf. Section A.1.

Parameters for the potential in (5.4) are ¢ = 2.2 and § = 0.1. The
SDE in (5.5) is integrated using an explicit Euler-scheme with time
step At = 1073 and noise parameter 3 = 0.4.

Values computed from the spatial discretization of the transition
kernel are used as reference values for comparison with estimates ob-
tained from a Markov model. The transition kernel is discretized on
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Figure 5.1: Convergence of mean value for metastable 3-state system with
barrier parameter b = 4. The value t9 is the largest relaxation time and N is
the total simulation effort. We show mean value a) and relative standard devi-
ation b) for a single long trajectory and for short relaxation trajectories with
a priori knowledge about the stationary vector. The latter approach allows
us to obtain a reliable estimate already before the average waiting time for a
single rare event 713 + 731 has elapsed. A comparison of the relative standard
deviation indicates a three orders of magnitude speed-up when using short
relaxation trajectories together with a priori knowledge about the stationary
vector.
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average.
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Figure 5.3: Double-well potential and corresponding equilibrium distribution
for Brownian dynamics. The equilibrium distribution pi(z) (shaded area) is
scaled to fit the potential function V' (z). The equilibrium distribution is con-
centrated in the metastable regions around the two minima of the potential
at +o.

the interval [—3.4, 3.4] using 400 equal sized bins. The matrix (p;;) is
assembled by evaluating the kernel at the midpoints of the bins. The
largest relaxation time, to = 1.2 - 105, is computed from an eigenvalue
decomposition of the assembled matrix. Mean first-passage times be-
tween sets A = [0 —0.2,0 4+ 0.2] and B = [0 — 0.2, -0 + 0.2] are
computed, Tap = 5.3-10° and 754 = 1.6 - 105, see Section A.3 for
details.

For Markov model building the interval [—3.4,3.4] is discretized into
100 equal sized bins, resulting in a MSM with 100 states. The lagtime
7 = 10dt is determined from an implied time scale plot. Time scales
are estimated from long trajectories (N = 108 steps).

We are interested in estimates of the largest relaxation time ty. We
compare estimates for long trajectories with estimates for short relax-
ation trajectories and umbrella sampling simulations. Long trajectories
start in the metastable region, xg = o, and short relaxation trajecto-
ries start on the barrier, zg = —do /4. Transition matrices are sampled
according to (4.7) if only long trajectories are used and according to
(4.40) if short relaxation trajectories are used and the stationary vector
is estimated from umbrella simulation data.

The total simulation effort NV is composed of the simulation effort
spent on obtaining a count matrix from standard simulations, N¢, and
the simulation effort spent on obtaining the equilibrium distribution
from umbrella sampling simulations, N,

N = N, + Ne¢. (5-7)
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The stationary vector is estimated from umbrella sampling simulations
using the weighted histogram analysis method [35, 58]. Estimates are
computed using 20 umbrella sampling simulations with 2.5-10* or
5-10° points per umbrella. To account for the uncertainty in the esti-
mated stationary vector we use bootstrap resampling [28] of the gener-
ated data. The stationary vector is computed for each resampled data
set to model the ensemble of stationary vectors compatible with the
observed umbrella sampling data, i.e. the posterior distribution (4.36).
The count matrix is computed either from 20 — 100 long trajectories of
length 108 dt or from 50 — 5000 short relaxation trajectories of length
104 dt.

In Figure 5.4 we show convergence of the posterior mean value of t,
for four different data sets:

1. only long trajectories

2. short relaxation trajectories and a small amount of umbrella sam-
pling data

3. short relaxation trajectories and a large amount of umbrella sam-
pling data

4. an even splitting of the total effort into the effort for umbrella
sampling simulations and the effort for short trajectories

It can be seen that for a fixed effort N, the relative standard deviation
cannot be reduced below a certain amount with increasing N¢. This
is a result of the nonzero statistical error in the estimate of the equi-
librium distribution for fixed N;. The usual N -3 dependence of the
relative standard deviation can be recovered for the proposed splitting
N, = Ng = N/2. Figure 5.4 shows the favorable scaling coefficient
of such an approach leading to a more than two orders of magnitude
faster convergence of the estimated quantity compared to using stan-
dard simulations alone. Reliable estimates of the rare event kinetics
can be obtained one order of magnitude simulation effort before the
standard approach using long trajectories and no information about
the equilibrium probabilities can be applied at all. The finite error for
the estimate of the equilibrium distribution for Ny = 5-10°dt and
N, = 107 dt results in a saturation of the error of ty which can be
further decreased using a more precise estimate of the equilibrium dis-
tribution from additional enhanced sampling simulations.

5.4 ALANINE DIPEPTIDE

In this example the Markov state model is an approximation to a pro-
jection of a high-dimensional continuous-valued stochastic process onto
a set of coordinates of low dimension. The ¢ and 1 dihedral angles have
been identified as the two relevant coordinates for the slowest kinetic
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Figure 5.4: Convergence of mean value for Brownian dynamics in double-
well potential. The value to is the largest relaxation time and N is the total
simulation effort. We show mean value a) and relative standard deviation
b) for a single long trajectory (blue) and for different combinations of short
relaxation trajectories with enhanced sampling simulations (green, red, light-
blue). The latter approach allows to obtain a reliable estimate using almost
one order of magnitude less simulation effort than the average waiting time
for a single rare event 745 + 74 = 7-10%dt. A comparison of the relative
standard deviation shows a more than two orders of magnitude speed-up when
combining short relaxation trajectories and enhanced sampling simulations.
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Figure 5.5: Free-energy profile for alanine dipeptide ¢, dihedral angle data.
Energies values are in kJ/mol. The average thermal energy kgT at 300K is
2.493kJ /mol. One can identify five metastable sets on the dihedral angle torus,
here indicated by black lines. There are three low energy (high probability)
sets Cs, Prr and ap with ¢ < 0 and two high energy (low probability) sets
apr and CF* with ¢ > 0.

processes of the system in equilibrium [1]. The potential of mean force
for the two dihedral angles is shown in Figure 5.5. As an example for a
rare event quantity in a molecular system we use the mean first-passage
time for the C5 to «a transition in the alanine dipeptide molecule.

Alanine dipeptide has been the long-serving laboratory rat of mo-
lecular dynamics [1, 18, 26, 67, 109]. One can identify five metastable
regions in the free-energy landscape. The C5 and Py regions correspond
to dihedral angles found in a beta-sheet conformation, the ar and af,
regions correspond to a right, respectively left-handed a-helix confor-
mation. Reference values for the mean-first passage times between all
pairs of sets have been computed from the maximum likelihood esti-
mator of (2.45) using a total of 10us of simulation data. Reference
values can be found in Table 5.1. For details of the computation of
mean first-passage times see Section A.3.

All molecular dynamics simulations were carried out on graphics pro-
cessing units (GPU) using the OpenMM simulation package [27]. We
use the amberggsb-ildn forcefield [62] and the tipgp water model [50].
The peptide was simulated in a cubic box of 2.7nm length including 652
solvent molecules. Langevin equations were integrated at T" = 300K
using a time-step dt of 2fs. The potential used for umbrella sampling
simulations was Vj(¢) = k[1 + cos(¢ — ¢; — )] with k = 200k.J /mol.
Umbrellas were placed at a spacing of ¢; — ¢; 41 = 9°.
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TAB/TLS C5 P][ aR Qaj, 0(7133
Cs 0 0.021 0.253 43.456 60.220

Prr o.041 0 0.255 43.449 60.213

arp 0.142 0.125 0 43.549 60.312

o 1.553 1.527 1.744 0  17.757

C%* 1.559 1.533 1.745 1.221 0

Table 5.1: Mean first-passage times for alanine dipeptide. Mean first-passage
times (MFPT) are computed for transitions between metastable regions. The
MFPTs have been estimated from 10us of simulation data using a Markov
state model.

5.4.1  Analysis in ¢ and i dihedral angle space

We show the convergence of the largest relaxation timescale and val-
idate the MSM constructed at a lagtime of 7 = 6ps via a Chapman-
Kolmogorov test in Figure C.1. Convergence of the largest relaxation
time indicates that the slow eigenfunctions of the associated dynamical
operator are well approximated by the discrete MSM. The Chapman-
Kolmogorov-test explicitly checks the Markov assumption comparing
self transition probabilities computed from the MSM, parameterized
at lagtime 7, with direct estimates from the data at larger lagtimes, nr.
A thorough discussion of MSM validation can be found in [84].

In Figure 5.6 we show the estimate of the mean first-passage time
Tap between the C5 and the af, region together with the corresponding
relative standard deviation e(74p) for different values of the total sim-
ulation effort V. The simulation setup is similar to the one described
for the double-well potential in the previous section. Instead of starting
short trajectories directly on the barrier we start them from the meta-
stable ay, region. Figure 5.6 shows that combining umbrella sampling
data and short trajectories relaxing from a metastable region with low
probability (high free-energy) towards a metastable state with high
probability (low free-energy) is able to estimate the reference value,
T4 = 43ns for the C5 to o transition with a total simulation effort
of 70ns if short ’downhill’ trajectories are used in combination with um-
brella sampling data. Utilizing information about the stationary vector
in combination with short simulations that do not have to sample the
rare event is able to achieve a relative standard deviation with almost
an order of magnitude less simulation effort compared to an ensemble
of long trajectories. The observed 8-fold speed-up is in good agreement
with the expected speed-up given by

TAB

L

with 74 = 43ns the MFPT for the slow “up-hill” transition from Cj
to ar, and L = 5ns the length of individual short trajectories.
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Figure 5.6: Convergence of mean value for alanine dipeptide ¢, dihedral
angle data. The value 74p is the mean first-passage time of the rare C5 to
ag, transition and N is the total simulation effort. We show mean value a)
and relative standard deviation for a small number of long chains starting
in the C5 region (blue), an ensemble of short relaxation trajectories starting
in the oy, region combined with different amounts of umbrella sampling sim-
ulations (green, red, light-blue). A reliable estimate of 74 = 43ns can be
obtained already for a total simulation effort of N = 70ns when short relax-
ation trajectories are used in combination with umbrella sampling simulations.
A comparison of the relative standard deviation shows a speed-up of almost
one order of magnitude compared to using only long trajectories.
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Figure 5.7: Free-energy profile for alanine dipeptide ¢ dihedral angle data. One
can identify three metastable sets. Two low energy (high probability sets) with
¢ < 0 and a single high energy (low probability) set with ¢ > 0.

The present approach of estimating rare event kinetics is more pow-
erful than traditional rate theories because quantities that can be es-
timated can be much more complex than only rates. As a reversible
Markov model is estimated, full mechanisms, such as the ensemble of
transition pathways from one state to another state can be computed.

5.4.2 Analysis in the ¢-coordinate alone

The presented method can also work if only information about the
slowest degree of freedom is used. In Figure 5.7 we show the free-energy
profile for the ¢ dihedral angle. An energetic barrier clearly separates
the low free-energy region, ¢ < 0 from the high free-energy region, ¢ >
0. Crossing events from ¢ < 0 to ¢ > 0 are rare leading to a sampling
problem if kinetic quantities associated with barrier-crossings need to
be estimated. Again we show convergence of the largest relaxation time-
scale, to and a Chapman-Kolmogorov test for a MSM estimated at
lagtime 7 = 15ps, Figure C.2.

In Figure 5.8 we show that the correct mean first passage time for the
C5 to o transition can also be recovered from the MSM of the ¢ angle
alone. This demonstrates that the presented method is robust with
respect to the choice of microstates. Choosing a slightly larger lagtime
7 = 15ps for the ¢ MSM allows us to recover the correct mean first-
passage time despite the fact that information about the 1 dihedral
angle is completely neglected. The MSM for ¢ dihedral angle is still
a good approximation to slowest kinetics if the discretization and the
lagtime are suitably matched. A thorough discussion of approximation
errors for MSMs can be found in [84, 91].
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Figure 5.8: Convergence of mean value for alanine dipeptide ¢ dihedral angle
data. The value 745 is the mean first-passage time of the rare transition from
the low free-energy region A = {¢| — 162° < ¢ < —54°} to the high free
energy region B = {¢|36° < ¢ < 72°} and N is the total simulation effort.
We show mean value a) and relative standard deviation for a small number
of long chains starting in the A region (blue), an ensemble of short relax-
ation trajectories starting in the B region combined with different amounts of
umbrella sampling simulations (green, red, light-blue). A comparison of the
relative standard deviation shows a speed-up of almost one order of magni-
tude compared to using only long trajectories. The correct value, T4p = 43ns,
for the C5 to af transition can be obtained even if no information about the
1 dihedral angle is used in the construction of the MSM.
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Figure 5.9: Energy landscape for vesicle model. We show the vesicle binding
energy for different attachment modes, m = 0,1,...,4.

5.5 VESICLE MODEL

As a final example we consider the diffusive motion of a colloid that can
reversibly attach to a surface viam = 0,..., M tethers. A biological ex-
ample of such a system is a neuronal vesicle that can attach to a plasma
membrane by SNARE protein complexes. The diffusion in the solvent
is free but the attachment of tethers restricts the location of the vesicle
to a vicinity of the membrane. The restriction is stronger the more teth-
ers are attached. Attachment of the vesicle to the membrane is a fast
process, but the dissociation from the membrane is an extremely rare
event. We show that the mean first passage time for dissociation can
be reliably estimated despite the fact that a non-Markovian coordinate,
the membrane-vesicle distance, is used.

Figure 5.9 shows the energy for the different vesicle attachment
modes. For m > 0 attachment of the vesicle to the membrane is gov-
erned by a harmonic potential close to the membrane. For x > 2 all
attachment modes are energetically equal corresponding to a breaking
of the m tethers once the distance between the vesicle and the mem-
brane exceeds a certain threshold. The association of the vesicle has to
overcome a small energetic barrier, modeling a weak repulsion of the
untethered vesicle.

The state of the vesicle is given by the pair (z, m) where x is the vesi-
cle membrane distance and m denotes the number of tethers attached.
A discretization of the vesicle membrane distance with 0 = 271 < -+ <
zq = 4 allows us to describe the vesicle dynamics by a Markov chain on
a finite state space with (M + 1)d microstates. The stationary vector
of the chain is

7= (7O(z1),..., 7™M (z4)) (5.8)
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with entries given in terms of the usual Gibbs/Boltzmann distribution,

7™ (2;) oc e B (@), (5.9)

E(™)(z) is the energy of a vesicle at 2 with m tethers attached, cf.
Figure 5.9. The energy of the different attachment modes is given by

1+ m(—=5+ 522 — 2,523 4+ 0.31252%) 0<z<?2

EM (z) = 1+8(x —2)* = 8(z — 2)° 2<x <25
N 0.5 —8(z —2.5)2 + 8(x — 2.5)3 25<x<3

0 3<xr <4
(5.10)

The transition matrix P = (p;;) for the vesicle dynamics is now con-
structed as follows. We encode random walk probabilities in a proposal
matrix @ = (g;j). The particle moves from z; to z;—1 or z;41 with
probability 1/3, if the particle remains at its current position x; it can
attach, m — m + 1, or detach, m — m — 1, a tether with probability
1/3 so that the overall proposal-probability for attachment or detach-
ment is 1/9. To account for the energetic differences of the microstates
we use the Metropolis-Hastings acceptance criterion to modulate the
proposal probabilities and obtain the desired transition probabilities
via,

pij = min{1, 28y (5.11)
Tiqij
Correct normalization is ensured by setting p; = 1 —32;;pij. As a
result of (5.11) the constructed transition matrix P automatically ful-
fills the detailed balance condition (3.1) with respect to the desired
equilibrium distribution.

The mean first-passage time for the dissociation of the vesicle is
TAB = 8.56 - 109, the mean first-passage time for association, Tg4 =
1.59 - 103, is orders of magnitude smaller. The mean first-passage time
for dissociation of a vesicle with the maximum number of tethers at-
tached is 74p = 3.83-10'0 so that the system dynamics cannot be
described in terms of the subspace with m = 4 tethers. This indicates
that the dissociation kinetics is effectively non-Markovian along the
x-coordinate.

The dissociation time 74p can reliably be estimated even if no infor-
mation about the mode of attachment is available. If only information
about the position of the vesicle is available then the state-space of the
(M + 1)d distinct microstates is coarse-grained into d distinct sets each
containing (M + 1) microstates corresponding to the M + 1 possible
tethering modes at position x. The coarse grained equilibrium distribu-
tion 7 is obtained by summing the full equilibrium distribution 7 over
all possible tethering modes. If short association trajectories starting
in the region z > 2 are combined with the coarse-grained equilibrium
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distribution the dissociation time can again be estimated orders of mag-
nitude before a single dissociation event would on average be observed
despite the fact that the MSM is built on a coordinate that is inher-
ently non-Markovian. In Figure 5.10 we show mean and standard error
for the MFPT of vesicle dissociation for a MSM build at a lagtime of
7 = 60 with d = 40 microstates.

In Figure C.3 we again show convergence of the largest relaxation
time and the Chapman-Kolmogorov test for an MSM constructed at
lagtime 7 = 60. The MSM is estimated solely from short association
trajectories starting in the high energy region using the coarse grained
equilibrium distribution 7 to obtain a reversible maximum likelihood
transition matrix from (3.26). The total simulation effort, N = 2-107,
used to obtain the MSM and perform the validation is again orders of
magnitude smaller than the expected dissociation time.
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Figure 5.10: Convergence of mean value for vesicle model. The value 74 is the
mean first-passage time for the vesicle dissociation. Estimation is performed
on a coarse-grained non-Markovian state space. We show mean value a) and
relative standard deviation b) for an ensemble of short relaxation trajectories
together with a priori knowledge about the coarse-grained stationary vector.
The dissociation time can be estimated orders of magnitude before a single
dissociation event would have been observed.



CONCLUSION

Reversible Markov state models are the discrete space, finite data coun-
terpart to the transfer operator for conformation dynamics. Reversible
Markov state models arise naturally from molecular dynamics imple-
mentations which are often constructed in such a way that they obey
reversibility or at least a generalization thereof [60, 116, 118]. Reversibil-
ity of the dynamics results in a detailed balance equation for the tran-
sition probabilities. In order to have reversibility in a Markov model,
detailed balance has to be enforced during the estimation.

Maximum likelihood estimators for transition probabilities which
obey the detailed balance equation can be constructed. Reversible max-
imum likelihood estimation of transition probabilities results in a large
nonlinear optimization problem. The problem has to be solved numeri-
cally which can be difficult; the problem is nonconvex and the number
of unknowns in the problem scales quadratically with the number of
states of the Markov model. A duality argument from [123] can be
used to transform the optimization problem into a constrained saddle-
point problem (convex-concave program) with a number of unknowns
scaling linearly with the number of states. An efficient algorithm for
the solution of the convex-concave program based on a primal-dual
interior-point method from [86] is developed. The method is superlin-
early convergent, robust to the input data, and can be used to estimate
reversible Markov models with a large number of states. The algorithm
can also be used to estimate reversible Markov state models if a priori
knowledge about the stationary probabilities is available.

Methods for uncertainty quantification of reversible Markov state
models are developed. A prior distribution for transition matrices fulfill-
ing the detailed balance equation is constructed and an efficient Monte
Carlo algorithm is developed to sample reversible transition matrices.
The constructed prior encodes the following a priori assumption: All
transitions for which neither the forward nor the backward transition
has been observed in the data are forbidden (probability of zero). The
prior enforces the same sparsity structure for the sampled matrices as
the symmetrized matrix of transition counts. This prior leads to er-
ror bars which nicely envelope reference estimates. Posterior sampling
of reversible transition matrices is achieved by a Gibbs sampling algo-
rithm for which the proposal distribution of each Gibbs sampling step
is adapted to match the conditional posterior distribution. The algo-
rithm can be used to compute uncertainties of Markov models with a
large number of states for simulation data containing rare events.

Reversible Markov state models can be used to estimate probabili-
ties for rare transitions. If detailed balance is enforced estimates can
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be computed efficiently in situations in which only one direction of the
process has been observed and stationary probabilities for the states
of the MSM are available. Stationary probabilities can be estimated
from enhanced sampling simulations which do not suffer from the sam-
pling problem of standard MD. A combination of enhanced sampling
simulations and short relaxation trajectories can result in orders of
magnitude speed up for estimation of transition probabilities. Kinetics
for rare event processes can be estimated without having to assume a
rate model whenever the kinetic properties of interest can be computed
from a Markov model discretization of the system. The approach can be
used to estimate rates and passage times, but also complex quantities
such as committor functions and transition path ensembles.

Implementation of all algorithms described here are available via
the python package msmtools [112] and the python Markov-modeling
software PYEMMA [92]

Previously the maximum likelihood estimation problem for reversible
transition matrices was solved by a self-consistent iteration [12, 84, 123].
The iteration can take a long time to converge and the convergence
behavior can be sensitive to the data that is used. The developed algo-
rithm achieves a similar good scaling (quadratic scaling of the running
time in the number of states) as the self-consistent iteration, but it can
be much more efficient.

The discrete transition matrix reweighting analysis method ({TRAM)
is a general framework to combine enhanced sampling simulations and
equilibrium MD simulations into an estimate of a reversible transition
matrix at the interesting unbiased condition [123, 124]. A numerical so-
lution of the dTRAM problem via the self-consistent iteration outlined
in [123] can take a long time to converge. In this thesis the algorithm
for the reversible MLE problem is extended so that it can also solve
the dTRAM problem. It is demonstrated that the proposed algorithm
is able to solve the dTRAM problem orders of magnitudes faster than
the self-consistent iteration.

Previous methods for sampling of reversible transition matrices were
outlined in [63, 65, 73]. In [63, 73] the problem of prior choice for simu-
lations containing rare events was not discussed. As shown in the thesis
the choice of prior distribution is important to ensure that error bars
computed via posterior sampling envelope the true value for simulation
data containing rare events. In [65] a penalty prior for transition ma-
trix sampling was proposed to address this problem. The prior results
in samples which respect the sparsity structure of the nonreversible
maximum likelihood estimate but not the sparsity structure of the re-
versible maximum likelihood estimate. A prior enforcing the reversible
sparsity structure is also proposed. In contrast to the prior constructed
here, this prior does not arise from a simple algebraic expression. Re-
versible sampling methods in [63, 73] use uniform proposal densities
resulting in samplers with large autocorrelation times. The method in
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[4] use a conjugate prior on the set of reversible transition matrices
but an appropriate choice of prior (hyper-)parameters for simulation
data containing rare events is not discussed. A method to sample re-
versible transition matrices with fixed stationary vector was also out-
lined [73]. It is demonstrated that the algorithm outlined here achieves
much smaller autocorrelation times for the sampling of relevant kinetic
observables.

The combination of enhanced sampling simulations and short relax-
ation trajectories to estimate probabilities for rare transitions is entirely
new and has been presented in [113] for the first time. Previous methods
[7, 31, 56, 108] assumed a specific rate model in order to reconstruct
the kinetics from the free energy profile.

Reversible Markov state models can only describe fluctuations of a
system in (thermal) equilibrium. If time-reversibility of the dynamics
is destroyed, e.g. because a time-dependent external force driving the
system out of equilibrium is applied, then one cannot describe the dy-
namics by a reversible model.

Successful construction of a Markov state model requires that the re-
solved coordinates are slow compared to the non-resolved coordinates
(approximate Markovianity at chosen lagtime). Furthermore the chosen
discretization needs to resolve the slow processes (discretization error).
Slow coordinates and discretization have to be chosen either based on
prior knowledge about the processes of interest or they need to be in-
ferred on the basis of simulation data. In most cases slow processes
are not known beforehand and simulations are carried out in order to
uncover them. Furthermore, molecular simulations often contain very
few observations of the relevant process which makes identification of a
good discretization difficult. The thesis does not discuss this important
aspect of Markov model building. Many approaches have been devel-
oped to tackle the problem. One example is the time-lagged indepen-
dent component analysis method (TICA) [66, 83, 97]. TICA estimates
a linear transformation that can be used to extract the linear subspace
of slow coordinates from a given molecular dynamics trajectory.

The Markov state model approach relies on the ability to estimate
the transition matrix and to use it for successive computations of quan-
tities of interest. It is necessary that the slow conformational processes
can be described by a small number of coordinates since the number of
transition matrix elements that need to be estimated and stored scales
exponentially with the number of coordinates. Hierarchical methods
[80] can circumvent the curse of dimensionality because they approx-
imate the transition matrix using a nested hierarchy of lower dimen-
sional objects which can be stored and computed with computational
effort that grows only polynomially in the number of coordinates. The
method in [80] is based on a variational principle for the identification
of slow conformational processes [74, 79]. Variational methods offer a
greater flexibility in the choice of ansatz functions for the discretization
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of the transfer operator than MSMs which require the use of character-
istic functions. Relevant objects in a variational approach also need to
be estimated on the basis of simulated trajectories so that they can also
suffer from the sampling problem. In contrast to Markov state models,
the analysis of statistical errors for variational methods has not been
developed yet.

Fully automated construction of Markov models is still challenging.
The discretization and lagtime for the Markov model have to be se-
lected by hand. An automatic selection of the discretization and lag-
time would require to simultaneously estimate the discretization error
and the statistical error for given simulation data.

The formulation of the reversible posterior assumes independent counts,
i.e. Markovianity at the chosen lagtime. This is not optimal since the re-
quired subsampling of the input trajectories results in lots of discarded
data which could be used in the estimation procedure. A possible ap-
proach to circumvent this problem by computing effective counts from
a time series using statistical inefficiencies is outlined in [71].

The proposed method for the efficient estimation of probabilities for
rare transitions requires short relaxation trajectories that connect meta-
stable conformations (in one direction) either by starting on an ener-
getic barrier or by using an imbalance in the free energy of the two
metastable sets. For the method, additional knowledge about the sys-
tem is needed. The method requires a priori information about the
stationary probabilities to infer the location of barriers and metastable
sets. In contrast to milestoning or transition state sampling the method
does not require to resolve the transition path very accurately.

The treatment of enhanced sampling simulations and equilibrium
trajectories is decoupled. Information from transitions in the enhanced
sampling simulations is neglected in the estimation of transitions in the
unbiased ensemble and information from the unbiased simulation is ne-
glected in the estimation of the stationary probabilities. In contrast to
dTRAM, different lagtimes can be used for the estimation of stationary
probabilities and transition probabilities.

In an adaptive sampling setup, in which enhanced sampling and equi-
librium MD trajectories are combined, the developed methods can be
used to decide if additional enhanced sampling simulations or addi-
tional equilibrium simulations should be performed to optimally dis-
tribute the computational effort.

A potential future application of the method is the estimation of the
binding and unbinding kinetics of drug molecules to target proteins.
The unbinding kinetics can be critical for drug efficacy [117] but it is
usually very difficult to estimate. Often, the binding of the drug occurs
relatively fast [14] but the dissociation may be orders of magnitude
slower. The proposed method requires only trajectories sampling the
fast binding event and information about the stationary probabilities
of the process to estimate the probability for the slow unbinding event.
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A1 THE TRANSITION KERNEL FOR THE EULER-METHOD

The solution of (5.5) with initial position Xy = z¢ on [0, 7] is usually
carried out by choosing a regular discretization of the time interval

O=to<t1 < ---<ty=T.

with At = t;, —tp_1 forall k = 1,..., N. The evolution of the stochastic
process is then approximated by the following time-stepping scheme

Xt—i—At = Xt — VV(Xt)At + 2,871’[’]. (Al)

with Xy = z¢ and 1 being a N(0,At) distributed random variable.
The time-stepping scheme (A.1) is known as Euler method or FEuler-
Maruyama method, [55].

For this simple time-stepping scheme the transition kernel of the
resulting Markov chain is given by

1 (y— x4+ VV(z)At)?
x,Yy) = ————exp | — , A2
Pail®y) = o P ( 2(v/Bty/2/ )2 i
with z = X; and y = Xy a¢. The kernel pp;(x,y) is a Gaussian distri-
bution with mean y = z — VV (2)At and variance o2 = 2At/ 3.
The transition probability Pa;(B|A) between two sets A, B can be
computed from

Jadem(2) [pdypa(z, y)
Py (BlA) = . A.
At( ’ ) fAdl’ﬂ'((E) ( 3)
Choosing a L such that pas(z,y) is effectively zero outside of [—L, L]

we pick a spatial discretization
—L=xy<z<...<zy=1L (A4)

with a regular spacing Ax = xp —xx_1 for kK = 1,..., N such that
pat(x,y) and 7(x) are approximately constant on sub-intervals S; =
(Zg, T+1). In this case we have

Ti+1
| e ue) = ) an
and

[ deuta) [ aypte. ) = utr ol 2) (80

We can approximate the matrix elements p;; = P(S;]S;) as

and compute spectral properties from the matrix (p;;) using standard
eigenvalue solvers.
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A.2 EIGENVALUES AND RELAXATION TIMESCALES

Let P be a transition matrix for a Markov state model (MSM) at
lagtime 7 satisfying conditions (Mz1)-(M4) ,then P has the following
spectral decomposition

d
P=> Xty (A.5)
i=1
with real eigenvalues 1 = A; > Ay > --- > Ay > —1 and corresponding
right and left eigenvectors ¢; and ;.

The left eigenvalue corresponding to the eigenvalue A\; = 1 is the
unique stationary vector ¥ = m and the corresponding right eigenvalue
is a constant ¢; = (1,...,1)7. Since P satisfies the detailed balance
equation the left eigenvectors 1; can be related to the right eigenvectors
via Y, =7, foralli =1,...,d.

For a metastable system with transfer operator P; satisfying condi-
tion (C2) one can assume that for the corresponding transition matrix
P there are m dominant eigenvalues 1 = A1 > Ao > - > X\, >7 >0
and all other eigenvalues are contained in [—7,7]. Then the decomposi-
tion in (A.5) can be written as

m
P => XNoith] + Prast (A.6)
i=1
The matrix Py contains the remaining eigenvalues and eigenvectors
of P so that Pyg¢p; =0foralli=1,...,m.
The evolution of a probability vector v under the dynamics encoded
by the transition matrix P can be written as

m
vIP =3 v, ¢l + v Py (A7)
i=1
In the long time limit (large n) the dominant contribution to the sum is
the first term for the unit eigenvalue \; = 1. Since all other eigenvalues
have modulus smaller than one lim,_,o, 7 P™ = 7 for any probabil-
ity vector v, i.e. in the long time limit any initial ensemble will be
distributed according to the equilibrium probabilities.

The slowly decaying terms correspond to slow processes representing
dynamical rearrangements taking place in the ensemble while it relaxes
to equilibrium [84]. To each dominant eigenvalue one can associate
an relaxation time (implied timescale) for the transport of probability
towards equilibrium

T

= o (A.8)

The largest relaxation time to governs the speed of convergence to equi-
librium, i.e. in order to ensure that any equilibrium expectation value
computed from a single molecular dynamics trajectory has converged
the trajectory length has to be many times to [84].
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A.3 MEAN FIRST-PASSAGE TIMES BETWEEN META-STABLE
REGIONS

The covered material can be found in many introductory books to
stochastic processes, cf. [47].

For a stochastic process (X;) on a state space ) the first hitting time
Tg of a set B C () is defined as

T = inf{t > 0|X, € B}. (A.g)

The mean first passage time 7, g to the set B starting in state x € ()
is the following expectation value

Tz,B — IEI(TB) (A.lO)

For a Markov chain on a finite state space O = {1,...,n} with transi-
tion matrix (psy) the mean first-passage time can be computed from
the following system of equations,

Tz, B = 0 veb (A1)
L+ yeaPeymys © ¢ B

Assuming that the chain has equilibrium distribution () we define
the mean first-passage time 74 g from set A to set B as the pu-weighted
average of all mean first-passage times to B when starting in a state
T EA,

TAB = Y TaTu,B- (A.12)
€A

Computing the mean first-passage time between two sets for a Markov
chain on a finite state space with given transition matrix thus amounts
to finding the equilibrium distribution together with the solution of
a linear system of equations - both of which can be achieved using
standard numerical linear algebra libraries.

A.4 COMMITTOR FUNCTIONS

Committor functions have been introduced in the context of Transition
Path Theory [119] and are a central object for the characterization of
transition processes between two meta-stable sets.

Let (X¢) again be a stochastic process on a state space () and let
A, B C Q be two meta-stable sets. The forward committor ¢(*)(z) is
the probability that the process starting in x will reach the set B first,
rather than the set A,

q(+)(:c) =P,(Ta <Tp). (A.13)

Again T denotes the first hitting time of a set S.
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For a Markov chain on a finite state space with transition matrix
P the forward committor solves the following boundary value problem

[64],

Slyal™ =0 i€ X (AuB)
¢V=0 icA . (A.14)
V=1 ieB
L = P — I is the corresponding generator matrix of the Markov chain.

Computing the committor for a finite state space again amounts to
solving a linear system of equations.



TRANSITION MATRIX SAMPLING

We need the following elementary result.

Lemma 1 Let X be a random variable with values in R™ having den-
sity px (x) (w.r.t. the Lebesgue measure on R™). Let Y = (X)) with ®
an injective, continuous differentiable mapping with nonzero Jacobian

D®. Then the density for' Y is

py (y) = px (@' (y)) DD~ (). (B.a)

The factor |D®1(y)| is the determinant of the Jacobian of the inverse
transformation.

B.1 REVERSIBLE SAMPLING
B.1.1  Posterior

The posterior (4.12) is a probability distribution on the lower triangular
entries of the matrix X. In (4.13) we define a transformation between
the entries of X and the entries of a new matrix V. The matrix X can
be recovered from V using the inverse transformation,

Uij
o _ B.
YT T o (B-2)

The Jacobian of &1 is a block matrix

DO (v) = ( Ag}) gg; ) (B.3)

with diagonal matrix A(v) with n(n 4+ 1)/2 — 2 diagonal entries (1 +
vi) "' and 1 x 1 block D = (1 + vg)~2. The determinant of a block
upper triangular matrix can be conveniently computed as the product
of the determinants of the diagonal blocks. The matrix A(v) has only
n(n+1)/2 — 2 diagonal entries since one value of z and v is completely
determined by the normalization condition. The last row of the Jaco-
bian corresponds to the variable xg = vi/ (1 + vgy).
The Jacobian determinant of (B.2) is

DO (v)] = (1+ wyy) 072, (B.4)
The posterior in new coordinates is then,
o n(n+1) b s Vij Cij
P(V|C) o< (1+vg) 00t T v;7 (J) . (B.5)

Expressions (4.16), (4.17) are the conditional distributions for V' with
density (B.5).
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B.1.2 Beta sampling for diagonal elements

We show that sampling of the diagonal elements can be achieved by
sampling from the Beta distribution. The transformation from s to v}
in (4.19) has Jacobian determinant,

_ Vk,—k
DO 1(s)] = B.
D97 (5)| = ik (B.6)
For prior choice b;; = —1 the transformed conditional, (4.16), is
A(slV) o (=) (1= 5) (1= 8)% = s (1 —s) 58 (Buy)

1—s

This is a Beta distribution with parameters cgr and ¢ — cg.

B.1.3  Gamma proposal for off-diagonal elements

We show that matching the conditional for vy, (4.17), with a Gamma
proposal results in parameters given in (4.21). We use the following
representation for the conditional distribution

Y(vig|V) o (v3) ™" exp f(vgy) (B.8a)
f(vi) =(cr + cw) log vy — cx log (v, + vjy) — crlog (v, + vyy)
(B.8b)

and for the proposal density
q(vj|V) o< (vjy)* TPk = (vig) " exp f(vgy) (B.9a)
f(”fcl) = aloguy — Puy. (B.gb)

To approximate v(vf,|V) by ¢(vj;|V) we match first and second de-
rivatives of f and f at the maximum point & = argmax f(vg). The
necessary condition for a maximum point, f/(2) = 0, results in a qua-
dratic equation with solution

—b+ Vb?% — dac

2a )
The second solution, (B.10) with negative sign in front of the square
root, can be safely excluded since v is required to be non-negative. The
parameters a, b, ¢ are given by

(B.10)

v =

a=ci+c—Ccg — Cli (B.lla)
b= cpu— + U — (Ckl + clk)(vh,l + Ul,—k) (B.11b)
c = —(cp + k) Ve —101,—k- (B.11¢)

Matching first and second derivative of f and f at © leads to the
following linear system for the parameters o and S,

% —B=0 (B.12a)

_1_% = (o). (B.12b)
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The solution to (B.12) is

)
)

The parameter h in (4.21) is the value of the second derivative at the

2 (B.13a)
(B.13b)

4]
(4]

o = _f//(
B=—f"

]
§|

maximum,

_ Crtc Ck I <l
02 (Vg,—1 +0)%2 (g1 +0)%

h=f'(0) =

The log acceptance probability in (4.22) can be obtained if one in-
serts (B.8a) and (B.ga) into (4.18),

logpacc = f(v]/fl) - f(vkl) + f(vkl) - f(vlli‘l) (B14)

Plugging in (B.8b) and (B.gh) we obtain (4.22).

B.1.4 Logspace random walk

We show that the acceptance probability for the logspace random walk
is given by (4.23).

The proposal distribution for the Gaussian random walk on log vy
is
log v, — log v;)? _ A
(log vy 2 S (vhe) " exp f(viy)

(B.15a)

q(vpg|V) o (viy) " exp

(log vy, — log v )?

Fof) = : (Bsb)
The function f is invariant with respect to an exchange of vy, and
vi so that the acceptance probability depends only on the value of the

conditional,
logpacc = f(vllcl) - f(vkl)- (B.16)

B.2 REVERSIBLE SAMPLING WITH FIXED STATIONARY VEC-
TOR

B.2.1  Conditional expectation and likelihood

We show that for cir, = 0 the choice by = 0 for the diagonal prior
parameter matches the expectation of the conditional for xg;, (4.27),
and the maximum point of the conditional likelihood function.

For ¢, = 0 and bg, = 0 the conditional is

7<$21|X> - xz;;erszmekz <Alk _ xkl)clﬁbu (B.l?)
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The density (B.17) is a Beta distribution with parameters a = ¢y +
i + b+ 1 and 8 = ¢ + by + 1 for the scaled variable yi = zg /A
The expectation value for the Beta distribution is o/ (a+ 3) so that

crl+ o+ b +1
kckl-FClk—Fbkl+1—|—C”—|—bll—|—1.

The likelihood function for zy;, (B.17) with by = 0 and by = 0, is
also a Beta distribution. The maximum of the Beta distribution is
(o —=1)/(ax+ B —2) so that

IE(:CM) = Al (B.18)

R Crl + Cik
Tkl = —Akl Ba
Crl + cik + ey (Bg)

The expressions on the right hand side of (B.18) and (B.19) are equal
for bk;l = bll = —1.

B.2.2 Conditional distribution

We show that the conditional distribution for the element vy; is given
by (4.30) with parameters (4.31).
The transformation from zy; to v in (4.29) has inverse

Trl = Akl~ (B.ZO)

v
1+wv
The Jacobian determinant of the inverse is

D9 (0] = (B.21)

The conditional (4.27) in new variables is then

’y(U|X) ocp kT ek 0k (1 + v)*Cszclk*bkz*Ckk*bkkfczz*bzz*Q
B.22
(Alk(l + U) — Aklv>c”+b”. ( )

Defining s = Ag;/Ajx we obtain (4.30) with parameters in (4.31).

B.2.3 Gamma proposal

We show that matching the conditional for v, (4.30), results in param-
eters given in (4.32).

Again, we represent the conditional (4.30) as in (B.8a). The function
f is now

f(v) = (a1 —1)logv + aslog(r +v) — (a1 + az + az + 2) log(1 +v)
(B.23)

The matching procedure is identical to the one outlined in Section B.1.3
and results in parameters given in (4.32).

The acceptance probability in (4.33) can be computed from (B.14)
using f in (B.23) and f from (B.gh).
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B.2.4 Logspace random walk

We show that the acceptance probability for the logspace random walk
is given by (4.34).

The proposal distribution is identical to (B.15). The acceptance prob-
ability in (4.34) can be computed from (B.16) with f in (B.23).
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Figure C.1: MSM validation for alanine dipeptide ¢, dihedral angle data.
a) Implied timescale test. Convergence of the largest relaxation time-scale, to,
indicates a good Markov model fit, i.e. the slow eigenfunction of the associated
dynamical operator are well approximated. b) The Chapman-Kolmogorov test
validates the Markov assumption by comparing the evolution of self-transition
probabilities predicted by the MSM parameterized at lagtime 7 with direct
estimates from the data at larger lagtimes nr.

I
ax
&

Probability, p(n)

1
I
EEEFEE

113



114 MSM - VALIDATION

1480 : : : : :
1460
1440 .
1420 .
1400 -
1380 -
1360 -
1340 -
1320 -

1300 | | | | |
0 5 10 15 20 25 30

Lag time, 7

Relaxation time-scale, t;(7)

(a)

C5UP2UOCR O‘Luch
10-—|—=-m__}_1__ T T T T

0.8} 1 t .

04} 1 L N

Probability, p(n)
i

0.2 H

— MSM . B I
T estimated ]
|

0 20 40 60 8 100 O 20 40 60 80 100
Number of steps, n/r Number of steps, n/r

0.0

(b)

Figure C.2: MSM validation for alanine dipeptide ¢ dihedral angle data. a)
Implied timescale test. Convergence of the largest relaxation time-scale, ta,
indicates a good Markov model fit, i.e. the slow eigenfunction of the associated
dynamical operator are well approximated. b) The Chapman-Kolmogorov test
validates the Markov assumption by comparing the evolution of self-transition
probabilities predicted by the MSM parameterized at lagtime 7 with direct
estimates from the data at larger lagtimes nr.
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Figure C.3: MSM validation for vesicle model. a) Implied timescale test. Con-
vergence of the largest relaxation time-scale, to, indicates a good Markov
model fit, i.e. the slow eigenfunction of the associated dynamical operator are
well approximated. b) The Chapman-Kolmogorov test validates the Markov
assumption by comparing the evolution of self-transition probabilities pre-
dicted by the MSM parameterized at lagtime 7 with direct estimates from
the data at larger lagtimes n7. Values were obtained from an ensemble of
short trajectories starting in the high energy region utilizing the equilibrium

distribution in the estimation of the MLE transition matrix, cf. (3.26).
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ZUSAMMENFASSUNG

Die Dynamik von Proteinen auf langen Zeitskalen ist gepréigt durch sogenann-
te Konformationsdnderungen, selten auftretende Verédnderungen der raumli-
chen Struktur von Proteinen. Experimentell kénnen Konformationsdnderun-
gen nicht direkt auf atomistischen Skalen beobachtet werden, so dass ein de-
tailliertes Studium dieser Prozesse nur mit Hilfe von Computersimulationen
durchgefiihrt werden kann. Das seltene Auftreten von Konformationsdnderun-
gen fiihrt allerdings zu einem Sampling-Problem. Die verléssliche Schétzung
von Groflen, die mit solchen seltenen Ereignissen in Verbindung stehen, kann
nur schwer durchgefithrt werden und erfordert zum Teil unvertretbar lange
Rechenzeiten fiir die Erstellung der notwendigen Daten. Markov’sche Modelle
erlauben die Schitzung aus einem Ensemble von kurzen Trajektorien, so dass
eine einfache Parallelisierung der Berechnung méglich wird. Trotzdem missen
die seltenen Uberginge zwischen verschiedenen Konformationen in den Daten
vorhanden sein.

Reversible Markov’sche Modelle kénnen dabei helfen das Sampling-Problem
zu 16sen. Wahrscheinlichkeiten fiir seltene Uberginge kénnen mit um Grossen-
ordnungen geringerem Aufwand geschétzt werden, als fiir die Simulation ei-
nes einzelnen Ubergangs im Mittel notwendig ist. Diese Modelle ergeben sich
natiirlicherweise ausgehend von einer diskretisierten Beschreibung der Konfor-
mationsdynamik, welche mittels einer endlichen Datenmenge geschétzt wurde.

In der vorliegenden Arbeit werden Methoden fiir die Schatzung und die
Berechnung von Unsicherheiten fiir reversible Markov’sche Modelle entwickelt.
AuBerdem wird eine neuartige Methode fiir die Schitzung von Ubergangswahr-
scheinlichkeiten aus Daten, welche seltene Ereignisse enthalten, vorgestellt. Re-
versible Schitzer fiir Ubergangswahrscheinlichkeiten werden ausgehend von ei-
ner Maximum Likelihood Formulierung konstruiert und effiziente Algorithmen
fiir die Losung des zugehdrigen Optmierungsproblems werden entwickelt. Die
vorgestellte Methode kann auch in Situationen angewandt werden in denen
zusdtzliches Wissen iiber stationdre Wahrscheinlichkeiten verfiigbar ist. Die
Berechnung von Unsicherheiten wird durch einen Bayes’schen Ansatz ermog-
licht. Ein effizienter Monte Carlo Algorithmus fiir die Ziehung von reversiblen
Ubergangsmatritzen aus der zugehorigen Posterior-Verteilung wird entwickelt.
Eine Variante bei der das Wissen um stationdre Wahrscheinlichkeiten genutzt
werden kann wird ebenfalls vorgestellt. In vielen Féllen ist eine effiziente Schét-
zung von stationdren Wahrscheinlichkeiten aus Enhanced Sampling Simulatio-
nen, die nicht unter einem Sampling-Problem leiden, méglich. Héufig ist nur
eine Richtung eines Prozesses selten und die entgegengesetzte Richtung kann
effizient simuliert werden. Reversibilitit kann dazu genutzt werden Ubergangs-
wahrscheinlichkeiten auch in solchen Situationen zu schitzen in denen nur eine
Richtung des Prozesses beobachtet wurde, wenn Wissen iiber die stationédren
Wahrscheinlichkeiten vefiigbar ist. Enhanced Sampling Simulationen und kur-
ze Molekulardynamik Trajektorien kénnen so durch reversible Markov’sche
Modelle systematisch kombiniert werden.
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