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Zusammenfassung

Seit jeher ist es ein zentrales Problem der Physik, die Natur auf ihrer kleinsten
physikalischen Léangenskala zu verstehen und zu beschreiben. In den letzten
fiinfzig Jahren war die theoretische Arbeit an diesem Problem hauptséchlich
motiviert durch die Zielsetzung, die Allgemeine Relativitiatstheorie, welche
die Gravitation und die Dynamik der Raumzeit beschreibt, mit der Theorie
der Quantenmechanik, welche die Physik auf kleinen (subatomaren) Langen-
skalen dominiert, miteinander in Einklang zu bringen in einer einzigen Theo-
rie, deren allgemein gebrauchliche Bezeichnung Quantengravitation ist. Die
String Theorie, die auf der grundlegenden Annahme basiert, dass die klein-
sten Bausteine der Natur nicht durch Punktteilchen, sondern durch eindimen-
sionale ‘Faden’, die Strings, gegeben sind, deren Linge der Grokenordnung
der Plancklédnge entspricht, ist ein mogliches Erklarungsmodell. Weiterhin,
so der Gedanke, wird das in der Natur beobachtete Teilchenspektrum durch
unterschiedliche Schwingungszusténde der Strings erzeugt. Ausgehend von
dieser Annahme, stellt die String Theorie nicht nur eine Theorie der Quan-
tengravitation dar, sondern beschreibt dariiber hinaus auch alle anderen fun-
damentalen Wechselwirkungen der Natur.

Seit ihrer ersten Beschreibung, hat sich die String Theorie zu einem kom-
plexen Netz verschiedener Theorien entwickelt, die jedoch alle verschiedene
Aspekte einer grofseren, iibergeordneten Theorie zu sein scheinen. Ein wichtiger
Ansatz zum Verstdndnis dieser komplexen mathematischen Struktur ist die
Rolle von Symmetrien. Diese Symmetrien, auch Dualitdten genannt, man-
ifestieren sich zum Beispiel in speziellen mathematischen Funktionen, die
in Amplituden von Streuprozessen von Strings auftauchen. Ein relevantes
Beispiel fiir solch eine Funktion sind die Eisensteinreihen, welche eine In-
varianz unter diskreten Dualitdtsgruppen aufweisen. Das zentrale Ziel der
vorliegenden Arbeit ist es, die Eigenschaften von Eisensteinreihen zu unter-
suchen, die unter sehr grofen, insbesondere unendlich-dimensionalen Kac—
Moody Gruppen invariant sind. Der Grofsteil dieser Dissertation ist dem
mathematischen Problem der Fourierentwicklung von Eisensteinreihen gewid-
met, jedoch werden die erzielten Resultate auch in dem relevanten physikalis-
chen Kontext dargestellt.



Abstract

Understanding nature on its very smallest ‘physical-length’ scale has always
been a central goal of physics. Theoretical investigations into this problem
over the last fifty years or so were largely driven by the aim of reconciling
the theory of general relativity, the theory which describes the fundamental
force of gravity and therefore the dynamics of space-time, with the theory of
quantum mechanics, which dominates the physical phenomena on very small
(sub-atomic) scales, within one big framework, referred to as the theory of
quantum gravity. One candidate for such a theory is string theory. The fun-
damental assumption of this theory is that the smallest constituents of nature
are not given by point particles, but rather by one dimensional strings the
size of the Planck length. Through their different vibrational modes, strings
are thought to produce the different properties of the observed spectrum of
particles in nature. With this basic idea, string theory is not only predicted
to describe the gravitational force, but also all other known forces of nature,
and therefore extends far beyond the concept of only being a theory of quan-
tised gravity.

Since its initial proposal, the theory has developed into a vast and com-
plex mathematical web of different theories, which all seem to be part of
a larger, all-encompassing theory. Key to understanding the complicated
mathematical structure of this theory is the concept of symmetries. Such
symmetries, which are also known as duality relations, for instance manifest
themselves in special mathematical functions, contained in the amplitudes
that capture information about the interaction processes of strings with one
another. A particularly relevant example of such a function is given by the
so-called FEisenstein series, which display invariance under certain discrete
duality groups. The central goal of this thesis is to study the properties of
Eisenstein series invariant under special, particularly large (in fact infinite-
dimensional) symmetry groups, known as Kac-Moody groups. While a large
part of this thesis is dedicated to the mathematical problem of calculating
the Fourier expansion of these series, our results are also explained within
the relevant physical context.
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Chapter 1

From string theory to
automorphic forms

The objective of this thesis is to provide a discussion of Eisenstein series and
the role that they play within string theory. Eisenstein series are examples
of a special type of mathematical function. More precisely, they fall into the
class of automorphic forms, which display invariance under certain symmetry
transformations. This makes them interesting objects to study, particularly
from a mathematical point of view. In our case, the Eisenstein series which
we are going to consider are invariant under a set of symmetries, which appear
naturally in string theory. Therefore, by studying these Eisenstein series, we
can also hope to learn something new about string theory and in particular
gain new insights into the non-perturbative sector of the theory. As we will
show, the work presented in this thesis provides an important step towards
achieving that goal.

This first chapter provides the reader with a brief introduction to some
general concepts and terminology used throughout this thesis. These con-
cepts include: quantum gravity and in particular string theory; symmetries
of string theory; as well as some familiarity with the definition of Eisenstein
series and automorphic forms. This will give sufficient motivation and set
the stage for the concrete questions studied in the remaining chapters of this
thesis. We will close the first chapter with section 1.3, where we clearly out-

10



1.1. FROM QUANTUM GRAVITY TO STRING THEORY 11

line the goals and objectives that we set out to achieve, providing a detailed
list of our original work and giving a summary on the structure of this thesis.

1.1 From quantum gravity to string theory

We want to start this thesis by giving a motivation for the physical problem
that the work presented here is related to. This is the problem of finding a
theory of quantum gravity, which combines the theory of quantum mechanics
with the theory of general relativity. Our exposition loosely follows parts
of the book [1] and the article [2] by C. Kiefer. The book [1] provides a
general introduction to the field of quantum gravity with its many different
approaches.

In our present understanding a theory of quantum gravity is necessary
in situations where extremely large amounts of mass or energy are concen-
trated on a very short length scale. This is for example the case when a
space-time singularity occurs, for instance inside a black hole or at the Big
Bang, the presumed initial singularity of the universe. The assumption that
such singularities indeed occur is supported by the singularity theorems of
S. Hawking and R. Penrose [3], which state that under rather general assump-
tions, space-time will develop singularities, in particular for the universe as
a whole, the Big Bang as the initial singularity and possibly a Big Crunch
after a re-collapse of the universe. Assuming the existence of an initial sin-
gularity, a natural question to ask is how the initial conditions at this point
in space-time are determined. One would expect that a theory of quantum
gravity would provide an answer to this question.

There are also a number of reasons why, in the physical regimes discussed
above, one should expect that the gravitational field is quantised. The most
obvious reason is provided by the Einstein equations
themselves. In these equations the left-hand side describes the geometry of
space-time, and therefore gravity, while the energy-momentum tensor 7,
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on the right-hand side of the equation includes all matter or energy present
in the space-time. Since all known forms of matter and their associated
fundamental forces (electromagnetism, the weak and the strong force) have
been quantised successfully, it seems only reasonable that the left-hand side
of the equation, associated with gravity as the fourth fundamental force,
should be quantised. Further reasons for the quantisation of gravity are
provided by: 1. The breakdown of the semiclassical description of black hole
radiation [4] after a certain time; 2. The up-to-now unsuccessful attempts to
couple classical gravity to quantum fields; 3. The presumed existence of a
fundamental cutoff at small scale, in order to avoid divergences of quantum
field theories.

To discuss the possible existence of a fundamental cutoff scale further,
it is indeed possible to define from the speed of light ¢, the Planck energy
quantum A and the gravitational constant G a set of three quantities, [, ¢,
and m,,, which are the Planck length, time and mass, respectively:

h

l, = c—f ~1.62 x 107 m,
hG

t, = k. 5.40 x 107 s,
he

my =4[ 5 217 10" %kg ~ 1.22 x 10" GeV .

Due to their unique character and smallness, compared to the energy scales
that have been experimentally tested so far (roughly 20 orders of difference in
magnitude), one might expect that they could represent such a fundamental
cutoff. Finally one might consider the philosophically desirable feature of
complete background independence. This means that in a truly fundamental
theory, all structures should be quantised such that they become dynamical
entities and do not maintain an absolute character. In particular this should
also be true for the concept of time, which in ordinary quantum mechanics,
and also special relativity, is an absolute entity (it is not represented by a
quantum operator), whereas in general relativity it is dynamical, since it is
interwoven in a dynamically changing space-time. This apparent difference
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in the concept of time between the two theories, should find a resolution in
a theory of quantum gravity.

On a more technical level, the central reason behind the problem of quan-
tising gravity is that upon applying the usual quantum field theoretic meth-
ods to gravity, one finds that the theory is non-renormalizable, as was shown
by t'Hooft and Veltman [5].

Given the reasons listed above, most theorists would agree that it is indeed
necessary to find a theory of quantised gravity. However there is disagreement
about how to approach the problem and about what a theory of quantum
gravity will look like. Many different proposals have been made and we will
describe one of them, namely string theory, in some more detail below. Before
doing this, it should be remarked however that ultimately the source of all
disagreement and the different, largely diverging, ideas is the fact that there
is practically no experimental input for our search of a theory of quantum
gravity. This is of course due to the fact that the energy regime that one
would need to probe in order to get such an input, lies far higher than the
energy scales that are currently being probed at particle accelerators such
as the Large Hadron Collider (LHC) at CERN and in other experiments.
The search for a theory of quantum gravity is thus limited to trying to make
reasonable guesses and building mathematical theories, based on analogies
inferred from physical concepts observed at much lower energies. The guiding
principles here can be certain symmetry principles (which we will discuss
more later on), uniqueness of the theory and to some extent how economical
the theory is from a mathematical point of view. It should finally be remarked
that one thing that pretty most candidate theories of quantum gravity have
in common at present is their mathematical complexity, which often makes
it hard to identify possible underlying physical principles.

The various approaches to quantum gravity can be put into two cate-
gories. In the first category an attempt is made to find the quantised version
of general relativity only, without including any of the other fundamental
forces in the picture. In contrast, the second category follows the more am-
bitious approach of complete unification, where all four fundamental forces
are treated together in the framework of one quantum field theory. The
only serious candidate theory in this second category is string theory, which
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will be discussed in the following. The number of contenders of theories in
the first category is by far greater and one can again distinguish between
two different approaches, the first one being the so-called covariant theories,
which include a perturbative treatment of gravity, effective field theories,
renormalisation-group approaches and path integral methods. In the second
type, the canonical theories, gravity is re-formulated using the Hamiltonian
formalism, in which canonical momenta and their conjugates are identified.
Two prominent examples of this approach are Quantum Geometrodynamics
and Loop Quantum Gravity. For a more detailed summary of these ap-
proaches see [1].

Let us now enter into a discussion of string theory, giving a compact out-
line of the features which will be of relevance for the technical part of this
thesis.

1.1.1 String theory — a short summary

In the following we will provide a very brief summary of some selected as-
pects of string theory. This will provide some context for our discussion of
automorphic forms and in particular Eisenstein series in string theory.

As general references on the subject of string theory, we recommend the
books [6-8|. Furthermore, although by now outdated (in particular on the
topic of dualities in string theory, which will feature rather prominently in
this thesis), the books [9,10] nevertheless provide useful background material.

The theory now known as ‘string theory’ grew out of early attempts to try to
understand the observed properties of hadrons and their spectrum of excita-
tions. In particular a problem was to understand why the various hadronic
resonances seemed to all lie on straight lines (the Regge trajectories) in a plot
of the squared mass, M?, versus the angular momentum, J. An attempt to
explain this linear relation between M? and J was initially provided in G.
Veneziano’s and subsequent work [11-13], often simply referred to as the
Veneziano amplitude. In this work it was suggested that the interaction
of two quarks could be modelled using a string with a certain tension 7T,
‘spanned’ between the two particles. In accord with the size of a nucleon of
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~ 107 m, the length of the string ¢, was assumed to be of the same order.
For the string’s tension the relation ¢2 oc 7! holds and it was taken to be
of the order of (1GeV)?. The string introduced into the QCD picture in this
way, is referred to as the ‘QCD string’. The slope of the Regge trajectories
is denoted by o/ and its relation to the string length is o/ oc £2.

The picture of the QCD string was abandoned as a working physical the-
ory once it was realised (amongst other reasons) that the excitation spectrum
of the string also contained a resonance with the associated signature of a
massless, spin 2 excitation, which is not present in the hadronic spectrum.
Eventually the theory of these strings was taken up again in a completely
different context and the seeming disadvantage of having a massless, spin
2 excitation was turned into an advantage. Namely, the theory was rein-
terpreted as describing a whole spectrum of elementary particles, where the
massless, spin 2 excitation would correspond to the exchange-particle respon-
sible for the transmission of the gravitational force, known as the graviton
and would therefore incorporate Einstein gravity in a natural way. Inter-
preting strings in this way, the characteristic length scale [ of the theory
was set to be of the order of the Planck length [, ~ 1.62 x 107 m, such
that the theory can also claim to be a candidate for a theory of quantum
gravity. Furthermore, since every elementary particle observed in nature is
thought to correspond to a particular string excitation, string theory is seen
as a theory which in principle unifies all the fundamental forces of nature.

A consistent quantisation of the string, carrying only bosonic degrees of
freedom, implies that the string itself should live in a higher-dimensional
background space-time (the target space), which is 26 dimensional, where 26
is also known as the critical dimension [14|. The picture one has in mind
is that the one-dimensional string sweeps out a two-dimensional worldsheet,
embedded in the target space, and the governing quantum field theory on
the worldsheet is conformally invariant. Taking into account also fermionic
excitations of the string and imposing supersymmetry, the critical dimension
is lowered to 10, cf. [15].

The spin 2 (graviton) excitation of the string appears in the spectrum of
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the closed string. While there are also theories of open strings, which do not
have the spin 2 excitation, the fact that open strings can interact in such a
way as to form a closed string, means that the graviton and therefore Ein-
stein gravity, is naturally incorporated in (or one might even say ‘predicted
by’) string theory.

An essential ingredient in modern string theory is the concept of compactifi-
cation. This aspect of the theory is motivated by the question of how we can
obtain a theory with the four space-time dimensions that we observe around
us, from a higher-dimensional theory like string theory. The idea, going back
to the work of T. Kaluza and O. Klein [16,17], is to ‘compactify’ the spatial
dimensions of, say, a ten-dimensional space-time, on a d-dimensional, inter-
nal manifold, X. The physical scale of the manifold X is such that it is
very small compared to the physical scales accessible to our everyday per-
ception, or even the smallest scale that can be probed in current high-energy
particle physics experiments, and it is therefore effectively invisible. It was
found that there is a very large number of possible types of manifolds X that
one can compactify string theory on, e.g. the class of Calabi-Yau manifolds.
Since the geometry and topology of the manifold affects the spectrum of the
strings moving in target space, one hope is that only a very small number of
manifolds exists, that reproduce the characteristics of the observed physical
world, e.g. the correct elementary particle spectrum.

One of the simplest and best understood compactification manifolds is that
of a circle, S*, which allows for a compactification of a ten-dimensional string
theory to a theory with only nine extended dimensions. One can continue
down to lower dimensions by compactifying the ten-dimensional theory on
a torus instead, down to eight dimensions, and to even lower dimensions by
a compactification on the general d-dimensional analogue of a torus, which
we denote by T¢. These toroidal compactifications are the ones that we will
consider in the remainder of this thesis. Strings moving on such a manifold
have two different modes that contribute towards the energy spectrum of
the string. These are the momentum modes, which as the name suggests
quantify the momentum of the string along a compactified direction and the
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winding modes, which roughly speaking counts the number of times a string
is wound around such a direction.

In total, there are five different superstring theories. They are the type
ITA and IIB theories, the type I and the heterotic Fs x Eg and SO(32) su-
perstring theories. The ‘super’ here refers to the fact that they all display
supersymmetry. The five string theories are distinguished by the properties
of the strings that they describe. It has, however, been shown, that there
exist maps, so-called duality relations, between the different theories, which
make them nothing but five different manifestations of some larger theory,
termed M theory. This theory, which at this point is not well understood, can
be argued to be an eleven-dimensional theory, as opposed to the five string
theories, which naturally live in ten dimensions. Furthermore it is known
that the low-energy limit of the theory is a theory called eleven-dimensional
supergravity. Taking the low-energy limit of any string theory corresponds
to taking the limit o/ — 0, such that strings loose their ‘stringy’ nature and
are approximated by point particles. Supergravity theories 18| are therefore
theories of point particles and display supersymmetry [19]. We will come
back to the concept of a low-energy expansion in section 2.2. While, as de-
scribed above, we used the T torus to compactify the ten-dimensional string
theories, we use a 79! torus in order to compactify the eleven-dimensional
M theory or supergravity. We thus distinguish between the string theory and
M theory torus respectively. Let us also note that apart from one dimen-
sional strings, string- and M theory also contain higher dimensional objects,
known as Dp-branes [20], with p spatial and one time-like dimension. Loosely
speaking such branes can be defined as the locus of the endpoints of open
strings.

As mentioned above, dualities play an important role in string theory.
They are symmetries of string theory which for example act on the compact-
ification space X or exchange the strong with the weak coupling sector of
theories, where the couplings controls the strength of string interactions. Du-
alities are expressed in terms of symmetry groups GG and are described using
group theoretical techniques. A particular type of duality is U-duality [21],
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which we will discuss extensively in this thesis. This duality manifests itself
in the amplitudes of string scattering processes, where it acts as a discrete
symmetry leaving the amplitude invariant. We will now take this as a mo-
tivation to discuss special types of functions, which are defined on groups
and display invariance under discrete subgroups. Such functions are known
as automorphic forms.

1.2 Automorphic forms — a first glimpse

In this section, which contains excerpts from article IV, we introduce the
concept of an automorphic form. We base our discussion mostly on explicit
examples and hope to give the reader a general, intuitive outlook on some
of the topics that will be discussed in detail in subsequent chapters. Some
comments on the physical interpretation of automorphic forms (in this case
Eisenstein series) in the context of string theory are also provided. Let us
start by giving the mathematical definition of an automorphic form.

Automorphic forms are functions f(g) on a Lie group G that

(1) are invariant under the action of a discrete subgroup I' C G: f(v-g) =
f(g) for all y € T,

(2) satisfy eigenvalue differential equations under the action of the ring of
G-invariant differential operators and

(3) have well-behaved growth conditions.

Throughout the thesis we will refer back to this definition at various places.
In what follows now in this section, we will provide a qualitative description
of automorphic forms, based on examples. We will mainly be interested in
automorphic forms f(g) that are invariant under the action of the maximal
compact subgroup K of G when acting from the right: f(gk) = f(g) for all
k € K; such forms are called K-spherical. The automorphic forms are then
functions on the coset G/ K.
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Let us now introduce an example of an automorphic form for G = SL(2, R).
Due to the explicitness of this case, it will serve as a kind of canonical exam-
ple throughout this thesis.

The prime example of an automorphic form is obtained when consider-
ing G = SL(2,R) and I' = SL(2,Z) C SL(2,R). The maximal compact
subgroup is K = SO(2,R) and the coset space G/K is a constant nega-
tive curvature space isomorphic to the Poincaré upper half plane H = {z =
r+iy|r € Rand y > 0}. A function satisfying the three criteria above is
then given by the non-holomorphic function

S

f) =Y W (1.2.1)

(m,,n)EZ2

(m,n)#(0,0)
The parameter s is in general a complex number and the sum converges
absolutely for Re(s) > 1. The action of an element v € SL(2,Z) on z € H
is given by the standard fractional linear form

az+b a b
VE= for = (c d) € SL(2,Z). (1.2.2)

Property (1) is then verified by noting that the integral lattice (m,n) € Z?* is
preserved by the action of SL(2,Z) and acting with v € SL(2,Z) in (1.2.1)
merely reorders the terms in the absolutely convergent sum. Property (2) in
this case reduces to a single equation since there is only a single primitive
G-invariant differential operator for the real rank one group SL(2,R). This
operator is given by

A=y?(02+0) (1.2.3)

and corresponds to the Laplace—Beltrami operator on the upper half plane
H. In group theoretical terms it is the quadratic Casimir operator. Acting
with it on the function (1.2.1) one finds

Afs(z) = s(s —1)fs(2) (1.2.4)
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and hence fs(z) is an eigenfunction of A, and therefore also of the full ring of
differential operators generated by A. Condition (3) relating to the growth
of the function here corresponds to the behavior of fs(z) near the boundary
of the upper half plane, more particularly near the so-called cusp at infin-
ity when y — oco. The growth condition requires fy(z) to grow at most as a
power law as y — o0o. For this we refer the reader to a brief first discussion of
the Fourier expansion below and to chapters 4, 5, 6 for a detailed discussion.

As we explain in detail in chapter 3, the type of automorphic functions
appearing in the context of string theory that we will consider are the so-
called Fisenstein series. The simplest example of an Eisenstein series can be
obtained from the form of the G = SL(2,R) series given in (1.2.1) above.
Namely, the Eisenstein series on SL(2, R), which we denote by ES*2R) (s, 2),
is related to fs(z) through the relation

1
2((2s)

ESLER) (g 2) =

fs(2). (1.2.5)

This relation is derived in equation (3.1.1) in the chapter 3.

Since we are ultimately interested in Eisenstein series and their signifi-
cance in the context of string theory, we will have to ask the question of how
one can extract physical information (e.g. perturbative and non-perturbative
effects) from such series. The key to this question is the realisation that FEisen-
stein series are periodic functions with respect to certain discrete subgroups
of G(R). Again this is most easily seen in the G = SL(2,R) series example.

The discrete Borel subgroup B(Z) C SL(2,R) acts on the variable z =
x + iy, through (1.2.2), as translations by

((1) T)-z:z—l—m for m e Z (1.2.6)

and therefore any automorphic function (that is by definition invariant under
any discrete transformation) is periodic in the x direction with period equal
to 1 corresponding to the smallest non-trivial m = 1. This means that we
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can Fourier expand it in modes e*™*. Applying this to (3.1.7) leads to

ESL(Q’R)(S, z)= Cly) + Z Fn(y)e%mx : (1.2.7)
n#0
\ / ~ ~ -
constant term non-zero mode

zero mode

As we indicated, it is natural to divide the Fourier expansion into two parts
depending on whether one deals with the zero Fourier mode, also known as
the constant term, or with a non-zero mode. Since the Fourier expansion is
developed only along the x direction, the Fourier coefficients still depend on
the second variable .

Determining the explicit form of the Fourier coefficients is one of the key
problems in the study of Eisenstein series. In the example of SL(2,R) this
can be done by making recourse to the formulation in terms of a lattice
sum given in (1.2.1) and using the technique of Poisson resummation, see
for example [6,7,22,23]. Such an analysis leads to the following explicit
expression

ESL(Q,R)(& Z) — ys +

5(28 — 1) —s 2y1/2 s— TInT
Wyl + £(2s) Z 0" 125 (n) K1 jo (27 |y )e*™ ™
n#0

(1.2.8)

where K(q) is the modified Bessel function of the second kind (that decreases
exponentially for ¢ — oo in accordance with the growth condition) and

pras(n) =Yy _d'™* (1.2.9)

dln

is called a divisor sum (or the instanton measure in physics) and given by a
sum over the positive divisors of n # 0. The function &(s) = 7~%/2'(s/2)((s)
is the completed Riemann zeta function (1.2.10)), with the definition of
the Riemann zeta function [24] given by

C(s)=> k. (1.2.10)

k>0
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The two types of terms introduced above are the constant term (zeroth
Fourier mode) and the Fourier coefficients (non-zero Fourier modes). The
physical interpretation of the constant term is that it contains those contri-
butions from string- or M theory, which can be calculated using perturbative
methods. The second type of term, the Fourier coefficients, appearing in
the expansion, is generally associated with non-perturbative effects, or more
precisely instanton corrections, see for example [25-29]. See also 2.1.2 for
a description of the non-perturbative effects due to the (euclidean) D(—1)-
instanton.

As is evident from (1.2.8), the explicit form of the Fourier expansion can
appear quite complicated and involves special functions as well as number
theoretic objects. For the case of more general G(R) the method of Poisson
resummation is not necessarily available as there is not always a form of
the Eisenstein series as a lattice sum. It is therefore desirable to develop
alternative techniques for obtaining (parts of) the Fourier expansion under
more general assumptions. This is achieved by lifting the Eisenstein series
into an adelic context which is explained in some detail in section 3.6.

The books [30,31] are recommended as further reading on the subject of
automorphic forms.

1.3 Outline and goals

The bulk of the candidate’s original work presented in this thesis is based on
the following publications, that were made by the candidate, in collaboration
with the respective co-authors indicated. We also provide a brief summary
of each publication.

I. P.Fleigand A. Kleinschmidt, Fisenstein series for infinite-dimensional
U-duality groups, Journal of High Energy Physics 6 (June, 2012) 54,
arXiv:1204.3043 [hep-th].

In this article the zero modes in the Fourier expansion of certain Eisen-
stein series defined on the Kac-Moody groups Fy, Ejo and E;; are
shown to contain a finite (and only a very small) number of terms. Ex-
plicit expressions of the zero mode of the Fourier expansion for some


http://dx.doi.org/10.1007/JHEP06(2012)054
http://arxiv.org/abs/1204.3043
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examples are given and an extensive discussion of physical consistency
checks is provided.

P. Fleig, A. Kleinschmidt, and D. Persson, Fourier expansions of Kac—
Moody FEisenstein series and degenerate Whittaker vectors, ArXiv e-
prints (Dec., 2013), arXiv:1312.3643 [hep-th].

In this article the results of article I above are extended to the higher
Fourier modes in the expansion of certain Kac-Moody Eisenstein series
and specific examples are calculated explicitly.

Furthermore, the candidate was and is also involved in the following list of

publications, some of which have been published and some of which are still

in preparation. They contain original work, cf. ITI, as well as proceedings,

cf. V and VI, and review type articles, cf. IV. We have chosen not to include

the original work of article ITI as a separate chapter in this thesis, since, even

though related, its topic stands somehow apart from the main theme of this

thesis. The other articles should be seen as providing a summary as well as

additional context for the work discussed in this thesis and we will also refer

to them where appropriate.

III. P. Fleig, M. Koehn, and H. Nicolai, On Fundamental Domains and

IV.

Volumes of Hyperbolic Cozeter-Weyl Groups, Letters in Mathematical
Physics 100 (June, 2012) 261, arXiv:1103.3175 [math.RT].

In this article the fundamental domains of hyperbolic Coxeter-Weyl
groups are discussed. In particular, geometric information, such as their
finite volume and shape, is extracted from the algebraic structure of the
various hyperbolic Weyl groups. This work is related to the articles I
and I, through the fact that the hyperbolic Weyl group W(E}) is the
Weyl group of the Kac—-Moody group E1g on which we define particular
Eisenstein series.

P. Fleig, H. A. P. Gustafsson, A. Kleinschmidt, D. Persson, A physi-
cists” invitation to: Adelic Fisenstein series and automorphic represen-


http://arxiv.org/abs/1312.3643
http://link.springer.com/article/10.1007%2Fs11005-011-0540-7
http://link.springer.com/article/10.1007%2Fs11005-011-0540-7
http://arxiv.org/abs/1103.3175
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tations, in preparation.

This review article offers an extensive introduction to Eisenstein series
formulated in the adelic language. Since a detailed treatment of adelic
methods as applied to Eisenstein series would require a separate and
long discussion in itself, we have chosen to only include some of the
relevant parts in this thesis. Particularly chapter 3 contains excerpts
from this article.

V. P. Fleigand A. Kleinschmidt, Perturbative terms of Kac-Moody—Fisenstein
series, submitted to the proceedings of the ‘String—Math 2012’ confer-
ence, ArXiv e-prints (Nov., 2012), arXiv:1211.5296 [hep-th].

These proceedings contain a concise summary of the article I listed
above and may serve as an introduction to the subject.

VI. P. Fleig and H. Nicolai, Hidden Symmetries: from BKL to Kac-Moody,
to appear in the proceedings of the ‘Marcel Grossmann 13’ meeting.

In these proceedings of a talk given by H. Nicolai at the MG13 meeting,
the idea of the BKL conjecture, cf. [32], is introduced and its relation
to Kac—Moody algebras and a possible approach quantising gravity,
cf. [33,34], is briefly discussed. In the conclusion chapter 7 we provide
some comments about a possible relation to the automorphic forms
discussed in this thesis.

Let us now summarise and give an outline of this thesis. The primary goal
of the thesis is to discuss particular Eisenstein series, which are defined on
the infinite-dimensional Kac—Moody groups FEg, Fiy and Ej;. In chapter 2
we will explain in some detail how these Kac-Moody groups, together with
some other finite-dimensional groups, collectively known as U-duality groups,
appear naturally as symmetries of string theory. For the remainder of that
chapter, we discuss how the U-duality groups manifest themselves as sym-
metries in certain string scattering amplitudes, whose general structure we
are going to present. In chapter 3, we will provide the general definition of


http://arxiv.org/abs/1211.5296
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an Eisenstein series, following the work [35] of R. P. Langlands, and discuss
Eisenstein series as examples of automorphic forms. For this we resort to the
specific case of forms defined on the upper-half complex plain and show how
a [ift can be used to generalise their definition to an automorphic form on
SL(2,R). We will then focus on a certain type of Eisenstein series, which
is of the form that also appears in the context of string theory. From there
we will extend the classical definition of an Eisenstein series to the case of
a Kac-Moody group. In the following chapter 4 we will discuss the general
structure of the Fourier expansion of Eisenstein series. For this we will write
out and manipulate the Fourier integrals that one needs to solve in order to
obtain the constant term (zeroth Fourier modes) and the higher order Fourier
modes. The two subsequent chapters in a sense form the heart of this thesis,
in as much as they contain the central insights of our work. In chapter 5, we
will introduce Langlands’ formula, which provides a method to compute the
constant term. A central point of the discussion will be how one can evaluate
this formula in the case of Eisenstein series defined on infinite-dimensional
Kac-Moody groups. For this we will derive a special collapse property (or
mechanism) of the constant term, which holds for the particular Eisenstein
series relevant to string theory. In chapter 6, we will show how the collapse
mechanism extends to the higher order Fourier modes. In chapter 6 and in
the appendix, we will provide explicit expressions for the constant terms and
Fourier modes of some Kac-Moody FEisenstein series. The final chapter 7
concludes this thesis. In particular we will make some speculations about
other possible applications of Eisenstein series, in the context of the quan-
tum cosmological billiard approach.

Finally, let us summarise again the scientific goal of the work contained
in this thesis:

By unravelling some of the clearly very rich and complex mathematical
structure encoded in Eisenstein series, we hope to contribute towards an
understanding of the non-perturbative structure of string- and M theory. In
particular we hope to convince the reader that the Eisenstein series and their
Fourier expansions discussed here, provide a very concrete example, where
the infinite-dimensional duality groups Fy, F¢ and E;; manifest themselves
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in terms of quantities. At least in principle these quantities, also afford a
physical interpretation.



Chapter 2

Dualities in string theory

In this chapter we discuss dualities of maximally supersymmetric, compact-
ified, string theories. The discussion will reveal a set of discrete symmetry
groups, generally referred to as the U-duality groups, which, together with
the Eisenstein series, will take centre stage in the discussion of our work
in subsequent chapters. More precisely, we will define particular Eisenstein
series, which are defined as functions on the continuous version of the U-
duality groups, but which display invariance under the discrete U-duality
groups themselves. This is done much in the spirit of the brief introduction
to automorphic forms given in the previous chapter.

However for now, let us focus on explaining some of the dualities and
symmetries which are present in string theory and supergravity theories.
References to original, as well as review articles are provided for further
reading.

2.1 String dualities

As mentioned in section 1.1.1, there are a present five different string theories
that have been discovered. Amongst these are the type IIA and IIB string
theory. Over the last 15 years a lot of research work has been devoted to
understanding the structural relations between the various string theories,
also known as duality relations. We will now discuss three types of dualities,
with particular emphasis on dualities related to the type II string theories.

27
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While we are mainly interested in dualities of string theories, we shall also
discuss the continuous symmetries of the supergravity theories (low-energy
limit theories) of string theories.

The following sections on T-, S- and U-duality follow loosely the presen-
tations of [21] and [8]. The review article [21] is particularly recommended
for further reading on the topic of U-duality.

2.1.1 T-duality

We start with a discussion of T-duality. This duality, where the “T” stands
for target space, is associated with discrete transformations performed on
the compactification space, in our case the string theory torus, 7%. More
precisely, performing the transformation r < o'/r, where r is the radius
of one of the compactified directions on the torus, implies an exchange of
the momentum and winding modes of the string, for its spectrum to remain
unchanged under the transformation. The discrete group of these transfor-
mations is generated by a set of Weyl generators. The generators can be
obtained from the explicit form of the action of a theory after compactifi-
cation. It can be shown [21]| that the Weyl generators (supplemented by
Borel generators) generate the discrete T-duality group SO(d, d,Z), with its
associated Dynkin diagram shown in figure 2.1.

2
o—I—o— ------ - —
3 4 5 d d+1

Figure 2.1: The SO(d,d,Z) Dynkin diagram of T-duality

The Dynkin digram is a sub-diagram of the Fgy1(Z) Dynkin diagram
shown in figure 2.3, associated with the discrete exceptional group Eq.1(7Z).
This fact is emphasised by the particular labelling of nodes we have chosen.
Note also that the above diagram contains the discrete group SL(d,Z), with
the long horizontal line as its Dynkin diagram. It is the modular group of
the string theory torus, and its Weyl generators S;; imply an exchange of
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two radii 7; <> r; of the torus 7% The full T-duality group also includes

the Weyl generators T;;, which yield the simultaneous inversion of two radii,
(ri,r;) <> (rj’l, 77 1). A possible choice for a minimal set of generators of the

full group is given by
Si DTy T with 22172,d—1

s 1 1
T12 : (gS,T’l,TQ) <> < g — —> . (211)

7“17‘2’7”2’7“1

Let us provide some more details on the way in which the Weyl generators
act. Namely, the Weyl generators can be interpreted as discrete actions on
the d 4+ 1-dimensional weight space (a vector space) of the T-duality group.
Let us define the vector Hg, where the subscript label refers to the string
theory torus, as

HS = (log(gs)vlog(rl)vlog(TQ)“'alog(rd)) : (212)

This function is a function on the moduli space of the theory and assigns a
vector to each point in this space. It contains the string coupling g; and the
radii r; of the string theory torus. Upon choosing basis elements ey, eq,...,
eq of the vector space, we can define an object 7, which we refer to as the
‘tension’, given by

(A Hg) 1,22

T=e = gooritry? .t (2.1.3)
where A = xgeg + T1€1 + Ta6s... + 144 and (-|-) is the pairing between the
weight space and its dual space. A Weyl generator of the T-duality group
will then act on A, according to the transformations (2.1.1). Let us also point
out the role of the Weyl group as a reflection group, which is explained in the
appendix A.1.1. In particular, acting with a Weyl generator on the weight
A, is interpreted as the reflection of A on the hyperplane of a root «, as is
clear from formula (A.1.12) in the appendix. Group theoretic objects, very
similar to the tension 7, will appear frequently throughout this thesis and in
particular in the definition of Eisenstein series (3.2.20).
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Before we conclude our discussion of T-duality, let us make two more
remarks. Firstly, the duality is defined order by order in o/ [36-38|. This is
for instance the case in low-energy effective actions, cf. section 2.2.1, where
string theory is defined as an expansion in terms of the Regge slope o'. Sec-
ondly, T-duality as a symmetry does not appear in quantum field theories
which describe ordinary point particles, since the concept of exchanging mo-
mentum and winding modes is not applicable.

2.1.2 S-duality

The ‘S’ in the name stands for ‘strong-weak’ duality. It states that a strongly
coupled quantum field theory, A, with coupling constant ¢ > 1 can be
mapped to the weak coupling regime of another theory, B, with coupling

1 and vice versa. The figure 2.2, which is inspired by a similar

constant g~
diagram in [8], illustrates this duality relation diagrammatically. The first ex-
ample of such a strong-weak duality was provided in [39] for supersymmetric

Yang-Mills theory.

Perturbative ) Coupling space
regime Duality map of theory B

\_/’7

Coupling space

of theory A Perturbative

regime

Figure 2.2: The schematics of strong-weak coupling between two quantum
field theories A and B.

In the following we illustrate this duality with a prominent example,
namely type IIB string theory. The following example follows a similar ex-
position provided in [8]. We start by discussing a hidden symmetry in the
corresponding supergravity theory of type IIB.
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Namely, the type 1IB supergravity theory displays an hidden invariance
under the SL(2,R), see [40-42|. In Einstein frame, the action for the bosonic
sector of this theory can be written in a manifestly SL(2,R) invariant way,
see for example [7,8]. In particular, the axion y and the dilaton ¢, as the
scalar fields of IIB supergravity, are then gathered in a complex parameter 7

which is defined as
T=x+ie?. (2.1.4)

The complex field 7 transforms under an SL(2,R) transformation in the
standard way

ar+b b

a
T — C’r——|—d s where <C d> S SL(2,R) . (215)

The term for the scalar fields in the action of type IIB supergravity then
takes the form —d707/2|Im7|?, which under the above transformation is
manifestly SL(2,R) invariant. Let us consider a transformation under the

particular SL(2,R) element
0 1
2.1.6
(% 0)- (216

for the case when y = 0. The results of such a transformation will be
that 7 = ie”® will be mapped to —1/7 = ie®. As already discussed in the
introduction, in string theory, the expectation value of the dilaton determines
the string coupling constant through the relation, g//® = ¢?. Hence the

transformation just shown leads to an inversion of the coupling constant,

(G11%) = gif®

duality mentioned above. There is a subtlety in string theory, however, which

, of the theory, which is an instance of the strong-weak
plays an important role:

While the supergravity theory displays invariance under the continuous
SLg(2,R) group, this symmetry does not hold any longer for the full type IIB
string theory, but is broken to the discrete duality group SLg(2,7Z), [43,44],
the S-duality group. More precisely, type IIB string theory is self-dual under
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S-duality meaning that the regime of strong string coupling is mapped to its
weakly coupled regime.

A possible line of reasoning for this breaking of symmetry is related to
the existence of non-perturbative effects in type IIB theory. One such non-
perturbative effect is for example implied by the presence of D-instantons,
which were already mentioned in section 1.2. The D-instantons are euclidean
D(—1)-branes and their contribution is of the form exp(2mit), since their
(classical) action takes the form Si,s = 277. It is then clear from the expo-
nential form of the functional that shifting, 7 — 7 + b, according to (2.1.5),
can only hold as a symmetry provided b is an integer, i.e. b € Z. See
for example [25] for a discussion of the effects of D-instantons in type IIB
supergravity and string theory. The review article [45] provides a general
introduction to instanton solutions.

2.1.3 U-duality

In this section we discuss U-duality which contains both the T- and the S-
duality as subgroups. We begin the discussion by introducing M theory as
an eleven-dimensional theory, providing a larger framework from which the
various other types of string theories derive as particular limits.

Eleven-dimensional ‘M theory’ perspective

In order to obtain a broader perspective on dualities in string theory, we
will now discuss the role played by the eleven-dimensional M theory and its
low-energy limit 11D supergravity.

Let us focus on the case of type ITA string theory and its string coupling
constant g,. In [46,47| it was shown that type ITA supergravity and 11D
supergravity are related by dimensional reduction of the eleventh dimension
on a circle. It was, however, not clear how type IIA string theory relates to
the eleven-dimensional theory. This was clarified in [48], where it was shown
that a similar relation as for the supergravity theory also holds for the string
theory. The crucial point here is to interpret the string coupling g, = e? of
the ITA theory, as the radius rj; of the eleventh dimension. Distinguishing
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between the strong and weak coupling limits of the theory one obtains dif-
ferent regimes. In the first, for weak coupling, i.e. g — 0, the theory is
in its perturbative regime, which is under control. In the strong coupling
regime for g, — oo, the theory can be interpreted as developing an eleventh
dimension, and turning into 11D supergravity. More precisely, one can then
express type ITA quantities in terms of M theory quantities:

rifly = g%, 1= gl2. (2.1.7)

The duality

Since their introduction in [48] and [49], a lot of work has been devoted to
understanding the above mentioned examples of dualities in a bigger frame-
work. We would now like to summarise the picture that has emerged in some
detail, taking into consideration our discussion above.

A few years before the emergence of the discrete U-dualities in string
theory, it had already been established that toroidally compactified (maxi-
mal) 11D supergravity theory displays invariance under a set of continuous
symmetry groups, known as the E,(R) groups. To be more precise, af-
ter compactification from eleven down to D dimensions on torus 7!, the
symmetry group of the compactified theory is given by the split real group
Eq1(R), cf. [50-53]. It is important to note that this result was restricted
to the case where D > 2 (or d < 8). The list of E;,1(R) groups is provided
in the top nine rows of the first column of table 2.1. We note in particular
the appearance of the exceptional groups Eg, E7 and Eg in D = 5,4 and
3 dimensions, respectively, with Eg being the largest, finite-dimensional Lie
group. Furthermore, in D = 2 dimensions, the duality group is Eg, which
is an affine (infinite-dimensional) Kac-Moody group and was introduced in
this context in [52].

The moduli fields (scalars) that are present in the compactified theory,
after having performed all possible dualisations of higher-rank form fields,
parameterise the moduli space

Mas1 = Ean(R)/K(Eana(R)), (2.1.8)
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D Eg1(R) K(E41) Ey1(Z)
10, SL(2,R) SO(2) SL(2,7)
9 | RtxSLER) SO(2) SL(2,7)
8 | SL(2,R) x SL(3,R) SO(3) x SO(2) SL(2,Z) x SL(3,7)
7 SL(5 R) SO(5) SL(5,7)
6 SO(5,5,R) SO(5) x SO(5) SO(5,5,7)
5 Es(R) USp(8) Es(Z)
4 Er(R) SU(8)/Z Er(Z)
3 Ey(R) Spin(16)/Zs By (Z)
2 Ey(R) K(Ey(R)) Ey(Z)
1 E1(R) K(Ew(R)) Er(Z)
0 En(R) K(En(R)) En(Z)

Table 2.1:  List of the split real forms of the duality groups of compactified
type IIB theory in D < 10 dimensions. We also list the corresponding max-
imal compact subgroups, and the last column contains the discrete versions,
which appear in string theory. The last two rows are conjectural as are the
corresponding discrete groups for D < 3. As explained in the main text, the
relation, D = 10 — d, holds.

where K is the maximal compact subgroup of E;,1(R). The list of maximal
compact subgroups is also shown in table 2.1.

A central question now is: what happens to the continuous symmetry
of compactified maximal supergravity when it is embedded in string or M
theory? The widely accepted conjecture [43,49] is that the continuous sym-
metry is broken, and one is left with discrete duality groups which are the
corresponding Chevalley groups of the continuous symmetry groups. We list
these conjectured, so-called U-duality groups, Fy4.1(Z), also, in the first nine



2.1. STRING DUALITIES 35

Iz
— o—------ - —
13

Figure 2.3: Dynkin diagram for E4.1(Z) with Bourbaki labelling of nodes,
cf. [54].

rows of the last column of table 2.1. The figure 2.3 shows the Dynkin diagram
of E4+1(Z) in the particular Bourbaki labelling [54] of nodes, which is used
throughout this thesis. It is clear from the diagram that E41(Z) contains
SO(d,d,Z) and SL(d+ 1,Z) (horizontal line) as subgroups.

Quantisation and Weyl generators

Let us now provide the standard reasoning for the breaking of the continuous
group Fg.1(R) to the discrete version F4.1(Z). For this one resorts to the
particular case of a reduction to D = 4 dimensions, where the corresponding
continuous symmetry of the compactified maximal supergravity theory is
E-(R). Maximal supergravity in four dimensions also contains, in its bosonic
sector, along with the metric and scalar fields, 28 Maxwell one-form fields.
Each of the Maxwell fields has an electric and a magnetic charge associated
with it, and together these charges, which we denote by (¢", p,) with n =
1,...,28, transform in a 56-dimensional representation of E7;. In the quantum
theory, the set of charges is subject to a Dirac-Schwinger-Zwanziger type
quantisation condition [55-57|. Consider two electrically and magnetically
charged particles with charges, (¢", p,) and (¢", p,). These charges have to
obey the constraint

q"Dn—q"pn €ZL. (2.1.9)

This constraint, which we recognise to be the symplectic product of the
charge vectors, forces the charges to lie on a 56-dimensional integral lattice.
The lattice is invariant under the symplectic group Sp(56, Z) and one may re-
fer to it as the duality group of electric and magnetic charges. Therefore, the
conjecture made in [49] is that the duality group E;(Z) that remains a sym-
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metry of the quantum theory is defined as the intersection E;(R)NSp(56,7Z).

Just as in the case of the T-duality group discussed in section 2.1.1, we
can similarly identify a generating set of Weyl transformations for the (dis-
crete) U-duality group Eg41(Z). The set contains the Weyl generators Sy for
the exchange of directions of the M theory torus, as well as a T-duality trans-
formation on three of the directions. Hence we have the following possible
choice for a minimal generating set:

S] : f[Hf]_H,

1 O A G
Tios « (1,71, T2, T3) > (~ L £ £ _F ) , (2.1.10)

7“17”27“3’ 772f37 7717:37 T1T2

where I = 1,2, ...d. In the definition of the T}53 generator, we have used the
second one of the relations (2.1.7) to express the type IIA string coupling
in terms of the eleven-dimensional Planck length. The string length I, is set
to unity. This set generates the U-duality group with the T-duality group
SO(d,d,Z) and the modular group SL(d + 1,Z) of the torus as subgroups.
One can write Ey11(Z) as the semi-direct product of the two non-commuting
subgroups as

Bu41(Z) = SL(d+1,Z) x SO(d, d, Z) (2.1.11)

In order to see the explicit action of the U-duality group, let us define the
vector

Hyy = (log(7), log(72)...,log(T411)) , (2.1.12)

where the subscript label is now chosen with reference to the M theory torus.
Upon choosing basis elements é;,..., €41 of the d + 1-dimensional vector
space, we define the tension 7 similarly as in the case of the T-duality group,

_ (A\|Hy) __ zx1xm2 xTd+1l
T=e = 7Ty Ty (2.1.13)
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where now A\ = x1€; + T2€s... + 4116411 A Weyl generator of the U-duality
group will then act on A, according to the transformations (2.1.10).

Duality groups in D < 2

In [33,58-61] it was conjectured, that the above discussed pattern of du-
ality groups in D > 2 could be extended to lower dimensions D = 1,0
respectively. The corresponding duality groups are the over-extended, hy-
perbolic Kac-Moody group FEjy and the very extended Kac-Moody group
E1,. Both group are of course infinite-dimensional. While the precise role
of these groups is still not clear, we think of them here as symmetries of the
toroidally compactified theory. This way of thinking about these groups is
in contrast to farther-reaching conjectures of [33] and [60], which will also be
mentioned briefly in the concluding chapter 7.

2.2 Schematics of scattering amplitudes

In this section we provide a discussion of superstring scattering amplitudes.
Our interest in scattering amplitudes is that the amplitudes we will consider
have the property of being automorphic under the U-duality groups that we
have just discussed. The automorphic property is given by the appearance
of automorphic forms in the amplitude. More precisely, these are Eisenstein
series such as the series (3.1.7), and more complicated generalisations thereof,
which will be intoduced in the next chapter 3. The following exposition will
be rather concise and we refer the reader to the appropriate literature for a
detailed introduction to the rich field of string scattering amplitudes.

In general, the amplitude A of a string scattering process organises most
naturally as a perturbative double expansion in two string theory parame-
ters. One is the Regge slope, o’ = ¢%, and the other is the string coupling
constant g;. We have already seen earlier that the value of the coupling g
is determined by the expectation value of the dilation field ¢, as g, = . In
the context of our work, we are interested in the scattering of closed strings
in D dimensions, e.g. in compactified type IIB theory, and in this case the
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amplitude then takes the form:

AP =33 (o) gl VAR (2.2.1)

n=0 g=0

In the sum over orders of o/, each term in the series introduces additional
string theory contributions, which are not captured by the low-energy theory
in the limit of o — 0.

On the other hand, the sum over orders of the string coupling g, is quite
analogous to a perturbative series in standard quantum field theory of point
particles, where one is summing over the Feynman diagrams of the process
associated with all possible orders in the coupling constant. In string theory,
however, the analogues of the Feynman diagrams are now two-dimensional
worldsheets, which capture the interaction process of the closed strings. The
different worldsheets are characterised by their topology. The topology is
captured by the integer number y, known as the Euler number, which is
a topological invariant, and is obtained by integrating the two-dimensional
Ricci scalar over the worldsheet. In particular, one finds that the Euler num-
ber, in our case of interest, is given by y = —2(g — 1), where g is the genus of
the surface. The genus counts the number of ‘handles’ of the two-dimensional
surface. In the case of a sphere, doughnut and a double-doughnut (doughnut
with two holes/handles), we have that ¢ = 0,1 and 2, respectively. In this
picture, the sphere corresponds to a tree-level, the doughnut to a one-loop
and the double-doughnut to two-loop string scattering process. The con-
tribution to a scattering process at a particular loop order, then receives a
weighting of the form (¢g;!)29~Y, which is also visible in the general form of
the amplitude (2.2.1).

The U-duality symmetry discussed in the previous section 2.1.3, becomes
manifest for instance in superstring scattering amplitudes, where it acts as a
discrete symmetry. The amplitude A of a scattering process is in general a
function of all the scalar fields (after dualisation of higher rank form fields)
present in the compactified superstring theory. This means it is a function of
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the moduli fields M4, . For instance, as discussed above, in type IIB string
theory, compactified on a d-dimensional torus 7%, the moduli space Mg, is
just the one that was introduced in equation (2.1.8).

2.2.1 Four-graviton scattering

Let us now discuss one of the most prominently studied examples of super-
string scattering, namely the four-graviton superstring scattering process.
Our presentation follows [62], as well as [63]. The expansion at low ener-
gies of the four-graviton superstring scattering amplitude AP (s,t,u; ®) in
D = 10 — d space-time dimensions is a function of the Mandelstam variables
s, t and u (see below) and of moduli ® € M ;. The amplitude can be
written as a sum

AP (s,t,u; ®) = AP + AP

analytic non-analytic

(2.2.2)

Here the first term is an analytic function of the Mandelstam variables and

the second term is non-analytic in these variables [26]. In our work, we are

D

mainly interested in the analytic part A, .-

The non-analytic contribution
also plays a role in the analysis and we will provide some more comments on
this term later on. Written in its most general form, the amplitude takes the
form

Afnalytic(s, tou; ®) =05 TP (s,t,u; )R, (2.2.3)
where ¢ is the Planck length in D space-time dimensions (see section 5.4.1
for further explanation on this). The symbol R? denotes a contraction of
four Riemann tensors with a standard 16-index tensor. The 16-index tensor
is the tgtg tensor, which can, for example, be found in [64]. The Mandelstam
variables s, t and u are defined in terms of the four (null) particle momenta
k;, with i = 1,2, 3,4 of the external legs, and satisfy momentum conservation
S ki = 0. The (invariant) Mandelstam variables are defined as

S = —<k1 + k’2)2 y t= —(lﬁ -+ k4)2 s and u = —<k1 + k'3)2 s (224)
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and satisfy the relation s +¢ 4+ u = 0. The (scalar) function Tp(s,t, u; P) is
given by the following sum

Tp(s,t,u; D) Zqu )obold. (2.2.5)

Here the momentum insertions o, are defined as a dimensionless combina-
tions of the Mandelstam variables

2n

on=(s"+1"+u" )iﬁ : (2.2.6)
The coefficients 5(p (@) are automorphic forms of the moduli ® € Mgy
The superscript D indicates that £ is an automorphic from under the duality
group in D = 10 — d space-time dimensions, i.e. FE;,1. The orders 2p +
3q < 3, with positive integers p and ¢, have been studied extensively in the
literature and a considerable amount of evidence for their precise form has
been accumulated in D > 3. Then, writing out the first few orders in the
expansion, it takes the form

Tp(s,t,u; ®) = 8(13’_1)03_1 + 5(]8,0) + 55,0)02 + 5([0)71)03 + ... (2.2.7)

Note that on the right-hand side of this equation, we have suppressed the de-
pendence on the moduli. The first term on the right-hand side of this expan-
sion is the classical supergravity tree-level term, determined by the Einstein-
Hilbert action. The function £g ) = 3. Starting with the work of [25] which
was subsequently developed in many further publications [26-29,65-74], it
was demonstrated that precise statements can be made about the form of
the three lowest orders beyond the Einstein-Hilbert term in the low-energy
expansion of the four-graviton scattering amplitude.

As we will see shortly, the coupling functions Sﬁo), 5([1’70) and 5(’8,1) are
automorphic forms (namely Eisenstein series), with invariance under the du-
ality group F11_p(Z). Let us emphasise at this point that the function 5(’8771),
associated with the supergravity theory, is constant and does not have a de-
pendence on the moduli. This is a reflection of the fact that the automorphic
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property of the scattering amplitude only appears when taking into account
string theory corrections to the low-energy, supergravity, limit.

Let us make an aside remark. In string theory there are a two different
frames (determined by the metric), namely the string- and the Einstein frame,
which are relevant in the context of our discussion. The two frames are re-
lated by a dilaton dependent re-scaling of the metric. The string frame is the
one associated with the Polyakov action for the string, whereas the Einstein
frame is characterised by the fact that the pre-factor of the Einstein-Hilbert
term does not depend on the dilaton. Furthermore, in the Einstein frame
quantities are measured in terms of Planck units and not string units. For
our discussion of four-graviton scattering we are working in Einstein frame
and hence the Planck length /5 in D dimensions appears in the equations
above. For more details on frames see [6-8|.

Before turning to a discussion of the explicit expression of the automor-
phic couplings let us briefly develop an alternative view point of the low-
energy expansion.

The string effective action

Instead of considering the amplitude of the scattering process directly, one
can translate the information of the amplitude into the form of an effective
action. Let us provide a recipe for translating the amplitude of four-graviton
scattering into the corresponding effective action. Focusing on the analytic
part of the amplitude AP, then each term in (2.2.3) has a corresponding term
in the effective action. Due to the momentum insertions oy and o3 in (2.2.3),
the effective action will contain higher-derivative contributions, beyond the
Einstein-Hilbert term. The translation rule looks as follows

ED ) (@)oboiRY — E]) ()07 PPHIRY, (2.2.8)
Each such term in the effective action then constitutes a string theory cor-
rection term at a particular order in o (of dimension (length)?) to the usual
Einstein-Hilbert term of the supergravity theory. The infinite series of cor-
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rection terms, obtained by translation from the scattering amplitude, is of
the form

i DZ/dD (B ED (@R (2.2.9)

where we have defined k := 2p+3q. The first few terms in this effective action
expansion, beyond the Einstein-Hilbert term, then occur for £ = 0,2,3, ...,
i.e. yield the curvature corrections (including automorphic couplings) of the
form

8@70)724, 5(’:1)70)84724 and 5871)86724, (2.2.10)
where the dependence on the moduli has been suppressed.

Properties of automorphic couplings

As mentioned, we will mostly consider the two lowest orders of string theory
curvature corrections in the effective action of four-graviton scattering. They
are the R* and 0*R* terms, with coefficients £F (0.0) and 5(1 o): respectively. For
statements about the precise form of these couphngs (in terms of Eisenstein
series), we refer the reader to section (3.5). Here we would like to collect
some more statements about the general properties of the low order 5@7 9
couplings.

First, we note that the curvature couplings are functions on the moduli,
invariant under the the discrete U-duality group, F11_p(Z).

Secondly, let us discuss the Laplace eigenvalue equations satisfied by the
coefficient functions that we have introduced. We will also provide the ex-
plicit form of the Laplace eigenvalue equation satisfied by the automorphic
coefficient &€ % 1 of the curvature correction term 9°R? in the effective action.

As proven in [69] for D > 3, the coefficient functions 8(00 6'[1) (10) and
5(071) of the lowest three orders of curvature corrections each satisfy a Laplace
eigenvalue equation defined by the F,,, invariant Laplace operator A” on
the moduli space Mgyq, cf. (2.1.8), in D = 10 — d dimensions. In the first
two cases this Laplace eigenvalue equation is homogeneous (with source terms
only in dimensions when there is a known divergence). For the third case
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8(18 1) the coefficient of the 9°R* correction, the equation is always inhomo-

geneous, where the inhomogeneous term is given by (8(1810))2. The explicit

expressions of these Laplace equations are

<AD 3(1 _DD—)(2D — 8)) €Dy = 6m0ps, (2.2.11)
(AD 512 _DD—)(2D — 7)) £D ) = 40C(2)0p . (2.2.12)

The inhomogeneous Laplace equation for the 5(’3 3 coefficient takes the form

( Ap_ 6014 —DD_)<QD - 6)) ED L = — (E0,)? +120¢(3)dps.  (2.2.13)

Here the §; ; are discrete Kronecker deltas and AP is the Laplace operator
defined on My, where d = 10 — D. These were derived in [72| using the
decompactification limit of the Laplace operator from D to D+1 dimensions.
This decompactification limit is discussed in detail in section 5.4. We note
that for D = 2 all three equations appear to break down, for the respec-
tive eigenvalues are singular in this case. This is, however an artefact of the
method of derivation which needs to be refined for D = 2. For the details of
the corrected derivation of the D = 2 case, we refer the reader to article I.

For a discussion of modular- and automorphic forms in the context of
non-supersymmetric theories of gravity see [75].



Chapter 3

Fisenstein series

As was shown in chapter 2, the type of automorphic functions appearing in
the context of string theory that we will consider are the so-called Fisenstein
series. In the present chapter we therefore outline the theory of these Eisen-
stein series. We start by providing further details on the SL(2,R) mentioned
in the introduction and discuss its relation to (non-)holomorphic forms de-
fined on the upper-half complex plane. After introducing the definition of an
Eisenstein series on a general group G(R) according to R. P. Langlands [35],
we discuss the types of Eisenstein series which appear in the context of string
theory. The next step is to extend the definition of Eisenstein series to the
case when they are defined on infinite-dimensional Kac—Moody groups. In
particular the case for affine Kac—-Moody groups is introduced in some detail,
following the work of H. Garland [76].

The chapter contains excerpts from the unpublished article TV, although
with considerable changes in the presentation.

We point out to the reader that the algebraic and group theoretical con-
cepts and notions that are freely used in this chapter are introduced in the
appendix A.1.

3.1 Eisenstein series on SL(2,R) in context

The simplest example of an Eisenstein series can be obtained from the form
of the G = SL(2,R) series given in (1.2.1) above. Therefore to give an idea of

44
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the more general definition of an Eisenstein series and in order to reproduce
the relation (1.2.5), we rewrite the expression for fy(z) in (1.2.1). The first
thing we do is to take out the greatest common divisor of the coordinates of
the lattice point (¢, d) € Z*

S

f3<2) = (Z k28> Z ﬁ = 2C<25) Z W;JTPS )

k#0 (m,n)€z2 (m,n)€z?
ged(m,n)=1 ged(m,n)=1

(3.1.1)

where we have evaluated the sum over the common divisor k£ using the Rie-
mann zeta function (1.2.10). The series after the second equality sign above
(excluding the factor 2¢(2s)) is what we call the (non-holomorphic) SL(2,R)
Eisenstein series

s

Z Y

ESL(Q’R) (S, Z) = m . (312)
(m,n)eZ2
ged(m,n)=1

A central goal of this thesis is to present an extension of the definition of
an Eisenstein series to groups G of higher rank than the SL(2,R) case. In
particular we aim to define Eisenstein series on the E,,(R) duality groups and
in particular for the infinite-dimensional Kac-Moody duality groups Ey(R),
Eo(R) and E11(R). In order to achieve this, we have to employ a formalism
for defining Fisenstein series which is more powerful than the ‘sum over a
lattice’ definition given in (1.2.1) and (3.1.2), which is available for the simple
case of G = SL(2,R). In order to pave the way for such a general formalism,
which we present in the subsequent section 3.2, let us again resort to our
canonical example.

Referring back to (1.2.1) and using (1.2.2), we can rewrite the summand
of fs(z) using an element of the group SL(2,Z) as:

S

Y

s _fa D
m — [Im (’}/ . Z)] for = <c d) . (313)
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For this to be possible, two things have to occur: (i) For any co-prime pair
(¢,d) such a matrix v € SL(2,7Z) must exist, and (i7) if several matrices exist
we must form equivalence classes such that the sum over co-prime pairs (¢, d)
corresponds exactly to the sum over equivalence classes. For (i), we note that
the condition that ¢ and d be co-prime is necessary since it would otherwise
be impossible to satisfy the determinant condition ad — bc = 1 over Z. At
the same time, co-primality is sufficient to guarantee existence of integers ag
and by that complete ¢ and d to a matrix v € SL(2,Z). In fact, there is a
one-parameter family of solutions for v that can be written as

ap+mec by+md\ (1 m\ [ay by
S B O 1 ) I

for any integer m € Z. That these are all solutions to the determinant
condition over Z is an elementary lemma of number theory, sometimes called
Bézout’s lemma |77]. The form (3.1.4) tells us also how to resolve point (i7):
We identify matrices that are obtained from each other by left multiplication
by a matrix belonging to the Borel subgroup

1
B(Z) = {(O ”f) ’m € Z} C SL(2,7). (3.1.5)
The interpretation of this group is that it is the stabiliser of the y-axis.

Summarising the steps we have performed, we find that we can write the
function (1.2.1) as

L =229 Y m(-o) (3.1.6)

~EB(Z)\SL(2,Z)

Dropping the multiplicative (-factor, we obtain the function

ESL(2,R)<XS7 2) = Z Ys(7+ 7)), (3.1.7)

~EB(Z)\SL(2,Z)

where we have also introduced the notation xs(z) = [Im(z)]’. The reason
for this notation is that yx, is actually induced from a character on the real
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Borel subgroup. We will explain this in more detail below in section 3.2.1.
Note that this way of writing the automorphic form makes the invariance
under SL(2,Z) completely manifest because it is a sum over images. Let
us also note again, that the form (3.1.7), which we call an Eisenstein series
on SL(2,R), generalises straight-forwardly to Lie groups G(R) other than
SL(2,R), cf. (3.2.19), whereas the form with the sum over a lattice in (1.2.1)
does not.

3.1.1 Forms on the upper-half complex plane

This section is intended to provide the reader with some perspective on the
place that Eisenstein series take in the theory of automorphic forms. In par-
ticular we want to give a qualitative description of how automorphic forms,
defined on the group SL(2,R), are related to the classical theory of forms
defined on the upper-half complex plane, H.

The key here, is that the SL(2, R) automorphic forms are obtained by lift-
ing of the forms on the upper-half complex plane to the full group SL(2,R).
For forms on the upper-half complex plane, one draws the distinction be-
tween holomorphic and non-holomorphic forms, both of which we will give
examples for in the following. On the level of the automorphic forms (after
lifting) one finds that there exists an interpolating series, which provides a
connection between the holomorphic vs. non-holomorphic classification. Al-
though we will not present a detailed derivation of the interpolating series
here, we will state its form and give a brief discussion of it. The scheme just
described here is summarised in a diagrammatic way in figure 3.1.

Finally we also comment on the possibility of generalising this picture to
the case of automorphic forms defined on groups of higher rank.

Holomorphic modular forms

Let H be the upper-half complex plane of points {z = z+iy € C|Im(z) > 0}.
This carries an action of SL(2,R) given by the Mdbius transformation

az+b (a b
2= g-z= =

m, c d> S SL(2,R) (318)
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Automorphic forms on S7 (2 R)

e.g. Eisenstein series

holomorphic .\‘ (non-holom.)
modular forms *, Maass forms

Forms on H

Figure 3.1: Schematics of the lift from the classical theory of forms on upper-
half complex plane H to the theory of automorphic forms on SL(2,R).

The appearance of the SL(2,R)-action is very natural since we have in fact
an isomorphism H = SL(2,R)/SO(2,R), where SO(2,R) C SL(2,R) is the
stabiliser of the point ¢ € H.

A modular form of weight w > 0 is a holomorphic function f : H — C
which transforms according to

Fo0) = £ () = (e 4 ), (3.19)

under the discrete action of

N = <Z b> € SL(2,7). (3.1.10)
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If f(2) has zero weight, w = 0, we call it a modular function [78]. The stan-
dard example of a modular form, is then given by the classical holomorphic
Eisenstein series of weight w:

1
E,(z) = —_— 3.1.11
(2) Z (mz +n)w ( )

(m,n)€Z2

ged(m,n)=1
For further reading on the theory of modular forms, see for example [79]. We
shall now see how to adapt the theory of holomorphic modular forms to make
them amenable to lifting to the more general theory of automorphic forms.
There is indeed a standard way of passing from a holomorphic modular form
on H to an automorphic form on SL(2,Z)\SL(2,R) [80]. The treatment

followed here is based on [81].

Given a weight w holomorphic modular form f of weight w on H we
define a new function on SL(2,R) through the assignment

fr—=05(g) = (ci+d)"f(g-1), (3.1.12)

where g = (29) € SL(2,R). The function ¢; obtained in this way, satisfies
the relation

er(v9) = ¢s(9) (3.1.13)

with v € SL(2,7Z), and is therefore automorphic according to our definition
in section 1.2. Moreover, under the right-action of an SO(2,R) element

b — ( cos 0 81119) 7 (3.1.14)

—sinf@ cosf

it transforms with a phase pre-factor:

—iwé

wr(gk) =e""pr(g) . (3.1.15)

This implies that the original transformation property (3.1.9) of f under
SL(2,7Z) has been traded for the above phase transformation of ¢;(g) under
K = SO(2,R). While f itself was invariant under SO(2,R) one instead says
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that ¢y is K-finite, implying that the action of K on f generates a finite-
dimensional vector space; in the present example this is represented by the

one-dimensional space of characters o : k — e™™?.

We should also understand how the automorphic form ¢y incorporates
the holomorphicity of the form f on H. The fact that f is a holomorphic
function implies

if:1(£+i%)f:0’ (3.1.16)

where z = x4 iy € H. The condition (3.1.16) translates into the property
that ¢y is annihilated by a differential operator F' on SL(2,R):

, o 10
_ 9y, —2i0 . —
Fo; = —2ie (y—aZ 4_89> wr =0, (3.1.17)

To see this we use the Iwasawa decomposition of an element g € SL(2,R):

_ (1 =z (y? cosf) sinf
g—nak—( 1)( y~ /2 ) \—sinf cosf)’ (3.1.18)

with n € N(R),a € A(R),k € SO(2,R), see also appendix A.3. Thus, we
can view ¢ as a function of the three variables (x,y,6):

0i(9) = ps(x,y,0) = eiweyw/zf(:ic +iy) . (3.1.19)

Applying the operator F' in (3.1.17) on this expression then immediately
shows that it annihilates ¢y whenever f satisfies the holomorphicity condi-
tion (3.1.16).

Before we proceed we shall mention one final important property of ¢y,
namely that it is an eigenfunction of the Laplacian on SL(2,R):

w rw

Apy=—3 (5 - 1) or ) (3.1.20)
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where

0?  0? 0?
— a2 I
A=y (8:62 * 8y2) Y oro0 (3.121)

As we will see, all the properties of ¢ discussed above will have counterparts
in the general theory of automorphic forms.

Maass wave forms (non-holomorphic)

In addition to the holomorphic modular forms, the classical theory on the
upper-half plane also contains an interesting class of non-holomorphic func-
tions f : SL(2,Z)\H — R. These non-holomorphic functions are eigenfunc-
tions of the hyperbolic Laplacian Ay on H = SL(2,R)/SO(2,R):

0?02 d 0
— 2 = —_— = — — )2
Au=y (8332 - ayg) (z=2) 020z’ (8.1.22)

where 0/0z = (0/0x — 10/0y)/2 and 0/0z = (0/0x + i0/dy)/2. Such func-
tions are called Maass (wave) forms and an important example of a Maass
form is provided by the non-holomorphic Eisenstein series already stated in
equation (3.1.2) in the introduction:

ESL(Q,]R)(S’ 2) = Z Y

|mz 4+ n|?’

(3.1.23)

(m,n)€z2

ged(m,n)=1
This converges absolutely for Re(s) > 1, but, as already mentioned in sec-
tion 3.2.3, according to Langlands’ general theory [82], it can be analytically
continued to a meromorphic function of s € C. One can verify that this
indeed defines an eigenfunction of the Laplacian Ay that is invariant under
SL(2,7Z), with eigenvalue s(s — 1).

Let us now see how Maass forms fit into the general framework of the
automorphic forms on SL(2,R). We will see that this requires even less
effort than for the holomorphic modular forms. Given a Maass form f on H
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we lift it to a function ¢ on SL(2,R) according to the simple assignment

fr—05(g) = ¢s ((1 :16) (yl/2 y_l/z) k;) = flz+iy),  (3.1.24)

where we have used the Iwasawa decomposition g = nak € SL(2,R) of
equation (A.3.2). The associated function ¢(g) then satisfies the relation

er(v9k) = ¢1(9) (3.1.25)

with v € SL(2,Z) and k € SO(2,R) and so is indeed an automorphic form
on SL(2,R).

3.1.2 Interpolating series

In this section, we provide a brief discussion of a non-holomorphic series,
which represents a kind of interpolating step between the classical holomor-
phic modular forms and the non-holomorphic Maass wave forms. We have
chosen not to present the slight lengthy and technical proof here, which is
however outlined in detail in article IV.

The mentioned interpolating series is of the form:

1w )
ESHR (5w, g) = ™ > CEEE -

s

(3.1.26)
(m,n)€z2
ged(mn)=1
It is a holomorphic form on SL(2,Z)\SL(2,R) with weight ¢? under the
right action of k € SO(2,R), cf. (3.1.15). Let us now demonstrate the
‘interpolating’ role of this series. Namely, by s = w/2 the series becomes

1

_ iwd w/2E
(mz 4+ n)® © v w(z),

ESL(Q,R) (’LU/Q,U),Q) _ eiweyw/2 Z

(m,n)eZ2
ged(m,n)=1

(3.1.27)
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which we recognise immediately as the function ¢(g), see equation (3.1.19),
in the terminology of section 3.1.1. Here f = E,(z) is the classical holo-
morphic Eisenstein series (3.1.11) on the upper-half complex plane H with
weight w.

On the other hand, restricting to w = 0 in (3.1.26) we obtain the classical
non-holomorphic Eisenstein series (Maass form)

Y
E¥29(5,0, 9) = Z |mz + n|2s

= BOLER) (5 2), (3.1.28)
(m,n)€Z2
ged(m,n)=1

cf. (3.1.23). Thus we see how for particular choices of the parameters s and

w, we recover either the classical holomorphic or non-holomorphic theory.

3.1.3 Generalisation to higher rank groups

Since we can view modular forms as holomorphic functions on the coset
SL(2,R)/SO(2,R) with simple transformation properties under SL(2,7Z),
it now of course seems natural to consider generalisations of this to higher
rank real Lie groups G(R). To this end we note that SO(2,R) = U(1) is
the maximal compact subgroup of SL(2,R). Hence, one might suspect a
generalization to holomorphic functions f : G(R)/K — C, where K is the
maximal compact subgroup of G(R), transforming with some weight under
the action of a discrete subgroup G(Z) C G(R). However, this only works
whenever the coset G(R)/K carries a complex structure. A standard example
is provided by G = Sp(2n,R), K = U(n), in which case Sp(2n;R)/U(n) is
a hermitian symmetric domain known as the Siegel upper half space. This
leads to the theory of holomorphic Siegel modular forms, see for example [83]
for a review.

However, in general, symmetric spaces G/ K do not carry a complex struc-
ture, and therefore we can not expect to have a general theory of holomorphic
modular forms on G/K. Nonetheless, one can look for a theory of (non-
holomorphic) functions f : G(R) — C which transform nicely under the
action of some discrete subgroup G(Z) C G(R). This leads to the notion of
an automorphic form.
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3.2 Defining Eisenstein series

In this section we will state Langlands’ general definition of an Eisenstein
series in [35]. We will do this by induction from a parabolic subgroup, which
we denote by P(R). For the purpose of this section we will take P(R) =
B(R), the Borel subgroup, which yields to the particular definition of what
we will refer to as the minimal parabolic Eisenstein series. In section 3.3, we
will extend the definition by defining Eisenstein series induced from parabolic
subgroups other than the Borel subgroup. In the following, Eisenstein series
will be induced through a character y, which will be defined now, together
with a list of some of its properties.

3.2.1 Multiplicative characters on the Borel subgroup

Let us begin by fixing a Borel subgroup, B(R) C G(R). In a Levi decompo-
sition of the Borel subgroup, we obtain

B(R) = A(R)N(R) = N(R)A(R). (3.2.1)

Here A(R) is the Cartan torus and N(R) is the unipotent radical. The
Lie algebra of the Borel therefore include the Cartan subalgebra generators,
together with the raising generators associated with the positive roots of the
algebra. For a more careful definition of the Borel subgroup in terms of its
Lie algebra see appendix A.2. Of central importance in the definition of
Eisenstein series is the multiplicative character y, which is defined on the
Borel subgroup in the following way:

X : B(Z)\B(R) — C*. (3.2.2)

The defining property of the character x is that it is invariant under the
action of elements of the unipotent subgroup N on its arguement, from the
left:

x(na) = x(a), (3.2.3)
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where a € A(R) and n € N(R).

Employing the Iwasawa decomposition, G = NAK, see also appendix A.3,
to a group element g € G(R), we can then extend the definition of x to the
full group G(R), by demanding the character to be trivial on the compact
subgroup K (R) C G(R):

x(9) = x(nak) = x(na) = x(an) = x(a), (3.2.4)

with £ € K(R). Although we have extended the character to the full group
G(R) it is nevertheless only multiplicative on the Borel subgroup B(R):

X (00) = x(b)x(¥') = x(a)x(a’), (3.2.5)

where 0,6 € B(R). On the other hand, to evaluate it on a product of two
elements g, ¢’ € G(R) we have

X(99') = x(bkVK') = x(bkb') = x(bbk) = x(bb) = x(b)x (D).  (3.2.6)

Here we have made use of the fact that the character is trivial on K(R) and
we have defined bk as the Iwasawa decomposition of the kb’ factor. From
this we also see that

x(bg) = x(b)x(9) , (3.2.7)

where b € B(R) and g € G(R).

3.2.2 Characters and weights

We will now introduce a one-to-one correspondence between the multiplica-
tive character y defined above and weights of the Lie algebra g(R). More
precisely, there is a correspondence between the character xy and complex
linear functionals

A€ bt =h(R)* ®pC, (3.2.8)
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where h(R) is the Cartan subalgebra of g(R), see appendix A.1 for a precsie
definition. In order to develop an explicit parameterisation of the character
X, we define a logarithmic map H(-) in the following way:

H:GR) = h(R), (3.2.9)
such that
H(g) = H(nak) = log|al, (3.2.10)

where log denotes the natural logarithm. The map therefore essentially yields
the abelian part in an Iwasawa decomposition of the group element g. The
absolute value here is defined as follows.

We parametrize the group element a € A(R) by

a = exp (Z uaHa> , H, € h(R), wu, €R, (3.2.11)

a€ll

where II denotes the set of simple roots of g(R). Then the absolute value
simply means

log |a| := logexp (Z |ua|Ha> = Z U | Hy - (3.2.12)

acll a€ll

The character y can now be parametrized by the choice of linear functional
A according to the form:

x(g) = AP — A te| (3.2.13)

where in the last equality, we have introduced a convenient short-hand nota-
tion. The ‘inner product’ (-|-) is defined as the standard pairing between the
space b and its dual space h*. Furthermore the translation by the Weyl vec-
tor p in the above formula, constitutes a convenient choice of normalisation.
The Weyl vector is define as half the sum of positive roots, or alternatively,
as the sum of fundamental weights of the algebra g.
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For subsequent calculations, it will also be useful to have the following
definitions at hand. Namely, we define

b PO = 55(b), (3.2.14)

where b € B(R). This is often called the modular function (or “modulus
character”) of B(R). It is defined by

55(b) = ‘det ad(b)]n‘. (3.2.15)

In words, it is the modulus of the determinant of the adjoint representation
of b € B(R), restricted to the Lie algebra n of the unipotent radical N. The
modulus character corresponds to the Jacobian that relates the left- and
right-invariant Haar measures on B. This implies in particular that under
conjugation by a € A(R), i.e.

n s ana” ', (3.2.16)
the Haar measure dn on N(R) transforms by

dn +— dp(b)dn. (3.2.17)

This fact will be used in the calculations of chapter 4. Finally, using the
modulus character we can write x of (3.2.13) in the alternative form

x(g) = e(AIH(9)>5}B/2(g). (3.2.18)

3.2.3 Minimal parabolic Eisenstein series

We now define the following (Langlands-)Eisenstein series [35] on the group
G(R), by using the multiplicative character x which we introduced above.
The series is defined as

E®vg) = Y. x(9). (3.2.19)
VEBENG()



o8 CHAPTER 3. EISENSTEIN SERIES

By employing the explicit parameterisation (3.2.13) of the character x, we
can also write this series as

EC®(\ gy = ) et (3.2.20)
VEB(2)\G(2)

Here G(Z) is the Chevalley group of G(R) and B(Z) = B(R) N G(Z) the
corresponding discrete version of the Borel subgroup B(R). The parameter
A is a general weight vector of G (which does not have to lie on the weight
lattice) and relates directly to our discussion of the character y and its pa-
rameterisation in section 3.2.2 above. As mentioned earlier, the Weyl vector
p, is defined as half the sum of all positive roots or alternatively as the sum
over all fundamental weights which we denote by A;, with ¢« = 1,... rk(G).
The angled brackets in the definition are the standard pairing between the
space of weights h* and the Cartan subalgebra b.

Due to the invariance of the character under the compact subgroup K (R),
the Eisenstein series defined in (3.2.20), as a function, depends on the contin-
uous variables that parameterise the coset G(R)/K(R). Overall, the series
displays invariance under the discrete group G(Z).

We refer to the function defined in (3.2.20) as a minimal parabolic Eisen-
stein series, since it is associated with the minimal parabolic subgroup B
through the inducing character y. The sum (3.2.20) converges when the real
parts of the inner products (A|o;) for all simple roots «; are sufficiently large
and can be analytically continued to the complexified space of weights ex-
cept for certain hyperplanes [35]. In slightly more technical terms, Langlands
proved that the sum converges absolutely whenever A lies in the open subset

{A€ x| Re(A) € p+ (b)), (3.2.21)

known as Godement’s domain. Here the positive chamber (h*)* is defined

by

()T ={Aeb*| (\,H,) >0, Va e Il}, (3.2.22)



3.2. DEFINING EISENSTEIN SERIES 29

so that we require (A, H,) > 1 for all simple roots . Remarkably Lang-
lands showed that the Eisenstein series F(J\,g) can in fact be analytically
continued outside of the domain (3.2.21) to a meromorphic function on all
of hf. To establish the analytic continuation a crucial property of E(), g) is
the functional relation

E(\ g) = M(w,\)E(wA, g), (3.2.23)

which it satisfies. The relation relates the value of the series at A to its value
at the Weyl transform (by a Weyl word w) of A. The factor M (w, \), whose
properties we will discuss extensively in subsequent chapters, is defined as

Mw, N = ] gé(f—% (3.2.24)

>0 | wa<0
What this means, is that the product runs over all positive roots a of the
algebra g, that are mapped to negative roots by w. The function (k) =
7 %20 (k/2)¢ (k) is the completed Riemann (-function and the angled bracket
denotes the canonical inner product on the space of weights. The factor
M (w, \) furthermore enjoys the important multiplicative property

M(wi, \) = M(w, &N\ M (@, \) (3.2.25)

where w, w € W. Here W is the Weyl group of G and is discussed in detail
in section A.1.1 of the appendix.

3.2.4 Physical perspective on Langlands’ definition

In this section we provide the reader with a different, more physically ori-
ented way of looking at Eisenstein series, which we hope will elucidate the
definition (3.2.20) further. The exposition directly relates to the discussion
of the previous chapter and in particular to sections 2.1.3, 2.2.1.

As mentioned earlier, Eisenstein series defined on the FE,(R) groups, are
of particular interest to us. In order to make the subsequent discussion more
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concrete, let us therefore restrict ourselves in this section to Eisenstein se-
ries defined on these groups. Then, the Eisenstein series are functions on
the moduli space G/K = E,(R)/K(E,(R)) and their invariance under the
discrete G(Z) = E,(Z) group, can be constructed from a ‘perturbative term’
in the following way.

Let us explain what we mean by a perturbative term. For this we first
note that the ‘coupling constants’ of the compactified string theory sit in the
maximal split torus A(R) C G(R). We suppose that a particular perturbative

. .. ) 2
term is known and that it is of the form r{*'r5%2 .. r2sn

, where the r; label
the coupling constants, and the constants s; parameterise the dependence
of the perturbative term on the coupling constants. This is similar to the

tension defined in equation (2.1.13) in section 2.1.3 describing U-duality.

Generally, there will also be an overall numerical coefficient of the term
that we can absorb in the normalisation of the automorphic function to be
defined presently. An example would be the perturbative string tree level
correction to four-graviton scattering associated with a term R*: This term
is of the form 2((3) g /2 (in Einstein frame) and the string coupling gs is re-
lated to the 7; in a polynomial way and the overall coefficient 2¢(3) is the
overall normalisation that we will no longer discuss. Given such a pertur-
bative term, we can construct its G(Z)-completion by summing over all its
images.

To develop this picture further, let x : G — C* be a function that projects
a group element onto the perturbative term, i.e.
x(g) = r¥v . ke, (3.2.26)
where we parameterise the Cartan torus A C G by
a = exp [log(ry)hy + ... 4 log(rp)hy] = v ..l (3.2.27)

where the h; are the standard Chevalley generators of the Cartan subalgebra
(their Killing inner product matrix is the Cartan matrix). The function yx



3.2. DEFINING EISENSTEIN SERIES 61

satisfies
x(nak) = x(a) (3.2.28)

where g = nak is the Iwasawa decomposition and we will, loosely speaking,
refer to it as a quasi-character. The function y is invariant under discrete
Borel elements B(Z): x(vg) = x(g) for v € B(Z). Physically, these trans-
formations correspond to discrete large gauge transformations of the axions.
We also allow the parameters s; to take complex values. Starting from y we
define the Eisenstein series

E(vg9)= Y, x(9). (3.2.29)
1EBENG(E@)

This is the sum over all G(Z)-images of the perturbative term where the
x-stabilising B(Z) transformations have been quotiented out in order not to
overcount the sum. This discussion then relates to the more mathematical
description outlined in the previous section above and which was developed
in [35,84].

In order to mention one other property of the Eisenstein series (3.2.20),

we note that it is made up of a simple ‘plane-wave type’ function e t°1H@) =
e?1o8(r)s: wwhere a sum over the index 7 is implied. The terminology ‘plane
wave’ is used here with an application to quantum gravity in mind, where
the Eisenstein series should describe wavefunctions [34,85].
The plane-wave function is trivially an eigenfunction of the quadratic Laplace
operator and all higher-order invariant differential operators. Since all these
operators are invariant under the group G(Z) (even G(R)), the Eisenstein
series EY()\, g) of (3.2.20), which is obtained by summing over all the (in-
equivalent) G(Z) images of the plane-wave solution, is an eigenfunction of all
these operators. In particular, its eigenvalue under the G-invariant Laplacian
AS/K (changing the normalisation of [74]) is

1

ASTEEC(N, ) = 5 ((AIN) = {ple)) B (X, 9) (3.2.30)
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This is the same eigenvalue as that of the quadratic Casimir on a represen-
tation with highest weight A = —(\ + p) up to normalisation. The standard
pairing (-|-) is normalised such that (a;|a;) = 2 for simple roots «;.

3.3 Eisenstein series on general parabolics

In this section we would like to extend the definition of the minimal parabolic
Eisenstein series (3.2.20) to the case when the series is defined with respect
to other parabolic subgroups and in particular to mazimal parabolics. The
maximal parabolic Eisenstein series are also the series which are relevant to
our discussion in the context of string theory. Let us start by giving some
mathematical background on non-minimal parabolic subgroups.

3.3.1 Non-minimal parabolics

To start, we restrict ourselves to standard parabolic subgroups, which by their
definition contain the Borel subgroup B(R) = A(R)N(R) of G(R) as a sub-
group. Then, let us consider a particular parabolic subgroup P(R) C G(R).
As in the case of the Borel subgroup, there is a canonical Levi decomposition
of this group

P(R) = Lp(R)Up(R), (3.3.1)

where Lp(R) is referred to as the (unique) Levi subgroup that contains A(R)
and Up(R) is the unipotent radical and is contained in N(R). For a Lie al-
gebra definition of these subgroups, see appendix A.2. Let us also note that
in this section, we will explicitly put a P label as subscript on all subgroups
and objects defined with respect to the parabolic. The Levi factor further
decomposes as Lp(R) = Mp(R)Ap(R), where Ap(R) is the maximal torus
in the centre of Lp(R); loosely speaking, we think of Ap(R) as consisting of
diagonal matrices commuting with Mp(R).

With the further decomposition of the Levi subgroup Lp from above,
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we obtain the so-called Langlands decomposition of the parabolic subgroup
P(R) = Mp(R)Ap(R)Up(R) = Up(R) Ap(R)Mp(R), (3.3.2)

and the full group G(R) factorizes (non-uniquely) to
G(R) = Up(R)Lp(R) Kz = Up(R)Ap(R)Mp(R),  (3.3.3)

with K being the compact subgroup of G(R). For an arbitrary element of
G(R) we thus have the decomposition g = ulk = umak, where u € Up(R),
m € Mp(R), a € Ap(R) and k € Kg. In the following, we will drop the
subscript label P on the various subgroups, whenever it is unambiguously
clear which parabolic they are subgroups of.

3.3.2 Multiplicative characters

We now want to define multiplicative characters on P(R) analogously to what
was done for the Borel subgroup in section 3.2.1. These will be homomor-
phisms

xp : P(Z)\P(R) — C*, (3.3.4)
determined by their restriction to the Levi subgroup

xp(ul) = xp(l), (3.3.5)

with u € Up(R) and [ € Lp(R). In contrast to the case of the Borel subgroup
discussed above, where Lp(R) = A(R), the Levi part Lp(R) for a general
standard parabolic is now non-abelian, and it is therefore not directly clear
how to define its value xp(l). Without going into too much detail here, we
will do this via a generalisation of the logarithmic map H(-) from (3.2.9)
and (3.2.10), which then defines the character x p. The map, associated with
the parabolic subgroup P(R), is then defined as

Hp : Lp(R) = hp(R). (3.3.6)
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This is in fact nothing but the restriction of the Cartan subalgebra h(R) C
g(R) to the Lie algebra hp of Ap(R).

Analogously to the case of the Borel subgroup, we define the multiplica-

tive character xp in terms of Hp and a choice of complex linear functional
A € b5 (C) as follows

xp = e (3.3.7)

3.3.3 Maximal parabolic Eisenstein series

We will now consider a particular type of parabolic subgroup, namely the maz-
imal parabolic. This parabolic is characterised by the choice of a simple root
«;, from the set of simple roots II of the group G. The maximal parabolic
subgroup is correspondingly denoted by P;, and the definition via the asso-
ciated Lie algebra p;, follows appendix A.2.1. As for the minimal parabolic
case, the maximal parabolic subgroup is used to induce the Eisenstein series.

The weight A defining this maximal parabolic Eisenstein series takes the
form

A=2sA;, —p. (3.3.8)

Here A;, is the fundamental weight associated with our choice of simple root

a;,. This form of the weight A implies that the combination A + p will be
orthogonal to all simple roots a; with ¢ # i,. The parameter s which appears
here, and which already appeared in (3.1.7), is generically a complex number.
However, as we will see in the next section, the cases which are relevant in
the context of superstring four-graviton scattering, s will be purely real and

take half-integer values.

The particular form (3.3.8) of A should be viewed as a condition imposed
on the general form of an Eisenstein series. Upon making this particular
choice for the defining weight, the definition (3.2.20) of the minimal parabolic
Eisenstein series is extended to that of a maximal parabolic series. This is
demonstrated by a short calculation, see [74]. The sum in (3.2.20) then
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becomes a sum over the coset P, (Z)\G(Z) and taking the form

EC(2sM;, — p,g) = Z 25N [H(9)) (3.3.9)
YEP;, (Z\G(Z)

We also introduce the following short-hand notation for the maximal parabolic
Eisenstein series, Eg;s(g) = EY(2sA;, — p, g), at this point.

3.4 Kac—Moody Eisenstein series

So far we have only considered Eisenstein series defined on classical finite-
dimensional Lie groups. In the following, we will extend the definition of an
Eisenstein series to the more general Kac—-Moody groups. In particular, we
are interested in defining Eisenstein series which are invariant under Ey(Z),
E10(Z) and Eq1(Z), due to their role as infinite-dimensional extensions of
the U-duality groups, cf. 2.1.3. We will begin with a careful treatment of
the affine Kac—-Moody group case, for which we rely on mathematical results
obtained by H. Garland in [76,86|. This treatment will cover the case of
Ey, with all the subtleties of an affine group. The definitions of the Eig
and F4; Eisenstein series can be obtained by direct analogy with the finite-
dimensional definition (3.2.20).

3.4.1 Affine Eisenstein series

The theory of Eisenstein series defined on affine (loop) groups was first de-
veloped by Garland and is comprehensively described in [76] (see also [86]
an [87]). Indeed, the definition of Eisenstein series over affine groups proceeds
in much the same way as the one for the finite-dimensional groups. There
are, however, some subtleties which we shall explain in the following.

From here on, a hat is used to denote objects of affine type. Starting
from a finite-dimensional, simple and R-split Lie algebra g one constructs
the non-twisted affine extensions as

a=g[t,t '] ®cROIR. (3.4.1)
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The first summand is the algebra of formal Laurent series over g (the loop
algebra) and the other summands are the central extension and derivation,
respectively. The algebra g has a Cartan subalgebra of dimension dim(h) 4+ 2
and its roots decompose into real roots and imaginary roots, see e.g. [88,89].

The real affine group G (in a given representation over R) is defined by
taking the closure of exponentials of the real root generators of the non-
twisted affine algebra. Due to the structure of the commutation relations,
where d never appears on the right-hand side, the group thus generated will
not use the derivation generator. G has the following Iwasawa decomposition

~ ~ ~

G = NAK, (3.4.2)

analogous to (A.3.1), but now A is the exponential of the (dim(h) + 1)-
dimensional, abelian algebra 6 = bh @ cR only, see [76]. G does not include
the group generated by the derivation d; we denote by Fg the group Ej with
the derivation added to it.

Similar to the definition of the Eisenstein series over finite-dimensional
groups, in the infinite-dimensional case one can define in a meaningful manner
the series

B¢\ g,v) = 3 ARG 9) (3.4.3)
FEB@N\G(2)

where v parameterises the group associated with the derivation generator d
and is written as e~ in the notation of [76]. This definition of the Eisen-
stein series is derived in [76] and the convergence of the series is proven for
Re(A|a;) > 1fori =1,...,rk(G)+1. The definition domain can be extended
by meromorphic continuation. One important special property of the affine
case that enters in (3.4.3) is the definition of the affine Weyl vector p: The
usual requirement for the Weyl vector to have inner product (p|&;) = 1 with
all affine simple roots &; does not fix p completely; it is only defined up to
shifts by the so-called (primitive) null root 4 that has vanishing inner prod-
uct with all &; [88]. We choose the standard convention that p is the sum
of all the fundamental weights, as in [88], i.e., it acts on the derivation d by

p(d) = 0.
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As in the finite-dimensional case, the Eisenstein series (3.4.3) is an eigen-
function of the full affine Laplacian and has eigenvalue

ASRES(3: g.v) = S(AIR) — (1) B (s, 0). (3.4.4)

The Laplacian itself is not unambiguously defined because of the ambiguity
in p (related to a rescaling of the overall volume of moduli space). We
reiterate that we adopt consistently the convention that p has no h) part. An
important difference to the finite-dimensional case is that there are no higher
order polynomial invariant differential operators that help to determine A
but only transcendental ones [90]. Their detailed action on (3.4.3) was not
investigated in our work, but it would certainly be interesting to follow-up
on this.

By imposing the additional condition A = 23Ai* — p on the (minimal)
Eisenstein series defined above in (3.4.3) one can, as in (3.3.9), obtain a
maximal parabolic, affine Eisenstein series:

ES;S(ga U) = Z 628(1&1‘*'}7(&”[1@» : (345>
YeP;, (2)\G(Z)

3.4.2 More general Kac-Moody Eisenstein series

Turning to more general Kac-Moody groups, we will assume that the Eisen-
stein series for FE,(Z) with n > 9 are defined formally exactly as in (3.2.20).
A proof for the validity of this formula (i.e. existence via convergence) is not
known to our knowledge but for sufficiently large real parts of A\ one should
obtain a convergent bounding integral and then continue meromorphically.
The definition of the real group and the Chevalley group proceeds along the
same lines as in the affine case [90]. The expression for the Laplace eigenvalue
is as before in (3.2.30) and is unambiguous for E, with n > 9.

For a discussion of Eisenstein series defined on rank 2 hyperbolic Kac—
Moody groups see [91].



68 CHAPTER 3. EISENSTEIN SERIES

3.5 Eisenstein series in string theory

Having introduced all the necessary mathematical background and in partic-
ular the definition of a maximal parabolic Eisenstein series, let us now state
the Eisenstein series and discuss some of their properties, which appear in
the string theory and which shall be of particular interest to us.

As mentioned in chapter 2, we will mostly consider the two lowest orders
of string theory curvature corrections in the effective action of four-graviton
scattering. They are the R* and 9*R* terms, with coefficients £{, and
8([1)70), respectively. It has been found that for the low-energy expansion of
four-graviton scattering in type IIB Superstring Theory in D > 3, 5(%70)
and 5570) are given by maximal parabolic Eisenstein series, multiplied by a
suitable normalisation factor [72,74]

Eloy = 2(B)EYy )y, and &g = C(B)Es ;. (3.5.1)

Here, as before, ( is the Riemann-Zeta function. These Eisenstein series are of
the general maximal parabolic type B 5, (3.3.9), introduced in the previous
section, where G = E4,1(R) = E1;_p(R) is the duality in group in D > 3
space-time dimensions on which the Eisenstein series is defined. We remind
the reader of the relation D = 10 — d. Note that by the restriction D > 3,
the respective duality groups are all finite-dimensional. The extension to the
infinite-dimensional Kac-Moody groups is made in the following section 3.4.
Evidence for this particular form of the series (3.5.1) in D < 10 dimensions
is indirect. While for D = 10 explicit matrix theory calculations exist, see
for instance [25], and confirm the form of the series, for D < 10 the form
of the series is supported by taking certain physical degeneration limits of
8(?)’0) and 8(’:1’70), which then provide a consistency check. Such limits will be
discussed in detail in section 5.4. Note that in general we do not consider the
cases 6 < D < 9 where the functions 5(18’0) and 8(11)70) are more complicated
and are given by sums of Eisenstein series.
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3.5.1 Kac—Moody Eisenstein series in string theory

The proposal made in article I is that the Ey, E;y and FE;; automorphic
couplings of the R* and 9*R* terms are given by

Elvo) = 2 (3)vEYS), (e, A=3Ai+0-p),
o) = COWE (e, A\=5A + 6 —p), (3.5.2)
for Fy, by
Eoo) = 26(3)E13), (ie, A=3A1 —p),
5(11,0) = C(5)Efé(}2 (ie., A =5A1 —p), (3.5.3)
for F1g and by
o) = 20(3)ELy), (e, A =3A —p),
5(01,0) = C(5)E1Eé}2 (i.e., A =5A; — p), (3.5.4)

for Fq,. Except for the additional factor of v related to the shift of the weight
by 5 these are straight-forward generalisations of the results of |[72-74], i.e. of
the serie (3.5.1). In the section 5.4 we will subject the proposals for Ey, Ei
and F4; to consistency checks by expanding the constant terms in different
(maximal) parabolic subgroups and comparing to the degeneration limits
discussed above. Our checks will only concern the constant terms and so
are insensitive to possible cusp forms (which by definition have vanishing
constant terms). In the finite-dimensional case, there are good arguments to
show that no cusp forms compatible with string theory boundary conditions
exist [68,74].

For a discussion of Kac-Moody Eisenstein series in the context of super-
gravity and string theory see also [92].
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3.6 Adelization of Eisenstein series

When analysing Fisenstein series it is often convenient to not treat them
as functions on the real Lie group G = G(R) but instead consider them as
functions on the group G(A) over the (rational) adeles A. The validity of
this extended viewpoint is guaranteed by the strong approximation theorem,
see for example [93,94]. The advantage of this is that more mathematical
tools are available when performing operations on E(x;, g).

The adeles A can be roughly thought of as

A=Rx [[ Q. (3.6.1)

p<oo

where @, are the p-adic numbers and the product involves all inequivalent
completions of the field Q of rational numbers. The prime on the product
indicates that almost all elements in this infinite product are restricted to
the integers (in the appropriate sense). For a concise summary of the theory
of p-adic numbers, see the appendix B.

The adelic version of the Eisenstein series (3.2.19), with the definition of

the character y appropriately extended to A, is

E(x,ga) = Z X(v9a) (3.6.2)
YEB(Q\G(Q)

where the difference to (3.2.19) is that now gy € G(A) and the sum is over
the diagonally embedded discrete subgroup G(Q). The series (3.2.19) is
recovered by restricting the element g, to lie solely in the real factor:

ga = (g», 1,1,,...). (3.6.3)

Evaluating the adelic Eisenstein series for such g, defines a function on the
real group G(R) and this function is equal to (3.2.29) defined above. We will
in the sequel drop the subscript on the group element as it will be clear from
the context whether ¢ is in G(A) or G(R).

An extensive discussion of the adelic treatment of Eisenstein series is
given in the article I'V.



Chapter 4

Fourier expansions of Eisenstein
series

In this chapter we discuss Fourier expansions of Eisenstein series. The dis-
cussion in this chapter will be kept general and we aim to make the structure
of the expansion of an Eisenstein series as clear as possible. In particular we
will set up the relevant Fourier integrals which we will then solve in the two
subsequent chapters 5 and 6, for the constant term and the Fourier coeffi-
cients, respectively.
Following the definition an Eisenstein series on a group over the adeles A
in section 3.6, all of the following calculations in this section will be made
in the adelic context. Let us remark, however, that in order to follow these
calculations, it is not necessary to have an in-depth understanding of the
theory of adeles. For the most part we will be dealing with manipulations
of cosets and the reader may ignore the fact that the groups involved are
defined on the adeles.

This chapter contains excerpts from the unpublished articles IT and I'V.

4.1 General expansion scheme

In this section we discuss the general structure of Fourier expansions of Eisen-
stein series F(x, ¢) and set up some of our basic notation. Fourier expansions
can be defined with respect to arbitrary unipotent radicals U of the group
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G that the Eisenstein series is defined on. The largest such radical will be
denoted by N (rather than a general U) and it is the unipotent radical of
the (minimal parabolic) Borel subgroup B C G. This will be the main case
of interest to us; however, we begin by developing some of the theory for
arbitrary U that we imagine is associated with a parabolic subgroup P C G,
where P = LU = UL is the Levi decomposition and L denotes the Levi
factor of the parabolic P.

4.1.1 Fourier coefficients

The central object of interest to our work is the Fourier coefficient F;,, asso-
ciated with a Fourier kernel given by the character (group homomorphism)

Yo UQ\U(A) — U(1). (4.1.1)

The notation for the domain indicates that the character is trivial on the
discrete subgroup U(Q) in the adelic unipotent U(A) and the image is the
circle group of uni-modular complex numbers. The Fourier coefficient Fy,,
of an Eisenstein series E(y,¢g) is then defined by the following integral:

Fyy (X, 9) = / E(x, ug)vy(u)du. (4.1.2)
U(@\U(4)

In general, the unipotent group U can be non-abelian and therefore the
character is trivial on the commutator subgroup [U, U]. Hence the character
can be thought of as defined on the ‘abelianization’ of U, [U,U]\U. The
Lie algebra of this space is called the character variety. For this reason,
the Fourier coefficient (4.1.2) is sometimes referred to as an abelian Fourier
coefficient. It only captures part of the Eisenstein series in the sense that

Z Fy, (X5 9) = / E(x,ug)du, (4.1.3)
vu [UUNQ\[U,U](A)
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where the sum is over all possible characters 1y of the type (4.1.1). In other
words, the Fourier expansion with respect to characters iy does not reflect
the dependence of E(x,g) on [U(A),U(A)] as this is averaged out in (4.1.3).

By writing a group element in the form ¢ = ulk with w € U, [ € L and
k € K one finds that

Fyy (X, 9) = v (u)Fy, (x, 1) (4.1.4)

and hence Fy,, is completely determined by its values on the Levi subgroup
L C G. In the following, we will restrict our analysis to this dependence.

A particular role is played by the trivial character, 1)y = 1y, given by the
identity on U. The corresponding Fourier coefficient represents the zeroth
mode of the Fourier expansion, which we denote by F},, (¢g). This contribution
to the expansion is also referred to as the constant term, as was already de-
fined in (1.2.7) for instance. Each non-trivial character, ¥y # 1y, contributes
a term F,,, in total making up the so-called abelian Fourier coefficients in
the expansion of the series. Then the Fourier expansion takes the general
form

E(x.9) = Fi,(x.9) + Y Fu,(x.9) + .. (4.1.5)
Yy #l

Here, the ellipsis indicates further possible terms associated with the non-
zero commutator components of U that are averaged out in (4.1.3). To
describe them, one has to study so-called generalized or non-abelian Fourier
expansions that are associated with the derived series of U. This was, for
example, studied in [23,95|. In this thesis we will not, however, deal with
this part of the expansion. As mentioned already, the constant term in
the Fourier expansion can be evaluated using Langlands’ formula (4.2.26) or
similar formulas derived by Mceglin—-Waldspurger [96].

The Fourier coefficients Fy,, possess the important property that their
values along L(Z) orbits are related by a simple formula (see [62,97]):

Fyp, (X 9) = Fyy(X;7g)  for v € L(Z). (4.1.6)
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Here, the action of an element v of the Levi subgroup L(Z) on a character
Yy is defined by (v - vy)(u) = Yy(yuy™t). Realising the character in terms
of (the dual of) a Lie algebra element of [U,U]\U one is therefore led to
the study of character variety orbits in the terminology of footnote 4.1.1.
These orbits have been completely classified for finite-dimensional simple
and simply-laced complex Lie algebras [97-104]; the finer classification for
integral rather than complex orbits has only been carried out in some special
cases, see for example [105,106].

4.1.2 Whittaker vectors and characters on N

The notion of a Fourier coefficient is general and is used for the F,, making
up the abelian part of the Fourier expansion with respect to a unipotent
subgroup U. From now on we will focus on the case of a minimal parabolic
expansion, where P = B = N A, such that the unipotent radical is given by
N. Therefore characters are now group homomorphisms

¥ NQ)\N(A) — U(1). (4.1.7)

Without a subscript, characters will always refer to the unipotent N in this
thesis. To further mark the distinction and in accordance with standard ter-
minology the Fourier coefficients with respect to such characters are defined

by
Wy(x,a) = / E(x, na)mdn (4.1.8)
N(@Q\N(A)

and are also called Whittaker vectors (whence the symbol W,,). This defi-
nition is completely analogous to (4.1.2) and we have already restricted the
dependence on G to the Levi factor A of the minimal parabolic B. The Levi
factor in this case is identical to the maximal (split) torus.

It will be important to describe and distinguish in more detail the char-
acters (4.1.7) on N. To this end we denote by N, (A) the restriction of the
unipotent group N(A) to the one-parameter subgroup associated with the
positive root «, then we can parametrise the space on which characters 1
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depend as

[N, N\N =[] Na- (4.1.9)

acll

(Recall that IT denotes a chosen set of simple roots of G.) The character 1
is only sensitive to the part of N in the ‘directions’ of the simple roots and
we choose to write the character in the following way:

(0 (H xa(ua)> = 2M(Xaen Matia) (4.1.10)

where m, € Q are rk(g) many parameters that define the character com-
pletely. In the argument of ¢ we have used the Chevalley notation z,(u,) =
exp(uaE,), where E, is the (canonically normalised) step operator corre-
sponding to the (one-dimensional) root space of the simple root a.. The or-
der of the factors does not matter since v is a homomorphism to an abelian
group. The m, parametrise the character variety in this case.

Different values of parameters m,, correspond to certain types of the char-
acter 1. We distinguish the following three basic types. (i) The character
is trivial if m, = 0 for all o € II and in this case ¥ = 1y, i.e. one obtains
the constant term. (ii) If m, # 0 for all a € II, we call the character generic
and (7i7) if m, = 0 for at least one, but not all & € II, then the character
is non-generic. We will later use a subset of simple roots II' C II to define the
non-trivial directions of 1, such that m, # 0 if a € II' and is zero otherwise.
The character is then said to have support on IT'. Note that in the following,
we also sometimes use the term degenerate to refer to non-generic characters.

The case of Whittaker vectors W, with non-generic v is more complicated
than that of generic ones and presents the main focus of our work. We
will deal with this case primarily in section 6.1. Let us note at this point
that we will also refer to the Whittaker vectors associated with non-generic
(degenerate) 1, as degenerate Whittaker vectors.
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4.2 The Fourier integral

Let us re-write the expression for the Fourier integral (4.1.8) of an expansion
with respect to the minimal parabolic subgroup P = B = NA. The first
step is to simply substitute the definition of the Eisenstein series (3.6.2)

W = > [ xtmalde.  (21)

1€BQ\G(Q) n(@)\N(a)

By some coset arithmetic we can then re-write the right-hand side in the
following way

Wona) = Y / x(yna)@{m)dn

YEB(Q\G(Q) N(Q)\N(A)

- 3 > / X(v6na)ip(n)dn

YEB(Q\G(Q)/B(Q) dev~'BQNB(Q)\N(A) N(Q)\N(A)

= Z / x(yna)p(n)dn . (4.2.2)

YEB(Q\G(Q)/B(Q) 7=1B(Q)yNN(Q)\N(A)

In the first line, we have written the sum over «y in terms of cosets over B(Q)
on the right which are labelled by ¢. Because of the quotient by B(Q) on the
left in the original v sum, we must make sure that we do not overcount the
coset representatives ¢ and this is achieved by the restriction on the § sum.
In addition, we have ‘unfolded’ the sum over ¢ to the integration domain by
enlarging it. The measure on this larger space is induced from the embedding
N(Q) = N(A).

As the next step we then use the Bruhat decomposition

G(@ = | BQuBQ) (4.2.3)

weWw

to label the double cosets in the 7 sum in terms of elements of the Weyl group
W. Defining also N*(Q) = w™'B(Q)w N N(Q) for notational convenience,
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we arrive at:

Wy(x,a) = Z x(wna)p(n)dn | (4.2.4)
vV N (@)\N(4)

from which we furthermore define

Fuup(x,a)= / x(wna)y(n)dn . (4.2.5)
N@(@\N(A)

4.2.1 Integration range

We begin by analysing in more detail the integration range of the integral in
equation (4.2.5). Depending on the character v, we will find that £, will
only be non-zero for a restricted subset of Weyl words.

The integration range of the Fourier integral (4.2.5) for F, , is given by
the coset

N*(Q)\N(A) =w B(Quw N N(Q)\N(4) (4.2.6)

The intersection in the denominator of this coset consists of those upper
elements (generated by positive root generators) of the minimal parabolic
subgroup B, that are also mapped to upper elements under the Weyl group
action. For the whole denominator we can therefore write

N@Q) =~ [ Nau(@). (4.2.7)

a>0lwa>0

With this, the integration range then splits up in the following way

NU@W@A) =~ [ T Ne@\Nsa) ) - | ] @A) (428

B>0lwpB>0 ~>0|wy<0
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Let us introduce the following notation. We denote the product in the first
parenthesis as

Ngy=| TT Ne(@\Ns(4) (4.2.9)

B8>0|wp>0

and the product in the second parenthesis as

Negyv= T M@ (4.2.10)

v>0]wy<0

Here the root sets {8} and {7} contain precisely those roots which satisfy
the conditions imposed on the products in (4.2.9) and (4.2.10), respectively.
Writing for the integration variable n = ngn. in accordance with this splitting
of the integration range a contribution £}, , then takes the following form:

Fuu(x,a / / x(wngn~a) (nﬁ?’Lv)dngdn7 (4.2.11)

Nisy Niy

The two integrals can be disentangled further by inserting w™w between ng
and n, and splitting the Fourier kernel into two factors. One obtains

Fastod) = [ [ Xwnutwn,a)dlm) Snjdnadn, . (1212

NU)

{51 N

{7}

As the character y is left invariant under any element of N and wngw™" € N
by the definition of the roots £ in (4.2.9) we find

Fou(x,a / Y(ng)dngs - / x(wnya)(ny)dn., . (4.2.13)
Nisy Niy
We reiterate from (4.2.9) and (4.2.10) that the integration domain Ny}, is a

compact quotient whereas NE” ) consists of non-compact copies of A (as many
as there are roots 7 > 0 with w~vy < 0).
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4.2.2 Conditions for non-zero F, ;(x,a)

The expression (4.2.13) gives a restriction on the Weyl words w that yield a
non-zero I, 4(x,a) for a given ¢. The reason is that the integral over ng is
effectively the average of a character over a full period. If the set {$} contains
one (simple) root along which the character 1 is non-trivial (mg # 0) then
the character averages to zero. Let us analyse in more detail the two cases of
non-generic and generic character 1) with parameters m,, as given in (4.1.10).

Let ¢ be a character, which is non-trivial along the subset IT" C II of the
set of simple roots II, i.e. m, # 0 if and only if a € II' C II. Consider-
ing (4.2.13) it is then clear that only those Weyl words w will yield F,, ,, # 0
which satisfy the condition

wa! < 0 for all simple roots o € IT". (4.2.14)

We can therefore write (in short-hand notation)

Wy(x,a) = Z Fuy(x,a), (4.2.15)
weW|wIl’<0
where in this case
Fuyp(x,a)= / X (wn,a)(ny)dn.,, (4.2.16)
Ny

since the integral over N in (4.2.13) yields unity. We then distinguish
between the generic and the non-generic case according to definitions for v
given in 4.1.2. Let us discuss the generic case in some more detail.

In this case IT" = I and the character v is non-trivial along the directions
of all simple roots. It is clear that the integral over ng in (4.2.13) is zero
(and hence also F,,, will be zero), unless the set {} does not contain any
simple roots. In other words, by the definition (4.2.9) all simple roots have
to be mapped to negative (simple) roots under the action of w. Since all
roots are linear combinations of simple roots, this also means that the entire
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set of positive roots is mapped to negative roots by w. For finite-dimensional
G, it is a standard result that this only happens when w is the longest Weyl
word, which we denote by wy, of the Weyl group of G. This means that the
sum (4.2.15) has only one, generically non-zero, contribution coming from
w = wy, and we have

Wy(x,a) = /X(wona)w(n)dn. (4.2.17)
N(A)

Here, we have used the fact that N?fyo} = N(A) and suppressed the index v on
n in order to match the standard definition of the generic Whittaker vector
in the literature. It is for this Whittaker vector that nice simple formulas
exist (at the finite places) like the formula of Casselman—Shalika [107].

4.2.3 Character twist

We will now perform some basic further transformation of the integral (4.2.16),
in order to extract the a-dependence. So let us consider the integral

Fuyp(x,a)= / X (wnqa)(ny)dn,. (4.2.18)

NGy
Inserting a factor of aa™! between w and n., in the argument of x and perform-
ing a change of integration variables n — a~'na, under which the measure
transforms as dn., — d,,(a)dn,, we obtain

Fusl:0) = X(waw )6u(@) [ x(wn,)77Gm)dn,. (4.2.19)

Ny

where we have defined the ‘twisted’” Fourier kernel 1%(n) = v(ana™"') and we
have furthermore extracted the a dependence from the argument of x. The
subscript on the Jacobi factor d,,(a) serves to indicate that the integration is
not over all of N(A) and therefore d,,(a) is not equal to the standard modulus
character §(a) of N(A) (similar to equation (3.2.15)). As just argued, a non-
vanishing F,, ,, is expressed solely in terms of an integral over N{“’v} and it is
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this part of all of N(A) that contributes to d,(a). That is, d,(a) is given by
the relation d(an,a™') = d,,(a)dn., where n, is an element of N, as before.
With (4.2.10), one has

5w(a) — aZpo‘m«ﬂ — ap_w_lp’ (4220)

where we have used standard results on the set {y > 0wy < 0} given
in [108], that we also rederive in appendix C for completeness. Using also
the expression (3.2.13), we deduce that the prefactor in (4.2.19) is given by

Y(waw )b, (a) = a¥ OtAFemwTie — quTiite (4.2.21)

In order to ease the notation in the following chapters, let us define the
integral

Fuuly) = / \(wn.)B(n)dn, . (4.2.92)

Ny
In terms of this quantity the full Whittaker vector (4.2.4) is then

Wolx.a) =Y @ 0T, 40 (X), (4.2.23)
weW

where the twisted character ¢* enters. Below we will study in detail the inte-
gral (4.2.22) for F,, , for arbitrary ¢ and only substitute back the particular
twisted character ©* at the very end of the calculation.

4.2.4 Whittaker vectors and Kac—Moody groups

An important observation is that in the case of infinite-dimensional Kac—
Moody groups, the expression (4.2.17) never applies. The reason is that
there is no longest Weyl word wgy or no other word that maps all positive
simple roots to negative roots. As a result, F,, will be zero, whenever the
Fourier kernel v is generic. The only non-vanishing Whittaker vectors for
Kac-Moody groups are therefore those associated with degenerate characters

1.
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4.2.5 Adelic treatment

Let us conclude this section by making some comments about the adelic
treatment in the context of Fourier expansions. One virtue of the adelic
treatment is that one can write the quantity M(w,\) of (3.2.24), which
already appeared in the functional relation satisfied by the Eisenstein series,
as

M(w™ N\ = / X (wn)dn. (4.2.24)
w ' B(QuNN(Q)\N(A)

This integral arises naturally when calculating the constant term of the Eisen-
stein series that is defined by

C(g) = / E(x,ng)dn (4.2.25)
N(@\N(4)
and this is a function solely on the Cartan torus. Using the Bruhat decom-

position (4.2.3) and the integral (4.2.24) one can demonstrate Langlands’
constant term formula

Cla) = > M(w, \)a"*, (4.2.26)
wew

where the notation (3.2.13) was used. This formula will be explained in detail
in the following chapter 5.



Chapter 5

Constant term of Kac—-Moody
Eisenstein series

In this chapter we will consider the zeroth order Fourier mode in the expan-
sion of Eisenstein series. This part of the expansion is also commonly referred
to as the ‘constant term’. Langlands’ formula, which we will introduce in the
following, provides an easy way to compute this constant term contribution
to the expansion. The central achievement presented in this chapter is to
demonstrate how Langlands’ formula can be applied in the case of special
types of Kac-Moody Eisenstein series.
The chapter includes excerpts from article I.

5.1 Langlands’ constant term formula

Let us note right away that the constant term of an Eisenstein series is ob-
tained in the case when m, = 0 for all @ € II according to the definition
in (4.1.10), i.e. when ¢ = 1y. In this section we then introduce the constant
term formula for this part of the Fourier expansion, first written down by
R. P. Langlands in [35].

The constant terms, of a minimal parabolic Eisenstein series, are those
terms that do not depend on those G/K coset space coordinates associated
with the unipotent radical N in (3.2.1), but only on the Cartan subalgebra

33
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coordinates. They are hence obtained by integrating out the unipotent part
(using the invariant Haar measure):

/ ES(\ ng)dn = 3 M(w, Ne™H@)  (5.11)
NEZ\N®) wew

This is Langlands’ formula for the constant term. The integral for the con-
stant term can hence be evaluated in terms of a sum over the Weyl group
W of the group G. The individual summands being the numerical factor
M (w, \) times a monomial of the Cartan subalgebra coordinates. For a defi-
nition of the map H(-), see (3.2.9). The numerical factors M (w, \) are given
explicitly by

M(w, \) = all % _ a£[+ c((\a) . (5.1.2)

The product runs over all positive roots A, which also satisfy the condition
that wa be a negative root (i.e. an element of A_) for the Weyl group element
w. The function ¢ is the completed Riemann (-function and is defined as
&(k) = 7T (%) ¢(k). We will discuss crucial properties of this factor in
some detail in section 5.2.1.

The expansion in equation (5.1.1) will be referred to as minimal parabolic
expansion of the constant terms, since the expansion was made with respect
to the parabolic subgroup P = B = NA, where a is the Borel subgroup.
We will also introduce in some detail expansions with respect to maximal
parabolics in section 5.4.

In order to make Langlands’ formula (5.1.1) more transparent, let us eval-
uate it in the simplest case, namely for the SL(2,R) series defined in (3.1.7).
This will reproduce the constant term part of the expansion (1.2.8).

Example 5.1.1. Langlands’ formula for the SL(2,R) Series

We proceed by evaluating step-by-step the various parts of Langlands’ for-
mula (5.1.1) for the SL(2,R) case, where the defining weight A\ = 2sA; — A4
is that of a mazimal parabolic series and for the Weyl vector we have p = Ay,
with Ay being the single fundamental weight of the algebra. Let us first con-
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sider the exponential factor in the expansion formula, which in our example
takes the form:

AN+, H(9)) — A(2s—1)A1]H(g))

The Weyl group of SL(2,R) has two elements; the identity element, id., and
the fundamental Weyl reflection wy. Hence the two associated exrponents in
the constant term are given by

o w = id. (identity element): wA + p = 25\,
o w=w;: wA+p=2(1—5)Ay.

Making use of the definition (3.2.9) of H(g) = log(n~'gk™') = log(a) and
parameterising the Cartan group element a according to

. y1/2 0
- 0 y71/2 ’

we find that the constant term then takes the following form
M (id., N)y® + M (wy, N)y' ™%,

Determining the two coefficients, we find

o w=id.: M(w,\) = 1, since the single positive root oy of the algebra
does not satisfy the condition for contributing in the product.

e w = wy: In this case the root ay does contribute to the product and we
obtain

M(wb )\) _ €(<>\7051>) . 5((25 — 1)<A1|Oél>> £(2S — 1) .

o) g1+ (25 — D{Mfar))  €(29)

Putting everything together, we then find the constant term to be given by

1

2s — 1
/ ESL(Q,R)(S7ng)dn _ /ESL(2,R)(S7Z)dl, —y + 5(6?2 ) )yl—s,
s

N(Z)\N (R) 0
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where z = x +1y. Upon comparison we find that this correctly reproduces the
constant term part in (1.2.8).

For finite-dimensional groups the number of terms contributing to the
constant term, obtained by the minimal parabolic expansion (5.1.1), is gener-
ically equal to the finite order of the Weyl group, |[WW|. For special choices of
A there can, however, be vast cancellations reducing the number of constant
terms [74]. Some of these particular choices of \ are the ones which are also
relevant in string theory and were discussed in |74] and article I. Let us recall
that in these cases A is of the form A\ = 2sA;, — p and hence defines maximal
parabolic Eisenstein series. The big reduction in the number of constant
terms occurs for special choices of 7, and the parameters s.

In the case of Eisenstein series, defined on a general Kac-Moody group,
one would, by formula (5.1.1), generically expect infinitely many contribu-
tions to the constant term. This is simply due to the infinite-dimensional
nature of a Kac-Moody group and the infinite order of its associated Weyl
group. However, as we will show in the following, there are special choices for
A, for which the a priori infinite number of contributions reduces to a finite
and indeed very small number of terms. We will also refer to this reduction as
a ‘collapse’ of the constant term and are going to present a detailed argument
for it in the following. Indeed, the demonstration of the precise mechanism
of this collapse represents a central result of this thesis.

5.2 The collapse mechanism

In order to demonstrate the mechanism of collapse for the constant term,
we will now restrict ourselves to maximal parabolic Eisenstein series (3.3.9)
and (3.4.5) (for affine groups), by making the particular choice, A = 2sA;, —p,
for the defining weight. A central role in the argument of collapse for the con-
stant term is played by the coefficient M (w, \) in Langlands formula (5.1.1).
Let us therefore introduce some important properties of this factor.
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5.2.1 Properties and functional relation of M (w, \)

It is clear from (5.1.2) that the coefficients M (w, A) satisfy the multiplicative
identity

M (ww, ) = M(w, w(\))M(w, ). (5.2.1)
One also has the following functional relation for minimal Eisenstein series
EC(X\, g) = M(w, \)E%(w()),g), (5.2.2)

which was first stated in [35]. The completed Riemann zeta-function, £(s),
entering in (5.1.2) satisfies the simple functional equation

{(k) =€ —k), (5.2.3)

which is at the heart of the meromorphic continuation of the Riemann zeta-
function. Defining the function c(k) by

o(k) = (5.2.4)

the functional equation (5.2.3) implies

c(k)e(—k) = 1. (5.2.5)

The only (simple) zero of ¢(k) occurs for k = —1; consequently c(k) has a
(simple) pole at k = +1:

c(-1)=0, c(+1) = 0. (5.2.6)

With the definition of the c-function above, M (w, A) then reads

M(w,N) = [] k). (5.2.7)
aEAL
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where k = (A|a). If, for a given Weyl word w, the product M (w, \) con-
tains more ¢(—1) than ¢(+1) factors, then, by (5.2.6), M (w, \) will vanish.
This property will be crucial in the following argument where we show that
Langlands’ formula can even be applied for a restricted class of Kac—-Moody
FEisenstein series.

The collapse mechanism, which we will provide an argument for, consists
of two steps. Each step is implied by a restriction from the Eisenstein series
for which we would like to evaluate Langlands’ formula. The first restriction
comes from the fact that we are considering Eisenstein series of maximal
parabolic type with weight, A = 2sA;, — p. The second restriction is imposed
for special choices for the values of 7, and s. Let us discuss the effect of these
restrictions now.

5.2.2 Restricting to the maximal parabolic

For an Eisenstein series of maximal parabolic type, the defining weight is of
the form A = 2sA;, — p. From now on we will only consider such Eisenstein
series.

As was already noted above, that the argument of the c-function (5.2.4)
appearing in M (w, ), is k = (A|a). Then for a simple root a; # «,

k= (2s\;, — pla) = —1. (5.2.8)

Therefore, ¢((A|a;)) = 0 for simple roots a; # «;,. This reduces the number
of terms in the constant term considerably. Namely, in order to obtain a non-
vanishing M (w, A) factor, it is necessary to restrict to the following subset of
Weyl words [74]

S := {w € W|wa > 0 for all simple roots o« € II"} C W . (5.2.9)

Here IT* := II\{w.} denotes the set of all simple roots IT of G, except for
the simple root «;, , which has been removed. Note that in the article I,
this set of Weyl words was denoted by S;,. If w ¢ Sp«, then there will be
at least one simple root ¢ included in the product (5.1.2) and consequently
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M (w, \) vanishes and the corresponding term in sum (5.1.1) disappears. The
zero coming from the simple root cannot be cancelled by ¢(+1) contributions
from other roots; this can be argued by analytic continuation in s [62].

Now we want to give a more manageable description of the set Sp+ in
(5.2.9). We will see in the following that elements of Sy« correspond to
carefully chosen representative in the coset W/W?*. Here W* denotes the
Weyl group of the subgroup of G associated with the simple roots in II*.
The Dynkin diagram of the subgroup is obtained by deleting the node cor-
responding to the root «;, in the Dynkin diagram of G.

Alternatively, WW* can also be defined as the stabiliser group of the weight
A = A;,. In general, the weight A is defined as

A=>" A, (5.2.10)

a€cll*

The set ITI* denotes the complement of IT* in the set of simple roots II and
in our case is just given by {ay, }.

The quotient W/W* has to arise since any non-trivial element in W*
maps at least one of the simple roots of II* to a negative root and it would
therefore also appear in the product for M (w,\). Hence we should remove
any W* element from the right end of a Weyl word appearing in the sum
over Weyl words (5.1.1). Once this is done, the Weyl words appearing in Sy
all start with the fundamental Weyl reflection w;, on the right and will never
map any of the simple roots IT* to a negative root, which is what we require
for a non-vanishing M (w, A).

A different and more explicit description of this fact can be given by
constructively computing the set Sy« by using the Weyl orbit O,, of the
dominant weight weight A = A;,. The minimal (with respect to word length)
Weyl words necessary to compute the orbit O;, are exactly those appearing
in Sp+. Let us now explain this method in some detail. We will from now
refer to it as the ‘orbit method’.
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5.2.3 Orbit method

In the following we will describe a general method for constructing a set of
Weyl words, which satisfy the condition:

wa > 0 for all simple roots o € II*, (5.2.11)

For the rest of this section, II* should be thought of as some general subset
of the simple roots II of GG. The construction proceeds in the following way.
Consider the dominant weight

A=A, (5.2.12)

a€ll*

already defined above. Its W-orbit points are in bijection with the coset
W/W* as W* stabilises A. We construct its orbit under the action of the
Weyl group W of G iteratively, according to the following standard algorithm:

1. Start with the initial set of orbit points O = {A}.

2. Given a weight p € O, compute its Dynkin labels p, = (u|a) for all
ac Il

3. For all labels p,, that are strictly positive, construct u’ = w,pu where w,
is the fundamental reflection in the simple root «. Add the resulting
1’ to the set O of orbit points if they are not already in there.

4. If there remains a weight g in O for which steps 2. and 3. have not
been carried out, repeat them for this u.

This algorithm constructs the orbit representatives of the W-orbit of A. If
one remembers for each orbit point x4 in the orbit the sequence of fundamental
reflections that were needed to obtain it, one thus obtains a set of minimal
(with respect to word length) Weyl words that relate the dominant weight A
to each of its images. Let us provide an example illustrating this method.

Example 5.2.1. Eg Weyl orbit
We illustrate the procedure for the specific example of Eg and choose I1* =
I\{«, }, with i, = 1. Then the dominant weight A = Ay, with its Dynkin
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Weyl words Weights in Orbit
id. Ay =1[1,0,0,0,0,0,0,0] (dominant weight)
w;, = 1w [~1,0,1,0,0,0,0,0]
Wty 0,0,~1,1,0,0,0,0]
W WsW1 [0,1,0,—1,1,0,0,0]
wywywswy; wswawzwy | [0,—1,0,0,1,0,0,0]; [0,1,0,0,—1,1,0,0]

Table 5.1: Weyl words and weights in the Weyl orbit of Ay for Eg. Note that
the Dynkin labels of the weights follow our standard Bourbaki convention, cf.
the Dynkin diagram 2.3.

labels given by Ay = [1,0,0,0,0,0,0,0] (for remarks on this notation see
appendiz A.1). The only fundamental Weyl reflection that acts non-trivially
on Ny is wy, yielding the weight [—1,0,1,0,0,0,0,0]. In order to create a
new weight we can only act with ws, yielding [0,0,—1,1,0,0,0,0]. Then
one can only act with wy, giving [0,1,0,—1,10,0,0]. At this point we have
two possibilities of fundamental Weyl reflections to act with, namely ws and
ws, giving us [0,—1,0,0,1,0,0,0] and [0,1,0,0,—1,1,0,0] respectively. We
continue in this way iteratively until we are left with weights with entries
being only —1 or 0. This only happens for finite-dimensional Weyl groups
and the final element in the orbit is the negative of a dominant weight. The
first few Weyl words generated in this way are summarised in Table 5.1. In

this way one computes efficiently all the elements of Sy from the orbit of
Ay

The size |O;,
given by

of the Weyl orbit of A;, in the finite-dimensional case is

W W

= = . 5.2.13

|Oi.

In our example, we have the stabiliser subgroup stab(A;) = W(D;) and the
size of the orbit is 2160. Therefore we have 2160 distinct Weyl words in the
left column of Table 5.1.
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In article I an inductive proof is given that each Weyl word that generates
an element of the orbit O, by the method outlined above, does indeed satisfy
the condition

wa > 0 for all simple roots o € IT*. (5.2.14)

This then establishes a one-to-one correspondence between elements in the
orbit O and Weyl words of Spp«. Since it does not yield to any new insights,
necessary for in the following presentation, we will omit this proof here and
refer the reader to section 3.3 of article 1.

In summary, there is a one-to-one correspondence between the elements
of S+ and Weyl words that make up the orbit 0. This correspondence
also gives a very manageable way of constructing the set Sy« by starting
from the dominant weight A and computing its Weyl orbit as a rooted and
branched tree of Weyl words of increasing length. There is a natural partial
order induced on the constant terms from the Weyl orbit; this can be used
to display the constant term structure in terms of a Hasse diagram. By the
multiplicative identity (5.2.1), one obtains that when going down the tree
one has that if M (w, \) vanishes, the subsequent M (ww, A\) will also vanish.
Therefore one can stop the construction of the tree along a given branch once
the factor M (w, A) on a vertex vanishes. Again, it cannot happen that the
zero of M (w, \) gets balanced by a diverging M (w,w(\)).

5.2.4 Restricting to special i, and s values

We note that in contrast to the finite-dimensional groups, in the case of Kac—
Moody groups, the Weyl orbit of A is of infinite size and the algorithm has
to be truncated at some point in practice. Such a truncation would occur, if
one can show that there exists a point along each branch of the tree of Weyl
words, at which the associated M (w, \) coefficient vanishes. In the following
section we will show that for the maximal parabolic Eisenstein series with
defining weight A = 2sA;, — p, there are particular choices for 7, and the
parameter s, for which this is precisely the case.
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Restricting to such special values in the case of Eisenstein series de-
fined on finite-dimensional groups leads to a similar collapse in the constant
term. However, the collapse in this case is not as ‘drastic’ as in the infinite-
dimensional case, since it is a collapse from a finite, large number to a very
small number of terms |74], as opposed to the infinite-dimensional case, where
the collapse yields a reduction from an infinite number to a finite, very small
number of terms.

We will now explain how in the case of maximal parabolic Kac—-Moody
Eisenstein series, one can obtain a collapse of the constant term, by restrict-
ing to special values of i, and s. For this we will consider first Eisenstein
series on affine groups, cf. (3.4.3), and we will in particular treat the case
of the affine simplest affine group SL/(Z,\R) explicitly in an example. Based
on our findings for the affine Kac-Moody groups, we will argue that these
results similarly generalise other types of Kac—Moody groups, such as the
hyperbolic Fq group.

To begin, let us state the form of Langlands’ formula for the case of
Eisenstein series on affine groups

/ ES(A;g,o)dn = Y M(i, X)eloXoHe o) (5.2.15)
N(@)\N(®) e

This generalises equation (5.1.1) to the affine case. For explanations on the

particular form of this formula we refer the reader to [76] and article I. Let

us just note again here that the use of hats indicates that we are now dealing

with objects associated to an affine algebra.

The only way to reduce from an infinite to a finite number of contributions
in the constant term of an affine Eisenstein series is if for all but a finite
number of terms in (5.2.15), the coefficients M (i, \) vanish. The coefficients
M (i, \), given by (5.1.2), will vanish as before if they include more ¢(—1)
than ¢(+1) factors.
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In order to exhibit that almost all M (i, A) vanish for special A we need to
introduce some more notation and results on the affine root system [88]. The
following calculation, even though it is slightly technical in nature, represents
a crucial ingredient towards an understanding of the Kac—-Moody case.

Let G be a simple, simply-laced and maximally split Lie group as before;
let » = rk(G) and denote by «; (i = 1,...,7) a choice of simple roots. In
this basis the unique highest root of G is written as

0=> ;= (6;,65,...,0,). (5.2.16)
=1

The affine extension of the root system is obtained adding a simple root ay.
From now on roots carrying a hat will be associated with roots of the affine
group G whereas roots without a hat belong to GG. A general affine root is
then of the form

& = noag +niag + ...+ npa, :nog—l—ﬁ-g, (5.2.17)
where we have used the standard definition of the null root
0 =g+ 0 (5.2.18)

and introduced some further shorthand notation for finite-dimensional part
of the root. The quantity ng is called the affine level and the vector A is
given by

A= (n1 — ngbh, ny — ngba, ..., n,. — nyb,) (5.2.19)

and corresponds to a root vector of GG or vanishes. Vanishing A corresponds
to imaginary roots of the algebra; they can never contribute to constant
terms and therefore we will assume A # 0 in the following.

Consider the expression (\|@) that appears in (5.1.2) for A\ = 2sA;, — p
and the affine Weyl vector p

(Aa) = 25, |a) — (pla) = 2s(As.

&) — ht(a), (5.2.20)
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with the height ht(&) = 327_, n;. We are interested in the condition (A|a) =
+1, where ‘+’ corresponds to a ¢(+1) factor and ‘—’ to a ¢(—1) factor in
M(w,)). The condition (A|@) = %1, together with the requirement that
& > 0 defines two sets of roots

Ay(£1) = {d . (Ma) = (2sh,, — pla) = il} . (5.2.21)

Solving (A|@) = £1 for s we obtain

_ ht((A)z) +1 ht(a) £1 ' (5.2.22)

We can express the height of & as

ht(a&) = nght(d) + ht(A - A) = ng (1 +) 9i> +Y A (5.2.23)
=1 =1

Further we note that when i, # 0, then n;, = A;, + ngb;,. Inserting both
expressions into (5.2.22) and solving for ny we obtain
QSAi* — Z;’:l A] F1

no = i 5.2.24
’ ht(3) — 256, (5:224)

For a particular choice of the parameter s and simple root «; , we can use
this formula to determine the affine levels ny on which roots producing ¢(+£1)
factors can occur. Since —#; < A; < 6;, we see from the formula that there
exists a maximum value of ng, such that no roots producing ¢(—1) or ¢(+1)
factors can exist on higher affine levels.! In other words, both sets A(1) and
A4(—1) only contain a finite number of elements. The result and formula
(5.2.24) remain true if i, = 0 and one declares 6, = 0.

Having determined the roots which may possibly cause the coefficient
factor M (w, &) to vanish we now determine for which @ they actually con-
tribute in the product running over positive roots. A root & € Ay(+1) will
only appear in the product defining M (1, /A\)7 if for a particular Weyl word

IWe assume that the denominator does not vanish. This is true in all cases of interest
later.
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w, the condition w(&) < 0 is satisfied. In order to analyse this condition, we
need to consider the general action of an affine Weyl group element w.

The Weyl group W of an affine algebra can be written as a semi-direct
product of the classical Weyl group W and a translational part 7 = Z"
(where r is the rank of the underlying finite-dimensional algebra)

—~

W=WxT. (5.2.25)

We will write an element of W as & = (w,t3), where w € W and tg € T
with 8 an element of the finite-dimensional root lattice. It should be noted
that in general 3 is not a root of the algebra. The action of w on a general
root & = ngd + A - A is then given by

w(a) = (w,t5)(@) = w (t()

—w(A - A)+ (no BN Ai(ai\ﬂ)> 5. (5.2.26)

From the last line of (5.2.26), we conclude that for a § of sufficient height
(corresponding to w of sufficient length) and appropriate direction, the co-
efficient of the null root & will be negative and therefore we have (@) < 0.
Then the root & will appear in the product expression for M (w, 5\) and will
produce a c(z£1)-factor. The conditions on 5 will always be satisfied for al-
most all w that contribute to the constant term. We now show this in an
example.

o —

Example 5.2.2. The constant term of the SL(2,R) Fisenstein Series
In the following we consider the maximal parabolic Fisenstein series Eof‘il*;s

for the affine extension A of Ay = SL(2,R). In this example we will choose
ay, to be determined by i, = 1. The root system of A is given by

a= NoQg + N1y = 77,05 + A16Y1 s (5227)
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Weyl words Weights in Orbit
id Ay =[0,1] (dominant weight)
w;, = wq 2, —1]
Wowy [—2, 3]
wiwowy 4, —3]
Wow Wowq [—4, 5]

Table 5.2: Affine Weyl orbit of A;,—1.

with integers ng and ny such that ng —ny € {—1,0,1}. Here, 5 = ag + aq
and ng counts the affine level. The height is ht(&) = ng + ny.

In order to gain some intuition let us briefly consider the affine Weyl
group orbit O, . Starting with the fundamental weight A;, we construct its
Weyl orbit in a similar way to the one already described for the case of finite-
dimensional groups. We obtain Table 5.2.

It is easy to see that we obtain an infinite number of weights in this orbit.
The Weyl words in the left column of the table make up the set S;°_; and
satisfy the condition w(ag) > 0 for all w € S7°. Here, we have added oo to
indicate that S7° contains an infinite number of elements.

In the notation introduced above, the set of elements S7° is given by

817 = {(id, tra) brezy Y (w1, trar ) ez, » (5.2.28)

where to, = wowi. From equation (5.2.26) we see that the action of an
element w € S7° becomes

A~

From the second term in this equation we conclude that (&) will be a negative
root for Ay =1 and long enough Weyl words w (large enough k). For A; =
1 we see from (5.2.22) that we will get ¢(—1) = 0 factors in M, \) for
s = (ny — 1)/ny with ny € Zwy, i.e. s =0,1/2,2/3,3/4,4/5,.... For these
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choices of s the constant term will contain a finite number of terms since
there are no cancellations from c¢(+1) factors.

We denote the set of Weyl words w that have a non-zero factor M (w, \)
by

Cr = {weW|Mw,\) % 0}, (5.2.30)

where we also allow potentially infinite values. These always appear in com-
binations such that the sum over them has a well-defined limit. We will use
this particular set of Weyl words later on in chapter 6.

5.2.5 Eg, ElO and beyond

In the case of Ejy it is not so simple to write down the set S in an equally
explicit way as was done for the case of A in (5.2.28). However, the argument
we gave in (5.2.26), that a root & will become negative when acting on it with
a long enough Weyl word from the set S32 still holds. From relation (5.2.24)
one can then see again that both sets Ag;, (£1) contain a finite number of
roots. In practice, one can first compute the finite sets A, (£1) and then
construct the set Si iteratively from the Weyl orbit O;, and check whether
after a finite number of steps it happens that more elements from A;; (—1)
than from A, (+1) contribute to M (i, \). By the multiplicative identity
(5.2.1) one then can terminate the calculation of Sy« along the branch of the
orbit where this happened. If X is chosen appropriately only a (small) finite
number of Weyl words remain in Sfi and give contributions to the constant
terms.

Due to the absence of the nice affine level structure, the situation for hy-
perbolic Kac-Moody algebras is much harder to analyse. It is not possible to
use a formula similar to (5.2.24) to see that the sets A;;, (1) only contain
a finite number of elements. Instead one can use the following procedure for
Eisenstein series with weight A = 2sA;, — p. Note that now, all the quantities
refer to the hyperbolic algebra, but we refrain from putting additional deco-
rations on the symbols to avoid cluttering the notation. The relevant inner
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product is
(Aa) = 2sn;, — ht(a). (5.2.31)

The height of a root grows much faster than the component along a given
root n;, . It is hence clear that for moderately small s, roots of sufficient
height will have inner products (A|a) < —1 and therefore will not belong to
A, ;. (£1). Therefore, computing the set of ‘dangerous’ roots Ay, (£1) is a
finite computational problem. More precisely, we can denote by A(n;,) the
set of positive real roots a = ) n;co; with a given n, . This set is finite
as long as the removal of the node 7, from the Dynkin diagram leaves the
diagram of a finite-dimensional algebra. For Fj( this means i, # 10. We will
assume this in the following. Then we can define

h(n;,) := min{ht(a) : @ € A(n;,)} . (5.2.32)

This is a monotonous function of n;, . Its rate of growth with n;, is roughly
equal to the height of the affine null root of the underlying affine algebra
divided by its Kac label. For moderately small s — like those of interest to us —
this is greater than the rate of growth of 2sn;, . Therefore we can construct
A(n;,) by increasing height and terminate the construction of roots when
2sn;, — h(n;,) < —1 for some n;,. To be on the safe side computationally,
one can check the next few steps after this inequality is satisfied for the first

time. From the resulting finite set of roots we can select those o that belong
to As,z’* (:l:l)

The next step is to determine those Weyl words that contribute to the
constant terms. This is done in the same way as before: One constructs the
Weyl words from the orbit of A;, and checks whether more elements from
Ag;.(—1) than from Ay, (+1) contribute to M (w, A). For generic s this will
of course result in an infinite number of Weyl words. However, if s is chosen
appropriately, this leaves a finite number of Weyl words and hence a finite
number of summands in the constant term. These are the cases that we will
focus on in the following.
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5.3 Explicit constant terms

Now consider the minimal parabolic expansion of maximal parabolic Eisen-
stein series. The explicit expressions for the minimal parabolic expansions
of EIG% and Eng with G = Ey, Fyp and E7; can be found in appendix D.
These expressions are directly obtained by evaluating (5.2.15), without the
additional parameter v of the derivation, for Eiq and E7;. We point out that
these series develop logarithmic and (logarithm)? terms from taking limits in

the ¢-functions entering M (w, A).

In a general expansion of EC | it is instructive to count the number of

Weyl words in the sum on the right-hand side of (5.2.15), for which the
corresponding factors M (w, A) are non-vanishing (but possibly infinite). We
do this for a range of values of the parameter s and for the E,,>¢ groups, i.e.,
in dimensions 0 < D < 5. The results are shown in Table 5.3 which shows
the number of contributing Weyl words as a function of s for the various FE,,
groups. This is evaluated in the normalisation of the Eisenstein series ElE;;‘
that we have been using throughout the paper. It is possible to explain some
of the number patterns found in this table in terms of the root system of the
E,, series. We will however not go into the these details here and instead
refer the interested reader to section 5.6 of article I.

For the finite-dimensional groups it is clear that when increasing the value
of s, one will eventually always reach a threshold value. For larger values of s
the number of Weyl words yielding non-vanishing M (w, \) factors will always
be equal to the dimension of the Weyl orbit O;,. The reason for this is that for
large enough values of s no positive root « exists which satisfies (a|\) = —1.
Hence all possible terms will be present in the sum over elements of Syyx.
For the infinite-dimensional groups the situation regarding this issue is less
clear, since for these groups there are roots of arbitrary height available. In
a sporadic check for some values of s > 7/2, the calculation on a computer
of the constant term did not terminate within a reasonably short period of
time (in contrast with the computations for s < 7/2). This can be taken
as an tentative indication that in these cases the number of Weyl words
contributing is actually infinite. Physically, this may be related to curvature
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s ot 1 3 9 3 3 I 4 9 5 4 6 B
Ee |1 2 271 7 12 27

E; |1 2 126 8 14 35 56 126 91 126

Es |1 2 2160 9 16 44 72 408 534 1060 1460 1795 2160
Ey |1 2 oo 10 18 54 90 oo

Eow|l 2 oo 11 20 65 110 oo

En|l 2 oo 12 22 77 132 oo

Table 5.3: The table shows the number of Weyl words with non-vanishing
coefficients M (w, \) in a minimal parabolic expansion ofEfj+1 in dimensions
1 < D < 5 and for a range of values for the parameter s. The ellipsis
signifies that the row is continued with the last number explicitly written out
(for D < 2 this is conjectural).

correction terms unprotected by supersymmetry. This is the reason why we
put oo for the corresponding entries in Table 5.3.

Looking at Table 5.3 it is tempting to interpret it as a strong sign for the
special properties associated with the small values of s in the set

s€{0,1/2,1,3/2,2,5/2,3} . (5.3.1)

More precisely, by requiring the constant term to only encode a finite number
of perturbative effects as required by supersymmetry, the range of possible
values that s can take, gets reduced from a previously infinite set to a finite
number of possible values. It would be desirable to make these statements
more precise and to prove them rigorously.

5.4 Degeneration limits

A Fourier expansion, different from the minimal parabolic expansion that
we have discussed up to now, can be used to check the consistency of the
automorphic couplings 55 g 0 the low-energy expansion. Namely, the func-
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tions (3.5.1) are subject to a number of strong consistency requirements |73,
109] that arise from the interplay of string theory in various dimensions.
The consistency conditions are typically phrased in terms of three (maximal
parabolic) limits, corresponding to different combinations of the torus radii
(in appropriate units) and the string coupling becoming large. The three
standard limits correspond to

(i) decompactification from D to D + 1 dimensions, where one torus circle
becomes large,

(ii) string perturbation theory, where the D-dimensional string coupling is
small, and

(iii) the M-theory limit, where the whole torus volume becomes large.

In terms of the F;,; Dynkin diagram 2.3 this means singling out the nodes
d+ 1, 1 or 2, respectively. Each of these limits corresponds to going into
a special ‘corner’ of moduli space. Mathematically, these limits are tanta-
mount to computing the constant terms of the Eisenstein series in different
maximal parabolic expansions, which we will explain in detail now.

Taking a maximal parabolic Fourier expansion of an Eisenstein series
corresponds to choosing a maximal parabolic subgroups defined by a node
Jo of the Dynkin diagram, as in appendix (A.2.8). In order to introduce
it, let us remark that the Levi component L;, of such a maximal parabolic
subgroup can be written as the product of two groups, namely

L, = GL(1) x Gq, (5.4.1)

where Gy is the subgroup of Fy;,; which is determined by our choice of a
simple root «;, in the Dynkin diagram 2.3 of Egy;. The Dynkin diagram
of G4 is given by the diagram which is left once one has deleted the node
associated with «;, from the Dynkin diagram of E;,;. The one-parameter
group G'L (1) can be parameterised by a single variable r € R*.

The corresponding arrangement of the constant term then highlights the
dependence on only one of the parameters, namely r, corresponding to the
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single node j, (say, a decompactifying circle) and maintains the invariance
under the remaining group Gy in the decomposition (5.4.1). In that case the
constant terms can be packaged using cosets of the Weyl group WW. Denoting
the Weyl group of the maximal parabolic subgroup P;, by Wp, , the constant
terms read [74,96,110,111|

/ ESOg)dn = 3" M(w, el el 10 g6 () Lg)
Np, (Z)\Np, (R) weWjo \W

(5.4.2)

Let us explain some of the notation introduced here. For a weight A, (A)y;, is
a projection operator on the component of A proportional to the fundamental
weight A; , and (\) ;. is orthogonal to A, , i.e., a linear combination of the
simple roots of G4. The Eisenstein series on the right-hand side of the equa-
tion does not depend on the GL(1) factor in (5.4.1) since the dependence
on the abelian group is explicitly factored out using the projections. The
expression (5.4.2) does not depend solely on the Cartan subalgebra coordi-
nates but also retains dependence on some of the positive step operators that
appear in the Eisenstein series defined with respect to the reductive factor
(GG4. Even though indicated as depending on g € G, the Eisenstein series on
the right-hand side of (5.4.2) effectively depends only on g € G4. This type
of expansion is called mazimal parabolic expansion of the constant terms of
an Eisenstein series.

The restriction of the sum in the Langlands formula to special represen-
tatives of the coset W/W,, for the constant terms expanded in the minimal
parabolic subalgebra also has consequences for the expansion in maximal
parabolic algebras as described by formula (5.4.2). The constant terms in
this case are described by certain representatives of the double cosets via

/ EC (), g)dn

Np; (Z)\Np;_ (R)

= Y M(w, M)l @l ) gl ((m)ljo,g), (5.4.3)
wEWjO\W/Wi*
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see also [111]. These are typically very few in number. The rooted tree of
Weyl words mentioned above can be contracted further in this case thanks
to the double coset structure.

5.4.1 Degeneration limits for D > 2

In or above D = 3 dimensions (i.e., up to and including Eg), the func-
tions in (3.5.1) have been successfully subjected to the consistency require-
ments [62,73,74]. There are also direct checks of their correctness for some
dimensions and parts of their expansions (see [25,26,29] and references
therein) and general considerations on perturbative expansions for functions
constructed from lattice sums (not necessarily satisfying a Laplace equa-
tion) [112]. We will provide a heuristic derivation of the parameters entering
(3.5.1) below.

As mentioned above, the three limits are referred to as the decompacti-
fication, perturbative and the semi-classical M-theory limit; and we restrict
ourselves to taking the limit for the constant terms of the Eisenstein se-
ries. What ‘taking the limit’ means is to calculate the constant term of an
Eisenstein series with respect to a particular maximal parabolic subgroup
P;,. Formally, this corresponds to integrating out all the components of
the unipotent radical N, of P;, as in (5.4.2) and (5.4.12). We will use the
following abbreviated notation for this integration

D _ D
/ 5(p,q) = / 5(p7q)dn . (544)
Jo Njo /G(Z)NNj,q

For D > 3, the parameter r of the GL(1) factor in the decomposi-
tion (5.4.1), acquires a different physical meaning in each of the three degen-
eration limits, and can be expressed in terms of fundamental string theory
quantities. In [72-74| general expressions for the three degeneration limits of
5(’870) and 5([1)70) were given for D > 3, which we will now summarise.
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Decompactification limit:

In this limit r4/¢py; > 1, which corresponds to making one of the circles
of the torus very large in units of the (D + 1)-dimensional Planck scale. In
terms of maximal parabolic subgroups this limit corresponds to singling out
the node d + 1 in figure 2.3, i.e., jo = d + 1, leading to G4 = E4. One has
the standard relation between Planck scales (J-] = (D~ %ry. The constant
terms of the coefficients 5(’870) and 5([1’70) behave in the following way under
[72-74]

expansion with respect to the parabolic subgroup P, ,

g%? Td oD Tad s-b
gp o~ 24 & +1+( ) 5.4.5
/d+1 ©.0) = K%D lpsr OO Cpi1 ( )
and

2o (. N ry 127D
D-‘rl D+1 D+1
/ Ello = 2D\ ¢ +1510) " <€D+1) Eoo) * (5D+1) 7

where the ~ symbol indicates that numerical factors in front of each term are

not shown explicitly. The first terms on the right hand sides of the equations
(5.4.5) and (5.4.6) are easily understood from decompactification from D to
D + 1 dimensions; the other terms are threshold effects [72]. Since one can
relate £py1/lp to rq/lpy1, the expansion on the right hand side is in terms
of a single variable that parameterises the GL(1) in the Levi factor My, =
GL(1) x E;. In our conventions we have r = (rq/lpy1) P~/ P=2) =1, /0p.
This yields the following decompactification rules

/d By = P VER PO DgR Ly 12D (5.47)

These have to be fulfilled by the automorphic forms for D > 3. The coeffi-
cients of the last terms, that we call pure threshold terms, are known to be
proportional to £(8 — D) and £(12 — D) respectively [72,73].
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Perturbative limit:

This corresponds to the weak string coupling expansion in D dimensions
yp — 0. The D-dimensional string coupling yp is given by yp = (52 /(P2
and the string scale £, is kept fixed. Then one requires [72-74]

/ T R (@ + B0 ) (5.4.8)
1

(0,0) — K%TD Y d+1;9-1
and
020 (¢(5)
D .t S0(d,d) 50(d,d)
[5(1’0) - ngQfD < YD +Ed+1;%+1 +yDE3;2 ) 5 (549)

respectively. Here, the first terms are fixed by string tree level calcula-
tions and the SO(d,d) Eisenstein series on the right-hand side are maxi-
mal parabolic Eisenstein series as in (3.3.9) and our (non-standard) labelling
convention for the SO(d, d) series is induced from removing node 1 from the
E4.1 Dynkin diagram 2.3. That is, the d nodes are labelled 2 through to
d + 1. Again, one can recombine the pre-factors by using the definition of
the string coupling and then expand in terms of a single variable which is
associated to the GL(1) factor in the Levi decomposition. We choose here
r=(l;/lp)?* = y%/(Q_D). We note that the string coupling yp can be defined
alternatively in terms of the ten-dimensional string coupling g and the string
compactification volume V; via yp = g2¢4/V.

Semi-classical M-theory limit:

In this limit one takes the volume of the whole M-theory torus large. In terms
of the E4.1 Dynkin diagram 2.3 this corresponds to the maximal parabolic
associated with node 2. The relevant conditions on the Eisenstein series are
then [72-74|

/5D ~ Vi1 4C(2) + (fﬁl)dil ESLd+) (5.4.10)
) (0,00 = €?1€8D—D Vit 1;3 o
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and

_1 _5_
&0 CiVarr [ (Vi ) oL@y (T ST+
o (O L ¢4 -3 \Z T L3
8

gd—i—l a+1
+( = ) Epy ). (5.4.11)

Vi1

The first term in (5.4.10) for the R* term is determined by a one-loop com-
putation in D = 11 supergravity [26], there is no similar term for 9*R*
in (5.4.11) since this term does not exist as a curvature correction term in
D =11.

The parameter r of the GL(1) in the Levi factor of the maximal parabolic
defined by node 2 of the F;,; Dynkin diagram is then given by either r =
(Va1 JO5Y3 = (Vg1 053/ P=2) swhere 572 = {9, /Vyi1, or equivalently
72 = Vy1/03,05 P, Here, Vg, 1 denotes the volume of the M-theory torus (in
contrast to the string theory torus Vj).

5.4.2 Degeneration limits of Kac-Moody Eisenstein se-

ries

Through a generalisation of formulae (5.2.15) and (5.4.2) one deduces that
the constant term in the expansion of an affine Eisenstein series with respect
to a particular maximal parabolic subgroup P;_ is given by

/ ES(X; §,v)dn

Np, (Z)\Np,_ ()

- ¥ M(@,X)é(“”)jo'm”df’”EGd((m&)L ,g). (5.4.12)
Jo

weWj, \17\)\

where in all the formule \ = 23/A\Z-* — p, so that we are again restricting to
maximal parabolic Eisenstein series. Note that the Levi factor in this case is a

finite-dimensional group. The projections (A)|;, and (), are different now
from those in (5.4.2) since the Cartan subalgebra includes the additional
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direction d. (\)j, has to be a weight of the Levi factor L;, and has two
directions less than J; it is a combination of the simple roots of G4. By
contrast, (A)|;, is a combination of the fundamental weight Ajo and the null

root . The Levi factor explicitly reads

L, =GL(1) x GL(1) x Gq4 (5.4.13)

and the pre-factor of the Eisenstein series in (5.4.12) now depends on the two
parameters of the GL(1) factors. One of them is v and we will call the other
one r below.

In the affine case the expressions above follow from [76]. We will assume
that they also hold mutatis mutandis in the general Kac-Moody case (where
one does not need v and they are therefore similar to 5.1.1 and 5.4.2) and
provide some consistency checks on this assumption with our calculations.
The validity of (5.2.15), i.e. convergence of the series, is in proven [76]
for the affine case. In particular it was proven that (5.2.15) possesses a
meromorphic continuation, which extends the convergence condition stated
for equation (3.4.3) to Re(A|6) > —ht(#).

5.4.3 Degeneration limits for D = 2

When D < 3 the limits above require additional care. This is due to the
absence of a natural Planck length in D = 2 space-time dimensions as nor-
mally defined through the two-derivative Einstein—Hilbert action; nor is it
possible to define a Kaluza-Klein reduction from D = 3 to D = 2 such that
one ends up in D = 2 Einstein frame, since the gravitational action is con-
formally invariant. Higher derivative terms on the other hand are of course
accompanied by length scales.

Decompactification limit:

In order to understand the decompactification limit from D = 3 to D = 2 one
has to properly understand the relation between three-dimensional and two-
dimensional gravity theories. This has been well-studied for example in the
context of the Geroch group that describes the infinite symmetries of D = 2
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(super-)gravity (such as Fy). The set-up was pioneered in [52,59,113, 114]
and reviewed for example in [115,116].

The three-dimensional metric decomposes as (setting to zero the off-
diagonal pieces for simplicity)

ds3 = \"2ds; + p? (dx3)2 : (5.4.14)

Here, A7! is the conformal factor of the two-dimensional metric and 22 is the
compactifying direction. It is not possible to choose A such that the D = 2
theory is in Einstein frame. One necessarily obtains two new parameters just
like going from FEjg to Fg enlarges the Cartan subalgebra by two generators. In
the context of the Geroch group, A is associated with the central extension
and p with the derivation [58,114,117]. The same is true here. The two
parameters in (5.4.14) are given by

A:i—z, p:Z—z, (5.4.15)
where 7,4 is the size of the decompactifying circle and we will refer to ¢5 as the
two-dimensional Planck scale. The two-derivative Einstein—Hilbert term in
D = 2 is not accompanied by the (arbitrary) length scale ¢5, but the higher
derivative terms are. The decompactification limit now consists in sending
p — oo and we choose to keep A fixed.

Performing the usual analysis of higher derivative couplings we obtain for
the Eisenstein series the decompactification relations

/ Eo) = A (PE(0) + 1)

d+1

/d ) 5(21,0) ~ A\ (pg(gl,()) + P45(30,0) + Plo) ; (5.4.16)
+

where we have again suppressed numerical coefficients and augmented them
by threshold terms as in (5.4.5). The decompactifying node is d + 1 = 3
and unlike in other dimensions it is not possible to relate A and p. The
precise numerical coefficients can be found in the detailed expansions of the
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Eisenstein series below where we will also see that requirement (5.4.16) forces
us to modify the naive guess for the D = 2 Eisenstein series.

Perturbative limit:

The definition of the string coupling as above (5.4.8) fails in D = 2; instead
one should use the one at the end of that paragraph, i.e. yo = ¢2£5/Vj.
Similar to the decompactification limit, there is no way of relating the two-
dimensional string coupling s to the two-dimensional Planck length /5, both
appear as independent parameters. The perturbation limit on the automor-
phic form in terms of the SO(d, d) invariant parameters y, and fs/¢5 is then

0\° (2¢(3) S0(8,8
&2 2(—5) <—+E.(’)>,
/1 (0,0) D " 9:3

6N\ (¢ SO s
/5(21,0) = (6_) ( ) + Ly o 3/2E3;20(878)) : (5.4.17)
1 D Y2

Semi-classical M-theory limit:

The relations (5.4.10) and (5.4.11) remain valid except that it is again impos-
sible to relate the two-dimensional Planck length /5 to the other variables and
there are two independent SL(9,7Z) invariant expansion parameters, namely
5/01; and the volume of the M-theory 9-torus Vy/(9;:

01\ ° v Vo 3
/ o) = (%) 425 + (ﬁ) B (5.4.18)
2 2 11 11 2

and

10 4 1
0\ " Vo\ ° 5L Vo \? LsL9) Vo \? LsL9)
£2 ~ E>* — ) FE — | E5 .
/2 (0 <€2> G b2 " 0 L3 " Gt -
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5.4.4 Degeneration limits for D =1

Since the dimension of the Cartan subalgebra of Ej is equal to the number
of simple roots of the algebra most limits are easier to describe than in the
FEy case.

(Double) decompactification limit:

The first limit we study is the decompactification limit which is the only
problematic case since it involves two-dimensional gravity and the associated
problems of conformal invariance. Equivalently, the maximal parabolic is
the affine Ey. For the algebraic relation between Eg and Ejq see also [118|.
More precisely, it is again impossible to relate the ratio r4/¢s to the ratio
of Planck scales ¢; /¢y since the two-dimensional Planck scale is ill-defined.
But we note that the (pure) threshold terms in (5.4.5) and (5.4.6) are well-
defined here since /5 drops out. We did not determine from first principles
the decompactification limit from D = 1 to D = 2 but instead a direct
decompactification of two directions from D =1 to D = 3. The general rule
for this double decompactification (as implied for instance by (5.4.5)) is

/d | Eloo) = v + vy TP o8 8D (5.4.20)
+ K

/d X dE(JiO) ~ Uéog([l)féf + U§D+1)(67D)TD745£B)2 + 021:)(11713)7&1),10
+1,

+ vgr(j_DS(jngr)Q + 05(7_17) 4t (5.4.21)

where the expansion parameters are given in terms of the 2-torus volume

oy 1/6 oy 1/10
e (P ()

8—D 12—D
ED KD

and one of the circles with r = ry4/fp as before. In the case D = 1, these
relations do not make explicit reference to the Planck length in two dimen-
sions and remain well-defined. We will use the relation (5.4.20) to check our
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proposal for the Eo(Z) Eisenstein series. Relating the Eo(Z) series to Eq(Z)
we will also derive a single decompactification rule for D = 1 that will turn
out to be subtly different from (5.4.6) in the twelve derivative case. A double
decompactification corresponds to a parabolic subgroup that is not maximal.

Perturbative limit:

In this limit, the maximal parabolic subgroup has as semi-simple part the
finite-dimensional Dy = S0O(9,9) T-duality group. The definitions of the
expansion parameters in the cases D > 3 continue to hold so that we imme-
diately deduce

07 2¢(3) 50(9.,9
51 ~ ”s E ( ) )
/1 (0,0) gz ( n + 10;2

50(9,
~ 23)y; +yi By (5.4.23)

and

gll C(5)

1 b 50(9,9) 50(9,9)

fitho= ( g Doy Tk )
S0(9, 50(9,

~ (O + i B+ it By Y (5.4.24)

where y; = (/1 was used. Our expansion parameter r below is related to

Yy via r = yi.

Semi-classical M-theory limit:

The maximal parabolic has now semi-simple factor A9 = SL(10). The ex-
pressions (5.4.10) and (5.4.11) are still valid and become

/51 ~ Vio 1(2) + (ﬁ)wEsfg(lO)
2 ©.0) 6,0 Vio L3

~ 40(2 Vio) ™ Vio 7/10ESL(10) 5495
~ 4¢(2) g + g 13 (5.4.25)
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and

1 5 8
Vo [ (V1o \ P Lsz(10) GIN™ _srio) GIN™ _sri0)
gLy~ ——— — E + [ =— E — B
/2 (1,0) g%l g%(l) -1 Vio 1;5 + Vio 3;2

Vi 11/10 Vi) 7/6 Vi 65
()" (%" g0 ()" g
€1 2 2 ’
(5.4.26)

Our expansion parameter r below is related to the fundamental quantities
via 7 = (V10/030)1/3.

For explicit expressions (including numerical coefficients) of the three
degeneration limits of the 5(18’0) and the 5510) in D = 2,1 and 0, we refer the
reader to the appendix E.



Chapter 6

Fourier coefficients of Kac—Moody
Eisenstein series

This chapter deals with the Fourier coefficients of Eisenstein series, as defined
in chapter 4. In particular we will derive a reduction formula which allows one
to compute explicit expression for degenerate Whittaker vectors. We then
provide explicit examples of such Whittaker vectors for maximal parabolic
Kac-Moody Eisenstein series defined on Fg and FEjj, and in the appendix F
also for Eisenstein series on the finite-dimensional groups Eg, E7 and Eg.

The chapter contains excerpts from the unpublished article II.

6.1 Degenerate Whittaker vectors

In this section we will present a method for calculating Whittaker vectors
Wy (x, a), when the Fourier kernel ¢ is non-generic, cf. section 4.1.2. For this
we will discuss the general schematics of the integral for F, ,,, which allows us
to derive a reduction formula that expresses Wy, in terms of non-degenerate
Whittaker vectors of subgroups G’ C G determined by the degenerate char-
acter 1.

114
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6.1.1 Parametrising the contributing Weyl words

According to the discussion in section 4.2.2, the contributing set of Weyl
words for which F,, , can be non-zero, is given by

Cy :={weW|uwll' <0}, (6.1.1)

where II' C II denotes the simple set of roots a for which m, # 0 (cf.
also (4.1.10)). We have added the subscript ¢ as a reminder that the defini-
tion of the set depends on .

We are now going to characterise the special set Cy, of Weyl words (6.1.1)
in a more practical way. The set of simple roots II’, together with its com-
plement IT’, partition the set of simple roots II of G. The subgroup Gy of
the full invariance group G is then defined by the Dynkin diagram given by
IT". The Weyl group associated with II" is denoted by W'.

The statement that we are going to prove in the following is that the
elements of our special set of words can be written in the following form

wel, — w=uww,, (6.1.2)

where wy is the longest Weyl word of W’ and w, is a carefully chosen rep-
resentative of the coset W/W'. We refer to the construction method of the
particular coset representative that we require as the orbit method which
was explained in detail in section 5.2.3. We recall that a given Weyl element
w € W has of course many seemingly different representations in terms of
products of other elements. What we are claiming here is that all w that
satisfy wIl’ < 0 have a representation in the form given.

Let us first characterise the representative w, required in (6.1.2). By its
very definition, the action of the longest Weyl word wj of W’ makes all roots
of G, and in particular the simple roots in IT'; negative. In order to satisfy
the condition (6.1.1), one can then add further Weyl words w, to the left of
wy, provided they satisfy the condition

wea! >0 for all o € 11" (6.1.3)
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Then the combined word w = w.wy{, will map all simple roots in II’ to negative
roots. Weyl words w,. satisfying (6.1.3) can be constructed as carefully chosen
representatives of the coset W/W'.

6.1.2 Reduction formula

We now return to evaluating the contribution F,, to a degenerate Whit-
taker vector given by (cf. (4.2.13)) and use that w = w.w], € Cy with the
particular construction of the preceding section. Associated with the word

w = w.w is a parametrisation of the elements n in the integration domain

Ny, cf. (4.2.10). We write

ny =nn' with n. € N.(A) and n’ € N'(A), (6.1.4)

where N’(A) is the unipotent subgroup of the minimal Borel B’(A) of the
subgroup G'(A) determined by the set of simple roots II' that indicate the
directions on which the degenerate character ¢ depends non-trivially. The
set N.(A) involves the remaining positive roots y that are mapped to negative
roots by the action of w but that are not positive roots of the subgroup G'.
The degenerate character i) does not depend on n. since N.(A) does not
involve any of the simple roots of G’. We can thus write the integral for F,,
as

Fuwp(X) = / /X(wcw()ncn')w(n’)dncdn'. (6.1.5)
No(A) N7(A)

The argument of the character y can be rewritten as
x(wnen') = x(wnaw twn') = y(wnaw ™ wna), (6.1.6)

where we have used w = wow). Moreover, nak = w)n' arises from the
Iwasawa decomposition in the group G’ and we have used the right-invariance
of x under k in the last step. Now, it is important that w, satisfies the
condition (6.1.3) which implies that, even though it is no longer in G'(A),
the element w,.naw, ' = na is an element of the Borel subgroup B(A) and in
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particular @ = w.aw, . In the next step we conjugate both 7 and a through
to the left in the argument of y. For n this induces a uni-modular change
of integration variables for n.. By contrast, for a this generates a non-trivial
Jacobi factor when passing past wn,w™! that we can determine in a way
similar to (4.2.20). The relevant manipulation is:

/X(ﬁwncw_lé)dncz / x(hawn.w ) a " dn,

Ne(4) Ne(A)
= / Y(wnawHave Medn, (6.1.7)
Ne(A)
where we have used y(na) = a** and a = w.aw.'. Now, a does not

depend on n. and we can take it out of the N.(A) integral. None of these
transformations have any impact on the argument of the character ¢ (n’).

The result of these steps is that F, 4 factorises according to

Fuwlx) = / x(wewhne)dn, - / (! YRyt (6.1.8)

Nc(A) N'(A)

where the character y' : B’(A) — C* is given by the (projection of the)
weight w; '\ + p. The Jacobi factor arising from @ has been transformed
back into the expression x’'(wyn’) in the second integral.

The two separate integrals in (6.1.8) are of well-known types. The N.(A)
integral is identical to the integral that determines (the numerical coefficient
of) the contribution of the Weyl word w,. to the constant term (in the minimal
parabolic) (4.2.24) and therefore yields the factor M (w; !, \). Referring back
to (4.2.17), we recognise the second integral as the non-degenerate Whittaker
vector for the subgroup G'(A) C G(A) for a generic Fourier character ¢ on
N’ of the Eisenstein series determined by the weight w_ '\ + p, projected
orthogonally to G'(A), and evaluated at the identity group element. The
expression (6.1.8) for F, 4, then evaluates to

Fuw(X) = M(w, ', W (w '\, id) . (6.1.9)
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Equation (6.1.9) is the expression for an arbitrary character ¢. For the
Whittaker vector Wy, we require (6.1.9) evaluated at the twisted character
Y* according to (4.2.23). Combining all elements as prescribed by (4.2.23)
we obtain the following final expression for the degenerate Whittaker vector

Weha)= Y @™m0 M (w W (w A, id) (6.1.10)

wew( € Cy

where the factor in front of F, 4« was determined in (4.2.21). Here, W,
denotes a Whittaker function of the G’(A) subgroup of G(A). Therefore,
Whittaker vectors of non-generic characters ¢ can be evaluated as sums over
Whittaker vectors of subgroups on which the character is generic. At local
places this then can be evaluated using the Casselman—Shalika formula.

6.2 The collapse for degenerate Whittaker vec-
tors

As the next step, we will now combine the collapse mechanism with the
formula (6.1.10) for degenerate Whittaker vectors. This will allow us to cal-
culate explicitly some degenerate Whittaker vectors for Kac-Moody groups.
The following applies to (maximal) parabolic Eisenstein series.

Looking at the reduction formula (6.1.10), we first construct the set Cy
defined in (5.2.30). In the context of (6.1.10) the elements of C, should be

1

interpreted as w,". We also know that all words w € C, contributing to

(6.1.10) are of the form w = w.wy, cf. (6.1.2). Therefore we form set
Cop = {w, ' € Cx |wawy € Cy} = Cy N (Cr) ™ . (6.2.1)

This set typically contains a very small number of elements for the special
values of A, i.e. i, and s, that are relevant in string theory. The sum in the
reduction formula is restricted to C .

This is not the only simplification that arises. Further terms can be absent
for a degenerate Whittaker vector when the factor Wj.((w;'A)er,id) van-
ishes. This always happens for example when the projected weight (w; )
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is equal to —p’ (p’ being the Weyl vector of G’). The reason is that for this
case one is computing the Whittaker vector of a constant function which van-
ishes. Similar cases can arise when (w;')\)g is such that generic Whittaker
vector on (G’ vanishes, i.e., the projected weight corresponds to a degenerate
principal series representation.

6.2.1 Explicit results for some Kac-Moody groups

We now present the results that we obtained by implementing the formalism
above for Eq, Fiy and Fj; for the special cases i, = 1 and s = 3/2 and
s = 5/2 in (3.3.8). See figure 2.3 for our labelling convention of the £,
Dynkin diagram. We note that in appendix F we give examples of Whittaker
vectors of Eisenstein series defined on the finite-dimensional groups Ejg, E7
and FEx.

In all cases, we denote an element of the maximal torus by

a=[]v", (6.2.2)

where H; is the standard Chevalley generator of the simple root «; in Bour-
baki labelling and n is the rank of the group.

What we will display in the sequel are the degenerate Whittaker vectors
that have only support along one simple root, such that the set II" of sec-
tion 6.1 contains only one simple root. The subgroup G’ is then of type SL(2)
and its Whittaker vectors are modified Bessel functions. For a degenerate
character ¢ with only non-zero charge m,, for a single simple root o we write
the corresponding Whittaker vector as

Wia(xX',id) := By m, (a®) (6.2.3)

2 /_ —s’ [e%
= |aa]3 1/2|ma|1/2 028/_1(ma)Ks/,l/Q(Qﬂma\a )

§(2¢)

Here, s’ parametrises the projected character x’ on SL(2) by X' = 2s'A" — p/
where A’ is the unique fundamental weight of SL(2). In some of the examples
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below, it will also be useful to have the definition, leym = £(25') By m, of a
differently normalised Bessel function at hand.

We present the result in table form and use some short-hand notations
for the Whittaker vectors of the subgroups A;. While most of the examples
presented are for Whittaker vectors associated with one non-trivial charge,
we also include one example with two-nontrivial charges.

Ey with s = 3/2

Whittaker vectors of the E?

132 Eisenstein series, associated with one non-

trivial charge.

77Z) W¢(X3/27 CL)

(m,0,0,0,0,0,0,0,0) || vivy'Bsa, (vivy')

’U2B ’m(’l)2’l)71)
(0,m,0,0,0,0,0,0,0) Q%T“
£(2)v4B1 m (v307 1o;?)
(0,0,m,0,0,0,0,0,0) £3)

(0,0,0,m,0,0,0,0,0) 04 By 9 m (V305 'v5 og )

£(3)
v2B m 2oyt
(070307 07 m’()? 07 070) = E((3§U2 : )
€(2)vg B_1/2,m (v3vs 'v7 ")
(070707 07 07m7 07 070) : 6(3)1}'%6 7

(0,0,0,0,0,0,m,0,0) || vivg®B_1,, (vivg'vg')

f(4)v§v§4B,3/27m (vgv;lvgl)
£(3)
5(5)1}81}‘53_2,,” (vgvglv_l)
£(3)

(0,0,0,0,0,0,0,m,0)

(0,0,0,0,0,0,0,0,m)
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Eyg with s =3/2

Whittaker vectors of the EF1

1:3/9 Eisenstein series, associated with one non-

trivial charge.

(8

Ww(X?)/Qv a)

(m,0,0,0,0,0,0,0,0,0)

0207 Bsjom (v%v;l)

(0,m,0,0,0,0,0,0,0,0)

v3Bo,m (v3v; ")

£(3)

(0,0,m,0,0,0,0,0,0,0)

£(2)vaB1,m (vgvl_lvz ! )
£(3)

(0,0,0,m,0,0,0,0,0,0)

5 2 —1 -1 —1
v4Bl/27m(v402 vy v )

£(3)

(07 O’ O? 07 m’ O? 07 07 07 O)

vgéo,m(vgvzlvgl)

£(3)ve

(0,0,0,0,0,m,0,0,0,0)

f(Z)Ug’B,l/Q,m (vgvglv;l)
£B3)v?

(0,0,0,0,0,0,m,0,0,0)

4,,—3 2,,—1,,—1

(0,0,0,0,0,0,0,m,0,0)

—4 —1, —1
5(4)1131)9 B,g/z,m<v§v7 Vg )

H6)
£6)v§vig B-2.m (v3v5 oo )
(0,0,0,0,0,0,0,0,m,0) o)
5(6)1)7 375/2,7n<v2 v_l)
(0,0,0,0,0,0,0,0,0,m) T

There is obviously a simple pattern associated with this set of degenerate
Whittaker vectors.

We have also verified that the Whittaker vectors for less degenerate char-
acters v are all identically zero. All the non-vanishing Whittaker vectors are
associated with subgroups of type A; = SL(2).
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FEyy with s =5/2

Whittaker vectors of the ElEé(}Q Eisenstein series, associated with one non-
trivial charge. The expressions for the SL(2)-type degenerate Whittaker vec-
tors are much longer in this case and we do not give all of them. An illustra-
tive example is obtained for the instanton charge vector (m, 0,0, 0,0,0,0,0,0,0).
There we have

) 2\ @By (R) @By, (2)
W¢(X5/27a) = U?“?oBfl,m (11_3) + £(5)vy £(5)vs

E@uioiBy,, (1) @iy, (2) By, (2)

T T we o
EB3)PEB_1,, (—1> §(4)vivgB_1 (i)

+ £(5)v2 - £(5)viy
6¢(3)(ve — log(4mvs) + 2log(vg) — lOg(U7))U?U6B7%,m (g)

+

m€(5)

(6.2.4)



6.2. THE COLLAPSE FOR DEGENERATE WHITTAKER VECTORS123

FEyo with s =5/2 and two non-trivial charges

Whittaker vectors of the ElEé‘}Q Eisenstein series, associated with two non-

trivial charge. We note that all the non-vanishing Whittaker vectors are of
type Ay x Aj.

¢ W¢(X5/27 (l)

2 2
£(3)v3v3B_1/2,m, (%) B_1,ms (%)

(mlam2707070a 0)0707070) £(5)v3

2 2
3,3 v o4
£(2)vivyB_1/2.m, (%)B—l/zv"@ (W)
¢(5)v3v3

2 ~ 2
v{v6 B_1/2,m, (%) B1/2,ma (7237)
¢(5)

(m1,0,0,m4,0,0,0,0,0,0)

(m1,0,0,0,0,ms,0,0,0,0)

’U2 ’U2
£2)ofviB_1/2,m, (%) B_1/2,m, (7117%9 )
£(5)03

(mla 07 07 07 Oa 07 07 ma, O’ O)

£(3)viviB 15 v
1Y —-1/2,mq v3 —1,mg vgv1(Q

(m1,0,0,0,0,0,0,0,my,0) GENA

E(DvivioB_1/2,m, (%)B—s/z,mg (%90)
£(5)

(mla 07 07 07 Oa 07 07 07 0’ m2)




Chapter 7

Conclusion

In this final chapter, let us offer some reflections on the results about Kac—
Moody Eisenstein series and their role in string theory presented in this
thesis. We will also formulate some open questions for future research and
give a short outline of the quantum cosmological billiards approach, in which
automorphic forms, and possibly Eisenstein series, also play a role.

In this thesis we have defined Eisenstein series on Kac—-Moody groups and
in particular on the infinite-dimensional U-duality groups. We have done so,
not only for the affine Kac—-Moody group Ey, but also for the hyperbolic group
E1y and the Lorentzian group Fi;. It should be noted that our approach
does not, of course, satisfy a mathematician’s definition of mathematical
rigour. For instance we have only provided a rather heuristic argument for
the convergence of the Eisenstein series that we consider. It would certainly
be desirable to obtain a full proof of convergence in the future. Such a proof
would likely also stimulate mathematicians’ interest in the subject of Kac—
Moody Eisenstein series and foster more and fruitful exchange between the
two fields.

A major part of our work was to demonstrate that special (maximal
parabolic) Kac-Moody Eisenstein series have a clearly defined Fourier expan-
sion in complete analogy with Eisenstein series defined on finite-dimensional
groups. We have given proof of this through explicit calculation of the zeroth
and higher order Fourier modes for different examples. In our opinion this
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should be seen as a first step towards a more complete understanding of the
structure of the Fourier expansion of such Eisenstein series and will poten-
tially contribute to a better understanding of the non-perturbative structure
of string theory.

It should be clear from the bulk of this thesis that the results we have
presented are of a rather mathematical nature. It still remains open for
future work to investigate how these results can be fully accommodated and
interpreted within string theory. Let us now mention more specifically some
open problems which we think pose some interesting questions for future
research.

As mentioned before, a central motivation for our work is to obtain control
over the non-perturbative regime of string theory. Taking the calculations
presented in chapter 6 as a starting point, one could for example try to extract
instanton measures, like the one in (1.2.9), for the case of higher rank finite-
dimensional U-duality groups, but possibly also for the Kac-Moody cases.

We explained in section 2.2.1 that the particular Kac-Moody Eisenstein
series that we study appear in string scattering amplitudes. It would there-
fore be interesting to see if it is possible to develop a deeper physical un-
derstanding of scattering processes in D = 2 and 1 dimensions. The central
question here is, of course, what the relevant physical degrees of freedom are
in these dimensions.

In compactified type 1IB string theory or M theory, the number of gauge
fields which appear grows with the number of toroidally compactified direc-
tions. In D > 4 dimensions, the charged particles associated with the gauge
fields can be explained in terms of the wrapping of branes on the compact-
ified directions [21|. For D < 4 dimensions the associated branes would be
required to have tensions of the order of the third, fourth power or higher of
the inverse string coupling g;'. This would, however, contradict the fact that
the tension of a brane can at most be the square of g; !, for its surrounding
space-time to be non-singular in the weak coupling limit. Therefore an expla-
nation in terms of wrapped branes does not apply and the associated states
have been termed ezotic [21,119]. Upon quantisation, the charges associated
with the gauge fields are expected to obey a Dirac-Schwinger-Zwanziger type
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quantisation condition, see for instance [49|, thus forming a discrete charge
lattice. In D > 4 this method of quantisation holds, but runs into unre-
solved problems in D < 4 dimensions, linked to the appearance of the NUT
charge, the dual charge of the mass, similar to the electric-magnetic duality.
At present no method of quantising the NUT charge exists. However, link-
ing back to the discussion of Eisenstein series, it has been shown for some
cases that it is possible to define these series as sums over certain subsets of
the lattice charges [120]. It would therefore be interesting to investigate the
charge lattice for the case D = 3. This includes studying the possibility of
quantising the NUT charge and writing down conditions which restrict the
expected 248 charges of Fg(Z) to appropriate subsets.

Finally we would like to mention one other possible application where
automorphic forms, and possibly Eisenstein series, play a role. Namely, this
is in the context of the quantum cosmological billiard approach [121].

The classical version of this approach, based on early investigations of
Belinski, Khalatnikov and Lifshitz (BKL) [32,122,123], states that the be-
haviour of space-time near a space-like singularity is described through the
motion of a fictitious, massless particle (the ‘billiard ball’) in the abstract
Wheeler-DeWitt superspace. The motion of the particle is geodesic and con-
strained to a convex region of superspace whose boundary is determined by
infinitely sharp potential walls. The geometry of the billiard domain depends
on the type of theory analysed. Surprisingly, it turns out that the billiard do-
main is given by the fundamental Weyl chamber of a hyperbolic Kac-Moody
group [61]. In the case of eleven-dimensional supergravity, the Kac-Moody
group is found to be Ejy. Upon quantising the classical cosmological bil-
liard system, the particle is promoted to a wave function which satisfies the
Wheeler-DeWitt equation. It was shown in [34] that when restricting to the
Cartan subalgebra degrees of freedom this wave function is an automorphic
form with respect to the Weyl group of Eiy. In order to take into account
the full infinite tower of degrees of freedom, the wave function should be an
automorphic form of the full £ group. Therefore, it might be interesting to
study Eisenstein series defined on Fg, and possibly other automorphic forms,
as candidate wave functions for the quantum cosmological billiard system.
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Appendix A

Algebras and roots

In this chapter we briefly present some of the mathematical background,
in particular definitions concerning Lie algebras, which are frequently being
made use of throughout the thesis. For further details we refer the reader to
the following list of literature [88,124,125].

A.1 Lie algebras

A Lie algebra g = g(A) is defined via a Cartan matrix A;; and a set of gener-
ators of the algebra, satisfying a certain set of relations. The Cartan matrix
is an r X r matrix, where r is the rank for the algebra and the components
A;; satisfy the rules: A; =2, A;; =0 & A =0, Aj; € Z<p for i # j. For
finite-dimensional Lie algebras g(A) the Cartan matrix is positive definite,
ie. A > 0. For general Kac-Moody algebras the assumption of positive
definiteness is dropped.

The generators of the algebra are given by Chevalley-Serre generators,
which are formed by triplets of generators {E’, E*, H'} which satisfy the
standard relation of an s[(2, R) algebra:

[F', E']=H', [H E.]=4+2E.. (A.1.1)

For a general Lie algebra of rank r, there are r such triplets which generate
the entire algebra. In this case, the relations (A.1.1) satisfied by the triplets
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are generalised to
(LB = 05H; [ BL = £AEL and [HH) =0, (A1)

which then also specify commutations amongst generators of different Cheval-
ley triplets. Finally, there are also the Serre relations which are satisfied

(ad EL) M (EL) =0 (i #)). (A13)

The set of all H', with i = 1,...,r span the Cartan subalgebra b (CSA),
which constitutes the maximal set of commuting generators, satisfying

[H',H’] =0. (A.1.4)

Simple roots «; are defined as the eigenvalues which appear in the adjoint
action of the generators H* of the CSA on the raising and lowering operators
E*_ respectively

[H’,E'] = +a;(H))E". (A.1.5)

Since the CSA is r-dimensional, the «; are vectors with r components, which
constitute a basis of the root space and they are elements of the dual space of
b, which we denote by h*. The components of the Cartan matrix are defined
as products of simple roots according to

2(ailey)

(cvif i) ’

where the brackets, (-|-) denote the symmetric, bilinear form of the algebra
g. As a map it is defined as

(-]): b xp"—=C. (A.1.7)

In this thesis we are only dealing with simply-laced algebras (all roots have
the same length), we define that (o;|o;) = 2. Furthermore, there is a nice
diagrammatic way to depict all the information contained in the Cartan
matrix. This is known as a Dynkin diagram. The first step is to draw a
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dot (node) for each simple root. In the second step, one adds links between
the nodes. In the simplest case, relevant in thesis, two nodes corresponding
to the simple roots «; and «; are connected by a single line if |A;;| = 1,
otherwise the nodes are unconnected.

Apart from the simple roots there are also roots « of the algebra which
are non-simple and which can be written as a linear combinations of the
simple roots

o= mia, (A.1.8)

with either all m¢ > 0 or all m* < 0, such that the root « is called a positive
or a negative root, respectively. The raising an lowering operators E¢, cor-
responding to some non-simple root «, are defined in terms of commutators
of the form [E', E,] with i # j and the components of a follow from

[H',E¢] = +a(H")EY . (A.1.9)

Employing the symmetric, bilinear form, we define the set of fundamental
weights A; € b, such that

(ailAy) = bij - (A.1.10)

Alternatively to (A.1.8), we can also express a roots « as a sum of the fun-
damental weights as

a=> ph. (A.1.11)

In this linear combination, the coefficients p* are referred to as the Dynkin
labels and a root is sometimes expressed through the short-hand notation

[p17p27-"7p7°]-

A.1.1 The Weyl group

The entire set of roots A of g can be generated from the set of simple roots 11
through the action of the Weyl group, W = W(g) of g. The Weyl group is a
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reflection group with generators w;, where ¢ = 1, ..., n. The generators w; are
called the fundamental Weyl reflections. Some general Weyl word w can be
built-up from the successive action of several generators. For example w =
w;,....wi,w;, , where the length of the Weyl £(w) in this case is 7. Geometrically
speaking, the Weyl group allows one to reflect a weight A on the hyperplane
which is orthogonal to some root « of the algebra. This reflection can be
calculated from the following formula:

a. (A.1.12)

A.2 Subalgebras

In this section we will discuss the definitions of some subalgebras and group
decompositions that are particularly relevant in the work presented in this
thesis. For this it is useful to define the subspace g, of g, according to

go=z€g: |Hzl=aH)x,VHEY. (A.2.1)
Then we can write

g=hoPa.. (A.2.2)

aEA

A.2.1 Borel and parabolic subalgebras

The Borel subalgebra b of an algebra g is defined as

b=bo P g.. (A.2.3)

&GAJ,—

A (standard) parabolic subalgebra p is a subalgebra of g that contains b.
Parabolic subalgebras p decompose in general as the direct sum of the so-
called Levi subalgebra [ and the unipotent radical u

p=Ilou. (A.2.4)
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A convenient construction of parabolic subalgebras is obtained by selecting a
subset II; of the set of simple roots II. This induces a corresponding subset
I'; of the set of positive roots A, where the I'; are those positive roots that
are linear combinations of the simple roots in II; only. The Levi subalgebra
and unipotent radical are then defined as

(M) =ho P g (A.2.5)

acl M uU-T"

and

wWlh) = P e (A.2.6)

acAL\I'

respectively and the parabolic subalgebra is given by

pi)=be P .=t P g (A.2.7)
(=T1)

There are two types of parabolic subalgebras which are of importance for us.
The first is the minimal parabolic case, which is obtained, when IT; = () and
corresponds to the Borel subalgebra b. The second is the mazimal parabolic
case for which II; = II\{«y, }, where «;, is a (single) simple root. Using an
abbreviated notation we denote maximal parabolic subalgebras by p;,. We
will denote the group associated with the subalgebra p;, by F;,. Similar to
the decomposition of p shown in (A.2.4) we also have

P, =L, U;,, (A.2.8)

*

where L;, and U;, are the groups associated with the subalgebras [;, and u;,.
Example A.2.1. Langlands’ decomposition of GL(n,R)

We illustrate the concept of different parabolic subgroups for the example of
GL (n,R), see .e.g [126]. Each standard parabolic subgroup of this group is
associated to a partition of the integer n, i.e. n = ny+ng+...+n,, wherer is

the rank of the parabolic subgroup Py, n,.. n., represented by a block-diagonal

.....



134 APPENDIX A. ALGEBRAS AND ROOTS

matriz

-----

Pn1,n2 ny — . . (A29)

In Langlands decomposition, we can write this matrixz as a product of the Levi
subgroup L and the unipotent radical U

Pnl,ng ..... ne — Lnl,ng ..... Ny Unl,ng ,,,,, N (A210)
where
I, ~* * [, O 0
Un1 ng,...,Np Lm ) ) Ln1 N,y [nl !
* 0
[nr [nr
(A.2.11)

The I,,, are n; x n; unit matrices and l,,, € GL(n;,R).

In the case of a minimal parabolic subgroup the partition of n is n; = 1 for
allv=1,2,....,7 = n and for the maximal parabolic subgroup we have r = 2
and eitherny =1, no =n—1o0rny =n—1, ng = 1. Then the matrices for

the two cases are

*x % *
*x ... X
P .1 = (A.2.12)
n times
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and
* x * * * x
* L. ok
Py = , sy P = . (A.2.13)
- * .. K %
x L..ox *
for the minimal and mazimal parabolic subgroup, respectively.
A.3 Iwasawa decomposition
The general form of the Iwasawa decomposition of a group G is
G =NAK, (A.3.1)

where N is an unipotent groups, A is an abelian group and K an orthogonal
group.

Let us specifically state the Iwasawa decomposition of SL(2,R) and thereby
define a canonical parameterisation for it, which appears at various places in
this thesis. A group element g € SL(2,R) decomposes according to

B (1 2\ [(y? cosf sinf
g—nak—( 1>< y~12) \—sinf cosf) (A.3.2)



Appendix B

Summary on p-adic numbers

In this appendix, which is an excerpt from article IV, we provide a short
introduction to the theory of p-adic numbers.

B.1 p-adic numbers

Let p be a prime number. The p-adic integers Z, are formal power series in
p with coefficients between 0 and p — 1

r€Z, & x=xp"+ap'+... witha; €Z/pZ =2{0,1,....,p—1}
(B.1.1)

They are a ring. Since all coefficients in the expansion are positive it is maybe
not so obvious how the additive inverse(=subtraction) works. As an example
consider the equation x + 1 = 0 that should have a solution over Z,. The
inverse is given by the infinite power series where all coefficients are equal to

p— 1.

The associated number field is given by the p-adic numbers Q, that are
formal Laurent series in p with finite polar part. They can be thought of as
the completion of Q with respect to the p-adic norm |z|, that is given by

—k

iz, =p" & r=apf a4 witha, £0. (B.1.2)
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The integers in this space correspond to
Z,={x€Q,]l|x|, <1}. (B.1.3)

They correspond to exponents k > 0 of p. This shows that the p-adic integers
are compactly embedded in @Q,. The norm is multiplicative and satisfies a
stronger triangle inequality than generic norms, namely

|z + y|, < max(|z|p, |ylp) - (B.1.4)

This property is called ultrametric property and a space with a norm of this
type is called non-archimedean in contrast with archimedean spaces satisfying
the usual archimedean triangle inequality. The p-adic norm of 0 is |0|, = 0.
The p-adic norm is also referred to as a valuation of Q or Q,.

Another way of defining the p-adic norm is through the following defini-
tion for an ordinary rational number x € QQ:

jzlp = p7", (B.1.5)

where k € Z is the largest integer such that x = pFy with y € Q not
containing any powers of p in its numerator or denominator (in cancelled
form); this is often stated as p* divides z. It is from this construction that
one obtains , as the completion of Q and one obtains an embedding of Q
into Q,. The definition implies that for a prime ¢ and k € Z

—k .
b ptitp=ygq
= B.1.
4"y { 1 otherwise > (B.16)

Example B.1.1. We consider the p-adic expansion of the rational number
xz%é@forsz and p = 3.

For p =2 one has |z|y = 2! = 2 and hence % is not a 2-adic integer. As

an element of Qo one finds % =1-27! as the expansion.
1

For p = 3 one has |z|3 = 3° = 1 and hence 5 is a 3-adic integer. Its

expansion of the form (B.1.2) is 3 =2-3°+ %", 3".
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The set of multiplicatively invertible elements in Z, will be denoted by

Zon={x€Zy,|a " exists in Z,} = {x € Z, | |z], =1} = {z € Q| |z|, = 1} .
(B.1.7)

They correspond to those z in (B.1.1) for which zy # 0. Similarly, one defines
the set of multiplicatively invertible elements in Q) as Q.
The case p = oo is typically associated with standard calculus via

Qw =R (B.1.8)

p < oo is sometimes referred to as the non-archimedean place and p = oo as
the archimedean place.



Appendix C

v parameterisation

We require a parameterisation of N{“jy}. In other words we seek a construction
of the set of roots {7y}, for given w. We employ a construction obtained
in [108], which we will describe in the following.

C.1 Definition and identities

For this we fix a reduced expression w = w;, w;, - - - w;, for the Weyl word w
of length ¢. The subscripts refer to the nodes of the Dynkin diagram of G
and w; are the fundamental reflections that generate the Weyl group. Then
one can explicitly enumerate all positive roots that are mapped to negative
roots by the action of w as follows. Define

Vi = Wi, Wi,y + = Wiy Oy (C.1.1)

where «;, is the 7;th simple root. We note in particular v, = «;,. That this
gives a valid description of the positive roots generating foy} can be checked
easily by induction. Therefore we have

{Vw={a>0|lwa<0}={y :i=1,...,¢0(w)}. (C.1.2)
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We also record that there is a simple expression for the sum of all these roots
in terms of the Weyl vector p

N A=p—wlp (C.1.3)
which can again be checked by induction. Furthermore, we record that
WL+ o+ ) =w'p—p, (C.1.4)

where w' = w;, wy, - - - w;,, with n < /.

It is important to emphasise that by the construction (C.1.1), the set in-
herits a canonical order of the roots, such that {7}, = {71, 7, .., 7¢} denotes
an ordered set.



Appendix D

Minimal parabolic expansions in
D <2

In this appendix, we give the minimal parabolic expansions of the Fy, Fig
and Fp; maximal parabolic Eisenstein series with s = 3/2 and s = 5/2. Note
that in each case the Eisenstein series which we expand do not include the
additional normalisation factors of 2¢(3) and ¢((5) shown in (3.5.2)-(3.5.4).
In the expressions below, 7g is the Euler-Mascheroni constant and A denotes
the Glaisher-Kinkelin constant. We note that the ‘number’ of terms here does
not need to strictly agree with table 5.3 since taking the limits to s = 3/2
and s = 5/2 in the factors M (w, \) can produce several terms out of a single
Weyl word w. The first terms in all expressions is that of the identity Weyl
word and corresponds to the string perturbation tree level term.

The variables r; in the expressions below are defined by parameterising
the Cartan subalgebra via a basis of simple roots. More precisely, we let
the function H(-) of (3.2.9) be H(a) = Y _;_, rjc;, where r is the rank of the
algebra (excluding the derivation in the Eq case) and «; are the simple roots.
With this choice, the (minimal parabolic) constant term of the maximal
parabolic Eisenstein series with weight A = 2sA; — p starts out with r3%. r;
is the string coupling, the other r; are different combinations of the physical
parameters.
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D.1 Ey Eisenstein series

The constant terms of the maximal parabolic Eisenstein series Efg /9 in the
minimal parabolic read

o r_§ N s N 2myery 211y log(4mrs) N Arrylog(rs)  2mrylog(rs)
rz  45r3C(3) - <(3) ¢(3) ¢(3) ¢(3)
2mrylog(ry)  wr? N mwr:  wrl 4rrird 3r3¢(5) (D.1.1)
¢(3) 3r¢ 3 3 94505¢(3)  2mra((3) o
Ey

The constant terms of the maximal parabolic Eisenstein series £ /o in
the minimal parabolic read

o s N ry ~4C3) log(ry)rer? — 2((3)*rirs 477r8 N 2m3r2r?
15rd 1503 ¢(5) mrar3¢(5)  T0875riC(5) = 9rgreC(5)
8rbrf 2mirs 2m3r2r? 472 log(r7)rers 2m3rirs
+ 42525r2¢(5)  135r3¢(5)  9rgri(5) B 3r1¢(5) 9r4r1((5)
27r37’$7’§ 27T3r§r§ 27?57";17“;‘ 27T47“§1 327r87"51,0
0reC(5)  OraC(5) | 2025:3¢(5) T 135r1C(5) | 14033250°((5)
27?57"‘717“3 27r47“52)7‘§L 2mirirg 27r47“§7“3 21 (3)

T 2025305¢(5) | 135r603C(5) | 135m0%C(5) | 13503C(5) | BrsC(5)
2mr3C(3)  2mrZr3C(3)  2mrEriC(3)  2wPriC(3)  2mr3C(3)  2m?riril(3)

3r3¢(5) 3rs((5) 3raC(5) 45r3¢(5)  3riric(5) 45r3¢(5)
2mriC(3)  2mr3riC(3)  2mrdr3C(3)  2mr3ric(3)  2m*rirdd(3)
4512¢(5) 3reral(5) 3r113¢(5) 3r2¢(5) 45r203¢(5)
2m?rirgC(3) | 2rgrg(3)? | 2rgri(3)* | rg¢(7) | Trg¢(9)

45v3¢(5) mr2ré¢(5) 7raC(5) 6r3¢(5)  12mr§¢(5)

+

4rirers 4rer3¢(3)
21 ~ log(4 2reris o) 21 ~ log(4

3r1C(5) (’YE+ og(rs) — log( 7r7’5> + 05) (’YE+ og(rg) — log( 7773))
4rers

3C(5) (71«3 — log(4mrs) + 2log(re) — log(r5)>

Ay yrd

+ —451)3{4(59) (’YE — log(4mrs) + 2log(ry) — log(rs) — log(r2)>
47r27“$7“4

+ () (18~ logldmrs) + 2log(ry) —log(r) ~ log(rs))
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+ ézzgf <27E — 241log(A) — log(r7) + 21og(r5) — log(rs) — log(r2)>
47;%7"4((5()3) <7E —log(4nrs) + 2log(ry) — log(rs) — log(r2)>
8?(5) £ (1 — 4 log(2) + 4105(2)? + log(x)” +2(—7s + log(4)) log(rr)

+log(r7)(—vg + log(4mrs)) + 2(ve — log(4mry)) log(rs)
+ 2log(r6)(ve — log(4mrs) 4+ 2log(ry) — log(rs) — log(rs))
— (e — log(4mry))(log(rs) + log(rz)) + log(rs)(2log(m) + log(rs)

— 2log(ry) + log(rs) + log(rg))) (D.1.2)

D.2 FE,, Eisenstein series

The constant terms of the maximal parabolic Eisenstein series Efé% in the

minimal parabolic read

e e N 4rrird s mor? 2myers | w3 2mrglog(dmrs)
PR 94briC(3)  45r¥C(3)  3reC(3) - C(3)  3ric(3) ¢(3)
Arrylog(ra)  2mrglog(rs)  2mralog(ry) | m?r3  3r3¢(5) | 15r7p((7)
¢(3) ¢(3) ¢(3) 3¢(3)  2mrgC(3) - 4m((3)

(D.2.1)

The constant terms of the maximal parabolic Eisenstein series Ef:g% in
the minimal parabolic read

5 5,4 .5 .2 5 5.2 5.3
T g T T e g+ e ot ¢ T
L Bl®) ot s ac@)loalrnd | 2@
2 202513,r3¢(5) ~ T0875r%C(5) ¢(5) mrir3¢(5)
32m8r g0 2mirar? 2m3r2r2 8orf 2713 (3)
+ 140332577,((5) * 135r3,16C(5) — 9rsreC(5)  42525r3((5) 3rsC(5)
2miry 2mirgra 2m3rrs 472 log(ry)rers 2m3rirs

T 1353¢(5) T 1353,m1C(5) 9 (5) 3¢ (5) 9rar1C(5)
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2mirars 2m2rar3C(3)  2mrZr3C(3)  2mdrEZrs  rIC(T) 7r3c(9)
135T10C( ) 457’10C( ) 3rs¢(5) IrsC(5) 67’?((@ 127””8« )
21rii¢c(11)  2mw3rir2 275r3ry 2mirs 2m2raC(3)  2mirgrdd(3
8m2((5) 9ryC(5)  2025r3¢(5)  135r1C(5)  45r3C(5)  4bri,riC(5
2mrgri(3) | 2mri¢(3) N 2mrgr3(3) | 2mriric(3) | 2mrsC(3) | 2mri((3
3rireC(5)  3ric(5) 3"’97’1C( ) 3r4¢(5) 45r3¢(5)  3miric(5)
2mrgriQ(3) | 2m°rira((3) | 2rdrgC(3)® | 2rgri((3)? 10T8C( )
3r3((5) 45r3¢(5) mrar2(5) 7raC(5) 2737y
4T6T%<<3>
¢(5)

)
)
)

2, 2
Admerers

37“1C<5)

<ny + 2log(re) — log(47r7"5)> + <'yE + 2log(re) — log(47r7"5)>

47;%2;55()3) <7E —log(4nrs) + 2log(ry) — log(rs) — log(r2)>
4;}7(“6’)”2 (6 = tog4mrs) + 2log(re) — log(rs))

4m3riry (

457’10<(
T2riry

3T8C

5)
6
7”10 <7E log(47rs) + 2log(rs) — log(rg)—log(?"g))

—log(4mrs) + 2log(ry) — log(rs) — log(r2)>

75 — log(4mrs) + 2log(r) — log(rs) — log(r2) )

e (29m — 2110(4) — (o) + 21og(r) — log(r) — ()
+ 82{;;4 (7% — dyglog(2) + 41og(2)* + log(m)* + 2(—7e + log(4)) log(7r5)

+ log(r7) (= +log(4m7s)) + 2(ye — log(4mry)) log(ry)

+ 2log(re)(ve — log(4mrs) 4+ 2log(ry) — log(rs) — log(rs))

— (v — log(47rz7))(log(rs) 4 log(ra))

+log(rs) (2 log(r) + log(rs) — 2log(r) + log(rs) + log(r2)) ) (D2.2)
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D.3 FE;; Eisenstein series

The constant terms of the maximal parabolic Eisenstein series E1 32 in the
minimal parabolic read

7"2 27578, 4yl mr] T} 2VETTy wr?
T ) T e, | B T KEn T @) | KO
7r27’§ 3r3¢(5) 1577,¢(7) _ bmrlog(dmrs) | 127rylog(ra)
3C(3)  2mrgC(3)  4mr§((3) 3¢(3) 3¢(3)
_ bmrylog(rs)  6mrylog(ra) D31
30) 30) (D31

The constant terms of the maximal parabolic Eisenstein series E1 gl/Q
the minimal parabolic read

s Arir§ o owrd AxESel  wrdgrs  rdgrE o owrh rigr: rigrs
315rf, 1513, 315rg 15rdrd  rhre - 1572 b
n 3rioreC(3) | 3rigric(3)  4¢(3)log(rr)reri = 2¢(3)*rirt
T T ¢(5) 77C< )rirs
B 472 log(r7)rers 2211279r}2 3278, r§ 3278rd0
3r1g( ) 1915538625C(5) | 89302513,C(5) | 140332513, (5)
8767, rd 275rgrd 4rr8 2rr2r3C(3)  8mPrb r?
T 12525r3¢(5) T 20253r3¢(5) | TORTEIIC(B) | Brec(5) 28351,( )
2mhrgr? 2m3r2r? 8rord 2mhrg 818 r3
13573,r6C(5)  9rsreC(5)  4252513¢(5) 1357“{’{(5) 2835r1¢(5)
N 2mirgrs 2m3rir? 2mir2r:  8uorf rl 2rirgrd  2mirird
135r3,m1¢(5)  9rsriC(5)  9ryrC(5)  2835¢(5)  135r3,¢(5)  9rsC(5)
2m3r2rs 2morars 2miry 2mrdC(3)  2mrdC(3)  8m3r8ric(3)

97’4(( ) 2025r3¢(5)  135r¢(5)  45r3((5) 3rsC(5) 945r2¢(5)
2m2rgrdC(3)  2mrdr3C(3)  2mric(3) N 2mraraC(3)  8m3rd ric(3)
45r%973¢(5)  3rgreC(5)  3r3C(5)  3rgric(5) 945¢(5)
2m2rgr3C(3)  2mrEr3C(3) 2w riC(3)  2mriC(3)  2mwriral(3)

5

56 (

457"10C( ) 37"44( ) 457"2“ ) 3r1r3¢(5) 3r3¢(5)
27 7‘1 3) 2T8 ¢(3 )2 27"8 (3)2 97"‘;’07"§’C(5) 27TTIOC(7>
45r3¢(5) mrgr((5) mr3¢(5) 2mdriyrg 63¢(5)
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reC(7)  4rdryC(3)
6r5C(5) * 13¢(5)
r3C(9) | dn’rers
12775¢(5)  3¢(5)
4reriC(3)  dmirers
+ ( <(15) + 37‘1C(5§> (’YE + 2log(rg) — log(47rr5))
2,2
+ Z;Z—(g; <2”YE — 241og(A) — log(r7) + 2log(rs) — log(rs) — log(rQ))
21r{5C(11)  6riyry
32rleE) o,

_|_

(7E — log(4mrs) + 2log(ry) — log(rs) — log(r2)>

(%} — log(4mr7) + 2log(rg) — log(rg,))

<7E —log(4mrs) + 2log(ry) — log(rs) — log(r2)>

4.6
B HA D
4 3,.4
457;%222;)) <7E - 10g(47T7”5) + 2 lOg<T4> — 10g(7’3) — 10g<7~2>>
Am2rir,
e et
+ 82(52;4 <1Og(r7)(_'yE + log(4nrs)) + 4log(2)? + 2(—vg + log(4)) log(775)

Ve — 4y 10g(2) + 21og(rs) (ym — log(4m7s) + 2log(rs) — log(rs) — log(r2))
+ 2(yg — log(47mrs)) log(ry) — (g — log(4mr;))(log(rs) + log(r2))

+ log(7)?* + log(rs) (2log(7) + log(rs) — 2log(rs) + log(rs) + log(rg))>
(D.3.2)



Appendix E

Maximal parabolic expansions in
D <2

In this appendix we state the explicit expressions for the constant terms in
the various maximal parabolic expansions of maximal parabolic Eisenstein
series invariant under Eg(Z), E19(Z) and E11(Z). In the course of this inves-
tigation, we determine in particular the precise numerical coefficients in the
various degeneration limits. The results of this section were obtained by im-
plementing the algorithms described in section 5.4.2 on a standard computer.
We use the shorthand (5.4.4) throughout.

When writing down the expressions below one finds that for some terms
it is important to consider which particular Weyl word is used to represent an
element of the double coset W; \W/W,._, appearing in the sum on the right-
hand side of (5.4.3) or (5.4.12). Although the sum (5.4.3) is independent of
the choice of representative, some Weyl words used as coset representatives
can yield coefficients M (w, A) that appear to be infinite. In this case, the
corresponding Eisenstein series goes to zero so that the product is finite.
This choice of having different possible coset representatives also manifests
itself in the functional relation (5.2.2). We have verified that our choice of
representative gives finite Eisenstein series contributions.
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E.1 FE, Eisenstein series

All maximal parabolic expansions of the Fy Eisenstein series (3.5.2) will nec-
essarily have two expansion parameters, namely r coming from the choice of
the maximal parabolic and v that enters the definition (3.4.3). The addi-
tional factor of v in (3.5.2) is crucial here for obtaining the right result in all

cases.

E.1.1 Decompactification limit:

4C(6) 6

EX o =1%vEL o+ == E.1.1

a4l (0,0) (0,0) 3((2) ( )
2 16¢(10)

82 — 10 83 Z(2 10 483 10,,10 ) E12

These agree perfectly with (5.4.16) when the expansion parameters are iden-
tified as r = A and v = p. The final terms are consistent with the expected
behaviour |72, 73].

E.1.2 Perturbation limit:
2 3, 16 3 ;50(8,8)
: Eo,0) = 2C(3)vr” + ﬁf(él)?” Egs ™, (E.1.3)

64 soss) . 1€(6) 5 1 _soss
/1 Eloy = COBr’ + ﬁc(z%)rf)E%( ) + mr% 1By (E.14)

These are consistent with (5.4.17) when the expansion parameters are iden-
tified as r = (€;/¢3)* and v = 1/yps.

E.1.3 Semi-classical M-Theory limit:

/5(20,0) = 4C(2)7°2v + 2C(3)r2v2/3Eig(9) , (E.1.5)
2
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s 4 s
/5(21’0) _ C(5)7"10/3U4/9E1é(9) + 1—5C(g)C(2)7’10/3’U1/9E3;§(9)
2 b

7C(6) 10/3,,10/9 SL(9)
3C(2) E1 KO (E.1.6)

These are perfectly consistent with (5.4.18) when the expansion parameters
are identified as r = (£1,/05)? and v = Vy /3.

E.2 FE,) Eisenstein series

We now turn to the expansion of the Fjy Eisenstein series (3.5.3) in the three
limits of section 5.4.4.

E.2.1 (Double) decompactification limit:

Mathematically, there is no difficulty with performing the expansion of the
Ey Eisenstein series in its Fy parabolic. We give the results thus obtained as
well as those of an expansion in its Fg parabolic, corresponding to a double
decompactification. The first E;, Eisenstein series (3.5.3) satisfies

_ 5¢(7) _
Eboy =0 EL o+ = u T,
/10 (0,0 (0,0 4¢ (2)
¢(7)
&l a®&} + 355 40(6) a® 5+—(v_7, E.2.1
o= a€on + e + G (E21)

where a is the second parameter that arises in the double expansion. We see
that this behaviour is consistent with (5.4.20) for D = 1 when the expansion
parameters are identified as @ = vy and v = 1/r. We also note that the
single decompactification is consistent with a naive application of (5.4.5) to
D = 1 when ignoring the pre-factor. Performing the same analysis for the
O'R* series in (3.5.3) one obtains

1 _ 12 C<5) —6 2 7C(11) —11
Jy B = S Sy

2(2) 16(10)
/10,9“”(11’0):@10 (551’”* 5 V00 G5 "
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+ a0 <ﬂ53070) + L)) v5> + 7C(11)v_11. (E.2.2)

4¢(2)709 T 3¢(2)¢(2) 16¢(2)

This is again in agreement with (5.4.20) with the same identifications as
above. However, now there is a difference that is related to the single decom-
pactification limit: The term involving the two-dimensional R* contribution
5(2070) does not appear with the right power of v to be consistent with (5.4.6)
without the prefactor. More precisely, the v pre-factors from (5.4.6) should
be v=1, v™° and v~ rather than v=!, v=% and v~!*. This cannot be compen-
sated by the additional factor of v appearing in (3.5.2) since it affects both
the first two terms. It would be interesting to investigate whether this means
that this particular threshold contribution in D = 2 behaves differently from
higher dimensions. We also note that the final terms are consistent with the
expected behaviour [72,73].

The double decompactification in the second lines of (E.2.1) and (E.2.2)
is naturally also consistent (mathematically) with applying the Fg decom-
pactification of (E.1.1) to the first lines.

E.2.2 Perturbation limit:

C(7
/500 =2((3 22;7’7/2Efoo799 ’ (E.2.3)
_ 7((11) /2 250(9.9) | 7C(6) §,.50(0.9)
[8(1 0) <<5)T5 + 16C(2) 11 2E10 11 + 3C(2) T6E3;2 . (E24)

This is consistent with (5.4.23) for r = y3.
E.2.3 Semi-classical M-Theory limit:

/25(10,0) = 4¢(2)r* + 2C(3)r21/10Efé(10) , (E.2.5)

7¢(6
/25(1170) _ 3§22§r33/10ESL + () 7/2ESL(1O + C( )C(3 )T18/5E§;§(10)‘

(E.2.6)
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Looking at (5.4.25) we find perfect agreement for r = (Vyo/¢1%)'/3.

E.3 [FE;; Eisenstein Series

In this appendix, we give for completeness the maximal parabolic expansions
of the F,; Eisenstein series (3.5.4) using the shorthand (5.4.4).

E.3.1 Decompactification limit

The decompactification limits corresponding to the Levi factor GL(1) x Ejg
for the s = 3/2 and s = 5/2 series are

_ 12¢(6)
/5?00)—7” 6‘(;100)"‘ - re,

710 QC( ) 16C(12) 12
/510) Eho T3 G )5 0t iy (E.3.1)

The powers of r and the structure of the resulting Eisenstein series are
in agreement with (5.4.7) applied naively to D = 0 when one replaces the
‘O-dimensional Planck length’ ¢y, by the radius of the first direction and ¢;
according to the standard Kaluza—Klein rules. The final terms are consistent
with the expected behaviour [72,73].

E.3.2 Perturbative limit

12
/8(00 _2<- C( ) 4E19104(10 10)’
16((12) soao0) . 4C(4) 7 _soo,10
/1 = O + gy B+ Sy BT (B32)

The powers of r and the structure of the SO(10, 10) Eisenstein series are in
agreement with the naive application of (5.4.8).
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E.3.3 Semi-classical M-theory limit

SL(11
/25(00’0) = 4§(2)7“2 + 7“24/11E1;3/(2 ) ,
0

4¢(4 AC(2
/5(170) _ C( )T36/11ESL(11) + C(5)T40/11ESL(11) + C( )C(3)r42/11E;§(10’10).
2

3 1;1/2 1;5/2 15
(E.3.3)

The powers of r and the structure of the SL(11) Eisenstein series are in
agreement with the naive application of (5.4.10) and (5.4.11).

E.3.4 Four-dimensional limit

As a final application, we consider the Levi decomposition of Fy; with Levi
factor SL(4) x GL(1) x E; as appropriate for an interpretation in D = 4. This
corresponds to removing node 8 from the Dynkin diagram. Expanding the
constant terms of the Eisenstein series (3.5.4) under the associated maximal
parabolic one obtains

3¢(5) 5 ps1
/85(00,0) = 7”35(40,0) + - T2E9;—(2) ,

C(3> SL(4 75(5) SL(4
/8 Eroy =100 T _ﬂ PP EgE V€l 0 + 15 rt/ 2E10;£3)/2

+ %ﬁ)r?’EjL‘;) . (E.3.4)
Here, r = (VOI(T4)£8/€3)1/3 parameterises the GL(1) factor in the Levi part
as usual and the (maximal) Eisenstein series on the right-hand side belong to
SL(4) x E7 and we have factorized them. Note again that our (non-standard)
labelling for E,, subgroups is obtained from diagram 2.3 by removing nodes.
Here, this means that SL(4) inherits the three nodes labelled 11, 10 and 9
while F; has nodes 1 up to 7. The leading terms are the pure E; Eisenstein
series as they appear in D = 4 and we have used the relation 3.5.1.
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Let us point out that the work [127] also studies parameters related to
‘middle’ nodes of the F,, diagram (like our r here) and deduces the first terms
in our two expansions (E.3.4).

The constant terms of the SL(4) Eisenstein series can now be analysed
in their minimal parabolic, leaving only dependence on four dilatonic scalars
(including r) and E; Eisenstein series. Then one sees more clearly the ex-
pected feature that the F;; series knows about the relevant series in D = 4
but also about threshold contributions. As always with derivative corrections
the term with the highest number of derivatives (here 9*R') in D dimensions
induces the terms with up to that number of derivatives in higher space-time
dimensions. In this sense, going to higher rank F, groups combines the
information of derivative corrections of different orders in single objects.



Appendix F

Degenerate Whittaker vectors in
D >?2

In this appendix, we apply the formula (6.1.10) to some finite-dimensional
cases of physical interest. These are associated with the groups Ege), Er(7)
and Egg) and the particular choices of character x that arises in string the-
ory. The same convention outlined in section 6.2.1 for labelling the Dynkin
diagram, defining the Bessel functions, etc. ..., also apply in this appendix.
We give the results for s = 3/2 only and denote the associated character as
X3/2, but of course the method is applicable to any value of s. The resulting
expressions just get longer. All examples are for a charge vector, with a single
non-trivial charge.

F.1 FEs with s=3/2

Whittaker vectors of the ES

1:3/2 Eisenstein series, associated with one non-

trivial charge.
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F.2. E; WITH S = 3/2

(3

Wy (X3/2, a)

(m,0,0,0,0,0)

v3v; " Bsjom (vagl)

(0,m,0,0,0,0)

v% Bo,m (v%vgl)

£(3)

(0,0,m,0,0,0)

£(2)vaBi,m (U%vflvzl)
£(3)

(0,0,0,m,0,0)

5 2 —1 -1 —1
U4Bl/27m(v4v2 vy vy )

£(3)

(0,0,0,0,m,0)

U%Boym(vgvzlvgl)

£(3)ve

(0,0,0,0,0,m)

5(2)112371/2,1%(’”%”571)
£(3)

F.2 FE; with s =3/2

Whittaker vectors of the E7

trivial charge.

1;3/2

(8

Wy (Xs /25 a)

(m,0,0,0,0,0,0)

vivr ' By, (vivy)

(0,m,0,0,0,0,0)

v2Bo,m (v3v; ")

£(3)

(0,0,m,0,0,0,0)

&(2)vaB1,m (vgvl_lvzl)
£(3)

(0,0,0,m,0,0,0)

= 2, -1 -1 —1
vaBy g m (Vivy v3 v5 )

£(3)

(0,0,0,0,m,0,0)

vglg’oﬁm(vgvgl'ugl)

£(3)ve
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(0,0,0,0,0,0,m)

v?B_Lm (v?vﬁ_l)
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Eisenstein series, associated with one non-
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Whittaker vectors of the E1E§ /2 Eisenstein series, associated with one non-
trivial charge.

,lvb W¢(X3/27 CL)

(ma 0707070707070) U§U;133/2,m (’U%U;;l)

’UQB ’m(’UQ’Uil)
(07m707070,0,0,0) 20€T24
§(2)vaB1,m vuy ot
(0,0,m,0,0,0,0,0) s 15((3)31 )
(0,0,0,m,0,0,0,0) v4él/z,m<§glv;1v?)
UZB m 1}2 —1,-1
(0507 070>m,0,0,0) 520, 5((35;‘)’;1 vg )
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y Uy, U, Uy U,y s U, 3
(0,0,0,0,0,0,m,0) LUREIG N,
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