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Introduction

Networks are used extensively to represent relationships in diverse disciplines
such as social science, economics, and systems biology. The general abstraction
of entities represented by nodes and the connections between entities modeled
by edges can be extended in many ways: Networks can be directed or undirected.
Their edges can be weighted, either reflecting a similarity between the nodes
they connect, an interaction between those nodes, or our confidence in these
two. Networks may contain interesting structures or motifs that characterize
them (Alon, 2007). A common way of analyzing networks via such structures is to
partition them into clusters (or modules, communities) where similar or interacting
nodes are grouped together. This is sometimes known as Graph Clustering. Such
a grouping can help identifying the underlying structure of the network and
extract insights from it. For example, modules in a protein—protein interaction
(PPI) network can correspond to protein complexes (Babu et al., 2012; Pang
et al., 2008; Srihari and Leong, 2012). The function of proteins on which little
data exists can be estimated by their clustering with other, more well-researched
proteins. In social networks, clustering can help identify groups of individuals
having common interests or common characteristics (Borgatti, Mehra, et al.,
2009).

Accordingly, rich literature on clustering (also: community detection) exists
and many methods have been developed for this task, varying in their definition
of the optimal partition and in the approach taken to compute it. However, in
most of these methods, the partition must be a full partition, meaning every node
must belong to exactly one module. This constraint both limits the classes of
networks that can be clustered, and the insights that can be gained from them.

In this thesis we propose a new and more flexible model for networks that
is free from these limitations. Our networks have two parts: a modular region,
which can be fully partitioned into individual modules, and a transition region,
containing nodes that cannot be assigned to any module. The proportion between
the sizes of the modular and transition regions can vary. Within the modular
region, modules participate in several types of relationships among themselves
and to the rest of the graph: they can be overlapping, directly connected through
edges, or connected through the transition region. The transition region nodes
can be further characterized: are they simply outliers? Do they serve a role in
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2 Introduction

the communication between the modules? Can we quantify their importance?
These last questions were addressed, for example, by Djurdjevac, Bruckner, et al.
(2011) using the framework of Transition Path Theory (Metzner, Schiitte, and
Vanden-Eijnden, 2009). In this thesis we focus on the quantification of this
different modularity, an extension of the full-partition one.

Within this generalized notion of modularity, we would like to explore
two tasks: Constructing a formal quantification of the modular content in a
network using a modularity score, and developing approaches for finding good
assignments. While each of these two is interesting on its own and has real-world
applications, we can additionally utilize the good assignments we find in the
computation of the modularity score.

Before we define modularity, we must define more precisely what we mean by
modules. Unfortunately, there is no single agreed-upon definition. Instead, there
is intuition: modules are connected subgraphs that are densely connected within
themselves and sparsely connected to the rest of the graph. Here, “densely” and
“sparsely” are a matter of taste. For example, Newman and Girvan (2004) assume,
when defining their modularity Q-score, that the number of edges between nodes
constituting a module in the network to be examined is higher than the number
of edges between those same nodes if the network was rewired, maintaining the
degree sequence. This is a useful definition, but it has some drawbacks, as we
will explain in Chapter 1. We stay therefore with the admittedly hazy notion
of modules as dense, connected structures, and a transition region sparse in
relation to the modules. In this thesis we propose several models for formulating
the notion of modularity more exactly.

The main approach we introduce is one based on random walks and metastabil-
ity. A random walk on a network is a succession of random steps from node to
node. This is a stochastic process, a sequence of random variables X; where X
is the node the process can be found at at time t. It is sometimes imagined as a
person, a random walker traveling from one network node to an adjacent network
node, choosing the next node to visit according to some probability distribution.
Our random walks are Markovian (Bremaud, 1999), meaning that the choice of
next node to be visited depends only on the current node, and not on the nodes
visited before.

We would like to say that modules are metastable sets of the random walk,
that is, on the one hand they are attractive for the random walker, while, on the
other hand, they are well-separated in the sense that transitions between them
are rare: the random walker would stay in one module for a long time, then,
once exiting, will spend only a short time in the transition region before entering
any module.

If it is possible to find such a set of modules and a transition region in a given
network, then we call it modular. A large part of this thesis will be dedicated to
constructing a network modularity score based on this idea. In the remainder
we will discuss alternative models of modularity, notably a combinatorial, graph-



Introduction 3

theoretic approach. We introduce both a score and a way of finding good
assignments, along with examples of biological applications.

In Chapter 1 we begin with real-world motivation for the study of modularity
in networks. We then provide some useful terminology for graphs and matrices.
We subsequently open the discussion on qualitatively defining what it means for
a network to have high or low modularity. The rest of the chapter is concerned
with the state-of-the-art methods of quantifying modularity, demonstrating the
advantages and disadvantages of each and their fit to our notion of modularity
with a modular region and a transition region.

In Chapter 2 we introduce a new random-walk-based approach to network
modularity. We start by providing background on discrete and continuous
random walks, and equate network modules with metastable sets of a Markov
process. We introduce the I, score as a formalization of this notion, then
test its performance to establish that it does not exhibit the same problems
as previously-reviewed scoring approaches. We then formally prove, using
perturbation analysis, that I,,, behaves according to our intuition on some simple
synthetic network classes. Finally, a possible biological application for the new
modularity approach is presented, as we analyze the brain networks of autistic
and typically-developed children and compare the distribution of the I, score
for the networks in these two classes.

Finally, in Chapter 3 we introduce algorithms for finding assignments, dividing
a network into a transition region and a modular region, which is itself fully
partitioned into modules. Such assignments are interesting on their own, but
are also needed as input for the modularity score I,,. We begin by introducing
a method of based on the same principles as I,,, called MSM clustering. We
then propose modifications to well-known clustering algorithms to convert
them to output assignments rather than full partitions. Next we introduce a
similarity score for assignments and use it to evaluate the performance of these
algorithms on a class of benchmark networks, highlighting their advantages and
disadvantages. The rest of the chapter is then dedicated to the introduction of
a combinatorial approach to finding assignments, followed by experiments on
biological protein—protein interaction networks with the goal of inferring protein
complexes. The chapter ends with an outlook and open questions.
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Chapter 1

About network modularity

This chapter provides some useful background for the rest of the thesis. First, we
motivate the study of modules and modularity in networks, citing examples from
social science and biology. Next, we present basic definitions of network-related
terms and concepts that will be used throughout the work. We then begin our
study of modularity by surveying previous work, organizing known modularity
measures into two classes, and detailing their advantages and disadvantages.

1.1 Motivation

Networks representing real-world systems (real networks or real-world networks)
have often been shown to contain modules (or: clusters, communities): dense
regions containing many edges that are sparsely connected to the rest of the net-
work. This is true both for large networks such as the Facebook network (Wilson,
Gosling, and Graham, 2012), containing hundreds of millions of nodes, and for
small networks representing, for example, the workplace dynamics at a sawmill,
containing 25 nodes (Michael, 1997).

In the case of Facebook, the nodes represent user profiles, and edges between
them represent Facebook friendships. Wilson, Gosling, and Graham (2012) offer
a review of the numerous studies performed on this network. A cluster in this
network could correspond to a group of friends, and by analyzing the structures
of such groups it is possible for social scientists to explore issues such as race,
social capital and privacy (Acquisti and Gross, 2006).

On a much smaller scale, the sawmill network (Michael, 1997) is comprised
of nodes representing sawmill workers, and social interactions between them as
edges. Analyzing the structure of this network demonstrated that the workers are
divided by language, and thus helped identify the optimal way of disseminating
information about strike negotiations that will reach all workers.

5



6 1 About network modularity

1.1.1 Clustering in biological networks

One area of research that has greatly benefited from advances in network analysis
in the last years is biology. Cluster analysis in biological networks has received
special attention. Indeed, the analysis of modules in biological networks, whether
functional, protein interaction, or co-expression networks, has proven useful for
gaining insights about the mechanism of the cell (Jeon et al., 2011). Another
example is using modules to coarse-grain a network (such as a biochemical or
metabolic one), allowing to simplify parameter estimation (Riel, 2006). Modules
in dynamical networks can help decoding protein structure (Vijayabaskar and
Vishveshwara, 2012).

Notably, we can study clusters in protein—protein interaction (PPI) networks.
The nodes of PPI networks are proteins, and two proteins are connected by an
edge if they interact. Thus, sets of interacting proteins come together to create
protein complexes (Amoutzias and Peer, 2010; Price and L. Stevens, 1999). These
complexes are the underlying element of many biological processes and together
form molecular machinery that performs a vast array of biological functions.
An example of a complex, Arp2/3, is shown in Figure 1.1. This complex is
made of seven proteins, and is important in a variety of cell functions involving
the actin cytoskeleton. To further the research into protein complexes, many
computational methods have been developed to detect them automatically from
PPIs. The underlying assumption of these methods is that protein complexes
correspond to dense subgraphs of the network, as the proteins in a complex
must interact with each other in order to perform the given function. It is natural,
then, to formulate the problem of identifying protein complexes in PPI networks
as a clustering problem, where the clusters correspond to the complexes. Further
discussion of PPI networks and their analysis can be found in Chapter 3.

Another example of a biological network is a brain network, where nodes
correspond to regions of the brain, and edges between them to similarity or
correlation in measurements (Bassett et al., 2013; Bullmore and Sporns, 2012;
Lynall et al., 2010; Meunier, Lambiotte, and Bullmore, 2010; A. A. Stevens et al.,
2012). There are several standard toolboxes for constructing brain networks from
imaging data and applying various network measures, for example the Brain
Connectivity Toolbox (Rubinov and Sporns, 2010). The brain networks (some-
times: connectomes) of healthy subjects have been shown to exhibit a different
modular structure than those of patients diagnosed with Alzheimer’s disease (G.
Chen et al., 2013), schizophrenia (Lynall et al., 2010), and epilepsy (Chavez et al.,
2010). That is,Tustering these networks (that share the same set of nodes) results
in modules that are somehow different in structure: Having more edges between
modules, smaller or larger average module size, or other such attributes, which
are not easy to quantify.

Even within the same healthy individual, the modular structure changes
when learning a new skill (Bassett et al., 2013), and such differences have even
been linked to varying performance in short-term memory tests (A. A. Stevens
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Figure 1.1: The atomic structure of the bovine Arp2/3 protein complex, PDB
code 1K8K, surface representation (Splettstoesser, 2006). Rendered with PyMol

et al., 2012). We analyze and discuss a set of brain networks in Chapter 2.

The example of the PPI network demonstrates that studying the modular
structure of a single network can allow us insights into how the represented
system works. At the same time, brain networks demonstrate that comparing the
modular structure of several networks can also be useful. In order to investigate
this modular structure it is helpful to qualify and quantify the modularity of a
network, to obtain a meaningful comparison. Thus it is valuable not only to
identify clusters in the network, but also to explain the modular structure, a
theme that will be explored in this thesis.

1.1.2 Types of clusters in real networks

Research into the analysis of modular networks has often been done under the
assumption that the network must be fully partitionable, that is, every node
should belong to at least (often, exactly) one module. However, we know that
real networks are not necessarily fully partitionable. Revisiting the examples
above, we can show that these networks contain nodes which are not naturally
assigned to any module, whether because of the noise that is inherent in the
measurements from which the network was derived, or simply because the
underlying system is not completely modular.

For example, the Facebook network contains many fake and spammy profiles,
up to 8.7%, as specified in the SEC (U.S. Securities and Exchange) filing’. These

profiles exhibit different connectivity patterns, often serving as hubs that connect
many existing groups (Fire, Katz, and Elovici, 2012). The nodes representing

Thttp://www.digitaltrends.com/mobile/8-7-percent-of-facebook-users-are-fake/
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8 1 About network modularity

such profiles would not necessarily fit into modules in the same way as nodes
representing real persons.

Figure 1.2 presents examples of two networks from unrelated fields: history
and linguistics. The first network describes the membership in some organi-
zations in the year 1772. The nodes represent important individuals from the
period, who played some role in the American Revolution, and there is an edge
between them if they are members in the same organization: The Loyal Nine,
St. Andrews Lodge, and others. Simply drawing the network makes it clear
that while there are dense clusters, the network also contains several nodes
(individuals) that cannot be assigned to a single cluster, but rather bridge the
groups. One such person, for example, is Paul Revere, who later played a major
part in the revolution. A simple full partitioning of the network would not
distinguish those possibly important individuals, but rather assign them to some
cluster.

The second network displays the languages of Europe, connected according
to the linguistic distance between them. Here the clusters are labeled by language
category (Germanic, Baltic, etc.), but some clusters do no conform to our intuitive
notion of density: The Greek cluster, for example, contains only one language
(Greek). We can claim that it is not a cluster at all, but rather, as befitting its
historical role, outside of the language clusters, affecting them all.

Although it can be interesting to discuss the modular structure of networks
in various fields, this thesis focuses on the question of network modularity in
biological networks. We begin with PPI networks. These networks contain both
multiprotein complexes and “free” proteins, either because these proteins truly
do not belong to any stable complex or because there is simply not enough data
available about their interactions. Even for the well-studied model organism
Saccharomyces cerevisiae (yeast), about 20% of proteins have no known, assigned
function 2.

In general, nodes outside of modules can take on several roles. In protein
interaction networks, they could, for example, be outliers, as in the case of
the proteins whose function and interactions are not known. Alternatively,
such nodes could be between modules, serving as attachment proteins between
protein complexes (Gavin et al., 2006). They might also create entire structures
that are transient and weakly connected. Studying the modular structure of the
PPI network could potentially tell us something about the way the different PPI
network parts, stable and transient, interact.

From the examples examined so far we see that it is useful to quantify the
modular structure of a network. More specifically, we would like to answer the
question: To what extent does a network contain modules? The answer can come
in the summarized form of a single number, a modularity score for a network.
With such a score we can better understand the organization of a particular
network. We can additionally use it to compare between the modular content

http://www.yeastgenome.org/
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(a) Social Network of the  American  Revolution (1772).
Source: http://kieranhealy.org/blog/archives/2013/06/09/
using-metadata-to-find-paul-revere/
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(b) Languages in Europe. Source: http://elms.wordpress.com/2008/03/04/
lexical-distance-among-languages-of-europe/

Figure 1.2: Two networks from the fields of American History and linguistics,
that naturally decompose into modules and nodes that bridge modules.
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10 1 About network modularity

of different networks, or analyze the emergence of modularity in a network
over time. Such an analysis can be useful, for example, for understanding brain
networks.

Brain networks are indeed natural candidates for modularity analysis: As the
modular structure of a network can differ between sick and healthy, a succinct
summary of it in a single score could potentially be used as a biomarker (Chavez
et al., 2010; G. Chen et al., 2013). A high modularity score can indicate the pres-
ence of modules, thus indicating that clustering this network is meaningful (G.
Chen et al., 2013). For example, Chavez et al. (2010) have shown that when
comparing patients with epilepsy to a control group, the control group exhibited
sparser connectivity between modules than the sick. Similarly, Lynall et al. (2010)
showed that networks measured from schizophrenia patients exhibited “reduced
clustering”.

The modular structure of the network in these cases was measured by the
average clustering coefficient, or by Newman-Girvan modularity (Newman and
Girvan, 2004). Both measures will be examined in Section 1.3. Notably, Newman-
Girvan modularity and its variants have been used frequently to analyze brain
networks, see e. g. Bassett et al. (2013), Meunier, Lambiotte, and Bullmore (2010),
and A. A. Stevens et al. (2012). However, as we will soon see, this measure
does not always capture our intuition of modules as dense, sparsely connected
subgraphs.

We now explore the idea of assigning a network a modularity score which is
high when many of its nodes belong to dense modules, and low if many nodes
do not belong to dense modules at all. We will formulate this notion exactly in
the following sections. We start with some basic definitions that will be used
throughout the thesis.

1.2 Definitions

We will identify networks with undirected graphs and use the terms inter-
changeably. A network is then a graph G = (V, E), where V is a finite set of
nodes and E is the set of edges, which are unordered tuples of nodes, that
is, E C {{vi,v2} | vi,v2 € V}. Two nodes vi,v, are adjacent if there is an
edge {vi,v2} € E. In this case we also say that v; and v, are neighbors, and
v1 € N(v2),v2 € N(v1). A node with no neighbors is called a singleton.

A graph can be edge-weighted, or simply weighted, in which case there is a
function w : E — R that assigns a weight to each edge, w({v1,Vv2}) or simply
w(vy,v2). If vi, vy are not adjacent, we set w(vq,v2) = 0. We can also define a
weight on the nodes w,, : V — R to obtain a node-weighted graph.

The degree of a node v is denoted d(v), and is equal to the number of nodes
in the graph that are adjacent to v. If the network is weighted, we can define the
strength of anode as s(v) =, oy w(u,v).



1.2 Definitions 11

The complete graph, or cliqgue K,, for some n is the graph on n nodes that
contains all possible (%) edges. Every node in Ky, has then degree n — 1.

A node v € V is said to be reachable from a node u € V if there is a set of
nodes x1,X,...,x1 € V such that u = x;,v = x{, and for every 1 < i < 1 there
is an edge {xi,xit+1} € E. In other words, there is a path between v and u. In
undirected graphs, there is a path from u to v if and only if there is a path from
v tou.

A connected component H = (Vy, En) of G is a subgraph of G where there is a
path between any two nodes vi,v2 € Vi, but there is no path between any node
in Vi and any node in V' \ V.

The induced subgraph of G on a set of nodes U C V is denoted G[U]. It is the
subgraph of G containing the nodes in U and all edges between them.

1.2.1 Clusters, modules, partitions, and assignments

We are interested in associating network nodes into different sets usually called
modules, clusters, or communities. Denote a set of disjoint subsets V =V; UV, U
-+ U Vx a full partition of V for some k.

In an overlapping partition V.= V3 UV, U --- UV} we allow V; NV; #£ (. We
will denote the node subsets in a partition partitions or clusters. Here we will
assume that partitions are disjoint unless explicitly stated otherwise, and use the
U notation.

In contrast to a full partition, M = C; U--- U Cx C V are modules of G. The
difference is that not every v € V must belong to a module. The set M is then the
modular region of the network. We also define the transition region T = V\ M. The
partition V = M U T that associates each node either with the modular region
or the transition region is called an MT-partition. When it is further known not
only that a node is a part of the modular region, but also the module to which it
belongs, we obtain an assignment V=C; UCyU---UT.

Thus, we differentiate between clusters and communities as general terms,
and partitions and assignments in the full partition and non-full partition case,
respectively. Further, a fuzzy assignment is an assignment where a node is not
exclusively associated with a single module or the transition region. Instead,
each node is associated with a vector whose entries correspond to the affiliation
of the node to the various modules. An assignment can be obtained from a fuzzy
assignment for example by associating each node with the module it has the
highest affiliation to.

1.2.2 Networks as matrices

The adjacency matrix A of a network has Aj; =1 (or simply a(i,j) = 1) if nodes
i,j are adjacent, 0 otherwise. When we want to take into account edge weights
w: E — R, we will use the weighted adjacency matrix W, where if there is
an edge between nodes 1i,j then W(i,j) = w(i,j), otherwise W(i,j) = 0. Since
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(a) Assignment 1 (b) Assignment 2

Figure 1.3: Two assignments to the same network. The network is comprised of
two cliques with 50 nodes each. The cliques are connected by a single edge. The
nodes are colored green or red according to their assignment.

our networks are undirected, we have, for every i,j € V, A(i,j) = A(j,1) and
W(i,j) = W(j,1). Thatis, A and W are symmetric.

With these definitions, we can now discuss the literature regarding the
evaluation of the modular structure of networks.

1.3 Known methods of evaluating modularity

In the following discussion, we distinguish between global and local methods of
quantifying network modularity. Local methods evaluate modularity by scoring
a particular assignment or clustering of the network nodes. That is, a score is
computed according to how much the clusters of the given assignments are (i)
dense, and (ii) sparsely connected to the rest of the network. It is then possible to
compare assignments via these scores. For example, it is intuitively clear that the
assignment that assigns the nodes in the two cliques to two different modules
is better, or more modular, that one that splits a module over the two cliques
(Figure 1.3).

Consequently, to compute a local modularity score of a network we adopt
the score of its optimal, highest-scoring assignment. A natural way to do this is
to first find this best assignment, and then compute its score. This approach has
the added benefit of producing the assignment itself, which, as we saw, can be
useful for further analysis of the network. Unfortunately, as exemplified below,
computing this optimal assignment can be computationally prohibitive.

Using global measures, on the other hand, we compute a score for the
network directly, without first computing an assignment. This is often done
by utilizing well-known network measures. A popular example is the average
clustering coefficient. The clustering coefficient of v € V quantifies v’s participation
in dense clusters. The idea is that nodes that take part in clusters have neighbors
that are adjacent. Node v and any two neighbors uj, u, that are adjacent induce a
triangle in the graph. The node clustering coefficient is then the ratio of triangles
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v participates in to the total number of possible triangles, that is:

_ 2ijenp) alij)
oett) = NG - INwI - 1)° (-1

Then the global modularity measure for a network is the average clustering coeffi-
cient across all its nodes. The average clustering coefficient (ACC) has been used
to get a sense of the clustering of the graph in biological networks (Lynall et al.,
2010; Ravasz et al., 2002). It has also been extended to weighted networks (Barrat
et al., 2004; Saramaéki et al., 2007). To understand what kind of networks have
high or low ACC, recall that the score is based on counting triangles. That is,
triangle-free graphs (trees) will always have ACC equal to 0. This is a desirable
property, since we would like modules to be dense, and any connected subgraph
of a tree will obviously be only minimally connected.

On the other side of the scale, any complete graph will have an ACC of 1, as
all possible edges, and therefore triangles, exist. This is quite a disadvantage for
our purposes, as we would like our high-scoring network to contain modules that
can be easily broken off, while complete graphs (and complete bipartite graphs,
among others) do not answer this requirement, despite having a perfect average
clustering coefficient. Even outside these extreme cases, the ACC can be difficult
to interpret. The network in Figure 1.4 is a random graph generated using an
Erdés—Rényi (Erdés and Rényi, 1960) model with 100 nodes and probability
p = 0.5 of any node to be adjacent to any other node. This graph, for which
by construction we do not expect a modular structure, has average clustering
coefficient 0.5. In contrast, the network on the right of Figure 1.4 contains two
complete graphs of 140 nodes each connected by a tree with about 500 nodes.
This network, which exhibits a clear modular structure with two dense, sparsely
connected modules, also has an ACC of 0.5. Therefore, despite its desirable
behavior on sparse networks, we cannot trust the average clustering coefficient
as a modularity score.

We will now study further common local, then global, methods of evaluating
modularity, and discuss their advantages and drawbacks.

1.3.1 Local measures

We survey the well-known Newman-Girvan modularity (Newman and Girvan,
2004), considering its variants and extensions. We review the method’s well-
studied problems and discuss how they apply to our modularity definition. We
then survey a similar approach called Surprise, and perform experiments to
highlight its difficulties.

1.3.1.1 Newman-Girvan modularity

One of the most well-known local measures is the Newman-Girvan modularity
score (Newman, 2006; Newman and Girvan, 2004). The Newman-Girvan modu-
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(a) Random graph with ACC 0.5 (b) Two cliques connected by a tree with ACC
0.5

Figure 1.4: Two networks, one with a clear modular structure, one without, that
have the same average clustering coefficient.

larity of a full partition into clusters is the fraction of the edges that fall within
the given clusters, minus the expected such fraction if edges were distributed
at random. The score lies in the range [—%, 1], where a score of 1 denotes per-
fect modularity, and a positive score indicates that the number of edges within
partitions is higher than expected by chance for a graph with the same degree
sequence. For a full partition into two clusters, Newman-Girvan modularity Q
can be expressed as

Q 1 Z (Aij — d(;):;(”> (SiSj +1), (1.2)

C 4m &
ij

where A is the adjacency matrix, m is the number of edges, s; = 1 if node 1
belongs to partition 1 and —1 if it belongs to partition 2. Then % is the
expected number of edges between i and j in a random graph with the same

degree distribution as G.

While the score was originally constructed for a 2-partition, it can be general-
ized to a pre-determined number k of partitions in one of two ways. Newman
(2006) proposes a hierarchical algorithm where at first the graph is split into two
partitions, then each partition is recursively split into two partitions, still taking
into account the edges between partitions in the higher level. A partition is split
only if there is a way of splitting it that results in a higher modularity than when

leaving it intact. Alternatively, Clauset, Newman, and Moore (2004) propose an
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extension of the modularity formula (1.2) as
_ Ay d)d() o

where c,, is the cluster of node u, and d(c;, ¢;j) is 1 if nodes i and j belong to the
same cluster, 0 otherwise. A more convenient form is

Q= i (fn - <§;)2> , (1.4)

where e; is the number of edges in cluster i, de, is the total node degree in
cluster i (this is 2e; if the graph is unweighted), and there are k clusters. Thus, Q
quantifies the difference between the connectivity within the observed clusters
and the expected value of this connectivity for the null model, a random graph
with the same degree sequence.

Extensions to this score for directed networks (Leicht and Newman, 2008) and
allowing clusters to overlap (Nicosia et al., 2009) also exist, but to our knowledge
there is no variant that specifically takes into account the existence of nodes
not in modules. The score (1.2) is NP-hard to optimize (Brandes et al., 2008).
Therefore, multiple heuristics have been proposed. Newman (2006) suggests
a procedure similar to spectral clustering (Luxburg, 2007), where instead of
computing the eigenvectors of the Laplacian matrix and clustering their entries,

the eigenvectors of the modularity matrix My; = Ayj — Zﬁj are used, where A is
the adjacency matrix. We will see in subsequent sections how the eigenvectors
and eigenvalues of some special matrices can tell us about network modularity.

Other authors applied standard optimization techniques to the problem:
simulated annealing (Danon et al., 2005; Guimera and Amaral, 2005) or extreme
optimization (Duch and Arenas, 2005). In parallel, some heuristics have been
developed, most notably the Louvain method (Blondel et al., 2008), whose fast
implementation is used in several software packages and applications, such
as Gephi®. The heuristic is divided into two steps, where in the first step a
full partition with maximal modularity is greedily obtained by merging nodes
whose merge gives the highest gain in modularity. In the second step a network
is constructed whose nodes are the partitions from the first step, and step 1
can be recursively applied to this network. These iterations continue until no
further improvement in the modularity can be achieved. The fast running time
in practice makes this algorithm applicable to large networks with millions of
nodes (Blondel et al., 2008). Due to its popularity and speed, in subsequent
sections, whenever computing Newman modularity we use an implementation
of this heuristic.

Several authors have pointed out drawbacks of the Q-score. One such promi-
nent issue is the existence of an implied resolution limit, where clusters having

Shttp://www.gephi.org/
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Figure 1.5: Clique ring (Good, Montjoye, and Clauset, 2010). Although the
intuitive partition would be the partition into cliques, there is a number of
cliques above which the optimal score is given to the partition that merges
adjacent cliques.

size below a certain threshold are not identified (Fortunato and Barthélemy, 2007;
Kumpula et al., 2007). The standard example is a graph comprising k cliques,
each with ¢ nodes. The cliques are connected to each other via a ring structure
(Figure 1.5). Then, there is a value for k above which Q is higher for a partition
that merges pairs of adjacent cliques (Good, Montjoye, and Clauset, 2010).

In this case, the null model expects the number of edges between clusters to
decrease with k (in general, as the size of the network increases, the probability
of any particular edge decreases). Therefore, the expected number of edges
between two clusters in the null model can be < 1. In this case, even a single edge
between two clusters as in the clique ring network implies a strong connection
between them, and thus the solution with optimal modularity would merge
them. Thus, Fortunato and Barthélemy (2007) show that in a network with m
edges, clusters with fewer than \/? internal edges are not visible. In fact, this
problem occurs not only for Newman-Girvan Modularity, but for all clustering
algorithms where the investigated network is compared to some null network
model (Potts-model-based community detection algorithms) (Kumpula et al.,
2007).

Several modifications for Q were proposed to circumvent the resolution limit
problem. For example, Arenas, Fernandez, and Gémez (2008) add a resolution
parameter 7y that controls the importance of the null model term in the formula
(1.3). By modifying the resolution parameter, it is possible to give preference
to clusters of different sizes. However, since real-world networks can contain
clusters of different sizes, this approach does not always scale. Adding self-loops
to all nodes has also been shown to mitigate the resolution limit problem (Arenas,
Ferndndez, and Gémez, 2008), however it cannot solve it in all cases.

While the resolution limit problem makes it difficult to identify what has
been termed the most intuitive partition (Good, Montjoye, and Clauset, w),
it has no immediate bearing on the score Q for the entire network, defined as
the Q-value of the best partition. That is, we are interested in the highest score
obtainable, regardless of partition, so we can compare the modular structure
across networks. As Good, Montjoye, and Clauset (2010) point out, this is also
not straightforward with Newman-Girvan modularity: Larger networks tend to
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Figure 1.6: Road network of California. Source: http://www.cs.fsu.edu/~lifeifei.
No apparent modular structure.

have a higher Q-score than smaller ones. This is again due to the null model:
As the number of nodes increases, it is increasingly unlikely that any edges
fall within a particular observed cluster, simply because of the huge number of
possible connections. Therefore a large network (=~ 10° nodes in their example)
is very different from a random graph with the same degree sequence, hence it
will have high Q-score. This implies that it is not possible to simply compare
the modularity of a large network with that of a small one, which makes this
measure less useful.

In addition to the drawbacks described above, one other characteristic of
the Newman score make it less suitable for our purpose: Ignoring the absolute
density of modules. Specifically, networks that are tree and tree-like have a
high Q-score (Bagrow, 2012). This means that sparse networks without any
dense subgraphs have high modularity, despite containing no dense modules.
As we would like our modules to be dense also in an absolute sense and not
only relatively to the rest of the graph, the high scores obtained by tree graphs
are a concern. To demonstrate this problem on real-world networks we used
Gephi to compute the Q-score of several road networks, downloaded from
http://www.cs.fsu.edu/~lifeifei/SpatialDataset.htm. The nodes of these networks
are junctions, and edges are roads. They are naturally planar, and thus we would
not expect to see dense modules (Figure 1.6). Indeed, these networks exhibit a
very low average clustering coefficient (~ 0.01) and density (~ 0.0002). However,
the average Newman-Girvan modularity is > 0.95. This property of the Q-score
means that we cannot rely on it to quantify the existence of dense modules in
networks.



http://www.cs.fsu.edu/~lifeifei
http://www.cs.fsu.edu/~lifeifei/SpatialDataset.htm

18 1 About network modularity

1.3.1.2 Surprise

Around the time Newman and Girvan first proposed their modularity measure,
Arnau, Mars, and Marin (2005) introduced a new measure of modularity for a
full partition called Surprisez—Recently (Aldecoa and Marin, 2011, 2013), some of
the authors revisited Surprise and tested its performance on popular benchmark
networks. The authors strongly claim that by maximizing Surprise one can
determine the community structure of a network, much more accurately than
with Newman-Girvan modularity (Aldecoa and Marin, 2013). The idea behind
Surprise is also a comparison with a null graph model, but, in contrast to
the Potts model variations (Kumpula et al., 2007), the comparison is based on
probability: a hyper-geometric test for the number of edges between clusters.
Given a full partition C with i. edges within clusters and m edges in total, we
first draw a graph uniformly at random from the set of all graphs on V having
m edges. Then the Surprise of the partition is the probability that the random
graph has at least i. edges within the clusters defined in C. The lower this
probability, the more surprising, and hence, better, the clustering. Fleck, Kappes,
and Wagner (2014) describe it using an urn model: Given a partition with i,
edges within partitions, where i, denotes the number node pairs that belong to
the same cluster in C, our test is an urn with (72‘) — i, black balls and i, white
balls, and the Surprise S is the probability to draw at least i, white balls when
drawing m balls without replacement. The formula is then

n (7))
S(C) =) -~y (1.5)
N Y
where p = (}). In later papers (Aldecoa and Marin, 2011, 2013), Surprise is
defined as S’ = —1log(S), and thus ranges from 0 to infinity. A Surprise value of

0 is given to the partition into singletons and to the complete graph.

Maximizing Surprise is NP-complete on general graphs, but polynomial on
trees (Fleck, Kappes, and Wagner, 2014). On general graphs no single algorithm
has been shown to achieve consistently high results on accepted benchmark
graphs. Surprise manages to bypass the resolution limit problem by taking into
account the relative sizes of the partitions, optimizing over all partitions at once
instead of summing over them as in Q.

Despite the success of Surprise in recovering the intuitive partition in the
benchmark networks, it is difficult to test the claim that this is the definitive
paradigm in community detection. This is because currently there are no good
heuristics that consistently maximize Surprise, but rather only a “meta-heuristic”
that selects the highest-scoring partition from those output by an ensemble of
heuristics (Aldecoa and Marin, 2013).

Our preliminary experiments with the SurpriseMe software (Aldecoa and
Marin, 2013) that implements this meta-heuristic raise some issues. Similarly to
Q, it appears to suffer from the problem of larger and larger networks obtaining
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Figure 1.7: A modular network with 1000 nodes, from the SurpriseMe software
package.

higher and higher Surprise values. This is most striking in trees. We generated
balanced ternary trees with depth increasing from 2 to 8 (13 nodes to 9841,
respectively). The maximum Surprise value obtained by SurpriseMe ranged
from 2.3 for the small tree to 25103.6 for the large tree, increasing rapidly with
tree depth. Similar results were obtained for random Erdés—Rényi (Erd6s and
Rényi, 1960) graphs.

For comparison, the intuitively highly modular network in Figure 1.7 obtains
a maximum Surprise of 12812.1 with 1000 nodes. We see then that trees can
obtain arbitrarily high Surprise values, despite containing no dense subgraphs.
This example demonstrates that it is difficult to compare Surprise values across
networks, as it is unclear whether a high Surprise is due to the number of nodes
or to the modular structure of the network.

Similarly to the approach of Good, Montjoye, and Clauset (2010), we can test
what happens when a new module of size k > 1 is added to an existing network
with n nodes, increasing its size. Note that a partition with a high Surprise
would have a large i. and a small i,, (relative to p). In this case, i,, increases by
k?, but p — i, increases by kn. Therefore the ratio of white balls to black balls in
the urn becomes smaller. In the case of a tree, it is easy to track i, as it receives
exactly k — 1 new edges. In general, i, = o(n). Therefore on trees we see that i,
increases as the network size increases, while it becomes increasingly unlikely
that a node pair drawn at random will belong to the same cluster, hence the
increase in Surprise.
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Figure 1.8: A modular network with two dense modules connected only via a
sparse structure.

To conclude, Surprise is an interesting approach that sidesteps some of the
pitfalls of Newman-Girvan modularity. However, much further research is
needed to clarify whether this model can take the place of Newman-Girvan
modularity for a full partition, and give consistently interpretable results.

Both the S and the Q scores described above are designed for a full partition.
They are in that sense restrictive: only networks that can be neatly partitioned
receive a high score. It is of course true that such a network would be modular;
however, there are other classes of networks we would like to consider modular.
Namely, we would like to think of networks that contain some very dense,
well-separated subgraphs and sparse regions outside of them as modular, and
test to what extent they contain modules. The network in Figure 1.8, which we’ll
denote the adverse network throughout this work, is an example of a network to
which we would like to assign a high modularity score. Their S and Q scores
do not reflect this: Q = 0.59, and S = 1203. The Newman-Girvan modularity
points to the network being modular rather than randomly connected, but the
score is not high. The Surprise value is difficult to interpret. We will return to
this example in the next chapter, when we define modularity scores based on
network dynamics.

1.3.2 Conductance: A graph-theoretic measure

The local scores presented above are all based on comparing a given full partition
to some null model, with various trade-offs. In contrast, the graph theoretic
measure of Conductance (Shi and Malik, 2000) is the basis for both a local score,
since we can speak of the full partition with the highest Conductance, and a
global score, since there is a property of a graph that quantifies the best such
partition. We first state the definition of conductance for a node subset, then




1.3 Known methods of evaluating modularity 21

extend the definition to a graph, following the introduction of Oveis Gharan and
Trevisan (2014). The Conductance of a subset of nodes M in G is the ratio of edges
going outside M (that is, having one endpoint in M and one in M := V\ M) to
the total number of edges adjacent to the nodes in M.:

~ w(M,M)

Pe(M) = vol(M) ’

(1.6)
where vol(M) is the sum of weights of edges in M (simply the number of edges
if G is unweighted), and w(M, M) is the weight of the cut between M and the
rest of the graph, that is, the total weight of edges with one endpoint in M and
one endpoint outside of M. The conductance of a graph is then the minimal
conductance of any of its small subsets:

O(G) = min d(M) (1.7)
M:vol(M)<vol(V)/2

Intuitively, conductance of a graph is a measure of how “pull-apartable” it

is. If it is easy to pull away a subset of nodes from the network, in the sense

that it is loosely connected to the rest of the network, then this subset can be

viewed as a module. We can then view Conductance as a local measure, where

a natural approach for constructing a k-clustering of the network is to find k

subsets of small conductance (Lee, Oveis Gharan, and Trevisan, 2012; Shi and

Malik, 2000). Note that these k subsets are not necessarily a full partition! This
can be expressed as:

plk) = disjoirftn/l\rll ..... Ay 1r£ia<xk ©c(Ad). (1.8)
This is the maximum conductance of any k disjoint subsets of G.

While graph conductance captures the loose connectivity of a module to the
rest of the graph, it gives no guarantees that the modules are dense. In order
to fulfill this requirement there is another demand on the subgraphs induced
by the subsets: That they, by themselves, have a high conductance (such graphs
are called good expanders (Hoory, Linial, and Wigderson, 2006)). This way, we
obtain clusters that are themselves not easy to pull apart, and are intuitively
single units. For a subset M, define ®(G[A;]) as the conductance of the graph
induced by M in G. With this addition one can define a (®in, Qout) clustering
as k disjoint subsets Ay, ..., Ay such that for all 1 < i < k (Oveis Gharan and
Trevisan, 2014):

(D(G[Al]) P (Din and (DG(Ai) < (Dout- (19)

A clustering is good if ®(G[A4]) is large and ® (A1) is small.

It is interesting to ask whether there is an algorithmic way to find such a
clustering, as opposed to exploring the entire solution space. Here, however,
we are more concerned with determining whether a good clustering exists.
Fortunately, there is a well-known connection between conductance and the
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eigenvalues of the normalized Laplacian of G. Let A be the adjacency matrix of
G with n nodes, and D the matrix with Di; = d; and 0 everywhere else. Define
the n x n normalized Laplacian £ :=1— D 1/2AD~1/2, where 1 is the identity
matrix of order n. Let vy,...vy, respectively Aq,...A; be the eigenvectors and
eigenvalues of £ so that £v; = A;v;. Then Cheeger’s inequality states that

% < DO(G) < /2N, (1.10)

/

That is, ®(G) is bound from above and below by expressions involving the
second eigenvalue of £. The graph G is then nearly disconnected (in the sense
that one can pull apart a module) if A; is close to 0. If A, = 0 then the graph
is disconnected. We will return to this property in the next chapter. More
information about the Laplacian can be found, for example, in the Tutorial on
Spectral Clustering (Luxburg, 2007).

Lee, Oveis Gharan, and Trevisan (2012) similarly bound p(k) using the k-th
eigenvalue: -

" <o) < 00V (1.11)

The authors extend this even further, connecting the eigenvalues of L with
the existence of a good (@in, Pout) clustering as follows: For any k > 2 if A >0,
then for some 1 < 1 < k —1 there is a l-partitioning of V into sets Py,..., Py
that is a (Q(p(k)/k?), O(lp(1))) = (Q(Ax/k?), O(13)vAL) clustering. This is an -
partitioning of V such that the ®(G[A;]) of each set A; is significantly larger than
its ®g(Ay). Therefore a large enough gap between A; and Ay in the spectrum of
£ implies a clustering that has dense clusters that are loosely connected to one
another. Oveis Gharan and Trevisan (2014) additionally propose an algorithm
running in polynomial time to find a partition that has slightly worse guarantees
on (®jn, Doyt). However, this algorithm needs to be seeded with modules having
certain (®jn, Poyt) values, and are then extended to full partitions. Since we are
interested exactly in those subsets that are expected as input, this algorithm is
not suitable for our purposes.

We therefore see that a gap in the spectrum of some matrix representing
the network implies the existence of “good” modules. However, is the converse
true? Does every network that has a good clustering also have a gap in the
spectrum to match? In fact, it is not known that every good clustering is reflected
in a sizeable spectral gap. When we next analyze network modularity through
the lens of metastability, we will encounter other matrices connected with the
network and make use of their spectrum, also revisiting the spectral gap as a
score.



Chapter 2

Connecting network modularity
and metastability

We introduce a new dynamics-based approach to network modularity. We start
by providing background on time-discrete and time-continuous random walks,
and equate network modules with metastable sets of a Markov process. We
review important concepts such as committor functions and the eigenvector
projection error. We then introduce our Markov State Model (MSM)-based score,
termed I,,. In the subsequent sections we provide a formal proof that I, matches
our intuition on a specific class of networks, and support this with numerical
experiments. We next compare the outcome of I,, with that of previously
introduced modularity scores on networks where the optimal assignment is
known by construction, and test I, on some real world networks.

2.1 Random walks on networks

Our approach is based on the perspective of a random walk on the network. The
idea is that of a random walker who traverses the network from node to node
via the network edges, choosing at each time step a random neighbor of its
current node to move to. This random walker would tend to stay longer in dense,
highly connected regions of the network, moving between such regions rarely.
That is, it would spend more time within modules. This is the behavior that
many random-walk based algorithms, such as the popular Markov Clustering
(MCL (Dongen, 2000)), try to capture. The following definitions and background
can be found for example in the book by Bremaud (1999).

Define the (perhaps weighted) time-discrete random walk on G(V, E). When
in some node x, the random walker will jump to some neighbor node y with
transition probability

p(xy) = / 2.1

23
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where s(x) is the weighted degree (strength) of x. We can view the sequence of
nodes visited by the random walker as a Markov chain {X,,}, so that

PXny1 =x|Xn=%n,..., X1 =x1] =P[Xnp1 =% | Xn =xnl. (2.2)

We will concentrate on time-homogeneous Markov chains, that is, p(x,y) does
not depend on the time step n, thus the chain can be defined by the transition
function

Pix,y) =P Xny1 =y Xn =x], (2.3)

and the transition matrix P with entries p(x,y). The probability to be in state y
after k steps when starting in some x is

PXki1 =y | X1 =x =P*(x,y), (2.4)

which are exactly the entries of the matrix P¥.
Let 7t(x) be the initial distribution, 7t(x) = P[X; = x]. Then the probability to
be in node y after k steps when starting distributed according to 7 is

P =yl =D PXq =xPXe =y | Xk 1 =x] = ) n(x)P*(x,y). (25)
xeVv xeV

It will be important to define the invariant measure (here also: stationary
distribution) p of a Markov chain with transition matrix P. This is a non-negative
vector such that uP = y, thus it is a left eigenvector of P. Additionally we require
> . i(x) = 1. If we define as before p(x,y) = w(x,y)/s(x) then:

s(x)
dev S(U) ’

From the fundamental theorem of Markov chains for the existence of a unique
stationary distribution (Beichelt and Fatti, 2001), we have that regardless of the
initial distribution, if the network is undirected, connected, and non-bipartite,
after enough steps it will end up in state y with probability pu(y). Therefore we
can assume that the Markov chain is initially distributed with the stationary
distribution u, that is, 1 = .

For such networks, the corresponding Markov chain and its transition matrix
P «xn have some nice properties. Unlike the Laplacian matrix from Chapter 1, P
is not symmetric. However, since the adjacency matrix A is symmetric (as the
network is undirected), the random walk is reversible in time. Importantly, this
means that detailed balance is satisfied:

uix) = (2.6)

n(x)p(x,y) = uylply,x),¥x,y € V (2.7)

Then P is like a symmetric matrix. We can use p to define the weighted scalar
product:
(Wv)u= ) ulvix)ux), (2.8)

xeV
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Now, (u, Pv), = (Pu,v),. The Perron-Frobenius theorem (Meyer, 2000) states
that:

1. P has a unique eigenvalue A; = 1, with the corresponding right eigenvector
P1=1,with1=(1,...,1) and the positive left eigenvector uP = .

2. All other eigenvalues of P are also real and strictly smaller (in modulus)
than Az 1= [Aq| > (Ao = A3 = -+ > Al

This theorem forms the basis for our discussions of the spectral gap and the
perturbation analysis in Section 2.3.

2.1.1 Spectral clustering and the spectral gap

We have already seen that existing scores fail to capture our intuition with
regards to the modules being simultaneously dense and loosely connected to
the rest of the graph. We have also seen that the spectrum of some matrix
encoding the network can give us an indication of its modular content. Indeed,
the eigenvalues and eigenvectors of graph matrices have long been used in
connection with network partitioning.

Luxburg (2007) reviews a class of clustering algorithms called spectral clus-
tering. These algorithms use the eigenvalues and eigenvectors of the Laplacian
matrix £ = D — A, with adjacency matrix A and diagonal matrix D with the
node degrees on the diagonal, and variants like the normalized Laplacian matrix
£ =1-D"V2AD/2 introduced when discussing Conductance in Section 1.3.2.

The eigenvectors are used to identify clusters: when the goal is a k-partition,
compute the first k eigenvectors vy,..., vk of £, and place their columns in a
matrix Q. The rows of Q are then viewed as points in R¥, and can be clustered
using a standard clustering algorithm such as k-means. Node i corresponds to
row i of Q, and we assign it to the same partition as point Q;. This algorithm is
based on the fact that the eigenvectors are a relaxation of the indicator vectors
that optimizes

k -
RatioCut(A1, ..., Ax) = E > WAy A (2.9)
2= A

Deuflhard et al. (2000) make similar use of the eigenvectors of the transition
matrix P = D7!A. They start by looking at the case where where each cluster
is a connected component, and prove that rows of the eigenvector matrix Q
corresponding to nodes in the same connected component have the same sign
structure: sgn(Qi) = sgn(Qjy) for all k and nodes 1i,j in the same connected
component. Then using perturbation theory they prove that by adding edges
between the modules to make the graph connected, as long as not too many
edges are added, the sign structure of the rows of Q is also perturbed only a
little. Thus the rows of Q can be used for clustering.
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While the eigenvectors can be used for clustering, the eigenvalues can be
used to determine the number of clusters, and thus indicate the existence of
a modular structure: If there is a gap in the spectrum after k eigenvalues, it
indicates the existence of a k-partition (Deuflhard et al., 2000). This can also
be explained in terms of perturbation: In the uncoupled case, where the graph
is disconnected into k connected components, it is well-known that P has k
eigenvalues equal to 1, and these are the largest eigenvalues. When edges are
added between components to connect the graph, the largest eigenvalue of P
will still be 1, but the next k — 1 eigenvalues will be close to 1, or “above the

4

&ap -

While a gap in the spectrum indicates the existence of modules, the converse
is not always true. The by now familiar adverse network in Figure 1.8 contains
two very dense clusters. We would expect the spectrum to reflect this by
exhibiting a gap after the first two eigenvalues. However, there is no discernible
gap. This is due to the fact that other substructures of the graph also have similar
properties to the dense modules. Specifically, they also exhibit metastability, that
is, they are metastable sets of the random walk process.

Next we will discuss metastability and its application to analyzing the modu-
lar structure of the network.

2.1.2 Modules and metastability

We take a closer look at modules in a given network G(V, E). Assume we have
k modules, defined as disjoint subsets C; C V, i =1,...,k. The union of all
modules form the set M = | J; Ci. We are not interested in a full partition, but
rather in an assignment, containing both modules and non-modules. Thus we
assume that M does not contain all nodes of the network, meaning, there is the
non-empty set T = V \ M, which we call the transition region. Further define
the set M; = M \ Cj, the union of all modules except C;. We would like to
say that the modules are metastable sets of the random walk, that is, on the one
hand they are attractive for the random walk while, on the other hand, they are
well-separated in the sense that transitions between them are rare. More formally,
the random walk has metastable sets, C; C V, i =1,...,k, if it exhibits a specific
relation between two timescales: the typical return time R the random walk needs
to enter one of the C;, if started outside of any module, is small compared to its
typical waiting time W between transitions from one of the C; to another one.

In order to quantify these timescales we first denote by t(A) the expected
time the process needs to enter a set A. Then E (t(M)) denotes the expected
entry time of the process into an arbitrary one of the Cj, if started in some node
y in the transition region. Likewise, E;(t(Mj)) denotes the expected entry time
into one of the C; with j # 1, if it is started distributed according to the invariant
measure [ (2.6) from C;. The random walk is metastable with regards to the sets
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Ci,i=1,...,kif

R:= max Ey(t(M)) <  Jin, Ei(t(Myi)) =W, (2.10)

or, equivalently, if the relation of return and waiting time is small, R/W < 1.
Note that there may be many different collections of disjoint sets C; such that
R/W is small. We could then view R/W as a score for an assignment that, unlike
the scores reviewed in the previous chapter, does not assume that the network
completely decomposes into modules.

It is then tempting to use R/W as a local score for the network, our first
metastability-based score: The R/W score of a given network is exactly the R/W
score of the best assignment. Unfortunately, we cannot simply define the optimal
modules via the property of minimizing R/W since every full partition, that is,
every choice with 7 = (), leads to R = 0. Similarly, it is not straightforward to
compare assignments with a different number of modules. For example, consider
an assignment a; with 3 modules Ml =C,UC,UCs. Compare it to assignment
ap with 2 modules: M? = y; U7,, where y; = C; and v, = C, U C3. The value
of R is the same for both assignments, since the partition into T and M is the
same. However, the expected waiting time W between transitions in a; is higher
than in a1, since any transitions between the original C,, C3 now count within
Y2. Such an assignment with fewer modules would always be as least as good as
one with more modules. To summarize, while we can still use the R/W score to
compare assignments, at least those with the same number of modules, we need
to look elsewhere for a more widely-applicable, metastability-based, network
modularity score.

We stay, therefore, with the idea of metastability. We have said that dense
modules are metastable sets of the random walk process. Are there other regions
(subgraphs) in the network that are metastable sets? Recall the definition of the
expected waiting time W: this it the typical time it takes the random walker to
transition to a module when starting in a different module. Putting aside the
time spent in the transition region, the waiting time depends on the amount of
time the random walker spends inside the module it starts from. If the module is
large and contains many edges, relative to outgoing edges, then at any time step
a random walk would, with high probability, jump to another neighbor within
the module, rather than outside. Thus the waiting time is high. Now, consider
a different type of subgraph: a long loop, or a linear chain, as exemplified in
Figure 1.8. A random walker starting somewhere within such a structure, if
large enough, would also stay in it for long timescales, going back and forth and
being able to exit the structure only at the endpoints. We must conclude, then,
that every method for approximating modularity that relies on metastability
will suffer from effects of long chains and loops as metastable sets. Can we do
anything to combat this? Sarich, Djurdjevac, et al. (2013) explore this issue by
using a time-continuous random walk, which we will describe next.




28 2 Connecting network modularity and metastability

2.1.3 The time-continuous random walk

We restrict ourselves now to unweighted networks, though the results below
can be generalized to weighted networks as well. Now introduce a family
of time-continuous random walks, that is, time-continuous processes on the
finite state space of nodes V (also: Markov jump processes). Such processes
are different from time-discrete processes by the addition of an exponentially-
distributed waiting time before each jump from node to node. Thus, instead of
jumping between nodes at discrete time steps n =1,2,3,..., jumps can occur at
any time t after the waiting time specific to the node has passed. The process
is further characterized by the jump probabilities between the nodes: After
waiting the random walker chooses a neighbor to jump to based on the given
probability distributions. The transition rules of the processes that interest us
can be summarized as the following family of rate matrices

_d(x)p’ X = y
Lxy) = gl x#y,(xy) €E (2.11)
0, else,

where p > 1, k(x,y) are some non-negative weights of our choice such that
k(x,y) =0if (x,y) ¢ E and k(x,y) = k(y, x), and k(x) = Zy k(x,y). The waiting
times are encoded on the matrix diagonal of a rate matrix as follows: If being in
node x, the expected waiting time until the next jump away from x is inversely
proportional to |L(x,x)|, and L(x,y)/IL(x,x)| is the probability that this jump
leads to y. Therefore, in our particular family of rate matrices, the expected
waiting time in a node is proportional to its degree d(x), that is, the higher
the degree, the higher the waiting time. Intuitively we can say that the more
neighbors a node has, the longer, on average, it takes the random walker to
“decide” where to go next. If we further set

k(x,y) =Alx,y) - (14 (ax, ay)), (2.12)

where a; is the zth row of the adjacency matrix and (-, -) is the usual Euclidean
scalar product, we can start to see the advantage of this approach over the
discrete random walk: Nodes with high degree and high clustering coefficient
become very attractive for the random walker. Now consider the behavior of such
a random walker on the problematic chains and loops: the degree of the nodes
in these regions is low, and their clustering coefficient is also low. Therefore, the
random walker would spend little time in those regions, thus making them not
metastable.

A Markov jump process with a rate matrix (generator) of this form has the
unique invariant measure

W) = 2 d0PK(X) (2.13)
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Figure 2.1: Example network and first 13 eigenvalues A of standard random walk
(red circles) and time-continuous random walk (blue crosses). Figure reproduced
from Sarich, Djurdjevac, et al. (2013)

with the normalization constant Z so that the entries of u sum up to 1. This
process is always reversible, so it holds that p(x)L(x,y) = u(y)L(y,x). From
the rate matrix (2.11) we can also directly compute the transition matrices of
the random walk by Py = exp(tL). Its entries P(t,x,y) denote the transition
probability from node x to node y in time t.

We have then two interesting matrices: L and Py, that characterize a random
walk that favors dense regions. It is only natural to then check whether their
spectrum reflects the modularity of a network without being distracted by sparse
metastable structures.

Since our random walk is reversible, all eigenvalues A of the rate matrix L
and A of the associate transition matrix Py are real with Ay = 0, respectively
Ao = 1 being the largest ones, and A = exp(tA) in general. It is well-known that
there is a direct relation between the existence of metastable sets and the largest
eigenvalues of the transition matrix P; of the random walk (Djurdjevac, Sarich,
and Schiitte, 2012; Huisinga and Schmidt, 2006; Sarich and Schiitte, 2011; Schiitte
and Huisinga, 2003). - -

For example, in the case of just two metastable modules, there is exactly
one other eigenvalue A; = exp(t/A1) of Py close to Ag = 1 such that Eq(t(My)) is
approximately given by 1/|A;|, while all other eigenvalues of P are significantly
further away from 0. Whenever there is a gap after the leading m eigenvalues
Ao, .-, Am—1 close to 1 we will find m metastable sets, and the longest relax-
ation timescales of the random walk, t; = 1/|A4|, are encoded by the leading
eigenvalues Ay,..., Am_1.

Figure 2.1 depicts a network along with the spectrum of the standard and
the time-continuous random walk.

While the spectrum of the standard transition matrix P does not offer a
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clear gap to give an idea about the number of modules being present, the time-
continuous random walk shows a small gap after 7 and a strong gap after 8
eigenvalues. This exemplifies how the continuous random walk leads to a better
coherence of connectivity, the idea of modules, and metastability. We will test
the performance of this score in Section 2.4.

Sarich, Djurdjevac, et al. (2013) go on to introduce a method of finding a
good clustering by identifying modules as optimal metastable sets. We will
elaborate on this method in the next chapter, when we discuss approaches for
module finding in networks that are not fully partitionable. We will continue
laying the groundwork for the metastability-based score. To do so we will need
to define a few other concepts. A complete description can be found in several
publications (Djurdjevac, 2006; Djurdjevac, Bruckner, et al., 2011; Djurdjevac,
Sarich, and Schiitte, 2012; Metzner, Schiitte, and Vanden-Eijnd?w).

214 Fuzzy decomposition and committor functions

Since we are interested in networks that do not decompose completely into
clusters, we consider a fuzzy decomposition of the network. Where in the full
partition case we have a function that assigns each node to exactly one module,
we now allow nodes to belong to any number of modules. Thus, for every node
x we specify its affiliation fi(x) € [0,1] to module i such that } f;(x) = 1. Nodes

that we can safely assign to a single module j will have f; = 1l, while nodes that
can be viewed as shared between several modules would have approximately
equal affiliation to all of them. On the other hand, nodes that can be said
to belong to no module would have very low affiliation to any module. See
Figure 2.2 for an example. The set of vectors associating each node to each
module with some probability is a fuzzy assignment, as we defined in Section 1.2.

Given an assignment with modules C;, we can use random walks to define
this affiliation and obtain a fuzzy assignment. We start the random walk in node
x and see which module it will enter next. Then, we set the affiliation f;(x) to be
the probability that the next module to be entered is C;. Such affiliation functions
are called committor functions, or simply: committors. The committors can be
computed very efficiently by solving sparse, symmetric and positive-definite
linear systems. For sets Cj, ..., C;, Metzner, Schiitte, and Vanden-Eijnden (2009)
show that the committor f; solves the linear system -

(Lf))(x) =0 vxeT
fix) =1 vxe( (2.14)
filx) =0 Vvxe Cj,j #i.
We will meet this formulation again in Section 2.3 when we approximate the
committors for a specific class of networks.

This fuzzy decomposition can also be interpreted in the sense of a coarse
graining of our random walk by Markov State Modeling (MSM) (Deuflhard
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Figure 2.2: Affiliation of the nodes to the module C;. Red color indicates values
close to 1, green close to 0. The nodes that already belong to C; have the highest
affiliation to to it, the nodes in a different module C, are not affiliated with C; at
all, and the transition region nodes have a high or low affiliation, depending on
their position in the network. Figure reproduced from Djurdjevac (2006)

et al., 2000; Djurdjevac, Bruckner, et al., 2011; Djurdjevac, Sarich, and Schiitte,
2010, 2012; Schiitte, Noé, et al., 2011). Thus we obtain a low dimensional
approximation of the random walk process: instead of jumping between states
(nodes), the random walker jumps between metastable sets (modules). In the
full partition case, where every node belongs to exactly one module, this low
dimensional space is the space spanned by step functions that are constant on
the modules. In the fuzzy case, the space is spanned by the committor functions.
In this case, we find a coarse grained random walk that jumps between the
modules but now takes the dynamics on the transition region 7 into account,
according to the committors (Sarich and Schiitte, 2011). More formally, we find
sets Cyq,..., Cyy such that the longest relaxation timescales of our random walk,
encoded by m dominant eigenvalues Ay, ...,Ay—1 of the original random walk
P, are close to the timescales of the coarse grained random walk, encoded by the
eigenvalues ?xo, e, i\m—l of the coarse-grained process denoted P. We conclude,
then, that to find a good fuzzy assignment we can find modules as metastable
sets, and then determine the fuzzy decomposition of the transition region via
the committors.

Djurdjevac, Sarich, and Schiitte (2010, 2012) show that

max A — A < M(m—1) ~ max 16%, (2.15)

1=0,...m—1 1=0,... m—
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Let Q be the orthogonal projection into the committor space. Then
5 = Jui — Quill, (216)

is the associated projection error, where u; is the normalized eigenvector of the
random walk P with respect to A;. Previously, Djurdjevac, Sarich, and Schiitte
(2012) demonstrated that it is possible to get a good low-dimensional approxima-
tion (and thus a good fuzzy assignment) when the dominant eigenvalues of P
are well approximated by the eigenvalues of the projected matrix P. Now we can
further quantify this by requiring that the projection error of the corresponding
eigenvectors (2.16) is small enough. If there is a fuzzy assignment that induces a
coarse graining that is a good approximation of the original dynamics, then we
define the network as having good modularity. In the next section, we will use
this projection error to define the modularity score.

2.2 A score based on Markov State Models

We can now finally introduce a modularity score that quantifies the modular
content of a network via the best possible approximation of the dominant
eigenvalues of the corresponding transition matrix P by a Markov State Model
(MSM). Let u be some eigenvector of P, Q the projection matrix into the subspace
spanned by the committors for some choice of modules and transition region,
and p the invariant measure. Then we know that the best approximation is
achieved when the projection error [|(Id — Q)u|/% is small for some appropriate
choice of committors. That is, when the difference between the eigenvector and
its projection into the committor space is small, the error is small.

We then define k = HQLLH%l As1l—«k =|(Id— Q)uHi we get that a large
k implies a small projection error (2.16). For eigenvalues 1 = Ay, A2, ..., A and
their corresponding eigenvectors T=u,uy,...,uy, we define k, = |Quy||%, and
the score:

(P, q) = 5 (14 Aar2) 217)

for the network specified by P and a fuzzy assignment specified by committors
q, where A; is the second eigenvalue of P.

A possible intuition is that we multiply k> by A, since a modular network
(at least one whose transition matrix can be viewed as a perturbation of a block
matrix) will have a second eigenvalue close to 1.

One noticeable aspect of I, is that it is a local score: the score depends on
the choice of modules and transition region. The score I, of a network with the
associated transition matrix P is then the maximum score obtainable for any set
of committors. Therefore, if there is a choice of modules and transition region
such that k; is high, the score will be high.
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Note that in this way we are not dependent at all on any sort of gap in
the spectrum of P, which is unreliable, but rather on the existence of good
committors.

We could ask, when composing the score, whether there can be an advantage
to utilizing additional eigenvectors, corresponding to other leading eigenvalues.
We can expect these additional leading eigenvalues in cases where there are
additional modules. Consider the case of an optimal assignment (in the sense
that it maximizes the score) and appropriate committors into k modules and a
transition region. Define

-1
Im = 3 (14 Aaka + Agka + -+ Ak, (2.18)

Here ki = ||Qui|| .. Additionally, us, A; are the ith eigenvector and eigenvalue of
P:. Again Q is the projection into the space of committors, where this time the
committors are to k modules instead of two. For k = 2 we have I, = I 1.

There are some advantages to I, over I, in some scenarios. It takes into ac-
count all the pertinent information about the modules, as encoded in the leading
eigenvalues. This can be helpful in case the modular structure is complicated,
for example if there are multiple modules with different densities. However,
computing I,,, requires computing more eigenvalues and eigenvectors. It is also
not easy, in this case, to compare scores of networks with a different number of
modules in the optimal assignment. We can construct simple network classes
where networks with fewer modules will have a higher score then similar net-
works with more modules. Therefore, we investigate the I, score, and leave the
analysis of I, to future work.

Having defined the score, the remainder of this section is dedicated to some
examples of the performance of this score on special networks.

When computing I,,, we must start from some assignment into modules and
transition region. Without the best assignment, we cannot compute I,,, optimally.
If we are given an assignment obtained in some way, perhaps via some clustering
algorithm, we can compute some Kpractical < K2 for this assignment, and obtain
a lower bound for the score. We can of course always compute A, exactly. In
Chapter 3 we explore some methods for identifying good metastable modules
and a transition region. In the meantime, for the following small examples, we
can exhaustively enumerate assignments into 2 modules and a transition region,
compute the score for each, and use the k; of the best assignment.

Example 1: The complete graph. A clique K, is the densest graph possible
on n nodes, and thus we view it as a single module: It cannot be naturally
partitioned into smaller modules. For example, it has the highest possible
conductance. A clique is not modular, and therefore its modularity score should
be low. To demonstrate, we tested all possible homeomorphic partitions of Ky
into 2 modules and a transition region (Figure 2.3), and then computed I, based
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Figure 2.3: The complete graph Ko with one of the fuzzy assignments into two
modules (green and red) and a transition region (white).

on Py with t = 100 with the generator (2.11). We can derive this directly from
the formula for I, (2.17): The second eigenvalue of Py is 0 or very close to it.

Example 2: Sparse graphs. In contrast to Newman modularity, which, as we
have seen previously, assigns a high score to sparse networks, we would like
sparse graphs such as trees to have a low modularity score. We can begin with
two simple examples: a cycle and a path with stars (Figure 2.4). The advantage of
the simple structure is that there is a limited number of possi_bilities for partitions,
and hence we can feasibly try all possible ones. The graph Cy; is the cycle on
eleven nodes. As in the clique case, we test all its partitions (up to isomorphism)
into 2 modules and a transition region. We use Py for t = 1,100, and 1000. We
obtain [, = 0.5 or close to 0.5 (minimum) in almost cases, as desired. Here
we see the influence of the choice of t on the score: Computing the second
eigenvalue we find that for t =1, that is, for a very short time, A, ~ 0.8. For the
higher values of t = 100 or 1000, however, A; = 0 and the score is accordingly
minimal. To make the path case more interesting to test, we analyze the structure
of a slightly more complicated graph: a path whose every end node is also
the center of a star. For the numerical experiments, we generated a path of
length 7, where each end node is adjacent to 5 additional degree-1 nodes. Here
we notice a difference in the score when using different generators: When using
the generator (2.11), the score is minimal. When taking k(x,y) = 1 for all x,y,
that is, basing the dynamics on degree only and not on the clustering coefficient,
we get a higher score of ~ 0.7 for the assignment that associated the stars with
modules and the path between them to the transition region.

Example 3: The adverse network. We return once again to the network that we
tested when demonstrating the drawbacks of other scores (Section 1.3.1.2). This
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(a) Cycle. (b) Path with stars.

Figure 2.4: Some sparse graphs that obtain intuitively correct I, scores.

network contains two dense modules, connected by a sparse structure consisting
of multiple long paths and cycles (Figure 1.8). We previously saw that the gap
of the Laplacian does not indicate the modular structure of this network, and
that Newman modularity is only ~ 0.6. Computing the score for the planted
assignment with the two intuitive modules gives I,;, = 0.996, a high score. Thus
I successfully captures the modularity of this difficult network.

2.3 Proof of performance on special networks

We would like to prove that I,, matches our intuition. That is, networks with
intuitively high modular content obtain a high score, while those with low
modular content have only a low score. We will show this for a specific class of
networks.

The proof below is based on perturbation analysis. We prove that for a class
of stochastic P constructed in a certain way as perturbations of some block matrix,
the score is high when the perturbations are small. The basic idea is not new:
Perturbation analysis has been used to motivate spectral clustering (Luxburg,
2007). Importantly, we can build on the ideas of Deuflhard et al. (2000). They
follow the work of Stewart (1983) on general primitive stochastic matrices (cor-
responding to connected, non-bipartite networks), but extend it to reversible
matrices. Luxburg (2007) summarizes the approach as follows: Perturbation
theory studies how the spectrum of a matrix A changes if we add a small per-
turbation in the form of some matrix H with a small norm, that is, we compare
the eigenvalues and eigenvectors of A and A = A + H. The comparison can be
defined exactly by computing the distance (measured in canonical angles) between
the subspaces spanned by the corresponding sets of eigenvectors from A and A.
For symmetric matrices, this distance is bounded by a constant that depends on




36 2 Connecting network modularity and metastability

the 2-norm of the perturbation H, and the “goodness” of the spectral gap: the
more well-separated the first k eigenvalues are from the rest of the spectrum, the
better the bound, and the closer the eigenvalues and eigenvectors of A and A.

The problem of fully partitioning the network can then be posed in per-
turbation theory terms: the matrix A corresponds to the uncoupled Markov
chain (Deuflhard et al., 2000), or a network where each connected component is
a module. This is an ideal modular network that would have an ideal modularity
score. Then the perturbation H adds edges between the modules, making the
resulting network represented by A connected. The smaller the perturbation, the
closer the network is to the ideal modular network, and the higher the modu-
larity score. The matrix A in the traditional spectral clustering approaches is
the Laplacian, which is symmetric and therefore amenable to the analysis above.
Deuflhard et al. (2000) work with the transition matrix P, which is not symmetric,
but reversible. They show that in this case the eigenvalues and eigenvectors of
P = D+E, where D is this time block diagonal and ||E|| is small, are close enough
to the eigenvectors and eigenvalues of D so they can be used for clustering.

We are of course not interested in the full partition, but in a fuzzy assignment.
Given P, = Py + ¢L, where Py is a block matrix and ¢L is the perturbation
matrix (formal definition below), we first prove that all components of the score:
up, Ay of P¢, the projection Q, and the committors q;, are perturbations of the
corresponding entities of Py. In particular, this means that the eigenvectors are
slight perturbations of step functions.

Why is this what we want? Assume we have some Py, comprised of two
modules and a transition region. We now look at two networks having different
perturbations ¢L. Let the second network be more “problematic”, hence less
modular, than the first network: Suppose the modules are less dense due to the
perturbation lowering the average node degree inside modules. This translates
into a higher value of ¢ for the perturbation in the second network, and if we
formulate the perturbation such that ||L|| is constant for some norm (and we
show that such a formulation is possible!) that means that the lower modularity
implies larger perturbation.

Next we need to be convinced that a larger perturbation implies a lower score.
By proving that the score components are perturbations of the step function, we
get exactly that: The larger the perturbation, the further the components are from
step functions. Specifically the committors would be far from step functions, and
||Quz|| will be lower. When we have no perturbation at all, that is, P, = Py, the
score is optimal: In this case A, =1, ko = 1, as the committors are also constant
on the block functions, and HQqu%L = Hu2||fL =1, as needed.
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2.3.1 Definitions

Let P, = Py + ¢L € R™*™ such that P, is stochastic and reversible for all ¢,L is
some matrix with ||L|| =1 (we will use the Frobenius norm), and Py is a block
matrix with m blocks, having the following form:

D1
D
Po = 2 . (2.19)
D

We additionally require that L is a rate matrix: Let e = (1... 1)T € R™. Then
Le =0, where

Lig Lig -+ Lym
Ly Ly -+ Lym
= ) ) X (2.20)
I—m,l Lm,z e I—m,m
Then L; ; refers to block 1,j of L.
Define the block vectors
0 ifi¢ Blockl
i) = 2.21
xali) {1 ifi e Block 1, @21)

and define 11 as the invariant measure of Dy: i Dy = fi] . Now {i]x1 = 1.

Consider the right and left eigenvectors of Py corresponding to eigenvalue
A = 1. Since Py is a block matrix and each block is stochastic and primitive (this
translates to a network which is connected), the right eigenvectors can be written
as a linear combination of the block vectors:

ub = Z oc}xj, withuf=1=Vj: oc]1 =1 (2.22)
j

The right eigenvectors of Py are then constant on the blocks. In particular,

PoXk = Xk-
The left eigenvectors can be written as a linear combination of the invariant
measures on the blocks:

v =) Bify, with (2.23)
j

Vo =to =) B}fy whereVj:pj>0. (2.24)
j
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Define also ., the invariant measure of P,: szg = u!.

We now look at the asymptotic expansions of the first m eigenvalues and
eigenvectors. These are simply perturbations of the corresponding eigenvalues
and eigenvectors of Py.

AL =1+ el +0(e?) (2.25)
ul =ud +eut +0(e?) (2.26)
e = Mo + epg + O(€?). (2.27)

We can compute explicitly what those zero and first-order terms look like. We
begin with the eigenvalue asymptotics up to the first order. The vector u, is an
eigenvector, therefore P.ul = Alul. Replace each expression with its asymptotic
expansion (2.25) to obtain:

(Po+ eL)(uh + eut + 0(€?)) = (1 + el + O(e)) (uf + eul + O(e2)).  (2.28)
From this we get
Poug + e(Lug + Pouj) + O(e?) = uf + e(Mug +uf) + O(e?). (2.29)

Since u is an eigenvector of Py with A = 1, the term of leading order disappears.
Discarding the second order terms, we obtain

Lud + Poul = Aud + b, (2.30)
We can use this to get an explicit expression for u} given u}, A} with
(Po — Id)ul = (A} — L)ug. (2.31)

Then . . .
ul = (P — Id) (AL — D)uf. (2.32)

We would like to find a basis of eigenvectors u} of Py that is orthonormal with
regards to po:

(ué,u%)uo =0y = Z oc,ioc{(xk,xl)uo. (2.33)
k1

Since (XK, X1) 1, = Sk1BLHk = 6klﬁl1< (as the sum of entries of |} = 1), we get
8ij =) o) Bl (2.34)
k

From this we obtain:

1= (a)?Bi (2.35)

k
0=) afa)pl ifi+j. (2.36)
k



2.3 Proof of performance on special networks 39

From this, since we defined o, = 1, we get for V/j # 1 that

0=> ofBiL. (2.37)
k

Multiplying (2.30) from the left by a u(j) that fulfills the orthonormality conditions
above gives
(W, Lud) g + (W, Poud) = AL, ud) g + (), ud) (2.38)
Since Py is reversible, we have, for the second expression:
<u(j), Poubuo = <P0ug), u})uo = <u2J, u%}uo, (2.39)

with the last equality again due to the fact that ug) is an eigenvector of Py. We
have then:

(uh Luf)y, = AMud)y, = Alsy (2.40)
(ug, Lug), = Af (2.41)

We obtained an expression for Al. Substituting it in asymptotic expansion (2.25),
for the case i = j we have

AL =1+ e(u, Lud),, +O(e2). (2.42)

In the case of i =j = 1 with u(l) = e (that is, I_u(i) = 0), we further get AL = 1. Still
from (2.30), for the case i # j, we get:

(), Lud)y, =0. (2.43)

Taking the definition of u("; from (2.22) we have

Z oc{.(oci{ (X1, Lx1) o = 0. (2.44)
Kkl

(X1, LX1) 1 just the py-weighted sum of the rows of the block Ly ; of L. The
vector L restricted on this block has entries Bipfk. Therefore, we can write the
product as

(X1 LX) o = g Liixt - Bl (2.45)

We now define the matrix £ € R™*™, with the entries £y = LfkTLk,l)(l- Then
we can rewrite (2.45) as

(X1 LxXU y = Bl L. (2.46)

We show that the eigenvalues and eigenvectors of £ can give us the zero and
first-order terms in (2.25). First we obtain !, the coefficients of . The vector '
is just the invariant measure of £. To see this, we turn again to the asymptotic
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expansions of the eigenvalues and eigenvectors of P, from (2.25) and look at
the invariant measure asymptotics up to the first order. Comparing the invariant
measure for Py + ¢L to that of P, we have:

ugPo—i—eugL—i—aulTPO = ug—i—sulT. (2.47)

Since g Pg = pf, we have
Mo L+ 1 Po = . (2.48)

Multiplying from the right by x; we get
ug Lx + 1 Poxt = 1i X1 (2.49)

Since Pox1 = x1, the terms containing ulT cancel out to give uOT Lxp = 0. Substitut-
ing the definition of g (2.24) we get

> Bifilxi =0. (2.50)
k

Since | is nonzero only on the block j, ﬁjTLxl is £;,1. Therefore, we obtain:

Y BLlii=0 VI =Bl L=0. (2.51)
k

And B! is the invariant measure of £ as required. Then

e = Bify +Ole). (2.52)
j

We continue analyzing £. Substituting (2.45) into (2.44) we further obtain, for
i -
> o.afprlir =0. (2.53)
Kkl

If additionally j =1,j # i, since oc]1< =1

Y BlLiiad =0 = B! Lal =0. (2.54)
kl

Similarly, for i =1,j # i we have ) oc{;B}(Lkll =0.
We can rewrite (2.53) using the scalar product on R™

(wv)p =D Brwvi (2.55)
K

as
(od,Lalyg =0  Vi#j. (2.56)

Therefore the «'s are orthogonal with respect to (-, ).
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1. The eigenvectors of £ diagonalize £ with respect to (-,-)g.

2. These eigenvectors are exactly those «; whose entries we can use as coeffi-
cients for uj, which we can use to approximate ..

3. If A1 ... Ay are the eigenvalues of £, they can be sorted as 0 = A >A >,
and we can use them to approximate A;.

The last statement is derived as follows: From (2.41) we get that
A= (uf, Tud) - (2.57)
Substituting (2.22) we get:

M =D (e Loxdu = D 3 Bifuexy Do, = 3 _ Bloerd i Lk (258)
jk jk o1 tie

Now, since ﬁLlTLXk = Lk, the last expression is equal to <oci, Locj> p1- We know
that the o's are eigenvectors of £, and they are orthonormal with respect to .

Therefore, . . . .
<ocl,/Joc]>Bl = <ocl,7\ioc]>[31 = 7\1, (2.59)

and we get )\} — Ai. Therefore, we can write:

U, = Z cx}x)- + euwg + Ofe) (2.60)
j
and
Ae = Aj 4 €Ay 4+ O(e?) (2.61)
Ae =1+ eAi + O(e2). (2.62)

2.3.2 Computing the perturbed committor functions

The standard committor functions between two blocks of P, are defined in the
same way as (2.14).
For arbitrary blocks 1 and m we want g, so that:

(Id—P¢)qe =0 on blocks2...m—1=C, (2.63)
ge =0 on block 1, (2.64)
ge =1 on block m. (2.65)

The asymptotic expansion of q is

qe = qo+ eq1 + O(e?). (2.66)
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We want to find qp. To do this, we notice that on C:

(Id—P¢)qe =0 (2.67)
(Id — Pe)(qo + €q1 + O(e%)) =0 (2.68)
(Id —Po — eL)(qo + q1 + O(€%)) =0 (2.69)
do — Poqo + (g1 — Poq1 — Lqo) + O(e?) = 0. (2.70)
For this to be true, we then need the following two conditions, on C:
qo —Poqo =0 (2.71)
d1 — Poq1 = Lqo. 2.72)

From the first condition, we obtain that qo restricted on C is additionally an
eigenvector of Py, and is therefore a linear combination of the block functions. It
has the solution
qo =) vix;withvy1 =0,ym =1, (2.73)
j
where the remaining v, ..., ym are free.
From the second condition we get, by multiplying from the left with x:

(X1, 1) 1o — (X, Pod1) o = Xk, Lqo)y, Vk=2,...,m—1. (2.74)
Since Py is reversible and Xy is an eigenvector of Py we get
(X1, Pod1)wo = (PoXik, q1) 1y = (Xks q1) - (2.75)
The left side of (2.74) vanishes, and we have
(xi,Lqo)y, =0 Yk=2..m-—1. (2.76)
Using qo = )_; ¥jX; this yields
m—1
Vi (X LX)y =0 Vk=2..m—1 (2.77)
j=2

From this, in combination with the boundary conditions, we get:

Ly =0 (2.78)
y1=0 (2.79)
Ym =1 (280)

This is a new committor equation whose solution are the coefficients vy, thus
determining qo as wanted. We can use qo to compute q; via the second condi-
tion (2.72) as

q1 = (Id — Py) " 'Lqo. (2.81)

From this we get, finally, using (2.66):

de =) v¥jXj +eq1+ O(e?). (2.82)
j
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2.3.3 Computing the score

From the different components (2.61), (2.60), (2.52), and (2.82), we can compose
the score. We defined the score as %(1 + A2k2). From (2.61), we get

A =1+ €Ay + O(€?). (2.83)
We now need to compute k;, according to

k2 = [ Qeuel% (2.84)

Then we write
K2 = [ Qeuollfy- (2.85)
The asymptotic expansion is

2 22 2
Az = [|Qoutol[yy, + €A”([Qouolly,

(2.86)
+ ] Quuol3, + € Qowl3, + O(€).

The matrix Q¢ is just the projection into the space spanned by the committors qe.

We have shown that all components of the I,,, score are only slight perturba-
tions, depending on ¢, of the eigenvectors of Py, which are combinations of the
block functions. Since Py achieves the optimal score, the smaller the perturbation,
the higher the score of the network represented by P..

2.3.4 Constructing the perturbed network classes

We describe two classes of networks whose transition matrices can be written as
P. = Py + L, with Py the block matrix and L = e[ a a rate matrix representing the
perturbation. We would like these networks to be constructed in such a way that
they have both modules and a transition region, and the differences between the
densities of the modules and the transition region are encoded in L. This way,
decreasing ¢ (while the norm of L remains constant) would result in increasing
Iin. Therefore, we write an explicit formula for L given Py, as L = el with a
small . Our networks will have 3 blocks: M = M; U M, are modules, each of
size .y, and 7 is the transition region of size n;.
We now consider two variants:

1. Within each module, every node is adjacent to at least N other nodes. In the
transition region, each node is adjacent to c{N nodes for some c; < 1. This
way the modules are more densely connected than the transition region.

2. Within each module, every node has strength (weighted degree) at least
N. Thus, the networks in this case are weighted, and we would intuitively
like to have modules that contain many strong nodes. Accordingly, in the
transition region, each node has strength c¢;N nodes for some ¢; < 1. This
way the modules are stronger than the transition region.
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To connect the modules with the transition region, we add new edges between
them such that every node is now adjacent to c; new neighbors for some small
constant c;. To complete the construction of L, we need to select an appropriate
e. In case (1) we take € = 1/N, and in case (2) we can then choose ¢ = 1/v/N.

2.3.4.1 Case 1: Unweighted networks

We set ¢ = #. We need to show that the norm of [ is constant when constructing
the unweighted networks. The Frobenius norm of fis computed as follows: Let
L =N L. For every node in M, My, each row of L has at least N entries of the

1 1
form o NE There are 2n,, such rows.

Taking the square of the corresponding entries of [ and summing all 2n,, - N
entries, we get

__ %
(N + Cz)z.

This expression goes to 0 as N increases. Additionally, to account for the new
edges, those rows of L corresponding to module nodes have ¢, additional entries

of the form - Then the sum of these squared entries in fis

2nmN - (2.87)

NZ

o (2.88)

2T1m - Co

which goes to 2n,,, - ¢ as N increases.

For every node in the transition region, each row of L has at least ¢;N entries
of the form m — ﬁ There are n. such rows. Taking the square of the
corresponding entries of L and summing all n¢c;N entries, we get

2

c

ng-N- ——2—— 0. 2.89

‘ (1N +¢2)? (2:8)

To account for the new edges, rows of the transition region have c, entries
with m Then the sum of these squared entries in L is

Nt C— 5 — Mt - Co. 2.90

t 2 (ClN + Cz)z t 2 ( )

The norm is constant as required.

Example. We construct actual networks having the structure mentioned above,
and compute the perturbed (Section 2.3.3) and actual ((2.17)) I,,, score for them.
We use the following parameters: the network has a total of 400 nodes. Of
these, 200 are in the transition region, and we also have two modules with 100
nodes each. Initially, each node in the modules has some N neighbors inside
the module, where N ranges from 4 to 50. This implies that the density of the
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Figure 2.5: I, for the unweighted network class: 400 nodes, 200 in transition
region. Every node in the modules has initially N neighbors, while in the
transition region every node has 3N neighbors.

modules ranges from 0.04 to 0.5. We additionally set the number of neighbors
each node in the transition region has initially to %N, that is, we set ¢; = % Then
the density inside the transition region ranges between 0.01 and 0.12, lower than
that of the modules. Now we connect the modules and transition region such
that each node has an additional c; = 5 neighbors.

We can compute the I,;, for these networks in two ways: (1) exactly, and (2)
using the components from the perturbation analysis. The perturbed and exact
score are very similar, as demonstrated in Figure 2.5.

Figure 2.6 shows the score components. The perturbed k; is still very close
to 1 even when N is small, as opposed to the actual k. However, the plots for A,
and its perturbed version match more closely, with the values of the perturbed A,
lower than those of the actual A, thus compensating for the high perturbed «;
in the case of small N.

2.3.4.2 Case 2: Weighted networks

This network class is constructed along the same lines as the previous class, this
time with variable node strength instead of number of neighbors. We then take
£ = %, where N is the strength of the nodes in the modules.

We show again that the norm of { is constant. The Frobenius norm of [ is
computed as follows: Let L = N - L. Let a} be the weight of edge (i,j), and k;

the strength of node i. Then Z;“ aji = N. For every node in My, M, row i of L
has k; entries of the form v/N( N:lf 5 %). There are 2n,, such rows.

Taking the square of the corresponding entries of [ and summing all 2n,,, - N
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Figure 2.6: Comparing the components of the score for the class of unweighted

networks with ¢ = %

entries we get:
2nm ki i i
a- a:
VN —2—-2]). 2.91
.Z Z (N +C2 N ) ( )
i=1 j=1
The inner sum is equal to

2 ki

) jy2
VNN et 2 @52

Now, since Z;‘;l(a{) =N, we get Z}‘;l(a{)z < N2, so that (2.91) goes to 0.
Additionally, to account for the new edges, those rows of L corresponding

to module nodes have ¢, additional entries of the form % Then the sum of

these squared entries in [ is

N

Nror (2.93)

2T1m - Co
which goes to 0.
A similar computation for the nodes in the transition region block gives
similar results.

Example. We construct weighted networks with the following parameters: As
before, the network has a total of 400 nodes, 200 are in the transition region,
and there are two modules with 100 nodes each. Both the modules and the
transition region are generated using an Erd6s—Rényi model to have density 0.1.
Initially, each node in the modules has strength N, distributed over its neighbors
inside the module, where N ranges from 1 to 400. The strength of the transition
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Figure 2.7: I,,, for the weighted network class: 400 nodes, 200 in the transition
region. Every node in the modules has initially strength N, while in the transition
region every node has strength IN.

region nodes is initially 2N, that is, we set ¢c; = 1. When connecting the modules
and transition region each node acquires an additional c¢; = 10 neighbors. To
distribute the strength N among the edges we iterate over the nodes, and if there
is a node v where s(v) < N is we distribute the difference N — s uniformly to its
adjacent edges.

We compute again I, for these networks in two ways: (1) exactly, and (2)
using the components from the perturbation analysis. See Figure 2.7 for the
curves.

2.4 Experiments on simple network classes

After proving analytically that I,;, behaves according to our intuition on a small
class of networks, we now demonstrate experimentally that this is the case for
more general classes of networks. We are chiefly interested in showing the
following:

1. When the density of modules increases, so does the score.

2. When the proportion of modules to transition region in the network in-
creases, so does the score.

3. The score should not depend on the number of modules in the network.



48 2 Connecting network modularity and metastability

We will generate sets of benchmark networks for each case above, and test
the performance of the metastability-based scores introduced in the previous
sections: the R/W-score and I;,.

2.4.1 Experimental setting

To perform the experiments outlined above, we need to determine two aspects:
First, the method of generating benchmark networks and the networks them-
selves must be described. Second, when designing the modularity scores, we
have some freedom in choosing parameters, and those might alter the results.
These parameters need to be explored.

The network construction is straightforward: We begin by generating an
Erdés-Rényi (Erd6s and Rényi, 1960) random graph, where each pair of nodes
is connected with probability p; = 0.05. This is our transition region. Then
choose at random two nodes with the same degree, and remove them. In their
place we insert two modules, as described next. In the first set of experiments
these modules have increasing density pm,, and in the second set the modules
increase in size. The modules are then inserted and connected to the rest of the
network as follows: We add an edge between every node in the modules to every
node in the transition region with probability p:. If the resulting network is not
connected, we simply restart the process.

We recap the modularity scores to be tested:

e The R/W-score is the ratio between the expected time to exit the transition
region and to enter a different module than the one started in (Section 2.1.2).

e The I,-score is the computed as %(1 + K2Az), where k; is p-weighted norm
of Quy, and up, A, are the second eigenvector and eigenvalue of the matrix
P = exp(Lt) for one of the generators specified next. The matrix Q is the
projection matrix into the space spanned by the committors representing
the fuzzy assignment.

When designing the score, recall that the metastability scores all rely on a
choice of generator L. As we saw in Section 2.1.3, the choice of generator for
the continuous random walk can have a substantial effect on the substructures
considered metastable, and we can therefore expect it to influence the score. We
therefore tested three generators, and compare them below.

1. Lq is the generator described by the formula (2.11). The waiting time h(i)
in each node is proportional to its degree, and the probability of jumping
to a neighbor depends on the number of shared neighbors.

2. Ly, is the generator where the probability k(x,y) of jumping to a neighbor
y from a node x is like in L, but the waiting time is now proportional to
the clustering coefficient (equation Equation (1.1)) of the node rather than
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its degree. Define h(i) = 0.1 + c(i), where c(i) is the clustering coefficient
of node i, and the addition of 0.1 is done to ensure that h(i) > 0.

3. L. is the discrete generator P — Id. In this case, when computing I,,, we take
Py =P.

Next, recall that two of the scores, R/W and I, require a fuzzy assignment
as input. Since we construct our networks as combinations of modules and a
transition region, we possess a planted assignment, which is intuitively very close
to optimal. We will use this assignment as input. Lastly, I, uses the eigenvectors
and values of the matrix P;. While the embedded Markov chain P depends only
on the topology of the network, we still have to choose an appropriate time lag t.
We do this by using the heuristic proposed by Sarich, Djurdjevac, et al. (2013) as
follows: Let I'; be eigenvalues of the generator L. Suppose we can identify the
spectral gap after k eigenvalues. Then a choice of t such that rik <t< %ﬂ is
appropriate.

2.4.2 Varying module density

In this experiment we vary the module density p,, from 1 (a clique) down to
0.03 (less than the average density of the network). The size of the transition
region in the first stage is is 1000, each module contains 100 nodes. Then after
replacing two nodes with modules, the final network contains 1198 nodes.

Figure 2.8 presents the I,;, score for this set of networks in increasing module
density, for the three generators. In all three cases I, increases with the density
of the modules, but it increases most gradually for L,. In the case of the discrete
generator L the score retains the minimal value 0.5 until the module density is
more than 0.6, and only then increases.

It is also interesting to follow the different parts of the score as they increase
with the module density (Figure 2.9). We see that k; approaches the maximal
value 1 very quickly, already with module density 0.4, while A, rises more slowly.
The eigenvalue is then more correlated with the density.

Figure 2.10 presents the R/W score for this set of networks in increasing
module density, for the three generators. All three generators behave similarly
when p,, < 0.2. At this point the score using the discrete generator increases
slowly, while the scores based on the other two generators increase similarly,
approaching the optimal score as the module density approaches 1.

2.4.3 Varying module size

This experiment is similar to the previous one, except that now the density of the
modules remains constant (it is 1, they are cliques) but their size is varied from
10 to 400. The total number of nodes in the network remains constant. Thus, at a
small size the modules comprise only a very small part of the network, and as
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Figure 2.10: Comparing R/W for the three generators L, Ly, Le on networks
where the modules increase in density.

they approach 400 the total number of nodes in modules approaches 800, thus
the transition region is relatively small at about 200 nodes. We would like our
score to have the property that it increases as the modular region increases.

Figure 2.11 presents the I, score for this set of networks in increasing module
size, for the three generators. As the modules themselves are optimally dense (as
cliques), I, is high already at small sizes. From the three generators, only the
score based on L, discerns between networks with small modules and networks
with larger modules, increasing with the module size. This is a clear advantage
of this generator.

The results above become clear when breaking I, based on L, into its
components (Figure 2.12). While k, = 1 almost for every module size, A,
increases slowly, providing the variance in the final I,, score.

Figure 2.13 presents the R/W score for this set of networks in increasing
module size, for the three generators. Here we see the same trend as in the
density experiment, as all three scores are similar for very small modules, then
Lq, Ly increase similarly while the score based on the discrete generator increases
more slowly.

2.4.4 Varying number of modules

The modularity of a network should not depend on the number of modules, but
rather on the relative size and densities of the transition region and modular
region. We can test this by returning to the module density experiments, this time
varying the number of modules from two to three. All the networks we test in
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Figure 2.11: Comparing I, for the three generators Ly, Ly, Le on networks where
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Figure 2.13: Comparing R/W for the three generators L, Ly, Le on networks
where the modules increase in size.

this section have an identical transition region, 1000 nodes with density p = 0.05.
The modular region contains 300 nodes. These nodes are then partitioned into
two or three modules, and we vary the number of edges within the modules to
increase the module density until it reaches the required threshold. The modules
then have different sizes (100 or 150), but the size of the modular region does
not change.

We present in Figure 2.14 the results of the I,, score and the R/W score on
each pair of networks, u% the generator (2.11) (results for other generators
are similar). The I, score is the same for each pair of networks with the same
density, thus fulfilling our requirement. The R/W score, on the other hand,
is higher for two modules than for three, consistent with our observation in
Section 2.1.3. These findings imply that by restricting the score to use only
the second eigenvalue and eigenvector, we can compare networks with simple
structures and not be influenced by the number of modules.

Having demonstrated the good properties of the I,, score on benchmark
networks, where the correct assignment is known in advance, in the next section
we show an example of analyzing real-world networks with this approach.

2.5 Application: Modularity of brain networks

We describe an example for a possible application of our modularity score:
Determining the modularity of brain networks (connectomes), with the larger
goal of using the modularity to help differentiate between typical and atypical
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corresponding pair of networks, one with two modules and the other with three.
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brains according to some criteria. As surveyed in Section 1.1, such an approach
is well-motivated: in recent years, the modular structure of brain networks has
often been investigated in the context of disorders such as epilepsy (Chavez et al.,
2010), Alzheimer’s diseases (G. Chen et al., 2013), and autism (Rudie et al., 2012).
When comparing groups of brain networks under different conditions (sick
vs. healthy, before vs. after learning a task), the groups often exhibit different
modularity. This is usually described qualitatively, by noting cluster shapes, or
quantitatively: the networks in each group have a different number of clusters,
larger or smaller clusters, etc. Such measurements can then be used to better
understand the mechanism of the brain, or even as features in classifiers that can
label an unknown network (Gamboa et al., 2013).

Due to the increased availability of brain network data for download and
research, we are able to test the performance of our I, score on real connectomes.
We downloaded the UCLA autism dataset!, first collected and analyzed by Rudie
et al. (2012). This dataset contains contains 175 networks from children and
teenagers, two from each of 51 children diagnosed with Autism Spectrum
Disorder (ASD), and 43 typically-developed (TD) children.

The dataset contains two types of connectomes: functional and structural. The
functional networks are derived from resting state functional magnetic resonance
imaging (fMRI) experiments. All networks share the same node set, where in this

Thttp://umcd.humanconnectomeproject.org/umcd/default/index
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case the authors chose a whole-brain parcellation scheme (Power et al., 2011) with
264 functional brain regions, resulting in 264 nodes. The fMRI measurements of
every subject, after processing, lead to a time series associated with each node,
and edge weights are then transformed z-scores of the correlation coefficient
between the time series. Unfortunately, this implies that these networks contain
negative edge weights, which makes our I, score (along with other scores
surveyed here) not applicable.

We are left, then, with the structural networks: Nodes correspond to the
same 264 functional regions, and edges correspond to the number of fibers
connecting the regions, measured using an MRI method called Diffusion MRI
(dMRI). This implies integer weights on the edges, within the range (1,500). We
focus, therefore, on 43 TD and 51 ASD structural networks. The question we
would like to answer is, do ASD and TD networks have different I, scores? If
so, we can use this fact to gain both insight about the brain structure in autism
and a feature for classification.

The networks in the experiments described below display the following
behavior: All ASD networks obtain a high I, score, while the distribution of I,
for the TD networks is more varied, with some networks obtaining low scores.
Thus, given a structural network we have otherwise no information about, if
it has a low I, score we can assume that it comes from a typically-developed
individual.

We first outline the results of the analysis done by Rudie et al. (2012). We
follow this with the results of the Newman-Girvan Q-score (see Section 1.3.1.1)
on this set of networks, and then our own I, score. To fully describe I, we
need to specify how we obtain an assignment to use in computing k. We can
then break down the score to show which components influence the variance in
the TD network scores.

Rudie et al. (2012) analyzed both the functional and structural networks.
Their analysis consisted of several parts: They fully partition the network and
count the edges within and between clusters. Next they calculate several global
measures on the average TD and ASD networks when thresholding the edge
weights across several thresholds. These measures include the average clustering
coefficient, characteristic path length, and four others (Rubinov and Sporns, 2010).
While for the functional network some of these measures, such as the clustering
coefficient, were clearly different between the TD and ASD group, this was not
the case for the structural networks. For these networks no single measure was
significantly different for both groups. Finally, the authors discuss the connection
between the results on the functional and structural networks, along with the
connection between some of the network measures and characteristics such as
age of the child and severity of autism indicators. The overall results agree
with previous work, which links the modularity of functional networks with
neurological characteristics.

Rudie et al. (2012) interpreted the networks using several well-established
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Figure 2.15: Modularity scores I.,, and Q for ASD versus TD networks. The I,
score of the ASD networks is always high, while the TD is more spread out, with
some low-scoring networks.

measures, but their interpretation of the network modularity is restricted: They
first find a full partition with a high Q-score using the Louvain heuristic (Blondel
et al., 2008), then count the edges inside and outside the clusters of this parti-
tion to conclude that the TD networks contain more dense, sparsely-connected
clusters, that is, TD networks are more modular. With our extended notion of
modularity, allowing for the possibility of assignments rather than full partitions,
we can be more flexible. Another advantage of our approach is that it takes into
account all edges of the network, including weights. In contrast, Rudie et al.
(2012) create unweighted networks by discarding some percent of edges in each
network having lowest weights and assigning weight 1 to the remaining edges,
thus perhaps losing information. The Q-score, on the other hand, is designed to
take edge weights into account, and summarize the modularity of a network in
a single number, as we aspire to do. Unfortunately, the Q-score of the TD and
ASD networks does not appear to differ (Figure 2.15). The scores vary between
0.6 and 0.7 in both cases, suggesting that the networks are indeed modular in
some sense, but not differentiating between the two network types.

Can we do differently with I,,? In order to test this, we need to compute the
components of the score (2.17). We begin with computing a fuzzy assignment,
represented by a set of committors (2.14). For this we utilize the MSM clustering
algorithm (Sarich, Djurdjevac, et al., 2013), fully described in Chapter 3. Briefly,
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the algorithm consists of three steps: Separating the transition region from the
modular region, fully-partitioning the modular region, and finally, assigning
some transition region nodes to the modules via thresholding. We adopt only
the first two steps, thus dropping the need to find an optimal thresholding
parameter. Thus, the entire process is parameter-free:

1. Compute the generator L similarly to (2.11), replacing the degree d(x) of
every node with its strength s(x) to account for the edge weights.

2. Determine an appropriate lag-time « from the spectral gap, as described
by Sarich, Djurdjevac, et al. (2013).

3. Identify the transition region and compute the transition matrix Py of the
modular region.

4. Estimate the number of modules via the largest gap of P, and fully parti-
tion the modular region to obtain modules.

5. Compute the committor functions for these modules.
6. Compute from L the matrix P; for the time lag o.
7. Calculate the score components: uy, 1, Q, and then k».

8. Compute the score as %(1 + A2ko).

Running this algorithm on the TD and ASD networks, we obtain the results
depicted in Figure 2.15. While all ASD scores are high (above 0.9), TD scores
can also be lower, with 6 out of the 42 under 0.9 and of those, 3 less than
0.8. What is the source of these differences? Breaking the score down into
its components (Figure 2.16), we find that, in contrast to the experiments on
benchmark networks (Secﬁl 3.2.3), A2 is consistently high, while the fluctuations
in k, cause the fluctuations in the final score. Thus, the eigenvector error
representing the difference between the committors of the assignment resulting
from the clustering and the eigenvectors of Py is responsible for the lower scores:
If we work under the (not necessarily true) assumption that the clustering
algorithm finds the optimal assignment and thus the «; is optimal, then we
must conclude that these TD networks with low scores simply do not have a
good assignment into dense modules and a transition region. By plotting the
number of modules found for every network, we further confirm, in agreement
with our previous experiments on benchmark networks, that the fluctuations in
the score are not related to the number of modules. No correlation was found
also when comparing the size of modular and transition region: The modular
transition region in the low-scoring network is not smaller than the average
transition region in the remaining network. Thus, the transition region size does
not explain the lower scores, either.
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Figure 2.16: Analyzing the different factors contributing to the I,,, score: The
score components k; and Ay, and the number of modules determined by MSM
clustering. The variance of I, for these types of networks appears to stem from
the variance in «».

The difference between the modules detected in the high-scoring ASD net-
works and low-scoring TD networks is not easy to visualize. We plotted a pair
of such networks, along with the modules of the corresponding assignments
found by the MSM. clustering (Figure 2.17). No clear difference is discernible.
The modules we find correspond to adjacent regions of the brain, but that is to
be expected from the construction of the network. Further study is required to
derive meaning from the particular modules we found.

The last test consists of computing the correlation between I, and the
age of the participants in the study. One major finding of Rudie et al. (2012)
is correlation between Q and participants age: In the TD group, modularity
sharply decreased with age, while in the ASD group it decreased more slowly.
We noticed no such trend when comparing participant age and I, score, aside
from noticing a negative Pearson correlation between age and I,,, in the TD
group (Pearson correlation —0.3) and no correlation in the ASD group.

The major finding of our experiments is, therefore, that the I, score for ASD
networks is always high, and for TD it can also be low. What can we conclude
from this? Mainly, how can we reconcile this with previous results, which point
to reduced modularity in ASD brains? The first explanation is a technical one:
As demonstrated above, previous attempts at quantifying modularity of brain
networks must disregard some information (edge weights, in this case). The
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(a) Network from TD brain, I,, = 0.7961, 11 (b) Network from ASD brain, I,, = 0.9952,
modules 24 modules

Figure 2.17: The assignment found using MSM clustering for one TD and one
ASD brain networks. Thickness of edges is proportional to weight.

particular preprocessing chosen can influence results. For example, when we
tried thresholding and binarizing the networks, the I, scores for the TD and
ASD groups were not differently distributed. Therefore, it can be valuable to use
all available information.

The second explanation goes to the heart of the model: full partition ver-
sus assignment. In the full partition case, the partitions have been shown to
correspond to functional or structural brain regions. Then for ASD brains, the
partitions have fewer edges within them and more edges between them than
the TD brains. Thus, the modularity of the TD brains is naturally higher. How-
ever, it is possible that a full partition is not the only useful way to model the
brain. Rudie et al. (2012) suggest, for example, when discussing the functional
networks, that the decreased modularity of the ASD brains is partially caused by
some brain regions (default and sensorimotor systems) containing nodes that are
connected to many other nodes in different clusters. A model that assigns such
nodes to the transition region rather than to a module might better represent the
underlying mechanism, and the modularity score should reflect this. Overall, it
would be interesting to further study the non-full clustering of the brain, and
the insights it could provide.
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Chapter 3

Module and transition region
identification

Previous chapters introduced some modularity scores and demonstrated their
behavior and usefulness. We focused on the metastability-based I, score, which
assumes as input an optimal fuzzy assignment, defined via the committors. We
will now discuss methods of finding such a fuzzy assignment. While finding
the optimal assignment is difficult (Djurdjevac, Bruckner, et al., 2011; Sarich,
Djurdjevac, et al., 2013), we can use heuristics to identify an assignment with
good properties.

We then start by briefly describing the MSM clustering algorithm (Sarich,
Djurdjevac, et al., 2013), designed specifically for fast identification of modules
and a transition region. Since the problem of computing an assignment is
interesting by itself (in the same way that finding a good full partition of a
network is interesting), we additionally propose several algorithms that compute
assignments that are good according to various criteria. We begin by describing
simple modifications to several well-known full partition algorithms, so that they
would output assignments. We summarize this section with our experiments on
benchmark networks (Bruckner, Kayser, and Conrad, 2013).

The significant theoretical contribution of this chapter is in Section 3.3, where
we develop a combinatorial formulation of an assignment, based on graph-
theoretical concepts. Since we show that this formulation is NP-hard to optimize,
we propose several heuristics and an integer linear program that optimally
solves the problem. In the last section, we present experiments on protein—
protein interaction networks, where we identify and analyze modules using the
algorithms above.

61
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3.1 Markov State Model-based clustering

The MSM clustering algorithm (Sarich, Djurdjevac, et al., 2013) is designed
specifically to find modules and the transition region in modular networks.

3.1.1 Identification of modules

When constructing the I,,, modularity score in Section 2.2, we scored a network
according to the optimal fuzzy assignment. A good assignment is defined as
one where the eigenvector projection error of the coarse-grained random walk
is small. More precisely, we can suppose that we do not have a full partition
but just the modules Ci, i =1,...,k, with the remaining nodes belonging to the
transition region 7, and k committor functions f; with ) ; fi(x) = 1 for all nodes
x. We find a coarse-grained random walk that jumps between the modules and
takes the dynamics on the transition region into account (Sarich and Schiitte,
2011). The process has an k x k projected transition matrix P = QPQ, where
Q is again the orthogonal projection onto the space spanned by the committor
functions, as in the I, score we introduced.

Sarich and Schiitte (2011) show that for any eigenvalue A; of P and the
corresponding normalized eigenvector u; it holds that

1/2
81 < p(ui) + 21(T)pmax(ui) + 1(T)(1 — A¢) (Z ui(XVH(X)) 3.1)
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From this, we conclude that modules should satisfy two things in order to
ensure the small projection errors [|Q-u;| = 1 — ||Quy| for the dominant eigen-
vectors, hence providing a good approximation of the largest eigenvalues. Recall
that these eigenvalues correspond to metastability of the random walk, similarly
to the motivation behind I,y,. First, from the transition region the random walker
should always enter some module quickly enough such that v(7)(1 —A;) is small
enough. This corresponds to a fast return time R (Section 2.1.2). The more
eigenvalues of P we want to approximate, the faster 7 has to be left. Second, the
dominant eigenvectors should be close to step functions, that is, almost constant
on the modules to guarantee small values of p(u;i) and pmax(ui). Fortunately, the
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error bound decomposes into these two parts. The factor v(7)(1 — A;) takes only
the transition region into account, and the errors p(ui) and pmax(ui) depend
only on the partitioning of M = V'\ T into the modules.

We can exploit this when constructing methods for finding fuzzy assignments.
Strictly from an algorithmic perspective, the task divides into two parts: (1)
identifying the transition region, and (2) clustering the remaining nodes into
modules. Viewed this way, we can in principle solve each of these subtasks
independently.

3.1.2 Algorithm

Sarich, Djurdjevac, et al. (2013) compute the modules and the fuzzy decomposi-
tion in three separate steps:

1. Identify the transition region 7.
2. Cluster the remaining nodes of the network into modules Cy, ..., Cy.

3. Compute the fuzzy decomposition as the committors with respect to the
modules.

Identifying the transition region first reduces the problem to that of finding a
full partition. If the transition region is large, the number of nodes in modules
is comparably small, and the running time of the full-partition clustering step
would be reduced. That is, we would have a full partition with respect to the
nodes belonging to M only, which would be simpler since nodes that can be
affiliated with several modules, and therefore pose difficulties for the algorithm,
are removed.

Step 1. We want to choose a transition region such that the random walker
leaves it quickly. If we also want to consider modules that are less metastable,
we will have to approximate eigenvalues which are less close to 1: the factor
(1 —A;) in (3.1) is larger, v(T) must be smaller, and therefore, the region T has to
be left faster. If, on the other hand, we are only interested in the very metastable
modules, only the eigenvalues close to 1 need to be approximated. This can
be controlled by a choice of the lag time parameter ««. The higher we choose
the value for «, the more metastable the modules we find. Suppose we can
place random walkers distributed according to some stationary distribution pu*
(uniformly or according to some other scheme (Sarich, Djurdjevac, et al., 2013))
on the nodes of the network. Now we propagate the random walk with the
generator (2.11) and compare the distribution of walkers on the nodes to p*:

M ={x € V| (Peu*)(x) > p*(x)) (3.3)

We choose nodes x € V for the modular region for which there are, informally,
more random walkers after time « > 0 than there were according to the original
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distribution. Thus, this set (3.3) is exactly the region that rather attracted random
walkers in the ensemble than let them leave within the time o.

Step 2. Having identified the set M*, we have effectively reduced the problem
to that of finding a full partition for those nodes. There are two possible strategies:
First, we can remove the transition region entirely, and cluster the remaining
nodes without taking into account the dynamics on the transition region. We
can use any full-partition algorithm for this, such as MCL (Dongen, 2000).
Alternatively, we can view the time lag « as a resolution parameter, allowing us to
define a metastable hierarchy of modules: On the lowest level of the hierarchy,
we have the most metastable modules, those corresponding to the longest lag
times. The higher levels of the hierarchy contain modules that are less and less
metastable. Viewed this way, a particular choice of M* gives a single level of the
hierarchy, but by including information about the transition region dynamics
in the input provided to the full-partition clusterer we can influence the full
partition. For example, a set of nodes U C V can be split by the clusterer into
two separate modules U;, Uy, or be merged into a single module if there are
multiple transition region nodes that have neighbors in both U; and U,. Which
strategy to choose depends on the application. We will see examples for the
effects of both choices in Section 3.1.3.

For the second strategy, Sarich, Djurdjevac, et al. (2013) consider the random
walk only on the nodes belonging to M* with transition matrix

Palx,y) = Z P(x,z)qy(z), xye€M%, (3.4)
zeV

where qy(z) is the probability that y will be the next node from M that is hit by
the random walk starting in z. This can be computed via the committors (2.14)
by treating each node as a module and computing the probability of hitting
this module. That is, ls(x(x,y) describes the transition probabilities between the
nodes of M*. From there it is possible to use a full-partition algorithm to split
M into modules Cy, ..., Cm. Since P, describes the dynamics only within the
modular region, the absence of nodes with affiliation to several modules makes
the spectrum of P, usually very amenable for interpretation, as exemplified
when we compute the eigenvalues of P, on the adverse network (Figure 1.8).
The result is shown in Figure 3.1, where the spectrum of P (red crosses) is
compared with that of the discrete random walk P. There is a clear gap after two
eigenvalues, corresponding to the two modules we want to identify, but only
after removing the transition region.

Step 3. We can of course stop here: We have modules and the transition region,
that is, we have an assignment, and for some applications this would be enough.
However, for other purposes, in particular for computing the I,,, score, we need
to compute the affiliation of all nodes to the modules: a fuzzy assignment. The
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Figure 3.1: The eigenvalues of P, (red crosses) versus those of the standard
transition matrix P (blue circles) (Sarich, Djurdjevac, et al., 2013) for the adverse
network in Figure 1.8.

affiliation of the nodes in M® is clear, but we still need to compute the affiliation
of the transition region nodes to the modules.

Thus, this step consists of computing the committors with respect to the mod-
ules Cy, ..., Cy to get a fuzzy clustering of the remaining nodes. As mentioned
above, committors can be computed by solving positive definite, symmetric lin-
ear systems which will be as sparse as the adjacency matrix. Such computations
can be performed efficiently, even for large systems.

Performing this step has the additional advantage of allowing extra flexibility
in determining which nodes belong to the transition region and which belong
to the modules: After obtaining the affiliation of each transition node to each
module, we can choose to assign transition region nodes to modules to which
they are strongly affiliated. This can be done, for example, with thresholding:
every node that has an affiliation higher than 0 for some chosen parameter 0
to some module C; can be viewed as belonging to C;. Sarich, Djurdjevac, et al.
(2013) summarize the algorithm as follows:
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Algorithm summary.

1. Input: & > 0, matrix A

Compute L according to (2.11), withe.g. p = 1.
Solve

d .
a\)t = LTVt, Vo=H (35)

until t = &, so vy = eLT"‘p.*. Set
M ={x € V]vg(x) > " (x)} (3.6)

2. Compute committors qy(z),y € M%,z € T with respect to the single
nodes of M* and for x,y € M%*

Palx,y) = D Plx,z)qy(2). (3.7)

zeV

Choose number of modules n according to the spectrum of P, and use
hard clustering method, e. g. (Deuflhard et al., 2000).

3. Compute committors f;(x) for every x € T with respect to the modules
Ci,...,Cx.

Running time analysis. Let the number of nodes in the network be n, and the
number of nodes in the modular region M* be denoted by N,. The running
time of the algorithm described above can be decomposed as follows (Sarich,
Djurdjevac, et al., 2013):

Step 1: This requires solving a system of linear differential equations. Al-
Mohy and Higham (2011) show that the computational effort is dominated by
matrix multiplications, dominated by O(n) for large, sparse matrices.

Step 2: This has two parts: computing P, and performing full-partition
clustering. Thus first we have to solve a symmetric, positive definite linear
system for N, right-hand sides. Since the matrix L is large and sparse, conjugate
gradient methods allow to compute the solution in O(kn) point operations.
Then, we have to compute a full partition with respect to the coarse grained
random walk with N, x N, transition matrix Py. Many algorithms exist for
this, for example Deuflhard et al. (2000) and E, T. Li, and Vanden-Eijnden (2008),
performing in running time O(N2, log Ny, ). -

Step 3: Again, we have to solve linear systems in order to compute commit-
tors as in step 2 with the same matrix L.

Thus the overall running time is dominated by Step 2, where we have to fully
partition the N, nodes in the modular region. If N,, < n, that is, if the number
of nodes in modules is much smaller than the number of nodes not assigned to
modules, then the running time scales linearly with the total number of nodes.
To summarize, the different stages of the algorithm mostly require solving linear
systems of equations, a task whose running time depends on the method used.
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The running time then depends on the size of the network and the number of
nodes in the modular region.

3.1.3 Drawbacks

The algorithm described above performs well on some benchmark networks, as
we will demonstrate in Section 3.2.3. However, several issues must be noted
when applying the algorithm to general networks, as exemplified in the network
described below.

We construct a network with 2 modules and a transition region. Each module
is a random graph on 50 nodes, with edge density 0.6. Hence, the average degree
inside a module is 0.6 - 49 ~ 30. The transition region is a random graph on
1000 nodes, with a much lower density of 0.05, and thus an average degree
of about 50. We then connect every node in a module with every node in the
transition region with probability 0.05. Thus the average degree of a module
node in the connected network is 80, and the average degree of a transition
region node is about 52. This structure is depicted in Figure 3.2. This network is
still modular, and the degree of module nodes is higher than that of transition
region nodes on average, but the degree inside the modules is lower than the
degree in the transition region. With this network we can demonstrate two issues
with the MSM clustering algorithm:

1. A high degree is the best indicator of module membership, as modeled by
the waiting time of the continuous Markov process being proportional to
the degree.

2. In Step 2 of the algorithm, the modular region is fully partitioned but the
jump probabilities between the nodes also take the transition region into
account.

We first run the MSM clustering algorithm exactly as described in the pre-
vious section. From the spectrum of the generator, with a clear gap after the
first three eigenvalues, we determine a lag time of a = 138 and separate the
modular and transition region. The modular region (Figure 3.2, colored) is
clearly misidentified, the nodes corresponding to some high-degree nodes in the
network. We can attribute this to the generator (2.11), which rewards high-degree
nodes with a relatively high waiting time. This is demonstrated by running
the algorithm with a different generator Ly, first defined in Section 2.4. Recall
that the generator is defined through the transition probabilities k(x,y) and the
waiting time, denoted h(i). Keeping k(x,y) the same, we replaced h(i) = d(i)
in the degree-based generator by h(i) = 0.1 + c(i), where c(i) is the clustering
coefficient of node i. The spectrum of Ly suggests a small time lag of & = 3.
When separating the transition region and modular region, we find that the
MT-partition is much closer to the original network construction, with only a
few exceptions (Figure 3.2). This points to a possible problem with the MSM
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clustering algorithm: when the structure of the network is complicated, with
nodes of various degrees inside and outside of modules, the simple reliance on
degree can lead to incorrect results. This could be a problem when analyzing
real-world networks.

Clustering this network also emphasizes a second issue: We see that even
when the modular region is almost correctly identified, as when we use the
clustering-coefficient-based generator Ly, and even as the correct number of
cores (two) can be determined from the spectrum of Py, the clustering heuristic
fails to partition the modular region correctly. In this case, one module is
comprised of a single node, and the remaining nodes are clustered together. This
can either be attributed to the deterministic full-partition algorithm itself, or to
its input: The P, matrix, giving the probability of transitioning between each
pair of nodes in the modular region, is computed via the committors. Thus a
pair of nodes that is not directly connected but has many short paths between
them through the transition region would have a high probability in P, and
thus could be clustered together. When we instead take the induced graph on
the modular region nodes and run a standard full-partitioning algorithm like
Newman-Girvan (Section 1.3.1.1), the partition into two clusters matches the
planted partition. Whether we want to maintain the transition region information
or not will depend on the application.

We conclude that while the MSM clustering algorithm can resolve networks
with a straightforward structure with modules of similar density that is different
to that of the transition region, further adjustments must be made to handle
real-world networks. A different generator and a different approach to the
full-clustering step could help in resolving such networks.

3.2 Modifications to prominent full-partition algorithms

In the previous section, we dealt directly with the question of how to identify
the best fuzzy assignment in the sense of metastability. However, the question of
finding a good assignment has a wider scope. As detailed in the first chapter,
clustering algorithms are usually synonymous with full-partition algorithms. It
is useful then to consider algorithms for identifying assignments, since there is
no clear state-of-the-art algorithm for this task. A natural place to start is taking
a closer look at some of the more prominent clustering algorithms and testing
whether they can be extended to identify fuzzy assignments.

3.2.1 Simple adjustments to MCL and SCAN

There is a rich offering of clustering algorithms for different classes of networks
(many surveys are available, for example Nascimento and Carvalho (2011), Porter,
Onnela, and Mucha (2009), and Santo (2010)). To our knowledge, the majority of
algorithms exist for the task of fully partitioning a network: Every node must
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(c) Cores found with L, (d) Clusters found by optimizing Q

Figure 3.2: The original network has 1000 nodes in the transition region (white),
50 in each module (red and green). The modular region identified by MSM
clustering in Step 1 contains many transition region nodes, and the subsequent
full partition is also unintuitive. The modular region identified when using Ly,
is much closer to the planted modular region, but the full partition into two
cores is again non-intuitive. When fully partitioning the modular region using
Newman-Girvan modularity, the resulting partitions match the original network.
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belong to exactly one module. Another, smaller, category of algorithms that has
received attention recently contains algorithms that allow nodes to belong to
more than one module, that is, allowing overlaps (what we termed overlapping
partitions). In this category we also find a subset of algorithms that permits nodes
to be labeled as outliers, nodes that belong to no module.

We wish to test how we can modify algorithms from these categories to find
assignments. Therefore, we now select representatives from the literature for
each category, and explain how we interpret their output in the sense of our
model.

3.2.1.1 SCAN

The SCAN algorithm (Xu et al., 2007) is, to our knowledge, one of the first
algorithms to handle networks that are not fully partitionable, using the notion
of hubs: nodes that bridge many clusters and therefore can be affiliated with
more than one cluster, and outliers: nodes that cannot be said to belong to any
cluster. Under this model, SCAN identifies clusters, hubs, and outliers in large
networks, where the network is comprised mostly of modules, while hubs and
outliers are more rare.

The algorithm defines and utilizes structural similarity: Two nodes are as-
signed to a cluster according to how they share neighbors. If their neighborhoods
are structurally similar, they will be in the same cluster. If they are not similar
enough to any other node they will be labeled as outliers, or hubs if they are
structurally similar to nodes that end up in separate clusters. The algorithm then
employs structural reachability: A node is structurally-reachable from another
if there is a chain of nodes between them such that each node is structurally-
reachable from the previous node. During the run of the algorithm, clusters are
expanded from single-node seeds to contain nodes that are structurally reachable
from one another. Nodes that do not fit in any cluster are then classified into
outliers or hubs according to the number of clusters they are adjacent to. SCAN
requires two user-defined parameters, 1 and ¢, where p is the minimum size of
a module, and ¢ controls the structural reachability. SCAN has been successfully
applied to very large graphs with millions of nodes. The source code is available
by request from the authors.

The two special classes of nodes defined by SCAN, hubs and outliers, partly
correspond to our notion of transition region nodes: Outliers are not a part of
any single module. Hubs bridge between different modules and therefore do
not strictly belong to any. Therefore we count outliers and hubs found by SCAN
as transition nodes, and assign them to the transition region.

3.2.1.2 Markov clustering

The MCL (Markov Clustering) algorithm (Enright, Dongen, and Ouzounis, 2002)
is a popular algorithm for fully partitioning networks that is based on simulation
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of random walks. Its central idea is that a random walk on a network would
remain “stuck” in dense regions for a long time, and will therefore will go
infrequently from one natural cluster to another.

MCL simulates random walks on networks by alternating two operators on
the transition matrix: expansion and inflation. In the Expansion step the algorithm
computes the power of the matrix using the normal matrix product (matrix
squaring). The Inflation step corresponds with taking the Hadamard power of
a matrix (taking powers entrywise), followed by a scaling step, such that the
resulting matrix is stochastic again, and the matrix elements (on each column)
correspond to probability values. As the process converges the matrix exhibits
a structure close to a block structure, with high probabilities between nodes
belonging to the same clusters and close to zero everywhere else. The original
code by the authors, written in C++, is available from micans.org/mcl. MCL is
designed to return a full partition of the network, and therefore must be adjusted
to be able to take outliers into account. It has been demonstrated (for example by
Satuluri, Parthasarathy, and Ucar (2010)) that MCL tends to produce imbalanced
clusterings, consisting of a few large clusters and many small clusters of size
two or three and singletons. Usually viewed as a shortcoming of the algorithm,
we now interpret this tendency to our advantage: We introduce a parameter p
similar to SCAN to set a minimum size for a module. All modules with less than
1 nodes are assigned to the transition region.

Using these modifications to SCAN and MCL we essentially formulated two
algorithms for finding assighments. We are then equipped with three algorithms
whose performance we can test and compare: modified SCAN, modified MCL,
and the MSM clustering algorithm. We can test their performance on benchmark
networks: We construct a simple class of networks with a planted assignment
that we will assume is an optimal assignment. We can then compare this optimal
assignment with the assignment determined by the three algorithms. We next
describe how to compare two assignments to evaluate algorithm performance,
and then outline our class of benchmark networks.

3.2.2 Evaluating the similarity of two assignments

We propose methods to score the performance of the clustering algorithms
described above on our benchmark networks. Continuing along the line we began
when describing the MSM clustering algorithm, we evaluate the algorithms on
the two parts of the assignment task: (1) Correctly assigning nodes to the modular
region or to the transition region (MT-partition), and (2) Correctly assigning the
modular region nodes to the different modules (full partition). Then we combine
the two scores to obtain a single evaluation.

At the basis of our scoring scheme is a well-known evaluation measure for
clustering methods. The adjusted Rand index (ARI (Rand, 1971)) is a measure
of agreement between two clustering partitions that can be used as a metric for
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evaluating clustering methods (Santos and Embrechts, 2009). Compared to the
original Rand index, the adjusted version corrects for just-by-chance bias.

ARI is based on a matrix N, where the rows correspond to one clustering A
and the columns to the other clustering B. The number of nodes in cluster i from
partition A that belong to cluster j of partition B is N(i,j) = nij. The number of
clusters of some partition P is cp. The sum over row i (that is, the number of
nodes in cluster i from partition A) is ni, sum over column j (number of nodes
in cluster j from partition B) is n ;. The ARI is then computed as:

24y ()~ 24 (%) 55 (3)/(6)
2L () + 5 (P - L (5) 55 (9)/()

This formula can only be applied to compare full partitions of a node set,
without taking the transition region into account. To compare two fuzzy assign-
ments on the tasks outlined above, we construct the appropriate full partitions.

For testing how well the algorithm classifies the nodes into the modular
and transition region we apply the ARI formula to an appropriate MT-partition.
That is, we score the similarity between the modular regions and the transition
regions in both assignments. This is the pMT score.

For testing how well the algorithm splits the modular region into modules
we apply the ARI formula to the assignments of a smaller subset of the nodes:
Only those that are assigned to the modular region in both the ground-truth
(planted) assignment and the one output by the algorithm. This is the pM score.

(3.8)

p:

The combined ARI score. In order to get a single cohesive score that combines
the performance of the algorithm on the two tasks defined above we introduce
the p¢ score. The main challenge in designing p€ is to find a way to account for
the transition region. Two extreme approaches are possible: First, we can merge
all transition region nodes into a single new module. Alternatively, we could
assign each transition node to a single new module. Both approaches have the
same drawback: for networks with a large ground-truth transition region, any
algorithm that assigns almost all or all of the nodes to the transition region will
attain a high score. This is because a a large proportion of the assignments in the
calculated clustering and the ground-truth agree. To circumvent this we modify
the assignments as follows: Denote the two assignments A and B. Construct A’
and B’ as follows: Every node assigned to the transition region in assignment A
and to a module in assignment B becomes a singleton module in A’ and vice
versa for B’. Every node assigned to the transition region in both assignments is
removed in both. Finally, every node assigned to a module in both clusterings
retains its module number.
Define the following subsets of nodes:

e Ma: Modular region of the planted assignment A.
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e J: Transition region of the planted assignment A.
e Mg: Modular region of the algorithm result B.

e Jp: Transition region of the algorithm result B.

For each node v:

1. ve Mg UTa. Then node v belongs to a module in B but to the transition
region in A. Assign v to a new singleton module in A.

2. v € Tg UMAa. This is the symmetric situation. Node v in the transition
region of A but assigned to a module in B Assign v to a new singleton
module in B.

3. v€ Mg UMAa. Here v belongs to a module in both assignments. Do the
same in A’,B’.

4. v € Tg UTA. In this case, v is assigned to the transition region in both
assignments. Node v is then not a part of A’ or B/ and thus not considered
in the evaluation.

This leads to two “full partition” assignments of a subset of the nodes
which can be compared using the standard ARI formula. Since the modified
assignments contain only nodes that are assigned to one module in at least one
of the assignments, the ARI is not biased by the size of the transition region of
the original network. We can thus evaluate the similarity of two assignments,
both in the modular and the transition region, using this p. score.

3.2.3 Experiments on benchmark networks

Before presenting results of the modified algorithms, we first describe how we
construct a simple class of benchmark networks.

The networks are constructed as follows: each of the n nodes is first assigned
to either exactly one of the modules, or to the transition region. This is the
planted partition, the “ground truth”. To create the networks, we generate the
transition region and modules separately as random Erdés-Rényi (Erd6s and
Rényi, 1960) graphs. To ensure the connectivity of each ER graph we add a
random spanning tree between its nodes. The next step is to connect the parts
into a network. We select a node at random from the transition region and from
each module and connect these nodes via a random spanning tree. Finally, each
possible edge between a module node and a transition region node is added
with some small probability.

More formally, this class has the following parameters: Network size (total
number of nodes) N, number of modules M, total number of nodes in modules Npy,
module density py, transition region density p¢ and inter-connection density pi. The
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inter-connection density is an indicator for the number of edges between modules
and the transition region. We also define the number of nodes in the transition
region N1 := N —Np1 and the number of nodes per module N, := Nyq/M. The
module size is then determined by the other parameters.

For the experiments we describe next we use the following set of parameters:
N = 1000 nodes, M = 5 modules, p, = 0.6 module density, p: = 0.01 transition
region density, and p; = 0.01 interconnection density. The minimal module size
under these constraints is then 10 nodes.

3.2.3.1 Algorithm parameters

SCAN, MCL, and MSM all require specifying values for input parameters. When
choosing the parameters, we attempted to stay as close as possible to the default
values stated in the documentation of the algorithms. In some cases, when a
range of values was possible, we ran the experiments with different values and
selected the value for which p¢ was highest.

In SCAN the parameters are ¢ and p. We take p = 10 as discussed above. To
choose ¢, a parameter controlling the distance between nodes in a module, we
followed the guidelines set in the SCAN documentation and tried ¢ =0.5...0.8.
We then set ¢ = 0.5, as for this value we obtained the best results for all
experiments.

MCL has many tunable parameters. We opt for the default values as described
by Enright, Dongen, and Ouzounis (2002). We experimentally determined that al-
tering those parameters does not improve the results. We add the post-processing
parameter 1 = 10 as a minimum module size as described in Section 3.2.1.2.
The members of any module with less than ten nodes are then assigned to the
transition region.

In MSM the parameters are &, which determines how metastable the detected
modules must be, and the threshold 0 for adding transition region nodes to
existing modules according to their committor values. Sarich, Djurdjevac, et al.
(2013) set the parameters of MSM to 6 = 0.9 in all experiments, and we duplicate
this here. The case of « is more complicated, since it is treated as a resolution
parameter (Section 3.1.2): higher values of « result in only the most metastable
modules detected, while lower values allow for less metastable structures to
also be detected as modules. Our experiments showed that the exact value of x
does not make a difference to the results on our benchmark set, probably due
to the simple nature of those networks: all the modules have the same size and
density. We therefore set « = 1000, as in the examples of Sarich, Djurdjevac,
et al. (2013). The generator we choose is the degree-based one (2.11) as used
by Sarich, Djurdjevac, et al. (2013), which prefers assigning high-degree nodes
into modules. -
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3.2.3.2 Experiment results

Our first set of experiments concerns varying the proportions between the sizes
of the different parts of the network: The relative size of the transition region,
and the size and number of the modules in the modular region. While the
particular structure of the modular region appears not to affect the score of the
clustering algorithms’ output, the relative sizes of the modular and transition
region influence the scores dramatically: The larger the transition region, the
worse the performance of the algorithms.

Experiment 1: Varying transition region size. In this experiment, our goal
is to evaluate the behavior of the different algorithms on networks where the
transition region comprises between 0% and 90% of the network. In the case
of 0% transition region, the modular region occupies the entire network, and
the problem will again be that of full partitioning. We hypothesize that the
algorithms should perform better on networks with a small transition region, as
they are closer to the full partition case: SCAN looks for hubs and outliers but
those are usually single nodes, not entire regions; MCL was originally designed
for full partitions. Since MSM does not make assumptions about the size of the
transition region, it is possible that this algorithm performs the same on the
networks regardless of the transition region size.

Indeed, our experiments show that for a transition region covering 80% or
less of the network, all algorithms perform optimally (p¢ = 1 for MSM) or close
to optimally (p¢ > 0.92). For larger transition regions, all algorithms perform
progressively worse.

Figure 3.3 shows the performance of the algorithms, giving the p¢ score
averaged over 5 networks for each transition region size. SCAN and MCL both
identify only two or three modules, assigning the rest to the transition region.
SCAN additionally identifies no hubs or outliers, thus the transition region is a
result of small clusters, just as in the case of MCL. MSM separates the modular
and transition region well (p™MT > 0.95), identifies five modules in the modular
region, but partitions it less than optimally (average p™ = 0.77). MSM begins
to deteriorate a little later than the others, at 89%, but the score decreases fast,
with a score of 0 (all nodes are identified as transition region nodes) from 92%.
Therefore, MSM is clearly the choice in case the transition region is large, but
not too large.

Experiment 2: Varying module size. As we increase the size of the transition
region in Experiment 1, the size of a module decreases automatically, since fewer
nodes are now divided into a constant number of 5 modules. Specifically, for a
transition region which covers 80% of the network, the corresponding module
size is 40, and for 90% it is already 20. To test whether the difference in scores in
Experiment 1 is a result of varying the transition region size or of varying the
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Figure 3.3: Comparing the p¢ score for SCAN, MCL, and MSM on networks with
varying transition region size. All networks were generated with 1000 nodes and
5 modules, having the default densities.

module size, we run a set of experiment where we directly vary the module size.
The module size is between 20 and 200, there are 5 modules as before, and the
transition region comprises 50% of the network, a value for which all algorithms
in Experiment 1 performed perfectly (p¢ = 1). Naturally, to preserve the same
proportion of transition region to modular region while varying the total size of
the modular region, the overall network size has to change as well, varying from
200 to 2000, respectively. All 3 algorithms performed perfectly for all module
sizes: All three p scores were 1 or > 0.99. We additionally tested module size
< 20, but the results were unstable due to the small difference between the
true and the minimal module size: in some cases the modules were detected
correctly, in others, only 9 nodes from a 10-node module were detected, and were
assigned to the transition region, causing low scores. Therefore, while a very
small module size can negatively influence the algorithm, this effect disappears
for slightly larger module sizes, and the low scores of Experiment 1 cannot
be fully attributed to the module size, but must be due to the proportion of
transition region nodes.

In the next set of experiments we keep the proportions between the network
components constant but vary their densities.

Experiment 3: Varying module and transition region densities. In this exper-
iment, we test combinations of the module density p, and the transition region
density pt. We take as before networks with 1000 nodes and 5 modules, with the



3.2 Modifications to prominent full-partition algorithms 77

transition region comprising 50% of the network. We additionally set p; = 0.01.
For these parameters and the default densities py = 0.01,pm = 0.6 all three
algorithms performed optimally in the previous experiments.

We set p, =0.1,0.2,...,09,1, and p¢ = 0.01,0.06,0.11, ...,0.81. Figure 3.4
shows a heatmap for each of the algorithms, giving the p° score for each combi-
nation of transition region density and module density. Intuitively, we expect the
algorithms to do well when the module density is high and the transition density
is low. Indeed, we see that this is the case for all algorithms. SCAN performs the
best, erring only when p > 0.45. The other two algorithms perform optimally
when p; < 0.06 and p, = 0.8, and performance quickly deteriorates. Looking
more closely at the pMT and pM scores, we see that the p™ score is perfect while
pMT is low: the entire transition region is detected as a single module in all
these cases.

The poor performance of MSM could perhaps be attributed to the fact that
the algorithm tends to reward (with a high waiting time) those nodes that have a
relatively high degree (see Section 3.1.3). Those nodes end up being assigned
to modules more often. As the density of the transition region increases, so
does the average degree. Since we have fixed p; at 0.01, and as the modules
are smaller than the transition region (each module has size 100, compared to
500 for the transition region), the average degree of nodes in the module is also
bounded, and for some values of p,, and p:, the degrees are about the same,
and thus MSM cannot tell them apart as well.

Discussion. We must conclude that no algorithm comes out the clear leader
in every case. MSM identifies modules even when the transition region is large,
but does not perform so well when the average degree in the transition region
is high. While SCAN performs better than the other algorithms whenever the
densities of the transition region and modules are close, in many cases it too
identifies the transition region as a module.

With regards to the different steps of module identification, we first note that
MSM performs best the task of guessing the correct number of modules. SCAN
and MCL both under-estimate the module number, identifying modules that
are too small and are therefore assigned to the transition region. No algorithm
over-estimated the number of modules throughout our experiments. On the
task of separating the transition region and the modular region (assessed with
the pMT measure), the three algorithms had successes and shortcomings: In
Experiments 1 and 2 the errors were a result of nodes from the modular region
being assigned to the transition region. In Experiment 3, the error resulted from
the transition region being identified as a single module.

We conclude that even on very simple networks, where all modules have the
same size and density, the algorithms we introduced do not perform perfectly.
One major disadvantage of these approaches is their heuristic nature: They do
not promise to find the optimal assignment, only a good such assignment.
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(b) Value of p¢ for SCAN.
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(c) Value of p¢ for MSM.

Figure 3.4: Plotting the p® score for the three algorithms for different combina-
tions of py, and p¢. All networks have 1000 nodes and 5 modules with 100 nodes
each.
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In the next section we introduce a new approach for the assignment problem
with a goal function that is more amenable to exact optimization. For this, we
use a combinatorial, graph-theory based approach.

3.3 A combinatorial approach to finding assignments

The approach described below is grounded on the foundation of the core—
periphery structure of networks. Networks having this structure are charac-
terized by a dense core, which is a single subset of the nodes that is highly
connected, and a periphery, the remaining network nodes that are sparsely con-
nected amongst themselves, but can be well-connected to the core. That is, it
can be said that the periphery nodes are connected to one another mainly via
the core. Then the general idea is to view a network as a union of multiple
core—periphery structures of various sizes. The analogy to an assignment is
then clear: the cores constitute the modules, while the peripheries constitute the
transition region. We begin by reviewing the literature on core—periphery.

Core-periphery model. A formal definition of this model for networks was
first given by Borgatti and Everett (1999) in the context of social networks. The
authors discuss several intuitive notions of core and periphery as they appeared
in literature: The network contains a core, a connected region which is very
dense, and a periphery, which is sparsely connected. The connectivity between
the core and periphery region can vary. The authors focus on the variant of a
fully connected core, and a periphery that is fully connected to the core, but is in
itself completely disconnected. The methods of Borgatti and Everett (1999) and
in subsequent papers (e. g. (Brusco and Steinley, 2009; Muiiz and Carvajal, 2006))
to identify the best partition into core and periphery are based on comparison
to an ideal matrix block structure. Further approaches are covered in a recent
review from Csermely et al. (2013).

Only a few methods attempt to identify multiple cores and peripheries,
and use them to analyze real data. Puck Rombach et al. (2014) again try to
optimize the model where full connectivity between the core and periphery
region is required, but this time for multiple cores. They do this by optimizing
a continuous variant of the objective function of Borgatti and Everett (1999)
to obtain an assignment into core and periphery. These authors apply their
algorithms to discover communities in citation networks.

In graph theory, a core-periphery network is known by another name: a split
graph is a union of a clique, defined previously (Section 1.2), and an independent
set:

Definition 3.1. A graph G is an independent set if no node in G is adjacent to any
other node in G.

Then we define a split graph:
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Definition 3.2. A graph G = (V, E) is a split graph if V can be partitioned into Vi
and V; such that G[V1] is an independent set and G[V,] is a clique.

Note that the partition for a split graph is not always unique. Another useful
concept from graph theory is that of a cluster graph:

Definition 3.3. A graph G is a cluster graph if each connected component of G is a
clique.

The cluster graph corresponds to a notion of a “perfect” full partition: Every
connected component is a module. Then the problem of finding a full partition
can be framed as the problem of transforming the original graph into a cluster
graph. This is the optimization problem known as CLUSTER EDITING (Shamir,
Sharan, and Tsur, 2004), also known as CORRELATION CLUSTERING (Bansal,
Blum, and Chawla, 2004). We look specifically at transformations through edge
modifications: adding or removing edges from the graph. From the perspective
of an application, this is an error-correction problem: The graph is the result of
some measurements, perhaps the edges denote similarity between the objects
represented by the nodes. Now, because of measurement noise some similarities
are measured as non-similarities and vice versa. Consequently, the input graph
is not a cluster graph as expected. The task is to recover the underlying cluster
graph from the input graph. We assume parsimony, that is, under the assumption
that the errors are independent, the most likely cluster graph is one that disagrees
with the input graph on a minimum number of edges. Such a graph can be
found by a minimum number of edge modifications.

We now describe two core-periphery-based models in detail. The first one is
based on the split graph described above:

Definition 3.4. A G graph is a split cluster graph if every connected component of G
is a split graph.

Our first fitting model is thus described by the following optimization prob-
lem.

SrLiT CLUsTER EDpITING (SCE)

Input: An undirected graph G = (V, E).

Task: Transform G into a split cluster graph by applying a minimum
number of edge modifications.

In a variation of the model, we want to allow the vertices in the periphery to
not only be attached to one core, but to an arbitrary number, thereby connecting
the cores. In this model, we thus assume that the cores are disjoint cliques
and the vertices of the periphery are an independent set. Such graphs are
called monopolar (Z. A. Chernyak and A. A. Chernyak, 1986) and are natural
generalizations of bipartite and split graphs. -
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Definition 3.5. A graph is monopolar if its vertex set can be two-partitioned into Vq
and V, such that G[V1] is an independent set and G[V,] is a cluster graph. The
partition (V1,Vs) is called monopolar partition.

MONOPOLAR EDITING

Input: An undirected graph G = (V, E).

Task: Transform G into a monopolar graph by applying a minimum
number of edge modifications and output a monopolar partition.

The connection to modular networks. The split cluster graph resulting from
SCE and the monopolar graph resulting from monopolar editing can both be
viewed as assignments. These assignments are not fuzzy, since we do not have
the affiliation function of the nodes in the periphery to the modules in the
Monopolar case. In the SCE case we can interpret the independent set of each
split graph as affiliated with the clique of that split graph with probability 1.
This formulation naturally lends itself to a new modularity score for a network.
The number k of edge modifications represents the minimal distance between
the input graph and the split cluster graph. We can design a simple global score

based on k:

LS (3.9)

n 7

(3)
where (72‘) thus represents all possible edge insertions and deletions. This score
has a major drawback: We need to know k. As we show in the next sections, this
is not easy to do. We first survey the literature on similar problems, then give
some hardness proofs for the problems we defined above.

3.3.1 Related work

The previously examined optimization problem most closely related to our
approach is SpLIT EDITING, which asks to transform a graph into a split graph
by at most k edge modifications. SrrLiT EDITING is, somewhat surprisingly,
solvable in polynomial time (Hammer and Simeone, 1981); in fact, the number of
required modifications depends only on the degree sequence. Thus, in particular,
split graphs are recognizable by their degree sequence. This algorithm was
rediscovered by Lip (2011) in the context of core-periphery models.

Cluster graph modification problems. CLUSTER EDITING can be seen as one
instance of a popular way of rigorously defining graph clustering problems: to
ask for the minimum number of graph modifications that yield a graph in which
every connected component (cluster) is dense in some sense. Many criteria on
whether a graph on n vertices is considered dense have been considered: it is a
clique (Bansal, Blum, and Chawla, 2004; Shamir, Sharan, and Tsur, 2004), each
vertex has degree at least n — s for some constant s (Guo, Komusiewicz, et al.,




82 3 Module and transition region identification

2010), each vertex has degree more than n/2 (Hiiffner et al., 2013), the cluster
has diameter at most two (Liu, Zhang, and Zhu, 2012), and others (e.g. (Guo,
Kanj, et al., 2011)). Allowed modifications are typically deletion (deleting edges),
insertion (inserting edges), editing (deletion and insertion of edges), and vertex
deletion.

CrusTER EDITING is NP-hard, even on graphs with maximum degree four (Ko-
musiewicz and Uhlmann, 2012) and APX-hard (Charikar, Guruswami, and Wirth,
2005). The fastest parameterized algorithm, after a long series of improvements,
runs in O(1.619% +n +m) time (Bocker, 2012). Under some complexity-theoretic
assumptions, CLUSTER EDITING cannot be solved within a running time that
is subexponential in k (Fomin et al., 2013; Komusiewicz and Uhlmann, 2012).
There are several variations of this model, for instance, one may assume that the
clusters do not have to be perfectly dense, but each vertex has a limited number
of missing edges (Guo, Komusiewicz, et al., 2010). CLUSTER EDITING is also
known as TRANsITIVITY EDITING and has, for example, been applied to cluster
protein families by sequence similarity (Wittkop et al., 2007). Several experimen-
tal studies have examined exact approaches for solving CLUSTER EDITING on
real-world instances (Bocker, Briesemeister, and Klau, 2011; Dehne et al., 2006).

3.3.2 Combinatorial properties and complexity

Preliminaries. As before, we consider undirected simple graphs G = (V, E)
where n := |V| denotes the number of nodes (also: vertices) and m := |E|
denotes the number of edges. We denote the neighborhood of a set U by N(U) :=
Uweu N(u) \ U. For two disjoint vertex sets U and W, we use E(U,W) =
{fu,w} € E[u e UAW e W} to denote the edges between U and W.

Before presenting concrete algorithmic approaches for SPLIT CLUSTER EDITING
and MONOPOLAR EDITING, we show some properties of the types of graphs that
we want to obtain which will be useful for the various algorithms. Furthermore,
we present computational complexity results for the problems which will justify
the use of integer linear programming (ILP) and heuristic approaches.

3.3.2.1 Split cluster graphs

For Srrit CLUSTER EDITING, each connected component of the solution has to be
a split graph. These graphs can be characterized by forbidden induced subgraphs. A
graph class F has a forbidden subgraph characterization if a graph G belongs to F
if and only if it does not contain any of the forbidden induced subgraphs (see for
example Diestel (2005)). It is well-known that the graph classes that can be thus
characterized are exactly those graph classes that are hereditary: A graph class
[F is called hereditary if for any G € F also all induced subgraphs of G are in F.
Many interesting graph classes are characterized by forbidden subgraphs. Some
of these classes have an infinite set of minimal forbidden subgraphs: bipartite
graphs, which contain no odd-length cycles, are an immediate example. Others
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Figure 3.5: Forbidden subgraphs.

have a finite set of minimal forbidden subgraphs. Examples include the class
of cluster graphs defined above, and cographs, which are P4-free, denoting that
they cannot contain a path of length 4 as an induced subgraph. Having a finite
set of forbidden subgraphs gives an easy way of recognizing the graph class in
polynomial time. We first quote a result for split graphs:

Theorem 3.1 (Foldes and Hammer (1977)). A graph G is a split graph if and only if
G does not contain an induced subgraph that is a cycle of four or five edges or a pair of
disjoint edges (that is, G is (Cy, Cs, 2K2)-free (see Figure 3.5)).

Using this known characterization for split graphs, we obtain one for split
cluster graphs. For this, the following lemma is helpful.

Lemma 3.1. If a connected graph contains a 2Ky as induced subgraph, then it contains
a 2Ky = (V'/,E') such that there is a vertex v ¢ V' that is adjacent to at least one vertex
of each Xy of (V/, E’

Proof. Let G contain the 2K {x1, X2}, {y1,y2}. Without loss of generality, let the
shortest path between any x;,y; be P ={x1 = p1,p2,...,px = y1}. Clearly, k > 2.
If k = 3, then x; and y; are both adjacent to p,. Otherwise, if k = 4, then
{x2,x1 = p1},{p3, P4 = v1}is a 2K, and x; and p3 are both adjacent to p,. Finally,
if k > 4, then P contains a P5. The four outer vertices of this P5 induce a 2K,
whose K;’s each contain a neighbor of the middle vertex. O

Theorem 3.2. A graph G is a split cluster graph < G is (Cy4, Cs, P5, necktie, bowtie)-
free (see Figure 3.5).

Proof. Let G be a split cluster graph, that is, every connected component of G is
a split graph. Clearly, G does not contain a C4 or Cs. If a connected component
of G contains a P5, then omitting the middle vertex of the Ps yields a 2K,, which
contradicts that the connected component is a split graph. The same argument
shows that the graph cannot contain a necktie or bowtie.

Conversely, let G be (Cy, Cs, P5, necktie, bowtie)-free. Clearly, no connected
component contains a C4 or Cs. Assume for a contradiction that a connected
component contains a 2K, consisting of the Ky’s {a, b} and {c, d}. Then according
to Lemma 3.1, there is a vertex v that is without loss of generality adjacent to
a and c. If no other edges between the 2K, and v exist, then {a,b,v,c,d} is a
Ps. Adding exactly one of {b,v} and {d, v} creates a necktie, and adding both
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edges results in a bowtie. No other edges are possible, since there are no edges
between {a, b} and {c, d}. O

Theorem 3.3. A forbidden subgraph for a split cluster graph can be found in O(n +m)
time.

Proof. For each connected component, we run the algorithm by Heggernes and
Kratsch (2007) that in linear time checks whether a graph is a split graph, and if
not, produces a 2Ky, Cy4, or Cs. If the forbidden subgraph is a C4 or Cs, we are
done. If it is a 2K, we can find in linear time a Ps, necktie, or bowtie, using the
method described in the proof of Lemma 3.1. O

Hence, split cluster graphs can be recognized in linear time. In contrast, SpLiT
CLUsTER EDITING is NP-hard even in restricted cases.

Theorem 3.4. SpLiT CLUSTER EDITING is NP-hard even on graphs with maximum
degree 11. Further, it is APX-hard and cannot be solved in 20(k) . qnO(1) gpo(n). 1 O(1)
time if the exponential-time hypothesis (ETH) (Impagliazzo, Paturi, and Zane, 2001) is
true.

Proof. We reduce from CLUSTER EDITING:

Input: An undirected graph G = (V, E) and an integer k.
Question: Can G be transformed into a cluster graph, that is, a union
of vertex-disjoint cliques, by applying at most k edge modifications?

CrusTER EDITING is NP-hard (Kf¥ivanek and Moravek, 1986) even if the maximum
degree of the input graph is five (Fomin et al., 2013) and it cannot be solved
in 20(K) . nOM) time assuming ETH (Fomin et al., 2013; Komusiewicz and
Uhlmann, 2012). -

The reduction works as follows. Given an instance (G, k) of CLUSTER EDITING,
build a graph G’ = (V/,E’) that has the same vertices and edges as G and an
additional deg (v) + 1 new degree-one vertices attached to each v € V.

We show that G can be transformed by at most k edge modifications into a
cluster graph if and only if G’ has a split cluster editing set of size at most k.
First, if a set S of at most k edge modifications transforms G into a cluster
graph G, then performing the same modifications on G’ converts G’ into a split
cluster graph G’: Each connected component of G’ contains a clique K of G
plus deg (v) + 1 degree-one vertices adjacent to each v € K. The set of these
degree-one vertices is an independent set.

For the other direction, we show that if a set S’ of < k edge modifications
transforms G’ into a split cluster graph, then performing the same edits on G
transforms it into a cluster graph. First we show that the new edges to the
degree-one vertices are never deleted in an optimal solution. Clearly, it is never
beneficial to delete just some of the edges: If v is to be assigned to a clique, then
the new vertices are a part of the clique’s independent set, and no edges have to
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be deleted. If, otherwise, v is assigned to the independent set, then assume x of
them remain adjacent to v. This causes least deg (v) + 1 —x edge deletions plus
x-(x—1)/2 edge insertions. This is always at least deg (v). In this case, however,
a solution that is at least as cheap is to disconnect v from all other u € V and
create a new connected component that is a split graph with v as the clique and
its deg (v) + 1 degree-one neighbors as the independent set. The cost here is
only deg (v). Hence, we can assume that S’ does not delete edges incident with
the degree-one vertices in V/\ V.

Similarly, it can be shown that in an optimal solution, no edge can be inserted
with one or both endpoints being a degree-1 vertex.

Thus, the new degree-one vertices in G’ are part of the independent sets
of G’. Consequently their neighbors, the vertices in V, belong to some clique.
Furthermore, these cliques are vertex disjoint since G’ is a split cluster graph.
Hence, S’ transforms G into a cluster graph.

Hence, the reduction is correct. The hardness results follow from the previous
hardness results and the fact that the solution size remains the same and that
the maximum degree of the constructed graph G’ is exactly twice the maximum
degree of G plus one. O

This hardness result motivates the study of the parameterized complexity of
SpLiT CLUSTER EDITING for the parameter number of edge modifications k.
Parameterized complexity is a recent way of dealing with NP-hard problems.
The NP-hardness of a problem implies that there are some worst-case instances
where there is (we assume) no algorithm that can solve the problem in polynomial
time. In practice, however, there could be many interesting instances (or classes
of instances) that have a more restricted structure. On such instances it is possible
that we can find an algorithm with an acceptable running time. The idea is
to accept an exponential running time but confine the exponential part to a
parameter which is assumed to be small in the application. This then makes it
possible to solve NP-hard problems on real-world instances. See for example
the textbooks by Niedermeier (2006) or Downey and Fellows (2013). A problem
is called fixed-parameter tractable with respect to some parameter k if there is an
algorithm that decides it in time O(f(k)n¢), where f is some function (usually
exponential) and c is a constant.

In this case, the fixed-parameter tractability of SpLiT CLUSTER EDITING follows
from a search tree algorithm that checks whether the graph contains a forbidden
subgraphs, and, if this is the case, recursively branches into the possibilities to
destroy this subgraph. In each recursive branch, the number of allowed edge
deletions decreases by one. Furthermore, since the largest forbidden subgraph
has five vertices, at most 10 possibilities for edge insertions or deletions have
to be considered to destroy a forbidden subgraph. By Theorem 3.3, forbidden
subgraphs can be found in O(n +m) time. Altogether, this implies the following.

Theorem 3.5. SpLIT CLUSTER EDITING can be solved in O(10% - (n +m)) time.
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3.3.2.2 Monopolar graphs

In contrast to the recognition of split cluster graphs, which is possible in linear
time by Theorem 3.3, deciding whether a graph is monopolar is NP-hard (Farru-
gia, 2004). The class is hereditary, and so is characterized by forbidden induced
subgraphs, but the set of forbidden induced subgraphs is infinite. Recent re-
search is focused on the recognition problem for special graph classes. A fairly
general such approach uses a 2-SAT formulation (Churchley and Huang, 2014;
Nevries and Le, 2011). Since MONOPOLAR EDITING (that is, the problem of adding
and deleting up to k edges to transform a graph into a monopolar graph) is
NP-hard already for k = 0, it cannot be fixed-parameter tractable with respect
to k unless P = NP.

3.3.3 Algorithms for Split Cluster and Monopolar Editing

From the forbidden subgraph characterization we already get algorithms with
10%n° @) for Sprit CrusTER EDITING, 6¥1° W) for SpriT CLUSTER DELETION and
SrLiT CLUSTER INSERTION, and 5¥nOM) for Sprrt CLUSTER VERTEX DELETION.
These algorithms are based on a search tree approach as described above.
Continuing our previous thread of dividing the task of finding an assign-
ment into two parts, we make the following observation: If we correctly guess
the partition into clique and independent set vertices, we can get a simpler
characterization of split cluster graphs by forbidden subgraphs.

Lemma 3.2. Let G = (V, E) be a graph and C U1 =V a partition of the vertices. Then
G is a split cluster graph with clique vertices C and independent set vertices 1 iff it does
not contain an edge with both endpoints in 1, nor an induced Pz with both endpoints
in C.

Proof. “=": Let (u,v) € E. Then u and v belong to the same connected compo-
nent H C G. Since G is a split cluster graph, H is a split graph, so edges are
possible only if u € C or v € C, therefore it is not possible to have u,v € 1. Let
the induced graph on some u-v-w be a P;. Again u,v,w belong to the same
connected component H. Let u,w € C. Then they must belong to the clique on
vertices Cy C C, but there is no edge between u, w, a contradiction.

“<": We prove that if G is not a SCG with clique vertices C and independent
sets I, it must contain an edge with both endpoints in I or a P3 with endpoints
in C. In this case there is a connected component H such that Cy is not a clique
or Iy is not an independent set. If Iy is not an independent set, then there
are u,v € Iy C I that are connected by an edge. If Cy is not a clique then
there are u,v € Cy such that (u,v) ¢ E. If there is a vertex w € H such that
(u,w), (w,v) € E, then the induced graph on u,v,w is a P3 with both endpoints
in C. Otherwise, since u and v belong to the same connected component H, they
are connected by a path of vertices from H. Let P =u =py,...,px =V for some
k > 3 be the shortest path between u,v. Assume w.l.o.g. that we picked u, v with
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the minimum path length k. Then p; € I for all i # 1,k, otherwise there is a
subpath of P with endpoints in C with length < k, contrary to the minimality
of k. Since k < 3,p; € I, P must contain 2 adjacent vertices wy, w; € I, and thus
there is an edge (w1, w;) € E with both endpoints in I. O

With a very similar proof, we can get a simpler set of forbidden subgraphs
for annotated monopolar graphs.

Lemma 3.3. Let G = (V, E) be a graph and C U1 =V a partition of the vertices. Then
G is a monopolar graph with clique vertices C and independent set vertices 1 iff it does
not contain an edge with both endpoints in 1, nor an induced P3 whose vertices are
contained in C.

Proof. “=": Let (u,v) € E. Then u,v belong to the same connected component
H C G. Since G is monopolar, H is a clique, so edges are possible only if u € C
or v € C, therefore it is not possible to have u,v € I. Let the induced graph on
some u-v-w be a P3. Then u, v, w belong to the same connected component H.
If additionally u,v,w € C, then the P; must belong to the cluster graph Cy; C C.
But P3s are forbidden subgraphs of cluster graphs (Shamir, Sharan, and Tsur,
2004), a contradiction.

“«<": We prove that if G is not monopolar with clique vertices C and inde-
pendent sets I, it must contain and edge with both endpoints in I or a P3 with
all vertices in C. In this case there is a connected component H such that the
graph induced on Cy is not a cluster graph or the graph induced on Iy is not
an independent set. If I is not an independent set, then there are u,v € Iy C I
that are adjacent. If Cy is not a cluster graph then according to Shamir, Sharan,
and Tsur (2004) it must contain a P3. All vertices of this path are then contained
inCyCC m

3.3.3.1 Integer Linear Programming

From Lemma 3.2, we can directly derive an integer linear programming formula-
tion for SprLrT CLUSTER EpITING. We introduce binary variables e,,, indicating
whether {u, v} is an edge in the edited graph and binary variables c,, indicating
whether a vertex u is part of the core. Defining &, :=1— ey, and ¢, :=1—cy,
and fixing an arbitrary order on the vertices, we have

minimize Z euv + Z ey subject to (3.10)
{uviek {uvigE

Cut+cCy+eyuy =1Vu,v (3.11)

€uv +evw +euw +Cu+Cw = 1Vu#v,vEw>u. (3.12)

For MoNoOPOLAR EDITING, we can replace constraint 3.12 by

v+ evwteuw +Cu+Cv+Cw=1Vu#v,vAEw>u. (3.13)
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Since this formulation has O(n®) constraints, we use row generation (lazy
constraints) and, in a solver callback, add only constraints that are violated by
the incumbent solution.

3.3.3.2 Data reduction

A common strategy for designing fixed parameter algorithm is using data reduc-
tion rules (Downey and Fellows, 2013; Niedermeier, 2006). Those are efficient
transformations that reduce the problem instance to a smaller instance that
still allows to retrieve a solution to the original instance from the reduced in-
stance. This is a powerful classic approach that can be combined with heuristics,
approximation algorithms, and others, to solve instances more efficiently.

Rules for Split Cluster Editing. We define setting an edge e permanent as the
following operation: First, add e if it is not already in the graph. Second, label e
as permanent. In this way we indicate that e must be a part of the solution, the
resulting split cluster graph. Similarly, setting an edge e forbidden is the following;:
First, delete e if it is already in the graph. Second, label the vertex pair e as
forbidden. This indicates that e cannot be a part of the optimal solution.

Rule 3.1. If there is a degree-one vertex v whose neighbor has degree larger than one,
then label v as periphery.

Proof of correctness. Assume v is a core vertex in some solution. Let u be the
neighbor of v. If {u,v} was deleted, we can just make v a periphery vertex.
Otherwise, if 1 is a core vertex, we can also make v a periphery vertex. Finally, if
u is a periphery vertex, then {u, v} form a two-vertex connected component in
the solution, and we can make u a core vertex and v a periphery vertex. ]

With similar arguments, we can prove the correctness of the following two
rules.

Rule 3.2. Set an edge e between two vertices labeled as periphery to forbidden.
Rule 3.3. If there is a vertex v of degree at least two such that v has at least as many

degree-one neighbors as other neighbors, then label v as core and label each edge between v
and a degree-one neighbor as permanent.

Monopolar Editing

Rule 3.4. Remove all degree-one vertices.
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3.3.3.3 Heuristics

The integer linear programming approach, even with data reduction, is not
able to solve the hardest of our instances. Thus, we need to revert to heuristic
approaches.

We first tried heuristics based on the forbidden subgraph characterization:
for instance, find the vertex pair contained in the most forbidden subgraphs, and
edit it. Unfortunately, enumerating all forbidden subgraphs is prohibitively slow
for the instances of interest.

We obtained better results with the well-known Simulated Annealing heuristic.
This is a local search method, where we try a random modification of our
current solution, and accept it if it improves the objective; but to escape local
minima, we also accept it with a small probability if it makes the objective
worse. More precisely, a change in the objective of A is accepted with probability
exp(A/T), where the factor T is reduced over the course of the algorithm down
to zero, such that the algorithm initially explores a larger part of the search space,
but eventually settles in a local minimum. We repeat the simulated annealing
algorithm with a fixed number of steps until the user-defined time limit is
exceeded.

For Srrit CLUSTER EDITING, we start with a clustering where each vertex is
a singleton. As the random modification, we move a vertex to a cluster that
already contains one of its neighbors. Since this would allow the number of
clusters to only shrink monotonically, we also allow moving a vertex into an
empty cluster. For MoNoPOLAR EDITING, we also allow moving a vertex into the
independent set.

3.3.3.4 Summary.

After some experimentation, we settled on the following pipeline for finding a
good assignment for a given network:

1. Apply data reduction rules to the network to obtain a simpler instance.
2. Use the simulated annealing heuristic to find a good solution.

3. Solve the ILP formulation with the IBM CPLEX 12.5 solver, using the
solution from the heuristic as a starting point.

3.4 Application: Protein interaction networks

Protein—protein interaction networks (PPI networks or PPINs) are a snapshot of
physical interactions between proteins. The nodes therefore represent proteins,
and there is an edge between two proteins if they interact under some condition.
This interaction can be either observed directly in a lab experiment, or implied as
a result of a different experiment or a computational prediction. How are PPINs



90 3 Module and transition region identification

created? There are different experimental methods (see Jaimovich (2010) and
Rivas and Fontanillo (2010) for reviews). Some, like yeast two-hybridmet al.,
2001) output binary interactions. That is, it is possible to test directly whether
two proteins interact. Others, like co-immunoprecipitation (Fields and Song,
1989) output sets of proteins that are related. Then, a network can be constructed
based exclusively on the experimental results, on the experimental results with
added statistical testing and thresholding, or by integrating the results of several
previous experiments. There also exist networks that integrate physical interac-
tions with other types of interactions, for example STRING (Jensen et al., 2009)
or ConsensusPathDB (Kamburov et al., 2011). Some state-of-the-art PPI networks
for various species can be found for example in BioGrid (Chatr-aryamontri et al.,
2013). The Saccharomyces cerevisiae (herein: yeast) network from BioGrid will be
analyzed later in this chapter.

Several proteins can come together to form protein complexes. These complexes
are the underlying elements of many biological processes and together form the
molecular machinery that performs a vast array of biological functions. Some
examples are the proteasome for molecular degradation, itself comprising sub-
complexes like the 20S core, the metabolon for oxidative energy generation,
and parts of the large and complex ribosome for protein synthesis. Complexes
can be permanent or transient, and a single protein can participate in different
complexes having diverse functions under different conditions (Amoutzias and
Peer, 2010; Price and L. Stevens, 1999). Along with experiments that aim
at studying a single complex, large-scale experiments can be performed to
determine multiple protein complexes simultaneously (Babu et al., 2012; Gavin
et al., 2006). Computational methods can also be leveraged: The CYC2008
database of yeast complexes (Pu, Vlasblom, et al., 2007; Pu, Wong, et al., w)
was constructed by running MCL clustering (see Section 3.2) on a yeast PPI
network and biologically evaluating the resulting clusters as candidate protein
complexes. Thus catalogs of protein complexes for different species can be
produced, such as MIPS (Mewes et al., 2002) and the aforementioned CYC2008.

Computationally inferring complexes. Many computational methods have
been developed to infer protein complexes automatically from PPINs. The
underlying assumption of these methods is that protein complexes correspond
to dense subgraphs of the PPIN, as the proteins in a complex must interact
with each other in order to perform the given function. It is natural, then, to
formulate the problem of identifying protein complexes in PPINSs as a clustering
problem, where the clusters correspond to the complexes. Srihari and Leong
(2012) provide a recent review of such methods.

One way of classifying these methods is by the kind of clustering they apply:
Does every protein belong to a complex or can there be proteins not assigned to a
complex? In other words, does the method return a full partition of the network
or an assignment? Additionally, we can ask whether a protein must to belong
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to exactly one complex, or whether it be a part of multiple complexes. That is,
are the clusters found by the algorithm allowed to overlap? As hinted in the
construction of the CYC2008 database, MCL and its variants are popular tools for
this task: MCL has been shown to give consistently good results in comparison
to other full-clustering algorithms (Brohee and Helden, 2006). It has also been
extended to allow overlaps (Babu et al., 2012; Enright, Dongen, and Ouzounis,
2002) and integrate functional information for even higher accuracy (Srihari,
Ning, and Leong, 2010).

An important class of computational methods for identifying complexes in
PPI networks is closer in spirit to the assignment approach: These are algorithms
that do not fully partition the network, but search for dense subgraphs that are
loosely connected to the rest of the network and are maximal in some sense.
Proteins that do not belong to any dense subgraph are ignored. Possibly the
first dense-cluster-based method to be applied to PPINs is MCODE (Bader and
Hogue, 2003). It assignhs weights to the nodes according to topological features,
identifies seeds and controls their expansion via user-defined parameters. An-
other interesting example is MCL-CAw (Srihari, Ning, and Leong, 2010), an
extension of MCL. -

Many of these algorithms can be classified as seed-growing algorithms, where
we start with a single protein or a small, connected set of proteins and extend
it to include neighboring proteins under some constraints, see for example the
work of B. Chen et al. (2013) and Georgii et al. (2009).

The idea of overlapping clusters in the scope of a full partition has been
more widely adopted, and a multitude of methods seek to identify such clusters,
whether under the assumption that the overlap between them is very high
(clique propagation methods (Adamcsek et al., 2006)), or small relative to the
size of the clusters (see, for example, Lei et al. (2013)). In the second case,
proteins that can be associated with more than one complex are sometimes called
“shared components” (Krause et al., 2004). Shared components are particularly
interesting to study, for example in their role as linker proteins, facilitating the
communication between different processes (Vaggi et al., 2012).

An advantage of the full-partition model for identifying complexes is that
it can assign putative membership in a complex to proteins whose function is
otherwise unknown. This is because every protein must be assigned to some
module, and therefore to some complex. We can then in principle use this
information to discover the function of these proteins, as it should be similar to
that of the other proteins in the complex. However, even in well-studied species
such as yeast, not all protein interactions are known. For example, Babu et al.
(2012) published just recently about two thousand(!) new interactions between
membrane proteins, which comprise around 40% of the genome in the case of
human and yeast. These interactions had until now not been detected due to
technical limitations, and are thus not a part of any of the gold standard networks
used for analysis. Interactions between membrane proteins and their assembly
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into complexes are not so easy to study, despite their importance and the large
body of work dedicated to inferring them: there is still much to be discovered
about complexes and proteins. The problematic nature of full-partition clustering
of PPINs is most acute for less-studied proteins, for which fewer interactions
with other proteins are known: Even if a protein is part of a complex, it might
not have many edges to it in the gold standard PPIN. A full-partition algorithm
might force such a protein into a complex to which it does not really belong.

Core-attachment model. An interesting subclass of algorithms to find com-
plexes via identification of dense subgraph adopts the core—attachment model (Le-
ung et al., 2009; Luo et al., 2009; Pang et al., 2008; Wu et al., 2009), where each
complex is assumed to contain a core of proteins that belong to it alone and is
quite dense, and an attachment with proteins that are more loosely connected to
the core, and can also be shared between complexes. The core-attachment model
was presented by Dezs6, Oltvai, and Barabasi (2003) in small-scale experiments
in yeast, and demonstrated that core proteins are more co-expressed than the
attachment proteins, concluding that attachment proteins are spurious and short-
lived. Later, Gavin et al. (2006), who performed the first genome-wide screen for
complexes in yeast, observed the same. COACH (Wu et al., 2009) is an example
of an algorithm that detects protein complexes under this model, first looking for
cores and then extending them. Yu, Gao, and K. Li (2010) presented the LDRW
algorithm that first identifies cores with local density and then extends them
using random walks with restarts. This model of course immediately brings to
mind the core—periphery model discussed in Section 3.3. Indeed, we can now
use the combinatorial algorithms we introduced to analyze PPI networks and
identify putative protein complexes. For completeness, we also run the MSM
clustering and SCAN algorithms on these networks and compare the results.

3.4.1 Finding assignments in protein interaction networks

In both the SpLiT CLUSTER EDITING and MONOPOLAR EDITING models described
in Section 3.3.3, we assume that all proteins of the cores interact with each
other, implying that the cores are cliques. We also assume that the proteins in
the periphery interact only with the cores but not with each other. Hence, the
peripheries are independent sets. This is in line with the aforementioned idea
that complexes in a PPI network are strongly connected amongst themselves
and weakly connected to other complexes (Spirin and Mirny, 2003), hence in our
models the cores correspond to the functional units and the peripheries connect
to the cores as needed, and can sometimes be shared between cores (Gavin et al.,
2006).

In the SCE model, we further assume that ideally the protein interactions give
rise to vertex-disjoint core—periphery structures, that is, there are no interactions
between different cores and no interactions between cores and peripheries of
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other cores. Then each connected component has at most one core which is a
clique and at most one periphery which is an independent set. This is admittedly
a rather generous assumption, but the relative simplicity of SCE over the more
difficult-to-compute MoNOPOLAR EDITING makes it still interesting to study.
Furthermore, it is clear that both models are simplistic and cannot completely
reflect biological reality. For example, subunits of protein complexes consisting
of two proteins that first interact with each other and subsequently with the core
of a protein complex are supported by neither of our models. Nevertheless, our
models are less simplistic than pure clustering models that attempt to divide
protein interaction networks into disjoint dense clusters. Furthermore, there is a
clear trade-off between model complexity, algorithmic feasibility of models, and
interpretability.

We test exact algorithms and heuristics for SCE and MONOPOLAR EDITING
on several PPI networks, and perform a biological evaluation of the modules
found. We compare the results for SCE and MoNoroLAR EpiTiING with MSM
clustering, and the SCAN algorithm tested in Section 3.2.3. When running SCAN,
the resulting periphery or transition region comprises all hubs and outliers. The
algorithm is ran with several parameter combinations, obtaining different results.
For consistency, we select the results where the clusters have the highest Q-score,
as reported by the SCAN program itself. In practice, the parameters for these
high modularity clusters turn out to be ¢ ~ 0.5 and minimal cluster size u = 2,
and the modularity reported is low, ranging from 0.2 to 0.45.

3.4.2 Experimental setup

Data. We perform all our experiments on networks from BioGrid (Chatr-
aryamontri et al., 2013). BioGrid networks contain both physical interactions,
which serve as the edges in our networks, and genetic interactions, which we
can use for evaluations. We focus here on subnetworks of the yeast PPI network.
From the complete BioGrid yeast network with 6377 nodes and 81549 edges, we
extract three subnetworks, corresponding to three essential processes: cell cycle,
translation, and transcription. To determine the protein subsets corresponding to
each process, we query BioMart (Kasprzyk, 2011) for all yeast genes annotated
with the relevant GO terms: GO:0007049 (cell cycle), GO:0006412 (translation),
and GO:0006351 (DNA-templated transcription). For each subset we extracted
the physical interactions from BioGrid.

Biological Evaluation. We evaluate our results using several well-accepted
measures. First, as is standard when inferring complexes, we perform GO term
analysis (Ashburner et al., 2000). GO is an ontology that annotates each protein
with terms describing its function, process, or location in the cell. We test the
coherency of the GO terms in our modules: The cores should contain nodes that
are annotated with similar GO terms, while the peripheries should contain nodes
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annotated with different GO terms: The idea is that the cores are stable and the
peripheries less so. We test only terms relating to process, not function, since
proteins in the same complex share a process. The semantic similarity algorithm
we apply is G-SESAME (Du et al., 2009). This test is applicable to the SCE results,
as the Monopolar editing, MSM clustering and SCAN return multiple cores and
a only single periphery or transition region. Therefore we cannot compare the
coherence of the cores against the coherence of the peripheries.

Second, we compare our resulting complexes with existing protein complex
repositories. We use the CYC2008 database (Pu, Wong, et al., 2009) of yeast
complexes. As the networks we analyze are subnetworks of the larger yeast
network, we create, for each network, a restricted list of complexes with only
proteins contained in the networks. We first test the overlap between the algo-
rithm results and these complexes. We treat these complexes as the “ground
truth” or planted assignment. However, since the list of complexes is incomplete,
we cannot compare the results and complexes using the Rand index variants
developed in Section 3.2.2.

Finally, we analyze the genetic interactions between and within modules.
In addition to the physical interactions we use to construct the networks, Bi-
oGrid contains information about genetic interactions. Some will be positive,
some negative. A negative genetic interaction between two proteins implies a
“synthetic lethal” or “synthetic sick” relationship between them: knocking out
both genes kills or cripples the cell, while knocking out any one of them has
no such effect. In contrast, positive interactions occur when knocking out both
genes has a smaller negative effect on the cell than expected. Ideally, we will
expect significantly more genetic interactions outside of cores than within them.
This is supported by the between pathways model (Kelley and Ideker, 2005), which
proposes that different complexes can back one another up, thus disTbling one
would not harm the cell, but disabling both complexes would reduce its fitness
or kill it. Here, when counting genetic interactions, we are interested only in
genetic interactions that occur between proteins that do not physically interact.

The selected yeast subnetworks. Some statistics for these networks are given
in Table 3.1.

The cell cycle, or cell-division cycle, is the series of events that take place in a
cell leading to its replication, producing, in the case of Saccharomyces cerevisiae,
a daughter cell via budding (Spellman et al., 1998). This network contains
several important complexes, such as the cyclin-CDK complexes that promote
the expression of transcription factors or the anaphase promoting complex
marking proteins for degradation. This network contains 215 proteins and 797
edges. Additionally, there are 1151 genetic interactions among the proteins.

Transcription is the first step of gene expression, in which a particular segment
of DNA is copied into RNA by the enzyme RNA polymerase. This network
contains, for example, the Mediator complex, a transcription coactivator in-
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n m  Mjec  Myee C |(I| Ac ig

cell cycle 215 797 192 795 17 148 39 1151
transcription 215 786 198 776 9 54 228 1479
translation 236 2352 186 2351 30 88 5.1 174

Table 3.1: Network statistics. Here, n is the number of proteins in the network,
ignoring singletons, and m is the number of edges. The number of nodes in
the largest connected component is nj., and the number of edges is m;.. We
provide some data on known complexes, where C is the number of complexes
from the CYC2008 database with at least two proteins in the network, |J] is the
number of proteins that do not belong to these complexes, and A is the average
complex size. Finally, i4 is the number of genetic interactions observed between
proteins that are not physically interacting.

creasing gene expression via transcription factor binding, along with several
important polymerase-related complexes. This network contains 215 proteins
and 786 physical interactions between them. There are additionally 1479 genetic
interactions between the proteins.

As stated in the official GO term definition, translation refers to “[t]he cellular
metabolic process in which a protein is formed, using the sequence of a mature
mRNA molecule to specify the sequence of amino acids in a polypeptide chain.”
A major component of this network is the ribosome, a large complex which
synthesizes the translation process. The ribosome is comprised of two parts: the
small subunit monitors the contact between tRNA anticodon and mRNA, while
the large subunit catalyzes peptide bond formation. The network contains 236
proteins and 2352 physical interactions between them, along with 174 genetic
interactions.

Implementation details. The data reduction (Section 3.3.3.2), Integer Linear
Programming (Section 3.3.3.1), and simulated annealing heuristic (Section 3.3.3.3)
were implemented in C++ and compiled with the GNU g++ 4.7.2 compiler. As
ILP solver, we used CPLEX 12.5.1. For the ILP, we initially add all independent
set constraints (3.11), and in a cutting plane callback, add the 1000 most violated
constraints of type (3.12) or (3.13). In the simulated annealing heuristic, we
use 10° steps and an initial Ty = 1 for Sprit CLUSTER EDITING, whereas for
MonNoPOLAR EDITING we use only 2 - 10* steps and Ty = 0.1. That is, for
MoNOPOLAR EDITING we use more frequent restarts and a “more hill-climbing”
strategy; we found this to give better results for our instances, probably because
it is harder in MONOPOLAR EDITING to escape a region of local minima.

The test machine is a 4-core 3.6 GHz Intel Xeon E5-1620 (Sandy Bridge-E) with
10 MB L3 cache and 64 GB main memory, running under Debian GNU/Linux 7.0.
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Figure 3.6: MSM clustering results.

3.4.3 Results

Results of MSM clustering. Unfortunately, the MSM clustering algorithm
does not perform well on our chosen biological networks. Although the process
of removing the transition region can help in sharpening the eigenvalue gap,
making the clustering process easier, when the structure of the network is
complicated this is not enough. When there is no gap at all in the spectrum
of the generator L (2.11), the choice of the appropriate lag-time « is arbitrary
(Figure 3.6(a)). Removing the transition region results in many small connected
components, but the gap of the P, matrix indicates the existence of of only a
few modules. Altogether, the process results in few large clusters and several
clusters containing only one or two proteins. We have some success applying
MSM clustering to the network corresponding to the ribosome (GO:0005840).
This network has a simpler structure, with three clear clusters. These clusters
(see Figure 3.6(b)) correspond to the major components of the ribosome: The
cytoplasmic ribosomal large subunit (red), the mitochondrial ribosomal small
subunit (green), and the mitochondrial ribosomal large subunit (light blue).

Here we use the generator Ly, introduced in Section 2.4, where the waiting
time is proportional to the clustering coefficient. Thus the nodes between the
two small clusters are correctly assigned to the transition region despite their
high degree.

The results for the remaining algorithms are summarized in Table 3.2.
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cell-cycle transcription translation
K 77 k ¢ XK [J7 kX ¢ K [T k ¢
SCE 12 108 321 0.63 14 112 273 056 6 94 308 0.72
MonororAr EpiTinGg 21 75 126 0.57 27 78 106 0.60 11 129 240 0.56
SCAN 25 48 — 0.60 33 58 n/a 058 11 25 — 0.58

Table 3.2: Experimental results. Here, K is the number of clusters with at least
two vertices, |T] is the size of the transition region, k is the number of edge edits,
and c is the average coherency within the cores.

Results for SCE and Monopolar Editing. We apply the pipeline from Sec-
tion 3.3.3.4. From the data reduction rules, unfortunately only Rules 3.1 and 3.2
were applicable; these rules allow determining that an edge between certain
vertex pairs never needs to be inserted, which decreases the number of variables
in the ILP.

Unfortunately, even after data reduction, the exact approach was not able to
solve the SCE and MoNoroLAR EDITING instances, with CPLEX running out of
memory. Only for SCE for the ribosome network, when given the solution from
the simulated annealing heuristic as a starting point, CPLEX was able to prove
its optimality after 80 minutes. Thus, we use the heuristic solution for all six
clusterings. From experiments with other networks, we conjecture that the three
SCE solutions are optimal; we are less sure about the MoNOPOLAR EDITING.

The cell cycle network. We describe the results of SpLit CLUSTER EDITING,
MonNororLar EpiTiNG, and SCAN on the cell cycle network (Figure 3.7). We
begin with SCE. The algorithm identifies eight clusters that contain at least two
nodes in the core and one in the periphery, along with four clusters containing
only cores, and some singletons. When testing the similarity of GO terms within
the cores versus the peripheries, we find that seven of the eight clusters have
higher coherence of terms in the core than the periphery, as expected. The
average coherence in the cores is 0.63, and the average coherence in peripheries
is 0.39.

We compared the overlap of the known complexes with the set of cores and
the set of cores and their associated peripheries. We find that the complexes
correspond to the cores rather to the cores and peripheries. For example, we
find a core corresponding to the anaphase promoting complex. All 12 proteins
in the core are members of this complex of size 14. The periphery contains six
proteins, only two of them a part of the complex. We find cores corresponding to
the nuclear condensin complex, DASH complex, MIND complex, and the other
complexes having at least two proteins in the cell cycle network.

The MoNoroLAR EDITING heuristic returned more clusters than SCE, 21 cores
containing at least two proteins. The average coherence in these cores is 0.57,
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(c) Monopolar (d) SCAN

Figure 3.7: The results of the three algorithms on the cell-cycle network. The
periphery is in white, remaining nodes are colored according to their clusters.

lower than for SCE.

SCAN identifies 7 hubs and 41 outliers, which then comprise the transition
region. There are 25 clusters. These contain at least two proteins, as u = 2. The
average coherence in these clusters is 0.6, lower than the coherence obtained
by the cores found by SCE but higher than the monopolar results. The clusters
found by SCAN correspond to the same complexes as those found by SCE.
The SCAN clusters are slightly larger than the SCE cores, containing additional
proteins that do not belong to the complex. This might account for their lower
GO-term coherence.

The translation network. The results of the three algorithms on this network,
along with the known complexes containing at least 3 proteins, can be seen in
Figure 3.8.

When running SCE, we find five clusters containing at least two nodes in
the core and one in the periphery, along with one cluster containing only cores,
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() Monopolar (d) SCAN

Figure 3.8: The results of the three algorithms on the translation network. The
periphery is in white, remaining nodes are colored according to their clusters.

and some singletons. As opposed to the cell cycle network, when testing the
similarity of GO terms within the cores versus the peripheries we find that three
of the clusters have more coherent cores while the other two have more coherent
peripheries. The average coherence in the core is 0.72, while in the peripheries it
is lower, 0.68.

We compared the overlap of the known complexes with the set of clusters.
Most complexes correspond to detected clusters: the mitochondrial ribosomal
small and large subunits (27 and 73 proteins in the network, respectively), and the
cyoplasmic ribosomal large subunit. The cytoplasmic ribosomal small subunit,
consisting of 42 proteins, is not detected.

The MoNoroLAR EDITING heuristic returned more clusters than SCE, 11 cores

containing at least two proteins. The average coherence in these cores is 0.56,
lower than the SCE.

SCAN identifies no hubs and 25 outliers, comprising the transition region.
There are 11 clusters, of which two are large, containing 91 and 39 proteins.
The average coherence in these clusters is 0.58, again lower than the coherence
obtained by the cores found by SCE but slightly higher than the MoNoOPoLAR
EDITING results. With respect to the overlap of clusters and complexes, the results
are similar to those of the cell cycle network: The same complexes are detected
by SCAN and SCE, with the exception of the mitochondrial ribosomal small
subunit, consisting of 19 proteins in this network. This complex is covered by a
13-protein cluster in the SCE results, and not detected at all by SCAN. As in the
cell cycle case, the clusters detected by SCAN contain additional proteins that
are not a part of the complexes, which could explain the lower coherence.
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The transcription network. The results of the three algorithms on this network,
along with the known complexes containing at least 3 proteins, can be seen in
Figure 3.9. When running SCE, we find twelve clusters containing at least two
nodes in the core and one in the periphery, along with two clusters containing
only cores, and some singletons. As opposed to the cell cycle network, when
testing the similarity of GO terms within the cores versus the peripheries, we
find that half of the clusters have more coherent cores, while the other half
have more coherent peripheries. The average coherence in the cores and in the
peripheries is the same, about 0.56.

This network contains 29 complexes of at least two proteins. From these,
our cores overlap with only eleven. We find, for example, the 5-protein Rpf3L
complex (one of the cores matches it completely), the ARGR complex, and the
UTP-A complex. We miss diverse complexes such as Swrlp, RSC, and the
DNA-directed RNA polymerase II.

The MoNoPOLAR EDITING heuristic returned more clusters than SCE, 27 cores
containing at least two proteins, of which 15 contains at least three proteins. The
average coherence in these cores is 0.6. This is higher than the coherence of the
SCE cores, but is still a low score overall.

SCAN identifies 7 hubs and 51 outliers, comprising the transition region.
There are 33 clusters, mostly of the minimal size 2. The average coherence in
these clusters is 0.58, higher than in the clusters found by SCE but still lower than
the MoNOPOLAR EDITING clusters. The coverage of the complexes is better than
in the SCE case, as the clusters cover 15 complexes. Those remaining clusters that
do not correspond to any known complexes generally contain just two proteins.

Counting genetic interactions. In light of the fact that the clusters we identify
largely correspond to known protein complexes, it is perhaps not surprising
that we identify a higher than expected number of genetic interactions between
these complexes. We applied the binomial test to check whether the frequency
of genetic interactions in the periphery is significantly higher than the frequency
in the entire network. We obtain p-values lower than 4 - 10~7. In some cases,
for example SCAN on the transcription network, the p-value is less than 10—,
This is not the case when testing the peripheries of the clusters found by SCE:
Recall that this algorithm returns set of cores and their associated peripheries.
When testing whether the edges within these peripheries are similar to those
within cores in their enrichment for genetic interactions, we see that they are
more similar to the remaining periphery edges (which include edges between
peripheries and between different cores). The frequency of genetic interactions
within these peripheries is more than 100 times higher than in the cores.

Experiments conclusion. From these experiments, we can conclude that it
useful to view our networks as unions of cores and peripheries (or a single
periphery). Mainly, many clusters we identify correspond to known protein
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(c) Monopolar (d) SCAN

Figure 3.9: The results of the three algorithms on the cell-cycle network. The
periphery is in white, remaining nodes are colored according to their clusters.

complexes. The proteins in the cores are annotated with similar GO terms.
The cores found by the SpLiT CLUSTER EDITING algorithms are more coherent
than those found by the other two algorithms. This can be due to the fact that
the underlying structure of the network is more similar to multiple cores and
peripheries rather than to multiple cores and a single periphery. An alternative
theory is that the MonorPoLAR EDITING heuristic does not return solutions that
are close enough to optimal, and a better algorithm would return better results.
Similarly, SCAN might return better results with a more careful consideration
of parameters. It would be interesting to continue improving the algorithms to
make it possible to find the model that best describes the network. Already our
experiments on just three subnetworks hint that different biological processes
might be organized differently: Our results for the cell cycle and translation
networks are better than those for the transcription network, according to our
biological evaluation. This could indicate that rather than trying to fit a single
model of modularity for an entire PPI network, it could be useful to analyze
its parts separately. It will be interesting to test this hypothesis by testing
our algorithms on many subnetworks, thus making it possible to obtain better
statistics and a deeper understanding of the modularity of protein interaction
networks.
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3.5 Outlook

In this thesis we explored the notion of networks that cannot be decomposed fully
into modules, but do contain dense, sparsely connected subsets. We developed
two main perspectives: a random-walk-based approach, and a combinatorial
graph-theory one. For each approach we introduced a modularity score and
an algorithm for finding good assignments. It is natural then to ask whether
these two approaches can somehow be compared. While there is no reason
to think the two should give identical results, it is interesting to consider the
types of networks that are highly modular both in the random-walk sense and
in the combinatorial sense, and, in contrast, those that are modular according to
only one approach. We could, for example, try to obtain a formal description
of a class of networks that has a high Iy (3.9) score. Then we could extend the
proof (Section 2.3) and formally determine the behavior of the I,,, score on these
networks. -

In general, it is interesting to consider the modularity of more complicated
network classes. We focused in this thesis on networks having a single transition
region with a fixed density, and modules having identical density and size.
By varying any of these attributes we can construct networks that are more
complex: networks containing modules with differing sizes and densities, a
transition region that is itself comprised of several connected components, or
more sophisticated models than the Erd6s—Rényi for generating these network
components. We can test the behavior of our modularity scores analytically, or,
as demonstrated in Section 2.4, experimentally.

With respect to finding good assignments, it would be beneficial to have new
and improved algorithms for this task. This is true both for the combinatorial
SpLIT CLUSTER EDITING and MONOPOLAR EDITING approaches, and for the MSM
clustering algorithm. We saw in Section 3.4.3 that the ILP cannot resolve the
yeast subnetworks we were interested in, and we had to resort to heuristics.
Improved exact algorithms and heuristics can help us analyze these and larger,
more complex networks.

The MSM clustering algorithm has some drawbacks when analyzing such
complex networks (Section 3.1.3). It would be interesting to modify the various
parts of the algorithms as we outlined in that section, replacing the greedy
deterministic clustering algorithm by a different one and using different gener-
ators for the time-continuous Markov process underlying the algorithm. It is
also possible to consider other random-walk based algorithms that can return a
fuzzy assignment. We can, for example, employ heuristics to search the solution
space of potential assignments, looking for one that would maximize the I,
score. Such improvements to the algorithm can make them applicable to more
complicated networks, and in turn, to real-world networks.

We demonstrated some possible real-world applications of the model: Scoring
the modularity of brain networks, and identifying protein complexes in protein
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interaction networks. It would be interesting both to better understand the
results we have obtained, and see if they extend to similar networks. We have
observed that the modularity scores of typically-developed brain networks are
distributed differently than the modularity scores of autistic brains (Section 2.5).
It is promising to consider what this implies about brain organization, especially
since it has often been assumed that autistic brains are less modular (and thus
less organized in some sense) than typical brains. The role of the transition
region in this case is especially intriguing for further research, as we could
try to identify those nodes that play a role in the communication between the
modules. Then we could see if the differences in distributions persist in other
brain network datasets, both of autism and other conditions. For the protein
interaction networks, it would be useful to test improved algorithms on a wider
range of networks, corresponding to different species, or, as we’ve done here,
cellular processes (Section 3.4.2).
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Summary

Networks are commonly used to model complex real-world systems such as the cell or the
brain. An important notion in analyzing networks is modularity. Usually, a network is
considered modular if all its nodes can be partitioned into dense, connected subsets that are
sparsely connected to one another. In this thesis, we extend the definition of modularity to
cover networks that do contain dense modules that are sparsely connected to the rest of the
network, but some nodes can belong to the region outside of modules, the so-called transition
region. Accordingly, in contrast to full partitions, this work deals considers assignments: The
association of every node to a module in the modular region or to the transition region.

The first task to be tackled in this thesis is the construction of a formal definition of
modularity. After surveying some of the prominent existing definitions in the literature,
we found that they cannot be directly applied to networks that are not fully-partitionable.
We then developed an approach based on time-continuous random walks for analyzing
networks. Here we built on a rich literature on the topic of spectral clustering, equating
network modules with metastable sets of a random walk. This allows us to define a network
as modular if there is a choice of modules that produces a coarse-grained Markov process
whose dynamics well-approximate those of the original random walk on the network. We
tirst demonstrate that this score matches our intuition of modularity on synthetic networks,
increasing with the density of the modules and in the case where the modular region is large.
Perturbation analysis is then used to formally prove the correct behavior of the score on two
specifically constructed classes of networks.

Motivated both by the need to provide a good assignment as input to the modularity
score and by the established usefulness of clustering methods, the second task to be tackled
is that of finding good assignments. Continuing with the approach of Markov models,
we first describe an algorithm based on a continuous random walk on the network. Next,
modifications to several leading full-partition algorithms are described so that they output
modules and transition regions rather than full partitions. The performance of all algorithms
is then tested on a class of benchmark networks. Finally, we developed a combinatorial
model of networks that are not fully partitionable as a union of split graphs, and posed the
problem of finding modules and transition regions as a graph editing problem, proving its
hardness and providing exact algorithms and heuristics.

The discussion of each of the two tasks is completed by an example of a biological
application. Identifying good assignments gives us a way to detect protein complexes in
protein interaction networks, a well-studied topic. The flexibility of assigning proteins to
modules or to the transition region helps identify more complicated structures as complexes.
The modularity score is used to analyze the brain networks of autistic and typically-developed
children, where the distribution of modularity scores is different between the two types. In
future work it will be interesting to further investigate the modularity of biological networks
and draw conclusions about their organization.
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Zusammenfassung

Netzwerke werden hédufig benutzt, um komplexe reale Netzwerke wie die Zelle oder das
Gehirn zu modellieren. Ein wichtiger Begriff zur Analyse von Netzwerken ist Modularitat.
Normalerweise wird ein Netzwerk als modular angesehen, wenn alle Knoten in dichte zu-
sammenhédngende Teilmengen partitioniert werden konnen, die untereinander nur schwach
verbunden sind. In dieser Arbeit erweitern wir die Definition von Modularitit, um auch
Netzwerke zu erfassen, die dichte Module enthalten, die nur schwach mit dem Rest des
Netzwerks verbunden sind, aber in denen einige Knoten zum Bereich aufierhalb der Module
gehoren konnen, dem sogenannten Ubergangsbereich. Dementsprechend betrachtet diese Ar-
beit im Gegensatz zu vollstaindigen Partitionen die sogenannten Zuordnungen: die Zuweisung
von jedem Knoten zu einem Modul im Modulbereich oder zum Ubergangsbereich.

Die erste Aufgabe, die in dieser Arbeit in Angriff genommen wird, ist die Konstruktion
einer formalen Definition von Modularitat. Nachdem wir eine Bestandsaufnahme einiger
bekannten existierenden Definitionen in der Literatur erstellt haben, fanden wir heraus, dass
sie nicht direkt fiir Netzwerke angewendet werden konnen, die nicht vollstindig partitionier-
bar sind. Wir entwickelten dann einen Ansatz, der auf zeitkontinuierlichen Random Walks
zur Analyse von Netzwerken basiert. Dabei haben wir auf einer reichhaltigen Literatur zum
Thema spektrales Clustering aufgesetzt, bei der Netzwerkmodule mit metastabilen Mengen
des Random Walks gleichgesetzt werden. Dies erlaubt uns, ein Netzwerk als modular zu de-
finieren, wenn es eine Auswahl von Modulen gibt, die einen grobkornigen Markow-Prozess
erzeugt, dessen Dynamik die des urspriinglichen Random Walks auf dem Netzwerk gut
approximiert. Wir zeigen zuerst, dass dieser Score auf kiinstlichen Netzwerken mit unserer
Intuition tibereinstimmt und mit der Dichte der Module und der Grofie des Modulbereichs
zunimmt. Perturbationsanalyse wird dann benutzt, um das korrekte Verhalten des Scores
auf zwei speziell konstruierten Klassen von Netzwerken formal zu beweisen.

Motiviert sowohl durch die Notwendigkeit, eine gute Zuordnung als Eingabe fiir den
Score zu finden, als auch durch die bekannte Niitzlichkeit von Clustering-Methoden ist
die zweite anzugehende Aufgabe die des Findens einer guten Zuordnung. Den Ansatz von
Markow-Modellen fortsetzend, beschreiben wir einen Algorithmus, der auf einem zeitkonti-
nuierlichen Random Walk auf dem Netzwerk beruht. Als ndchstes werden Modifikationen fiir
mehrere etablierte Algorithmen zum vollstdndigen Partitionieren beschrieben, die bewirken,
dass sie Module und Ubergangsbereich ausgeben anstelle von vollstandigen Partitionen. Die
Performance aller Algorithmen wird dann auf einer Klasse von Benchmark-Netzwerken
getestet. SchliefSlich entwickeln wir ein kombinatorisches Modell von Netzwerken, die nicht
vollstandig partitionierbar sind, als Vereinigung von Split-Graphen, und formulieren das
Problem, Module und den Ubergangsbereich zu finden, als Grapheditierungsproblem; wir
beweisen kombinatorische Schwierigkeit und zeigen exakte Algorithmen und Heuristiken.

Die Diskussion jeder der beiden Aufgaben wird vervollstandigt durch ein Beispiel einer
biologischen Anwendung. Die Identifikation guter Zuordnungen gibt uns eine Moglichkeit,
Proteinkomplexe in Proteininteraktionsnetzwerken zu finden, ein gut untersuchtes Thema.
Die Flexibilitit, ein Protein einem Modul oder dem Ubergangsbereich zuzuordnen, hilft
dabei, kompliziertere Strukturen als Komplexe zu erkennen. Der Modularitdts-Score wird
benutzt, um die Gehirnnetzwerke von autistischen und typisch entwickelten Kindern zu
analysieren, wo die Verteilung von Modularitdts-Scores zwischen den beiden Gruppen
unterschiedlich ist, was uns Vermutungen iiber den Grund fiir diesen Unterschied anstellen
lasst. In weiteren Arbeiten wird es interessant sein, die Modularitdt biologischer Netzwerke
weiter zu erforschen und Schlussfolgerungen iiber ihre Organisation zu ziehen.
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