

Image-potential states as a sensor for magnetism

im Fachbereich Physik der Freien Universität Berlin eingereichte Dissertation

Martin Pickel

2007

Gutachter dieser Arbeit:1. Gutachter: Prof. Dr. M. Weinelt2. Gutachter: Prof. Dr. M. Donath3. Gutachter: Prof. Dr. A. GoldmannBefürwortender Gutachter: Prof. Dr. W. Kuch

Tag der Disputation: 2. Juli 2007

Die Arbeit wurde durchgeführt am

Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Berlin, am Physikalischen Institut, Westfälische Wilhelms-Universität Münster, sowie am Lehrstuhl für Festkörperphysik, Friedrich-Alexander-Universität Erlangen-Nürnberg

Kurzfassung

Ferromagnetismus ist insbesondere im Hinblick auf seinen Ursprung, seine Verbindung zur elektronischen Bandstruktur und seine Temperaturabhängigkeit eines der faszinierendsten Phänomene in der Festkörperphysik.

Diese Arbeit zeigt, dass spinaufgelöste Zwei-Photonen Photoemissionsspektroskopie (2PPE), welche üblicherweise zur Untersuchung der Energetik und Dynamik unbesetzter Zustände eingesetzt wird, reichhaltige Information über die besetzten elektronischen Zustände in Ferromagneten knapp unterhalb des Fermi-Niveaus liefert. Ausgenützt wird dabei ein resonanter Anregungsprozess über Bildpotenzialzustände, der neben hohen Intensitäten auch zu einer erhöhten Oberflächensensitivität führt. Als Testsysteme dienten dünne Eisen- und Kobaltfilme, die auf einer Kupfereinkristalloberfläche mit (100) Orientierung epitaktisch aufgewachsen wurden.

Die Spinpolarisation der Bildpotenzialzustände in spinaufgelösten 2PPE-Spektren gibt Aufschluss über die Anfangszustände des Anregungsprozesses. Durch Variation der Wellenlänge des Pumplasers werden Anfangszustände zwischen Ferminiveau und 0,8 eV Bindungsenergie abgestastet. Ihre Symmetrie kann durch eine Änderung der Polarisation des anregenden Lichtes bestimmt werden.

Im Rahmen dieser Arbeit wird zudem zum ersten Mal in der 2PPE magnetischer linearer Dichroismus beobachtet, der wiederum auf die Anfangszustände zurückgeführt werden kann. Die relativistischen Quantenzahlen dieser Zustände können durch eine Kombination aus spin- und zeitaufgelösten Messungen bestimmt werden.

Des Weiteren wird für dünne Eisenfilme die Möglichkeit aufgezeigt, über die Austauschaufspaltung und die Spinpolarisation der Bildpotenzialzustände die Temperaturabhängigkeit der Magnetisierung zu untersuchen. Linienbreitenanalyse und lichtpolarisationsabhängige Messungen, die auch ohne explizite Spinauflösung sensitiv auf die Austauschaufspaltung reagieren, zeigen im Vergleich zur Spinpolarisation einen anderen Verlauf der Magnetisierung, insbesondere in Bezug auf den magnetischen Phasenübergang. Dies kann entweder als Domänenbildung unterhalb der Curie Temperatur gedeutet werden oder auch als Existenz lokaler magnetischer Momente, die in einem signifikanten Temperaturfenster oberhalb der Curie Temperatur noch eine Austauschaufspaltung der Bildpotenzialzustände ermöglichen.

ii

Abstract

Ferromagnetism is one of the most fascinating phenomena in solid-state physics, especially with respect to its origin, its relation to the electronic band structure and its behavior at elevated temperatures.

This work demonstrates that spin-resolved two photon-photoemission spectroscopy (2PPE), usually employed to study the energetics and dynamics of unoccupied states, also delivers considerable information about the occupied states of ferromagnets slightly below the Fermi level. The success of this technique is based on the resonant excitation via image-potential states, which leads to high count rates as well as a pronounced surface sensitivity. Ultrathin iron and cobalt films on the copper (100) surface served as test systems.

The spin-dependent intensity of the image-potential states in the spin-resolved 2PPE spectrum allows us to identify the initial states of the excitation process. Tuning the photon energy of the pump pulse enables us to study occupied electronic states at binding energies between 0.8 eV and the Fermi level. Initial states with a particular symmetry are selected by switching between p- and s-polarized light in the pump-process.

For the first time magnetic linear dichroism is observed in 2PPE, whose origin can be directly linked to the initial states. The relativistic representations of these states can be deduced from spin- and time-resolved measurements.

Furthermore, the temperature dependence of the exchange splitting of the image-potential states in combination with the spin polarization allows us study the evolution of the magnetization as a function of temperature, which is explicitly demonstrated for ultrathin iron films. From spin-resolved and spin-integrated measurements a different temperature dependence is deduced, especially with respect to the magnetic phase transition. This can be interpreted in terms of domain formation below the Curie temperature (T_C) or in terms of local magnetic moments of sufficient size to support exchange-split image-potential states above T_C .

iv

Contents

1	Intr	roduction	1
2	Bas	ic concepts	3
	2.1	Image-potential states	3
		2.1.1 Binding energy	3
		2.1.2 Dynamic properties	5
		2.1.3 Image-potential states on ferromagnetic surfaces	6
	2.2	Two-photon photoemission	8
		2.2.1 Principle	8
		2.2.2 Description by optical Bloch equations	9
	2.3	Material systems	12
		2.3.1 Geometric and magnetic structure	12
		2.3.2 Electronic structure and dipole selection rules	16
3	Exp	periment	19
	3.1	Set-up	19
		3.1.1 Laser system	19
		3.1.2 UHV chamber	20
	3.2	Sample preparation	27
	3.3	Measurement procedure	29
4	San	pling the band structure	31
	4.1	Two-photon photoemission of image-potential states	31
		4.1.1 Spin-integrated spectroscopy	31
		4.1.2 Spin-resolved spectroscopy	33
	4.2	Spin polarization	35
		4.2.1 Light-polarization dependence	35
		4.2.2 Pump-pulse photon-energy dependence	37
		4.2.3 Low energy cut-off	49
	4.3	Dichroism	51
		4.3.1 General observation	51
		4.3.2 Magnetic linear dichroism explained by symmetry consid-	
		erations	51
		4.3.3 Initial-state effect	53

		4.3.4 Dichroism in the low energy cut-off	58
		4.3.5 Microscopic origin of dichroism	58
		4.3.6 Thickness dependence	64
	4.4	Photoelectron spectroscopy via observer states	66
5	Exc	nange splitting as a sensor for magnetization	69
	5.1	Material dependence	69
	5.2	Temperature dependence	72
		5.2.1 Background	72
		5.2.2 Results	75
		5.2.3 Interpretation \ldots	82
6	Sun	mary and outlook	87
\mathbf{A}	Spir	analysis	91
	A.1	Sherman function and detector related asymmetry	91
	A.2	Determination of the Sherman function	92
		A.2.1 Highly spin-polarized electron beam	92
		A.2.2 Recording spectra with different light polarizations	93
	A.3	Determination of the detector related asymmetry	94
		A.3.1 Unpolarized electron beam	94
		A.3.2 Measurement with s-polarized light	95
		A.3.3 Non-dichroic region of spectrum	95
		A.3.4 Minority state effect	96
в	Erro	or analysis	99
	Bib	iography	101