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ABSTRACT 

Over the past decade, the employment of chemically-synthesized scaffolds for the delivery of 

biologically-relevant molecules has proven to be a highly advantageous strategy for medicinal 

purposes, primarily due to stabilization of the cargo and enhancement of site-targeted 

therapeutic effects. Conjugation to a scaffold has been shown to reduce ligand degradation, 

impart optimal geometric conformation and increase the likelihood of the active species 

reaching the target. A wide range of synthetic carriers, including dendrimers, nanoparticles, 

PNAs, LNAs and cell-penetrating peptides, has been explored; among these, peptides are of 

particular interest due to their diverse functional groups, folding properties, biocompatibility 

and low toxicity. In particuar, the structural simplicity and regularity of the α-helical coiled-

coil folding motif makes it a suitable scaffold for multivalent ligand display. By changing 

only a few positions in a coiled-coil sequence, it is possible to influence the behaviour of the 

resulting helices, obtaining either short dimeric peptides or long, fiber-forming carriers.  

This thesis explores the coiled-coil motif as a scaffold for the multivalent display of peptide 

and carbohydrate ligands. We aspired to demonstrate the versatility of the coiled-coil motif in 

two distinct projects. The first study relied on the dimeric form, providing structural 

predictability for the rational presentation of carbohydrates for lectin targeting. The second 

study aimed to increase the efficiency of carbohydrate-antibody recognition by displaying 

ligands on a self-assembling, fiber-forming peptide. 

The first project is entitled “Tailored presentation of carbohydrate ligands on a coiled-coil 

scaffold for asialoglycoprotein receptor targeting”. In this work, we determined the binding of 

members of a coiled-coil glycopeptide library to hepatocytes and established the optimal 

distance and orientation of the galactose moieties for interaction with the asialoglycoprotein 

receptor using flow cytometry. We confirmed that binding occurs through receptor-mediated 

endocytosis via inhibition studies with cytochalasin D; moreover, fluorescence microscopy 

studies demonstrated the uptake of the carrier peptides into cells.  

The second project is entitled “A self-assembling peptide scaffold for the multivalent 

presentation of antigens”. Here, a coiled coil-based sequence was used to create tunable 

higher-order structures on the nanometer scale, allowing for the multivalent presentation of a 

mannose moiety and a peptide epitope, the presence of which did not interfere with self-

assembly of the nanostructure. The multivalent display of these ligands led to tighter binding 

by both mannose-specific lectins and appropriate antibodies. The potential of the novel self-

assembling peptide to display antigens in bioanalytical assays that demand high sensitivity 



 
 

was illustrated by decoration with a disaccharide glycotope from the surface of the 

Leishmania parasite. Anti-Leishmania antibodies present in human and canine sera bind their 

antigen more effectively in the case of multivalent display on the coiled-coil scaffold. 

In summary, the α-helical coiled-coil scaffolds investigated here were shown to effectively 

multivalently present carbohydrate and/or peptide ligands to their specific binding partners, in 

the context of either a well-defined precision tool (project 1) or self-assembled nanofibers 

(project 2). Project 1 demonstrated that a coiled-coil carrier decorated with selected ligands 

may be tailored-made for applications involving other therapeutically-relevant receptors. 

Project 2 established that a synthetically accessible fiber-forming coiled-coil scaffold can 

provide the multivalent effect required to enhance binding avidity of specific antibodies 

and/or receptors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

ZUSAMMENFASSUNG 

In den letzten Jahren stellt die Anwendung von synthetischen Gerüsten für den Transport biologisch 

relevanter Moleküle eine vorteilhafte Strategie in der Medizin dar. Dabei wird nicht nur der Wirkstoff 

stabilisiert sondern auch noch zusätzlich die Wirkungsweise am Zielort moduliert. Es konnte gezeigt 

werden, dass durch die Konjugation einer biologisch aktiven Spezies an ein Gerüst deren Stabilität 

erhöht wird, die optimale geometrische Konformation vermittelt wird und generell eine Erhöhung der 

Wahrscheinlichkeit auf ein Erreichen des Wirkstoffes am Wirkungsort stattfindet. Zu diesem Zweck 

wurden unterschiedlichste synthetische Träger untersucht wie zum Beispiel: Dendrimere, 

Nanopartikel, PNAs, LNAs und zellpenetrierende Peptide. In diesem Kontext stehen Peptide im 

besonderen Fokus der Forschung aufgrund ihrer zahlreichen funktionellen Gruppen, ihres vielfältigen 

Faltungsverhalten und ihrer Biokompatibilität sowie geringen Toxizität. Ein prominenter Vertreter, 

das α-helikale coiled-coil Faltungsmotif, ermöglicht durch seine strukturelle Einfachheit und 

Regelmäßigkeit die multivalente Präsentation von Liganden. Durch die Modifikation von wenigen 

Positionen in einem coiled-coil Motiv ist es möglich, einen Einfluss auf das 

Oligomerisierungsverhalten der resultierenden Helices auszuüben, wodurch entweder kurze 

Peptiddimere oder lange fibrillenartige Gerüste erhalten werden.  

Die vorliegende Arbeit untersucht die Möglichkeit das coiled-coil Motif als ein Gerüst für die 

multivalente Präsentation von Kohlenhydraten oder Peptiden zu verwenden. Dazu ist es angedacht den 

Vorteil des coiled-coil Motifs in zwei unterschiedlichen Projekten zu demonstrieren. Im ersten Projekt 

wird die Dimer-Form genutzt, die eine strukturelle Vorhersagbarkeit besitzt um eine rationale 

Präsentation von Kohlenhydraten für eine Lektin-Interaktion zu ermöglichen. Die zweite Studie zielt 

auf eine Erhöhung der Effizienz einer Kohlenhydrat-Antikörper-Erkennung durch die 

Ligandenpräsentation auf einem selbstorganisierenden Fibrillen bildenden Peptid ab.  

Das erste Projekt heißt “Tailored presentation of carbohydrate ligands on a coiled-coil scaffold for 

asialoglycoprotein receptor targeting”. In diesem Teil konnte die Bindung der Mitglieder einer 

coiled-coil Glykopeptid-Bibliothek zu Heptazyten bestimmt werden und der optimale Abstand sowie 

die Orientierung der Galactose-Liganden für die Wechselwirkung mit dem Asialoglykoproteinrezeptor 

(ASGPR) durch Druchflusszytomerie etabliert werden. Anhand von Inhibitionsstudien mit 

Cytochalasin D wurde bestätigt, dass die Bindung durch die ASGPR vermittelte Endozytose abläuft. 

Darüber hinaus wurde die Aufnahme der Trägerpeptide in die Zelle mithilfe von fluoreszenz-

mikroskopischen Studien nachgewiesen.  

Im zweiten Teil mit dem Namen “A self-assembling peptide scaffold for the multivalent presentation 

of antigens” wurde ein coiled-coil-basierende Sequenz genutzt um veränderbare höhergeordnete 

Strukturen im Nanometerbereich zu generieren. Diese ermöglichten die gleichzeitige Präsentation von 

Mannose-Liganden und einem Peptid-Epitop, wobei die Selbstorganisation der Helices durch die 

Modifikationen nicht beeinträchtigt wurde. Die multivalente Präsentation dieser Liganden resultierte 



 
 

in einer stärkeren Bindung durch einerseits Mannose-bindende Lektine und andererseits durch 

geeignete Antikörper. Weiterhin wurde das Potential dieses neuartigen selbstorganisierenden Peptids 

untersucht, die eingebauten Antigene in einem bioanalytischen Assay zu präsentieren, welcher einer 

hohen Empfindlichkeit bedarf. Dazu wurde das Peptid mit einem Disaccharid-Glykotop vom 

Leishmania Parasit versehen und mit humanen und caninen anti-Leishmania-Antikörpern enthaltenden 

Seren inkubiert. Die Bindung des Antigens durch die Antikörper erfolgte im Falle der multivalenten 

Präsentation durch das coiled-coil Gerüst weitaus effektiver. 

Zusammenfassend wiesen die in der vorliegenden Arbeit untersuchten α-helikalen coiled-coil Gerüste 

eine effiziente multivalente Präsentation von Kohlenhydraten und/ oder Peptiden für die 

entsprechenden spezifisch bindenden Partner auf. Dies wurde entweder durch ein gut definiertes 

Präzisionswerkzeug (Projekt1) oder durch selbstorganisierenden Nanofasern (Projekt 2) erzielt. In 

Projekt 1 wurde dargelegt, dass coiled-coil Peptide, welche mit ausgewählten Liganden versehen sind, 

für die Anwendung zur Untersuchung von therapeutisch relevanten Rezeptoren maßgeschneidert 

synthetisiert werden können. Im Projekt 2 wurde gezeigt, dass synthetisch zugängliche Fibrillen 

bildende coiled-coil Gerüste einen multivalenten Effekt aufweisen, welcher für eine Verstärkung der 

Bindung eines spezifischen Antikörpers und/ oder Rezeptors erforderlich ist. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

ABBREVIATIONS 

 

Ab  Antibody 

Abz Aminobenzoic acid 

ACN Acetonitrile 

AcOH Acetone 

AOSP  All-on-solid-phase 

AP  Alkaline phosphatase 

APC Antigen presenting cells 

ASGPR Asialoglycloprotein receptor 

Boc  tert-Butyloxycarbonyl 

BPBS PBS + 0.5% - 0.1% BSA 

BSA  Bovine serum albumin 

CCP  Parent coiled-coil peptide  

CD  Circular dichroism 

CLM Confocal laser microscopy 

ConA Concanavalin A 

CPP  Cell-penetrating peptide 

CRM197 Cross-reactive material 197 

Cy5  Cyanine 5 

DCM  Dichloromethan 

DIC  Diisopropylcarbodiimide 

DIPEA N,N-Diisopropylethylamine 

DMEM Dulbecco's Modified Eagle 

Medium 

DMF Dimethylformamide 

DNA  Deoxiribonucleic acid 

DT Diphtheria toxin 

ELISA  Enzyme-linked 

immunosorbent assay 

ESI  Electrospray ionization 

EtOAc  Ethyl acetate 

FCS Fetal calf serum 

FITC Fluorescein isothiocyanate 

FL  Fluorescence microscope 

Fmoc  Fluorenylmethyloxycarbonyl 

FSC  Forward-scattered light 

Gal  Galactose 

GalNAc N-Acetylgalactosamine 

Glc  Glucose 

GlcNAc N-Acetylglucosamine 

GPI  Glycosylphosphatidylinositol  

HATU 1-[Bis(dimethylamino) 

methylene]-1H-1,2,3-

triazolo[4,5-b]pyridinium 3-

oxid hexafluorophosphate 

HCl  Hydrochloric acid 

HepG2  Human hepatocellular 

carcinoma cells 



 
 

Hex  Hexane 

HIV  human immunodeficiency 

virus 

HOAt 1-Hydroxy-7-

azabenzotriazole 

HOBt  Hydroxybenzotriazole 

HPLC   High-performance liquid 

chromatography 

HRP  Horseradish peroxidase 

Ig Immunoglobulin 

L  Long (referred to “spacer”) 

Lcp  Left-handed circularly 

polarized light 

LNA  Locked nucleic acid 

LPG Lipophosphoglycan 

Man Mannose 

MeOH  Methanol 

MHC Major histocompatibility 

complex 

MPI Max Planck Institute 

mRNA Messenger RNA 

MS  Mass spectrometry 

Mtt  N-Methyltrityl 

NHS N-hydroxyl succinimide 

NLS  Nuclear localization signal 

NMR  Nuclear magnetic resonance 

NT  Nanotube 

OD  Optical density 

PBS  Phosphate buffered saline 

PBST PBS + Tween 

PEG  Polyethylene glycol 

PEO  Polyethylene oxide 

PNA  Peptide nucleic acid 

PP  Polyproline 

PTA Phosphotungstic acid 

PTMC  Polytrimethylene carbonate 

Rcp  Right-handed circularly 

polarized light 

RP  Reverse phase 

S  Short (referred to “spacer”) 

siRNA  Short interfering RNA 

SPPS  Solid-phase peptide synthesis 

SSC  Side-scattered light 

TAT  Trans-activating 

transcriptional activator 

TBTU  2-(1H-Benzotriazol-1-yl)-

N,N,N’,N’-

tetramethylaminium 

tetrafluoroborate/hexafluorop

hosphate 

tBu tert-Butyl 



 
 

TEM  Transmission electron 

microscopy 

TFA  Trifluoroacetic acid 

TLC  Thin layer chromatography 

 

Abbreviations of the 20 canonical amino acids are consistent with the biochemical 

nomenclature proposed by the IUPAC-IUB commission (Eur J Biochem. 1984, 138, 9-37). 
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Peptides and proteins play an essential, irreplaceable role in the dynamics and kinetics of 

cellular processes. It is the regulation of these particular biomolecules that allows the cell to 

maintain homeostasis. 0F

1, 
1F

2 In the human body, they are found in every tissue and perform a 

wide range of essential functions that depend on the amino acid primary sequence and the 3D 

structure. Disclosing the molecular mechanism by which these functions are exploited and 

understanding how peptides interact with their biological targets may allow intervention in 

pathological conditions and can offer a new tool for exploiting other cellular processes.  

The popularity of peptides and peptidomimetics has constantly grown in the last few years, 

especially because of their synthetic accessibility and potential applications. Chemists and 

chemical biologists are particularly challenged by the tight protein structure-function 

correlation; the main aim is to recreate certain cellular interactions by offering synthetic 

peptide alternatives able to provide specific functional group arrangements that would 

translate into a defined tertiary structure and a specialized function. Synthetic peptides 

represent an appropriate simplification of a complex system, yet a system able to maintain 

folding properties and biological functionalities.  

The helix is by far the most frequently occurring structural motif in proteins and it is 

associated with key biological functions such as molecular recognition, replication and 

pathogen invasion.2F

3, 
3F

4 It is remarkable how, in spite of their structural simplicity, helical 

peptides are involved in the most important cellular functions. For instance, it is the helical 

structure of collagen that provides mechanical strength and stability to tissues and bones; 
4F

5 the 

Lac repressor, the protein responsible for the regulation of galactose, interacts with its binding 

site on the lac operon mainly via one of its helices;5F

6 and even apoptosis can be mediated by 

the interaction of the helical peptides Bak and Bcl-xL with gramicidin A.6F

7, 
7F

8  

However, not all protein-protein interactions rely on direct recognition: some of these 

processes of molecular recognition must be finely regulated and require post-translational 

modifications. The most common post-translation modification is protein glycosylation. The 

addition of carbohydrates to proteins allows for cell-cell and cell-environment communication 

in both physiological and pathological processes. Examples are respectively offered by lectin-

mediated processes and pathogen invasion. Lectins, such as SIGN-R1 and CSL, are 

carbohydrate-binding proteins involved in cell adhesion: R1 is involved in the transient 

recognition of neuronal cells; CLS is associated with adhesion between normal and 

transformed cells.8F

9 Regarding pathogen invasion, the entry mechanism of HIV is only one of 

many examples of pathogens relying on interactions between their own proteins and those of 
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the host cell to establish infection. The case of HIV represents an excellent example in which 

the specificity of the invasion process depends on the presence of the helical motif within 

glycoproteins.9F

10 

The work presented in this thesis focuses on the use of the coiled-coil helical motif for the 

presentation of carbohydrates to biological macromolecules for biomedical applications. This 

introduction describes the theoretical background and state of the art necessary for the 

understanding of the results of this study, and is divided as follows: 

 Section 1.1, “Peptides in medicinal chemistry”, offers an overview of the use of 

peptides as scaffolds for biomedical applications. It defines the pros and cons of the 

use of peptides and describes how their self-assembly properties can be used for cell 

targeting; 

 Section 1.2, “Coiled coils in nature and as tools for medicine”, discusses the structural 

characteristics of the coiled-coil helical motif and its use as a scaffold for the delivery 

of biologically-active molecules; 

 Section 1.3, “Carbohydrate-protein interactions in cells and medicine”, underlines the 

biological role of carbohydrate-protein interactions and the use of these interactions in 

medicine. 

 

 

1.1 PEPTIDES IN MEDICINAL CHEMISTRY 

Bioactive peptides trigger many biochemical cascades associated with cell-cell and cell-

environment communication, cellular growth and death, the immune response and other 

modulatory activities in living systems.  Therefore, it is not surprising that their employment 

in medicine and in the pharmaceutical industry is very rapidly increasing.  

Newer generations of peptide drugs have been discovered by screening natural products or by 

rational design, including ligand-based, mechanism-based and receptor-based design. This 

class of protein-based drugs, referred as “biologics”, includes peptides such as insulin, growth 

factors and engineered antibody fragments. Biologics are often not suitable for oral delivery 

and are thus typically formulated for injection. Nevertheless, they are an extremely successful 

class of compounds, both economically and therapeutically. Among the top selling injectable 

peptides are the 10-amino acid immunomodulator Copaxone, for multiple sclerosis, the 9-

amino acid gonadotropin receptor agonists Lupron and Zoladex, for breast and prostate 
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cancer, respectively, the 8-amino acid hormone secretion inhibitor Sandostatin, and the 2-

amino acid proteasome inhibitor Velcade, for multiple myeloma.10F

11 According to a new report 

published by Transparency Market Research “Peptide Therapeutics Market”, the worldwide 

market for peptides employed in medicine, either as active ingredients or as drug adjuvants, is 

expected to grow to US$ 27.3 billion by 2020, 11F

12 and would likely increase further, since the 

production of peptides as drugs puts more emphasis in the future on personalized medicine.  

 

1.1.1 Pros and cons  

The success of peptides in biomedical applications lays in their intrinsic chemical properties 

and biological activities: 

1. Peptides are natural hormones, antibiotics, growth factors, chemokines, cytokines and 

neurotransmitters; they are therefore metabolically and allergenically tolerated, and 

this generally translates into low cell toxicity.12F

13 

2. The direct or indirect effect of peptides can be addressed towards a large variety of 

targets, such as infectious diseases, neurological diseases, metabolic disorders and 

cancer.13F

14
14F

-
15F

16 Due to their diversity in sequence and structure, their action is likely to be 

highly target-specific. 

3. Peptides represent a valuable compromise between bulky proteins and small molecule 

drugs, in terms of both costs and activity. While their functionalities are available for 

binding, delivery and post-translational modifications just like proteins, they are 

typically more synthetically accessible. 

As promising as drug candidates or adjuvants they may be, the process that each single 

peptide candidate has to face before being effectively adopted in medicine is not straight 

forward and several obstacles must be overcome before commercialization of a peptide drug:  

1. Due to their physical and chemical properties, peptides are often poorly orally 

bioavailable, and, even when they do manage to overcome this limitation, they are 

frequently and quickly cleared by the liver and kidneys.   

2. Once distributed in the blood stream, peptides typically exhibit rather short half-life, 

because, as proteins, they are subject to the action of several proteases.16F

17  

3. As a further obstacle, peptides tend to show very limited penetration of the blood-

brain barrier, and this calls for the use of additional delivery systems.  
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small building block presenting bioactive ligands responsive to cell-secreted signals. Other 

examples are offered by the presentation of neuronal and epithelial growth factors as ligands 

of self-assembling peptides, inducing cellular maturation and wound healing.25F

26, 
26F

27 In the first 

case, the Stupp group encapsulated neural progenitor cells within a three-dimensional network 

of peptide nanofibers presenting a neurite-promoting laminin epitope, which induces neuronal 

differentiation. In the second example, Schneider, Garlick and Egles created a peptide that 

undergoes molecular self-assembly to form a unique supramolecular structure that stably 

covers the surface of wounds, suggesting that this scaffold may serve as a viable wound 

dressing. A further use of peptides as scaffolds is represented by the cyclic peptide of Chan et 

al, 27F

28 which significantly improves the proangiogenic activity of the presented ligands at 

nanomolar concentrations, and is stable in human serum. 

 

 

1.1.3 Self-assembling peptide scaffolds  

The ability of certain peptides to undergo self-assembly makes them extremely useful as tools 

for both medicinal chemistry and materials science. Compared to other nanoscale bio-

assemblies, such as branched polymers and dendrimers, PNA, and LNA, 28F

29
29F

-
30F

31 peptides offer 

the advantage of facile de novo design by fine tuning of the primary sequence, to obtain 

morphologies such as peptide nanotubes, amyloid fibrils and α-helical nanofibers.  The self-

association of these types of structures is a recurring theme in both physiological and disease-

associated conditions.31F

32, 
32F

33 Mimicking natural scaffolds and modifying them with the desired 

alterations, such as ligand conjugation, can reduce the synthetic effort and increase the chance 

of success, since the architectures adopted by peptide nanoassemblies are often retained in the 

presence of guest molecules.  

During the self-assembly process, single building blocks recognize one another and associate 

to form two- or three-dimensional networks. Recognition is driven by a combination of 

noncovalent interactions, such as electrostatic and hydrophobic interactions, hydrogen 

bonding and aromatic stacking. Inspired by molecular recognition processes in nature, a 

variety of hosts of synthetic peptide nanoscaffolds have been developed. Three of the most 

common types of peptide structures are depicted in Figure 2 and described below. 
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polymerization of reactive small molecules into melanin, a critically important biopolymer 

that protects against a broad range of cytotoxic damage.37F

38 Following this trend, Maji et al. 

discovered that hormones in secretory granules of the endocrine system are stored in an 

amyloid-like conformation, and therefore functional amyloids can contribute to physiological 

cell development. 

 The type of self-assembling peptide structure most-commonly found in nature is the 

superhelical coil, and examples of this fold are α-keratin and myosin proteins.38F

39, 
39F

40 The α-

helical coiled-coil motif is the basic building block for the construction of fibrous filaments 

with lengths on the order of several hundred µm that bundle to form matured fibers. The 

chemistry of the hydrophobic and electrostatic interactions leading to the formation of the α-

helical fibers is well studied and understood, and the rules for the design of such 

supramolecular structures are known. Since only some of the amino acid residues of the 

coiled-coil motif are actively involved in the folding of the peptide, the remaining ones can be 

used for the display of ligands and functionalities. This characteristic makes the α-helical 

fibers an optimal three-dimensional scaffold. 

 

1.1.4 Peptide interactions with cells 

The employment of peptides as scaffolds for the delivery of drugs or biologically-relevant 

molecules into cells has experienced rapid growth, due to the discovery of peptides with the 

innate ability to cross the cell membrane, called cell-penetrating peptides (CPPs).  

CPPs offer the advantage of intracellular delivery of information-rich molecules, avoiding 

dispersion in the blood stream and reducing side effects. On the one hand, this type of peptide 

shows high levels of cellular uptake and therefore has significant potential as a carrier system; 

on the other hand, they exhibit cellular promiscuity, to the detriment of specificity. For this 

reason, according to the type of molecule to be delivered and the therapeutic use of the 

synthetic system, peptide chemists have also turned to other peptides that do not possess cell-

penetrating potential but that instead deliver their cargo inside the cell by precisely displaying 

a presented ligand to the cognate receptor. Thus, the CPP approach is known as passive 

targeting, while the ligand-receptor approach is referred to as active targeting. One current 

goal in this field is the optimization of peptides as delivery molecules for both selective 

targeting and efficient cellular internalization.  
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The internalization of CPPs by direct penetration is an energy-independent process and it 

most likely involves favorable electrostatic interactions between polycationic CPPs and 

negatively-charged phospholipids. In contrast, endocytosis is an energy-dependent 

mechanism that can occur either by nonspecific receptor mediation or by interaction between 

the positive charges of the CPP and surface polysaccharides of the cell (heparin sulfates). The 

formation of inverted micelles is the most common form of transitory structure for CPP 

transportation. These are formed by aggregates of colloids in combination with membrane 

phospholipids that allow the CPP to remain in the internal hydrophilic environment. CPPs 

have found numerous applications in biology and medicine as carrier systems: they have been 

used for the delivery of proteins, full-length antibodies, nucleic acids, small-molecule drugs 

and imaging agents.42F

43
43F44F45F

-
46F

47 Overall, CPPs show very high potential for further development and 

optimization, but their lack of specificity remains a major drawback. 

 

 Active targeting 

Active targeting, also called ligand-based targeting, refers to the receptor-mediated process. 

The main advantage of delivering cargo in this fashion is increased cell binding and 

internalization. Over the past decade, several peptides have been exploited for this purpose, 

particularly for anti-cancer therapy, anti-inflammation, diagnostics and imaging. Mai et al.  

demonstrated that a peptide selected by phage display increased the percentage of active 

uptake of a liposome containing an anticancer drug and the percentage of cancer cell death;47F

48 

Wang and co-workers designed a peptide conjugated with PEG and PTMC as a drug carrier, 

which was able to be selectively target bone lesion sites and demonstrate pathology-

responsive activity;48F

49 several examples exist for the use of targeting peptides carrying 

theranostic agents, able to simultaneously deliver a drug and a contrast agent;49F

50 Subramanian 

and others, for instance, developed a cationic peptide scaffold that allows its cargo to be 

delivered specifically into the nucleus by conjugating with a nonclassical nuclear localization 

signal (NLS). The system shows improved nuclear localization and DNA binding properties 

of the NLS. 50F

51  

This active targeting mechanism is depicted in Figure 4. 
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between the basic building blocks of the macromolecules, and thus by programming 

polypeptide chain sequences. The consequence is a tight correlation between structure and 

function, stability under physiological conditions and refined interactions with other 

macromolecules. Therefore, the rational design of peptide scaffolds must be based on natural 

systems to enable translating primary amino acid sequences into defined supramolecular 

structures. The literature offers several examples of cell-interacting peptide scaffolds. For 

instance, the β-sheet-based peptide hydrogel RAD16II, consisting of alternating hydrophilic 

and hydrophobic amino acids, was found to be capable of supporting the attachment and 

growth of a variety of mammalian cell types. The same ability to form biocompatible 

hydrogels is also reported for β-hairpin-based peptides, short aromatic peptides, hybrid 

amphiphilic peptides and α-helical peptide hydrogels.51F

52
52F53F

-
54F

55 However, the state of the art 

regarding the incorporation of biologically-active motifs as ligands on peptide scaffolds for 

interaction with cells is limited to hybrid amphiphilic peptides 55F

56 and β-sheet-based fibrils56F

57 

(an overview on the subject is given by Wu, Zhang and Hauser).57F

58 To date, no coiled coil-

based peptide has been reported to be employed for the delivery of biologically-relevant 

molecules to cells. This may be partially due to the large number of amino acids required to 

yield an α-helical fiber, which translates into relatively high production costs at industrial 

levels. 

Nevertheless, the α-helical coiled-coil motif is a ubiquitous protein domain. Predictions based 

on analyses of primary sequences suggest that >5% of all proteins form coiled-coils.58F

59 It is 

therefore the most abundant protein fold, and it offers versatility and strength. Proteins relying 

on the coiled-coil motif for their interactions have a large variety of functions, their roles 

ranging from transcription regulation to cell architecture.59F

60, 
60F

61 Moreover, there are several 

proteins in which the coiled-coil motif plays a relevant pharmacological role: the SNARE 

proteins, involved in vesicular trafficking of neurotransmitters and viral fusion;61F

62 the GCN4 

transcriptional activator protein, which binds specifically to the promoters of yeast amino acid 

biosynthetic genes;62F

63 the proto-oncoprotein Fos and Jun, which bind DNA via their leucine 

zipper motif; 63F

64 and the myosin protein family, involved in the transport of specific 

biomolecules, vesicles and organelles in eukaryotic cells.64F

65 The crucial role played in both 

physiological and pathological conditions, together with the structural reliability and 

predictability of the coiled-coil motif, makes it a promising scaffold for biomedical and 

pharmaceutical applications. 
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1.2.1 The coiled-coil heptad repeat 

The α-helical coiled-coil motif was identified in 1952 by Francis Crick, based on X-ray 

diffraction data from α-keratin.65F

66, 
66F

67 According to Crick´s definition, the hallmark of the 

coiled-coil motif is a distinctive packing of the amino acid side chains in the core of a bundle 

(knobs-into-holes): a residue of one helix (knob) packs into a space surrounded by the side 

chains of four amino acids from another helix (hole). Two or more amphipathic α-helices can 

assemble into a supercoil (or superhelix) by wrapping themselves around each other. Most 

commonly, supercoils consist of two-to-five helices, running in the same (parallel) or in 

opposite (antiparallel) directions.67F

68 Compared to the 3.6 residues per helix turn found in 3.613 

helices within globular proteins, the coiled-coil motif forces a distortion of the amino acids 

around each other and brings the number of residues per helix turn down to 3.5. For this 

reason, a complete heptad repeat is distributed every two turns of the helix.68F

69, 
69F

70  

A superhelix can be composed by either homomeric or heteromeric assemblies, according to 

the primary amino acid sequence, which also dictates stoichiometry, topology and assembly-

disassembly equilibrium.70F

71 There are, moreover, other essential properties that influence the 

stability of a coiled coil, such as helical propensity of the amino acids, hydrophobicity and 

tightness of the core, shielding of the core from the solvent and favorable polar and ionic 

interactions. The contribution of each amino acid at each single location along the repeats is 

still under investigation, although various attempts to elucidate this process have been made. 71F

72 

Left-handed coiled coils are characterized by a seven-residue periodicity called heptad repeat. 

Right-handed coiled coils are instead defined by an eleven-residue periodicity, the undecad 

repeat. In the context of preparation of synthetic scaffolds, the simplicity of the heptad repeat 

is favored and most commonly employed. 

The structural characterization of a high number of coiled coil-containing proteins by X-ray 

crystallography and NMR spectroscopy allows for the identification of coiled-coil basic 

design principles. Within the seven residues composing the coiled-coil heptad repeat, 

designated a, b, c, d, e, f and g, the main driving force for the assembly is established by 

placing hydrophobic residues in positions a and d to form a hydrophobic core.72F

73 Amino acids 

at positions e and g are often charged to stabilize the helix and give directionality.73F

74 They 

pack against the hydrophobic core and can participate in interhelical electrostatic interactions 

between residue i (g position) of one helix and residue i’+5 of the other helix (e’ position, 

belonging to the next heptad). Residues b, c and f are solvent-exposed and can therefore be 

used for the conjugation of ligands..74F

75
75F

-
76F

77 The positions of the heptad repeat and the 
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coiled coil; D: a parallel, tetrameric coiled coil. Curved arrows indicate salt bridges, crossed-

arrows depict hydrophobic interactions. E: Knobs-into-holes configuration in parallel dimeric, 

trimeric and tetrameric coiled coils; F: Knobs-into-holes configuration in antiparallel dimeric, 

trimeric and tetrameric coiled coils. Adapted from Apostolovic et al. with permission of 

Royal Society of Chemistry, copyright 2010.82F

83 

 

As mentioned in paragraph 1.2.1, in dimeric coiled coils isoleucine and leucine are preferred 

at a and d positions, respectively, whereas the opposite distribution favors the tetrameric 

assembly. In the case of trimers, instead, no discrimination has been observed, and they can 

be generated by a=d=Leu/Ile. A clear overview of the contributions of the amino acids at 

these two positions is given by Apostolovic et al. and is reported in Table 2.83 

Table 2. Basic design principles to control the oligomerization state and helix orientation in 

de novo coiled coils. Adapted from Apostolovic et al. with permission of Royal Society of 

Chemistry, copyright 2010.83 
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Residues at e and g positions, despite being mainly responsible for the specificity of folding 

and the formation of homo- or heterooligomers, seem to also play a role in intrahelical 

interactions, due in part to attractive Coulombic forces and also due to their contributions to 

the stability of the coiled-coil; the latter occurs by increasing the hydrophobicity of the coiled-

coil interface as, for example, in the case of protonated glutamic acid.82 

The number of helices is directly related to the stability of the structure. A higher number of 

helices translates into a broader hydrophobic interface, better shielding of the core from the 

aqueous environment, and an increase in the number of polar and ionic interactions via the 

amino acids at b and c positions. Interhelical interactions, however, do not only allow for a 

higher number of helices sharing the same hydrophobic core, but are also responsible for the 

longitudinal “growth” of coiled-coil oligomers into so-called α-helical fibers.83F

84  

Fibrous structures are central to many biological processes and are of interest as 

bionanomaterials.84F

85, 
85F

86 The production of such structures is often available via self-assembly, 

a recurrent theme in biological systems. Molecular self-assembly allows the single, disordered 

building blocks of the system to form organized supramolecular structures as a consequence 

of specific, local interactions, without external intervention. It is a process mostly driven by 

noncovalent interactions and is observed in very small peptides and large proteins alike.86F

87, 
87F

88 

Unlike all natural coiled coil-based structures, where the elementary units composing the 

fibers are mostly “blunt” ended, de novo designed α-helical fibers are based on the “sticky” 

ends principle, a nomenclature adopted from nucleic acid research.88F

89 In the case of nucleic 

acids, digested DNA through the action of restriction enzymes presents one strand overhang 

to the other to from a very short single-stranded segment. This segment will easily repair with 

other ends of the same type, and thus are referred to as sticky ends. The same principle can be 

applied to de novo designed, coiled coil-based peptides: by constructing a peptide sequence 

which contains, at the C- or the N-terminus, an incomplete heptad repeat (for example: 

defg(abcdefg)na), the sticky-end effect can be reproduced, and the peptide is able to form 

elongated fibers. It is likely, though, that the building block for these fibers is still the 

elementary oligomerization state of the designed coiled-coil (dimer or trimer). The Woolfson 

laboratory has widely exploited this concept by conceiving the first de novo-designed self-

assembling heterodimeric fiber-forming peptide system (SAF-p1 and SAF-p2)89F

90 and 

developing it towards the formation of custom-designed supramolecular structures.90F

91 

Potekhin et al.  have proposed a structural model for the rational design of α-helical fibers, 

starting from the formation of a five-stranded coiled-coil.91F

92 According to this model, a coiled-
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target-oriented ligand display, requiring specific positioning of the presented molecule on the 

backbone, with a considerable loss of entropy during target-ligand binding.94F

95 

Due to their high propensity to be found in helical conformation, two of the most used amino 

acid residues for this type of scaffold are proline and alanine. Polyproline chains (PP) adopt a 

well-defined left-handed helix of type II (PPII) and contain three residues per turn, aligning 

every third ring on the same face of the helix with a pitch of approximately 10 Å.95F

96 PP 

peptides have been used as a precision tool for the presentation of ligands in several 

applications. Examples are offered by the work of Yannick et al.96F

97 and Unverzagt et al.97F

98 The 

former has systematically studied the role of cationic and hydrophobic moieties in cell 

penetration using a PP backbone, demonstrating dramatic increases in uptake when up to six 

guanidinium groups were positioned on the polyproline helix, whereas only modest increases 

in cellular uptake were observed with the amine-containing polyproline compounds, showing 

that amphiphilicity plays a key role in enhanced cell translocation. The latter working group 

synthesized a competitive inhibitor against influenza virus by presenting multiple sialyl-N-

acetyllactosamine side chains at predefined distances along a PP peptide. Most of the 

multivalent sialoglycopeptides exhibit increased binding proportional to the spacing of the 

ligands, when compared to monovalent compounds. 

Regarding alanine, its high abundance in nature and its structural simplicity make it an ideal 

model building block for the study of conformational changes and aggregation behavior.98F

99 

Alanine-rich peptides have been investigated, for instance, by Asakura et al. as scaffold 

candidates for the delivery of glutamic acid residues for bone-repair applications.99F

100 These 

peptides show enhanced cell binding through focal adhesions and enhanced expression of 

osteoblast-like cells. Liu and Kiick have used alanine-rich peptides as carrier molecules for 

carbohydrate presentation against cholera toxin.100F

101 Enhanced binding to the toxin was 

explained by the multivalent effect, which increases the local concentration of the saccharide 

ligand in the vicinity of the receptor. 

The robustness of the coiled-coil motif has been experimentally explored, among others, by 

Falenski et al., by loading up to twelve glycan moieties on a homo-dimeric coiled-coil model 

peptide.101F

102 Remarkably, the high degree of O-glycosylation was easily tolerated by this 

structural motif, and thermal stability analysis demonstrated the structural strength of the 

coiled-coil as a scaffold for the presentation of carbohydrate ligands. A great amount of work 

has been dedicated to elucidating the de novo design and oligomerization of the coiled-coil 

motif, but its use as a delivery system for biomedical applications has started to be taken into 

consideration only very recently. 
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1.3 CARBOHYDRATE-PROTEIN INTERACTIONS IN CELLS AND MEDICINE 

Most essential cellular processes, such as growth, differentiation, motility, morphology and 

communication, are mediated by extracellular signals received by and exchanged between the 

surfaces of cells. Some of these stimuli are received in the form of extracellular fluids, as in 

the case of hormones and neurotransmitters, but other signals are encoded in neighboring cell 

surfaces and exert their effect through direct cell-cell contact. 

Cell surface carbohydrates represent information-rich binding sites for cellular intermediates 

and other cells and thus act as molecular recognition partners. Since most cell-cell and cell-

environment communication occurs through carbohydrates, much current research is devoted 

to understanding their interactions with proteins and cellular compartments. For biomedical 

purposes, carbohydrates are often presented to their binding partners via synthetic scaffolds, 

to optimize interactions and fine-tune the signal response by means of the multivalent effect. 

A large portion of currently discovered multivalent interactions are mediated by 

carbohydrate–protein interactions, and their specificity is achieved by exploring the wide 

structural diversity of carbohydrates.102F

103 The next section attempts to describe the complex 

implications of carbohydrate-protein interactions and exploitation of these for research and 

medicine. 

 

1.3.1 Biosynthesis of glycoproteins 

The attachment of sugar moieties during or after protein translation is complex.103F

104 It is a 

process that goes beyond the genome and is regulated by several factors via many elaborate 

pathways, to finally result in a mature glycoprotein that is either secreted by cells or becomes 

part of the membrane, cytoplasm or nucleus. The key event in the biogenesis of glycoproteins 

is clearly the formation of the glycopeptide bond, which determines the nature of the 

carbohydrate units and the protein’s biological function. There are 13 different types of 

carbohydrate–amino acid combinations, arranged in five distinct groups, as shown in Figure 

8. The most common carbohydrate–amino acid bonds in eukaryotes are:104F

105 

1. The O-glycosydic bond, between the hydroxyl group of the amino acid side chain 

(serine, threonine and tyrosine among the proteinogenic residues, and hydroxylysine 

and hydroxyproline among the others) and the terminal sugar. 

2. The N-glycosidic bond, between the side chain amide of the amino acid asparagine 

and a glycan (exception: arginine with glucose). 
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Protein glycosylation is controlled by rates of polypeptide translation and protein folding, 

localization of glycosyltransferases (enzymes responsible for glycopeptide bond formation), 

cellular sugar concentration and membrane trafficking. Therefore, single glycosylation sites 

on the same polypeptide can contain different glycan structures reflecting both the type and 

state of the cell in which they are synthesized. 

Whether it is a single sugar or a complex glycan tree, glycosylation is an effective way of 

generating diversity in proteins and modulating their properties due to the inherent structural 

variations of glycans. For example, the bulkiness and the hydrophilic nature of carbohydrates 

often increase protein solubility and stability against proteolysis.106F

107 Sugars can stabilize the 

folded state of proteins, and this generally leads to higher melting temperatures. These effects 

typically depend highly upon the precise location of the sugar on the protein, so that different 

glycosylation sites influence protein stability in different ways. Due to steric hindrance, 

glycosylation restricts the range of conformations available to the neighboring peptides within 

the same protein, even when a defined change in secondary structure does not occur. For this 

reason, it generally contributes to protein folding by limiting the conformational degrees of 

freedom of the backbone around the site.107F

108 

 

1.3.2 Carbohydrate functions in cells 

Cells run on carbohydrates and glycoproteins are one of the most abundant and structurally 

diverse classes of molecules in nature. Carbohydrates are directly involved in almost all 

biological aspects of cell life and play an important role in almost every human disease. The 

functions of complex glycans are generally carried out at the multicellular level, as 

demonstrated by the fact that cells can grow in culture without them, but other simple sugars, 

such as the O-GlcNAc, are essential for mammalian cell homeostasis. 108F

109 Glycoconjugates 

provide high structural diversity to proteins at the phenotype level, for various metabolic 

pathways, and for cell development, and glycoproteins are involved in both intracellular and 

intercellular communication, essential for tissue formation and growth. A synthesis of the 

processes in which carbohydrates are involved is offered by Figure 9. 
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cell. One of the main reasons that facilitate this event is molecular mimicry: surface 

carbohydrates of many pathogens have a very similar chemistry to the mammalian 

components of the eukaryotic glycocalix, and this similarity often allows bacteria and viruses 

to evade immune surveillance, like in the case of the sialic-acid capsule of group B Neisseria 

meningitidis and neural cell adhesion molecules.113F

114 The biochemical tolerance and alteration 

of the host glycosylation pattern during disease/infection are both components that must be 

considered to better understand the sugar-mediated cell invasion. For these reasons, 

carbohydrates are not perceived by the body as highly immunogenic and their use as a sole 

element for a vaccine preparation does not guarantee the activation of the immune response. 

This is why carbohydrate-based vaccines frequently contain one or more immune-stimulatory 

compounds, such as peptide epitopes, providing appropriate stimuli to the host's immune 

system. In this way, the cell-mediate immunity would provide immunological memory, while 

the carbohydrate antigen would allow for the production of specific antibodies. 

 

1.3.3 Multivalency in carbohydrate-protein interactions 

Whenever the topic is carbohydrate and cells, it is also important to take into consideration 

the nature of the carbohydrate-protein interactions: the two components are linked by a 

number of relatively weak interactions that ensure specificity but permit unlinking when 

needed. The best examples are offered by the carbohydrate-binding protein family of lectins, 

whose main role is to facilitate cell-cell communication. Due to the weak nature of the 

interaction with carbohydrates, a lectin is usually formed by more than one binding site which 

often interact with an array of glycans expressed on the membrane of another cell. The 

essence of this binding modality resembles the action of Velcro:114F

115 each bond is relatively 

weak but the complex of all interactions is strong. Binding affinity and degree of carbohydrate 

substitution and branching have been widely analyzed and frequently correlated.115F

116 A good 

example is offered by a triantennary inhibitor of the lectin asialoglycoprotein receptor 

(ASGPR), which, with its three GalNAc moieties, shows higher inhibitory potency than the 

biantennary counterpart.116F

117 

The phenomenon of multivalency and formation of multimeric architectures containing 

several recognition sites is very frequent in nature, since it allows for the compensation of 

weak individual noncovalent interactions. The proposed model of binding for mammalian 

lectins is a mechanism of multivalent recognition, in which avidity can be further increased by 

matching appropriate conformational arrangement of the binding site in the lectin oligomer 
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with the spacing of carbohydrate ligand.117F

118 Another example is offered by the mannose-

binding protein-specific antibody 2G12, which achieves its recognition via multivalent 

interactions, rather than recognition by a single high affinity site.118F

119, 
119F

120 In conclusion, protein-

carbohydrate recognition at molecular levels is always enabled by a synergistic combination 

of several cooperative binding events. 

 

 

1.3.4 Use of carbohydrates in medicine 

Over the past two decades, there have been many improvements in tools and techniques for 

the study and synthesis of carbohydrates and their use as therapeutics.120F

121 Recognition of the 

importance of glycans in the medical community dates back to the discovery of the three 

blood types (A, B and 0), in 1900. 121F

122 The identification of the chemical differences and 

identities of the blood type components had to wait other 50 years for the work of Kabat, 

Leskowitz, Morgan and Watkins, which demonstrated that the main constituent of the H 

antigen was the monosaccharide fucose, to which either N-acetylgalactosamine (GalNAc) or 

galactose (Gal) were added to A and B antigens, respectively.122F

123
123F

-
124F

125 Since this very early 

discovery, carbohydrates made their official debut into various fields of medicine and 

pharmacy, such as angiology, immunology and diabetology.  

 

  

Figure 10. Timeline of glycans in medicine. Adapted from Hudak and Bertozzi, with 

permission of Cell Press, copyright 2014.125F

126 

 

As shown in Figure 10, carbohydrates were introduced into the field of immunology with the 

identification of the polysaccharide-based coating from the Pneumococcus capsid that could 
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react with type-specific antisera from patients infected with the pathogen.126F

127 This discovery 

opened the gates for the new concept that carbohydrates can be used as a main component for 

vaccine development.127F

128, 
128F

129 In particular, their use in the vaccine Pneumovax (PPV23), 

containing over twenty capsular polysaccharides from Streptococcus pneumonia,129F

130 

demonstrates that glycans are indeed suitable to efficiently stimulate and “train” the antibody 

response for effective vaccination. However, the low molecular weight and the inherently T-

cell-independent nature of carbohydrates make them poorly immunogenic.130F

131 The first 

response to this limitation was offered by conjugating carbohydrates to carrier molecules, but 

this approach also failed to induce a sufficient T-cell response in human patients.131F

132 A 

solution was presented by adding a promiscuous T-cell epitope to the vaccine components to 

trigger, simultaneously, the T-cell-dependent immune response and specific antibody 

production via the glycopeptide antigen.132F

133 This successful design brought about the 

development of vaccines against, for example, Neisseria meningitidis (Menactra), 

Streptococcus pneumoniae (Prevnar), Haemophilus influenzae type b (Hib; Hiberix, 

Comvax), and Salmonella typhi (TYPHIM Vi). 133F

134, 
134F

135 

The chosen carrier system also plays an important role in carbohydrate-based vaccine 

production. The above-mentioned vaccines utilize a protein as carrier, generally a deactivated 

version of a known toxin. Recently, greater attention has been paid to fully synthetic vaccines. 

The most successful example may be offered by the production of the Cuban Hib vaccine, the 

first clinically approved carbohydrate-based vaccine, the synthesis of which was described by 

Verez-Bencome et al. and is based on conjugating an antigenic tetrasaccharide from Hib to 

the tetanus toxin.135F

136 Equally impressive is the work by the Seeberger group to generate a 

synthetic, glycan-based anti-malarial vaccine, which reduces many sources of tissue damage 

normally found during infection.136F

137, 
137F

138 

Beyond their use in immunology, the interaction of carbohydrates with their main binding 

partners, the lectins, is one of the most relevant phenomena that must be taken into account 

for therapeutic purposes. The discovery of selectin in the 1980s represented a major step 

forward in the field of glycobiology and inspired decades of therapeutic development. 

It must be remembered that protein-carbohydrate interactions are very weak in nature, and 

therefore monovalent sugars as targets for lectin binding are not suitable to be considered as 

drug candidates. For this reason, multivalent glycoconjugates have been developed taking 

advantage of the “cluster glycoside effect” to strengthen lectin avidity,138F

139, 
139F

140 resulting in 

glycopolymers, glycodendrimers and glyconanoparticles.140F

141,  
141F

142The clinically relevant 

dendrimeric scaffold STARFISH142F

143 is an oligovalent dendron-like compound bearing a high 
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number of selected glycans. The same STARFISH dendrimer has been used to inhibit or 

image specific carbohydrate-binding proteins. For example, Rele et al. demonstrated that a 

high valency polyethylene oxide (PEO) star dendrimer bearing highly sulfated lactose ligands 

can selectively recognize selectin and reduce inflammation when administered in a mouse 

model.143F

144 Also, the architecture of the multivalent structure makes a major contribution to the 

activity of the final glycoconjugate, as shown, for instance, by the Kiessling research group, 

which demonstrated that a designed multivalent scaffold was essential to enhance avidity and 

specificity by varying scaffold shape, size, valency, and the density of the binding 

elements.144F

145 A further example is offered by Scheibe and Seitz, who provided multivalent 

PNA-DNA complexes bearing sugar conjugates presented in a spatially-defined fashion: 145F

146  

the periodicity and flexibility of the nucleic acid helix allowed for the precise determination 

of number and spatial alignment of the presented carbohydrate ligands. 

It is now generally understood that combining the specificity imparted by the carbohydrates 

and the multivalent effect offered by a synthetic scaffold is a promising strategy for 

optimizing the therapeutic effects of carbohydrate-based drugs. 
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chains are not base labile. This orthogonal strategy allows for the exposure of the amino 

group of the amino acid anchored on the resin, while avoiding any unwanted reaction with the 

side chain. The activation of the carboxylic acid of the following amino acid is performed in a 

separate tube with specific activating agents, according to the characteristics of the amino acid 

in question, such as bulkiness and solubility. The most commonly used combination is 

diisopropylcarbodiimide (DIC) and hydroxybenzotriazole (HOBt). The activated amino acid 

is added to the reactor for a certain time that can vary from 30 minutes to overnight, according 

mainly to the accessibility of the functionalities in solution. When all the amino acids are 

coupled together, strong acidic conditions, generally 95% trifluoroacetic acid (TFA), can 

cleave the peptide from the resin and remove the side chain protecting groups, 

simultaneously. After solvent removal, the peptide is ready to be purified.  

 

2.1.2 Reversed-phase high-performance liquid chromatography 

The most used technique for synthetic peptide purification is high-performance liquid 

chromatography (HPLC). It is a chromatographic technique for separation of components 

from a mixture, their quantification and isolation. The reversed phase (RP)-HPLC, allows for 

separation of compounds according to their polarity. The most hydrophilic compounds elute 

first, followed by compounds with decreasing polarity.  This is due to the reduced interactions 

of hydrophilic compounds with the hydrophobic stationary phase of the column when the 

polarity of the mobile phase is decreased (e.g., increased percentage of acetonitrile over 

water). Elution is monitored by UV-detection and the eluents can be collected and analyzed 

separately.  

 

2.1.3 Electrospray ionization-mass spectrometry 

Mass spectrometry (MS) is an analytical technique to identify the type of molecule analyzed 

by measuring the mass-to-charge ratio of gas-phase ions. Electrospray ionization (ESI) 

produces ions by applying high voltage to a liquid to create an aerosol. This type of MS is 

particularly useful when analyzing proteins and peptides, since it overcomes their propensity 

to fragment during ionization. The typical solvent mixture for ESI-MS is water with a volatile 

organic compound (very often acetonitrile or methanol), because ion formation requires 

extensive solvent evaporation. Evaporation of the solvent results in the formation of charged 



32 
 

droplets of increasingly reduced size. In the case of peptides, this technique may produce 

multiply charged ions, extending the mass range to accommodate the kDa-MDa orders. 

 

2.2 FURTHER ANALYTICAL METHODS 

 

2.2.1 Circular dichroism 

Circular dichroism spectroscopy is a widely-used method to gain low-resolution structural 

information about proteins and peptides in solution.147F

148 In particular, it is frequently used to 

determine protein and peptide conformations and conformational changes, and it has been 

employed to characterize the secondary structure of all peptides produced in this study.  

Circularly-polarized light consists of an electric and a magnetic field, perpendicularly 

oscillating. The electric field does not change its strength but only its direction, in a rotary 

fashion, so that the tip of its vector describes a helix along the direction of propagation. 

Circular dichroism (CD) results from the interaction of a chiral chromophore with circularly 

polarized light and measures the difference between the absorption of left-handed circularly 

polarized light (Lcp) versus right-handed circularly polarized (Rcp) light. The absence of a 

difference yields an absence of CD signal, which is indicative of the absence of a regular 

structure; any difference, positive or negative, results in variation of the absorption of the light 

and a consequent positive or negative intensity signal in the CD spectrum. When circularly 

polarized light hits an optically active compound in solution, for example a peptide with a 

definite structure, various parameters will vary between the right and left polarized light: the 

speed of polarization, their wavelength and the extent to which they are absorbed. 

Particularly, this last parameter is the main determinant that results in a CD signal, according 

to the formula: 

 

ΔA = AL - AR = εLCl - εRCl = ΔεCl 

 

where the difference in the absorption of the left (L)- and right (R)-polarized light (ΔA) is 

given by the difference between the decadic molar extinction coefficient of the solute for L 

and R (respectively εL and εR), each one multiplied by the molar concentration of the analyte 

(C) and by the optical path length (l). Therefore, according to the formula, ΔA = ΔεCl. 
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environment of this conformation; the β-sheet conformation is represented by a single 

minimum between 210 nm and 220 nm, and a positive peak of similar intensity between 190 

nm and 200 nm. Many denatured proteins and peptides, oligopeptides and polypeptides 

possess a CD spectrum typical of a random coil, with a single minimum near 195 nm and very 

weak positive, broad bands between 220 nm and 230 nm. Such a CD profile means that their 

building blocks are still bonded together but there is no well-defined hydrogen-bonding 

network between them. 

The interpretation of a CD spectrum is not always straight forward, although it is generally 

easier for short model peptides. In nature, proteins are generally composed of more than one 

type of secondary structure, and the corresponding CD profile is a proportional combination 

of their contributions.  

 

2.2.2 Transmission electron microscopy 

Some of the peptides involved in this study have the tendency to form higher-order structures 

which differ from amorphous aggregates, because they show regularity and consistency in the 

interaction between their building blocks. To be able to observe these supramolecular 

architectures, the light microscope does not offer appropriate resolution. Thus, in this work, 

these peptides are analyzed via transmission electron microscopy (TEM). 

Electrons possess dualistic particle-wave properties and can therefore be use as a radiation 

source. This principle developed into the first prototype instrument called transmission 

electron microscope. Electron microscopy is a technique which allows for the observation of 

samples at high resolving power. Compared to more standard visible light, electron beams 

possess up to a 100,000-fold shorter wavelength of a few picometers, offering high-definition 

images as result of the interaction between the transmitted electrons and the sample.148F

149 

To acquire an image via TEM, a high-voltage electron beam (100 kV) is focused via 

electromagnetic and electrostatic lenses and transmitted to the sample, which is pretreated 

(negative staining or cryo-TEM) to be partially permeable to electrons. The structural 

information carried by the electron beam are finally transmitted to an imaging system of the 

microscope, where the images can be magnified via electromagnetic lenses, recorded and 

developed onto TEM micrographs. 

When an electron beam hits the sample, it can be elastically bounced without loss of energy 

(if it hits the nucleus of an atom), or it can interact by striking an electron, and transfer some 
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of its energy to the atom. In the first circumstance, the angle of the elastic bounce will be 

dictated by the law of conservation of momentum; in the second case, the residual energy 

transferred by the electron beam is instead random, and, when the beam reaches the imaging 

system, possesses unknown energy and angle, which leads to noise. 

TEM imaging uses the elastic scattering to generate transmission contrast. Obtaining the right 

degree of contrast in TEM is not as straight forward as for the light microscope, since 

electrons interact with matter in a different way compared to light. Moreover, the electron-

scattering of biological samples, deriving mostly from C, H, O and N, is weak; these samples 

must, therefore, be coated with heavy metal ions to increase their contrast, since they have 

higher weight and nucleus radius and can strongly scatter the electron beam. 

The most established technique to create contrast in an organic specimen is negative 

staining.149F

150 The method consists in imaging the sample using an optically opaque fluid and 

stain the background, rather than the sample. In this work, the most used negative stain was 

phosphotungstic acid. It scatters the electrons very well and quickly absorbs to biological 

samples. Practically speaking, to prepare a peptide sample with negative staining TEM few µL 

of sample solution is added to a carbon support and allowed to absorb for a short time. The 

droplet is consequently removed by touching it with the edge of a blotting paper and a droplet 

of staining solution is pipetted on the carbon support containing the sample for few seconds. 

The grid is allowed to air-dry and can subsequently be analyzed. 

Despite being the indicated technique for the analysis of peptides and proteins, negative 

staining TEM provides only information about the outer sample structure. To better study the 

core of the peptide aggregates, any contrast reagent must be avoided. For this reason, cryo-

transmission electron microscopy (cryo-TEM) has been developed and it is now considered 

the best method to allow the observation of specimens that have not been stained or fixed in 

any way, showing them in their native environment. With this methodology, the sample is 

immobilized by freezing (as suggested by the name “cryo”). This allows to restrain the 

structural characteristics of the analyzed protein/peptide aggregate and to observe it in its 

native-like conformation. 

The freezing procedure must be quick and must allow for the electron beam to be absorbed. 

The faster the freezing, the higher the chance that also the water will be instantly solidified as 

a disordered, amorphous solid. This process is called vitrification. The poor ordering degree 

of the water molecules in the sample makes it transparent for the electron beam and therefore 
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available for TEM analysis. This means that the sole analyte responsible for the scattering of 

the electron beam is the vitrified protein/peptide aggregate, since no stain is included. As a 

consequence, the contrast is very low, due to the lack of heavy atoms. Nonetheless, cryo-TEM 

remains a very efficient technology to study the architecture of proteins and peptide 

aggregates at molecular resolution and in a native-like state. 

The sample preparation for the cryo-TEM is more challenging than for the negative staining. 

The specimen is generally frozen in liquid ethane or nitrogen and must be prepared on a thin 

layer, to avoid further diminishing the contrast. Moreover, also the grid must be kept cold 

throughout the analysis, to avoid melting and evaporation.  

The results obtained by negative staining TEM and cryo-TEM on a biological sample can be 

compared in Figure 14. 

 

Figure 14. Comparison between negative staining TEM and cryo-TEM. A standard sample 

preparation and an improved sample preparation using a cryotechnique. TEM micrographs 

associated with the preparation techniques are compared (b,c,f). (b) Conventional TEM 

images of a standard cyanobacterial cell sample (100 kV). (c) Conventional TEM images of a 

standard cyanobacterial cell sample without staining (100 kV). (d) A sample preparation using 

quick freezing. (e) A conventional TEM image for a vitrified cyanobacterial cell with deep 

defocusing (300 kV). (f) An HDC-TEM image for a vitrified cyanobacterial cell (300 kV). 

Adapted from Nagayama and Danev, with permission of The Royal Society publishing, 

copyrigh 2008.150F

151   
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2.3 BIOLOGICAL METHODS AND THECHNIQUES 

 

2.3.1 Flow cytometry 

The interaction of some of the peptides employed in this thesis with cells has frequently been 

analyzed by means of flow cytometry. This biophysical technology allows for the fast 

measurement of multiple characteristics of individual cells as they flow in a fluid stream 

through a beam of light. This feature makes flow cytometry a very powerful tool for detailed 

analysis of complex cell populations in a short period of time. 

Flow cytometry can be used to detect and analyze a particle’s relative size, relative granularity 

or internal complexity, and relative fluorescence intensity. This last property is the most 

relevant for our purpose: the study of the interaction of labeled peptide with cells. The results 

are determined using an optical-to-electronic coupling system that records how the cell 

scatters incident laser light and emits fluorescence.151F

152 

A flow cytometer is composed of three systems: the fluidic system, which transports the cells 

to the laser beam for analysis; the optic system, which allows for laser illumination of the 

sample, while filters direct the light signals towards the detectors; and the electronic system, 

which converts light signals into electronic ones for data processing. When cells (or particles 

between 0.2 µm and 150 µm) in solution pass through the light source, they scatter the light 

and, if an appropriate wavelength is applied, can emit fluorescence. Scatter and fluorescence 

signals are collected by means of a series of lenses and sent to appropriate detectors, which 

produce electronic signals proportional to the optical ones. Cells in suspension are drawn into 

a stream created by a surrounding sheath of isotonic fluid that creates laminar flow, allowing 

them to pass individually through an interrogation point. Thus, data are collected for each 

single cell/particle that passes though the light beam and the data sent to software for analysis. 

The two main data sets to be analyzed derive from light scattering and fluorescence emission. 

Light scattering occurs when the laser hits the cell and its extent is proportional to the cell’s 

size and internal properties. In particular, forward-scattered light (FSC) is proportional to the 

cell surface area, while side-scattered light (SSC) is a function of the granularity of the cell. 

The combination of the information offered by FSC and SSC allows for cell type 

differentiation when a heterogeneous population is analyzed. 

Fluorescence emission occurs when the light absorbed by a fluorophore causes an electron to 

be excited to a higher energy level; this electron then quickly decays to its ground state, 

emitting the excess energy as a photon of light. Fluorescence is of particular utility to study 
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does not differentiate between peptides that bind to the cell membrane and peptides that are 

instead internalized within the cytosol. 

To overcome this limitation, it is necessary to use an imaging technique that allows the 

observation of cells in real time and the identification of the position of the peptides by 

colocalization with the fluorescence signal. This type of analysis can be performed by means 

of a confocal fluorescence microscopy.  

Confocal microscopy is an imaging technique with increased optical resolution compared to 

widefield microscopy. The difference is due to the presence of a spatial pinhole positioned at 

the confocal plane of the lens, whose effect is to eliminate out-of-focus light and obtain a 

three-dimensional reconstruction of the analyzed specimen. The pinhole ensures that only the 

light produced by fluorescence very close to the focal plane will be detected, and improves 

optical resolution by enabling the collection of a series of optical sections of thick specimens. 

The light emitted by the laser (excitation source) passes through the pinhole opening at the 

confocal plane and through another pinhole in front of the detector. After the excitation light 

is reflected by a dichromatic mirror and scanned across the sample in a certain focal plane, the 

fluorescence emitted by the sample passes back to the mirror and is focused at the detector 

pinhole. Fluorescence occurring above and below the objective focal plane is not confocal 

with the pinhole, and, therefore, only a very limited amount of it is detected by the 

photomultiplier. Thus, the out-of-focus emitted fluorescence does not contribute to the 

resulting image. 

Besides much clearer images, a confocal microscope allows collection of optical sections in 

transverse planes. Vertical sections of the z-plane result in layers of images of the specimen at 

different distances from the optical axis and allows for a more detailed analysis of the intra-

cellular distribution of the sample. 

 

2.3.3 Enzyme-linked immunosorbent assay 

The enzyme-linked immunosorbent assay (ELISA) is a biochemical and immunological 

technique to detect and quantify the presence of an antigen, peptide, protein or antibody in a 

sample mixture. During this study, ELISA has been employed to analyze the binding of 

specific antibodies to a peptide epitope, displayed either monovalently or in a multivalent 

fashion. The general procedure of the ELISA and its relevance for the investigations 

conducted in this thesis is depicted below. 
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In an ELISA, an antigen is fixed on a solid support (specifically or non-specifically) and a 

detection antibody is applied to bind the antigen. This detection antibody can be covalently 

linked to an enzyme, or can itself be detected by a secondary antibody that is linked to an 

enzyme through bioconjugation. The enzyme catalyzes a reaction from a given substrate that 

normally generates a detectable signal (most commonly a change in color or fluorescence 

emission) that can be photometrically quantified. The intensity of the signal is proportional to 

the amount of detection antibody bound to the antigen. Between each step, the solid support, 

typically a 96-well polystyrene plate, is repeatedly washed to remove non-specifically bound 

material. This makes the ELISA a powerful tool for measuring an antibody’s avidity to bind 

its substrate.  

The methods of immobilization and the detection of the antigen are the two main variables 

within the different types of ELISAs. The immobilization of the antigen of interest can be 

accomplished by direct absorption to the plate or by fixing on the plate a first antibody and 

then adding the antigen to be captured by it. This is the main difference existing between 

“standard” and “sandwich” ELISA. In the same fashion, the detection of the antigen can occur 

directly, via an enzyme-conjugated primary antibody, or indirectly, via an enzyme-conjugated 

secondary antibody which binds to the primary unlabeled antibody attached to the antigen. 

These two ways of proceeding are respectively referred to as “direct” and “indirect” 

ELISA. 153F

154 Because multiple secondary antibodies can bind to each primary antibody, this 

approach allows multiple reporter molecules to localize to each antigen, thereby amplifying 

the signal and increasing the sensitivity of antigen detection. For this reasons, the indirect 

ELISA was preferred during the course of this research. A diagram of common ELISA 

formats is illustrated in Figure 17.  

Figure 17. Common ELISA formats. In the assay, the antigen of interest is immobilized by 

direct adsorption to the assay plate (direct ELISA) or by first attaching a capture antibody to 
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the plate surface (indirect ELISA). Adepted by life Technologies´s guide: Overview of 

ELISA. 

The most commonly used detection enzymes are horseradish peroxidase (HRP) and alkaline 

phosphatase (AP). A large selection of substrates is available for both and the choice depends 

on the required assay sensitivity and the instrumentation available for detection. Though not 

as sensitive as fluorescent or chemiluminescent substrates, chromogenic ELISA substrates, 

like the one selected for this work, allow direct visualization and enable kinetic studies to be 

performed.  

 

2.3.4 Microdot array 

When working with protein-carbohydrate interactions, appropriate assays must be established 

to detect and amplify the outcome, since they are generally based on weak, noncovalent 

binding events. Inspired by the above described ELISA, a series of high-throughput methods 

have been formulated to track and quantify the interactions and activities of proteins and 

glycans. Among these techniques, the protein and glycan microarrays proved to be 

particularly useful to analyze, on large scale, the binding of specific antibodies to 

carbohydrates or proteins immobilized directly on the surface (glycan array) or via de novo-

designed peptide scaffolds (protein array). 

The first microarray was the DNA based;154F

155 from it, protein microarray has evolved starting 

from antibody microarrays155F

156 and nowadays they are frequently used in diagnostics, 

proteomics, antibody characterization and treatment development, together with glycan 

microarrays.156F

157 

The main advantage of a microarray is the large number of samples and conditions that can be 

tested simultaneously. Each one of the analytes is immobilized separately on the solid 

support, and each selected condition (for example different concentration) can be repeated 

even hundreds of times within the same experiment. The solid support on which the assay is 

performed consists of a small slide (generally glass, but also beads or a nitrocellulose 

membrane) on which a high number of analyte microdrops are spotted. The surface should 

possess maximal binding properties while maintaining the structural properties of the analyte, 

to guarantee the success of binding. To be able to host the analyte while preventing 

denaturation and displaying minimal non-specific binding, the solid support must be pre-

treated with an immobilizing agent, such as amines, aldehydes or epoxies. The droplets are 
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Targeted drug delivery is a method to deliver a beneficial molecule in a localized manner, 

minimizing side effects and reducing fluctuation in circulating drug levels. The main 

disadvantages connected to this technique are high costs and synthetic difficulties deriving 

from the production of the scaffold and the conjugation of the cargo. This project offers a step 

towards the resolution to these problems by evaluating the reliability of a dimeric coiled-coil 

peptide to be used as precision tool for the rational presentation of carbohydrate ligands to the 

asialoglycoprotein receptor (ASGPR). 

A dimeric coiled-coil peptide has been exploited as a molecular ruler to display galactose 

ligands at different, well-defined distances between each other and via spacers of different 

length. An accessible synthetic strategy has also been proposed. The target macromolecule, 

the liver-expressed asialoglycoprotein receptor (ASGPR), binds the terminal galactose of 

glycoproteins and internalizes these via endocytosis for blood clearance purposes. Since 

binding can only occur when the ligands are presented at the correct distance and with a 

specific orientation, successful targeting of this receptor would represent a new approach to a 

more accessible targeted drug-delivery system. 

 

4.1 AN OVERVIEW OF ASGPR 

ASGPR represents a rare example of an organ-specific receptor with high selectivity towards 

its binding partner.157F

158 These characteristics make it an ideal target for the selective delivery of 

biologically-active molecules to the liver, where it is mainly expressed.158F

159, 
159F

160 It is estimated 

that each human hepatocyte contains 100,000-500,000 such binding sites.  

The ASGPR is a carbohydrate-binding protein which has the main physiological role of blood 

clearance from D-galactose-terminating glycoproteins when sialic acid is removed from 

complex N-linked oligosaccharides. However, the affinity of the receptor for D-N-

acetylgalactosamine-terminating proteins and neoglycoproteins derivatized with this 

monosaccharide is substantially higher than for those terminating in galactose.160F

161  

Beyond the preferential binding for these carbohydrate residues, binding to the ASGPR 

depends strongly on the valency of the oligosaccharide; that is, mono-, bi-, tri-, and tetra-

antennary galactose-terminal oligosaccharides bind with higher affinities, with dissociation 

constants of 10-3, 10-6, 5 x 10-9 and 10-9 M, respectively, suggesting a close arrangement of at 

least three galactose binding sites.161F

162 Moreover, compounds within the same valency group 

exhibit a considerable range of affinities, suggesting that the inter-galactose distances are also 

important determinants. The importance of the inter-ligand distance and their relative spatial 
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the endosomes, where an acid-induced conformational change causes dissociation of the 

complex; the released ligands are degraded, while the receptors are sorted into recycling 

vesicles that bring them back to the plasma membrane for reuse.170F

171 These receptors have the 

characteristics of efficient high-turnover uptake systems. 

 

4.2 GLYCOPEPTIDE LIBRARY DESIGN AND NOMENCLATURE  

To optimize the fit between the presented galactose moieties and the ASGPR target, the 

coiled-coil scaffold must be able to carry one or more ligands with specific orientation and 

optimal spatial distribution.  The coiled-coil peptide was chosen as scaffold since it offers the 

possibility of positioning the carbohydrates at specific distances along the helical axis. The 

folding principles of the coiled coil allowed us to create a glycopeptide library to verify 

efficiency and specificity of this motif in delivering carbohydrate ligands to a structurally 

rigid receptor. The components of the glycopeptide library vary in the number of displayed 

galactose moieties, their position on the peptide sequence and the space between the peptide 

backbone and the carbohydrate. 

The parent coiled coil selected as scaffold was the 26-amino acid peptide of sequence H2N–

LESKLKELESKLKELESKLKELESKL-OH, here named CCP. This peptide was previously 

designed in the group of Prof. Koksch and was described in a report by Falenski et al.102 CCP 

allows for the exclusive formation of coiled-coil dimers under physiological conditions and it 

can be extensively modified in solvent-exposed positions without altering its oligomerization 

state. Its sequence is composed of three and a half heptad repeats and contains four amino 

acids in the f position and a total of six amino acids in the b and c positions of the helical 

wheel. Modifications at these locations produce negligible structural variations, since these 

amino acids do not take an active part in folding. Thus, ten potential positions are available 

for the conjugation of ligands.  

The structural simplicity and regularity of CCP (and of coiled coils in general) allow for the 

placement of each amino acid and conjugated ligand at predefined distances. For instance, 

two complete helical turns, required to allocate the seven residues of the coiled-coil heptad 

repeat, have a length of 10.8 Å (based on modeling studies). From this value, it is simple to 

calculate the distances between any two amino acid residues on the helix, considering that 

each one advances the helix by 1.5 Å along the main axis. 171F

172 Such structural consistency 

translates into the possibility of a tailored delivery of ligands at pre-defined positions. The 
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Figure 29.  Normalized percentage of uptake of the glycopeptide library by HepG2 cells. 

Values were determined between each conjugate and the respective Glc-functionalized 

control peptide using the unpaired Student’s t test (*p<0.05, **p<0.01).   

 

It appears evident that it is possible to identify two best binders for ASGPR-mediated uptake: 

2Gal-S 3/10 and 3Gal-S 3/10/17. Both peptides present the galactose moieties at ≈ 12 Å from 

each other and contain the 18 Å (S) spacer. Slightly higher cell uptake compared to the 

respective glucose-conjugated controls was also detected for peptides 1Gal-0 3, 2Gal-0 3/10 

and 3Gal-0 3/10/17. In all these cases, the sugars are coupled directly to the peptide backbone 

and both 2Gal-0 3/10 and 3Gal-0 3/10/17 glycopeptides present the galactose moieties at ≈ 12 

Å from each other, as in the case of the best binders. By contrast, the peptides with galactose 

moieties coupled to the amino acids on positions 3/13 and 3/13/24, with or without spacer, 

exhibit uptake similar to the respective glucose-conjugate controls, and thus do not 

specifically bind to ASGPR on HepG2 cells. Furthermore, all galactose-functionalized 

peptides carrying the 30 Å (L) spacer exhibit the lowest cellular uptake. Negligible cell uptake 

was also observed for the monovalent galactose-conjugates. 

Analyzing these results in light of the ligand-based ASGPR model published by Lee, a few 

additional observations can be made:  

1. The two best binders are very similar, the only difference lying in the number of 

presented galactose moieties. Nevertheless, the addition of a third ligand does not improve 

uptake by the hepatocytes. An explanation to this behavior could be that, due to their intrinsic 
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Despite presenting three galactose moieties, only two of the ligands are optimally presented 

for interaction with the ASGPR. The shortest side of the triangular base can potentially be 

reached by both galactose at positions 3/10 and at positions 10/17 (two images on the left 

within figure 31). Due to the flexibility of the spacer, the binding pockets along the second 

shortest side of the triangular bases may also be reached by the sugars at positions 3/10, but 

likely not by those on positions 10/17 (middle image in Figure 31). Moreover, it is important 

to note that the galactose moieties at positions 3 and 17 are likely able to reach the binding 

pockets located along the longest side of the triangular base. 

Despite being able to only interact with two of the here depicted binding pockets, the peptides 

2Gal-S 3/10 and 2Gal-S 3/10/17 offer three possible combinations that could be used for 

recognition by ASGPR. 

2. The glycopeptide bearing two ligands at positions 3/24, ≈ 31.5 Å from each other, 

presents them too far apart to favor interaction with ASGPR, irrespective of the presence or 

length of the spacer. A better fit can be visualized only with the longest side of the triangular 

base according to which the carbohydrate-binding domains are distributed. Furthermore, 

ligands presented too far apart can promote cross-interaction with more than one receptor 

simultaneously, and this might facilitate dissociation, because the rebinding phenomenon that 

stimulate ligand uptake would be less likely to occur.  

3. The glycopeptide 3Gal-S 3/13/24 displays galactose moieties at ≈ 19 Å and ≈ 16 Å 

from each other, respectively. The sugars on positions 3 and 13 are probably able to interact 

with the second shortest side of the triangle, while galactose moieties on positions 13 and 24 

could better fit the binding pocket on the shortest side. If this were true, the same preferential 

binding by ASGPR as for peptides 2Gal-0 3/10 and 3Gal-0 3/10/17 would be expected. Since 

this is not the case, it must be assumed that the role played by the receptor surface density and 

clustering and the consequent likelihood of cross-linkage offered by the carbohydrates on 

positions 3 and 24 have a significant impact on the dissociation constant, as for the peptide 

2Gal-S 3/24.   

4. No peptides presenting the ligand with the L spacer (30 Å) show preferential uptake 

when incubated with HepG2. This is likely due to the negative entropic contribution arising 

from the long, flexible spacer, which may disfavor ligand binding. 173F

174  
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The uptake of the glycopeptides 2Gal-S 3/10 and 3Gal-S 3/10/17 undergoes a reduction of 

almost 70% when HepG2 cells are pre-treated with GalNAc-BSA. Inhibition relative to the 

control peptides 2Glc-0 3/10 and 3Glc-0 3/10/17 under the same conditions is instead 

marginal (≈ 15% and 28%, respectively). These results strongly suggest that the uptake of the 

two glycopeptides 2Gal-S 3/10 and 3Gal-S 3/10/17 is ASGPR-mediated. 

If it could be argued that the presence of the carrier molecule BSA in this assay might 

influence the recognition of the binding partners by the ASGPR, the confirmation of the result 

comes from the inhibition assays performed with cytochalasin D. Also in this case pre-

incubation with the inhibitor leads to a greater decreased uptake of the Gal-functionalized 

peptides compared to their Glc-functionalized counterparts. 

 

4.7 ANALYSIS OF THE INTERNALIZATION OF SELECTED GLYCOPEPTIDES 

WITHIN HepG2 CELLS  

Flow cytometry enables quantitative determination of the interaction between the 

glycopeptide library and the hepatocytes. This measurement is relative to the cells that show 

fluorescence due to binding to the library members, but does not distinguish between peptides 

bound to the cell membrane and peptides that have actually been internalized within the cell. 

If the binding is ASGPR-mediated and the receptor does not undergo modifications that could 

interfere with its activity, the ASGPR should be able to internalize the bound glycopeptides 

by endocytosis and the fluorescently labelled peptides should be visible inside the cell. 

Therefore, to visualize and confirm the results obtained via flow cytometry experiments, 

HepG2 cells were incubated with the two best coiled-coil binders (2Gal-S 3/10 and 3Gal-S 

3/10/17), with their respective controls (2Glc-0 3/10 and 3Glc-0 3/10/17) and with the 

glycopeptides showing lowest binding affinity (2Gal-L 3/10 and 3Gal-L 3/10/17). The cells 

were then observed under the fluorescence microscope (FL), to validate the presence of Cy5-

labelled peptides inside cells. Nuclei and cell membrane were stained with dyes with emission 

properties different from Cy5 to facilitate recognition of subcellular components. In 

particular, red fluorescence associated with Cy5 represents peptide distribution, blue 

fluorescence (DAPI) associates with HepG2 nuclei and green fluorescence indicates emission 

from the Alexa Fluor 555-conjugated secondary antibody (Ab) against an anti-ATPase 

primary Ab, present in the cell membrane and cytoplasm. In the figures below, the three 

fluorescence signals where examined individually (first three panels) and merged (fourth 

panel). The FL images were acquired at different peptide concentrations and after different 
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The Cy5-labeled glycopeptides 2Gal-S 3/10 and 3Gal-S 3/10/17 (panels A in figures 34-37) 

are clearly located inside the hepatocytes. At both peptide concentrations and incubation time 

of 30 minutes and 2 hours, the distribution of red fluorescence, which appears as small dots, 

suggests that the peptides are likely found within endocytosis vesicles. Moreover, the vesicles 

appear to be spread throughout the cytosol, sparing the nuclei, as expected for endocytic 

uptake.  

Qualitatively, it appears that under the selected conditions endocytosis of the peptides 2Gal-S 

3/10 and 3Gal-S 3/10/17 is more efficient than the respective Glc-controls 2Glc-0 3/10 and 

3Glc-0 3/10/17 (panel B in Figures 34-37). Peptides presenting two galactose moieties 

attached to the long spacer, 2Gal-L 3/10 and 3Gal-L 3/10/17, show negligible internalization, 

at a level similar to the glucose controls, in accordance with the flow cytometry experiments 

(section 4.5). 

The FM observations confirm and reinforce the results obtained by means of flow cytometry: 

among the distances and spacers selected to build this glycopeptide library, members bearing 

galactose moieties at an average of ≈ 12 Å via a 18 Å spacers are the most suitable coiled-coil 

carriers for targeting the ASGPR. 

 

4.8 SUMMARY AND OUTLOOK I 

The work described here was published within the framework of this thesis as an original 

research article entitled “Tailored Presentation of Ligands on Coiled Coil-Based 

Glycopeptides for Asialoglycoprotein receptor Targeting”,177F

178 and it is a systematic study of 

the reliability of the coiled-coil motif in functioning as a scaffold for the well-defined 

presentation of ligands to biological macromolecules.  

For this purpose, a 26-amino acid dimeric coiled-coil peptide was chosen as carrier molecule 

for the display of galactose moieties to the mammalian asialoglycoprotein receptor (ASGPR). 

The ASGPR is a carbohydrate-binding protein almost exclusively found on the cell membrane 

of hepatocytes and it exclusively binds galactose- and N-acetylgalactosamine-terminating 

proteins for blood clearance purpose; it internalizes them via endocytosis and delivers them to 

the lysosome before being recycled to the cell surface. 

To target this receptor, we designed and synthesized a 20-member coiled-coil glycopeptide 

library in order to identify the ideal fit for the ASGPR. The members of the library differed in 

the number, position and distance of the galactose moieties from the peptide backbone. We 

conjugated one, two or three galactose moieties in three regimes: 1) direct coupling to the 
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peptide backbone; 2) coupling via an 18 Å linker; or 3) coupling via a 30 Å linker. 

Furthermore, the carbohydrate moieties were placed at shorter or longer intervals along the 

scaffold backbone. 

HepG2 hepatocytes were incubated with each library member, including glucose-conjugated 

negative controls. By means of flow cytometry, we identified the best binders that optimally 

present the galactose ligands, and they are in agreement with models from earlier literature 

reports regarding both sugar position and spacer length. 

To confirm that the binding was indeed ASGPR-mediated, we inhibited the endocytic 

pathway by means of cytochalasin D, a microtubule polymerization inhibitor, and with 

GalNAc-BSA, a known specific ASGPR binder. These inhibition studies showed that the 

uptake of the best glycopeptide binders by HepG2 cells was inhibited to a much greater extent 

than the binding of the glucose-conjugated controls. This demonstrated that the uptake of 

these glycopeptides by hepatocytes is indeed ASGPR-mediated. 

To determine whether uptake also led to internalization of the ASGPR binding partners or if 

instead binding to the cell membrane was unspecific, we observed the HepG2 cells under the 

fluorescence microscope after incubation with our glycopeptides. These fluorescence 

microscopy studies showed that the peptides are clearly present inside the cells, and therefore 

do become internalized via endocytosis.  

Within this study it was demonstrate that the coiled-coil motif is an excellent scaffold for the 

tailored presentation of ligands, particularly when the ligands must be displayed in an optimal 

spatial arrangement in order to interact selectively and with high affinity with the target. This 

conclusion suggests that the applicability of the coiled-coil scaffold can be expanded to the 

targeting of numerous receptors for various applications: 

1. Drug delivery  

To deliver drugs and biologically-active molecules selectively and precisely to a certain cell 

type is an urgent need in clinical therapeutics, since in many cases the avoidance of 

nonspecific interactions is crucial to preserve patient health. For example, this type of coiled-

coil scaffold could be designed to present ligands for receptors that are exclusively present or 

overexpressed on cancer cells. A pro-apoptotic molecule could be attached to the scaffold at 

an appropriate site and, following uptake by a specific receptor, the carrier peptide and the 

drug would be internalized, leading to cell death. 

2. siRNA delivery 
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Gene expression can be modulated by RNA-interference techniques, in which a short 

interfering RNA (siRNA) is delivered into the cells. The siRNA sequence is complementary 

to the mRNA of the target gene and binding leads to its degradation. When gene therapy is 

required, it is essential to consider the problems posed by the delivery of nucleic acid into the 

cells, since their negatively-charged surface does not allow them to cross the cell membrane. 

A coiled-coil scaffold could be functionalized with a receptor-interacting ligand and with a 

siRNA of interest to deliver the cargo inside the cell by facile interaction with specific 

membrane receptors. 

 

3. Medical imaging 

Medical imaging refers to the group of techniques that aim to provide visual representation of 

the interior of the patient´s body for clinical analysis and medical intervention. These methods 

generally refer to magnetic resonance, nuclear imaging, ultrasounds and optical imaging. The 

latter implies the use of a fluorophore. As the results reported within this thesis demonstrate, 

the coiled-coil motif optimally bears both fluorophore and a selected ligand for specific 

cell/tissue/organ interaction. The use of coiled-coil based peptides in medical imaging could 

have a great impact on in vivo diagnostics at the nanoscale, and for the efficient diagnosis and 

targeting of molecular markers of disease.  

 

4.9 EXPERIMENTAL PROCEDURES I 

 

Synthesis and purification of Fmoc-Ser-(O-beta-D-glucose-pentaacetate)-OH 

The synthesis of Fmoc-Ser-(O-β-D-glucose-pentaacetate)-OH was carried out by dissolving 

β-D-glucose-pentaacetate (4 mmol) (Sigma, 285943) and vacuum-dried Fmoc-Ser-OH (1.2 

eq.) (Iris Biotech, FAA1578 ) in dry acetonitrile (20 mL). The solution was placed on ice and 

BF3-Et2O (1 eq.) was added. The mixture was then left to slowly warm up to room 

temperature. An additional equivalent of BF3- Et2O was added after both 6 and 15 hours of 

stirring. After 20 hours, the reaction was shown by TLC to be complete and the mixture was 

diluted with DCM (30 mL) and sequentially washed with a 1 M HCl (3 x 30 mL) and H2O (2 

x 30 mL). The organic phase was dried with MgSO4 and the solvents were removed under 

reduced pressure.  The crude product was purified by RP-HPLC using a gradient of 40%-

100% MeOH in H2O to obtain 2.5 mmol (62.5 % yield) Fmoc-Ser-(O-beta-D-glucose-

pentaacetate)-OH. 
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mmol/g amino acid loading, was purchased from Novabiochem. For the amino acids that did 

not carry any modification, the synthesis was carried out with 2-hour double couplings, using 

a SyroXP-I peptide synthesizer (Multi-SynTech GmbH), with a 5-fold excess of amino acid 

(relative to resin loading), TBTU/HOBt (5 eq.) and DIPEA (5 eq.). The addition of the Cy5-

like dye at the N-terminus (DM-IDCC COOH, mivenion, 602200), containing a carboxylic 

acid for coupling, was achieved by repeating the reaction three times, using 1.5, 0.75 and 0.75 

eq. of dye, respectively.  

The addition of the galactose moieties and the spacers was performed using different 

strategies, according to the length of the spacer. When no spacer was required, Fmoc-Ser-

Gal/Glc-pentaacetate was added by manual double coupling, with a three-fold excess of 

glycosylated amino acid, HATU (2.9 eq.) and DIPEA (6 eq.). For the peptides carrying the 18 

Å and the 30 Å spacers, Mtt-protected lysine was incorporated at the positions of the 

sequence to which galactose would be linked (3, 10, 13, 17, 24). After coupling Cy5 as above, 

selective deprotection of the Mtt-protected lysine residues was performed.178F

179 The free lysine 

side chain was used for the coupling of the spacers. In the case of the 18 Å spacer, glutaric 

anhydride (five-fold excess) and a catalytic amount of DIPEA were used to switch the 

functionality from the amine of the lysine side chain to a carboxylic acid. After three hours, 

the acid was activated on resin with 1.2 eq. HATU and 2.4 eq. DIPEA for 5 minutes, and 1-

amino-1-deoxy-β-D-galactose (2 eq.) (Sigma, A2267) was added. In the case of the 30 Å 

spacer, Fmoc-O2Oc-OH (amino-PEG-acid, Iris Biotech, 08575) was coupled to the 

deprotected lysine side chains using a four-fold excess of amino-PEG-acid, HATU (3.9 eq.) 

and DIPEA (8 eq.). The coupling was repeated twice and left to incubate for 6 hours. After 

removal of Fmoc from the amino-PEG-acid, glutaric anhydride was added and activated as 

previously described. 2(4-Aminobutoxy)-β-D-galactose was finally coupled on solid phase, 

repeating the reaction three times and using, respectively, 1, 0.75 and 0.75 eq., of building 

block, HATU and DIPEA. 

Resin cleavage was performed using a solution of 95% TFA, 3% water and 2% TIS (5 mL) 

with shaking for 3 hours. The resin was washed with TFA and DCM and solvents were 

removed by evaporation. The peptides were precipitated in cold diethyl ether and collected by 

centrifugation. 

Only for the peptides containing Fmoc-Ser-Gal/Glc-pentaacetate was a deacetylation reaction 

performed after cleavage. The peptides were dissolved in ACN and the minimum volume of 

MeOH required for complete dissolution. 10% vol. hydrazine (80% solution in water) was 

added and the mixture was stirred for 45 minutes. To quench, the flask was placed on ice and 
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a five-fold excess of AcOH was added and stirred for 10 minutes. The volatiles were removed 

under reduced pressure and the peptides purified via RP-HPLC. 

 

Glycopeptide library purification 

Peptide purification was performed on a Knauer RP-HPLC. All runs were performed with a 

flow rate of 20.0 mL/min using a gradient of 15%-60% ACN (0.1% TFA) in Millipore H2O 

(0.1% TFA) over 30 minutes.  

The collected fractions were analyzed by analytical RP-HPLC (LaChrom-ELITE (VWR)). All 

runs were performed with a flow rate of 1.0 mL/min using a gradient of 5%-70% ACN (0.1% 

TFA) in Millipore H2O (0.1% TFA) over 20 minutes. Data analysis was performed with EZ 

Chrom ELITE software.  

 

Glycopeptide library concentration determination 

Peptide concentrations were determined using the extinction coefficient of the Cy5 dye in 

MeOH (150000 M−1 cm−1, data obtained from mivenion). 50 µL of the peptides previously 

dissolved in PBS buffer, pH 7.4, were added to 950 µL MeOH and the absorbance at 650 nm 

was recorded by means of a Cary 50 Bio UV-spectrophotometer. The concentration of the 

stock solution (M) was calculated as follows: (Abs650 nm * dilution factor)/150000. 

 

CD spectroscopy 

All CD spectra were recorded on a JASCO-8-10 spectropolarimeter at 20 °C. The spectra 

were acquired in 0.1 mm path length quartz cuvettes. During all measurements a constant N2 

flush of 3.0 l/min was provided. Each obtained CD data set is the average of three 

measurements.  

 

Flow cytometry-based cell-uptake studies 

HepG2 cells (ATCC® HB-8065), a human hepatocellular carcinoma-derived cell expressing 

ASGPR, were used for cell uptake studies with the carbohydrate-functionalized coiled-coil 

peptides. The cells (8 x 104) were seeded in 48-well plates using complete DMEM medium 

(supplemented with 10 % fetal calf serum, FSC, 100 U/mL penicillin, 100 µg/mL 
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streptomycin and 2 mM ʟ-glutamine) and cultivated overnight. Cells were washed once with 

PBS and 100 µL fresh FCS-free DMEM containing the carbohydrate-functionalized coiled-

coil peptides (10 nM) was added. After two hours of incubation at 37°C, the cells were 

washed three times with ice-cold PBS supplemented with 0.5% BSA.  Subsequently, the 

cellular uptake of the fluorescently labeled coiled-coil peptides was measured by flow 

cytometry using a FACSCanto II flow cytometer (BD Biosciences, San Jose, CA, USA). Data 

were analyzed with the FlowJo analysis software (Tree Star Inc., Ashland, OR, USA).  

For the inhibition of receptor-mediated endocytosis, cells were preincubated with cytochalasin 

D (10 µM; Santa Cruz, Dallas, TX, USA) for one hour before addition of the carbohydrate-

functionalized coiled-coil peptides.   

 

Statistical analysis 

Statistical analyses were performed with the unpaired Student’s t test. Data were analyzed 

using Prism software (GraphPad Software, La Jolla, CA, USA). A p-value of p < 0.05 was 

considered statistically significant. 

 

Confocal fluorescence microscopy 

HepG2 cells were left 24h in DMEM (PAN, P04-03500, supplemented with 2 mM L-

glutamine, 1 mM sodium pyruvate, 10% FCS  and 100 U/mL penicillin/streptomycin), and 

seeded into 24-well plates (1x 105 cells/well) with 12 mm-diameter round cover slides 

(Menzel GmbH).  

Peptide stock solutions were prepared in sterile PBS and diluted in DMEM to reach 

concentrations of 0.1 µM, 0.2 µM and 0.4 µM. Peptide solutions (100 µL) were added to the 

HepG2 cells, left 10 minutes on ice to block unspecific binding and incubated for 30 minutes 

or 2 hours at 37 °C. The cells were washed one time with PBS and 2 times with BPBS, (PBS 

with 0.5% BSA) and fixation was carried out with 4% paraformalin, at room temperature. 

From this point, the cells were kept protected from light throughout incubation. After washing 

(3x BPBS), 200 µL of a solution of 100 mM glycine buffer in PBS (pH 7.4) was added for 10 

minutes and the cells were washed again. For membrane staining, PMCA ATPase antibody 

(Thermo Scientific, 5F10) was diluted 1:400 in PBS, and the solution was added to the wells 

(200 µL/well) for 1 hour at room temperature. After washing, 200 µL of Alexa Fluor 555 goat 

anti-mouse IgG (life technologies, A21422) were added to the wells (dilution 1:200) for 1 

hour at room temperature. Subsequently, the nuclei were stained with DAPI (Invitrogen, 
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21490, final concentration 500 nm, 200 µL/well) for 5 minutes at room temperature, and the 

cells were washed again. 

For observation under the microscope, each 12 mm-diameter round cover slide on which the 

cells were fixed was placed onto a microscope slide. Mounting medium (thiodiethanol buffer, 

20 µL) was added to each slide and the coverslips were sealed with nail polish. Fluorescent 

images were acquired with the instrument LSM 700 from Carl Zeiss, using three different 

lasers (405 nm, 555nm, 639 nm) for excitation and objective Plan Apochromat 63X/1.4 oil 

DIC. The images were processed with the software ZEN 2009 by Zeiss. 
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The stimulation of the immune response towards a specific target is the central concept of 

vaccination. One of the obstacles during vaccine production is determining the optimal 

concentration: this must be high enough to activate the immune system but low enough to 

avoid lateral effects. For this reason, various synthetic and natural scaffolds have been used to 

optimize the display of antigens in a multivalent fashion. In this way, the global concentration 

of the ligand remains low while the local concentration increases.  

So far, self-assembling peptides have not been thoroughly investigated for this purpose. In 

this study, a de novo-designed fiber-forming peptide increases the local concentration of two 

antigens, simultaneously. The goal of this research is to evaluate whether this peptide could 

be a robust scaffold for the presentation of multiple ligands, mainly for diagnostic purposes 

and vaccination. In this work, the scaffold has been modified with a peptide epitope and a 

carbohydrate antigen and its ability to retain the parental supramolecular structure has been 

tested. The scaffold has been further evaluated for its capability to multivalently present both 

ligands to specific antibodies, thus enhancing recognition.  

 

5.1 AN OVERVIEW OF CARBOHYDRATE-BASED VACCINES  

The activation of a protective immune response against any infectious agent depends initially 

on the identification, by the immune system, of an antigen as foreign. Immune-stimulatory 

compounds, or antigens, provoke one or more different types of reactions from the host in an 

effort to remove or disable the invading organism. The antigen may stimulate T-lymphocytes 

(T-cells), which provide cell-mediated immunity, or B-lymphocytes (B-cells), that initiate the 

synthesis and secretion of soluble antibodies into the bloodstream. The development of the 

body's protective immune response depends upon achieving a threshold level of stimulation of 

one or both of these systems.  

Immunization by vaccination typically offers long-term protection since it activates both B-

cells and T-cells, generating antibodies specific for a certain pathogen and allowing the 

development of immunological memory. Immune-response activation is obtained by 

employing an attenuated form of the pathogen or isolated polysaccharides or glycoproteins 

from the parasite cell wall or capsule. The resulting antibody production falls off after some 

days, but future exposure to the live, virulent organism will be promptly responded to with an 

even greater abundance of antibodies.179F

180 The main feature of carbohydrate-based vaccines is 
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the employment of polysaccharides or oligosaccharides as antigens.180F

181 The advantages of 

using glycans as antigens are numerous: 

 Fine-tuned synthetic techniques, such as one-pot synthesis181F

182 and solid-phase 

synthesis,182F

183 allow for the synthesis of large quantities of pure sugars at much lower 

costs and higher yields than would be gained by the isolation of the same compounds 

from natural sources.  

 Carbohydrates are highly antigenic, so they easily bind to lymphocytes and their 

receptors.183F

184, 
184F

185 

 In contrast to polypeptides, which are fully encoded by the corresponding gene, 

carbohydrate expression is not under direct genetic control but results from a dynamic 

interaction between the environment and a network of hundreds of genes;185F

186 thus, the 

evolution of resistance may be expected to occur less quickly than is the case for 

polypeptide epitopes. 

The main drawback in the employment of carbohydrates in vaccination is their poor 

immunogenicity, meaning that they are T-cell-independent antigens, and immunization solely 

with carbohydrates would not lead to immunological memory. Proteins are significantly more 

immunogenic than polysaccharides and, since carbohydrates are non-immunogenic haptens, 

they require conjugation with an epitope such as a protein before they can evoke a cell-

mediated immunity. For this reason, when a carbohydrate-based vaccine is produced, T-cell 

epitopes are generally also employed.186F

187 In fact, although T-cells themselves do not secrete 

antibodies, they are frequently needed to assist in the stimulation of B-cells. In the production 

of a carbohydrate-based vaccine, the carbohydrate antigens are, therefore, generally 

conjugated to T-cell epitopes. The T-cell epitopes can be used in combination with an 

unrelated B-cell determinant to obtain significant quantities of antibody production against the 

B-cell antigen. The T-cell determinant is ingested and processed by the antigen presenting 

cells (APC), which will then present the epitope on their surface, in complex with the self 

molecules of the major histocompatibility complex (MHC). Helper T-cells can interact with 

this complex and activate specific B-cells, which will differentiate into plasma cells and 

secrete antibodies. Beside the immunological relevance of T-cell epitopes, their use as 

peptides, as opposed to larger proteins containing epitopes, may provide economic 

advantages, due to facile synthesis, as well as improved safety. To obtain higher efficacy and 

to increase the local concentration of the antigen, the antigen-epitope complex must be also 

conjugated to a carrier molecule. Therefore, there are in total four main elements to consider 
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in the synthesis of a carbohydrate-based vaccine: the selected carbohydrate antigen, the T-cell 

epitope, the carrier molecule and the conjugation method. These aspects are described in more 

detail in the following sections. 

 

5.1.1 The carbohydrate antigen 

The selection of the carbohydrate antigen is dictated by the particular infectious agent against 

which the immune response is to be stimulated. As mentioned in section 1.3.3, carbohydrate-

based vaccines have been synthesized and/or commercialized for a large number of infectious 

pathogens. For example, vaccines against bacterial pathogens such as Haemophilus influenzae 

type b (Quimi-Hib), 187F

188 Streptococcus pneumoniae (Prevnar),188F

189 and Salmonella typhi 

(VICPS) 189F

190 are commercially available.190F

191 Also virus capsids are a subject of study in very 

recent vaccine development; among these, influenza virus A,191F

192 picornavirus192F

193 and human 

papillomavirus 193F

194 vaccines are on the market. A number of studies also address the treatment 

and prevention of cancer, and mainly involve the MUC1194F

195 and Globo 195F

196 antigens. Ultimately, 

a series of carbohydrate-based vaccines are currently under investigation for protozoan 

parasites, including malaria196F

197 and leishmaniasis.197F

198 

In the context of the study presented in this thesis, a diagnostically-relevant 

lipophosphoglycan (LPG) found on pathogenic Leishmania parasites was selected as the 

carbohydrate antigen. LPGs are major leishmanial cell surface glycoconjugates and play an 

important role in disease physiopathology. In particular, the tetrasaccharide cap Galp(1-4)-β-

[Manp-(1-2)-α-Manp-(1-2)-α]-Manp198F

199 plays a key role in the infection process. Recent 

studies conducted by our collaboration partners at the Max Planck Institute (MPI) of Colloids 

and Interfaces, led by Prof. Seeberger, have demonstrated that the most immunologically 

relevant carbohydrate antigen among Leishmania species is in fact the disaccharide β-Gal-

(1→4)-α-Man, which constitutes the backbone repeat unit of most of the LPGs.199F

200, 
200F

201 Due to 

its desirable antigenic properties and synthetic accessibility, especially compared to the 

complex tetrasaccharide cap, this disaccharide, here referred to as Man-Gal, was chosen to be 

the carbohydrate-antigen subject of this study. Figure 38 shows the structure and saccharide 

symbols relative to both of these glycans. 
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5.1.3 The carrier molecule 

The use of a carrier molecule for delivering both antigenic carbohydrate and T-cell epitope is 

an effective method for improving vaccine efficacy. The high surface-area-to-volume ratio 

and chemical diversity of nanoscale structures renders them of great interest to the biomedical 

and pharmaceutical fields. Inspired by molecular recognition processes in nature, a host of 

synthetic nanoscaffolds, including branched polymers and dendrimers, PNA, LNA and self-

assembling peptides29, 31, 
210F

211, 
211F

212 have been developed for numerous biomedical applications. 

However, the most widely used carriers for vaccines production are proteins. The primary 

carrier proteins currently available are the tetanus and diphtheria toxoids, and the derivative 

CRM197 of the latter. They are used precisely because they contain in their sequence epitopes 

recognized by the immune system, so that conjugation to the epitope is not necessary. 

However, numerous concerns exist for the use of these proteins in vaccination. For example, 

the use of a limited number of suitable carrier proteins means that multiple vaccines will be 

built upon them. In the case of multiple vaccinations with material containing the same carrier 

protein, the probability of undesirable reactions is increased, since the presence of already 

existing antibodies could induce adverse systemic immunologic sensitivity reactions. 

Moreover, as described by Schutze, phenomena of epitopic suppression can occur.212F

213 This 

event is observed when immunity to a protein contained in the conjugate already present in 

the vaccine interferes with the generation of a response to the covalently coupled antigen. 

Finally, there are obvious increased costs in the production and purification of a full-length 

protein. 

Clearly, there is an urgent need for alternative molecule as vaccine carriers that would 

overcome the immunological consequences of the repetitive use of the same scaffold protein 

and yet that would not interfere with the immunogenicity. For this reason, in this study we 

propose a self-assembling, fiber-forming peptide as a scaffold, here named FF03, for the 

presentation of a T-cell epitope and a carbohydrate antigen. This type of scaffold would offer 

synthetic simplicity, regular ligand distribution and, most importantly, high local antigen and 

epitope density. 

It is now commonly accepted that high epitope density contributes to enhancing 

immunogenicity: T-cell epitopes with a higher concentration of MHC binding motifs are more 

immunogenic, probably due to the increased potential for being effectively processed by 

antigen-presenting cells. If more than one binding motif is present, a range of different MHC 

molecules can be activated and, as a consequence, a higher number of T-cell helper clones can 
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be generated, leading to a synergistic effect. We believe that a self-assembling peptide 

scaffold such as FF03 would enable molecular recognition by a synergistic combination of 

several cooperative binding events. 

 

5.1.4 The conjugation method 

The coupling of polysaccharide antigens or glycoconjugates to a peptide or a protein requires 

chemical activation of one or both components. The activation site on the glycan varies 

according to its structure; the main reactive group in proteins and peptides is either the amine 

at the N-terminus or the ε-amine of a lysine residue (if present in the sequence). Random 

activation of the reaction partners would produce glycoconjugates with poorly defined 

structures. To gain control over the conjugation site, a linker arm between the carbohydrate 

and the protein/peptide must be introduced. Such spacers should be long enough to avoid 

steric clashes between the protein and the glycan but short enough to enable coupling; it 

should also contain a reactive functional group for facile and selective conjugation but should 

not interfere with the immunogenicity of the reaction partner. In the case of small 

oligosaccharides, like the one studied here, Leishmania LPG-derivative Man-Gal 

disaccharide, coupling to the protein carrier or to peptide epitopes can proceed via a specific 

synthetic route to yield well-defined conjugates in a reproducible way.213F

214
214F

-
215F

216 

For this study, we used the same linker arm used by our collaborator at the MPI, presented in 

Figure 38B, a 5-hydrocarbon chain terminating with an amino group. This amine was used for 

the coupling of Man-Gal to the peptide epitope Ep01. Furthermore, the glycoconjugate 

antigen-epitope was coupled to the self-assembling peptide scaffold FF03 by means of the 

side chain of a selected lysine residue. Both conjugations were performed on solid phase, and 

the details are described in sections 5.2 and 5.3. 

 
5.2 MULTIVALENT SCAFFOLD DESIGN 

As discussed in Chapter 1, multivalent interactions play an essential role in many biological 

processes. Multivalency represents one of nature´s most ingenious methods to conduct and 

control the high number of recognition events necessary for cell survival, since it leads to an 

additive or exponential increase in binding affinity. For example, certain immune system 

receptors have evolved to distinguish among binding partners based not only the composition 

of the ligand array216F

217 but also on its density.217F

218 Glycans and peptide epitopes are useful 
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representation of FF03; B: sticky end effect; C: electrostatic interaction contribution to fiber 

formation (boxes indicate dimers that share common hydrophobic interface); D: FF03 primary 

sequence and relative position within the heptad. Yellow: hydrophobic residues; red: 

positively charged residues; blue: negatively charged residues; grey: most solvent-exposed 

residues. Letters within circles give the single-letter code for amino acids (A) or indicate 

heptad repeat positions (B and C). 

Electrostatic interactions between different dimers (shown boxed in Figure 39) are likely the 

main factor supporting growth of the fibers perpendicular to the helix axis. In fact, the e and g 

positions stabilize the core coiled-coil motif and the oligomeric state, while the b and c 

positions likely play a role in bundle formation, enabling association between fibers. As 

described in section 1.2.2, the presence of leucine residues at positions a and d typically leads 

to the formation of a trimer. Nevertheless, the peptide described in section 4.2 was shown to 

adopt a dimeric oligomerization state despite bearing a leucine zipper motif. The peptide 

scaffold FF03 has been designed following the same rules with the exception of the 

alternating charges on b and c positions. In an effort to rationalize fiber formation of FF03, we 

suggest the tetrameric arrangement shown in Figure 39, panel c.  

In all heptads, the f position, the most solvent-exposed position, is occupied by lysine 

residues. This amino acid was chosen for its side chain functionality, i.e., the side chain of the 

lysine on position 17 of the sequence (in red in Figure 39D), was selected to bear the antigen 

ligands. 

 

 

5.3 GLYCOCONJUGATE SYNTHETIC STRATEGY 

In order to design a glycoconjugate that would theoretically enable optimal display of the 

ligands to the appropriate binding partners, it must be taken into account that the immune 

response to carbohydrate-protein/peptide conjugates depends on: 1. the size of the 

carbohydrate; 2. the nature of the carrier molecule; 3. the nature and number of bonds 

between antigen moieties and the carrier; 4. the nature of the linker; 5. and the carbohydrate-

to-carrier ratio.221F

222 We decided to employ a single, well-defined conjugation site on our 

peptide scaffold, the side chain of lysine 17, which occupies an f position in the heptad repeat. 

The f position of the heptad repeat is solvent-exposed, and we expected that ligands presented 

at this position would be readily available for antibody binding. Moreover, as discussed in 

section 5.1.3, the antigenic activity of the glycoconjugates generally depends on the density of 
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In the case of the components of the library containing the peptide scaffold FF03, the N-

terminus of FF03 was blocked with aminobenzoic acid (Abz). After selective deprotection of 

the lysine at position 17, bearing the 4-Methyltrityl  (Mtt) protecting group, removable under 

mild acidic conditions, the free amino group of the side chain was used to build up the peptide 

ligand Ep01. After switching functionality of the Ep01 N-terminus by means of glutaric 

anhydride, the resulting free carboxylic acid was activated while still “on resin” and the sugar 

moiety coupled via a short amino-linker. This strategy allows for the synthesis of 

glycopeptide conjugates entirely on solid phase. A scheme of the solid-phase synthesis 

strategy adopted to build up the glycopeptide library is given in Figure 42. 

 

Figure 42. Scheme of the synthetic strategy adopted for the glycopeptide FF03-Ep01-Man. 

 

5.4 Evaluation of peptide library structural features 

The secondary and quaternary structure of the peptide scaffold plays a fundamental role in the 

realization of the desired multivalent effect. FF03 was evaluated for its suitability to serve as a 

stable scaffold for the multivalent presentation of the chosen glycopeptide ligand by self-

assembling into a defined three-dimensional architecture. Also the structure of Ep01 was 

explored, since the epitope had not yet been structurally characterized outside the context of 

the diphtheria toxin. 
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more efficient antibody binding (no binding towards FF03 alone was detected). Since the 

same amount of epitope was incubated with the 96-well plate in all cases, the improved 

antibody avidity is probably due to a more suitable organization of the epitope when 

presented on the fiber-forming scaffold. At lower concentrations, the difference in antibody 

binding between FF03-Ep01 and CRM197 is not statistically significant. Yet, the increased 

antibody binding of FF03-Ep01 compared to Ep01 retains its statistical significance at all 

tested concentrations. 

The results do not only demonstrate that the multivalent presentation of Ep01 on FF03 is more 

efficient compared to the isolated epitope, but that, at higher concentrations, this coiled-coil 

scaffold is a better carrier protein than CRM197 itself, since it increases the immunogenicity 

of the presented epitope. We believe that the concentration-dependency observed for the FF03 

conjugates is strictly correlated with the fiber formation process, which is a concentration- 

and time-dependent phenomenon. 

Antigen platforms of the kind offered by peptide FF03 could find application not only in 

vaccine preparations, but they could also be used to enhance the sensitivity of diagnostic 

assays, regardless of whether high local concentration or the regularity of the spatial 

distribution of the ligand is the key factor in increased antibody recognition. 

 

5.5.2 Interaction of the mannose ligand with lectins 

From the perspective of the host organism, unique glycan motifs serve as biomarkers for 

diseased cells and characterize invading pathogens. Lectins are naturally-occurring 

carbohydrate-binding proteins that are often employed to probe cell surface changes in 

vitro.229F

230 Due to the relatively weak individual intermolecular interactions that are formed 

between lectins and carbohydrates, these proteins have evolved to detect glycans that are 

organized in a multivalent fashion, and to discriminate among ligands based on glycan 

density.230F

231 For this reason, lectins are ideal binding partners to be employed to examine the 

effect of the multivalent scaffold FF03 on carbohydrate presentation. In order to verify the 

ability of the scaffold FF03 to efficiently present a carbohydrate ligand to selected lectins, we 

have employed the glycoconjugate FF03-Ep01-Man and the mannose-binding lectin ConA. 

Furthermore, we have tested the construct in a whole-cell assay by employing an E. coli strain 

expressing a pattern of surface Man-binding lectins. The results are reported below.  
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The microdot data with respect to ConA confirms the immobilization efficiency and the assay 

success: we observed significantly higher mannose recognition by ConA when the ligand is 

presented on the multivalent scaffold compared to its monovalent forms.  

When the Leishmania-derived disaccharide is coupled to the Ep01 monomer, antibody 

recognition is comparable to that of the unconjugated antigen for both humans and dogs. This 

means that the conjugation of the antigen on the monovalent peptide Ep01 does not improve 

the recognition of the free antigen. Moreover, the epitope Ep01, which is by itself antigenic, 

does not alter the specificity of the anti-Leishmania antibodies.  

The presentation of the Leishmania antigen Man-Gal on the multivalent peptide scaffold FF03 

significantly enhances antibody binding by two-fold, in the case of canine sera, and by three-

fold, for human sera compared to the  monovalent display regime. The increased antibody 

binding observed with multivalent presentation of the carbohydrate antigen might be due to its 

high local concentration or/and to the regularity of its distribution on the scaffold.   

These results demonstrate the potential of this coiled-coil-based self-assembling peptide as a 

scaffold for the presentation of peptide and carbohydrate antigens. The high local density of 

the presented antigens on the multivalent platform could be used to improve the sensitivity of 

numerous bioassays. 

 

5.6 SUMMARY AND OUTLOOK II 

The work described here was published within the framework of this thesis as an original 

research article entitled “A Self-Assembling Peptide Scaffold for the Multivalent Presentation 

of Antigens”.231F

232 The goal of this work was to characterize a peptide scaffold that would mimic 

the multivalent organization of native antigens and thereby enhancing antibody recognition of 

presented ligands. We have shown that a novel coiled coil-based, fiber-forming peptide can 

indeed act as a multivalent scaffold for the presentation of a peptide epitope and a 

carbohydrate antigen to their respective binding partners. 

We have designed a fiber-forming peptide to increase local density of a highly immunogenic 

T-cell epitope (Ep01) from the diphtheria toxin (DT) and a carbohydrate antigen derived from 

the repeated lipophosphoglycan motif of the Leishmania parasite (Man-Gal). The presence of 

both T-cell and B-cell activators is the basic principle applied during the formulation of 

carbohydrate-based vaccines. As proof of concept, we generated a glycoconjugate presenting 

Ep01 and the monosaccharide mannose (Man). The self-assembly of the peptide scaffold here 
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called FF03 into long, non-branching fibers is achieved by placing hydrophobic amino acids 

at the sequence termini, to achieve the “sticky end” effect, and by alternating positive and 

negative charges on b and c positions of the coiled-coil heptad repeat, to induce interfibril 

interactions. Both Ep01 and Man/Man-Gal ligands were conjugated on the FF03 scaffold 

directly on solid phase. Once cleaved from the resin, the peptide self-assembled and the 

ligands were displayed at the most solvent-exposed positions. We verified the formation of 

the fibers by means of transmission electron microscopy (TEM), and we showed that FF03 

retained its structural properties when loaded with peptide and carbohydrate ligands prior to 

assembly. 

The efficient display of the ligands Ep01, Man and Man-Gal by the peptide FF03 was verified 

by means of ELISA, using antibodies produced by mice immunized against DT. The anti-DT 

antibodies recognized the specific peptide epitope more effectively when presented as a 

ligand on the self-assembled scaffold than in its unconjugated form. Moreover, at the 

micromolar range, FF03 presented the epitope Ep01 to anti-DT antibodies even more 

efficiently than the toxoid CRM197. 

FF03 was investigated for its ability to present the carbohydrate ligand mannose to 

carbohydrate-binding proteins, both in solution, by employing the lectin concanavalin A, and 

as present on a bacterial cell surface, by means of a mannose-binding E. coli strain. In both 

cases, the mannose was optimally accessible to the lectins, which recognized it and bind it 

with high affinity.  

To evaluate the ability of FF03 to efficiently present the antigenic carbohydrate Man-Gal on 

its surface, polyclonal antibodies against the Leishmania parasite from canine and human 

sources were employed in a microdot assay. Also in this case, the leishmanial carbohydrate 

antigen presented as ligand on the fiber-forming peptide scaffold was better recognized by 

specific antibodies in its multivalent form, rather than unconjugated.  

Recent advances in immunology have demonstrated that simulating native antigen 

organization and recognition is an important design principle for nanomolecular structures for 

biomedical applications. Some potential applications of this multivalent scaffold are given 

below: 

1. Fully synthetic vaccines 

The system presented in this work contains all the components of a synthetic carbohydrate-

based vaccine. Fully synthetic vaccines are generally considered safer than vaccines produced 

by means of bacterial cell culture, they can be produced faster and at reduced costs. 
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Moreover, synthetic approaches allow for the production of a well-defined product that can be 

used not only for medicinal purposes but as tools to provide a better understanding of the 

molecular basis of immunity. 

The here-described FF03-Ep01-Man-Gal could be further optimized to be tested for its ability 

to stimulate an immune response and generate immunological memory in vivo. The formation 

of the fibers should ensure higher stability to proteolytic degradation in the host organism; 

however, cytotoxicity experiment must be first carried out in vitro. 

2. In vitro diagnostics  

Typically, the faster a disease is correctly diagnosed, the more successfully it can be treated. 

In fact, certain medical conditions can only be considered curable if the diagnosis is 

formulated at an early stage. In a pattern recognition method, the key to diagnostic success is 

the identification of markers associated with the disease. Unfortunately, the outcome is often 

compromised by the poor availability of the marker; thus, highly sensitive assays are needed.  

The FF03 scaffold offers an attractive platform for presenting antigens at high densities. As 

demonstrated by the ELISA and microdot assays carried out over the course of this doctoral 

thesis, the peptide scaffold FF03 increases antibody avidity towards a T-cell epitope from the 

diphtheria toxin and a B-cell determinant from the Leishmania parasite. Its employment in 

diagnostics could increase the sensitivity of the assays.  

3. Controlled release  

The delivery of biologically-relevant compounds either upon response to stimuli or in a 

controlled manner over time generates numerous advantages. The controlled release of oral 

dose formulations, for example, prolongs the action while keeping the drug level within a safe 

therapeutic range, reducing unwanted side effects.  

Due to the robustness of the scaffold presented in this thesis, it could be employed for the 

controlled release of therapeutics: for example, a drug could be conjugated to the scaffold via 

a short proteolytic amino acid sequence or via a pH-sensitive group. In the former case, the 

drug would be gradually released according to the availability of the scissile bond to the 

proteases; in the latter case, the drug would be released once it was incorporated into the 

lysosomes (pH 4.0) of the host cell. By adding to the scaffold a cell type-specific ligand (such 

as a binding partner for a receptor solely expressed on cancer cells), it would be possible to 

target a specific cellular subpopulation.  
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5.7 EXPERIMENTAL PROCEDURES II 

 

Peptide synthesis  

Resins for solid-phase peptide synthesis were purchased from Novabiochem®. Preloaded 

Fmoc-Leu-NovaSyn® TGA resin and preloaded Fmoc-Gly-NovaSyn® TGT resin, both with 

0.2 mmol/g amino acid loading, were used for the synthesis of FF03 and Ep01, respectively. 

The synthesis was performed with standard Fmoc/tBu chemistry, on a 0.05 mmol scale, using 

fluorenylmethyloxycarbonyl (Fmoc)-protected amino acids purchased from Orpegen. 

Removal of the Fmoc group at each step was achieved with 20% piperidine in DMF (2 x 10 

minutes and 2 x 5 minutes with 5 mL deprotection solution).  

The synthesis of Ep01 was performed manually with single 1-hour couplings, using an eight-

fold excess of amino acid, HOAt and DIC, relative to resin loading. Manual synthesis was 

carried out to avoid histidine racemization. 

The synthesis of FF03 and FF03-Ep01 was performed in two main steps: FF03 was 

synthesized with 2-hour double couplings using a SyroXP-I peptide synthesizer (Multi-

SynTech GmbH), with an eight-fold excess of amino acid, TBTU/HOBt as coupling agents 

and DIPEA, relative to resin loading. The lysine on position 17 was protected with N- 

methyltrityl (Mtt), an amine protective group removable under mild acidic conditions. After 

synthesizing the full-length FF03 sequence and blocking the N-terminus with Boc-Abz-OH, 

selective deprotection of K17 was performed (1% TFA in DCM). This free amine was used as 

a starting point for the orthogonal synthesis of Ep01. The synthesis of mannose derivative 5-

amino-pentanyl-α-D-mannopyranoside and of the 5-amino-pentanyl β-D-galactopyranosyl-

(12)-α-D-mannopyranoside, derived from the leishmanial lipophosphoglycan, was 

performed by our collaborators at the MPI as previously reported. The addition of the 

carbohydrate moieties to Ep01 and FF03-Ep01 was carried out by first switching the 

functionality on resin from –NH2 to –COOH with a five-fold excess of glutaric anhydride and 

a catalytic amount of DIPEA for 3 hours. The further activation of the free acid with 3 

equivalents of HATU and 6 equivalents of DIPEA for 5 minutes allowed coupling of the 

sugars “on resin”, using a three-fold excess of building block. Final cleavage from the resin 

was performed using a solution of 95% TFA, 3% water and 2% TIS (5 mL) with shaking for 3 

hours. The resin was washed with 1 mL TFA and 1 mL DCM and excess solvent was 

removed by evaporation. The peptides were precipitated in cold diethyl ether and collected by 

centrifugation. 
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Peptide purification 

The peptides were purified via analytical HPLC. This system was preferred over preparative 

HPLC because of the difficulty inherent in separating the main products from the side 

products (monoglycosylation did not lead to a significant difference in elution time). Thus, 

purification was performed on a LaChrom-ELITE-HPLC-System (VWR) consisting of two 

HPLC-pumps (L-2130) with a solvent degasser, an auto sampler (L-2200), a diode flow 

detector (L-2455) and a high-pressure gradient mixer. Data analysis was performed with EZ 

Chrom ELITE software. All runs were performed with a flow rate of 1.0 mL/min using 

acetonitrile (ACN, 0.1% TFA) and Millipore H2O (0.1% TFA).  

 

Peptide concentration determination 

Peptide concentration was determined by UV spectroscopy using the absorption maximum at 

280 nm in 6M guanidine hydrochloride, as previously reported.232F

233 Peptide FF03 concentration 

was determined by a standard curve of Abz absorbance at 320 nm. 

 

Peptide characterization 

Pure peptides were characterized via mass spectroscopy (MS), circular dichroism (CD) and 

transmission electron microscopy (TEM). 

The quality of the synthesized glycopeptides was determined using an ESI-TOF 6210 from 

Agilent (USA, CA-95051-7201, Santa Clara). All samples were dissolved in a mixture of 

water and ACN before injection and the data were collected on positive ion mode. 

For the CD experiments, peptides were dissolved in 100 mM phosphate buffer and the pH 

was adjusted to 7.4 with either NaOH or HCl. Spectra were recorded on a JASCO-8-10 

spectropolarimeter with a temperature controller set at 20 °C. The CD data were registered 

using 0.1 cm path length quartz cuvettes and normalized according to extinction coefficient, 

optical path length, peptide concentration and number of residues. During all measurements, a 

constant N2 flush of 3.0 L/min was provided.  

Samples for transmission electron microscopy were prepared by absorbing 5 µL aliquots of 

peptide solution onto glow-discharged carbon-coated collodium films on 400-mesh copper 

grids. The grids were blotted, stained with 1% phosphotungstic acid (PTA), and air dried. 

TEM micrographs were taken at a primary magnification of 58300 using a defocus of 0.8 µm.  
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ELISA 

1 µM stock solutions of Ep01 and FF03-Ep01 were prepared in PBS and incubated overnight 

to allow completion of self-assembly. Samples (50 µL) were immobilized on 96-well 

Nunclon flat-bottom transparent polystyrene plates at three different concentrations (1 µM, 

100 nM, 10 nM) in triplicate. As a positive control, the Diphtheria protein CRM197 (MBL, 

RK-01-515) was immobilized in triplicate at the same concentrations. After incubation, the 

supernatant was aspirated and 50 µL of blocking solution BPBS (1% BSA in PBS) was added 

to the wells and incubated for 1 hour at 37° C. The wells were then washed 3 times with PBS 

containing 0.05% tween). A mix of mouse polyclonal sera against CRM197 was added to the 

wells at five different dilutions, in ten-fold steps from 1:1000 to 1:10000000, and left to 

incubate for 1 hour and 30 minutes at 37° C. Details about immunization can be found in the 

publication of our collaborators.200 After aspiration of supernatants, the wells were washed for 

15 minutes with 150 mM NH4SCN, then PBST (x2). Goat anti-Mouse IgG Fc antibody, 

Horseradish Peroxidase (HRP)-conjugate (Dianova), diluted 1:20000 in PBS (50 µL), was 

allowed to incubate for 1 hour at 37° C and then removed. After washing again with PBST 

(x3), 50 µL of 3,3',5,5' tetramethylbenzidine peroxidase substrate solution (1-Step Ultra 

TMB-ELISA) was added and left to react for 3 minutes. The reaction was stopped by addition 

of 2% sulfuric acid (50 µL). The plates were then read 3 times at 450 nm with the multimode 

microplate reader Infinite® 200 PRO by Tecan. Analysis was performed using Microsoft 

Excel software for data plotting and p value calculation (Student T-test type and the number 

of tails: 1). 

 

Confocal laser microscopy (CLM) 

Fluorescent images were acquired with the instrument Zeiss LSM 700, using the laser at a 

wavelength of 488 nm (2.0 %) for FITC excitation. The selected objective was a Plan 

Apochromat 63X/1.4 oil DIC and the images were processed with the software ZEN 2009 by 

Zeiss. 

 

ConA-FITC binding assay  

The two mannose-containing peptides and their controls without sugar (1.5 mg/mL) were 

dissolved in lectin-binding buffer (10 mM HEPES, 1 mM MgCl2, 1 mM CaCl2, pH 7.4) and 
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spotted twice on poly-lysine-coated microscope slides. The samples were left overnight to 

self-assemble and 15 µL of blocking solution (1% BSA in PBS) was added to each spot and 

incubated for 1 hour. One drop of ConA from Canavalia ensiformis, FITC-conjugated (5 µL, 

5 mg/mL, purchased from Sigma-Aldrich) in lectin-binding buffer was added and left for 1 

hour in the dark to interact with the peptides. The spots were washed twice with 15 µL PBS, 

and one drop drop of buffer was added before observing the results with the CLM.  

 

Mannose-binding E. coli assay 

E. coli strain ORN178 was grown in Luria-Bertani broth in the presence of 12.4 µg/mL 

tetracycline at 37 °C with shaking to an OD595nm of 0.8. 50 µL culture was added to a 96-

well plate (in triplicate) and the cells were collected by centrifugation (4°C, 500 X g, 20 

minutes). The bacteria were washed three times with ice-cold PBS and incubated for 1 h at 

room temperature with 50 µL PBS containing FITC (500 nmol final concentration). The cells 

were again washed three times and 20 µL of the suspension was spotted onto polylysine 

microscope plates upon which 20 µL of a 1.5 mg/mL solution of FF03-Ep01 or FF03-Ep01-

Man in PBS had been left overnight to self-assemble. After incubation at room temperature, 

the cells were observed with CLSM. 

 

Microdot assay 

The peptide library, CRM197 and the carbohydrates were immobilized on CodeLink N-

hydroxyl succinimide (NHS) ester activated glass slides (SurModics Inc., Eden Prairie) with a 

piezoelectric spotting device (S3; Scienion). The subsaturation concentration of 10 µM and 

the oversaturation concentration of 100 µM of compounds to react with NHS groups on the 

slide were chosen to minimize the effect of difference in antibody reactivity due to possible 

disparity in immobilization levels. On each slide, 64 replicate array grids were printed. The 

slides were incubated in a humid chamber for 24 h until reaction completion and quenched 

with 100 mM ethanolamine in 50 mM sodium phosphate buffer at pH 9 for 1 h at 50 °C. A 

washing procedure (x3) with deionized water followed and the slides were dried via 

centrifugation for 5 minutes at 1200 X g. Before use, the slides were blocked with 1% BSA in 

PBS overnight at 4 °C, washed 3 times with PBS and dried again. With the help of the 64-

well grid (ProPlate multi-array system), two different slides were treated to test the reactivity 
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of the primary antibodies from sera obtained from five human patients and five canine 

subjects infected with the Leishmania parasite. Details about immunization procedures can be 

found in the publication of our collaborators from MPI. The slides were incubated with 40 µL 

of four dilutions (1:100. 1:200, 1:400 and 1:800) of the appropriate serum in blocking buffer 

(20 μL) for 1 h at 37 °C. The slides were washed 3 times with 40 μL PBST and incubated for 

1 h at 37 °C with 40 μL of secondary-antibody solution in BPBS. The secondary antibodies 

used are as follows: AlexaFluor 647 goat α-human IgG (Life Technologies) for the human 

sera, AlexaFluor 635 goat α-mouse IgG (Invitrogen) for the mouse sera (in the case of the 

CRM197 control), DyLight 488 rabbit α-dog IgG (Fuller Laboratories) for the canine sera. 

The slides were washed 4 times with 40 μL PBST and dried as previously before scanning 

with a GenePix 4300A scanner (Bucher Biotec). Excitation wavelengths of 488 nm and 633 

nm were used for FITC and DyLight 488, and AlexaFluor 647 and AlexaFluor 635, 

respectively; emission was detected by means of filters set to either 530 nm or 660 nm, 

respectively. The data were acquired with GenePix Pro 7 software (Bucher Biotec). Data and 

p values calculation were performed using Microsoft Excel software. Student T-test type and 

number of tails selected were 1 and 2, respectively. 
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