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Abstract

Land use and land cover maps are crucial information products required for various pur-

poses in scienti�c, administrative and commercial domains. Such maps can be e�ciently

derived by supervised classi�cation of remote sensing data. In many such mapping

projects the collection of reference data, which is required for building the classi�cation

model, is one of the largest items of expenditure. When only one or a few classes need

to be mapped, e.g. an invasive species, one-class classi�cation (OCC) is an attractive

pattern recognition approach. It allows for the learning of a classi�cation model from

labeled reference data for the class of interest only. There is no need for a represen-

tative dataset for the counter-class which consists of all other classes and is therefore

often much more di�cult to generate. However, in real-world applications it can be very

challenging to handle 
exible state-of-the-art OCC algorithms.

There is a large body of scienti�c literature addressing OCC which can be grouped in

methodological and applied research. Likewise, the scientists generating this research can

be grouped in two communities: the developers and users of OCC algorithms. This thesis

re
ects on the di�erences between the prevalent methods, objectives and datasets in the

two communities. It identi�es and closes knowledge, methodological and technological

gaps that are particularly relevant from a user’s perspective.

In particular, this thesis provides an in-depth comparative study including three base

classi�ers and several parameter and model selection approaches. The study is innovative

since, in contrast to other comparative studies, it incorporates the potential performance

of the base classi�ers and analyses the performance loss due to the model selection ap-

proaches. It shows that in many cases a high performance loss has to be accepted when

relying on fully automatic approaches. Furthermore it shows that the potential perfor-

mance of MaxEnt, one of the most frequently used algorithms in the user community, is

poorer than the biased SVM, a less frequently used algorithm that is perceived as more

di�cult to tune. The results directly motivate the development of strategies and ana-

lytical tools which support the user during model selection and improves the handling

of 
exible but complicated algorithms such as the biased SVM. Finally, an objective was

to study a speci�c type of OCC problem in which the class of interest is very rare in the

area to be mapped and where the number of positive labeled training samples is small.

While such data characteristics are frequently met by users they are rather unusual in

the benchmark datasets used by developers. A novel OCC approach is developed which

is designed for handling such problems.
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Zusammenfassung

Landbedeckungs- und Landnutzungskarten sind wesentliche Informationsprodukte f�ur

zahlreiche wissenschaftliche, administrative und kommerzielle Aufgaben. Solche Karten

k�onnen mit Hilfe der �uberwachten Klassi�kation e�zient aus Fernerkundungsdaten ge-

wonnen werden. In vielen Kartierungsprojekten ist die Generierung von Referenzdaten

f�ur das Training des Klassi�kators ein wesentlicher Kostenpunkte. Wenn nur wenige

Klassen kartiert werden m�ussen, z.B. eine invasive Art, stellt die 1-Klassen Klassi�kation

(1KK) einen attraktiven Ansatz dar. Sie erm�oglicht das Lernen eines Klassi�kations-

modells aus gelabelten Refernzdaten der Zielklasse. Ein representativer Datensatz f�ur

die Gegenklasse ist nicht n�otig. Diese Gegenklasse besteht aus allen anderen Klassen des

Untersuchungsgebietes und ist daher schwer zu charakterisieren. In realen Anwendungen

k�onnen 
exible 1-Klassen-Klassi�katoren allerdings schwer zu handhaben sein.

Die existierende wissenschaftliche Literatur zu 1KK kann in methodische und ange-

wandte Forschung gruppiert werden. Ebenso lassen sich die Wissenschaftler in zwei

Gruppen einteilen, die Entwickler und die Nutzer von 1KK-Algorithmen. In dieser Dok-

torarbeit werden die Unterschiede zwischen den vorherrschenden Methoden, Zielen und

Datens�atzen in den beiden Gruppen kritisch re
ektiert. Forschungsbedarf, der insbeson-

dere aus der Perspektive des Nutzers von Relevanz ist, wird identi�ziert.

Im Rahmen dieser Arbeit wurde eine vergleichende Studie durchgef�uhrt, in welcher drei

Basisklassi�katoren, verschiedene Modellselektionsverfahren untersucht wurden. Die

Studie ist innovativ, da sie die potentielle Performanz der Basisklassi�katioren und

den Performanzverlust aufgrund der Modellselektionsverfahren o�enlegt. Das zeigt,

dass mit voll-automatischen Modellselektionsverfahren in vielen F�allen ein hoher Per-

formanzverlust in Kauf genommen werden muss. Au�erdem wird deutlich, dass die

potentielle Performanz von MaxEnt, einer der am h�au�gsten verwendenten Klassi�ka-

toren in der Gruppe der Anwender, schlechter abschneidet als diebiased SVM, ein

weniger h�au�g verwendeter Algorithmus, der als schwieriger in der Handhabung gilt.

Die Ergebnisse motivieren die Entwicklung einer Strategie und analytischer Werkzeuge,

welche den Nutzer w�ahrend der Modellselektion unterst�uzen und die Handhabung 
exi-

bler und komplizierter Algorithmen wie der biased SVM vereinfachen. Schlie�lich ist

ein Ziel dieser Arbeit, die Untersuchung der 1KK besonders schwieriger Datens�atze

mit ungleicher Klassenverteilung und einer kleinen Menge an gelabelten Trainingsdaten.

W�ahrend Datens�atze mit solchen Charakteristika unter Nutzern h�au�g auftreten, sind

diese eher selten unter den Benchmark-Datens�atzen der Entwickler anzutre�en. Ein

neuartiger 1KK-Ansatz wurde entwickelt, welcher besonders f�ur die L�osung solcher Prob-

leme geeignet ist.
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2 CHAPTER I. INTRODUCTION

1 Motivation

Human activities dominate and change the earth’s ecosystem in an unprecedented way

(Vitousek, 1997). We are faced with a variety of social-ecological challenges from the

local to the global scale (Ste�en et al., 2004). Social-ecological issues are complex due to

increasing interconnectedness and interdependency. Human action is driven by and has

consequences on various components of the social-ecological system, including di�erent

spatial, temporal and institutional scales (Biermann et al., 2016). Sustainable and

equitable management of resources requires understanding and monitoring of social-

ecological systems. Amongst other spatial variables land-use and land-cover (LULC) are

essential pieces of information for planning and resource management and for modeling a

variety of environmental variables. They are an essential input to models in meteorology

(Schicker, Arias, and Seibert, 2015), hydrology (Wagner and Waske, 2016), biodiversity

(Roy and Tomar, 2000), ecosystem services (Andrew, Wulder, and Nelson, 2014), and

many more. They are also used for impact assessments in environmental (Banse et al.,

2008) and economic (Hertel, Rose, and Tol, 2009) analyses.

In these areas of application LULC information is required in a variety of spatial and

temporal scales and thematic detail. Remote sensing data provides a unique source of

data for repeatedly mapping LULC over extensive areas in a cost-e�cient way. The im-

age data consists of pixels which capture the radiation of di�erent wavelength re
ected

or emitted from discrete spatial units on the earth’s surface. Categorical LULC classes

can be extracted from the data by means of visual interpretation or automated image

processing techniques. Accuracy is considered the principle advantage of visual inter-

pretation. However, visual interpretation is expensive since it requires a large amount of

working hours of trained experts (Ozdogan, 2015). More cost-e�cient is the information

extraction from remote sensing data by using classi�cation techniques (Mather and Tso,

2016) based on methods from the �elds of statistical learning (Trevor Hastie, 2009),

pattern recognition and machine learning (Bishop, 2006).

Traditionally, classi�cation methods are grouped into unsupervised and supervised meth-

ods. Unsupervised classi�cation algorithms group pixels based on the similarity of their

values into clusters or spectral classes. Clusters do not necessarily correspond to the in-

formation classes to be mapped, e.g. LULC classes. Thus, human-guided pre-processing,

e.g. strati�cation and masking, and post-processing, e.g. merging and splitting clusters,

are important for the success of cluster algorithms and extracting the desired information

classes (G�omez, J. C. White, and Wulder, 2016). Supervised classi�cation algorithms

learn from labeled examples (training data) and return the information classes as re-

sults. Often, the acquisition of training data needs to be done carefully since the quality
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is crucial for the classi�cation outcome (Foody, Pal, et al., 2016). It often requires

considerable in-situ campaigns or on-screen collection by trained experts.

In the last decades the cost for deriving remote sensing based information in general

and LULC information in particular has decreased tremendously. First, more and more

earth observation data is available (Toth and J�o�zk�ow, 2016), often free of cost such as

Landsat (Woodcock et al., 2008) and Sentinel (Berger et al., 2012) data. Second, the

price for hardware required for data processing is relatively low due to technological

advancements. Nowadays, it is possible to conduct remote sensing analysis for the local

scale on a common computer. Even without purchasing a high performance computing

environment large scale analysis is possible using cloud services, such as the Google

Earth Engine (Google Earth Engine Team, 2015) or Amazon Elastic Compute Cloud

(Amazon, 2016). Third, more and more powerful open source software for remote sensing

analysis has become available and is constantly being further developed. This includes

user-friendly open source software with graphical user interfaces, such as the EnMap-

Box (Linden et al., 2015) or QGIS plugins such as the Orfeo-Toolbox (Inglada and

Christophe, 2009) and STEM (Nex, 2015). Additionally, there are a variety of remote

sensing speci�c and general purpose data analysis packages/application programming

interfaces (API) in high-level programming languages such as R and Python. Fourth,

the cost of training data acquisition can be reduced by di�erent approaches. If avail-

able, training data can be extracted automatically from existing but outdated LULC

maps and, eventually, auxiliary information (Radoux et al., 2014; Balzter et al., 2015).

Furthermore, the required amount of training data can be reduced by using methods

from advanced learning paradigms such as semi-supervised learning (Zhu, 2005), active

learning (Settles, 2010; Tuia et al., 2009) and one-class classi�cation (Minter, 1975), to

name a few.

This thesis addresses one-class classi�cation (OCC) which is an emerging advanced

method for LULC classi�cation with remote sensing data. OCC is an option when

only one speci�c class of interest needs to be mapped and when distinguishing between

all the other classes is not necessary. In this case all other classes can be conceptualized

as one counter-class, i.e. the complement of the class of interest. Such a task might

be solved with any binary classi�er using training data of both classes. However, the

acquisition of representative training samples for the counter-class can be very expensive

since it consists of a variety of sub-classes. It is also possible to use a non-representative

sample for the counter-class, e.g. by using only informative training cases or a sample

of the sub-classes facing the class of interest in the feature space (Foody, Mathur, et al.,

2006). But in practice this is di�cult to achieve since it is usually unknown which of the

cases or sub-classes are most relevant. One-class classi�ers are able to solve the binary
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classi�cation problem only with labeled training samples of the class of interest, even-

tually by additionally using unlabeled data which is available at no cost. The eventual

high acquisition costs for the counter-class training samples can thus be avoided. It is

important to stress that in this thesis the term one-class classi�cation is used in a very

strict way and is used only if the full model building process, including parameter and

threshold selection, is performed without using negative data. This also excludes the

case when negative data is used for selecting parameters and/or a threshold for a one-

class classi�er, which here would be denoted as supervised classi�cation with a one-class

classi�er.

Unfortunately, the convenience of OCC with respect to the training data collection may

come at the cost of di�culties when building the classi�cation model. The successful

implementation of an accurate one-class classi�er may require more analytical work than

pressing one button or calling one function. However, reading the scienti�c literature

on one-class classi�cation as an optimistic beginner might convey the impression that

OCC can be easily solved with many di�erent approaches. There is a large number of

methodological scienti�c papers in which a new fully automatic OCC method is proposed

and proved to perform well on a variety of OCC problems. There is also a large number

of applied scienti�c papers in which fully automatic OCC approaches are shown to work

on speci�c applied classi�cation problems. It is more rare to �nd negative OCC results

which is likely due to the positive publication bias. Thus, reading the scienti�c literature

on one-class classi�cation as an enthusiastic and optimistic beginner might convey the

impression that OCC is easy. Starting as a new practitioner might then be a frustrating

experience when the one-shot methods fail and there is no guidance on how to proceed

and little information on what might cause a problem. This might particularly occur to

users of these methods who have a strong background in �elds such as ecology, biology,

geology, etc., but a weaker background in machine learning and pattern recognition.

The overarching goal of this dissertation is to advance the understanding and usability

of applied one-class classi�cation in real world remote sensing applications for practi-

tioners who are neither pattern recognition/machine learning experts nor highly skilled

programmers. To achieve this, this thesis focuses on three main objectives: First, the

performance of the three base classi�ers, MaxEnt, biased SVM and one-class SVM is

investigated. Each of the base classi�ers is tuned with di�erent parameter and thresh-

old selection approaches. Particularly, this study focuses on the comparison between

MaxEnt and biased SVM. Biased SVM is more often used in comparative analyses in

methodological research studies but perceived as more complicated to use in the applied

sciences (Skowronek, Asner, and Feilhauer, 2017). MaxEnt is one of the most frequently

used one-class classi�er in applied studies since it is easier to use but it is rarely com-

pared to other algorithms. Furthermore, this study reports the performance loss due
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to di�erent fully automatic parameter and threshold selection approaches with respect

to the potential performance of the base classi�ers. Such deeper insights are usually

not reported in comparative studies despite being highly informative. When selecting

a base classi�er this information is helpful, e.g., for a practitioner who feels con�dent

to manually proof and { if necessary { adjust the parameter(s) and threshold, or for a

researcher to select a suitable base classi�er, e.g. for conducting research on improved

model selection approaches.

The second main objective is to develop a strategy and tools to support the practi-

tioner in the evaluation, comparison and improvement of OCC results in the absence

of representative and complete test data. Due to the low reliability of fully automatic

OCC approaches, such developments are maybe one of the most urgent needs in applied

one-class classi�cation. However, so far it is not discussed explicitly in the remote sens-

ing community. As mentioned previously, the methodological research focuses on new

methods that are always proved to perform well on a variety of classi�cation problems.

However, it is not discussed what to do when such an approach fails on a speci�c real

world task { which might often occur when trying to solve a more challenging OCC

problem.

The third main objective is to develop an approach for solving a speci�c type of OCC

problem, i.e. a dataset where the class of interest only occurs rarely in the area to be

mapped and the available labeled dataset is small. It is worth noting that such problems

are rarely found in the benchmark datasets that are commonly used in methodological

research papers. The method has been developed to speci�cally map raised bogs but

can be transferred to map other classes of interest.

The remainder of this thesis is structured as follows: This section provides an illus-

trative introduction to one-class classi�cation. It can be read as a starting point for

(potential) users of one-class classi�cation methods having a less profound background

in machine learning, pattern recognition and statistical learning. It focuses on concepts

and challenges a user is faced with when using any OCC algorithm to solve a real-world

problem. A simple two-dimensional arti�cial dataset is used such that it is possible to

visualize the data, distributions and models in the feature space. The introduced matter

is of practical relevance for the user of OCC algorithms. It focuses on aspects which can

and should be controlled by the user for successfully solving real-world OCC problems

with high-dimensional datasets, complex class distributions and limited training data.

Section 2 reveals some practical di�culties users of OCC are confronted with. Based

on this background Section 3 describes the prototype characters of OCC algorithm de-

velopers and users. It then raises the question about the relevance of the developers’
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advancements for improving the users’ capabilities to handle OCC algorithms in prac-

tice. Some gaps between the two communities that have already been addressed brie
y

above are carved out in more detail and motivate the contributions of this thesis. A

more detailed overview over the main objectives is provided in Section 4. The main

contributions are then presented in the Chapters II{,IV and a synthesis of this thesis is

provided in Chapter V.

2 Background

2.1 One-Class and Binary Classi�cation

The goal of OCC is to separate a class of interest, or positive classC+ , from all other

classes, or negative classC� . Thus, the goal of OCC and binary classi�cation is the same

and it makes sense to �rst introduce binary classi�cation together with the arti�cial

dataset.

The arti�cial remote sensing image used for illustration in this chapter has a size of

500� 500 pixels and consists of two grayscale images (Figure I.1 B&C). Each pixel (also

sample or example) of the image can be represented by a feature vectorx =
h

x1
x2

i
which

lives in a two-dimensional feature space. Figure I.1 A shows such a feature space with 100

samples selected randomly from the image. The set of samples are colored according to

their real class label. In the real world it is often expensive to assign the class label to an

adequate amount of samples since it has to be done by a trained expert. Such a reference

set with a limited number of labeled samples is enough to train a classi�cation model.

With the trained model all image pixels can be classi�ed, or predicted, in order to create

a classi�cation image, or more speci�cally a land use/land cover map (Figure I.1 D).

Most learning algorithms are designed such that the output is the predicted class. How-

ever, internally the binary classi�er generates a real-valued continuous output which is

then converted into a class label by applying a threshold. Figure I.1 H shows such a

continuous output together with the threshold, or decision boundary, which separates

the feature space in the positive and negative class regions. Speci�cally, the �gure shows

the probability of class membership for the positive class derived from Bayes’ theorem

using the full knowledge of the parameters which generated the data. The Bayes’ the-

orem allows for easily deriving a classi�er which maximizes the classi�cation accuracy.

This is usually the goal during model building. Understanding Bayes’ theorem is useful

for two reasons. First, it is intuitive and shows the components required for deriving

the most accurate classi�cation model. Second, it can be used to show how good we
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Figure I.1: In remote sensing, a labeled dataset (A) usually consists of a subsets of
image pixels with known class labels (B&C). Such a dataset can be used to estimate the
joint density (E) and the class-conditional density of the positive (F) and negative (G)
class which are useful to build a classi�cation model (H). The model can be applied to
the whole image data to derive a classi�cation image land cover over the whole imaged

area (D).

can get with one-class classi�cation, which will be discussed below. Bayes’ theorem is a

straightforward formula:

p(C+ jx ) =
p(x jC+ )P (C+ )

p(x )
;

where p(C+ jx ) is the probability of class membership, or posterior probability, for the

positive class (Figure I.1 H), p(x jC+ ) is the conditional density of the positive class (Fig-

ure I.1 F), p(x ) is the evidence or joint density (Figure I.1 E) and P (C+ ) is the prior

probability of the positive class. In order to convert the continuous output p(C+ jx ) to a

class estimate a threshold is applied. Since the continuous output is the probability of

class membership a threshold of 0.5 is optimal in terms of the classi�cation accuracy.

In the case of binary classi�cation the following equations apply:

P (C� ) = 1 � P (C+ );

p(x jC� )P (C� ) = p(x ) � p(x jC+ )P (C+ );
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Thus, the conditional density of the negative class (Figure I.1 G) is also hidden in the

Bayes’ theorem above.

Based on the supervised training set shown in Figure I.1 A it is possible to approximate

all these quantities. The class conditional densities can be estimated from the respective

reference samples. Since the reference set is a random sample from the whole dataset,

the prior probabilities can be estimated from the respective class fractions in the training

set.

A great plenty of classi�cation approaches exist to solve a classi�cation problem. Some

explicitly model the class-conditional and/or joint densities and the class probabilities

and then derive the posterior probabilities based on which classi�cation is performed.

Some directly determine the posterior class probabilities based on which classi�cation

is performed. Others directly derive the class estimates and do not provide class proba-

bilities (Bishop, 2006). However, most algorithms, including the ones of the last group,

allow access to a continuous output which together with a particular default threshold

is converted into a class estimates.

Particularly in the case of classi�cation approaches where a model has to be learned

from a di�cult training dataset, such as in the case of one-class classi�cation it can be

crucial to explicitly analyze this continuous output and not rely on any default binary

class estimates. This is according to what (Provost, 2000) stresses for the problem of

learning from imbalanced data: "The bottom line is that when studying problems with

imbalanced data, using the classi�ers produced by standard machine learning algorithms

without adjusting the output threshold may well be a critical mistake (depending on

your research question)."

2.2 P- and PU-Learning

According to (Khan and Madden, 2014) one-class classi�cation has been studied exten-

sively under three broad learning paradigms:

� Learning from positive examples only (P-Learning),

� Learning from positive examples and some amount of poorly sampled negative

examples (PNpoor-Learning)1 and

� Learning from positive and unlabeled examples (PU-Learning).

1PNpoor -learning is not discussed in detail in this thesis. However, it is important to note that the
strategies developed for user assisted model and threshold selection Chapter I Section 2.3 can also be
used to improve the handling of such learning approaches.
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Figure I.2: The continuous outputs (B&E) and best achievable decision boundaries
(red lines in B&E) that can be approximated with the P- (A) and PU- (D) training
dataset di�er signi�cantly due to non-uniform class-overlaps. The histograms of the
continuous output of all image pixels (C&D) colored by their true class label shows
that the separability of the P-based model (C) is lower than the one of the PU-based
model (F). Note that the color in B&E corresponds to the x-axes of C&F as well as the

red decision boundaries correspond to the vertical black thresholds.

P-learning only allows for estimating the class-conditional probability of the positive

class or similar continuous outputs (Tax, 2001). As a consequence, the decision boundary

of a P-learner has a structure similar to any density level ofp(x jC+ ). The best achievable

decision boundary in terms of the maximum classi�cation accuracy of a P-learner is

shown in Figure I.2 B. It results in a producer’s and user’s accuracy of 81 % and 80 %

respectively.

With PU-learning it is possible to derive continuous outputs that implicitly take the

density of the negative class into account by exploiting the unlabeled data (Figure I.2 E).

It is possible to estimate p(x jC+ )
p(x ) or similar continuous outputs that are proportional to

the posterior probability. Since the posterior probability contains the optimal decision

boundary in terms of the minimum classi�cation error it can thus also be derived from

the continuous output of a PU-learner. This is possible without additional labeling cost

sincep(x ) can be derived from unlabeled image data. With the best decision boundary

based on p(x jC+ )
p(x ) it is possible to achieve a producer’s and user’s accuracy of 86 % and

89 % respectively. It has already been shown in the early days of remote sensing that it
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is possible to solve the one-class classi�cation problem with Bayes’ theorem and PU-data

given that the a priori probability is also known (Minter, 1975; Lin and Minter, 1976).

Considering the class-conditional densities of the arti�cial dataset (Figure I.1 F&G) it

is intuitive to understand why the P-learner cannot be optimal. Setting the threshold

on p(x jC+ ) to a high value avoids false positive classi�cations (positive predictions on

pixels belonging to the negative class) in the regions of the feature space where the

positive and negative class distributions overlap. However, unnecessary false negative

classi�cations (negative predictions on pixels belonging to the positive class) have to be

accepted in regions without class overlap. Instead, a low threshold avoids false negative

classi�cations but at the cost of a high amount of false positive classi�cations in the

overlapping area. More generally, a decision boundary derived from a P-learner cannot

be optimal unless the negative class distributionp(x jC� ) is uniform on the support of

the positive class distribution p(x jC� ) or if there is no class overlap (Blanchard, G. Lee,

and Scott, 2010).

Given the strong impact of unlabeled data on the theoretical properties of the decision

boundary it is important to be aware of the di�erence between P- and PU-learning

when selecting a suitable one-class classi�er for a speci�c application. Particularly, if it

is assumed that there is some class overlap between the positive and the negative class

it is not recommendable to use a P-learning approach, such as the OCSVM or SVDD2.

A variety of PU-learners have been proposed in the last decades. In practical applications

however, only a few are frequently used, such as MaxEnt (Phillips and Dud��k, 2008) and

the so called PUL-algorithm (Li, Guo, and Elkan, 2011).

2.3 Model selection

So far, two potential continuous outputs have been analyzedp(x jC+ ) and p(x jC+ )
p(x ) which

can be approximated by learning from P- or PU-data respectively. However, given the

dataset type (P or PU) it has been assumed that the exact data generating distribu-

tions can be found. Furthermore, for identifying the classi�cation accuracy, the optimal

thresholds have been found by using the one leading to the best achievable accuracies

over all possible thresholds.

In real-life OCC applications the challenge is to �nd a classi�cation model based on P-

and PU-data. A variety of methods have been proposed in the scienti�c literature for

solving the problem of OCC. In early approaches it has been assumed thatp(x jC+ ) can

be modeled as a multivariate Normal distribution from the positive training samples
2This statement is valid when using SVDD as a P-learner. However, it can also be used as a PNpoor -

learner and it might return similar results as a PU-learner if the negative samples are suitable.
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and p(x ) as a mixture of multivariate Normal distributions for the unlabeled data (Lin

and Minter, 1976). Such assumptions and approaches might be valid for simple classes

and datasets, such as the arti�cial dataset in this chapter or a single-date optical image.

However, such assumptions and approaches are not adequate for modern classi�cation

problems. The features of modern datasets come from di�erent bands, acquisition dates,

sensors, additional features derived from the spatial neighborhood, auxiliary data such

as digital elevation models or soil categories, etc. In such high-dimensional feature spaces

the structure of the class distributions is unknown and complex and therefore di�cult

to approximate. This is particularly true with limited (labeled) training data. The

di�culty and performance loss with increasing dimensionality is well known as the curse

of dimensionality or the Hughes phenomenon (Hughes, 1968).

State-of-the-art machine learning approaches, such as Support Vector Machines or Neu-

ral Networks, can be converted to one-class classi�ers in di�erent ways (B. Liu et al.,

2003; Elkan and Noto, 2008). They are able to learn complex distributions and are

less susceptible to the curse of dimensionality. However, since the complexity of such

data-�tting models can be arbitrarily high they must be tuned carefully in order to avoid

over-�tting on the training data and assure good generalization on new unseen data.

Choosing the model complexity controlling parameters and the threshold converting a

continuous output to binary predictions are crucial elements of most, if not all, OCC

algorithms. Often, the algorithms are designed in a way that the user is not confronted

with model selection, i.e. the algorithm is fed with the training data and returns a model

that internally adjusted parameters and uses a default threshold to directly return class

estimates when applied to new unseen data. However, particularly in the case of OCC it

is challenging to build fully automatic parameter and threshold selection methods which

reliably provide good results for a wide range of di�erent OCC problems.

In supervised learning a common approach is to use an independent validation set or

to do cross-validation in order to empirically estimate the performance for all candidate

models and select the best one. The performance metric is usually an accuracy metric,

such as the overall accuracy, F-score, Kappa coe�cient, etc. These measures are derived

from the number of correctly and erroneously classi�ed samples that can be summarized

in a confusion matrix (Table I.1 A). Obviously, the di�culty of model selection in OCC

arises from the lack of representative negative examples. In OCC it is not possible to

get an estimate of the false positives (FP) and true negatives (TN) since no negative

labeled samples are available (Table I.1 B).

Several approaches have been proposed to solve the problem of model selection with P-

or PU-data. For example, (Tax and Duin, 2004) proposed a consistency-based model

selection for P-classi�ers where the complexity of the model is optimized given a user
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PN-Reference PU-Reference
P N P U

Prediction P True P False P P True P Predicted P
N False N True N N False N Predicted N

Table I.1: Confusion matrix derived from a PN- (left) and PU-dataset. P: positive,
N: negative, U: unlabeled.

de�ned false negative rate. The algorithm starts with a model having low complexity

and thus a low false positive rate. With increasing complexity the false positive rate also

increases. The last consistent model is then selected, i.e. the last model in which the

empirical false negative rate is still consistent with the pre-de�ned target false negative

rate. This is a reasonable model selection approach, however the necessity of de�ning

the target false negative rate is di�cult since the optimal value is usually not known,

e.g. if the overall accuracy is to be optimized and not the false negative rate.

Other approaches based on PU-data de�ne PU-performance metrics similar to the ones

derived from PN-data. For example (W. S. Lee and B. Liu, 2003) proposed to use the PU-

metric similar to the F-score which is the harmonic mean of the precision (user’s accuracy

of the positive class) and recall (producer’s accuracy of the positive class). Their PU-

based metric behaves similar as the F-score since it is "large when both precision and

recall are large and is small if either precision or recall is small" (W. S. Lee and B. Liu,

2003). A very similar PU-based metric has been proposed by (Li and Guo, 2014).

It is also possible to do unsupervised model selection, i.e. without relying on performance

metrics based on P- or PU-data. However, it is then required to make assumptions such

as the clustering assumption. The clustering assumption means that the two classes

form clusters that are separated by low density regions. Based on a low density criterion

it is possible to select the �nal decision boundary from a variety of candidates (Morsier

et al., 2013).

While P- and PU-based metrics are valuable, they are not guaranteed to be optimal

for all learning problems. Their performance are more or less dependent on various

factors such as the class distribution of the positive class, the number of validation

samples used to estimate the metric, the class separability and the distribution of false

positive and false negative errors (C. Liu, Newell, and M. White, 2015). Likewise,

the assumptions underlying unsupervised model selection approaches are not valid for

all learning problems. The di�culty of �nding adequate models in a real-world OCC

application is further complicated when faced with an imbalanced dataset (Section 2.4)

and/or a small positive labeled training set.
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Figure I.3: Illustration of imbalanced dataset and small disjuncts. In the imbalanced
dataset there are still two positive clusters (positive-conditional density in B) and three
negative clusters (negative-conditional density in C). However, the negative data is
much more numerous as can be seen by the joint density in A. Furthermore, two of
the negative clusters are small disjuncts (C), i.e. they only account for a small fraction
of the negative data. In D the posterior probability is shown with the best achievable
decision boundary. With a P-dataset (F) or a PU-dataset with too few unlabeled
samples it is impossible to get close to the optimal decision boundary (D). However,
with su�cient unlabeled samples (H) this is possible. Also a random supervised labeled

training set must be large or it does not contain su�cient information (E).

2.4 Imbalanced datasets and small disjuncts

In Section 2.2 the value of unlabeled data for model building has been discussed. Ex-

ploiting unlabeled data, e.g. for the estimation of p(x ), is often expensive in terms of

computational cost. Thus, a random sample of the dataset is usually used instead of

exploiting the whole dataset, i.e. all image pixels. Some studies might suggest the usage

of training sets with a similar number of positive and unlabeled samples, i.e. balanced

PU-training sets (Chen et al., 2016). It is important to understand in which situations

it might be a critical mistake to follow such a recommendation and when it is worth

paying particular attention to the unlabeled samples used for model building.

The problem of a suitable set of unlabeled samples is closely related to the problems of

class imbalance and small disjuncts. The main property of an imbalanced dataset is that

the number of examples di�ers strongly between the classes. In one-class classi�cation
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the negative class samples, which is usually an aggregation of many classes, often out-

number the positive class samples. Some of these sub-classes may be represented within

small clusters also known as small disjuncts. Selection of unlabeled data becomes par-

ticularly challenging when such small disjuncts are similar or even overlapping with the

positive class.

Figure I.3 shows an imbalanced dataset. The percentage of positive, and negative, sam-

ples is 0.5 %, and 99.5 % respectively. Furthermore, two of the three negative clusters

are small disjuncts and only add up to 0.5% (Figure I.3 C). While the large clusters of

the negative class is easily separable from the positive class, the small disjuncts are more

similar and partially overlapping (Figure I.3 A). The unlabeled data of the PU-training

set is again randomly sampled from the whole data, but the subset does not represent

the two small disjuncts (Figure I.3 G). From such a data set it is not unlikely to build a

model that erroneously classi�es the small disjuncts of the negative class as positives. It

is important to be aware that an overall accuracy of 99 % could be achieved with a poor

unlabeled training set. Still, the classi�cation result might over-predict the positive class

with a factor of two which might not be acceptable in a given real-world application.

3 The User’s Needs and the Developer’s Focus

There are some crucial di�erences between the developer of OCC algorithms and the user

who test them for speci�c scienti�c applications or apply them in real-world applications.

The characters described here are of course extremes and many remote sensing scientist

are somewhere in between. The developers’ expertise is in �elds such as statistical

learning (Trevor Hastie, 2009), pattern recognition and machine learning (Bishop, 2006)

and good skills in programming and data analysis are usual. The goal is to design

enhanced and fully automatic learning algorithms such that more reliable and more

accurate results can be achieved. The algorithms and analysis of the developer are

self-made and implemented in programming environments such as MatLab which is

widely used in engineering communities. Being aware of the No-Free-Lunch theorem

for machine learning (Forster, 1999; Wolpert, 2002) it is acceptable from the developer’s

view if a novel algorithm fails on some problems as long as it shows signi�cant advantages

on others. Simpli�ed, the theorem says that "in the lack of prior knowledge [...], any

learning algorithm may fail on some learnable task" (Ben-David, Srebro, and Urner,

2011). Therefore the goal is typically to do better in as many learning tasks as possible.

In order to proof the usefulness of a new algorithm it is usually compared to other

state-of-the-art algorithms based on a set of learning problems. In the training stage of

such comparative exercises negative data is not used but representative and complete



3. THE USER’S NEEDS AND THE DEVELOPER’S FOCUS 15

test data is available for a reliable determination of the algorithm performance. As a

consequence, for the developer it is straightforward to distinguish a successful from a

poor classi�cation result.

Instead, the user hasone speci�c mapping problem and seeks to resolve it as good as

possible by any means. The problem is that a representative and complete PN-testset

might not be available at the moment of model building. Thus, it is not easy to assess

the outcome of a classi�cation model. However, since there is often only one or very

few classi�cation problems to be resolved at a time the method must not necessarily

be fully automatic. If necessary, there is time to invest in manually re�ned parameter

and threshold selection and analyze di�erent classi�cation outcomes in order to �nd an

optimal solution. However, the required tools and skills for such an analysis can be

a challenge for the user of an OCC algorithm since the user’s background lies in do-

mains such as ecology, biology, geology, environmental planning, resource management,

etc. and often in a speci�c geographical region, and might not be strong in pattern

recognition. Furthermore, the users’ do not necessarily have the skills in programming

and data analysis required to implement one-class classi�cation algorithms and properly

analyze their outcomes. As a consequence, only OCC algorithms that are implemented

in accessible and familiar software can be used and are usually employed with default

settings.

Another crucial di�erence is the nature of the datasets the two communities are faced

with. In many cases the developers benchmark datasets that are relatively small, the

number of labeled samples (for the positive class) is large, the classes are relatively well

separable, the imbalance ratio between the positive and negative class is relatively small

and/or there are no critical small disjuncts of the negative class. A user’s real-world

dataset might be more challenging and one or more of these dataset attributes might

not be favorable (Stenzel et al., 2017). For example, the labeled reference data is often

collected by costly �eldwork conducted under limited time and �nancial budget and thus

consists of small sample sizes. As a consequence, an OCC algorithm that is successful

on a variety of typical developer datasets does not mean that it also successfully solves

a given real-world classi�cation problem.

With these considerations in mind, it is surprising that there is no active scienti�c dis-

cussion about how to support manually-guided model and threshold selection in the

absence of representative and complete reference data. Particularly, this is surprising

because it is likely that such decision support tools and strategies are more likely to

advance the usage of OCC algorithms in the applied sciences and in real-world appli-

cations than an additional OCC algorithm that will eventually never be used in these

domains. It is worth stressing that the importance and value of novel algorithms shall



16 CHAPTER I. INTRODUCTION

by no means be questioned here since they are important to advance the methodolog-

ical remote sensing science. However, the issues raised here might have more impact

on the usage and usability of state-of-the-art OCC algorithms by users in practical and

real-world applications.

The MaxEnt algorithm is an interesting case showing in part how separated the two com-

munities work. MaxEnt has been developed for species distribution modeling (SDM), a

common task in biogeography and ecology. The problem is similar to OCC for LULC

classi�cation with remote sensing data since the unavailability of negative training sam-

ples (or absences in SDM terminology) is frequent. In fact, the speci�c implementation

of the maximum entropy principle estimates p(x jC+ )
p(x ) based on the positive (or presences)

and unlabeled (or background) data. Furthermore, the features or predictors for model-

ing are usually also present in form of raster datasets. The developers of MaxEnt provide

a software which directly handles raster data and which has a user-friendly graphical

user interface and an extensive tutorial. There is therefore no need to have skills in

any programming language. Additional important advantages of MaxEnt from the user

perspective is that in the SDM community it has a reputation for working with very

small sample sizes and performs well without any user-driven model selection.

These are probably the most important reasons why MaxEnt is the most widely used

OCC approach in applied studies using or investigating OCC for LULC classi�cation

with remote sensing data. In many of these studies MaxEnt has been shown to perform

well by using the default settings. Unfortunately, it is di�cult to say how well MaxEnt

performs compared to other machine learning OCC approaches since there is a lack of

comparative studies. The algorithm is mostly ignored in the developer community as a

benchmark approach. This is questionable given its prominence in applied studies. On

the other hand, in the applied studies MaxEnt is often the only investigated algorithm.

Due to the low likelihood that negative results are published (publication bias) it is

however not clear how often MaxEnt performs poorly. Thus, even though MaxEnt

sounds like "free lunch" it is impossible to rate its performance for LULC classi�cation

applications based on the scienti�c literature.

4 Objectives and Organization of this Thesis

In the previous sections the background of one-class classi�cation with a focus on the

user’s challenges have been presented (Section 2). Furthermore, a gap between the de-

veloper’s focus and the user’s needs has been described (Section 3). These considerations

motivate the objectives and research questions of this thesis. The main objective is to

advance the usage of OCC for users from geo-scienti�c domains with limited background
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in statistical learning, pattern recognition and machine learning. For this purpose, the

following research topics and research questions have been identi�ed.

First, an in-depth comparative study has been conducted including the three base al-

gorithms MaxEnt, biased SVM and ocSVM implemented with various parameter and

threshold selection approaches. The comparison is based on a variety of classi�cation

problems including di�erent classes (8) and image data sets (3). This study was mo-

tivated by two main observations: First, comparing MaxEnt to other state-of-the-art

one-class classi�ers was overdue considering the fact that it is rarely part of such studies

despite its popularity in applied research papers. Second, in most if not all comparative

research papers, di�erent base classi�ers, e.g. biased SVM or MaxEnt, are implemented

with a single parameter and/or threshold selection approach and compared to each other.

The informativeness of such comparisons is limited �rst for users when selecting candi-

date classi�ers for their purpose and second for developers when prioritizing research.

In the in-depth comparison the potential performance was also reported, i.e., the best

achievable accuracy over all investigated parameter and threshold settings. This infor-

mation is not usually, if at all, reported in comparative studies. However, this is helpful

information about the base classi�ers, particularly if it is assumed that the user is even-

tually able to �x automatically selected parameters and/or thresholds. The following

research questions guided the setup of the research presented in Chapter II.

� How do the OCC approaches perform compared with a fully supervised binary

SVM?

� Which OCC approach is most accurate? Particularly,

{ which base algorithm has the highest discriminating potential, independent

of parameter and threshold selection,

{ how good is the default parameterization of MaxEnt?

The second objective was to develop a user-oriented one-class classi�cation strategy

for supporting the user during the one-class classi�cation process in the absence of a

complete and representative validation set. This contribution has been motivated by

the uncertainty inherent in any fully-automatic OCC approach. There is No-Free-Lunch

and particularly not in OCC and related machine learning domains (such as learning

from imbalanced data) where the training set is incomplete and/or not representative.

As a result, fully-automatic OCC algorithms are more likely to fail when learning a

model from the training data compared to classi�cation algorithms based one complete

and representative training data. While the developers mainly focus on the di�culty of

designing robust and optimal fully-automatic OCC algorithms, the user has to be aware
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that any of them might still fail on the speci�c classi�cation problem to be solved. Thus,

the research questions motivating the research presented in Chapter III were:

� How can the outcome of any one-class classi�cation model be visualized and in-

terpreted in order to understand

{ the rough degree of class separability,

{ the suitability of the threshold,

{ the appropriateness of the unlabeled training samples.

� How can an optimal model be identi�ed by the user in an e�cient way from a

large amount of candidate models.

Finally, the third objective was to design an OCC approach that is particularly suited

for datasets which i) have an imbalanced class distribution, i.e. where only a small

fraction of the image pixels belong to the positive class, where ii) the positive class

potentially overlaps with small disjunct clusters of the negative class (see Section 2.4) and

iii) where the number of positive training samples is very low. In the datasets commonly

used by developers, such classi�cation problems are rarely addressed. Instead, the class

distributions are usually more balanced and the number of labeled training samples is

large. The algorithm to be developed was motivated by the following requirements:

� How can the imbalancedness of a dataset be reduced?

� How can the joint parameter and threshold selection problem be solved more ro-

bustly, particularly when the set of positive labeled training samples is small?

These topics are treated in the main chapters (II-IV) of this thesis each of which is a

self-contained manuscript which has been published in an international peer-reviewed

journal:

II Benjamin Mack and Bj�orn Waske (2017). In-depth comparisons of one-class SVM,

MaxEnt and biased SVM for one-class classi�cation of remote sensing data.Re-

mote Sensing Letters, 8 (3), 290-299.

III Benjamin Mack, Ribana Roscher and Bj�orn Waske (2014). Can I Trust My One-

Class Classi�cation? Remote Sensing, 6 (9), 8779-8802.

IV Benjamin Mack, Ribana Roscher, Stefanie Stenzel, Hannes Feilhauer, Sebastian

Schmidtlein and Bj�orn Waske (2016). Mapping raised bogs with an iterative one-

class classi�cation approach,ISPRS Journal of Photogrammetry and Remote Sens-

ing, in press.
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It is also worth mentioning the open-source R packageoneClass that has been devel-

oped while working on this thesis. The package is a collection of user-friendly func-

tions for training and analyzing one-class classi�cation models and results in the ab-

sence of test data (Mack, 2017). It comprises an extensive tutorial which illustrates

how to use the package and �nd a suitable one-class classi�cation model in a user-

guided and controlled way (https://github.com/benmack/oneClass/blob/master/

notebooks/oneClassIntro.ipynb ).
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Abstract

Contrary to binary and multi-class classi�ers, the purpose of a one-class classi�er for

remote sensing applications is to map only one speci�c land use/land cover class of inter-

est. Training these classi�ers exclusively requires reference data for the class of interest,

while training data for other classes is not required. Thus, the acquisition of reference

data can be signi�cantly reduced. However, one-class classi�cation is fraught with uncer-

tainty and full automatization is di�cult, due to the limited reference information that

is available for classi�er training. Thus, a user-oriented one-class classi�cation strat-

egy is proposed, which is based among others on the visualization and interpretation

of the one-class classi�er outcomes during the data processing. Careful interpretation

of the diagnostic plots fosters the understanding of the classi�cation outcome, e.g., the

class separability and suitability of a particular threshold. In the absence of complete

and representative validation data, which is the fact in the context of a real one-class

classi�cation application, such information is valuable for evaluation and improving the

classi�cation. The potential of the proposed strategy is demonstrated by classifying

di�erent crop types with hyperspectral data from Hyperion.

1 Introduction

In the last decades, remote sensing sensor technology and data quality (in terms of radio-

metric, spectral, geometric, and/or temporal resolutions) improved vigorously (Richards,

2005). The availability of such high quality data will probably increase further due to

new data policies (European Union, 2013). For example, with the recent and planned

Landsat 8 (Roy et al., 2014), EnMAP (Stu�er et al., 2009), and Sentinel (Malenovsk�y

et al., 2012) missions the future availability of high-quality data is secured. Moreover,

the availability of powerful and free/low cost image processing software for the analysis

of remote sensing data, such as R (R Development Core Team, 2013), the EnMAP-Box

(Rabe et al., 2014), and the Orfeo Toolbox (Inglada and Christophe, 2009; Christophe

and Inglada, 2009), fosters the operational use of earth observation (EO) data. In con-

text of decision-making and surveying compliance of environmental treaties, land use

land cover (LULC) classi�cations of remote sensing data are the most commonly used

EO products. However, continuously increasing performance requirements demand for

the development of adequate classi�cation techniques. It is likely that future develop-

ment in LULC classi�cation of remote sensing images will be driven among others by: (i)

the demand for more detailed as well as accurate LULC classi�cations; (ii) the interest
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in the distribution of only one or very few classes, e.g., invasive species; and (iii) limited

�nancial resources and time constraints.

Regarding (ii){(iii), supervised binary or multi-class classi�ers such as the maximum

likelihood classi�er or support vector machine (SVM) are not necessarily appropriate

approaches. These classi�ers assign each pixel to one of the known classes de�ned in the

training set. Thus, an accurate supervised classi�er requires an exhaustive and mutually

exclusive training set (Russell G. Congalton, 2008). This means that ideallyall the

classes in the area of interest have to be de�ned in the training set. If this condition

is not ful�lled, i.e., if the training set is incomplete, signi�cant classi�cation errors can

occur because all pixels of the unknown classes will be mapped to one of the known

classes. Thus, the larger the area of the unknown classes the higher the commission

errors. Obviously but notably, these errors do not even appear in an accuracy assessment

if the test set does not include the unknown classes (Foody et al., 2006).

Several LULC classi�cation approaches were introduced which can handle incomplete

training sets. In the scienti�c literature these approaches can be found under the terms

\classi�cation with reject option" (Dubuisson and Masson, 1993; Muzzolini, Yang, and

Pierson, 1998; Fumera, Roli, and Giacinto, 2000), \partially supervised classi�cation"

(Jeon and Landgrebe, 1999), and \one-class classi�cation" (OCC) (Minter, 1975; Tax,

2001). While a common supervised classi�er maps each pixel to one of the known classes,

these classi�ers reject the classi�cation of a pixel if it does not su�ciently match one of

the known classes. With such algorithms the cost for map production can be signi�cantly

reduced, particularly, if the cost for reference data acquisition is high and the user is

interested in only one or few classes.

Although the lack of need for training samples from the classes of no interest can be

a great facilitation in the training data acquisition step, it turns out to be a burden

during the classi�cation. Independent from the approach, an accurate classi�cation re-

quires adequate training data and parameter settings. When using supervised methods,

estimation of accuracy measures from complete validation data or the training data it-

self by cross-validation is commonly used for the selection of an adequate classi�er and

parameter setting (Trevor Hastie, 2009). In contrast, in the case of OCC the full con-

fusion matrix cannot be derived from the reference data available during the training

stage because labeled samples are only available for the class of interest,i.e., the positive

class, but not for the other classes,i.e., the negative class (Table III.1). This is a serious

problem for the user, because for an accurate classi�cation the user’s and producer’s

accuracies (UA and PA) need to be high.
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y+ y� UA

ŷ+ X 7 7
ŷ� X 7 7

PA X 7 7

Table III.1: Confusion matrix with the reference information, y( �) with ( �) being the
positive (+) or negative ( � ) class, in the columns and the classi�ed class ^y in the
rows. Only y+ samples are available during OCC, which complicates the selection and

training of a suitable model.

Existing one-class classi�ers can be separated into several categories, e.g., depending

on the type of the training data and the classi�er function. Two main categories, P-

classi�ers and PU-classi�ers, are distinguished based on whether the training data set

includes positive samples only (P-classi�ers) or positive and unlabeled samples (PU-

classi�ers). PU-classi�ers are computationally much more expensive, due to the fact

that additional information is extracted extracted from an often very large number of

unlabeled samples. However, PU-classi�ers can be much more accurate, particularly in

the case of signi�cant spectral ambiguities between the positive and the negative class.

In such cases a P-classi�er cannot perform as accurate as a PU-classi�er (Jeon and Land-

grebe, 1999; W. Li and Guo, 2010). P-classi�ers usually consist of two elements (Tax,

2001): The �rst element is a similarity measure such as the distance between the positive

training samples and the pixel to be classi�ed. The second element is a threshold that

is applied on the similarity measure to determine the �nal class membership. Di�erent

approaches to this problem are treated comprehensively in (Tax, 2001).

In the remote sensing community, the one-class SVM (OCSVM) (Sch�olkopf et al., 2001;

P. Li and Xu, 2010; Mu~noz-Mar�� et al., 2010; S�anchez-Azofeifa et al., 2011) and the

Support Vector Data Description (SVDD) (Tax, 2001; Foody et al., 2006; Munoz-Mari

et al., 2007; Sanchez-Hernandez, Boyd, and Foody, 2007; Bovolo, Camps-Valls, and

Bruzzone, 2010) are state-of-the-art P-classi�er. As in the case of a supervised SVM two

parameters have to be determined, a kernel parameter and a regularization parameter. In

practice, the regularization parameter is de�ned via the omission/false negative rate on

(positive only) validation data. This means that the user has to specify the percentage of

the positive training data to be rejected by the model. This parameter has to be chosen

carefully in order to ensure a good classi�cation result. While values such as 1% or 5%

can be suitable when the positive class is well separable (P. Li and Xu, 2010), these

parameter settings will result in a high commission/false positive rate when a signi�cant

class overlap exists.

The SVDD has been applied in a one-class classi�er ensemble where the single classi�ers

di�ered in the input features (Munoz-Mari et al., 2007). It has been shown that the

ensemble outperformed feature fusion approach,i.e., the classi�cation with the stacked
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features, which can possibly attributed to the higher dimensionality. It is worth not-

ing that classi�er ensembles have also been applied successfully in the �eld of species

distribution modeling (Drake, 2014; Stohlgren et al., 2010). Furthermore they are a

focus of intense research in pattern recognition and machine learning (D�esir et al., 2013;

Krawczyk, Wo�zniak, and Cyganek, 2014). These are important developments because

multiple classi�er systems have been shown to be successful supervised classi�cation of

remote sensing data (Briem, Benediktsson, and Sveinsson, 2002; Du et al., 2012; Waske

and Braun, 2009) and should be further investigated for one-class classi�cation.

The aforementioned approaches can lead to optimal classi�cation results if (i) there is

insigni�cant class overlap or (ii) if the negative class is uniformly distributed in the part of

the feature space where the positive class lives. In the case of signi�cant classes overlap,

the second condition is usually not true and any P-classi�er will lead to relatively poor

results. It is important to note that one-class classi�er ensembles based on P-classi�ers

are also not suitable for such classi�cation problems.

PU-classi�ers try to overcome the problems by exploiting unlabeled data. Usually, it is

not feasible to use all the unlabeled pixels of an image and a random selected subset

is used. This should be as small as possible (such that the algorithm is computational

e�cient) but large enough to contain the relevant information. The adequate number

of samples depends on the classi�cation problem, particularly, the complexity of the

optimal decision boundary and the occurrence probabilities of the positive and the over-

lapping negative classes. There are also support vector machine approaches which allow

the exploitation of unlabeled samples such as the semi-supervised OCSVM (S2OCSVM)

(Mu~noz-Mar�� et al., 2010) and the biased SVM (BSVM, see also Section 3.2) (B. Liu

et al., 2003; Mu~noz-Mar�� et al., 2010).

Another possibility, which is also addressed in this paper, is the usage of Bayes’ rule for

the one-class classi�cation with positive and unlabeled data (Minter, 1975):

p(y+ jx i ) =
p(x i jy+ )P (y+ )

p(x i )
(III.1)

where p(y+ jx i ) is the a posteriori probability of the positive class given a pixel x i ,

p(x i jy+ ) the conditional probability of the positive class, P (y+ ) the a priori probability

of the positive class, andp(x i ) the unconditional probability (see also Section 2 for more

details).

There are di�erent ways of solving the OCC problem based on Bayes’ rule. A proba-

bilistic discriminative approach can be implemented to solve the classi�cation problem
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(Elkan and Noto, 2008; W. Li, Guo, and Elkan, 2011). Also di�erent generative ap-

proaches have been proposed. They di�er in the way that the probability density func-

tions, p(x i jy+ ) and p(x i ), and the a priori probability are estimated (Lin and Minter,

1976; Jeon and Landgrebe, 1990; Fern�andez-Prieto, 2002; Mantero, Moser, and S. Ser-

pico, 2005; Fernandez-Prieto and Marconcini, 2011; Marconcini, Fernandez-Prieto, and

Buchholz, 2014). The Maxent approach (Elith et al., 2010; Phillips, Anderson, and

Schapire, 2006; Phillips and Dud��k, 2008), developed in the �eld of species distribution

modeling, also estimates the density ratiop(x i jy+ )
p(x i ) . In contrast to the aforementioned

approaches, Maxent has been used more frequently for one-class land cover classi�ca-

tion in applied studies (Amici, 2011; Evangelista et al., 2009; W. Li and Guo, 2010;

Mor�an-Ord�o~nez et al., 2012; Ortiz, Breidenbach, and K�andler, 2013).

It is important to note that the probabilistic discriminative and the generative ap-

proaches return a posteriori probabilities which o�ers the user an intuitive possibility

to solve the thresholding problem. Thresholding these probabilities at 0.5 corresponds

to the maximum a posteriori rule and leads to an optimal classi�cation result in terms

of the minimum error rate. This requires accurate estimates of the terms of Bayes’ rule

(see Equation (III.1)). In (Amici, 2011; Evangelista et al., 2009; W. Li and Guo, 2010;

Mor�an-Ord�o~nez et al., 2012; Ortiz, Breidenbach, and K�andler, 2013) P (y+ ) has not

been available neither has it been estimated from the data. Thus, the derived contin-

uous output is not an a posteriori probability with an intuitive meaning. Instead, the

user has to �nd a di�erent way to solve the threshold problem, i.e., the conversion of the

continuous Maxent output, often called suitabilities, to a binary classi�cation output.

In (Ortiz, Breidenbach, and K�andler, 2013) the value of 0.5 is applied on the logistic

Maxent output, even though the authors are aware of the fact that they are not dealing

with \true" probabilities. In (W. Li and Guo, 2010) the 5 % omission rate estimated on

a (positive only) validation set is used. A detailed theoretical and empirical comparison

of threshold approaches used in the �eld of species distribution modeling is provided in

(C. Liu, White, and Newell, 2013). However, it is important to underline that all these

techniques do not generally provide the optimal classi�cation result. The usefulness of

such thresholds in terms of the minimum error rate depends on the speci�c classi�ca-

tion problem. Therefore, the result must be evaluated by the user based on the limited

reference data.

Besides the threshold selection, the solution by Bayes’ rule seems further interesting.

The derived posteriori probabilities can be used as input in advanced spatial smoothing

techniques (Roscher, Waske, and Forstner, 2012; Moser and S. B. Serpico, 2013) or for

combining OCC outputs of several classes in one map (Munoz-Mari et al., 2007; Guo

et al., 2012). With a posteriori probabilities it is also straightforward to consider di�er-

ent mis-classi�cation costs for false positive and false negative classi�cations (Bruzzone,
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2000). Finally, error probabilities (both the probability of omission and commission, i.e.,

false negative and false positive) can be estimated by integrating over the probability

densities (Minter, 1975). Unfortunately, it is very challenging to accurately estimate the

required quantities p(x i jy+ ), p(x i ), and P (y+ ), particularly, if the positive labeled train-

ing data is scarse and the dimensionality of the image is large. This is well known under

the terms Hughes phenomena or course of dimensionality (Hughes, 1968; Shahshahani

and Landgrebe, 1994).

In this paper we propose a user-oriented strategy to support the user in handling one-

class classi�ers for a particular classi�cation problem. Thus, the complicated handling of

one-class classi�ers can be overcome, the application of a state-of-the-art methodology is

advanced and the increased requirements for e�ective analysis of remote sensing imagery

may be easier ful�lled. In a nutshell, the user �rst performs any OCC, e.g., the BSVM as

in this study. To evaluate the classi�cation result, the continuous output of the one-class

classi�er is further analyzed, e.g., the distance to the separating hyperplane in case of the

BSVM. The distributions of the classi�er output and the positive and unlabeled training

data are visualized. If interpreted carefully, this diagnostic plot is very informative and

helps to understand (i) the discriminative power, or separability, of the classi�er; and

(ii) the suitability of a given threshold applied to convert the continuous output to class

estimates. In addition, a posteriori probabilities are estimated by solving Bayes’ rule

in the one-dimensional classi�er output space. Therefore, the thresholding problem is

objectively solved.

It is important to note that no new one-class classi�cation algorithm is introduced.

However, to the best of our knowledge the combination of a modern or state-of-the-art

one-class classi�ers, e.g., the BSVM, with subsequent analysis of the one-dimensional

one-class classi�er output space with Bayes’ rule has not been proposed before. Note,

that one of the most important advantage of this strategy is the ease of visualization in

one-dimensional feature space. In the absence of representative validation data, as in

the case of OCC applications, this is useful to evaluate the quality of particular model

outcomes, e.g., the continuous output, threshold, or a posteriori probabilitites. The

presented strategy should support the user in better understanding a particular one-class

classi�cation outcome in the absence of complete reference data. This is an important

component for successfully apply one-class classi�cation in real-world applications and

has not been addressed in previous studies. These studies propose particular solutions for

the problems of model and threshold selection and prove the functioning of the selected

approach by means of representative test sets. Testing new solutions by means of a

representative test set is an essential element in a scienti�c research papers. However, it

does not guaranteed that they perform well when applied on di�erent data sets in new

real-world applications. This is the case in general but particularly critical in one-class
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classi�cation where reference data is extremely limited. We want to stress that the results

of this strategy do not necessarily provide improved accuracies compared to other well

working approaches. However, they provide the user with easy to interpret information

in order to assess the quality of a selected threshold (see the synthetic example in

Section 2), estimated a posteriori probabilities (see the example in Section 5.1), and/or

the selected one-class classi�cation model (parameterization) (see the experiment in

Section 5.2). Therefore, poor solutions might be detected even without a representative

reference set which we believe to be of utmost value in real world applications.

This paper is structured as follows: In the the next section we present the proposed strat-

egy and illustrate it with a two-dimensional synthetic data set . The speci�c methods

for the implementation of the strategy are described in Section 3. The data and exper-

iments conducted to demonstrate the strategy are presented in Section 4. The results

are presented and discussed in Section 5. The conclusions close the paper in Section 7.

2 A User-Oriented Strategy for One-Class Classi�cation

In this section the strategy is illustrated by means of a two dimensional synthetic

data set. In two dimensions we can visualization the data and BSVM model (see Fig-

ure III.1 a.1, a.2) and should facilitate the understanding of this section and the strategy.

In practice, visualization of the original input feature space is usually not possible be-

cause high-dimensional data sets are used for classi�cation. Therefore, we recommend

the analysis of the classi�cation problem in the one-dimensional output space of a given

one-class classi�er, which can be visualized in practice (see Figure III.1 b.2).

The synthetic example is generated from three normal distributions (Figure III.1 a.1).

Two of the normal distributions belong to negative class, one with an a priori probability

of 0.96 and the other one with 0.02. The third normal distribution is assumed to generate

the data of the positive class with an a priori probability of 0.02. The positive class

overlaps with the \small negative distribution" but is well separable from the \large

negative distribution" (see Figure III.1 a.1). Additionally a test set X te consisting of

100,000 samples is generated from the three normal distributions according to their a

priori probabilities. First, a one-class classi�er g(�) is trained with the training data

x i 2 X tr ;PU with i 2 f 1; : : : ; I g, consisting of 10 positive and 250 unlabeled samples

(Figure III.1 a.1). In this paper the BSVM is used to implement g(�) (see also Section 3.2).

The example training set, the mixture of normal distributions p(x i ), the output of

the trained classi�er zi = g(x i ), and the default and optimal decision boundaries are

shown in Figure III.1 a.1, a.2. The default decision boundary of the BSVM, i.e., the

separating hyperplane orz = 0, and the optimal decision boundary are also shown in
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Figure III.1 a.2). The latter is derived by applying the maximum a posteriori rule on

the a posteriori probabilities derived by the known data generating distributions and a

priori probabilites. For explanation and visualisation purposes the synthetic dataset is

chosen to be two-dimensional and the optimal decision boundary is known because we

de�ned the data generating processes. However, for the proposed user-oriented strategy

for handling OCC, higher dimensional data can be used and the optimal trained classi�er

model need not to be known.

Second, the continuous classi�er outputs are predicted using the trained classi�er with

Z = g(X ). Figure III.1 b.2 shows the so-called diagnostic plot. It comprises the density

histogram of the predictions Z shown in gray and the distributions of the training data

Z PU = Z P [Z U , whereZ P (shown as blue boxplot) andZ U (shown as grey boxplot) are

the cross-validated predictions of the training setX tr ;P and X tr ;U . In order to ensure

that the predictions Z PU are not biased, the held-out predictions of a ten-fold cross

validation are used.

Third, a posteriori probabilities for the training sample set p(y+ jzi ) (see Figure III.1 b.1)

are derived with Bayes’ rule

p(y+ jzi ) =
p(zi jy+ )P (y+ )

p(zi )
(III.2)

wherezi 2 Z is the predicted value for samplex i (see also Equation (III.1)). In the same

way, the a posteriori probabilities for the test set pte(y+ jzi ) can be obtained. Thus the

estimation of the conditional probabilities p(y+ jzi ) and the a priori probabilities P (y+ )

are conducted in one-dimensional feature space. In this study a standard kernel density

estimation method is used for the estimation of the probability density functions (see

Section 3.2), but also other suitable density estimation techniques can be applied. The

estimation of the a priori probability is done using the approach of (Guerrero-Curieses

et al., 2002) and explained in detail in Section 3.3.

The diagnostic plot provides evidence on the plausibility of the Bayes’ analysis,i.e., the

estimated quantities p̂(zi jy+ ), P̂ (y+ ), p̂(zi ), p̂(y+ jzi ), and of given binarization threshold,

such � MAP derived from p̂(y+ jzi ) or the default threshold � 0 of the BSVM. It may thus

reveal if inadequate models are used for estimating these quantities and/or if critical

assumptions are violated. For example, a certain degree of class separability is usually

assumed for estimatingP (y+ ) (see Section 3.3). The visualized quantities in the diag-

nostic plot constitutes an informative source for interpretation and evaluation of the

classi�cation result, which is especially valuable if no complete and representative test

set is available. Therefore, if implausible estimates are diagnosed, the user can go back

to one of the previous steps in order to improve the results.
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Figure III.1: Illustration of the strategy with the two-dimensional synthetic data set.
The training data ( a.1) and the thereof derived BSVM model g(�) (a.2) are shown.
Compared to the default threshold of the BSVM � 0 the threshold derived from the a
posteriori probability � MAP is closer to the optimal threshold � OPT (b.1 ). The diagnos-
tic plot ( b.2 ) is useful to gain a rough idea of the accuracy of the one-class classi�cation
output and the plausibility of the estimated terms of the Bayes’ rule used to derive the
a posteriori probability. It shows the histogram of the predicted image, the distribution
of X tr ;PU in the output space of g(�), i.e., Z PU (boxplots), and the thereof derived
densities. In this example, the diagnostic plot gives evidence to rather trust� MAP than
� OPT (see Section 2 for a detailed explanation). This is con�rmed by the threshold
dependent accuracy assessment (b.3 ), which cannot be estimated in a OCC applica-
tion. Also implausible estimations of the required terms of the Bayes’ rule,i.e., p̂(zi ),
p̂(zi jy+ ), and P̂ (y+ ) can be detected and sometimes improved by simple approaches
(see (b.4 ) and (b.5 ), and Equation (III.5)). After the improvement, the estimated,
p(y+ jzi )COR , and test, p(y+ jzi )te , a posteriori probabilities are similar over the whole

output range (b.4 ). Please refer to the text for detailed explanations.

Let us �rst evaluate the two thresholds � 0 and � MAP based on the diagnostic plot (Fig-

ure III.1 b.2). It can be observed that � 0 and � MAP di�er signi�cantly. Apriori, we should

not prefer one of the two thresholds because if any of the estimates ^p(zi jy+ ), P̂ (y+ ), p̂(zi )

are not plausible � MAP can lead to poorer binary classi�cation result than � 0. Therefore,

careful interpretation is required in order to decide which threshold is more plausible.
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The histogram of Z shows two main clusters of data which are separated by a low density

region at zi � 0 (Figure III.1 b.2). The default threshold of the BSVM � 0 is located in

this low density region. It is tempting to believe that the data right of � 0 belong to the

positive class and left to the � 0 to the negative class. However, the distribution of the

positive data Z P (the blue boxplot in Figure III.1 b.2) does not support such believes.

It rather provides evidence that only a part of the data right to the low density area

belongs to the positive class. Under the assumptions that (i) the positive training data

X tr ;P contains representative samples of the positive class; and (ii) the cross-validated

values Z P of X tr ;P are not strongly biased, � MAP can be approved to be more suitable.

More precisely, if the Bayes’ analysis is valid, we have to expect that the threshold� 0

leads to a very high producer’s accuracy (i.e., true positive rate) but also a very low

user’s accuracy (i.e., a high false positive rate). Instead, with � MAP we can expect that

the producer’s and user’s accuracies for the positive class are rather balanced. It is

proved by the threshold dependent accuracies in Figure III.1 b.3 that this interpretation

is correct. Please note that if we would belief that (i) � 0 = 0 is a suitable threshold and

(ii) over-predictions of the hold-out predictions Z P are unlikely, than this implies that

the positive training set is not representative and does not cover an important part of

the positive class exhibiting di�ering spectral characteristics. In order to draw the right

conclusion, the user should recall all knowledge, expectations and believes to judge the

derived estimations.

This example also shows that the diagnostic plot is useful for understanding if the size

of unlabeled training data jX tr ;U j is suitable. RememberZ U are the cross-validated

predictions of the unlabeled training data X tr ;U and are visulized by the grey boxplot in

the diagnostic plot (Figure III.1 b.2). Here, the large part of the samples are located at

very low z-values and only seven samples,i.e., 3 % of the unlabeled samples, exhibitz �

0. This means that the most relevant region of the feature space,i.e., where the optimal

decision boundary should be located, is not sampled very well (see Figure III.1 a.2). This

also explains why the default BSVM threshold � 0 is very low. Therefore, in a practical

application we would rather re-train the BSVM with a more suitable, e.g., larger, set of

unlabeled training samples. Eventually, this could improve the discriminative power of

the model.

Let us now evaluate the a posteriori probabilities. Figure III.1 b.1 shows that the a

posteriori probabilities derived from the training and test sets are similar over a large

part of the output range. However, at high z-values p̂(y+ jzi ) is obviously implausible.

We reasonably assume that the a posteriori probability is monotonically increasing inz,

which is not the case in Figure III.1 b.1. Here, the drop of the a posteriori probabilities

are not plausible but rather an artifact of the non-matching densities in Figure III.1 b.2.
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Thanks to the simple structure of the one-dimensional feature space it is easy to correct

for such implausible e�ects as is shown in Figure III.1 b.4, b.5 (see Section 3.4).

It has already been argued in Section?? that there is no OCC approach which is likely

to perform optimally in all classi�cation problem. The same is true for the density and

a priori estimation approaches. Thus, it is not the objective of this paper to promote

any particular approach for g(�) or to derive p̂(zi jy+ ), P̂ (y+ ), p̂(zi ). Instead, it is rec-

ommended to start with simple approaches for all the steps, analyze the outcome and

improve or change the approximations where necessary.

3 Implementation of the Framework

In this section we shortly describe the methods used for the (i) one-class classi�cation;

(ii) density estimation; (iii) estimation of the prior probability; and (iv) optimization of

the density estimation, i.e., g(�), p(zi jy+ ), p(zi ), and P (y+ ). To keep the paper concise

only one method is considered for each of the estimation problems. However, the user

can chose among di�erent methods to �nd an optimal solution.

3.1 Biased Support Vector Machine

For the experiments in this paper the biased SVM (BSVM) (B. Liu et al., 2003) is used

to implement the one-class classi�erg(�). The BSVM is a special formulation of the

binary SVM which is adapted to solve the OCC problem with a positive and unlabeled

training set X tr ;PU .

Two mis-classi�cation cost terms C+ and C0 are used for the positive and unlabeled

training samples. If the unlabeled training set is large enough it contains a signi�cant

amount of positive samples. On the other hand, the positive training set is labeled and

therefore no or only few negative samples are contained in it. Thus, it is reasonable to

penalize the mis-classi�cations on the unlabeled training samples less strong. As in the

case of the binary SVM the kernel trick can be applied to create a non-linear classi�er by

�tting the separating hyperplane in a transformed feature space. The Gaussian radial

basis function is maybe the most commonly applied kernel and is also used here. Thus,

the inverse kernel width � needs to be tuned additionally to C+ and C0.

Tuning these three parameters is done by performing a grid search over the combina-

tions of pre-speci�ed parameter values. To select the optimal parameter combination

a performance criteria is required which is estimated from the positive and unlabeled

training data. Given the nature of the data, a reasonable goal is to correctly classify
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most of the positive labeled samples while minimizing the number of unlabeled samples

to be classi�ed as positives. This goal can be achieved by the performance criteria PCPU

(X. Li and B. Liu, 2003)

PCPU =
P (ŷ+ jy+ )2

P (ŷ+ )
(III.3)

where P (ŷ+ jy+ ) is the true positive rate and P (ŷ+ ) is the probability that a unlabeled

sample is classi�ed as positive. PCPU is estimated by cross-validation fromX tr ;PU .

The BSVM has been implemented in R (R Development Core Team, 2013) via the

package kernlab (Karatzoglou et al., 2004).

3.2 Density Estimation

For the estimation of p(zi jy+ ) an univariate kernel density estimation with adaptive ker-

nel bandwidth is used as implemented in the package pdfCluster (Azzalini and Menardi,

2014). An adaptive kernel density estimation has been selected due to the fact that

the size of Z P is relatively small. In contrast, p(zi ) can be estimated from the large

data set Z and thus, it is estimated by a univariate kernel density estimation with �xed

bandwidth. This is computationally feasible even with a large data set such asZ . Here

the implementation of the R base environment (R Development Core Team, 2013) is

used.

3.3 Estimation of the a priori Probability

The a priori probability P (y+ ) is estimated following the approach in (Guerrero-Curieses

et al., 2002), which is straightforward once the estimates ^p(zi jy+ ) and p̂(zi ) are avail-

able. Accurate estimation of p(zi jy+ ) and p(zi ) are thus a prerequisite for an accurate

estimation of P (y+ ). The approach assumes that the positive and the negative class

distributions do not overlap at the point ~z, i.e., p(~zjy� ) = 0. If this is true P (y+ ) can

be derived with the following equation

P (y+ ) =
p(~zjy+ )

p(~z)
(III.4)

In the experiments, the median of the cross-validated positive training samplesZ P

(the blue boxplots in the diagnostic plot) is used to determine ~z. The visualization of

the estimations p̂(zi ) and p̂(zi jy+ )P̂ (y+ ) allows to examine their plausibility and gives

evidence if the separability assumption is reasonable.
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3.4 Optimizing the Density Estimation

If p(zi jy+ ) and p(zi ) are estimated independently,p̂(zi jy+ ) can be adjusted to match with

p̂(zi ) at high z-values. For this region it is usually justi�able to assume that p(zi jy� )

equals zero, or equivalently, to assume that only the positive class contributes top(zi ).

Based on this assumption, ^p(zi jy+ ) can be adjusted by applying the following rule:

p̂COR (zi jy+ ) =

8
<

:

p̂(zi jy+ ) if z < z COR

p̂(zi )
P̂ COR (y+ )

otherwise
(III.5)

where zCOR is the z-value where p̂(y+ jzi ) �rst reaches one. This means that we force

P̂ (y+ )P̂COR (y+ ) to accurately correspond top̂(zi ) for high z-values (compare Figure III.1 b.4, b.5).

4 Data and Experiments

4.1 Data

In the experiments of this paper, a Hyperion spaceborne imaging spectroscopy dataset

(Figure III.2) is used to demonstrate the strategy. The data was acquired at 24 May

2012 over an agricultural landscape located in Saxony Anhalt, Germany (image center

latitude/longitude: 51 � 23001:6200N/11 � 44039:1200E). The Level 1 Terrain Corrected (L1T)

product of the image has been used. In order to further increase the geometric accuracy

the image was shifted with a linear transformation according to eight ground control

points selected uniformly over the image. The nominal size of a pixel at ground is 30 m.

Figure III.2: Image data and reference information used in the experiments.

From the 242 spectral bands 87 bands with low signal to noise ratio have been removed.

The remaining 155 bands are located in the spectral ranges 426 nm{1336 nm (88 bands),
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1477 nm{1790 nm (32 bands), and 1982 nm{2355 nm (35 bands). The pixel values of

each spectral band were independently linearly scaled between 0 and 1.

The reference data used in this study was provided by the Ministry of Agriculture and

Environment, Saxony Anhalt, Germany. The information was gathered in the framework

of the Integrated Administration and Control System of the European Union. In order

to receive �nancial support from the European Union the farmers need to declare the

outlines of the agricultural parcels and the land use/land cover. It is assumed that all

parcels of the classes of interest analyzed in this study (rapeseed and barley) have been

declared and that irregularities can be neglected.

To evaluate the proposed strategy, the speci�c objective in our study is the classi�cation

of rapeseed (Example A, Section 5.1) and barley (Example B, Section 5.2). While we

expect that the classi�cation of rapeseed is relatively simple, the classi�cation of barley

is more challenging due to parcel size and spectral ambiguities between di�erent cereal

crop types.

For each class of interest, the following steps are a carried out to create the training and

test sets. First, a fully labeled reference imageY corresponding to the Hyperion image

data X was created. The pixels within a parcel of the positive class were labeled positive

and all other pixels were labeled negative (Figure III.2). Additionally to Y we created

a reference setY INT without pixels at class borders, such that Y INT 2 Y , in order to

prevent dealing with mixed pixels (Table III.2). This was done by excluding the pixels

with positive and negative class occurrences in the spatial 3� 3 neighborhood.

X tr ;PU X te X te ;INT

Class P U P N P (y+ ) P U P (y+ )

Rapeseed 30 5000 96,787 775,317 0.11 63,924 732,540 0.08
Barley 75 5000 38,638 836,456 0.04 24,507 809,008 0.03

Table III.2: Overview over the number of positive(P), unlabeled (U) and negative
(N) training ( X tr ;PU ) and test set sizes, whereX te comprises all pixels of the test �elds

and X te ;INT only the interior �elds.

In order to generate the training set we randomly selected 50 parcels. The total number

of parcels available for the class rapeseed was 626 and for the class barley 315. The

positive training pixels X tr ;P were randomly selected among the non-border pixels of

these parcels to minimize the probability of outliers in the set. For the rapeseed ex-

periment we selected 30 and for the barley experiment 75 positive training samples. In

both experiments 5000 pixels were selected randomly from the whole image and used as

unlabeled training samples forg(�).

It is important to note that for a one-class classi�cation the required number of positive

labeled training data might be higher than in the case of supervised classi�cation in
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order to yield good classi�cation results. This is particularly true for approaches which

estimate a posteriori probabilities in high-dimensional feature space. The number of

labeled training samples used in many of these experiments are moderately to very

large, i.e., between 100 and 3000 (Jeon and Landgrebe, 1999; Mantero, Moser, and

S. Serpico, 2005; W. Li, Guo, and Elkan, 2011; Mu~noz-Mar�� et al., 2010; Marconcini,

Fernandez-Prieto, and Buchholz, 2014).

4.2 Experimental Setup

The two experiments presented in this paper are based on the data described in Sec-

tion 4.1 and the methods described in Section 3. They have been selected in order to

demonstrate the usefulness of the diagnostic plots in the context of model selection,

derivation of a posteriori probabilities, and threshold selection.

We �rst selected suitable model parameters for the BSVM based on PCPU (Equa-

tion (III.3)) by ten-fold cross-validation using the training set X tr ;PU . The cross-validation

is also used to generate the setsZ P and Z U used for constructing the diagnostic plots.

The �nal model is trained with the selected parameters and the complete training data

and used to derive the predicted image,i.e., Z .

Next, we estimate p(zi jy+ ) with Z P and p(zi ) with Z (see Section 3.2). With derived

density models and ~z derived from Z P we estimate P (y+ ) with Equation (III.4). Now

the a posteriori probability p(y+ jzi ) can be calculated by applying Bayes’ rule (Equa-

tion (III.2)) which also gives the � MAP . Finally, Equation (III.5) is used for correcting

p(zi jy+ ) and p(y+ jzi ) at high z-values.

Based on these estimates we construct the diagnostic plots.

With the test set X te we perform an accuracy assessment for the binary classi�cation

results over the whole range of possible thresholds. Additionally to the confusion ma-

trix we derive the overall accuracy (OA), Cohen’s kappa coe�cient ( � ), the producer’s

accuracy (PA), and the user’s accuracy (UA) for the whole range of possible thresholds.

Three thresholds are of particular interest: the \default" threshold � 0, i.e., 0 and corre-

sponds to the hyperplane of the BSVM, the maximum a posteriori threshold� MAP i.e.,

the the z-value where p(y+ jzi ) �rst exceeds 0.5, and the optimal threshold � OPT i.e.,

the threshold which maximizes � . It is worth to underline that � OPT cannot be derived

in context of a real application, due to the incomplete reference data. However, it is

used to analyze the experimental results.
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The a posteriori probabilities are evaluated by estimating p(zi ), p(zi jy+ ), P (y+ ) and

p(y+ jzi ) with the test sets X te and X te;INT . Whereas, X te;INT better represents the

population from which the positive samplesX tr ;P have been sampled.

For the class barley di�erent diagnostic plots are generated to assess the potential of the

plots in context of model selection. This experiment shows that the diagnostic plot can

be helpful for manual model selection when the automatic selection process, here based

on PCPU , selects an unconvincing model.

The statistical signi�cance of the di�erence in accuracy has been evaluated a two-sided

test based on the kappa coe�cient (Foody, 2004) for all compared binary classi�cation

results. The widely used 5 percent level of signi�cance has been used for determining if

there is a di�erence. Note, that due to the high amount of test samples also relatively

small di�erences in accuracy are signi�cantly di�erent.

5 Results and Discussion

5.1 Experiment 1: Rapeseed

The class rapeseed can be classi�ed with very high accuracy. Table III.3 show the confu-

sion matrices and additional accuracy measures given the three thresholds� 0 (at z = 0),

�̂ MAP (at z = � 0:17), and � OPT (at z = � 0:42). The overall accuracy and kappa coef-

�cients exceed 97 % and 0.85 respectively given any of the three thresholds. Although

the three thresholds provide comparable kappa coe�cients are statistically signi�cant

at a 5 % percent level of signi�cance (Foody, 2004).

� 0 �̂ MAP � OPT

(+) ( � ) UA (+) ( � ) UA (+) ( � ) UA

(+) 80,941 4838 94.4% 83,119 5906 93.37% 85,899 8057 91.4%
(� ) 15,846 770,479 97.98% 13,668 769,411 98.25% 10,888 767,260 98.6%
PA 83.6% 99.4% PA 85.9% 99.2% PA 88.8% 99%

OA/ � 97.6%/0.87 97.8%/0.88 97.8%/0.89

Table III.3: Confusion matrices and accuracy measures for the class rapeseed given
the threshold � 0 obtained by the BSVM (left), �̂ MAP obtained by Bayes’ rule (middle),

and the optimal threshold � OPT (right).

These �ndings are clearly re
ected in the diagnostic plot (Figure III.3b). The predictive

values of the positive classZ P (shown as blue boxplot) correspond well with a distinctive

cluster of predicted unlabeled data with high z-values. The wide low density range

separating the two clusters corresponds to the wide range of thresholds leading to high

classi�cation accuracies. In this experiment, we can be con�dent to derive a good binary

classi�cation result with any threshold in the low density range.
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Figure III.3: A posteriori probability ( a), diagnostic plot (b) and the threshold
dependent accuracy (c) for the rapeseed example. Optimizing the conditional density

(see Section 3.4) leads to improved a posteriori probabilities at highz-values (d,e).

The visual assessment of the classi�cation and error maps underlines this �ndings (Fig-

ure III.4). It is well known, that spectral properties of boundary pixels might be

a mixture between both classes (e.g., two di�erent crop types). Consequently these

mixed pixels do not represent either of the two land cover classes and consequently a

mis-classi�cation is more likely to occur.

Deriving accurate a posteriori probabilities is more challenging, particularly with few

positive training samples, as in the case here. Under the assumption that the data of the

right cluster in Figure III.3b belongs to the positive class, the distributions p̂(zi jy+ )P̂ (y+ )

and p̂(zi ) should coincide in this range. However, ^p(zi jy+ )P̂ (y+ ) is less skewed towards

high z-values than p̂(zi ).

We assume the reason for the discrepancy to be the size of positive training data. It

is possible that the small size,i.e., 30, is not su�cient to accurately capture the real

distribution of the positive class. Moreover, one may argue that the redundancy is

relatively low in a small training data set. When performing cross-validation with such

a small set the hold out predictions are more likely to exhibit signi�cantly lower values

compared to the predictive values of similar data points predicted with the �nal model

trained with all samples. Furthermore, if p̂(zi jy+ ) cannot be trusted it is unlikely that

Equation (III.4) provides an accurate estimate of P̂ (y+ ).

The visualization of the estimated densities (Figure III.3b) and a posteriori probabili-

ties (Figure III.3a) supports the identi�cation of implausible estimations and helps to



5. RESULTS AND DISCUSSION 57

Figure III.4: Classi�cation ( upper image and bottom left im-
age) and test errors (middle image and bottom right im-
age) for the class rapeseed realized with the threshold �̂ MAP

(see Figure III.3, Table III.3).

�nd more suitable solutions. To improve the a posteriori probabilities, P̂ (y+ ) has been

re-calculated by the fraction of pixels with z � � 0:25, i.e., in the middle of the low den-

sity area. Regarding the visual interpretation of the diagnostic plot and the clear high

separability of the classes, it seems adequate to re-calculatêP (y+ ) by this approach.

Remember that P̂ (y+ ) is calculated by p̂(~zjy+ )
p̂(~z) , where ~z is the median of Z P (see Sec-

tion 3.3). Due to the fact that (i) p̂(zi jy+ ) and p̂(zi ) do not match very well at ~z and (ii)

the separability is very high it is likely that the alternative way of estimating P (y+ ) is

more accurate.

Then the adjusted p̂COR (zi jy+ )P̂ (y+ ) (Equation (III.5)) has been used to estimate the a

posteriori probability. Figure III.3d,e show that these solutions substantially improved

p̂(y+ jzi ), which remains at a constant value of one for highz-values. Over the complete

range ofz it is now very close topte;INT (y+ jzi ), i.e., the a posteriori probabilities derived

with the test set without boundary pixels (Figure III.3d,e). As expected, a stronger

discrepancy exists between ^p(y+ jzi ) and pte(y+ jzi ) due to the in
uence of mixed pixels

and geometric inaccuracies.

5.2 Experiment 2: Barley

As already underlined, in a practical OCC application no complete and representative

validation set is available. Therefore, the OA or other accuracy measures based on

complete validation sets cannot be estimated and cannot be used for the task of model
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selection. Instead, alternative performance measures, such as PCPU (Equation (III.3)),

are used which can be derived from PU-data. However, as is the case in this experi-

ment, these measures do not consequently lead to the optimal models in terms of the

classi�cation accuracy. In this experiment a positive but noisy relationship exists be-

tween PCPU and the OA (see Figure III.5a). The noisiness is typical for PU-performance

measures is a problem, as in this experiment, when the highest PCPU value points to

a model with relatively low overall accuracy. Assuming the optimal threshold can be

found, the selected model (model b in Figure III.5) leads to an overall accuracy of 97.0%

(� = 0 :57) while the optimal model (model g in Figure III.5) to an overall accuracy of

97.9% (� = 0 :73).

Figure III.5: (a) Optimization criteria PC PU and maximum overall accuracy OA of
BSVM models with di�erent parameterizations. The highest PC PU (b) has relatively
low OA. The diagnostic plots of the seven models with highest PCPU (black points in
(a)) are shown in (b{ h). (e) is a reasonable choice because the positive data is well
clustered at high z-values and it can be best associated with a distinct bunch of data

in the histogram and p(zi ).

It is shown in Figure III.5 that comparing the diagnostic plots of di�erent models can

support the selection of a more suitable model when the automatic approach fails. In or-

der to select a more accurate model the user can sequentially analyze the diagnostic plot

of other models, e.g., in decreasing order of the optimization criteria PCPU . Between

di�erent diagnostic plots we would select the one where (i) the positive dataZ P is most

concentrated at high z-values and (ii) where these samples correspond to a distinctive

cluster of unlabeled data. Following these rules we would select the model shown in

Figure III.5e out of the seven options shown in Figure III.5b{h. Table III.4 shows the
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accuracies, given� OPT , of (i) the model with maximum PC PU (model b, see also Fig-

ure III.5b); (ii) the model selected manually following the argumentation above (model

e, see also Figure III.5e); and (iii) the model with the highest overall accuracy (model g,

see also Figure III.5g). The overall accuracy/kappa coe�cient of the manually selected

model (97.7%/0.68) is 0.7%/0.11 higher than the ones of the model with maximum PCPU

(97.0%/0.57) and only 0.02%/0.04 smaller than the model with highest overall accuracy.

Thus, in this experiment the diagnostic plot helps to select a model with signi�cantly

higher discriminative power compared to the model selected by maximizing PCPU (see

Figure III.4). The �ndings are con�rmed by a signi�cance test returning statistically sig-

ni�cant di�erences of the kappa coe�cients at a 5% percent level of signi�cance (Foody,

2004).

� OPT ,b � OPT , e � OPT , g
(+) ( � ) UA (+) ( � ) UA (+) ( � ) UA

(+) 18,530 6022 75.5% 23,158 5039 82.1% 24,904 4821 83.7%
(� ) 20,108 830,434 97.6% 15,480 831,417 98.2% 13,734 831,635 98.4%
PA 48.0% 99.3% 60.0% 99.4% 64.5% 99.4%

OA/ � 97.0%/0.57 97.7%/0.68 97.9%/0.72

Table III.4: Confusion matrices and accuracy measures given� OPT for the model b
selected by maximizing PCPU (b), the manually selected model (e), and the optimal
model, in terms of the maximum OA (f). See also the corresponding diagnostic plots

in Figure III.5b,e,g.

Based on the diagnostic plot of the manually selected model (Figure III.6) a substantial

amount of mis-classi�cations has to be expected. Contrary to the rapeseed example

(Figure III.3) there is no low density region separating the positive and negative class

regions. Thus, the distributions of the two classes overlap and lead to signi�cant mis-

classi�cations for any given threshold (Table III.5). As in the rapeseed example, the three

thresholds provide comparable accuracies but due to the high amount of test samples

the di�erences between the kappa coe�cients are statistically signi�cant at a 5% percent

level of signi�cance (Foody, 2004).

Also, the classi�er performance, which is limited in comparison to the accuracies pro-

vided for rapeseed, can be assessed by the diagnostic plot. The analysis of the diagnostic

plot (Figure III.6b) underlines among others the threshold dependent trade-o� between

false positive and false negative classi�cations. Starting from� 0 = 0 and moving the

threshold to the left apparently increases the false negative classi�cation stronger than

it reduces the false negative classi�cations. This can be concluded by the steep slope of

p̂(zi ) in this region.

The higher class overlap in the feature space is also underlined by the visual interpreta-

tion of the classi�cation map (Figure III.7). As in the rapeseed example, several boudary
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Figure III.6: A posteriori probabilities, diagnostic plot, and threshold dependent
accuracy for the manually selected model (a{ c) and the optimal model (d{ f ) of the

barley example (see also Figure III.5).

� 0 �̂ MAP � OPT

(+) ( � ) UA (+) ( � ) UA (+) ( � ) UA

(+) 24,016 5890 80.3% 26,364 9939 72.6% 23,158 5039 82.1%
(� ) 14,622 830,566 98.27% 12,274 826,517 98.54% 15,480 831,417 98.2%
PA 62.2% 99.3% 68.2% 98.8% 59.9% 99.4%

OA/ � 97.7%/0.69 97.5%/0.69 97.7%/0.68

Table III.5: Confusion matrices and accuracy measures for the class barley realized
with the manually selected model (see Figure III.5e) given the threshold� 0 obtained by
the BSVM (left), �̂ MAP obtained by Bayes’ rule (middle), and the optimal threshold

� OPT (right)

pixels are missclassi�ed. The errors at the class border are mainly false negatives, which

is in contrast to the rapeseed example where false positives and false negatives occurred

in similar amounts. However, the signi�cant amount of false negatives was to be ex-

pected, regarding the visual interpretation of the diagnostic plots. As in other studies,

these mis-classi�cations �rstly occur at pixels which lie along the boundaries of two

objects, e.g., two �eld plots. Moreover, some complete mis-classi�ed �elds are obvi-

ous in the north of the study site. However, it is well known that the classi�cation of

agricultural areas can be a�ected by site-internal variations. Therefore we assume the

reason for the mis-classi�cations to be crop growing conditions, which are di�erent in

the a�ected part of the study area.

At this point it is also worth noting that the diagnostic plot extends the interpretability

of the classi�cation map alone (Figure III.7). Usually, noisier classi�cation results ( i.e.,
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maps with a strong \salt and pepper" e�ect), such as the map in Figure III.7, are assumed

to contain more errors. Although this assumption might be ful�lled in speci�c case

studies (e.g., (Waske and Braun, 2009)), it is not generally recommendable to base

decisions related to model or threshold selection on the appearance of the classi�cation

map alone. For example, a lower threshold could lead to a less noisy classi�cation map

because the additional false positives possibly occur in clumps, e.g., in the �elds of the

most similar land cover class. As discussed before, careful analysis of the distributions

of Z P and Z reveal such over-predictions.

The example also shows that the derivation of accurate a posteriori probabilities is

challenging in the case of strongly overlapping classes (Figure III.6). Here, ^p(y+ jzi )

deviates signi�cantly from both pte(y+ jzi ) and pte;INT (y+ jzi ). Nevertheless, this seems

expectable following the interpretation of the diagnostic plot and the proposed strategy.

Remember that the estimation of P̂ (y+ ) is based on the assumption thatP̂ (y� ) is zero

at the median of Z P (Equation (III.4)). But in this example it is unlikely that the

assumption holds because ^p(zi ) rises steeply just to the left of this point. Therefore, it

has to be assumed that there is still a signi�cant negative density at ~z = 0 :36, resulting

in a smaller P̂ (y+ ), lower p̂(zi jy+ )P̂ (y+ ), and a shift of the p̂(y+ jzi )-curve towards higher

z-values.

Figure III.7: Classi�cation and test errors for the class barley realized with the
manually selected model and the threshold̂� MAP (see Figure III.6 and Table III.5).
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6 Conclusions

In the presented study, a novel strategy for solving the problem of one-class classi�ca-

tion was proposed, tested in experiments, and discussed in the context of classifying

hyperspectral data. Although various approaches have been introduced, the generation

of accurate maps by one-class classi�ers is challenging, due to the incomplete and un-

representative reference data. As a matter of fact the model and threshold selection,

cannot be solved based on traditional accuracy metrics, such as the overall accuracy

or the kappa coe�cient. Thus, the classi�cation does not necessarily lead to optimal

results.

The novelty and potential of the presented strategy lies in the analysis of the one-

dimensional output of any one-class classi�er. Based on our experiments, it can be

assessed that the proposed framework for analyzing and interpreting the classi�er out-

puts can reveal poor model and/or threshold selection results. A proposed diagnostic

plot for one-class classi�cation results supports the user in understanding the quality

of a given one-class classi�cation result and enables the user to manually select more

accurate solutions, whether an automatic procedures failed. Furthermore, it has been

shown that reliable a posteriori probabilities with small positive training sets can be de-

rive in the one-dimensional output space of any one-class classi�er. Overall, due to the

proposed strategy, the use of state-of-the-art OCC can be advanced and the increased

requirements for e�ective remote sensing image analysis of recent data may be easier

ful�lled.

Future work should extend the strategy to the more general partially supervised classi-

�cation problem, i.e., when more than one classes have to be mapped.

The implementations described in this paper have been implemented in theR software

and are partially available in the packageoneClass. The package is available via github

(Mack, 2014) and can be installed directly from within R.
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1 Findings

In this thesis one-class classi�cation, an advanced learning paradigm for classifying re-

mote sensing data, has been investigated from the practitioner’s perspective. The main

objective was to enhance the usability of one-class classi�cation methods for users with

limited background in �elds such as computing methodologies, machine learning, pattern

recognition and statistical learning. With one-class classi�cation methods it is possible

to map a speci�c class of interest (or positive class) by training a model with labeled

samples of this class but without the need of a representative set of counter-class (or

negative class) labeled sample. Obviously, this is particularly interesting when reference

data collection is expensive which is often the case.

In Chapter I it has been shown theoretically that OCC models based on positive labeled

and unlabeled data (PU-learner) can be as good as fully supervised binary classi�ers.

Instead, the potential performance of models based on positive data only (P-learner) is

lower for typical classi�cation problems. This has been con�rmed empirically in Chap-

ter II based on a variety of classi�cation problems. On average over all these experiments

the potential performance of the biased SVM (a PU-learner) has been shown to be simi-

lar to a fully supervised binary SVM while OCSVM (a P-learner) performed signi�cantly

poorer. The potential performance of MaxEnt (a PU-learner) was of special interest since

it is one of the most frequently used approaches in applied OCC studies. It performed

better than OCSVM but not as good as the biased SVM. However, the potential per-

formance of the base algorithms could not be achieved by any of the various parameter

and threshold selection combinations that have been investigated for each of the three

base classi�cation algorithms. This shows how critical model (parameter and threshold)

selection is in OCC applications and how unreliable fully-automatic approaches are.

In Chapter III a user-oriented strategy for OCC has been presented which is based on the

visualization and interpretation of the outcome of any one-class classi�er. A diagnostic

plot has been introduced which fosters the understanding of the result in terms of class

separability and the suitability of a particular threshold. Comparing such diagnostic

plots allows to identify poor models and improve the results by manually selecting more

suitable parameter and/or threshold settings. The informativeness of the diagnostic

plot and the suitability of the strategy for improving poor automatic selections has

been demonstrated based on exemplary one-class classi�cation problems. The tools for

the presented analysis strategy together with an interface to the one-class classi�ers

OCSVM, biased SVM and MaxEnt has been implemented in the open-source R package

oneClass(Mack, 2017).
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Finally, in Chapter IV the focus was on a particularly challenging application of one-

class classi�cation. First, the number of labeled training samples for the class of interest

(raised bogs) was very small (31). Second, the class of interest was rare in the study

site (< 1 % of the mapped area) leading to the complicating situation of imbalanced

classes and eventually small negative disjuncts overlapping with the class of interest (see

Chapter I Section 2.4). In the study an algorithm has been proposed which is particu-

larly designed for such situations. In an iterative pre-classi�cation step, easy to classify

negatives are classi�ed and removed from subsequent analysis. As a consequence, the

dataset remaining in the �nal classi�cation stage is much more balanced which allows

for the application of parameter and threshold selection approaches that would not be

possible otherwise. In the presented study a joint parameter and threshold selection

approach based on a normal mixture model has been developed which automatically se-

lected an accurate and suitable model. As a useful by-product it provides an extension

of the diagnostic plots developed in Chapter III which helps the user to better rate the

outcome of the automatic algorithm in the absence of complete and representative test

data.

2 Conclusions and Recommendations

OCC algorithms potentially perform as good as fully supervised binary classi�ers. How-

ever, in order to realize the full potential of OCC, it is in many cases necessary to use

OCC algorithms that are considered more di�cult to handle from the user’s perspec-

tive1. Thus, it is not a good idea to blindly rely on fully-automatic model selection

algorithms but instead critically analyze the classi�cation outcomes. The strategy and

tools developed in this thesis are useful in this respect.

It is also worth stressing the informativeness of reporting the potential performance of

a base classi�er together with the performance realized by a model selection approach.

This information is important in order to better understand the di�erent components

of a one-class classi�er. In contrast to most, if not all, comparative studies, this in-

formation has been included in the in-depth comparison presented in Chapter II. The

crucial information derived is the high performance loss due to any of the parameter

and threshold selection approaches. Without this information a user might conclude:

"Biased SVM with the best parameter and threshold selection approach performs only

slightly better than MaxEnt with default parameters and a suitable threshold selection

approach. I accept this and spare myself the time to tackle the biased SVM since it
1 "While for Maxent and BRT, the technique is straightforward, the biased SVM approach required

more e�ort in model selection and parameter tuning, as compared to the other classi�ers" (Skowronek,
Asner, and Feilhauer, 2017).
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is new to me." With this information and being con�dent in manually analyzing and

eventually correcting poor automatic parameters and thresholds selections the conclu-

sion might be: "On average the potential accuracy of biased SVM is substantially higher

than the accuracy of MaxEnt. I will take my time to handle this method even though

it is new to me."

Sometimes the conclusions of a study might also be misleading without this informa-

tion. For example, (Chen et al., 2016) investigate the performance of the PUL-algorithm

(Elkan and Noto, 2008) dependent on the number of unlabeled training samples. They

observe a performance drop when the number of unlabeled training samples increases

with respect to the positive labeled training samples and conclude that "a balanced pos-

itive and unlabelled sample size is recommended when PUL-SVM is used" (Chen et al.,

2016 p.1070). Note that the threshold selection implemented in the PUL-algorithm is

a crucial part of the implementation. A natural question is if the performance drop

is due to a poor threshold selection or if any potential threshold perform poor. This

question can easily be answered by reporting the potential performance. But why is

this important to know in order to increase the informativeness and relevance of the

study? First, recall the problem of imbalanced data sets and potential overlap with

small negative disjuncts (see Section 2.4). It has been argued that in such a case it can

be important to sample a large amount of unlabeled training samples for building an

accurate model. In such a case, it is possible that the potential accuracy increases with

an increasing number of unlabeled training samples even though the accuracy of the

classi�cation approach based on a speci�c threshold selection drops. As a consequence,

the conclusion should be that { in case the class of interest is rare in the study area, it

might require a large number of unlabeled training samples and an adjustment of the

default threshold. Instead, if also the potential accuracy drops with a large number of

unlabeled samples the conclusion would be that the PUL-algorithm { as it is imple-

mented in this study2 { is eventually not suitable for an application where the classes

are imbalanced. In the comparative analysis presented by (Chen et al., 2016) the image

size is very small (400� 400 pixels) and the class distribution is fairly balanced. In many

real-world applications this is not the case and it is important to discuss the problem

of imbalanced data when making recommendations about the usage of unlabeled sam-

ples based on such ideal datasets. The potential performance facilitates such a critical

discussion.

Note that in the �eld of machine learning from imbalanced data (Provost, 2000) stresses
2 In this study the implementation is based on a SVM using only the default parameter settings of the

SVM in ENVI 4.8 which is also questionable since it is known that the accuracy of the SVM is sensitive
to the parameter setting.
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the large number of studies where up- or down-sampling does or does not solve the im-

balance problem. However, "in most of these studies, it never even was asked whether

simply setting the output threshold correctly would be su�cient; without doing so the

research may be misleading" (Provost, 2000 p. 2). As in the case of OCC studies, re-

porting the best potential accuracy is not only relevant for users to make more informed

decisions when selecting candidate classi�ers for an application. It also helps develop-

ers to prioritize research that best advances the �eld of OCC in remote sensing. It

is therefore strongly recommended that studies in the �eld of OCC, particularly when

introducing new methods, include the potential performance of the investigated base

algorithm(s).

3 Prospect

The usefulness of the user-guided model selection based on the developed diagnostic plot

has been shown. Still, there is a high potential to build better analytic tools for solving

real-world OCC problems. Certainly, OCC methods are more likely to be used in real-

world applications when a powerful and user-friendly system for human-guided model

selection is available. Its design should be a research focus and priority of the developer

and user community and { from the user’s perspective { is more relevant than yet another

speci�c OCC algorithm. For example, (Provost and Fawcett, 2001) proposed a robust

classi�cation strategy for imprecise environments. According to the authors, the strategy

is "e�cient and incremental, minimizes the management of classi�er performance data,

and allows for clear visual comparisons and sensitivity analyses." The system is based

on the receiver operating characteristic curve (ROC) and since it is valid to build the

ROC with PU-data and rank the predictive power of di�erent classi�ers for a given false

negative rate (Phillips, Anderson, and Schapire, 2006) it should be possible to adapt

this strategy for OCC. The diagnostic plot introduced in Chapter III is complementary

to this strategy and together the two approaches can lead to an improved user oriented

system for an e�cient user-guided selection of a suitable solution from a large amount

of potential one-class classi�cation models.

One of the most interesting recent trends in remote sensing is large area mapping at high

resolution (10m{30m) (Ozdogan, 2015; G�omez, White, and Wulder, 2016) which is pos-

sible thanks to freely available Landsat, Sentinel-2 and Sentinel-1 data. This opens the

door to new remote sensing based mapping applications, many of them focusing on one

or a few speci�c classes. State-of-the-art approaches rely on spatially contiguous best-

available-pixel composites (Gri�ths et al., 2013; White et al., 2014), spectral-temporal

metrics (Potapov et al., 2012) and/or constructed dense time-series (Hermosilla et al.,
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2016; Vuolo, Ng, and Atzberger, 2017). The creation of training datasets required for

successfully classifying such features over large areas can be very demanding.In general,

the class distributions in such feature spaces are much more complex compared to those

in datasets of smaller areas and full-scene features. This is a consequence of the higher

variability of the manifestation class of interest on the ground. Furthermore, the fea-

tures are less homogeneous compared to the full-scene features mainly dependent on the

number and acquisition time of the valid observations they are derived from. As a con-

sequence, the classi�cation accuracy can decrease critically when the distance between

the training data and the classi�ed data increases (Pelletier et al., 2016).

It is worth to distinguish two typical reference data scenarios for large area mapping:

On the one hand, existing large area covering in-situ reference databases (Mack et al.,

2016) or existing (out-dated and/or coarse resolution) maps (Zhu et al., 2016) exist and

can be used to derive the training dataset for the class of interest and the counter-

class. In this case, OCC is probably not a good choice but instead the focus should

be on selecting a suitable number of samples from the high amount of possible ones

(Zhu et al., 2016) and/or on cleaning the dataset from label noise. In another case,

no auxiliary reference dataset is available that can be used, e.g. because the class of

interest is a new phenomena in the area (e.g. invasive species) or the spatial location of

the class is not persistent over time (e.g. annual crops) which makes out-dated products

uninformative for the current situation. In such a situation OCC is obviously attractive

since it spares the user from generating a representative negative training set. However,

due to the above mentioned reason, even the generation of a representative positive class

training set is challenging for large areas. Active learning (Tuia, Pasolli, and Emery,

2011) is another advanced machine learning paradigm that is worth implementing in

combination with OCC. The idea of active learning is that the learning algorithm starts

with a small reference data set to build a model. Then a query algorithm selects the

most informative sample(s) to be labeled by an expert. The newly labeled samples can

then be used in order to improve the model. These steps are repeated until a suitable

stop criteria is reached. Combining active learning and OCC is a particularly interesting

research direction which might critically reduce the cost for single-class mapping over

large areas. However, substantial adaptation is required to combine the two learning

paradigms and make them suitable for the large datasets to be processed in large area

applications. One strategy might be to �rst derive a representative positive training set

using active learning and a P-classi�er (e.g. similar to Furlani et al., 2012). Next, the

derived P-dataset can be used to derive a subset of the whole data such that the true

positive rate is high while a considerable false positive rate can be accepted (e.g. similar

to the pre-classi�er in Chapter IV). Then the �nal classi�cation can be solved on the

subset by any suitable one-class classi�cation approach or by building a binary classi�er
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based on active learning. It needs to be investigated how the individual core elements

as well as the overall processing work
ow need to be designed in order to cope with the

immense computational cost of large area datasets.
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