Appendix A

Some inequalities

Young's Inequality Suppose that $1<p, q<+\infty$ and $1 / p+1 / q=1$. Then

$$
\begin{equation*}
|a b| \leq \frac{1}{p} \epsilon^{p}|a|^{p}+\frac{1}{q} \epsilon^{-q}|b|^{q}, \quad \forall a, b \in \mathbb{R}, \forall \epsilon>0 . \tag{A.1}
\end{equation*}
$$

Hölder's Inequality Suppose that $1<p, q<+\infty$ and $1 / p+1 / q=1$. Then

$$
\begin{equation*}
|x y| \leq\|x\|_{p}\|y\|_{q}, \quad \forall x, y \in \mathbb{R}^{n} \tag{A.2}
\end{equation*}
$$

Gronwall's Lemma Let $c \in L^{\infty}(0, T)$ and $a \in L^{1}(0, T)$ denote non-negative functions. If a function $u \in L^{\infty}(0, T)$ satisfies

$$
\begin{equation*}
0 \leq u(t) \leq c(t)+\int_{0}^{t} a(s) u(s) d s, \quad \text { a.e. in }(0, T) \tag{A.3}
\end{equation*}
$$

then

$$
\begin{equation*}
0 \leq u(t) \leq c(t)+\int_{0}^{t} c(c) a(s)\left(\int_{s}^{t} a(\tau) d \tau\right) d s, \quad \text { a.e. in }(0, T) \tag{A.4}
\end{equation*}
$$

In particular, if $c(t)=c$ and $a(t)=a$ for almost every $t \in(0, T)$, then

$$
\begin{equation*}
0 \leq u(t) \leq c \exp (a t), \quad \text { a.e. in }(0, T) \tag{A.5}
\end{equation*}
$$

Embedding Theorems Let Ω be a bounded open subset of \mathbb{R}^{n}, with a piecewise smooth boundary, i.e., $\partial \Omega \in C^{0,1}$. Assume $u \in W^{k, p}(\Omega)$. (i) If

$$
\begin{equation*}
k<\frac{n}{p} \tag{A.6}
\end{equation*}
$$

then $u \in L^{q}(\Omega)$, where

$$
\begin{equation*}
\frac{1}{q}=\frac{1}{p}-\frac{k}{n} . \tag{A.7}
\end{equation*}
$$

We have in addition the estimate

$$
\begin{equation*}
\|u\|_{L^{q}(\Omega)} \leq C\|u\|_{W^{k, p}(\Omega)}, \tag{A.8}
\end{equation*}
$$

the constant C depending only on k, p, n and Ω. (ii) If

$$
\begin{equation*}
k>\frac{n}{p} \tag{A.9}
\end{equation*}
$$

then $u \in C^{k-\left[\frac{n}{p}\right]-1, \gamma}(\bar{\Omega})$, where

$$
\gamma=\left\{\begin{array}{c}
{\left[\frac{n}{p}\right]+1-\frac{n}{p}, \quad \text { if } \frac{n}{p} \text { is not an integer },} \tag{A.10}\\
\text { any positive number }<1, \text { if } \frac{n}{p} \text { is an integer. }
\end{array}\right.
$$

We have in addition the estimate

$$
\begin{equation*}
\|u\|_{C^{k-\left[\frac{n}{p}\right]-1, \gamma}(\bar{\Omega})} \leq C\|u\|_{W^{k, p}(\Omega)}, \tag{A.11}
\end{equation*}
$$

the constant C depending only on k, p, n, γ and Ω.
Rellich-Kondrachov Compactness Theorem Assume Ω is a bounded open subset of $\overline{\mathbb{R}^{n}}$, and $\partial \Omega$ is C^{1}. Suppose $1 \leq p<n$. Then

$$
\begin{equation*}
W^{1, p}(\Omega) \subset \subset L^{q}(\Omega) \tag{A.12}
\end{equation*}
$$

for each $1 \leq q<p^{*}$.
Generalized Poincaré Inequality Let Ω be a bounded open subset of \mathbb{R}^{n}, with a piecewise smooth boundary, i.e., $\partial \Omega \in C^{0,1}$. Then there exists a constant c_{p} depending only on Ω such that

$$
\begin{equation*}
\|u\|_{L^{2}(\Omega)} \leq c_{p}(\Omega)\left\{\|\nabla u\|_{L^{2}(\Omega)}+\left|\int_{\Omega} u(x) d x\right|\right\}, \quad \forall u \in H^{1}(\Omega) \tag{A.13}
\end{equation*}
$$

Gagliardo-Nirenberg Inequality Let Ω be a bounded domain in \mathbb{R}^{n} with boundary $\partial \Omega$ of class C^{m} and let $u \in W^{m, r}(\Omega) \cap L^{p}(\Omega)$ where $1 \leq r, q \leq \infty$. For any integer $j, 0 \leq j<m$ and any $j / m \leq \vartheta \leq 1$ we have

$$
\begin{equation*}
\left\|D^{j} u\right\|_{0, p} \leq C_{g}\|u\|_{m, r}^{\vartheta}\|u\|_{0, q}^{1-\vartheta} \tag{A.14}
\end{equation*}
$$

provided that

$$
\begin{equation*}
\frac{1}{p}=\frac{j}{n}+\vartheta\left(\frac{1}{r}-\frac{m}{n}\right)+(1-\vartheta) \frac{1}{q}, \tag{A.15}
\end{equation*}
$$

and $m-j-n / r$ is not a nonnegative integer. If $m-j-n / r$ is a nonnegative integer (A.14) holds with $\vartheta=j / m$.

