Chapter 2

Statement of the problems and assumptions

Let be $\Omega \subset \mathbb{R}^{3}$ an open, bounded domain with boundary $\Gamma=\partial \Omega$ and ν the outer unit normal on Γ. In the sequel, $|\Omega|$ denotes the Lesbegue measure of Ω. We denote by $L^{p}(\Omega), W^{k, p}(\Omega)$ for $1 \leq p \leq \infty$ the Lesbegue spaces and Sobolev spaces of functions on Ω with the usual norms $\|\cdot\|_{L^{p}(\Omega)},\|\cdot\|_{W^{k, p}(\Omega)}$, and we write $H^{k}(\Omega)=W^{k, 2}(\Omega)$ (see [13]). For a Banach space X we denote its dual by X^{*}, the dual pairing between $f \in X^{*}, g \in X$ will be denoted by $\langle f, g\rangle$. If X is a Banach space with the norm $\|\cdot\|_{X}$, we denote for $T>0$ by $L^{p}(0, T ; X)(1 \leq p \leq \infty)$ the Banach space of all (equivalence classes of) Bochner measurable functions $u:(0, T) \longrightarrow X$ such that $\|u(\cdot)\|_{X} \in L^{p}(0, T)$. We set $R_{+}^{1}=(0, \infty)$ and, as already mentioned, $Q_{T}=(0, T) \times \Omega, \Gamma_{T}=(0, T) \times \Gamma$. "Generic" positive constants are denoted by C and for $u \in L^{1}(\Omega)$ we put

$$
\bar{u}=\frac{1}{|\Omega|} \int_{\Omega} u(x) d x .
$$

Now we are going to formulate the nonlocal viscous Cahn-Hillard equation (1.13) with complemented initial and boundary values. So the initial-boundary value problem we want to discuss takes the form:

$$
\begin{align*}
& u_{t}-\nabla \cdot \overbrace{(\nabla u+\mu \nabla(w+\psi))}^{=\mu \nabla v}=0 \quad \text { in } Q_{T}, \tag{2.1}\\
& -\gamma \Delta \psi_{t}+\psi=u_{t}, \quad w=P(1-2 u) \quad \text { in } Q_{T}, \tag{2.2}\\
& \mu \nu \cdot \nabla v=\mu \nu \cdot \nabla w=\nu \cdot \nabla \psi=0 \quad \text { on } \Gamma_{T}, \tag{2.3}\\
& \nu \cdot \nabla \psi_{0}=0, u(0, x)=u_{0}(x), \psi(0, x)=\psi_{0}(x) \quad x \in \Omega . \tag{2.4}
\end{align*}
$$

Consider the system (2.1)-(2.4). We make the following general assumptions.
(A1) $f(u)=u \log u+(1-u) \log (1-u)$.
(A2) the potential operator P defined by

$$
\rho \mapsto P \rho=\int_{\Omega} \mathcal{K}(|x-y|) \rho(y) d y
$$

satisfies

$$
\|P \rho\|_{Y} \leq r_{p}\|\rho\|_{L^{p}}, \quad 1 \leq p \leq \infty
$$

where the kernel $\mathcal{K} \in\left(\mathbb{R}_{+}^{1} \mapsto \mathbb{R}^{1}\right)$ is such that

$$
\int_{\Omega} \int_{\Omega}|\mathcal{K}(|x-y|)| d x d y=m_{0}<\infty, \quad \sup _{x \in \Omega} \int_{\Omega}|K(|x-y|)| d y=m_{1}<\infty
$$

(A3) the mobility μ has the form

$$
\begin{equation*}
\mu(u)=\frac{1}{f^{\prime \prime}(u)}=u(1-u) \tag{2.5}
\end{equation*}
$$

(A4) $0 \leq u_{0}(x) \leq 1, x \in \Omega, 0<\bar{u}_{0}<1$.

The next assumptions concern different regularity assumptions on the data.

(B1) $\Omega \in C^{0,1}$	or	(B1') $\Omega \in C^{4}$,
(B2) $u_{0} \in L^{\infty}(\Omega)$	or	(B2') $u_{0} \in L^{\infty}(\Omega) \cap H^{1}(\Omega)$,
(B3) $\psi_{0} \in H^{2}(\Omega)$	or	(B3') $\psi_{0} \in H^{3}(\Omega)$,
(B4) $Y:=H^{1, p}(\Omega)$	or	(B4') $Y:=H^{2, p}(\Omega)$.

Remark 1 The kernel \mathcal{K} is chosen to be symmetric. Consequently the potential operator P is symmetric, too.

Remark 2 Examples for kernels \mathcal{K} satisfying (A2) are Newton potentials

$$
\mathcal{K}(|x|)= \begin{cases}\kappa_{n}|x|^{2-n} & n \neq 2 \\ -\kappa_{2} \log |x| & n=2\end{cases}
$$

and Gauss functions $\mathcal{K}(s)=c \exp \left(-s^{2} / \lambda\right)$ and usual mollifiers like

$$
\mathcal{K}(|x|)= \begin{cases}C \exp \left(-\frac{h^{2}}{h^{2}-|x|^{2}}\right) & \text { if }|x|<h \\ 0 & \text { if }|x| \geq h\end{cases}
$$

where h characterizes the range of interaction.
Remark 3 A concentration-dependent mobility appeared in the original derivation of the Cahn-Hillard equation (see [7]), and a natural and thermodynamically reasonable choice is of the form (2.5) and were considered in [11].

Due to different regularity assumptions on the initial data we formulate two different Theorems, which will be proven separately in the next two chapters.

Theorem 1 Suppose that the assumptions (A1) to (A4) and (B1) to (B4) hold. Then there exists a unique triple of functions (u, w, ψ) such that

1. $u \in C\left(0, T ; L^{\infty}\right) \cap L^{2}\left(0, T ; H^{1}(\Omega)\right), \quad 0 \leq u(t, x) \leq 1$ for a.a. $(t, x) \in Q_{T}$,
2. $u_{t} \in L^{2}\left(0, T ; H^{1}(\Omega)^{*}\right)$,
3. $w \in C\left(0, T ; H^{1, \infty}(\Omega)\right)$,
4. $\psi \in L^{2}\left(0, T ; L^{2}(\Omega)\right)$,
5. $\nabla \psi \in L^{\infty}\left(0, T ; H^{1}(\Omega)\right)$,
6. $\nabla \psi_{t} \in L^{2}\left(0, T ; H^{1}(\Omega)^{*}\right)$,
which satify equations (2.1)-(2.4) in the following sense:

$$
\begin{gather*}
\int_{0}^{T}\left\langle u_{t}, \varphi\right\rangle d t+\int_{0}^{T} \int_{\Omega}(\nabla u+\mu \nabla(w+\psi)) \nabla \varphi d x d t=0, \quad \forall \varphi \in L^{2}\left(0, T ; H^{1}(\Omega)\right), \tag{2.6}\\
\gamma \int_{0}^{T}\left\langle\nabla \psi_{t}, \nabla \varphi\right\rangle d t+\int_{0}^{T} \int_{\Omega} \psi \varphi d x d t=\int_{0}^{T}\left\langle u_{t}, \varphi\right\rangle d t, \quad \forall \varphi \in L^{2}\left(0, T ; H^{1}(\Omega)\right), \tag{2.7}\\
w=P(1-2 u) \text { a.e. }(t, x) \in Q_{T} \tag{2.8}
\end{gather*}
$$

Theorem 2 Suppose that the assumptions (A1) to (A4) and (B1') to (B4') hold. Then there exists a unique triple of functions (u, w, ψ) such that

1. $u \in C\left(0, T ; L^{\infty}\right) \cap L^{2}\left(0, T ; H^{2}(\Omega)\right), \quad 0 \leq u(t, x) \leq 1$ for a.a. $(t, x) \in Q_{T}$,
2. $u_{t} \in L^{2}\left(0, T ; L^{2}(\Omega)\right)$,
3. $w \in C\left(0, T ; H^{2, \infty}(\Omega)\right)$,
4. $\psi \in L^{2}\left(0, T ; L^{2}(\Omega)\right)$,
5. $\nabla \psi \in L^{\infty}\left(0, T ; H^{2}(\Omega)\right)$,
6. $\nabla \psi_{t} \in L^{2}\left(0, T ; L^{2}(\Omega)\right)$,
which satifies equations (2.1)-(2.4) in the following sense:

$$
\begin{gather*}
\int_{0}^{T} \int_{\Omega} u_{t} \varphi d x d t+\int_{0}^{T} \int_{\Omega}(\nabla u+\mu \nabla(w+\psi)) \nabla \varphi d x d t=0, \quad \forall \varphi \in L^{2}\left(0, T ; H^{1}(\Omega)\right), \tag{2.9}\\
\gamma \int_{0}^{T} \int_{\Omega} \nabla \psi_{t} \cdot \nabla \varphi d t+\int_{0}^{T} \int_{\Omega} \psi \varphi d x d t=\int_{0}^{T} \int_{\Omega} u_{t} \varphi d x d t, \quad \forall \varphi \in L^{2}\left(0, T ; H^{1}(\Omega)\right), \tag{2.10}\\
w=P(1-2 u) \text { a.e. }(t, x) \in Q_{T} \tag{2.11}
\end{gather*}
$$

Remark 4 Note that the testfunction $\varphi=1$ gives

$$
\begin{align*}
& \int_{\Omega} u(t, x) d x=\int_{\Omega} u_{0}(x) d x=u_{\alpha}|\Omega| \\
& \int_{0}^{T} \int_{\Omega} \psi(t, x) d x d t=0 . \tag{2.12}
\end{align*}
$$

