Chapter 2

Statement of the problems and assumptions

Let be $\Omega \subset \mathbb{R}^3$ an open, bounded domain with boundary $\Gamma = \partial \Omega$ and ν the outer unit normal on Γ . In the sequel, $|\Omega|$ denotes the Lesbegue measure of Ω . We denote by $L^p(\Omega), W^{k,p}(\Omega)$ for $1 \leq p \leq \infty$ the Lesbegue spaces and Sobolev spaces of functions on Ω with the usual norms $\|\cdot\|_{L^p(\Omega)}, \|\cdot\|_{W^{k,p}(\Omega)}$, and we write $H^k(\Omega) = W^{k,2}(\Omega)$ (see [13]). For a Banach space X we denote its dual by X^* , the dual pairing between $f \in X^*$, $g \in X$ will be denoted by $\langle f, g \rangle$. If X is a Banach space with the norm $\|\cdot\|_X$, we denote for T > 0 by $L^p(0,T;X)$ ($1 \leq p \leq \infty$) the Banach space of all (equivalence classes of) Bochner measurable functions $u:(0,T) \longrightarrow X$ such that $\|u(\cdot)\|_X \in L^p(0,T)$. We set $R^1_+ = (0,\infty)$ and, as already mentioned, $Q_T = (0,T) \times \Omega$, $\Gamma_T = (0,T) \times \Gamma$. "Generic" positive constants are denoted by C and for $u \in L^1(\Omega)$ we put

$$\bar{u} = \frac{1}{|\Omega|} \int_{\Omega} u(x) dx.$$

Now we are going to formulate the nonlocal viscous Cahn-Hillard equation (1.13) with complemented initial and boundary values. So the initial-boundary value problem we want to discuss takes the form:

$$u_t - \nabla \cdot \overbrace{\left(\nabla u + \mu \nabla (w + \psi)\right)}^{=\mu \nabla v} = 0 \quad \text{in } Q_T, \tag{2.1}$$

$$-\gamma \Delta \psi_t + \psi = u_t, \quad w = P(1 - 2u) \quad \text{in } Q_T, \tag{2.2}$$

$$\mu\nu \cdot \nabla v = \mu\nu \cdot \nabla w = \nu \cdot \nabla \psi = 0 \quad \text{on } \Gamma_T,$$
 (2.3)

$$\nu \cdot \nabla \psi_0 = 0, u(0, x) = u_0(x), \psi(0, x) = \psi_0(x) \quad x \in \Omega.$$
(2.4)

Consider the system (2.1)-(2.4). We make the following general assumptions.

- (A1) $f(u) = u \log u + (1 u) \log(1 u)$.
- (A2) the **potential operator** P defined by

$$\rho \mapsto P\rho = \int_{\Omega} \mathcal{K}(|x - y|)\rho(y)dy$$

satisfies

$$||P\rho||_Y \le r_p ||\rho||_{L^p}, \qquad 1 \le p \le \infty,$$

where the kernel $\mathcal{K} \in (\mathbb{R}^1_+ \mapsto \mathbb{R}^1)$ is such that

$$\int_{\Omega} \int_{\Omega} |\mathcal{K}(|x-y|)| dx dy = m_0 < \infty, \qquad \sup_{x \in \Omega} \int_{\Omega} |K(|x-y|)| dy = m_1 < \infty.$$

(A3) the mobility μ has the form

$$\mu(u) = \frac{1}{f''(u)} = u(1 - u). \tag{2.5}$$

(A4)
$$0 \le u_0(x) \le 1, x \in \Omega, 0 < \bar{u}_0 < 1.$$

The next assumptions concern different regularity assumptions on the data.

$$\begin{array}{lll} \textbf{(B1)} \ \Omega \in C^{0,1} & \text{ or } & \textbf{(B1')} \ \Omega \in C^4, \\ \textbf{(B2)} \ u_0 \in L^{\infty}(\Omega) & \text{ or } & \textbf{(B2')} \ u_0 \in L^{\infty}(\Omega) \cap H^1(\Omega), \\ \textbf{(B3)} \ \psi_0 \in H^2(\Omega) & \text{ or } & \textbf{(B3')} \ \psi_0 \in H^3(\Omega), \\ \textbf{(B4)} \ Y := H^{1,p}(\Omega) & \text{ or } & \textbf{(B4')} \ Y := H^{2,p}(\Omega). \end{array}$$

Remark 1 The kernel \mathcal{K} is chosen to be symmetric. Consequently the potential operator P is symmetric, too.

Remark 2 Examples for kernels \mathcal{K} satisfying (A2) are Newton potentials

$$\mathcal{K}(|x|) = \begin{cases} \kappa_n |x|^{2-n} & n \neq 2; \\ -\kappa_2 \log |x| & n = 2; \end{cases}$$

and Gauss functions $\mathcal{K}(s) = c \exp(-s^2/\lambda)$ and usual mollifiers like

$$\mathcal{K}(|x|) = \begin{cases} C \exp\left(-\frac{h^2}{h^2 - |x|^2}\right) & \text{if } |x| < h, \\ 0 & \text{if } |x| \ge h \end{cases}$$

where h characterizes the range of interaction.

Remark 3 A concentration-dependent mobility appeared in the original derivation of the Cahn-Hillard equation (see [7]), and a natural and thermodynamically reasonable choice is of the form (2.5) and were considered in [11].

Due to different regularity assumptions on the initial data we formulate two different Theorems, which will be proven separately in the next two chapters.

Theorem 1 Suppose that the assumptions (A1) to (A4) and (B1) to (B4) hold. Then there exists a unique triple of functions (u, w, ψ) such that

1.
$$u \in C(0,T;L^{\infty}) \cap L^{2}(0,T;H^{1}(\Omega)), \quad 0 \leq u(t,x) \leq 1 \text{ for a.a. } (t,x) \in Q_{T},$$

2.
$$u_t \in L^2(0,T; H^1(\Omega)^*),$$

3.
$$w \in C(0,T; H^{1,\infty}(\Omega)),$$

4.
$$\psi \in L^2(0,T;L^2(\Omega)),$$

5.
$$\nabla \psi \in L^{\infty}(0,T;H^1(\Omega)),$$

6.
$$\nabla \psi_t \in L^2(0,T; H^1(\Omega)^*),$$

which satisfy equations (2.1)-(2.4) in the following sense:

$$\int_{0}^{T} \langle u_{t}, \varphi \rangle dt + \int_{0}^{T} \int_{\Omega} (\nabla u + \mu \nabla (w + \psi)) \nabla \varphi dx dt = 0, \quad \forall \varphi \in L^{2}(0, T; H^{1}(\Omega)), \quad (2.6)$$

$$\gamma \int_{0}^{T} \langle \nabla \psi_{t}, \nabla \varphi \rangle dt + \int_{0}^{T} \int_{\Omega} \psi \varphi dx dt = \int_{0}^{T} \langle u_{t}, \varphi \rangle dt, \quad \forall \varphi \in L^{2}(0, T; H^{1}(\Omega)), \quad (2.7)$$

$$w = P(1 - 2u) \text{ a.e. } (t, x) \in Q_T.$$
 (2.8)

Theorem 2 Suppose that the assumptions (A1) to (A4) and (B1') to (B4') hold. Then there exists a unique triple of functions (u, w, ψ) such that

1.
$$u \in C(0,T;L^{\infty}) \cap L^2(0,T;H^2(\Omega)), \quad 0 \le u(t,x) \le 1 \text{ for a.a. } (t,x) \in Q_T,$$

2.
$$u_t \in L^2(0,T;L^2(\Omega)),$$

3.
$$w \in C(0,T; H^{2,\infty}(\Omega)),$$

4.
$$\psi \in L^2(0,T;L^2(\Omega)),$$

5.
$$\nabla \psi \in L^{\infty}(0,T;H^2(\Omega)),$$

6.
$$\nabla \psi_t \in L^2(0, T; L^2(\Omega)),$$

which satisfies equations (2.1)-(2.4) in the following sense:

$$\int_{0}^{T} \int_{\Omega} u_t \varphi dx dt + \int_{0}^{T} \int_{\Omega} (\nabla u + \mu \nabla (w + \psi)) \nabla \varphi dx dt = 0, \quad \forall \varphi \in L^2(0, T; H^1(\Omega)), \quad (2.9)$$

$$\gamma \int_{0}^{T} \int_{\Omega} \nabla \psi_{t} \cdot \nabla \varphi dt + \int_{0}^{T} \int_{\Omega} \psi \varphi dx dt = \int_{0}^{T} \int_{\Omega} u_{t} \varphi dx dt, \quad \forall \varphi \in L^{2}(0, T; H^{1}(\Omega)), \quad (2.10)$$

$$w = P(1 - 2u) \text{ a.e. } (t, x) \in Q_T.$$
 (2.11)

Remark 4 Note that the testfunction $\varphi = 1$ gives

$$\int_{\Omega} u(t,x)dx = \int_{\Omega} u_0(x)dx = u_{\alpha}|\Omega|,$$

$$\int_{0}^{T} \int_{\Omega} \psi(t,x)dxdt = 0.$$
(2.12)