
Chapter 1Nonloal modelling of phase separationIn this hapter we introdue the di�erent existing models, whih desribe phase separation.1.1 Cahn-Hillard modelIn this setion we will desribe the derivation proedure of the Cahn-Hillard model ofisothermal phase separation. For isotropi heterogeneous binary systems with onstantvolume �lling a domain Ω, the standard total free energy funtional is postulated in theform
FCH(u) =

∫

Ω

F (u)dx, (1.1)with the energy density
F (u) = f(u) + κu(1 − u) +

λ

2
|∇u|2, (1.2)whih omprises the free energy density f(u)+κu(1−u) (for su�iently large κ, and onvex

f) for the onentration u and the gradient term with a positive onstant λ, representingan interfaial energy ("penalty term") between the phases. Qualitative speaking f(u) +
κu(1−u) forms a so-alled double well potential. If the system is isolated at the boundary(it means that there is no mass �ux aross the boundary) its isothermal equilibria are givenby the stationary points of (1.1) subjet to the additional onstraint on the mean value ofthe onentration

1

|Ω|

∫

Ω

u(x)dx = ū. (1.3)with a given onstant ū. This onstraint means that the total mass of omponents A and
B in the sample Ω is presribed. Minimizing (1.1) under the onstraint (1.3) one gets theorresponding Euler-Lagrange equation

f ′(u) + κ(1 − 2u) − λ∆u = v in Ω,1



2 CHAPTER 1. NONLOCAL MODELLING OF PHASE SEPARATIONsubjet to the natural boundary ondition
∇u · n = 0 on Γ = ∂Ω,where n denotes the outward unit normal to Γ. Here v is the Lagrange multiplier orre-ponding to onstraint (1.3), given by

v =
δ

δu
F (u),where (δ/δu)FCH denotes the (formal) �rst variational derivative of the free energy fun-tional FCH , whih may be interpreted as a generalized thermodynami fore, ating at eahpoint x ∈ Ω, that tends to derease the value of the total free energy (see [6℄). The �rstvariational derivative of FCH is de�ned by

〈

ς,
δ

δu
F (u)

〉

:=
d

dǫ

∣
∣
∣
∣
ǫ=0

FCH(u+ ǫς).We remark that the gradient term in (1.2) has a smoothing e�et on interfaes betweendi�erent phases. In onsequene, jumps of u (spatial inhomogenities) are not allowed,instead di�erent phases are separated by walls, that are small subregions with rapid hangesof u. The thikness of these walls is related to the value of λ. It is well-known that in thelimit λ → 0 the surfae area of the interfae is minimized loally in Ω. This orrespondsto a free energy of the form
F (u) = σH2(S(u)),where σ is the surfae tension, S(u) is the disontinuity set of u and H2 denotes the 2-dimensional surfae measure (see [25℄). The dynamis of phase separation is desribedas follows. Let u(t) be the onentration at time t, and v be the di�erene between thehemial potentials v1, v2 of the omponents A and B. It is de�ned as the �rst variation(see [32℄) of the free energy funtional
v =

δ

δu
F (u), (1.4)that is

v = f ′(u) + κ(1 − 2u) − λ∆u.Let j = j1 and j2 denote the mass �uxes of A and B. Is is assumed that j1 + j2 = 0, andgeneralized Fik's law,
j = −µ∇v, (1.5)is postulated, where µ ≥ 0 is a parameter (funtion) denoting a suitable di�usive mobility.Considering the mass balane law

∂tu+ ∇ · j = 0, (1.6)



1.2. NONLOCAL CAHN-HILLARD EQUATION 3one ends up with the lassial Cahn-Hillard equation
∂tu−∇ · [µ∇(f ′(u) + κ(1 − 2u) − λ∆u)] = 0, (1.7)where the boundary ondition guarantees mass onservation

∫

Ω

u(t, x)dx =

∫

Ω

u(0, x)dx.A slightly more ompliated model is the so alled visous Cahn-Hillard equation. Thisequation is derived by postulating the hemial potential in the following way
v :=

δ

δu
F (u) + ut. (1.8)Here v ontains an additional rate term ut, whih desribes visosity. For example (see[26℄) in visous systems, suh as polymer-polymer systems, the visosity an be important.Another justi�ation for (1.8) was made by Gurtin [21℄ and is based on a new balane lawfor mirofores and whih takes into aount the working of internal mirofores (we annote that mirofores desribe fores whih are assoiated with mirosopi on�gurationsof atoms, whereas standard fores are assoiated with marosopi lengthsales, hene areason to onsider separate balane laws for mirofores and standard fores). For anisotropi material, (1.8) leads to the following generalization of equation (1.7):

∂tu−∇ · [µ∇(f ′(u) + κ(1 − 2u) − λ∆u+ ut)] = 0,where the term ut in (1.8) desribes the in�uene of the internal mirofores. These equa-tions (1.7) and (1.8) have been studied intensively; see e.g. the review artiles [12℄ and[27℄.1.2 Nonloal Cahn-Hillard equationInspeting Cahn-Hillards arguments (see [7℄, "... would expet that the loal free energyper moleule, F(u), in region of nonuniform omposition will depend both on the loalomposition and on the omposition of the immidiate environment...") establishing (1.1)as the free energy of binary systems it seems to be reasonable and even more adequate [15℄to hoose an alternative expression for the energy density like
F (u) = f(u) +

1

2
uw,where

w(x) :=

∫

Ω

K(|x− y|)(1 − 2u(y))dy. (1.9)



4 CHAPTER 1. NONLOCAL MODELLING OF PHASE SEPARATIONThe kernel K of the integral term (1.9) desribes nonloal interations [8℄. The nonloaltotal free energy reads
FNL(u) =

∫

Ω

F (u)dx. (1.10)In equilibrium Statistial Mehanis funtionals of the form (1.10) arise as free energies ofontinuum limits of Ising spin systems on latties; in that setting u represents a marosopimagnetization density and K is a ferromagneti Ka potential (f. [16℄ and referenestherein). By using (1.4) and the symmetry of w we get
v = f ′(u) + w. (1.11)Together with (1.5)-(1.6) this yields the nonloal Cahn-Hillard equation

ut −∇ · (µ∇(f ′(u) + w)) = 0.Assuming that f is stritly onvex, the stritly monotone funtion f ′ has an inverse funtion
f ′−1. Thus, as a onsequene of (1.11) we automatially get the a priori estimate

u(x) ∈ Im(f ′−1).In standard ases one usually hooses for f the onvex (Information) entropy funtion
f(u) = u log(u) + (1 − u) log(1 − u).Consequently we have

f ′(u) = log

(
u

1 − u

) and u = f ′−1(v − w) =
1

1 + exp(v − w)
.Here the funtion f ′−1 is the Fermi funtion, whose image is the interval [0, 1]. Thus, thenonloal model naturally satis�es the physial requirement

0 ≤ u(x) ≤ 1, ∀t ≥ 0.and the maximum priniple is available, whih is not true for fourth order equations likein the ase of the loal Cahn-Hillard equations.Nonloal visous model: We aim to formulate a general nonloal model, whih alsotakes into aout visosity e�ets. In the loal theory this was done by adding a rate termto the hemial potential (1.8). Now we are going to formulate this additional term inthe nonloal philosophy, so we not only want to get nonloality in spae (1.11) but alsononloality in time. The hemial potential in our ase is given by
v :=

δ

δu
F (u) + ψ, −γ∆ψt + ψ = ut, γ > 0. (1.12)



1.2. NONLOCAL CAHN-HILLARD EQUATION 5Here γ is a modell parameter, whih is positive and guarantees the nonloal struture of theadditional term ψ in v. This means in Gurtin's language that the in�uene of miroforesis nonloal. At this moment we are not able to formulate a new nonloal balane law fornonloal mirofores similar to the balane law in Gurtin [21℄. We think that we reover theprevious loal visous model (1.8) by hoosing γ = 0. Thus our model is a real expansionto previous existing models. From mathematial point of view the term −γ∆ψt in ourmodel has a regularizing e�et. Taking into aount (1.12) we get the nonloal visousCahn-Hillard equation:
ut −∇ · µ∇v = 0, v = f ′(u) + w + ψ,

w(x) =

∫

Ω

K(|x− y|)(1 − 2u(y))dy,

−γ∆ψt + ψ = ut, γ > 0.

(1.13)Here we have to omplement (1.13) with suitable initial and boundary onditions. Thiswill be done in the next hapter.
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