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1 Introduction

The analysis of complex data is an important but yet challenging problem.
Important, as nowadays data is generated with an increasing speed and com-
plexity from experiments, simulations, measurements or data logging. Chal-
lenging, due to the complex structure of these data and the need for (fast)
automatic reduction of this complexity to aid in decision making, modelling
and simulation. A large fraction of these data occurs in the form of time series,
i.e. data measured or obtained at subsequent points in time. An obvious task
when dealing with time series data is the construction of “easy” models that

e can be used to approximate and explain the dynamics of the observed
data.

e are able to predict the (unobserved) future of the time series.

Such models should be “easy” on two counts, first, it should be possible to pa-
rameterise them with respect to a given time series without too much compu-
tational effort, second, they should reproduce the “important” characteristics
of the observed dynamic while suppressing unimportant details. Prominent
examples of such models are, e.g., autoregressive (AR), vector autoregressive
(VAR) and moving average models (MA) [73].

However, faced with time series data from complex dynamical systems, the
application of standard models will yield only poor results, since challenges
are:

e Complex systems may be high dimensional and therefore some kind of
dimension reduction or another algorithmic strategy that takes the di-
mensionality into account may be required.

e It may be hard to obtain time series data which sufficiently reflects the
dynamical properties of the observed system (in some contexts this is
referred to as the sampling problem).

e The dynamical behaviour may change over time, i.e. there are different
phases in the time series which should be approximated by different
models.

An example for such system are time series obtained from climate observations,
they are often very high dimensional, change their dynamical properties over
the year and it should be obvious that a description of a typical temperature
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curve over a year should not only be based on data obtained during summer
months [51,56].

The biocomputing group at the Free University Berlin started to address
these questions of modelling, complexity reduction and sampling of complex
systems about ten years ago emerging from a specific context: the dynamical
analysis of biomolecules. The dynamic of biomolecules is important, since
their geometric properties are essential for their function [22,44, 67,91, 101].
Therefore, a dynamical description of the geometry is needed to understand
their role in biological processes. The dynamic of the geometrical structure of
molecules is most often studied on the basis of time series of atomic coordinates
obtained from Molecular Dynamics [2]. These time series are subject to all
the challenges mentioned above, since:

e The number of atoms in a biomolecular system might be very large and,
therefore, the time series are often high dimensional.

e Due to the existence of multiple time scales, simulation of such systems
is time consuming.

e Typically biomolecules switch between different (meta)stable geometric
structures, the observed time series will switch between different dynam-
ical regimes.

The existence of different dynamical regimes means that a dynamical descrip-
tion of the observed system will be highly dependend on the time scale under
consideration. On larger time scales the dynamics is characterised by changes
of the global geometric structure, while on shorter time scales local flexibility
around a globally stable geometric state will be observed, i.e. fluctuations of
the system around some mean configuration. We call such a global geometrical
state of the system together with its flexibility a conformation. If there is a
time scale separation between local flexibility and changing of the global con-
formations, the dynamics of the jump process between different conformations
will approximately be Markovian.

Although the dimensionality of a biomolecular system can often be reduced
in terms of a small number of essential degrees of freedom [3], e.g. the torsion
or backbone angles of the molecule under consideration, the problem of effi-
cient algorithmic identification of persistent conformations from a given time
series is still a challenging problem. Based upon a solid theoretical foundation
Deuflhard, Schiitte et al. developed a set-orientated approach for the identi-
fication of conformations [19,28-30,88,107,108], which relies on the analysis
of a transition matrix obtained from a careful discretisation of the observ-
able space into discrete states. The transition matrix is set up by counting
the transitions between these discrete states in the time series. Normalisation
yields a stochastic matrix whose spectral properties can be used to identify the
conformations as metastable sets of states of the obtained Markov chain. This
procedure is called Perron cluster cluster analysis (PCCA). If the metastable



sets are identified, a discrete reduced model describing only the conformational
changes can be set up by estimating a transition matrix from the observed
transitions between the identified metastable sets in the time series at hand.

More recently, approaches based on hidden Markov models (HMM) were
put forward [36,52-54,106]. The underlying idea is that a discrete and hid-
den, i.e. non-observable, switch process governs the hopping between different
conformations and the dynamics of the observed is dependent on the confor-
mations, i.e. the state of the hidden switch process. Again the hidden process
is assumed to be Markovian, while dynamic changes of the observable due
to conformational changes are supposed to correspond to changes in the pa-
rameterisation of an assumed (local) dynamical model. The assumed form
of the local dynamic can range from independent Gaussians [36], stochastic
differential equations [106] to even non-Markovian dynamics [76].

One of the advantages of the HMM approach is that it does not rely on ge-
ometrical separation of the conformations within the observation space, which
is important since dimension reduction from the full positional coordinate set
to a low dimensional manifold may let conformations overlap. Another advan-
tage is that it provides not only a model for the conformational switching but
also a model for the dynamics of the observable within a conformation.

However, the computational effort for fitting the model in this approach
is increased, as HMM approaches rely on optimisation of a high dimensional
likelihood function, and a clear criteria for the number of metastable sets,
which in the PCCA approach can be deduced from the spectral properties of
the transition matrix, is lost. Therefore, in applications it turned out to be
fruitful to combine PCCA with the HMM approaches [48,75,78,109].

A good deal of this thesis is concerned with the question if such an analysis
can also be done on-line. An on-line algorithm is an algorithm which can
solve a problem while receiving the data package-wise, opposed to an off-line
algorithm which requires the whole data set at once to solve the problem at
hand. The interrelation between on- and off-line analysis with respect to time
series with different dynamical phases is revealed by taking a closer look at the
functioning of the listed off-line algorithms, i.e. PCCA and the HMM-variants.
Since their aim is to estimate a data-based model which reflects the existence
of different dynamical phases, they synchronously partition a given time series
into segments, according to different dynamical phases, and estimate local
models based on data contained in segments belonging to the same dynamical
phase. The segmentation of a time series can be done on-line as long as it
is possible to apply an algorithm that detects dynamical changes in the time
series while scanning it sequently. If a time series segment Z = {z1,..., 27}
is given and the data point z; is assumed to be generated by

2t = f(zt—p7 cees RBt—1, 0)7

where f, a (possible stochastic) function dependent on the past p values and
some parameter 6, represents the dynamical model. The problem can be
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formulated as deciding if there is a time point ¢ € {p+1,...,T — 1} such that

. = f(zi—p, ..., 2421,01), fort<c
f(zi—p, .., 24-1,02), fort>c,
with different parameters @, and 6,. This is called a change point detection
problem. Although the matter of change point detection received considerable
attention in the last years, e.g. [5,17,20, 32,40, 64, 70,93,94,99], there is no
standard solution to the problem and a number of competitive approaches
exists. In this work we adopt a Bayesian approach as it provides a natural
way to include parameter uncertainty. However, boon and bane of Bayesian
approaches is the need for specification of prior distributions for all parameters.
A resort is given by objective Bayesian strategies [8,17,25,26,40,63,89,97,113]
which essentially use some information content of the data to specify prior
distributions. We will show that the fractional Bayes [89] and the imaginary
minimal experiment approach [113] are suitable to the on-line segmentation
problem with respect to a wide class of local models.

The advantages having an on-line algorithm for the detection of dynami-
cal phases in time series are two-fold. First, they sometimes produce cheaper
and more reliable results as HMM approaches, since the difficult optimisation
problem that comes along with HMM approaches is avoided. Second, it can
be used in algorithmic settings where some action has to be performed after a
dynamical change occurred in the observed time series. An example is given
by an application of distributed computing for exit rate estimation in biomolec-
ular system, proposed by Art Voter [122,124]. As said, the off-line algorithms
described above rely on having a time series which contains all relevant infor-
mation about the dynamics. However, the switch from a biomolecular confor-
mation to another is a rare event and therefore a time series which contains
sufficient transition events to get a good estimate of the rate might be hard
to obtain, since the computational effort for an extensive sampling of such
event by molecular dynamics is too high. Art Voter suggested to speed up the
simulation by simulating uncorrelated replicas of the system on many proces-
sors. Under the assumption of an exponentially distributed exit time from one
conformation to another, i.e. assuming that the switching process is essentially
Markovian, it can be shown that the time obtained by summing up the time
elapsed on all processors until a change occurred on one of them reflects the
same statistics as the exit rate in question. Thus, by using many processors it
is possible to speed up the simulation and thereby enable the generation of a
sample of exit times to estimate the rate more accurately, as long as an on-line
detection of the exit event from some conformation is possible. We will show
how to solve this problem by the application of the developed change-point
algorithm.



The outline of this thesis is the following: In Chapter 2 we start with a
short introduction in conformation dynamics of biomolecules with a focus on
peptides, since they emerge in many examples throughout this work, addition-
ally, molecular dynamics as a way to simulate the dynamics of biomolecules is
introduced and the computational obstacles in the analysis of the so obtained
time series are outlined.

An overview over PCCA and HMM approaches is given in Chapter 3, which,
even if developed within the applicational scope of conformational analysis of
biomolecules, are in fact data analysis algorithms in principle applicable to any
given time series and especially suited to handle with time series exhibiting
different dynamical phases. In particular we show how to unify the different
existing HMM approaches with the help of the class of vector autoregressive
processes (VAR) and how to apply these algorithms to obtain reduced models
for complex systems. Based upon the obtained unified representation via VAR
processes we will derive an algorithm for on-line change point detection in
Chapter 4. We will demonstrate how to apply it on a series of test examples
and on time series obtained from molecular dynamics. Thereby, we show how
to cluster identified time series segments efficiently in a post processing step,
without the effort of an off-line analysis.

Finally, in Chapter 5, we illustrate how to use the obtained on-line algorithm
to employ the distributed computing approach of Art Voter for the estimation
of exit rates in biomolecular systems.

Note that most of the molecular examples given in this work were published
before in one of the authors publications [36, 48, 7578, 95,105, 109], but all
were revised and adopted to the HMM-VAR framework developed here.
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2 Conformation Dynamics of
Biomolecules

2.1 Biomolecules

The notion of biomolecules is a collective term for all biological active molecules.
There is a large variety of biomolecules differing considerably in chemical com-
pound, size, function and form. There are small biomolecules like vitamines,
hormones and sugar, medium sized like peptides and proteins and large ones
like the deoxyribonucleic acid (DNA), ranging from a few atoms to hundreds
of million atoms. Biomolecules consist primarily of carbon (C') and hydrogen
(H), along with nitrogen (N), oxygen (O), phosphorus (P) and sulfur ().

This thesis is not primarily concerned with biomolecules and its different
functions, it is concerned with the analysis of data coming from time resolved
observations/simulations of biomolecules. The examples to demonstrate the
algorithms proposed in this thesis are peptides, small sized amino acid chains
which are themselves the building blocks of proteins. Therefore, we are going
to make a quick introduction to the peptide world in the next section.

2.2 Proteins and Peptides

Proteins and peptides are chains built from so-called proteinogenic amino
acids, which are twenty different amino acids found in biomolecules. The
distinction between peptides and proteins is merely a non-sharp distinction in
amino acid chain length. As a rule of thumb one can call a chain consisting of
less than 50 amino acids a peptide and a longer chain a protein.

Amino acids themselves consist of an amino group connected to a carboxyl
group via a central carbon atom, called the a-carbon (C,). Attached to the
C, there is a side group, whose size ranges from a single hydrogen atom to
more complex structures with over a dozen atoms, that determines the type
of the amino acid, e.g. if the a-carbon is bound to a methyl group (C'H3) the
amino acid is called alanine, while if the side group is a single hydrogen atom
it is called glycine. If two amino acids fuse to a peptide fragment a hydrogen
atom splits off the amino group of one amino acid, while the carboxyl-group
of the other one releases an oxygen and a hydrogen atom. This enables the
amino and the carboxyl group to form a so-called peptide bond while a water
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Amino acid (1) H Amino acid (2) H Peptide bond

H H H
) L L
R] R] ]

Dipeptide

Figure 2.1: The formation of a peptide bond between two amino acids.

molecule is dispensed. A graphical sketch'of this process is shown in Fig. 2.1.

An important property of the peptide bond is its planarity, i.e. the atom-
chain C, — C' — N — C,, connecting the two amino acids lies on a plain. If
on this plain the C, atoms are both lying on the same side of the C'-N-axis,
i.e. the dihedral bond w along C, — C' — N — C, is w = 0°, the bond is said
to be in cis-conformation, or otherwise in trans-conformation (w = 180°). In
(folded) proteins and peptides the trans-conformation is by far the prevalent
conformation.

The repeated C, — C' — N chain connecting the amino acids in a peptide
is called the backbone of a peptide. Due to the planarity and stability of the
peptide bond, there are only two flexible degrees of freedom for each adjacent
pair of amino acids along the backbone, the ®-angle, which is the dihedral
angle specified by C — N — C, — C, and the V-angle along N — C, — C — N.
Therefore, disregarding the side chains, the global structure of a peptide can be
characterised by the sequence of ® /W pairs along the backbone. An illustration
is given in Fig. 2.2.

2.2.1 Secondary and Tertiary Structure

Even if flexible, the ®/W¥ angles of a peptide chain are not freely rotating.
Steric hindrance and the possibility of H-bond bridging between different pep-
tide bond units restricts them to specific regions in the (—180, 180]? plane, the
so-called Ramachandran plane [98], which are similar for most of the amino
acids. In larger peptide chains or proteins this picture is even more restricted.
Subsequent amino acids stabilise via H-bond bridges to motifs like helices and
so-called [-sheets, characteristic to these motifs are certain /¥ combinations
common to the involved amino acids. These global motifs are called the sec-
ondary structures of a peptide chain (while the primary structure is defined
through the sequence of amino acids). Finally, the geometry of proteins can
be specified by the sequence of secondary structure motifs, which is called the
tertiary structure. The relation between ® /¥ angle combinations, secondary

!The illustration is a modification of an image on Wikipedia which can be accessed via
http://en.wikipedia. org/wiki/Amino_acids.
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Figure 2.2: The global configuration of a peptide chain is largely fixed by the
sequence of ®/¥ angles along the backbone. Here an 3-Alanine, a peptide
of three alanine amino acids (specified by a methyl side chain —CHjs), is
depicted. The a-carbons are marked by « and the flexible ® /¥ angles are
sketched by arrows. Labelled with w are the, under normal conditions very
stable, peptide bond angles.

and tertiary structure is depicted in Fig. 2.3. We just remark, that the mech-
anism which drives a specific primary structure to a secondary, resp. tertiary,
structure, the so-called folding process, is still not fully understood and subject
to intensive research.

The importance of understanding the folding process lies in the fact that the
geometrical structure of a biomolecule is essential for its function. A misfold-
ing or refolding can correspond to malfunction or diseases, e.g. prion diseases
are believed to be caused by a change from a predominantly a-helical ter-
tiary structure of a protein to a tertiary structure containing predominantly
[-sheets, triggered by misfolded proteins [22,101]. But important dynamical
events are not restricted to folding and misfolding, folded proteins often show a
(localised) flexibility and geometrical alteration of parts which acts as a switch
between different functionalities [44,91]. In drug design flexibility is not only
an important question from the functional perspective but also from a geo-
metric perspective. In the key-lock approach one tries to find small ligands
which binds to a specific site of a protein to either disable the function of the
protein or to inhibit the binding site so that other harmful molecules can not
bind. Besides the difficulties of finding an appropriate ligand which fits to the
binding site and can somehow be transported to it and, of course, without
disproportional adverse effects, one has to be concerned with dynamical prop-
erties, since both the form of the ligand and the form the protein may change
over time [15,117].
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a-Helix
(left-handed)

o-Helix
(right-handed)

-180 -90 q’%] 920 180

Figure 2.3: Left: The Ramachandran plot shows the most favourable energetic
regions in the Ramachandran plane and the associated secondary structures.
Middle (top): A peptide fragment exhibiting the a-helical secondary struc-
ture. For better illustration side chains are omitted and the backbone form
is depicted by a tube. The dotted blue lines indicate the H-bond bridges be-
tween subsequent amino acids which stabilise the structure. Middle (down):
A peptide fragment exhibiting (-sheet secondary structure, again side chains
are not shown. Right: The tertiary structure consists of a sequence of sec-
ondary structures. Shown here is the tertiary structure of Escherichia coli
dihydrofolate reductase [14] (PDB entry: 7DFR). The tubes indicate a-
helices, while the arrows indicate [3-sheets.

2.2.2 Conformations

Since the function of biomolecules, i.e. their interaction with the environment,
depends upon their geometrical structure, it is important to identify stable ge-
ometrical structures, i.e. geometrical structures which are persistent over some
time span of interest. We will call these (meta)stable structures conformations.
The definition of a conformation does not only depend upon the time scale of
interest but also upon the geometric property of interest, i.e. there might be
a part of the molecule which remains stable over a certain time while other
parts of the molecule are flexible.

Our notion of a conformation is sometimes used differently in the biomolecu-
lar context, where it refers to an energetically favourable structure of a molecule
which is often understood as a the structure corresponding to a local minimum
of some (potential) energy function of the biomolecular system. In this con-
ception, conformations are rigid structures which are in some sense (locally)
optimal. Opposed to that, we have a dynamic understanding of the notion
conformation. For example, an a-helical structure of a peptide is a stable
structure in the sense that the global structure, the helix, persists over a com-
paratively long time scale but still there are flexible degrees of freedom, like
rotating side chains or end groups, moving on a faster time scale. That is, in
our conception a conformation is not a fixed structure but a structure belong-
ing to some dynamical regime, where certain invariant structural properties do

10



2.3 Molecular Dynamics

not change over time. The appropriate picture would be a low energy region
wrt. to the (potential) energy function and not a minimal point.

2.3 Molecular Dynamics

As it should have become clear in the previous section, an understanding of
dynamical properties of biochemical systems is an important issue. A major
challenge lies in the fact that it is not possible to monitor a molecular system
time resolved on an atomic scale. Even though there was considerably progress
in experimental techniques over the last years, allowing to observe conforma-
tion dynamics in some special systems, e.g. with mid-infrared spectroscopy [6]
or with Forster resonance energy transfer (FRET) [41], it is still not clear how
to match data obtained from (spectroscopic) experiments with geometrical
molecular structures in general. Therefore molecular dynamic (MD) simula-
tions are often used to analyse dynamical properties of biomolecular systems.
In classical MD, a molecular system with a fixed number of N atoms is char-
acterised by a state vector (q,v) € R*" x R3N, where ¢ € R*" denotes the
position vector and v € R3*V the velocity vector. The dynamical behaviour,
given a specified potential energy function V : R3Y — R, a (diagonal) positive
definite mass matrix M € R33N and initial conditions (g, vo), is obtained
by integrating Newton’s equations of motion

0y — v

o "

c%i ov .

— = — =1,....N
ml 8t aql (q)7 7’ ) ) 7

which generates a trajectory (q(t), v(t)):>o with (g(0),v(0)) := (g, vo).
With the introduction of mass weighted velocities (momenta) p = Mwv the
dynamics can equivalently specified by the Hamiltonian equations of motion,
which read in vector notation
. -1
1= M—p (2.1)
p= _qu(q)'
The potential function V' is in practice approximated by an empirical force
function which includes terms for electrostatic interactions, e.g. Lennard-Jones
and Coulomb interactions, for bonded interactions like bond stretching and
dihedral angles, and for restraints, like frozen distances and angles in water
molecules.
Corresponding to the form given in (2.1) the Hamiltonian which specifies
the total energy of the system is given by

H(q,p) = %p’M‘lp +V(q). (2.2)

11
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Remarkably, the propagation of the system given by (2.1) conserves the total
energy along the trajectory. Therefore, a trajectory of a system in a box
of constant volume which is obtained by (2.1) is said to sample an NV E-
ensemble, since N the number of particles, V' the volume and E the total
energy are conserved over the whole trajectory.

Although the molecular dynamics approach has some principle limitations
as it is based on the classical equations of motions and do not treat electron
movement, it is often the only feasible way to obtain a time resolved picture
of dynamical processes in molecular systems. A major drawback of using MD
simulations instead of experiments is that they rely on empirical force fields
which have to be parameterised, therefore leading to inconsistencies between
different force fields [82].

An alternative to the NV F ensemble obtained by propagation of a constant
volume and particle system according to the Hamiltonian equations of motion
is the NVT ensemble, where instead of the total energy the temperature is
kept constant. The physical interpretation of such a system is a simulation of
the system in an unresolved heat bath which allows energy exchange. In such
systems molecules can occupy configurations of arbitrary total energy, as the
surrounding heat bath triggers energy fluctuations, but configurations with
high total energy are less probable than configurations with lower total energy
(with a ratio becoming more pronounced with higher temperature). Therefore,
the probability to find the (equilibrated) system in some specific volume of the
phase space is specified by the Boltzmann-Gibbs probability distribution

1 _
ps(q,p) o exp (—ﬁ (§p’M 'p+ V(q))) : (2.3)
The parameter [ is obtained from the temperature 7', measured in Kelvin, by
1
/8 = T
kgT

where kg ~ 1.38065 x 10723 JK ! is the Boltzmann constant.
A way to generate such NV'T ensemble is by usage of the Langevin equa-
tion [21,47]

g=M"p

_ = ) (2.4)
p=-VV(g) —YyM p+ oW,

with v > 0 the friction term and o > the noise intensity and W (t) a Brownian
motion. The Langevin equation is stochastic differential equation, cf. 3.3.1
and A.1, where the stochastic term mimics stimulation from the environment.
If the fluctuation-dissipation relation

2y
f=—

12
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holds, the Langevin dynamics are ergodic with respect to (2.3) (which can
be seen by inserting it in the Fokker-Planck equation as described in A.1),
meaning that

t—o0

lim/of(q(S),p(S))dSZ // f(p,q)ps(p, q)dpdq, (2.5)

R3N xR3N

for a function f : R3*Y x R?*" R such that the left hand side exists and any
realisation of the process (2.4) putted in the right hand side. Due to the ergodic
properties of the Langevin dynamic, it can be used to calculate NV'T ensemble
averages, while it has an interpretation in its own right as a stochastically
excited dynamical system, where the excitation might come from an unresolved
surrounding. Other methods to sample the NV'T ensemble include the Nosé
Hoover thermostat [50] or (hybrid) Monte Carlo techniques [79].

Note however, that the computation of statistical averages using the ergodic
property (2.5) is not as straightforward as it seems at the first sight as numer-
ical requirements impose a very fine time discretisation of (2.4), such that the
full exploration of the phase space might become very challenging from a com-
putational viewpoint. This holds especially if the potential function imposes
energetic barriers which are high compared to the intensity of the stochastic
excitation, i.e. the temperature, as then the system becomes trapped for long
times in low energy regions before crossing the barrier. This so-called trapping
problem requires the application of quite complicated algorithmic solutions to
be overcome [33].

2.4 Computational Obstacles in Data Analysis of
Biomolecules

Even though the generation or simulation of data which reflects sufficiently
accurate the dynamical properties of an investigated molecular system is in
general a non-trivial task, in most parts of this thesis it is assumed that such
a data set is at hand, with the exception of § 5. Even if the problem of
obtaining or generating an accurate time series is solved, there still remains the
difficult task of analysing the data. If one wants to analyse data of biomolecular
systems, one is confronted with a variety of severe challenges. These challenges
do not arise from the specific biomolecular origin of the data but from the
complexity of such systems. In other words, since biomolecular systems are
complex systems, we need algorithms to analyse them which are capable of
dealing with time series exhibiting complex dynamical behaviour. In this sense
we want to emphasise that even if the algorithms presented here are developed
to analyse trajectories from molecular systems, they are general in the sense
that they are designed to handle the following listed obstacles which typically
arise in complex time series.
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2 Conformation Dynamics of Biomolecules

2.4.1 Many Degrees of Freedom

Biomolecular systems are in general high dimensional systems. If such a system
consists of N atoms, then there are 3N position observables, a number which
is doubled if velocities, resp. momenta, are also taken into account. Even if
N is a small number, most algorithms will quickly face difficulties just due to
the dimensionality of the system. Therefore, algorithms are needed which can
cope somehow with high dimensional time series.

Even if such algorithms are at hand, in most cases some sort of dimension
reduction is needed. We understand as dimension reduction a mapping

R:R* — R4

with d < 3N, such that the “important” dynamical properties of the system
can still be retrieved from the reduced system. To find such a mapping either
one has to resort to insight about the specific investigated system or use some
automatic procedure. An example for the first is the usage of dihedral angles
for peptides as described in § 2.2. An example for the latter is the well-known
principal component analysis (PCA) which, given a fixed dimension d of the
projection space, projects the time series onto a linear subspace of the original
space, such that the variance of the projected time series is maximised [60].

2.4.2 Multiple Time Scales

Symptomatic for complex time series is the existence of multiple time scales.
This term refers to a separation of time scales, i.e. the system exhibits char-
acteristic dynamical properties on one time scale and others on a different
time scale. In a biomolecular context this could be the femto- to picosecond
time scale in which the dynamic is governed by bond-angle vibrations of the
atoms around a stable global geometric structure, while on the nanosecond to
second time scale the relevant dynamics is the change of the global geometric
structure.

The existence of time scale separation poses a twofold problem. The first
is the simulation of such systems, while the second arises if data generated
by such system needs to be analysed. As mentioned above, this means that
one can not omit the small time scales in simulation, as otherwise numerical
integration schemes fail, i.e. one has to choose an integration step of a few
femtoseconds to simulate dynamical processes on the nanosecond scale which
makes the simulation process very time consuming. On the other hand, if one
has a time series of such system and wants to extract information about the
large scale process one has to find a way to separate the large scale motion
information from the short scale motion information.

To cover larger time scales of big systems in MD simulations, coarse grained
models are frequently used, i.e. one builds a reduced model from the original
atomic description where atom groups are represented as a single particle [118].
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2.4 Computational Obstacles in Data Analysis of Biomolecules

The major difficulty with the approach is finding an appropriate force field
description for the reduced model.

The perspective put forward in this thesis is somewhat different from this
approach, as a data based model reduction is proposed. That is, given a time
series, we want to fit a model that separates the time scales via the usage
of submodels for the small time scales and a global model for the large time
scales.

2.4.3 Phase Dependency

Closely related to the problem described in the last section, phase dependency
means that statistical properties of the time series under consideration may
change over time, i.e. there are phases in time to which different dynamical
regimes belong. Phase dependency especially means that fitting a single model
is not appropriate for describing the system. Even worse, if a model that takes
phase dependency into account is fitted to a time series one has to assure that
parts of the time series belonging to different phases are not mixed up when
they are used to parameterise the different phase models. In other words,
model fitting and phase separation has to be done simultaneously.

2.4.4 Amount of Data

Besides the more structural difficulties in the analysis of complex time series,
there is the more basic problem of just handling with the amount of data. Even
if dimension or model reduction is applied, one has to cope in general with a
large amount of data. Thus, algorithms have to be designed such that the data
can handled in an effective way. By an effective way we mean a linear scaling of
the execution time with the amount of data and a handling of data structures
that prevents working memory overflow. An immediate consequence of the
last requirement is the usage of linear algebra packages that support sparse
matrix operations.
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3 Data Analysis

In the following we are concerned with some given time series

Z = {Z17Z27"'7ZT}7

with z; € RY, which is supposed to be generated by some (stochastic) process,
i.e. by Langevin dynamic as given in (2.4). There are two basic assumptions
made on the dynamics of this time series: first, that there are different time
scales, i.e. there are phase changes on larger time scales than other fluctuations
on smaller time scales; second, these phase changes can effectively modeled as a
discrete Markovian process. In the context of (positional) molecular time series
such phase changes would correspond to global geometrical changes, while on
smaller time scales the dynamic is mainly characterised by fluctuations around
these metastable large scale structures. The aim is to identify these phases and
to set up a Markovian model for the changes between them.

While an employed model for time-series analysis should be able to reproduce
complex dynamical behaviour on one hand, it is crucial that the model is simple
enough to be parameterised on the other hand. We will start in Sec. 3.1.1 with
the assumption that the data is generated from a homogeneous Markov process
and then proceed to more complex models.

The first approach presented in § 3.1, the Perron Cluster Cluster Analysis
(PCCA) developed by Christof Schiitte, Peter Deuflhard et al. [29, 30, 104,
107], is a set-oriented approach. It is based upon a the construction of a
transition matrix that describes transition probabilities between sets in the
state space of the system. The identification of metastable sets is then based
on analysis of this transition matrix, i.e. the phases of the system are identified
with metastable sets in state space which the process rarely leaves while it is
fast-mixing within them.

PCCA relies upon the possibility to discriminate different dynamical phases
spatially, i.e. by a decomposition of the observation space. However, this as-
sumption might not hold, especially if a projection of the original observation
space is treated, i.e. some torsion angle instead of the phase space trajectory.
In such situations a more appropriate conception would be a process which
switches in a Markovian manner between different dynamical regimes, i.e. geo-
metrical structures, while only some generated output, i.e. a torsion angles, is
observable. A model class for such conception are the Hidden Markov Models
(HMM), presented in § 3.2, which can be efficiently employed in the analysis
of molecular dynamic trajectory [36].
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3 Data Analysis

Based upon this idea, Illia Horenko et al. [52,53] extended the HMM ap-
proach by introducing dependency between the observed data points via a
model with a stochastic differential equation whose parameters change with
switches of the hidden process, depicted in § 3.3. It turns out that by a subtle
reformulation of this approach, we can not only make the estimation process
more stable but we can also generalise it to higher memory, i.e. allowing not
only dependency in a Markovian way between data points but also include
dependency of more than one precedent data point [76].

3.1 Perron Cluster Cluster Analysis

Before describing the PCCA approach we need to collect a few basic terms from
the theory of Markov processes and chains on the fly. The reader interested in a
complete introduction is referred to existing monographs, e.g. we recommend
[31] for stochastic processes in general and [10,12] for Markov chains and
processes.

3.1.1 Homogeneous Markov processes

Denote by X = {X;,t € I} a stochastic process, i.e. a family of random
variables Z on some appropriate probability space with probability measure
P indexed by a parameter ¢, which is an element of some ordered index set
I. More specifically, we interpret the index ¢ as a time specification and set
I = R* or I =N, in the latter case X is entitled as a time-discrete process,
otherwise as a time-continuous process. The state space S, i.e. the union of
all possible values of the random variables {X;,t € I}, is assumed to either be
R?, in which case we call X continuous, or a subset of N in which case we call
X discrete.

Definition 3.1.1. We call a time-continuous stochastic process X a Markov
process, if for all n € N and every t € [ it holds that for every n-tuple
t1,to, ..., t, <t el with t; <ty <...<t, and every Borel measurable event
A we have

PlX; € A|Xy,,..., X, | = P[X; € A|X,,].

If S C N, we call such process a Markov jump process, since it jumps between
discrete events, but note that Markov jump processes can also be defined on
a continuous state space.

In simple words, a Markov process is a process whose probability distribution
of future events only depends upon the last known state. Assume X is a con-
tinuous Markov process, then the probability measure P induces a transition
probability function p(s,x,t, B) defined as

p(s,x,t,B) := P[X; € B| X = x|,
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3.1 Perron Cluster Cluster Analysis

with s <t € I, x € S, B Borel measurable.

In the following, we restrict ourselves to homogeneous Markov processes
where the transition probability function depends upon time only through the
increment ¢t — s. Therefore we can write

p(t —s,x, B) :=p(s,x,t, B).
A homogeneous Markov process is called a stationary process if
P[X, € Al = P[X; € 4],

for every measurable event A and t € I.

We write Xy ~ pg if the Markov process X is initially distributed according
to the probability measure p, and denote the corresponding probability mea-
sure of the process by P,,. We call py an invariant probability measure wrt. X,
or ps is invariant wrt. X, if

/S plt, z, A)pu(da) = p(A)

for all £ € I. In the following we always assume that the invariant measure
of the process under investigation exists and is unique. If pg = ps the corre-
sponding Markov process is stationary. A Markov process is called reversible
wrt. an invariant probability measure p; if

/p(t,w,B)ps(dm) = /p(t,m,A)ps(dm)
A B

for every t € [ and A, B C S.

Assuming a stationary Markov process with invariant density p,, we can de-
fine a stationary transition probability ps = p,, which quantifies the dynamical
fluctuations of the process within the stationary regime. Given two measurable
subsets A, B € S and a time span 7 we define

P, [X: € B and X, € A]
Pps [XO € A]

po(r,A,B) = P, [X, € B |X, € A] = (3.1)

This can be rewritten as

1
ps(A)

Since for a Markov process any statistical description of future events solely
depends on the present state of the system, any partition of an observed process
in phases must be ascribable to a partition of the state space if conclusions
about the process and not only about a single realisation should be drawn.
This motivates the following definition of metastability.

Do, (T7 A, B) =

/Ap(T, x, B) ps(dex). (3.2)
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3 Data Analysis

Definition 3.1.2. Let p, be the stationary transition probability function of
a stationary Markov process on state space S. A measurable subset B C S is
called metastable on the time scale 7 > 0 if

ps(7, B, B°) = 0, or equivalently, ps(7, B, B) ~ 1, (3.3)
where B¢ = S\ B denotes the complement of B.

Note that the above definition of metastability crucially depends on a chosen
time scale 7, as the transition function p,(7, B, B¢) converges to p(B¢) for
T — 00, and to 0 for 7 — 0.

The aim of the PCCA approach is the identification of a maximal decompo-
sition of the state space into metastable subsets wrt. to a specified time scale.
That is, we are looking for a collection of subsets S, C S, k= 1,...,m, with
m chosen maximal, with the following properties:

1) Positivity, i.e. ps(Sk) > 0 for every k.

2) Disjointness up to null sets, i.e. ps(S; N Sk) =0 for j # k.
3) The covering property Uzn:15_k =S.

4) Metastability wrt. to a fixed 7: Y-, ps(7, Sk, S§) > m — €.

Having identified such a decomposition we can define a meaningful global
dynamics of the process as the “flipping dynamics” between the sub-states
Sk. The identification of such a decomposition can be done by the transfer
operator approach as developed in [57,107,108] and outlined below.

3.1.2 The Transfer Operator

In the following we always assume a stationary and reversible Markov process,
which turns out to be a crucial assumption for the mathematical justification
of the transfer operator approach.

The (forward) transfer operator 77 of a Markov process, with 7 € I, is an
operator which maps functions from the Lebesgue spaces L"(p,) := L} (R?),
1 <r < oo, to itself and is characterised as follows:

/ T"u(y) ps(dy) — / v(@)p(r. @, A)ps(de) (3.4)
A S

for any measurable A C S and v € L"(ps). The transfer operator is related to
the usual Markov transition operator 77, defined by

T u(z) = /S V()p(r. 2, y)ps(dy),
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3.1 Perron Cluster Cluster Analysis

as this is the adjoint operator of T7. Both operators form a semigroup with
respect to 7, i.e. T™+™ =TT o T™ and both operators are Markov operators,
i.e. they are norm conserving and positive [57].

If the underlying Markov process is reversible, the transfer operator is self-
adjoint in L?(p,) and, as proved in [57], the spectral properties of this operator
can be used for the identification of metastable states:

Theorem 3.1.3. Let T7 : L*(ps) — L*(p,) denote the forward transfer op-
erator corresponding to a reversible Markov process X (wrt. ps). Then T7 is
self-adjoint in L*(ps) wrt. the scalar product < -, - >,._.

Furthermore, if the essential spectral radius of T™ is less than one and the
eigenvalue A =1 of T™ is simple and dominant, i.e.

o(T7) Cla, b U{ A\ U...U{ X} U{1}

with —1 < a < b< X\, < ... < Xy < Ay =1, where the isolated eigenvalues
A; are counted according to their finite multiplicities, then the following can be
stated:

Denote by vy, ..., v, the corresponding eigenfunctions to Ay, . .., A\, normalised
such that ||vi||2 = 1, let Q be the orthogonal projection of L*(ps) onto the span
of {1s,,...,1g,,}, where {Si,..., S} is an arbitrary partition of the state
space. Then the metastability of the partition, can be bounded from above by

ps(7,51,51) + oo+ ps(T,Sm, Sm) < 1T+ + ...+ A\, (3.5)
while 1t 1s bounded from below according to
L+ Kodg + .o+ B Am + ¢ < po(7,51,51) + .o« + ps(T, Sy i), (3.6)
where j = [|Qujl|72(,,y and ¢ =a ((1 = k2) + ... + (1 = K,)).

Eq. (3.5) states that the metastability of an arbitrary partition of S into m
subsets is bounded from above by the sum of the m largest eigenvalues.

Therefore a meaningful choice for the number of metastable sets is
the number of eigenvalues near one, as long as there is a (spectral)
gap between these and the rest of the spectrum.

Furthermore the lower bound Eq. (3.6) is close to the upper bound if the
eigenfunctions are almost constant on the metastable subsets Sy, ..., S,,, which
implies kg, ..., Ky, close to one and ¢ close to zero.

In other words, the structure of the eigenfunctions can be used to
identify a metastable decomposition.

However, to compute the spectrum of the transfer operator we have to discre-
tise it and, in our setting, estimate the discretised object from a given time
series. As outlined in the next section, the discretisation of the transfer oper-
ator gives rise to a stochastic matrix and the theory from the continuous case
can be transfered to the discretised case.
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3 Data Analysis

3.1.3 Discretisation of the Transfer Operator

The discretisation of the transfer operator can be done by discretisation of
the state space of the underlying Markov process. Therefore a decomposition
of the state space Bi,...,B, € S is used to define ansatz functions y; €
L*(ps),i=1,...,n, by

i\&L) =
X 0, else.

A Galerkin projection II,, from L?(p,) to the finite dimensional ansatz space
S, = span{xi,..., Xn} is defined by

n

V, Xi s
oy = 32 ey,

i—1 (Xi» Xi) e

Using the coordinate representation wrt. the basis {x1,...,xn} of S, i.e. v =
(v1,...,v,) notes the vector > ", v;x; wrt. to the standard basis, an easy
calculation shows that for a self-adjoint operator 77 the eigenvalue problem
T™v = A\v transforms to P"v = A\v, where P7 is a matrix with entries

<Xj7 TTXi>p /
P = e = p(T, x, B))ps(dx).
! <Xi> Xi>ps By,

The matrix P, note that we omit the superscript 7 in the following to simplify
notation, inherits important spectral properties of the operator 77 [57,108]:

(i) P is an irreducible and aperiodic stochastic matrix, with a unique dom-
inant eigenvalue A\ = 1. For the (normalised) left eigenvector w =
(7, ...,m,) corresponding to the dominant eigenvalue we have m; = p(B;).

(ii) P is selfadjoint wrt. to the 7r-weighted scalar product (-, ), i.e. it is
similar to a symmetric matrix and all eigenvalues are contained in the
real interval | — 1, 1].

(iii) For a fine enough Galerkin discretisation, the discrete spectrum of the
operator 17 will be approximated by eigenvalues of P.

To summarise, via a Galerkin discretisation of the transfer operator a stochas-
tic matrix is obtained, which inherits important spectral properties of the
continuous object. As shown in the next section, the concept of metastability
can be transfered smoothly to the discrete case and, again, the structure of
the spectrum can be used to determine metastable sets.
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3.1 Perron Cluster Cluster Analysis

3.1.4 Perron Cluster Cluster Analysis

In this section we transfer the concept of metastability to a discrete space
setting, therefore we assume a given stochastic matrix P = (p;;) which could
be obtained from the discretisation of a transfer operator or just be given as
the transition matrix of a (time-)discrete Markov chain. That is we assume
a homogeneous (time-)discrete Markov process X = {z1,zs,...} upon a state
space S = {1,...,n} for which

P[xt—H = j!xt = Z] = Pij

holds. If the distribution of a Markov chain at a point ¢ is given by a vector v,
i.e. Plx; = i) = v; then the distribution to the time ¢ + k is given by (v’ P¥)".
We assume the existence and uniqueness of a positive stationary distribution,
i.e. avector w = (my,...,m,) with m; > 0for 1 <i<mnand)  ,m =1 which
fulfils
P = 71'/,

and that A\ = 1 is the only eigenvalue of P on the unit circle. Such matrix
is called primitive [111, Ch. 1], which corresponds to the assumption that
the underlying Markov chain is aperiodic and irreducible. Furthermore P is
supposed to be reversible wrt. to 7, i.e.

TiDij = TiPji, L < 1,7 < n.

A simple consequence of reversibility is that P can be symmetrised with the
diagonal matrix D = diag(my,...,m,) and consequently the eigenvalues of P
are all real valued and contained in | — 1, 1].

Equivalent to the definition of metastability given in (3.3), a subset B C .S
is called metastable if

Prlr; € B,x41 € B] = M ~ 1
> ien Ti
Correspondingly, a partition {S7,...,S,,} of the state space S is called meta-
stable if
Zz;esi TiPij
w(Sk, S)) = L S
Ziesi i

holds for all £,1 with 1 < k,l < m.

There is an intuitive illustration why such decomposition can be found using
spectral properties of P. Consider a Markov chain with a decoupled state
space, i.e. there is a partition in so-called invariant sets {51, ..., S, } such that

w(Sk,Sl) = 6kla 1 S l{,l S n.

Then the state space can be permuted such that the corresponding transition
matrix is block-diagonal and the blocks are itself stochastic matrices. Provided
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that these stochastic submatrices are themselves primitive we would have an
m-fold dominant eigenvalue 1 and a corresponding (right-)eigenspace which is
spanned by the characteristic vectors of the invariant sets, as any stochastic
matrix has at least the unit vector as right eigenvector to the eigenvalue 1. By
noting that every other basis of this eigenspace is a linear transformation of this
basis, i.e. any eigenvector of A = 1 is a linear combination of the characteristic
vectors, we immediately see that any eigenvector belonging to the dominant
eigenvalue is constant upon all invariant sets. Even more, Deuflhard et al. [29]
proved that the invariant sets can be uniquely identified by the sign structure
of the eigenvectors. More precisely, since each eigenvector is constant on an
invariant subset it can be used to assign a sign, i.e. +, —, 0, to an invariant set.
For an arbitrary orthogonal basis of the eigenspace vy, ..., v,, a sign pattern
can be assigned to each state via the map

f:S—={+,—,0}", f(k)=(sign(vig),...,sign(vm,i)).

Defining sets by states with the same sign pattern one obtains the invariant
sets.

Assuming that the transition matrix of a Markov chain with metastable
sets is obtained by a small perturbation of a transition matrix belonging to a
Markov chain with decoupled sets and that the spectrum of the unperturbed
transition matrix is bounded away from the unit circle, with exception of the
m-fold dominant eigenvalue, it is clear that the above described identification
strategy can also be used to identify metastable sets, since the sign pattern
of the eigenvectors does not change for small perturbations of the matrix. In
fact this assumption can be justified rigorously by perturbation theory up to
second order [29,126]. Therefore one obtains the following algorithmic strategy

1.) identify the number of metastable sets by the number of eigenvalues close
to one, the so-called Perron cluster (obviously this requires the existence
of some spectral gap between the Perron cluster and the rest of the
spectrum).

2.) identify the metastable sets by exploiting the sign structure of the cor-
responding eigenvectors.

This procedure has been established as Perron Cluster Cluster Analysis (PCCA).
Problematic with this approach is that zero as a sign is obviously not con-
served even for arbitrary small perturbations. A proposed remedy is to de-
fine a threshold, so that every value whose absolute value is smaller than the
threshold is set to zero. In our experience a similar approach based on PCCA
which circumvents the problem with zero values turned out to be most satis-
factory [30,125,126]. This approach is based upon the observation that for the
uncoupled case the orthonormal basis of characteristic vectors {Xx1, ..., Xm}
wrt. to the partition in invariant sets, of the eigenspace belonging to the domi-
nant eigenvalue gives an allocation of each state to an edge of an m-dimensional
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3.1 Perron Cluster Cluster Analysis

simplex via the mapping

f:S'_)]R‘mv f(k) = (Xl,k?"'aXm,k:)'

Choosing another basis, i.e. another set of vectors

m
j=1

corresponds to a linear transformation of this (standard) simplex to another
simplex, whose edges are given by the rows of A = (a;;). By inverting this
matrix one obtains a map from a given eigenvector basis to the unit simplex.
Again, having not a decoupled system but metastable sets the simplex struc-
ture is expected to be nearly conserved. This leads to the following algorithmic
idea, sometimes referred as PCCA+:

Given a stochastic primitive matrix P,

1.) identify the number of metastable sets m via the size of the Perron
cluster.

2.) write an arbitrary orthogonal basis of the eigenspace to the dominant
eigenvalue as columns into a matrix

V=(v1,...,0n),
and interpret the rows of V as data points uq,...,u, € R™.

3.) choose iteratively m of these data points to define a simplex in R™, by
choosing first the two points with the largest (Euclidean) distance and
then subsequently add a point which is farthest away from the hyperplane
spanned by the already chosen points. Define A by putting the obtained
simplex edges as columns in a matrix.

4.) invert A and transform the data points to A~ uy, ..., A~'u,,. The result
should be an approximated standard simplex.

5.) assign i € S to metastable set S; if data point A~'u; is closest to edge j
of the standard simplex (up to permutations of the edge numbering).

This heuristic approach can be made more sophisticated and rigorous by defin-
ing an optimisation problem, i.e. finding a simplex which fits optimally wrt. to
some score function in the data points [30,125]. However, in practice it turns
out that the results of a sophisticated optimisation strategy are not better,
but the effort needed is drastically increased.
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3.1.5 Estimation of the transition matrix

Above we outlined how to determine metastable sets from a given stochastic
matrix. In general we have to estimate this matrix from discrete or discretised
observations. This can be done by maximum likelihood estimation. Assume
a time series Z = {z1,2y,...,27} on a discrete and finite state space S =
{1,...,n}, possibly obtained by some discretisation of a former continuous
time series. Denote by N; the sum of data points observed in state ¢ and by
N;; the number of transitions from 7 to j within one time step found in the
time series. A likelihood function for the transition matrix P = (p;;) is given
by

P|Z H Pzizyq

which leads to the log-likelihood function

W(P|Z) = Z log( kaZkJrl - Z Nijlog(pij)-

ij=1

To obtain an maximum likelihood estimator (MLE) we need to maximise the

log-likelihood function, i.e., regarding the constraint Y ,_ pyx = 1 for i =
1,...,n and therefore introducing the Lagrange factors ay, ..., a,, we have to
solve
Ol(P|Z) 0 [
+ pik=1] =0,
Ipi; Ipi; ;

for i =1,...,n. This yields

Ny

Pij = Fj’

as an MLE for p;;. Therefore, an estimator of the transition matrix P is ob-
tained by simply counting the observed transitions between states. But in
order to employ the above outlined PCCA we need a reversible transition ma-
trix, which leads to the question, under which circumstances the estimated
transition matrix is indeed reversible. First, we note that the stationary dis-

tribution @ = (mq,...7m,) for the above estimated transition matrix is given
by
T = N
i N

as this implies
n n

N; N;N;
eSS - e

k=1 F k=1 J
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which can be compactly written as wP = m. Therefore, the reversibility
condition m;p;; = m;p;; is equivalent to

- = ~ - © Ny = Nji,

i.e. the estimated transition matrix is reversible iff the same number of transi-
tions from ¢ to j as from j to ¢ is observed, which meets the intuitive interpre-
tation of reversibility that the direction of time does not change the statistical
properties of the process. Of course, with a given (finite) observation this will
rarely be the case, even if it is in fact generated by a reversible process. A rem-
edy is to set Ni]- = N;; + Nj; and, to preserve the normalisation, set Ni =2N;
and estimate P by

pij = —= ., (37)

which delivers a reversible transition matrix.

3.1.6 Example

We close the section on PCCA with an easy example illustrated in Fig. 3.1.
For demonstration purposes we cut out a short piece of a two-dimensional
time series obtained from some angular observable of a molecular dynamics
simulation. As seen in the figure, each dimension is discretised in 7 boxes which
gives a discrete state space of 7-7 = 49 boxes. Since not all of the possible
boxes are occupied in the observed time series, the state space reduces to 36
boxes with non-zero probability. Upon these a stochastic transition matrix is
set up according to (3.7). The five largest eigenvalues of this matrix are

k|1 | 2 | 3 | 4 | 5
A(P) |1 ]0.9995 | 0.9909 | 0.7339 | 0.7062

As there is a significant gap between the third and the fourth eigenvalue,
we assume the existence of three metastable sets and the eigenvectors cor-
responding to the three largest eigenvalues are used to identify them. Both
methods described above, PCCA and PCCA+, are illustrated in Fig. 3.1 and
provide the same result. Note that in this example PCCA does not need to
use information from the critical “zero-sign” region of the eigenvalues, since
just the +, — pattern of values far off zero gives a unique allocation of states to
metastable sets, which is quite typical. Finally, permutation of the transition
matrix, such that boxes belonging to the same metastable set are neighboured
reveals a block diagonal dominant structure as expected.
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Figure 3.1: Top row: Left: A two dimensional periodic time series of two tor-
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sion angles ®, ¥ €] — 180°,180°]. A box discretisation in 7 boxes along each
dimension is indicated by red lines. Right: The outcome of PCCA is a clus-
tering in 3 metastable sets coded here in a colouring of black, blue and red.
Middle row: Left: Orthogonal eigenvectors belonging to the Perron cluster
of the resulting transition matrix are plotted against the index of the 36 oc-
cupied states. Middle: Plotting the eigenvector matrix row-wise (omitting
the first component as it is constant) reveals a simplex structure. Right: A
schematic plot of the transition matrix. The colouring of the boxes indicates
the amplitude of the entries, dark blue corresponds to zero entries and dark
red to entries close to one.

Bottom row: Left: the eigenvectors are depicted against the state space per-
muted such that states with the same sign structure of the eigenvectors are
together. Middle: Defining a linear map by transforming the edges of the
original simplex to a standard simplex conserves the simplex structure of
the data points. Allocation to metastable states is been made by allocation
of each data point to the closest standard simplex edge. Right: Both meth-
ods deliver the same permutation of the state space, the correspondingly
permuted matrix is shown.
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3.2 Hidden Markov Models

Assume a time series z; € R4t = 1,2,...,T if given from, e.g., an MD-
simulation of a molecule, which do not completely specify the state of the
molecule in phase space, but rather some low-dimensional observable, for ex-
ample, some or all torsion angles or a set of essential degrees of freedom. As the
Markov property does not hold for projections of Markov processes in general,
we have to be aware that the process on the (torsion angles) subspace might
no longer be Markovian. Nevertheless, we assume that there is an unknown
metastable decomposition into m sets Si, ..., .S,,, in the full dimensional sys-
tem.

We can then premise that, at any time ¢, the system is in one of the
metastable sets Sy, hy € {1,...,m} to which we simply refer by h;. How-
ever, in contrast to the observed time series z;, the time series h; is hidden,
i.e., neither known in advance nor observed.

Such a scenario can be represented by a Hidden Markov Model (HMM). An

HMM abstractly consists of two related stochastic processes: a hidden process
h; that fulfils the Markov property, and an observed process z; that depends on
the state of the hidden process h; at time ¢t. For example, within the molecular
context, the state of the hidden process could represent the actual conformation
of a molecule system and the observed process some torsion angles, which
of course are dependent on the global geometry. Note, however, that the
concept of HMM’s is in general independent of the concept of metastability,
i.e. the Markov chain representing the hidden process can in principle be fast
mixing. Therefore the assumption of metastability is an additional assumption
motivated by the specific application background and is not required in the
following.
An HMM is fully specified by an initial distribution 7 and a transition matrix
P of the hidden Markov process H = (h;), and the probability distributions
that govern the observable z; depending on the respective hidden state h;, so
it can be formally is defined as a tuple 6 = (S, V, P, f,m) where

e S={1,2,...,n} is a finite state space,

e V C R?is the observation space,

P = (p;;) is the transition matrix, with p;; = Plhy1 = jlh = 1],

f = (f1,f2,..., fn) is a vector of probability density functions (pdf) in
the observation space,

7 = (m,...,m,) is a stochastic vector, that describes the initial state
distribution, m; = P[z; = i].

In the following we use the short notation § = (P, f, ) since S and V are im-
plicitly included, resp. are not estimated but specified. Of course, HMMs can
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also be defined with discrete observation process z;, in this case f specifies the
corresponding probabilities instead of density functions, however, if not other-
wise noted, we assume z; to be continuous in the following. The most popular
choice in the continuous case is to use (multivariate) normal distributions for
the output distributions f, see § 3.2.2. We will substantially generalise the
HMM-models in § 3.3.5 by allowing the output distributions to be dependent
on former observations.

Example: Consider the following simple example of an HMM: a two element
state space S = {A, B} with

P[ht+1 - A|ht - A] — ]P[h‘t-i-l - B|ht — B] - 09,

i.e., the transition matrix is given by
0.9 0.1
P= (0.1 0.9) '
The observation space and the output probabilities are given by V' = {1, 2,3}
and the vectors f, = (0.5,0.5,0) and fz = (0,0.5,0.5). The construction is
such that in hidden state A the observations 1 and 2 can be made with equal
probability, while 2 and 3 are observable in hidden state B. The hidden process
is assumed to be in stationary state, i.e. P[h; = A] = P[hy = B] = 0.5 as with
7 = (0.5,0.5) we have wP = . What can we say about the probability of

observing z; = 1, when 2,1 = 2 has been observed previously? A simple
calculation yields

]P[Zt = 1‘Zt71 = 2]
= Z ]P[Zt = 1’215,1 = 2, ht,1 = S] ]P[ht,1 = Sth,1 = 2]

se{A,B}
IP[Zt—l = 2|ht—1 = S] ]P[ht—l = 5]
= Plz, =1z =2, hi_1 = s
SG{EA;B} s o o ]Zs’ Plzi—1 = 2|ht—1 = §'| Plhy—y = 5]

—091+011—025
=097 12 =025,

How is this probability affected if knowledge about another previous obser-
vation, i.e. z;_o = 1, is taken into account? We have, regarding the output
distributions,

]]-:)[Zt == 1|Zt_1 = 27Zt—2 = 1] = ]P[Zt == 1|Zt—l = 27ht—2 = A],
and a calculation similar to the one above yields
]]-:)[Zt = 1|Zt—1 = Q,Zt_g = 1] = 0.41.

This simple example demonstrates two important properties of HMMs. First
of all, opposed to the hidden process H, the resulting observed process is
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obviously not Markov anymore, and second, the same observation can be gen-
erated by different hidden states. In reverse this means that an HMM does
not rely on spatial separation of the observations as it takes the dynamical be-
haviour into account, which is a conceptual difference from the PCCA context.

In the context of HMMs, there are three standard tasks to solve [96], these
are

(T1) Calculation of the probability P[Z]6], resp. evaluation of a density func-
tion p(Z|@) in the case of a continuous observation space, for a certain
observed sequence Z and a given model § = (P, f, ).

(T2) Estimation of the best model parameters for a given observation se-
quence, i.e. maximisation of the likelihood function L(f|z) = P[z|]
wrt. 0.

(T3) Given the model § and an observation sequence Z, find the most probable
hidden state sequence h = (hy, ha, ..., hy).

Task (7'1) and (7'3) can be solved explicitly in an efficient way with Dynamic
Programming (DP) approaches. The optimisation problem in task (72) is more
challenging, as it is in general not analytically solvable and non-convex, i.e. lo-
cal optima of the likelihood function do exist. In the next section we shortly
introduce the Expectation-Maximisation (EM) algorithm, used to locally solve
(T2), and show how to apply it to the standard case, i.e. independent Gaussian
output distribution. In § 3.2.3 it is shown how to use the DP techniques to
compute the necessary quantities for the EM algorithm and solve the problems
(T1)-(T3). Afterwards in § 3.3 we define a broader class of possible output
distribution. As noted in (7'1), probabilities in a continuous observation space
are specified by a probability density function which is noted by p instead of a
probability measure P, in order to avoid notational confusion and for notation
transferability, we will solely use the notation p in what follows for both cases.

3.2.1 The Expectation-Maximisation Algorithm

Although previously used, e.g. in the context of HMMs [7], the EM algo-
rithm as a general method to compute Maximum Likelihood estimates in the
presence of missing or hidden data was proposed 1977 in an article by Demp-
ster et al. [27]. Assume a vector of observations z and a probability density
p(z|0) which is parameterised by a parameter vector #. The aim is to find a 0
which maximises the likelihood function L(#) := p(z|0) or equivalently, as the
logarithm is a monotone function, the log-likelihood function

1(0) = log p(=]0).

The strategy employed in the EM algorithm is the following, instead of max-
imising [(6) directly, which is infeasible in many cases, a function [(0]0) is
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constructed which depends on a current parameter guess 6, and has the fol-
lowing properties

1.) The log-likelihood function is bounded from below by 1(0|6}),
i.e. 1(0) > 1(0|0y) for all 6.

2.) The bound is sharp for the current guess, i.e. I(6x) = [(0x|0k).

From the two given conditions, it follows that any increase in [(6|0;) will in-
crease [(6). Therefore, the EM algorithm aims at constructing and maximising
[(0|0y) in each iteration and take the corresponding argument as the next pa-
rameter guess, i.e.

01 = argmax (0|0 ).
0

A variation of the EM algorithm is the Generalised Expectation-Maximisation
algorithm (GEM), which just aims at increasing [(6]0)) in each iteration in-
stead of maximising it, cf. [84].

So far there is no hidden or missing data in the problem formulation, in some
applications the inclusion of hidden variables arises from the problem itself,
like in the HMM context, in others it is just a technical dodge in that assum-
ing hidden variables may make the maximum likelihood estimation tractable.
However, given a vector of hidden variables h the log-likelihood function to be
maximised can be written as

1(0) = log / p(z|h, 0)p(h|6)dh

A function [(0|6)) that fulfils the above stated conditions wrt. to the form of
the log-likelihood function just given is

1(0|6y) = /hp(h|9k,z) log (%) dh.

It can be easily seen that this function defines a lower by applying Jensen’s
inequality:

1(0]6k) < log (/p h|0, z) p(z, hlf) dh)
h

p(h|0k, 2)
(

p(z|h,0)p h|9)—EZ}Z’“Z§dh>

;f\;\

p(z|h. O)p h|0)dh) 1(6).
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Also the inequality for the function [(6|0y) gets sharp at the current estimate

0, since
1(0410r) = /hp(h!%z) log (pE;Z{I’@k;)

_ /hp(hyek,z) log< ;?égj(l;),ig,ék)>> "

= /hp(hyek,z)dh log(p(2(6x)) = log(p(2|0x))1(05).

Finding the new estimate 6;; which maximises [(0|0y) is done by
O+1 = argmax (6]0)
0

p(z,hW))
= argma h|0;,z)log | ———= | dh
e [ i =) 1o (50

— argmax | p(hl6s, 2)log (o(z. hl6)) dh
0 h

= Eh\ek,z[bg (p(z, h|0))).

Note that as p(h|0y, z) = cp(z, h|0)) and the constant ¢ is independent of 6
and h, ;.1 can also be obtained by maximising

/hp(z,hwk) log (p(z, k|0)) dh. (3.8)

Therefore the name Expectation-Maximisation algorithm, as first the expecta-
tion of the full log-likelihood function is calculated, which needs the determi-
nation of p(z, h|f), and afterward it is maximised wrt. to §. We have shown
that these procedure indeed generates a sequence of non-decreasing likelihood
estimates, i.e. (k1) > [(0), k > 1. Under quite general conditions it can be
shown that this series will converge to a maximum or saddle point of [ (for an
elegant and easy proof we refer to [84]). In practice the iteration is stopped
if the increase in the log-likelihood falls below a predefined threshold. The
drawback of this elegant method is that in general a local and not a global
maximum of the log-likelihood function is obtained. Therefore one has to pro-
vide a good initial guess for the parameters, try different initial parameters or
has to couple the EM algorithm with some global optimisation method, e.g.
deterministic annealing [119], but of course non of these can guarantee the
finding of the global maximum, if it exists.

3.2.2 HMM'’s with Gaussian Output

In an HMM with continuous output distributions often Gaussian output dis-
tributions are assumed, i.e. the output distributions fi,..., f, are specified
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by

1
fk(zt) = |27TR]€|_% exp (—5 tr ((Zt — /J,k)(Zt — /J,k)/Rk_l)) s 1 S k S n.

These are parameterised by a mean vectors p,, and positive definite covariance
matrices Ry. Therefore the whole parameter set of an HMM with Gaussian
output is given by

0= (m, Py, s, R1,. oo Rin).

We now sketch how to adapt the EM algorithm to this setting, for details we
refer to [11]. According to Eq. (3.8), given a parameter set 65, an improved
parameter set is obtained by

Or+1 = argmax ((0]0x) = argmaXZp(z, h|0;)log (p(z, h|0))
0 0 -

3.9
— arg?axzp(hwk,z) 10g (p(z,h|0)) 7 ( )
h

where the sum is over all possible hidden trajectories.

The complete probability density p(z, h|0) is easily evaluated as

T-1

p(z’ hle) = 7Th1fh1 (zl) tht,ht+1fht+1 (zt+1)

t=1

Conveniently the function to be maximised in (3.9) splits into three parts,

5= (ot iz, + 3 08(0n,0., k12,6

h t=1

- (3.10)
+ Y o (zplhlz. ) ).

which means that the optimisation problem can be solved independently for 7,
Pand {py,...,y, R1,..., Rn)}. Solving these, with the use of Langrangian
multiplies to include the constraints > . m =1 and ) jpij=1for 1 <i<m,
gives the solutions

ﬂ_l(k-ﬁ-l) = p(hy = i|0y, 2), (3.11)
et _ Dy Plhe = 6 By = 10, 2) (3.12)
! Sy plhe =il 2)
(k+1) _ Zthl plhe = il0r, 2)2: (3.13)
1 = : ' '
23:1 p(ht = Z|Qk, Z)
T _ (kL) o, (k+1)
Rl(k+1) _ D1 Py = il0r, 2)(ze — gy ) (20 — 1y )_ (3.14)

> plhe = il0r, 2)
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However, at this point it is not clear if these solutions can be computed effi-
ciently. In fact they can, via the introduction of the so-called backward and
forward variables, which is shown in the next section.

3.2.3 Dynamical Programming Approaches for Efficient
Implementation of the EM algorithm

In this section we outline how to compute the desired quantities in HMM
estimation in an efficient way using dynamical programming approaches. The
presentation closely follows [36]. Besides the below cited literature the reader
is referred to [96] for a more detailed presentation with examples.

Backward-Forward Variables

In this section the so-called backward and forward variables are introduced.
These can be used to update the EM parameters in Eq. (3.11)-(3.14) efficiently.
Note that this concept of dynamical programming does not take into account
the specific form of the output distributions, and therefore is not restricted to
Gaussian output distributions. The backward and forward variables divide an
observation sequence z recursively in partial subsequences: those from time 1
to time ¢ and those from time ¢ + 1 up to 7". Given a particular parameter set
0, the forward variables are defined as

at(Z) = p(Z1, Z9, ..., 2¢, ht = /L|0),

which denotes the probability of the observation sequence up to time ¢ together
with the probability that the system is in hidden state ¢ at time ¢ conditioned
wrt. the given model #. The backward variables are defined by

ﬁt(z) = p(zt+17zt+2a s 7zT|ht = i70)7

which denotes the probability of the observation sequence from time ¢ + 1 to
T, under the condition that the hidden process is in state ¢ at time ¢t and on
the model #. The computation of the probability ar(i) = p(z, hr = i|0) is
possible with m? T operations, as recursive formulas can be used:

a1 (i) = mifi(21), I1<i<n,
. < , (3.15)
a1 (f) = | Y auli)pig| fi(zen),  1<j<n, 1<t<T—1
=1

The backward variables [3;(i) can be computed with an analogous formula:

5T(Z):]-7 1§Z§n7

(i) = Zpijfj(ztﬂ)ﬁtﬂ(j), 1<i<n, T—1>t>1. (3.16)
j=1

35



3 Data Analysis

In order to avoid obscure notations, we have omitted subscripts indicating the
dependence of all the variables above, except those of the observations, on
the given model parameters . With the introduced forward and backward
variables one can easily compute

n

p(z]0) = Z (1) B (0), (3.17)

i=1

and therefore solve the standard problem (7'1), which would otherwise require
a, in general non feasible, summation over all possible hidden paths.

Furthermore, the forward and backward variables, computed wrt. to 6, can
be used to obtain the required quantities in Eq. (3.11)-(3.14) for every EM
step, i.e. p(hy = |0, z) and p(hy = i,hyy1 = jlOk, 2) for 1 < 4,5 < m and
1 <t < T, and thereby solve (T2), as

p(ht - i7ht+1 - jJ ekaz)

p(ht =i, hyy1 = j‘elmz) =

P(ek, Z)

p(ht =1, hyp = 7, Z|9k)
— 3.18
P16 (318)

_ at(i)Pijfj(th)BtH(j)

p(z[0) ’

and .

plhe = il0k, 2) = > p(hy = i, hisy = |6y, 2). (3.19)

i=1

The Viterbi algorithm

Having computed the maximum likelihood estimate for the parameters of an
HMM model with the EM algorithm, one can face problem (73): conditional
on the MLE 6 for the model parameters, compute the most likely hidden path
h = (ﬁl, ho, ... iLT) The computation can be done efficiently by the Viterbi
Algorithm, a dynamical programming algorithm proposed 1967 by Andrew
Viterbi [121], see also [37]. The optimal hidden path, also called Viterbi path,
is done by recursive computation of

5t(i):hmahx p(hla"'ahtflaht:iazlw"azt'é)? 1§t§T71§Z§n

Lyeeey t—1

From 87 = (67(1),...,67p(n)) one can read off the optimal hidden state Ay,
if one has kept track of the state sequence that led to this state, the optimal
path can be determined via backtracking, as shown in the full algorithm:

1) Initialisation:
51(2) = Wifi(zl), 1 S 1 S n
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2) Recursion:

0:(i) = max [6r-1(5)psil fi(=1),

1<5<
(i) = argmax[étfl(j)pji]a

1<j<n
2<t<T,1<i<n

3) Backtracking:

hy = argmax[dr(j)]

1<j<n

he = a(hy), t=T—1,T—2...,1.

Note that this algorithm is based on the Markov property of the HMM model,
i.e. probabilities about future events are only dependent on the preceding event.

Example

We are going to close the section on HMMs with Gaussian output distributions
with an example, where we also illustrate the difference between HMM and
PCCA analysis. Therefore an HMM model is set up, the hidden process is a
two state process with transition matrix

999 1
— 1000 1000
P = 1 999 )

1000 1000

and the output distributions are two Gaussian distribution with means and
covariance matrices

0 1 3 1 3 —0.2
l"l’1:<%)7#’2:<_1>7R1:(1 1)7R2:(_02 1>

As shown in Fig. 3.2, the thereby defined Gaussian output distributions are
overlapping in the sense that their 0.95 confidence regions do. Starting the
hidden process in state 1 a random trajectory of 10000 data points is generated
from the HMM. The described EM algorithm was used to estimate an HMM
based upon the observations. An initial hidden path was generated using
a transition matrix 5 (% ¢y ), which in turn was used to generate an initial
parameter guess by usage of Eq. (3.11)-(3.14). The EM algorithm, started with
these randomly generated parameters, converged after 10 iterations returning
parameter estimates which are accurate at least to the first decimal place. The
estimated parameter set was used to compute a Viterbi path as described in
§ 3.2.3. The computed Viterbi path is barely distinguishable from the true

hidden path as seen in Fig. 3.2, closer inspections yields 7 wrong allocations.
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Trying to analyse the obtained trajectory with PCCA does not yield such a
smooth looking result. The transition matrix obtained by discretisation of the
two dimensional observation space has the following largest eigenvalues:

gl t |2 | 3 | 4 | 5
A1 ]0.5830 | 0.2546 | 0.2254 | 0.2045

<

Obviously there is no Perron cluster, i.e. a group of eigenvalues close to one, but
at least a significant bigger gap between the second and the third eigenvalue
than any gap afterwards. However, clustering in 2 metastable sets does not
yield a satisfactory solution as the algorithm can not handle the overlapping
of the two distributions, cf. Fig. 3.2.

The better performance of the EM algorithm compared to a PCCA analysis
is not a big surprise, as the data was actually generated by an HMM. But
there are two more general messages to take away from this example. First,
the HMM approach is obviously able to cope with overlapping distributions,
while PCCA is not. Second, a drawback of the HMM approach is that we
have to choose the (expected) number of metastable sets initially as otherwise
the EM iterations are not defined, whereas the PCCA approach gives a clear
metastability criteria (which, as we have seen, might fail in situations like just
constructed). In § 3.4.3 we propose how to overcome this inherent weakness
of the HMM approach by combining both approaches.

3.3 Reduced Modelling of Internal Dynamics

In § 3.1 and § 3.2 we introduced methods to identify metastable sets in the
observation space of some observed time series. The outcome is a Markov
chain which models the transitions between these sets. A drawback of both
of the presented approaches is that they rely on ergodicity or stationarity of
the observed time series, since on one hand the transfer operator approach
depends on estimation of the transfer operator with respect to the invariant
measure and on the other hand the HMM approach assumes, within a hidden
state, independent and identically distributed observations. To overcome this
limitation Illia Horenko et al. [52,55,75,106] proposed to model the dynamics
within a hidden state and to include this into the time series analysis. This
was done by extending the standard HMM approach in two aspects, first by
adding dependency in the observed data, i.e. the observed process is itself not
only dependent upon the hidden process but also on previous data, second
by assuming a certain kind of dependency, namely, that the observed process
is governed by a stochastic differential equation (SDE). In the following we
present this approach with some extensions, namely, the employment of differ-
ent parameter sets, which will turn out useful in Chapter 4, and the inclusion
of higher order memory in the HMM.
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Figure 3.2: Left column: Top: The (overlapping) 95% confidence region ellipses
of the two Gaussian output distributions. Middle: The result of the PCCA
analysis depicted via colour coding of the data points, obviously the spatial
separation is not satisfactory. Bottom: The result of the HMM analysis
gives a perfect result.

Right column: Top: Shown is the initial Viterbi path to initialise the EM
algorithm (green, shifted for better visualisation), the obtained Viterbi path
after convergence of the EM algorithm (black) and the indistinguishable
true hidden path (blue). Bottom: The two dimensions of the generated
time series colour-coded according to the Viterbi path of the HMM analysis.
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3.3.1 Langevin Dynamics and Stochastic Differential
Equations

A common model to approximate the time evolution of an observation re-
stricted to some potential that is excerpted to noise is by means of a first
order SDE

2(t) = =V.V(z(t) + TW (), (3.20)

where z € R? is the observed quantity, V is some potential function, W (¢)
a d-dimensional Brownian motion coupled to the dynamics via the X € R%*¢
noise intensity matrix. In fact, such models arise often in the context of model
reduction of dynamical systems. If there is a time scale separation within the
system , i.e. there is a subset of variables that evolves fast wrt. to the others,
then the projected dynamics of the slow variables can, under regularity as-
sumptions, be approximated by such stochastic models, where the slow d.o.f.’s
are driven by some effective potential function, i.e. V', while the influence of
the fast d.o.f.’s is modeled by a noise term [62,68]. Opposed to the model
given in (3.20), such a model would in general contain a memory term. We
stick for the moment to models without memory and comment later in § 3.3.3
on generalised models obtained by adding a memory kernel to the noise.

A further model is the Langevin equation as introduced in § 2.3, which can
be stated in a somewhat generalised way as

q(t) = M~'p(t)
p(t) = —VaU(q(t) — M 'p(t) + oW (t).

Here M and 7 and o are each elements of R¥?, i.e. friction and noise intensity
are defined by matrices. Formally the Langevin equation can be put in the
form of Eq. (3.20) by defining

_(a . 0 —-M! (0 0
s (9 v (ol i) == () 1)

Note that this formal expression does only make sense if the assumed potential
is in fact quadratic (which we are going to assume below). If the friction ma-
trix defined by ~ is sufficiently large! compared to the masses defined in M the
dynamics of the positional variable of the Langevin equation can be approxi-
mated by the so-called Smoluchowski, or overdamped Langevin, dynamics:

14(t) = =VU(a(t) + oW (1), (3.21)

which already is in the form stated above, so that both dynamics can be
represented by Eq. (3.20). Both the Smoluchowski and the Langevin dynamics

!The sketchy term “sufficiently large” refers to the construction of a Smoluchowski equation
from a Langevin equation with a friction 8+ where the limit of 3 to infinity is considered,
for more details we refer to [46, Ch. 2] and [85, Ch. 10].
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exhibit an invariant measure of an easy form, the Gibbs distribution, which
reads for the Langevin dynamics

1 _
ps(q,p) o exp (—ﬁ (§p’M 'p+ U(q)))
and for the Smoluchowski dynamics

ps(q) o< exp(—BU(q)),

as long as M is symmetric and the so-called multivariate fluctuation-dissipation
relation
Boo' =~v++ (3.22)

holds. This can be seen easily by inserting the given measures in the Fokker-
Planck equation given in (A.2).

Since estimation of the effective potential of a non-linear stochastic differ-
ential equation, like the one given in (3.20), is difficult, the approach followed
here is to piece-wise linearise this equation, i.e. (3.20) is approximated by a
set of linear SDE’s, each of them representing some local dynamics, which are
coupled by a Markovian switching process. That is, we assume the following
dynamical system

2(t) = Fug (2(t) — t) + Zn W (2)
Wty e, sh

with (£, ..., Fs) aset of (d x d) dimensional force matrices, (X, ..., Y;) a set
(dxd) dimensional noise intensity matrices, a set of d-dimensional mean vectors
(fq, ..., ) and a switching process h which is supposed to be Markovian.
This is equivalent to the assumption of locally quadratic potential functions

Uilz) = —3(z = ) Fi(s — )

(3.23)

in Eq. (3.20). If F; is assumed to be positive definite and symmetric or if F} is
positive definite and commutes with XY’ it can be shown, via inserting in the
Fokker-Planck Equation again, that the invariant density of such local model
is given by

ps(2) ocexp (—(z — ) Fi X5 (2 — py)) -

This can also be seen by a transformation
Vi =250 Fz =7l o=,

which leads to

’}/ZZ = —VzUi(Z) + O'iW(t>,

i.e. the form of the Smoluchowski equation (3.21), and fulfils the fluctuation-
dissipation relationship (3.22) by definition of ;. Note that even if F; is not of
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this form, but have all eigenvalues with negative real parts, a Gaussian invari-
ant measure still can be computed according to Cor. A.1.4, but the covariance
matrix does not have the easy form F; XY’ anymore.

In the molecular context each of the linear SDE’s would represent fluctua-
tions around some global conformation, while the switching process simulates
the transitions between them [42,75,106]. Before we start to discuss the pa-
rameterisation of the piece-wise model given in Eq. (3.23) we discuss how to
estimate the parameters for a single linear SDE; i.e. for

2(t)=F(z—p)+ EW() (3.24)

in the next section.

3.3.2 Parameter Sets and Estimation for Linear SDE’s

The theory of linear SDE’s; like the one given in Eq. (3.24), is well understood
and the most important results for our purposes can be found in Appendix A.1.
Its solutions are Markov processes and furthermore, under the assumption of
fixed or Gaussian distributed initial conditions, Gaussian processes. Assume
for the moment that a time series z, := z((t — 1)7),t = 1,...,T, ie an
observation at discrete and equidistant time points, is generated by a single
linear SDE as given in Eq. (3.24). According to Cor. A.1.4 the density of z;,;
conditional on z; is given by

p(zei1l20) = |20 R(7)| 2 exp (‘% tr (2 — p,) (20 — l-‘l’t),R(T)_l)) , (3.25)

with mean and covariance
pe = p+exp(TF)(ze-1 — p),

T 3.26
R(r) = / exp(—F(r — )25 exp(—F'(r — s))ds. 20
0
Therefore a likelihood function conditional on the hole time series z = {21, ..., 27}
can be written as

L(F, 2, ul2) H 27 R(7)| " exp (—%tr (20 — po) (20 — Mt)’R(T>_1)>

= 27 R(r)| " F exp (_gu ((Zut — ) —ut>'> Rm—l)) ,

where z; is used as initial value. Unfortunately, it turns out that (analytical)
maximisation of the so obtained likelihood function wrt. the parameters F', X
and p is not possible. But Horenko et al. obtained analytical estimators for a
transformed parameter set, namely 6 = (exp(7F), XX’ w), which are restated
in the following theorem [55].
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3.3 Reduced Modelling of Internal Dynamics
Theorem 3.3.1. Given a 7 > 0 and a time series z = {z1,...,zr}, with
zy = z((t — 1)7), which is generated by
dz=F(z —p) + IW(t).

Define the empirical mean, the empirical covariance matrixz and the empirical
(normalised) autocorrelation matriz of the time series by

T

B 1

z = ﬁ tzz Zt)
Cov(z) = ﬁ (20— 2)(z1 — 2) (3.27)
Cor(z) = ﬁ <i(zt+1 )z — z)) Cov(z)".

Suppose that Cov(z) is positive definite. Then, the MLEs of exp(TF) and p
are given by

exp(TF) = Cor(z)
ZT — 21
T-1

(3.28)

~ —

fo=z— (I —Cor(2))™",

where I is an identity matrixz of appropriate size. From these quantities the
optimal MLE of the noise intensity matrix estimator XY can be computed by

55 = — <(C’0v(z) + E)F 4 F(Cov(z) + E)) ,
where E is a symmetric matriz that satisfies the Sylvester equation

Cor(z)ECor(z) — E =

e aer 2] L (e - 2)er = 2 — (- B - 2)),

which yields a unique solution, whenever o(F) € C~.

Although Theorem 3.3.1 provides an analytical expression for the trans-
formed parameter set, we propose yet another parameter set for two reasons.
First, it will turn out that the new parameter set, which we are going to
introduce now, will allow straightforwardly significant extensions to our orig-
inal model. Second, the parameter set of Horenko has the drawback that the
likelihood function is not integrable wrt. to it. This can be seen by keep-
ing exp(7F) = I fixed, I is an identity matrix of appropriate size, then,
cf. Eq. (3.26), the parameter p disappears from the likelihood function making
the integration impossible. Therefore the likelihood function can not be used
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to induce a density in parameter space from the observations, which we will
need later to carry out the change point analysis in Ch. 4.

Another parameter set can be found by using the density of z;,; conditional
on z; to obtain a discrete time process which has exactly the same distribution
as a discrete observation of the continuous SDE. Interpreting z;,1 as a random
variable dependent on the observation z; we have

zip1 = N(p +exp(7F) (2 — p), R)

= (I —exp(7F))p + exp(TF)z; + N(0, R), (3:29)

where N is a multivariate normal distributed random variable and I again
an identity matrix of appropriate size. Eq. (3.29) reveals the autoregressive
structure of order one, abbreviated by VAR(1), of the time series of discrete
observations. Defining

P = ((] - eXp(TF>>N eXp(TF)) c RA*(d+1)

= ( r ... 1 > c RE+D*(T-1)
Y = (Z27 e ZT) c ]RldX(Tfl)
€= (N(07 R),...,N(0, R)) e RX(T-1),

allows to write Eq. (3.29) in a compact form
Y = 0X + e

Transforming the parameter set 0 to § = (@, R), leads to a reformulated
likelihood function

(T-1)
L(f|z) = (ﬁ) exp (—%tr((Y — OX)(Y — @X)’Rl)) . (3.30)

for which there are analytic MLE’s $ and R, easily obtained by matrix calcu-
lus? [73,87],

= YX'(XX)'and R= (Y — dX)(Y — X)) /(T —1). (3.31)

Therefore, transforming the parameter set to 6 has the advantages that (i) the
distribution of the discrete observations is fully characterised by 6, (i) ana-
lytical MLE’s are available and (iii) the likelihood function, as it is shown in
App. A.2, is integrable over the parameter space. Note, however, that the
estimators given in (3.31) are not computed in the way stated, as the matrix
inversion leads to numerical instabilities, we show in § 3.3.4 how to compute
them properly.

2An excellent collection of matrix calculus rules can be found in The Matrix Cockbook,
accessible under http://matrixcookbook.com/.
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3.3 Reduced Modelling of Internal Dynamics

3.3.3 Higher Order Models

Considering the discrete observations of a linear SDE as realisations of a
VAR(1) process naturally establishes a way to include memory in our model
by just using a higher order model, i.e. VAR(p) with p > 0, which is of the
form

p
21 — Ao[!: + Z Aizt,iﬂ + N(O, R) (332)
i=1
and parameterised by the vector Agp and the matrices A;,...,A4,, R. This
process is obviously not a Markov process anymore but exhibits a memory lag
of p steps into the past. In fact it is shown in [55] that Eq. (3.32) can be
interpreted as a time discretisation of a generalised Langevin process

() = —V.V(2(t)) - /0 Y (t — 5)2(s)ds + SW (1), (3.33)

under the assumption of a quadratic potential function V', as above, and a
piecewise constant memory kernel v with finite support.

If a fixed order parameter p is assumed, estimation of the parameters of a
VAR(p) is analogue to that of the VAR(1) process, only the definitions of the
data matrices X and Y have to be extended to

1 ... 1

X [P AT € R@+Dx(T-p)
Zp ... 2T-1

Y = (Zp+1,...,ZT> S RdX(T_p).

The estimator @ in (3.31) now estimates
= (Aop A1 Ay ... A,) € RP@H

The estimator of R has to be adjusted to the growing number of initial points
needed for higher order and becomes

R=(Y - dX)(Y — dX) /(T —p).

Generalising (3.24) by introducing more memory, i.e. using a VAR (p) model,
p > 1, can be quite essential as even a reduced model of the form (3.23)
used to describe the effective dynamics of a molecular system can be a high
dimensional model. Since the number of parameters needed to estimate a
VAR process grows quadratically with the system dimensionality, a further
reduction of the dimensionality by restriction to linear subspace, e.g. via
principal component analysis, might be advisable. Unfortunately, the class
of VAR processes is not invariant w.r.t. linear transformations, instead a VAR
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process is in general transformed to a VARMA process, a VAR process where
the noise has a moving average representation. But, since VARMA processes
have a representation as infinite VAR processes, we can still approximate the
transformed process via a truncated, i.e. finite, VAR process by choosing a
high enough order p, cf. [73, Ch. 9].

3.3.4 Computational Aspects for VAR Parameter Estimation

The analytic estimators given in Eq. (3.31) are in general not used for com-
putation of the parameters, as the matrix inversion can be unstable. Instead
one can use the moment matrix

1
T
Zi—
M=MZ):=> |77 =, ... =)
| (3.34)
Zt

(XX XY'\ (M My

CA\YXT YY) My M)
The moment matrix is an important object as it contains all statistical relevant
information about the observed process (under the assumption of a VAR(p)

process). This can be seen by rewriting the likelihood function in terms of the
blocks in M:

L(®,R|Z) =L(®, RIM) = (ﬁ)

(3.35)
1
- exXp (—5 tr((Mgg - M21 925/ - ¢M12 + @MQQ @l)R_l)) y

where m denotes the upper left scalar entry of M which equals T'— p, i.e. the
length of the observed time series minus p initial values. We will employ this
notation m = m(Z) below to avoid the indices for the length of different time
series. Also, we will employ subsequently the notation f(Z|®, R) = L(®, R|Z)
if we want to highlight Eq. (3.35) as a density in data space. The MLE’s
can be obtained from the moment matrix M in a stable way via a Cholesky
factorisation which gives an upper triangular matrix

(U U
o= (15" 1)
such that

M= XX Xy’ _ Ui, Un Uiy Ura —UU
YX' vy’ UlaUin Uy Uiy + Usy Usy '
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Plugging the Cholesky factorisation into the estimators (3.31) one obtains
N - 1
o = (Uﬂl Ulg)/ and R = — U2/2 UQQ. (336)
m

In the case of an ill-conditioned moment matrix M one can add a regularisation
matrix to ensure a well-posed Cholesky factorisation. A possible choice is to
use M + odiag(M) instead of M, with a small parameter § depending on
the dimensionality of the problem and the machine precision. Setting 6 =
(¢*> + ¢+ 1)¢, with € the machine precision and ¢ = d(p+ 1) + 1 the dimension
of M, a successful termination of the Cholesky factorisation can be guaranteed
[49, 86].

3.3.5 HMM-VAR

After having transformed the problem of estimating parameters of a linear SDE
into a problem of estimating parameters of a VAR(1) model and recapitulation
of the standard estimators, we now turn to the question of how to estimate
the parameters for a piecewise linear SDE model, as given in (3.23). As we
have seen, an easy generalisation of our model is to assume a VAR(p) process
with p > 0, accordingly we generalise the discretised version of (3.23) given in
(3.29) to

p
Ziy1 = Vp, + Z Ag'ht}ztﬂfj —i—./\f(O, Rht)

j=1

hte{l,...,n},

(3.37)

where h; is assumed to be a Markov process, which we call an HMM-VAR
model in the sequel. Setting p = 0 in the above formulation we simply get an
HMM-Gaussian model as in Sec. 3.2.2, with p; = v;. Setting p = 1 corresponds
to the HMM-SDE model in (3.23), with exp(7F;) = A[f] and g, = ([—A[f])*ll/i.
In order to estimate the parameters of the HMM-VAR model we again employ
the EM algorithm, which is easily adjusted as the additional dependency is
only introduced in the observed process, while the Markov assumption on the
hidden process still holds.

Given a parameter set 0, an improved parameter set 6.1 is obtained by
maximisation of the expected log-likelihood function as in (3.9). In (3.10) we
saw that the maximisation splits into three parts which can be solved indepen-
dently. As the hidden model still has the same the form for the estimators for 7
and P given in (3.11) and (3.12), with the only exception that the summations
in (3.12) have to start with ¢ = p + 1 since the first p observations are taken
as fixed initial values. To obtain reestimation formulas for the parameter of
the VAR models we have to maximise the third term in (3.10) which is, using
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Tt = (1 Z:ffp o zgfl)v

D> log(fu (2|1, - - 2i-p))p(R 2, 61)

h t=p+1

n T
1 N/ — / .
= —52 > (log(12mRil) + (20 — i) B (21 — @iy))) p(hy = iz, 61).

i=1 t=p+1

With the help of hidden path weighted moment matrices

1
0_ N : Ziop / /
MY = Z p(he =i|z,0k) | . (1 =z, ... z), (3.38)
t=p+1 .
Z¢

with 1 < ¢ < n, and using the notation introduced in § 3.3.4, this can be
reformulated as

1 - 1 7 7 7 i _
-3 > (mm log(|27m Ri|) + tr((MY) — M@ — &, MV] + &, M5 &) R; 1)) .
=1

This matches a sum over log-likelihood functions of the VAR(p) model, cf. § 3.35,
one for each hidden state, which differ by the weightings of the moment matri-
ces. Therefore maximising this sum term by term yields the already introduced
MLEs for VAR(p) models applied to the weighted moment matrices.

Finally, we need the probabilities of the hidden path, i.e. p(h; = i|z, 6;) and
p(hy =i, hyy1 = jlz,0;) for 1 <i,j <nand p+ 1<t <T, to employ the EM
algorithm. Again the forward backward variables introduced in § 3.2.3 can
be used. Note that, as the only difference to the case with Gaussian output
variables, the recursion for computation of the forward variables starts with
initialisation of

api1 (i) = Tifi(Zpia|2ps - -, 21),
while the recursion to compute the backward variables ends with

n

Bpi1(i) = Zpijfj (Zp+2|Zpt1s - -, 22) Bpr2(d),

j=1

for 1 <17 < n. Finally also note that the computation of the Viterbi path does
not change except for obvious adjustments like the length of the Viterbi path,
which is T — p.

To summarise we give an schematic overview over the algorithm in Algo-
rithm 1. Note that implementing the algorithm is more involved than it is
shown here, as it requires careful scaling and rescaling of the forward and
backward variables to prevent underflow errors caused by quantities close to

zero, cf. [96, Sec. V.

48



3.3 Reduced Modelling of Internal Dynamics

Algorithm 1: Optimisation of the HMM-VAR model via the EM-
algorithm

Parameter: p (assumed order of the VAR models)
n (number of hidden states)
¢ (a threshold value as stop criterion)

Input : A time series z = {z1,29,... 27} and initial
parameters 0 = (9;, R;,..., ¢, R,, P, ).

Compute the forward variables ay(i), 1 <i<n, p+1<t<T
according to (3.15).

Compute the backward variables §;(7), 1 <i<mn, p+1<t<T
according to (3.16).

Evaluate the likelihood function p(z|6) according to (3.17).

lnew < log(p(z[0))

lald — lnew +€

while ’lold — lnew| Z e do
Compute hidden path probabilities according to (3.18) and (3.19).
Update P and 7 according to (3.11) and (3.12).
for s — 1 ton do
Set up moment matrix M0 according to (3.38).
Use (3.36) to obtain updated MLE’s R; and ;.
Update forward variables according to (3.15).
Update backward variables according to (3.16).
lold — lnew

Inew < p(2[0)

Output: The updated parameter vector
9: (@17R1,..., @n,Rn,P,ﬂ').
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Example

We give a simple illustrative example for the above described procedure. Sup-
pose three VAR(1) parameter sets, cf. (3.37),

b 0 o 0.02 0.013 Al 0.99 0.011

A Po\0.013 0.02)0 1 T \0.011 0.88 )

A 0.02 R 0.01 0.005 22 0.99 0

>~ o) 27 \0.005 001/ 7t 7 \-0.022 044)"

S 0.02 R — 0.005 0.001 48— 0.99 0.055

° —\o.o1)” *7\0.001 0.005)° 1 T \-0.055 099 )
Note that the specification of parameter sets (v, A[f}, R;) is equivalent to the
specification of parameter sets (u;,exp(7F;), R;) with exp(7F;) = A[f] and
w;, = (I —exp(TF,)) v, cf. (3.29), or, as used in the HMM-VAR framework

(®;, R;) with &; = (v; A[f]). Furthermore, assume a Markov switching process
which is specified by the following transition matrix

0.997 0.0015 0.0015
P =10.0015 0.997 0.0015
0.0015 0.0015 0.997

First, we obtained a “hidden” path h = {hq,..., hsso0} by setting hy = 1 and
get a realisation of a Markov chain according to the given transition matrix.
Second, an observation trajectory was generated by setting z; = (0,0) and

zer = vy, + AP L N(0,Ry,), t=1,...,3700.

This trajectory was analysed within the HMM-VAR framework with memory
p = 0, i.e. as an HMM-Gauss process, and with memory p = 1, i.e. as an
HMM-SDE process. In both cases we presumed the correct number of three
hidden states. The initial conditions for the EM-algorithm were chosen by a
random allocation of the data points to the three sets. After termination of
the EM-algorithm, the Viterbi algorithm was employed to get the most likely
sequence of hidden states. Fig. 3.3 shows that the Viterbi path obtained from
the HMM-VAR(1) procedure nearly perfectly returns the true hidden path,
while for p = 0 the result looks reasonable at first sight but is totally wrong
as no dynamical information between successive data points is included in the
model.
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Time —

Figure 3.3: Top: A two dimensional trajectory (z1,z2) generated by a 3-state
VAR(1) model plotted against time (left) and in phase plane (right). Colours
are chosen according to the Viterbi path obtained from HMM-VAR(1) anal-
ysis. Wrong allocations are marked as red dots (32 wrong allocations). Bot-
tom: The same trajectory as in the top panel but this time colour-coded
according to the Viterbi path obtained from HMM-VAR(0) analysis. Wrong
allocations are not marked. Note that even if the result plotted in phase
plane looks “more reasonable” as with the VAR(1) analysis it is totally
wrong (1701 wrong allocations).
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3.4 Practical Considerations - Applications

In this section we show some examples of applications of the introduced meth-
ods on “real data” within the context of molecular dynamics. The purpose of
these examples is to illustrate the usage of these methods in complex scenar-
ios, where there is no reference solution to the problem anymore. But before
passing to the examples, we collect some “recipes” one may have to use if
handling with “real” data. More precisely, we will comment on how to choose
the right VAR order, how to cope with circular data and how to handle high
dimensional data. None of these recipes claims to be the right one, but have
turned out to be feasible strategies.

3.4.1 Estimation of the VAR order

In the previous sections we always assumed a fixed and given order of the VAR
models to be fitted on a time series. In some applications there might be some
knowledge about the memory depth 7,,, i.e. the time span after which the
memory effects of the analysed process are negligible. In this case the order of
the VAR process can be chosen as the smallest integer p such that pr > 7,
where 7 is the time between successive data points. But in general the order
of the model, like other model parameters, has to be estimated from the given
time series. There are several approaches to this problem, none of them can
claim an optimal solution so far.

One approach is to fix a maximal order p,, and determine the order via a
sequence of hypothesis tests

Hj: A, =0vs. H : 4,, # 0
H: A, , =0vs. HH: A, 1 #0]|A,, =0

H6n§A1 ZOVS.H?LZAJ %O‘Apm::AQZO

In fact the so-called likelihood ratio statistic can be used as a test statistic for
these hypothesis test. If f(*), 1 < k < m, denotes the likelihood function for
an p,, —k+ 1 order VAR model, 0 the unrestricted MLE and 6, the MLE with
the restriction that A, _x+; = 0, then the likelihood ratio statistic is defined
as

ALY = 2(log(f®(8]2)) — log(f ) (4,]2))).

As a consequence of the asymptotic normality of maximum likelihood estima-
tors under very general conditions [23,24], the asymptotic distribution, i.e. the
limit distribution for a growing number of data points, of )\S-Jk]){ under the Hy
hypothesis can be derived and is, in fact, a y2-distribution, cf. the section
about likelihood ratio tests in § 4.1.2.

Nevertheless, such a sequence of hypothesis tests is difficult to handle as,
besides the fact that distribution is only known asymptotically, it is not clear
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which significance levels one should choose to obtain an appropriate overall
significance level [73, Sec. 4.2.3]. A more fundamental criticism is raised by
Akaike [1] who points out that in an applied context such models like VAR(p)
are only approximative and therefore one should not rely on the Hy assumption
but should introduce some loss function which actually becomes the basis for
decision making and is more founded than a significance level based on rarely
true assumptions.

An example of such loss function is the expected mean squared forecast error
leading to the so-called FPE criteria [73, Sec. 4.3], which consist in choosing
the order p which minimises

T+pd+1)" )

PPE) = (b ) 1R

where R(p) denotes the MLE of R in a VAR(p) model. Another prominent
example is the expected Kullback-Leibler distance between p(z[0*) and p(z[6)
where 6* is the true parameter and 6 the MLE leading to Akaikes criterion [1]

2pd>
T

AIC(p) := log(| R(p)|) +

However, both criteria turn out to be not consistent. A consistent order esti-
mator was derived by Schwarz [110]

log(T)2pd?

SC(p) = log(|R(p)]) + 5

(3.39)
Note that the consistency of the Schwarz criterion does not automatically make
it superior to the FPE or AIC criterion in finite sample situations. But our
experience indicates that it works better in application as the larger penalty
term for the number of parameters prevents choosing an arbitrary large p if
the data does not fit well to the VAR model. Therefore we always use the
Schwarz criterion in the following examples whenever the order of the model
needs to be estimated.

3.4.2 Circular Data

In § 2.2.1 we have seen that for the analysis of peptide simulations the dihedral
angles of the backbone are reasonable observables since conformational changes
are likely to show up here and problems with rotational and translational
degrees of freedom are avoided. On the other hand, analysing angle time
series introduces a new problem since the assumed output distributions in the
HMM are not periodic and therefore these models are not suitable for periodic
data.

A possible resort would be to explicitly formulate a periodic model by re-
placing the normal distribution with its periodic counterpart: the von Mises

53



3 Data Analysis

distribution [74]. The von Mises distribution M (u, ) in one dimension is given
by the following probability distribution function depending on the two param-
eters p € [0, 27|, the mean direction, and x > 0, the concentration parameter:

e cos(z—p)

2rlo(k)

where Iy(r) is the modified Bessel function of the first kind and order zero.
The von Mises distribution is unimodal i.e., single-peaked, and symmetrical
about the mean direction. The maximum of the pdf, the so-called mode, is
at the mean, while the minimum of the pdf (anti-mode) is located at p + 7.
The larger the value of the concentration parameter x, the more pronounced
the concentration of the distributed data around the mode. In contrast, for
t — 0, the von Mises distribution becomes uniformly distributed. Indeed it
is shown in [36] that the von Mises distribution can be employed successfully
in the analysis of backbone dihedral time series of peptides. However, there
is no closed form estimator of the concentration parameter x and neither an
obvious generalisation to higher dimensions, except of regarding all dimensions
as uncorrelated, nor to more memory in the system. Therefore we choose
a different strategy to cope with periodic data, namely to transform it to
essentially non-periodic data.

A very simple but also very effective strategy is to shift the data to remove
periodicity, which will work in most cases as the torsion angles are in general
not freely rotating. The shifting of the data can be automatised by discretising
the angle domain in boxes and determine a borderline with minimal number
of transitions across. Additionally, we have to exclude from the statistics
transitions of data points that cross the periodic boundary, cf. Fig. 3.4. This
can easily done by marking large distances between subsequent (shifted) data
points, i.e.

f(2lp, k) =

0<2z<2m,

ay = 1
1 if||lzi — 2 > c,
a; = 21 = 2l 2<t<T.
0 else,
and adjust the statistics by modifying the moment matrices
1
T t 2,
-p
MzZ( H aj> : (1 z_, ... z).
t=p+1 \j=t—p+1 :
Z¢

3.4.3 Viterbi Clustering

In large biomolecular systems the dimension d of the observation sequence may
be large, which constitutes not only a computational burden but also a sta-
tistical difficulty as the number of free parameters of the output distributions
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Figure 3.4: Top left: a time series exhibiting periodicity. Top right: the angu-
lar domain is discretised and the borderline with the fewest transitions across
is determined. Bottom: shifting the data, so that the determined border-
line becomes the boundary, makes the time series effectively non-periodic.
Single transitions over the boundary (dotted line), i.e. large jumps, are just
excluded.

will typically increase with d faster than linearly, e.g. a full d-dimensional
Gaussian distribution has @ free parameters. Besides the increase of the
statistical error for increasing dimension of the parameter space, the likelihood
maximisation via the EM algorithm will converge more and more slowly if the

dimension becomes too large.

A resort is the decomposition of a high dimensional observation space, say
V', into low-dimensional subspaces V = VM U...UV® ie. V could be the
state space of all torsion angles of the system under consideration, and V() the
subspace of a single torsion angle. By choice of VU, j =1,... k, and projec-
tion onto each one of them, k low-dimensional time series z0) = (zgj), cee z(Tj))
are obtained. Each of these low-dimensional time series can be separately anal-
ysed by means of the above HMM-VAR procedure, presuming a not too small
number of hidden states, and then a Viterbi path can be computed. Each of
these Viterbi paths can be aggregated by the PCCA method. This results in
k aggregated Viterbi paths b = (h@, hgj), cee hg,?)) that represent the con-
formational dynamics as detected from the information contained in a single
projection of the full observated time series. Note that by using HMMs we
are able to discretise the low-dimensional projections even if the metastable
sets are overlapping in the projected space, as the output distributions of the
HMM are allowed to overlap. All these single aggregated Viterbi paths can be
combined into a global Viterbi path h via superposition. The combined global

95



3 Data Analysis

P WAV SR <
N —Qx 2 (DS\ \ ) s
\ » D, VN
Q

Figure 3.5: The penta-alanine peptide in ball-and-stick representation. The
ten peptide angles determining the secondary structure are marked by
Py, Uy, ..., Pg, Uy

Viterbi path has a finite number of states such that we can directly compute
the associated transition matrix and again identify metastable sets by means of
PCCA. Based on these metastable sets, the global Viterbi path is aggregated
into a clustered global Viterbi path whose resulting discrete states are finally
interpreted as the global conformation states of the original full-dimensional
time series. An example of this strategy will be given in the next section.
Note that the combination of HMM and PCCA approaches resolves one of the
major problems of the HMM approach, which is that the number of hidden
states is an input parameter.

3.4.4 Example: Analysis of Penta-alanine

In the following we demonstrate the proposed analysis with an application
on a data set obtained from an MD simulation of a penta-alanine, i.e. a small
peptide consisting of five alanine units (residuals). The analysis we show here is
a variation of the analysis published in [75], note that although the algorithmic
procedure presented here differs slightly ,the overall results stay the same.
Our analysis is based on a time series of the 10 backbone torsion angles of
penta-alanine, see Fig. 3.5, extracted from a long time simulation which is
courtesy of Gerhard Stock (Frankfurt) and has been discussed in [83]. The
simulation was done in explicit water using a thermostat of 300 Kelvin over an
interval of 100 nanoseconds, while the coordinates were written out every 0.1
picosecond, resulting in a 10 dimensional time series of 1000000 data points.
The first step of a typical analysis consists in the identification of meaningful
subunits to avoid a blow up in parameter space by trying to fit a model which
is too large. In this case the ® /¥ angle combinations belonging to the different
residuals is a natural choice. Therefore we conducted the HMM-VAR algorithm
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Figure 3.6: Top: Plot of the empirical probability densities for each of the
® /W pairs extracted by projection of the time series onto the Ramachandran
planes (red/blue corresponds to high/low probability). Note that there is a
distinct peak region in all five plots. Bottom.: The results of the HMM-VAR
analysis applied to each of the ®/U pairs separately, the data points are
coloured according to their allocation to the 8 hidden states.

on each angle pair independently. As preparation, the time series was shifted
to minimise periodicity and large distances between subsequent data points
were marked as described in § 3.4.2. Afterwards, the memory for each angle
pair was estimated on short trajectory pieces with the Schwarz criterion (3.39),
resulting in all cases in a VAR order of p = 8. The number of hidden states was
initially guessed with 8 hidden states per pair. An important step is the choice
of initial parameters for the EM algorithm, since it is a local optimiser We
have computed an initial assignment of the data points to the hidden states
by employing the PCCA approach, i.e. we discretised the two dimensional
space for each torsion angle pair in 900 boxes, set up the transition matrix via
counting and computed a clustering of these boxes in 8 sets. The resulting
assignment of the data points to one of the 8 sets was used to compute an
initial estimate for the parameters of the HMM. Of course, one could specify
(several) initial conditions at random, but using PCCA turned out to be quite
effective in our applications. The result of the HMM-VAR algorithm on each
of the ®/W-pairs is shown in Fig. 3.6.

It can be seen from the figure that the resulting allocation of data points to
the hidden states is remarkably similar for each angle pair. Furthermore, we
see that even if an inspection by eye would divide each Ramachandran plane in
a preferred region and a diffusive rest, the diffusive part can still be subdivided
meaningfully.

By means of PCCA we can try to cluster the resulting sets in each Ra-
machandran plane as described in § 3.4.3, i.e. by setting up transition matri-
ces from the computed (already discrete) Viterbi paths for each projection.
Again, the different projections behave similar in that there is a reasonable
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Figure 3.7: From top to bottom row the projections of the empirical densities of
the four most populated global-states of penta-alanine on the Ramachandran
planes are depicted (Populations are: 12 %, 7 %, 5% and 2% of all data
points). Note that they differ mostly in the ®;, U5 and ®g, V1o planes.

gap within the spectrum of the transition matrices between the sixth and the
seventh eigenvalue for each of them. Therefore the eigenvectors are used to
reduce each Viterbi path from 8 to 6 states. A global Viterbi path is obtained
by superposition of all locally clustered Viterbi paths resulting in 3108 occu-
pied global states (out of 6> = 7776 possible states). It is possible, though
in this example not really necessary as the number of global states is feasi-
ble, to reduce the number of states further by merging states which are very
seldom visited with (dynamically) neighboring states. Merging all states with
less than 0.1% of the data points assigned leads to 279 states. In Fig. 3.7 the
projected densities of the four most populated global states are depicted.
Again we can use the metastability analysis to reduce the number of global
states even further. Therefore it is instructive to compare the eigenvalues
of the transition matrices obtained from the global Viterbi path for different
lag times 7. That is, we do not count transitions on the basis of a time lag
of 0.1 picosecond which means to count transitions from one instance of the
time series to the next, but count transitions with respect to a time lag of,
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Figure 3.8: The 20 dominant eigenvalues of the transitions matrix obtained
from the global Viterbi path wrt. different time lags are shown.

say, 1 picosecond which is from one instance to the instance 10 steps further,
i.e. between every tenth step, in the global Viterbi path. In Fig. 3.8 the
dominant eigenvalues of the transition matrices with respect to different lag
times are shown, we clearly see that across all different time lags there are two
dominant eigenvalues after which we find a gap.

Using PCCA once more to cluster the global states in two metastable states
and plotting the projected densities of these two dominant global states reveals
an intriguing observation. In Fig. 3.9 it can be seen, that one of these two states
is fixed to a specific region in the Ramachandran planes while the other is not
clearly localised. The specific region belongs in fact to the a-helix secondary
structure of peptides, i.e. our global identified conformation is an a-helical one,
while the other one has no clear secondary structure, i.e. it is unfolded, which
is no surprise since the peptide is too short to exhibit other stable secondary
motifs. Notice that besides the identification of a global secondary motif from
the data we also have a dynamical (Markov) model which allows us to state
transition probabilities between the folded and the unfolded state.

We close this example by remaining that, instead of doing this sort of bottom
to top analysis, we could have started with the identification of the two global
conformations right from the beginning by fitting a VAR model to the whole
10-dimensional time series. In this case, our order estimation suggest a VAR(1)
model for the full dimensional time series. Assuming 2 hidden states and taking
an initial random allocation of the data points to the two hidden states the
HMM-VAR procedure yields very much the same result as we obtained at last
in our previous analysis, see Fig. 3.10. Still the bottom to top analysis has
its own right as it allows us to obtain a detailed (dynamical) picture of what
happens on the subunits and allows to control the complexity reduction step
by step.

Further examples of the proposed analysis can be found in [78] where it is
shown that metastability analysis can even identify micro solvation patterns
for a small solvated molecule and in [36] where a circular output distribution
for the HMM is used.

59



3 Data Analysis

10 -180 -18
x 107 Lo

v o ¥ ¥
2 _180 -180 1 4 _180 -180 3 6 _180 -180 5

\P10

-180 -180 7 -180 -180 9

Figure 3.9: Clustering the global Viterbi path into 2 conformations reveals an
unfolded conformation (top) and a folded one (bottom), namely an a-helical
one.
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Figure 3.10: Fitting a 10 dimensional HMM-VAR(1) model with two hidden
states and projecting the data points belonging to each of these states ac-
cording to the Viterbi path on the Ramachandran planes reveals the same
structure as our bottom to top analysis presented before.
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So far the proposed approaches to analyse time series data are post processing
algorithms, i.e. it is assumed that a time series is given, which contains all
relevant information to set up a meaningful reduced model. This time series
is analysed en bloc and the outcome is a fragmentation of the time series
in different dynamical phases, each approximated by a linear model. In this
chapter we discuss a different setting. Assume we observe a process in time
which can be approximated by some (unknown) linear model, can we detect
a change in the dynamical regime, i.e. a switch to another (unknown) linear
model as fast as possible, i.e. on-line? A solution to this question could be
used in an algorithmic setting where an action has to be taken when the
dynamical phase of an observed system changes. We will give an example for
such situation in § 5, where we will use the results of this chapter to determine
switching rates between molecular conformations from parallel simulated MD
trajectories. Of course the employment of such algorithm is not restricted to
on-line applications, such algorithm could also be used to parameterise models
as introduced in § 3 in a linear fashion, i.e. by scanning a given time series
once from beginning to end, while avoiding the complex likelihood optimisation
problem, which otherwise has to be tackled via usage of the EM algorithm.
Most of the results of this chapter were published in [76].

4.1 Change Point Detection

The problem to be considered in the subsequent sections is the following. As-
sume a given sequence of observations

7 = {zl,zz, . ..ZT},ZZ' € ]Rd
for which a VAR(p) model is presumed as the generating mechanism. Our aim
is to decide if Z was generated by a single VAR(p) model or if there was a
parameterisation change at some time t, t; <t < 1o, i.e.
Z1 = {Zl, Z9y . Zt}

was generated with parameters @;, Ry and

Zy = {Zt+1> 242 - -ZT}
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4 On-line change point detection

with parameters @, and R;. We will call such time t a change point in the
following. The function of the window defined by ¢; and ¢y will become appar-
ent later. Note that by solving the stated problem an on-line algorithm can
be constructed easily which works on incoming data packages.

4.1.1 The Model Selection Problem

Change point detection problems are more challenging than estimation prob-
lems as they are essentially model selection problems. To clarify the underlying
problem we simplify the task formulated above for the moment and assume
that we have two arbitrary time series fragments Z; and Z;. The question
is: are they both generated from the same VAR(p) model, or not? Obviously,
the maximum likelihood approach does not work anymore as we have for the
log-likelihood function

(P, R|Zy, Zy) = U(P, R|Zy) + (D, R| Zs)
and therefore

maxl(@, R’Zl, ZQ) < maxl(@l, Rl‘Zl) + maxl(gﬁg, RQ’ZQ)
&R P1,Rq D2, R

always holds, i.e. making a model more complex will always increase the like-
lihood function. In fact we have encountered the same problem in the order
estimation of linear models in § 3.4.1 since choosing a higher order, i.e. in-
troducing more parameters, always increases the maximum of the likelihood
function. A common resort is the introduction of a penalty term on the num-
ber of parameters, as in the Schwarz estimator (3.39) for the model order.
However, the choice of the penalty term is somewhat arbitrary and can, at the
best, be justified in an asymptotic sense. A natural alternative approach is the
formulation of a hypothesis test, cf. the next section, but the drawback is that
distributions under the Hy hypothesis are in general not known, respectively
only asymptotically known.

A different perspective would be to ask how well Z; and Z, fit together,
i.e. to ask if the model estimated by Z; can be used to explain the dynamical
behaviour in Z,, or to ask if the induced parameter distributions are similar
enough. Obviously one then has to answer what close or similar enough means.
In the next section we give an overview of some of the approaches to the change
point problem before we adopt a Bayesian approach to our problem.

4.1.2 Approaches to the Change Point Problem

The subsequent approaches are not restricted to change point detection in
VAR(p) models and most of them can be formulated in a more general way.
However, to avoid the introduction of too much new notation, and as the phi-
losophy behind these approaches can still be illustrated if restricted to VAR(p)
models, we stick mostly to a more restricted presentation.
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Likelihood partition approaches. As pointed out above one can not employ
a maximum likelihood formalism to decide if there is a change point or not.
But if the existence of a change point is known, a natural choice would be to
choose the change point 7 such that it maximises
(D1, Ry|Z1 (7T [( Dy, Ro| Zo(T
max (D1, R1|Z1(7)) + max (D2, Ro| Z5(7)),

with Z1(7) = {z1,...2+} and Z5(7) = {zs41,... 2zr}. Appealingly this idea
can be generalised to the identification of (N — 1) change points by choosing
To=0< 7 <+ <7ny_1 <T = 7y such that

N
E maxl(@k,Rk\Z(%k,l,%k)), (41)
P Dy, Ry,

with Z(7x—1,7)) := {Z#_,41, .- - 7, }, is minimised [64]. As mentioned above,
to use the likelihood function to decide on the existence of change points one
has to add to (4.1) a penalty term ¢(N) which increases with the number
of change points, i.e. with the number of newly introduced parameters, and
maximise over both, the number of change points and the locations of the
change points. In fact, Lavielle [69,70] proved under quite general assumptions
and for a family of penalty terms that asymptotically the correct number and
location of change points is identified by the likelihood partition approach and
that the convergence rate of the estimated change points to the true change
points is optimal. However, “asymptotical” in this case means not only for the
limit of an increasing length of the time series but also under the condition that
the distance between any two change points scales with the increasing length of
the time series. Which makes the asymptotic justification, in practice of not
much use anyway, questionable for multiple change point scenarios.

Likelihood ratio test. Assume a likelihood function L(6|Z) dependent on
some observations Z for an r-dimensional parameter vector 6 = (6, 6s), which
can be partitioned into 6; and 6 which are s and ¢-dimensional respectively
such that » = s + ¢t. Furthermore, suppose we want to test the hypotheses

Hy : 0, = 0. against Hy : 01 # 0.,

for a given 6, € R®. An often employed test statistic in this rather general
setting is the likelihood ratio statistic, which we have already encountered in
the context of VAR order selection in § 3.4.1, which reads in general

meaXL(QlZ)

s, L012)

)\LR = -2 log

As the fraction is in [0, 1], we clearly have A r € [0, co] and would accept H if
Arr is close to 0. However, what makes this test statistic so useful is that even
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if its distribution can not obtained analytically, it can be shown under quite
general assumptions that under the Hy hypothesis —2log(\) is asymptotically,
ie. for T — oo, x? distributed with s, the number of constraints, degrees
of freedom [65,102,127]. This is a consequence of the fact that, under some
regularity assumptions, MLE’s are asymptotically normal distributed (even for
non i.i.d. data) [24] and that for a 6 of length r which is N'(u, X)) distributed
the quadratic form (6 — p)’X~1(6 — p) is x? distributed with r degrees of
freedom.

Adopted to the change point setting a likelihood ratio test can be used by
assuming Z; to be generated by a VAR(p) model with parameters (&;, R;) and
Zy with parameters (@, Ry) and test

H() : (@1,R1) — (@2, RQ) = (0, 0) against H1 : (@1, Rl) — (@Q,RQ) # (0, 0)

The likelihood ratio is easily computed as

R
)\LR:_2lOg A Ti=p, a To—p |
|Ry| 72 [ Re| 2

where R denotes the MLE of R using all data points, i.e. Z; and Z,, while ]:21,
resp. Ry is the MLE obtained just upon the basis of 77, resp. Zs. As the num-
ber of degrees of freedom in a single VAR(p) model equals d (d%l + dp + 1),
the distribution of —2log(Azr) will converge against a x? distribution with
d (% +dp + 1) degrees of freedom as T} and 75 go to infinity. Therefore the
quantiles of the y? distribution can be used to obtain a decision criterion with
respect to a chosen significance level.

The CUMSUM approach. Another change point detection approach is based
upon observation of the residuals, i.e.

p
Ty =2z — Ao — g Az
k=1

In our setting we assumed the residuals to be Gaussian distributed, that is
r; ~ N (0, R). Under this assumption the distribution of the quadratic form

¢ :=r,R™ 7, can be used, which is x? distributed with d degrees of freedom,
where d is the dimension of r;. An increase in variance or a shift in the mean
will give large values of (), while a decrease in variance will produce small
values. Therefore a two-tailed test can be employed to detect changes [61]. To
detect changes which are persistent over a given time interval one can use the

statistic
t+m

> Q,
k=t
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which is x? distributed with md degrees of freedom. Using more sophisticated
change point detection schemes the assumption of Gaussian distributed residu-
als can be weakened somewhat [5]. The drawback of the CUMSUM approach
is that, to detect departures from a given model, obviously the parameters
of the actual valid model have to be known. In other words, a given error
probability for the detection procedure can only be asymptotically guaranteed
as an infinite number of data points is needed to estimate the actual model
consistently, i.e. 77 — oo. It is remarkable however, that having estimated
the model correctly, the validity of the derived residual distribution does not
depend on T5.

All of the above approaches are asymptotically justified as they all rely on
the convergence of the MLE’s to the true parameters. But if there is only
a finite number of data points, the estimated parameters will be flawed with
uncertainty, an uncertainty which is not accounted for in the so far reviewed
approaches. Taking this uncertainty into account becomes especially impor-
tant with increasing dimension of the observed time series. As a measure of
uncertainty the likelihood induced parameter density

p(0) < L(0]Z),

is a natural candidate, as long as the likelihood function is normalisable. Using
the parameter density introduces in general another kind of asymptotic rea-
soning, as the density needs to be sampled in most cases. However, we will see
in the subsequent chapter that in the case of the linear model this can be done
analytically. If one wants to incorporate parameter densities into the analysis
a Bayesian approach is a natural choice. Before describing Bayesian model
selection and the application to our setting in detail, we close this section with
the presentation of an approach to the change point problem which is based
just upon comparison of likelihood induced densities.

Density distance measures. Assume a given time series Z; and a corre-
sponding induced prior parameter density

p1(0) o< L(0|Zy).

Furthermore assume another observed time series Z5 and transform the prior
parameter density to a posterior parameter density according to

p2(9> (0.8 L(0|Z1, ZQ)

If Z; and Z5 would have been generated by the same model, one would ex-
pect the prior and the posterior density to be similar in some sense. Note
that they still should be different as the inclusion of more data points should
make the parameter density p, more focused than p;. Obviously one needs
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to define a distance measure between densities and might have to sample the
corresponding statistics to employ this approach. A possible choice [99] is the
Kullback-Leibler divergence, defined by

KL(p1,pa) := /10g (ZEZS) p1(0)do,

as a distance measure. Evaluation of this distance can be done analytically
in some cases but still one has to sample its statistics wrt. p; to evaluate a
qualitative decision criterion.

4.2 The Bayesian Approach

In the previous section we reviewed a variety of different approaches to the
change point problem. In this section we start to develop our own approach
based on Bayesian techniques of model selection. Our goal is an algorithm
which takes parameter uncertainty into account, as we want to apply it to high
dimensional systems, and which does not rely on sampling, since we want to
use it for an on-line change point detection procedure. The Bayesian approach
relies on the fact that the probabilities of different models Hy, Hy, ..., H, given
a set of observations Z can be computed by the Bayesian formula

 PlziE)P(H]
PULIZ = S B 21 m) )

Note that the probabilities of observations given the model are in general easy
to compute. However, boon and bane of Bayesian methods is the need for the
specification of prior distributions for the parameters. In the best case such
prior distributions can be specified by prior knowledge, see [93,94] for an exam-
ple where environmental studies are used to obtain prior distribution for the
parameters of a water level model. But in general we have to code somehow
ignorance in these prior distribution. As we will see, the situation in model
selection is considerably more complicated than in parameter estimation, since
it turns out that the prior distributions have to be proper. Obtaining mean-
ingful proper prior distributions which code ignorance is a matter of intensive
research e.g. [8,17,25,26,39,40,63,89,97,113]. We have chosen the fractional
Bayes approach of O’Hagan [89] for our setting as it can be employed in an
elegant way even for high dimensional systems and leads to expressions which
can be calculated analytically such that no sampling procedures need to be
involved. However, opposed to sampling based algorithms [20, 32], the algo-
rithm we derive can not handle multiple change points, but in a sequential
form, which is not a strong drawback in our applications as we suppose change
points to be rare events.
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4.2.1 Bayesian Model Selection

To avoid confusion, we restate our change point problem again: given a se-
quence of observations

Z = {Zl,ZQ,...ZT},ZZ' e R¢

for which we presume a VAR(p) model as the data generating mechanism, we
want to decide if there is a change in the parameterisation, a so-called change
point, within some window from t; to t5. As it will become apparent later, ¢;
and ty have to be in the range from (d+ 1)p+d+2toT — (d+1)p—d — 2.

Thus we have n := t; — t; + 1 candidate change points giving rise to n + 1
models H;,0 < i < n, where

Z is generated by only one VAR(p) process, for i = 0.
Hz' =87 = {Zl, ey zt1+i—1} and Loy = {zt1+i7 c.. 7ZT}
are generated by distinct VAR(p) processes. for 1 <i<n.

Note that alternatively, one could define the segments Z; and Z, overlapping,
so that the last p points of Z; are used as initial conditions for Z,, as long as
Zy and Zy are directly subsequent. However, this choice does not affect any of
the following considerations.

The probability of each model given the observations Z can be computed
via the Bayes formula
P[Z|H,] P[H]]

n Y

Z P[Z|H;] P[H}]

P[H;|7] = (4.2)

where we have for i = 0,
Pl2Z|H,] = /p(Z|<151,Rl)m(@l,Rl)dgﬁlde,
and for i > 1,
P[Z|H;] = /p(Zl|Q51,Rl)m(@l,Rl)p(Z2|@2,RQ)WQ(@Q,Rg)d@ded%dRQ

with prior distributions m; and 7 on the parameters.

Having (4.2) and assuming a so-called M-closed perspective [9, Chapter 6],
i.e. we believe that the true model is within them and we do not believe in
other possible models, we can easily evaluate the probability of a change point
as:

> PlZ|H]PH]
P[change| Z] = =2 . (4.3)
Z P[Z|H;] P[H;]

67



4 On-line change point detection

But to evaluate these probabilities we obviously have to specify the prior prob-
abilities for the models, i.e. P[H;], and the parameters, i.e. m; and 7y, and, of
course, evaluate the above integrals.

A natural choice to code our ignorance on a parameter change before ob-
serving data is to assign a prior probability of % to the event of a change and
distribute the rest probability among the other models, i.e.

1

]P[Ho] = 5,

1 .
More problematic is the choice of prior distributions for the parameters of the
VAR models under ignorance. A common choice is the usage of the diffusive
prior, which consist of a flat prior on ® and a Jeffrey’s prior on R, so that

mn(®, R) o< |R|~%,
a discussion of this prior and other possibilities is given in [87,116]. Although
it can be easily shown that under the diffusive prior the posterior distribution

/p(Z|@, R)rp(®, R)dDdR

is proper, i.e. normalisable, the choice is problematic for model comparison, as
the prior itself is unproper, i.e. we can set

1 = T9 = CTp

with an arbitrary chosen constant c. This means that the model probabilities
(4.2) as well as probability of change (4.3) are also defined up to a constant,
ie.

S, Plz|H] P[H]

P[change|Z] = ¢ Z?:o P(Z|H,| P,

The constant does not cancel out of the fraction as there are parameters which
are not common to all models, i.e. the parameters for the VAR model after a
change has occurred.

To emphasise: with the use of an unproper prior we can compare different
change point models, as the indeterminate constants do cancel out, but we can
not compare the probability between change and no-change.

This general obstacle of Bayesian model selection can be tackled by the usage
of so-called “objective” Bayes factors [63], which we are going to introduce in
the next section.

Note that on the other hand it is possible to split the change point detection
problem into two parts

1. Identify the most likely change point under the assumption that there
is one, this requires specifications of parameter priors up to a constant
only.
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2. Compare the probability of change at the identified possible change point
with the probability of no change. Now we have to specify a proper prior
for the parameters after the change to avoid arbitrariness.

In fact, this is favourable from an algorithmic viewpoint as it is easier to
exclude outliers from the change/no-change decision, see § 4.4, and the M-
closed perspective is somewhat arbitrary anyway as the number of models
obviously depends upon the defined window [t1,t5]. However, we still have
to compare a change model with a (single) no-change model, i.e. we have to
compute
P[Z|H | P[H]

[Z|H.)P[H,.] + P[Z|Ho] P[Ho]’
where H. is the model of a change at the pre-computed candidate change
point c¢. Note that, of course, having computed a candidate change point, one
could use any other decision criteria, like the approaches presented in § 4.1.2.
However, we stick to the Bayesian framework as it naturally allows to handle
uncertainty.

P[change|Z] = B (4.4)

4.2.2 Bayes Factors

The Bayes factors are a common way to compare posterior probabilities of two
distinct models within a Bayesian setting. Given two models H; and H;, the
ratio

PHi|Z] _ PZ|H] P[H] (4.5)
P[H,|Z]  P[Z|H,]P[H;]’ |

is called posterior odds. A high ratio means that model H; is more probable
in the light of data the Z than H;. The Bayes factor B;; is defined as
P[Z|H,]

Bij = —— 11
7 P[Z|H]]

Eq. (4.5) reveals the meaning of the Bayes factor: it defines how the data Z
transforms the prior odds P[H;]/P[H,| to the posterior odds, i.e. in which
direction the data shifts our prior beliefs. The Bayes factor approach is similar
to the likelihood ratio statistic, introduced in § 4.1.2, but while the likelihood
ratio is obtained via mazimisation of the likelihood function over the parameter
space, the Bayes factor is obtained by integration of the likelihood function
over the parameter space [16,63]. Eq. (4.3) can be reformulated in terms of
the Bayesian factors, as
P[change|Z] = SF———. (4.6)

>_ Bijo P[H;]

7=0
This expression can can be interpreted as an assembly of a sequence of tests
against the null hypothesis of no change [40].
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4 On-line change point detection

4.2.3 Non-informative Priors in Model Selection Problems

Unfortunately, the Bayes factors do not resolve the problem with the unproper-
ness of the non-informative standard priors, as they become also arbitrary
when used with non-proper priors. Subsequently we present three approaches
to tackle this problem by deriving proper priors in a data driven way.

Partial Bayes

A way to obtain a proper prior distribution for some parameter 6 despite of
ignorance is to split the data Z into two parts Z, and Z_, and use one part
(Z,) as a training set to specify the prior while the other part (Z_,) is used
for testing or analysis, i.e. we set

7TPB(9) X WD(H)L<0‘ZP)7

where 7 () denotes an improper parameter prior. The size of the training set
is usually taken as the minimal size to guarantee properness of the resulting
prior. A problem is the arbitrariness in the choice of which data points are
taken into the training sample. A proposal to overcome this arbitrariness is
given by Berger [8], who suggested to average over all possible minimal training
sets, the so-called intrinsic Bayes approach. The intrinsic Bayes approach
can be elegantly expanded if nested models are tested, [17,40], but has the
drawback that computation, even with sampling procedures, of intrinsic Bayes
factors is often hard, resp. feasible only for a restricted class of models.

Fractional Bayes

The fractional Bayes approach, put forward by O’Hagan 1995 [89], is based on
the idea to use a fraction of the likelihood function, instead of using part of
the data, to specify a prior, i.e. to set

WFB(Q) XX WD(H)L[)(9|Z)

with a constant b €]0, 1[. The likelihood function used for decision making is
then transformed to L(0]Z) := L(~Y(6|Z), thus becoming flatter as a fraction
of the information is already used to define the prior distribution. The question
of the right choice of a training set is elegantly avoided, as a fraction of all
data is used. A reasonable choice of b is the minimal value which guarantees
properness of the resulting prior, which corresponds to the choice of a maximal
spreaded distribution centered by the data.

Imaginary minimal experiment

Another approach presented by Spiegelhalter and Smith [113] is the use of
a so-called imaginary minimal experiment. Suppose there are two models to
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4.2 The Bayesian Approach

be compared and in at least one of them there is a parameter for which we
can only specify an improper non-informative prior. Then the resulting Bayes
factor is given by

_ . L h(2]60)m (61)doy
[ f2(Z]602)mo(62)ds’

with ¢ an unknown constant. The idea of an imaginary minimal experiment
is to fix the undetermined constant ¢ by imagination of a data set Z; which
is just big enough to discriminate between the two models, therefore minimal,
but gives maximal support for one of the two models. The reasoning then is
that the Bayes factor should favour the supported model but only minimally,
due to the smallness of the data set, so that

BOl

[ f2(Z1|65)72(602)db,

Byy~1=c~ .
o J f1(Z1|01)71(61)d6y

It has been argued that the definition of an imaginary minimal experiment is
sufficient only in rather special cases [89]. Furthermore, it is not clear that
the claim By, ~ 1 is an appropriate choice in all cases. But, as we will show,
in the change point detection framework as presented, the imaginary minimal
approach seems to be sensible.

4.2.4 Implementation of the Objective Bayesian Strategies

In the previous sections we collected all necessary ingredients for a Bayesian
change point detection, so now we make more precise how to do this in our
given scenario. As mentioned, we are going to split the change point detection
in two parts, first identify a possible candidate change point, second decide
whether it is a change point.

The key ingredient to employ the approaches stated above is that our model
allows analytical integration of the likelihood function over parameter space.
Assume for the moment an arbitrary time series Z of length T, and the
corresponding moment matrix M = M(Z). Since M contains all statis-
tical relevant information of the data we can write p(M|®, R) instead of
p(Z|®,R) = L(®,R|Z), as given in Eq. (3.35). Following the notation in-
troduced in § 3.3.4 we denote by U;; and Uss the corresponding diagonal
blocks of the triangular matrix U obtained from the Cholesky factorisation of
M, and by m := My; = T — p the upper left scalar entry of M. Then, see
Appendix A.2,

11M] ::/p(M|Q5,R)7rD(q5, R)d(ﬁdR:/L((P,R|M)7TD(¢,R)d¢dR
(4.7)

d .

d(d—1) _ m—dp— m —dp —
S U [ U (= ”H%#)v
j=1
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4 On-line change point detection

where I' denotes the Gamma function and | - | the matrix determinant. Note
that the integral exist only if m > d(p+ 1) & T > d(p + 1) + p, therefore
at least (d + 1)(p + 1) subsequent points before and after a change point are
needed for evaluation. From Eq. (3.35) another property of the M-matrices
can be deduced, namely that information coming from different time series
(parts), e.g. Z; and Z, can be combined by just adding the moment matrices,
since

L(®, RIM(Z)L(®, RIM (Z,)) = L(®, RIM(Z)) + M(Z2)).  (48)

Identification of a change point assuming its existence Using the notation
introduced in § 4.2.1, the aim is to calculate the probabilities of potential
positions of a candidate change point, i.e. to calculate

P[HAZ]oc/p(Z1|d5,R)7ﬁ(@,R) d@dR/p(Z2|§25,R)WQ(@,R)ddﬁdR, (4.9)

with 1 <¢<n =1ty —t; and
Zy =Z,(i) == {z1,22. .., Zty+i1},
Zy =Z5(1) = {Zt,4is Bty 4it1 - - -, 2T}

Note that ¢; must be larger or equal than (d + 1)(p + 1) and ¢, smaller than
T—2—(d+1)(p+ 1), so that each segment contains at least (d + 1)(p + 1)
data points, since otherwise the integrals can not be evaluated. We can include
information which might be already obtained from a previous observation Z,
into the prior distribution m; by setting

7rl<(p7 R) (8 WD(¢7 R>L(¢’ R|ZO)7

which is formally a partial Bayes approach, however, the motivation is not
make the prior distributions proper, as at this stage proper priors are not es-
sential, but to include prior information from previous observations. Otherwise
we take the diffuse prior for both parameter sets, i.e.

m (P, R) = mo( @, R) x mp( P, R).
Using (4.7) and (4.8) we have
P[H;|Z] oc I[M(Zo) + M (Z1)[1[M(Z,)], (4.10)

with prior observations Z,. If there are no prior observations we set M (Z)
to 0. Thus it is possible to determine the most probable change point ¢
analytically, by choosing

¢ = argmax P[H,;|Z],

1<i<n
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Figure 4.1: Left: the top panel displays a 2-dimensional trajectory against time
generated from a VAR(1) process with a switch in the mean occurring at
t = 311. Below is the probability density of a change point conditional to its
existence. The margin lines left and right of the panel mark the test interval
[t1,t2]. Right: An example where no change point occurs in the trajectory.
Still we obtain a candidate change point.

even if we do not know if this is a real change point. An example is depicted
in Fig. 4.1, where it can be seen how a change point can be identified by
locating the maximum of the conditional density, but that one still has to
decide if this maximum really belongs to a change point. This can be done by
Fractional Bayes or the Imaginary Minimal Experiment as exemplified below.
In general, however, we could use any method for our decision which seems
to be appropriate. Therefore splitting the change point analysis has the big
advantage that the hard problem, i.e. the model decision problem, is now
separated from the easy problem, i.e. locating the most probable change point.

Fractional Bayes. The fractional Bayes approach can be easily implemented
by noting from (3.35) that

L(®, R|M)

V27 R)|

bm
1 1
= <—> exp (—5 tr((bM22 - bM21 @l — @bM12 + @bMQQ @l)Rl))
— L(®, RIbM), (4.11)

so that, using the notation introduced above, we have

/Lb(¢’ R|Z)np(®, R)dPdR = I[bM (7)),
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4 On-line change point detection
and, using (4.8),
/L(@, R|Z\) LYY (@, R|Zy)mp(®, R)ADAR = I[M(Z,) + (1 — b)M(Zs)].

Setting the prior probabilities for change and no change equally to % the quan-
tity to compute reads

_ P[Z|H,]
P[change|Z] = BIZ[H, + P2
11 Jpi(Zi|®, R)mi( 9, R)dPdR

" I [pi(Z|®, R)ymi(®, R)dddR + [ po(Z|®, R)ym1 (&, R)dddR’
i=1,2

We leave m; o« mp unproper, since the normalisation constant cancels out
anyway, or with prior observations 7 (@, R) o mp(®, R)L(®, R|Z)), but for 7y
we use the fractional Bayes approach

7p( P, R)LY( D, R|Zy)
D R):= ‘
(e [ 7p(®, R)LY D, R|Z5)dPdR

Since some data is used to specify the prior distribution, we can not use all of
it for calculation of the probability, i.e. we set

pl(legp,R) = L(@,R’Zl),
p2(Zy|®, R) = LU=Y(®, R| Z,),
po(Z|®, R) = LV"Y(&, R| Zy) L(®, R| Zy).

Assembling all the pieces we obtain, in compact notation, the probability

M (Z))[1[bM (Z,)]

Plehanecl ) = TRz ()] + 16M(Z0) + (1~ DM(Za)

(4.12)

The minimal value of b is determined by the minimal value for which
1[bM(Z,)]
is defined (cf. § A.2). Therefore the minimal value of b is given by

dip+1)+1

bmin — T >N
m(Zs)

which means that the upper left entry of bM (Z3) just meets the threshold of
dp+1)+ 1
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4.2 The Bayesian Approach

Imaginary minimal experiment. To employ the Spiegelhalter/Smith approach
we have to define an adequate imaginary minimal experiment Z;. If we want
to decide if Z5 is generated by the same VAR model as Z; we need, as stated
above, a minimum of (d + 1)(p + 1) observations, otherwise integration over
the parameter space is not defined anymore. Maximal support for the “no
change”-model would be the same observed statistic in both observed time
series, i.e.

M(Zy) _ M(Zi) o M(ZI):dp-i-d—l—l

m(Zy) m(Zr) m(Z1)

With this definition of M (Z;) we can fix the undetermined constant in the
Bayes factor as

M(Z).

IIM(Zy) + M(Z;)]
I[M(Z))I[M(Z1)]

Cr =

and obtain the Bayes factor
I[M(2,)]1[M(Z,)]
I[M(Zy) + M(Z5)]

Substituting the obtained Bayes factor in (4.6) gives an expression for the
change probability:

BEZ) =Cy -

I[M(Zy) + M(Z;)[1[M(Z)]

Tz + MM+ TN E) + MU,

Coming back to the example given in Fig. 4.1, we can now compute the
probability of a change for the identified candidate change point in both time
series. Then Z; becomes the part of the analysed time series before the can-
didate change point, i.e. where the conditional change point probability is
maximised, and Z, the part after the candidate change point. Computation
of the change probabilities (4.12) and (4.13) corresponding to these segments
for both time series gives

P[change|Z] =

(left in Fig. 4.1) | (right in Fig. 4.1)
Fractional Bayes (4.12) 1 0.0217

P[change| Z] Time series 1 Time series 2

Imaginary Experiment (4.13) 1 0.0226

We see that both procedures yield the right result, and reject a change point
where no change occurred (time series 2) while accepting the true change point
(time series 1). Of course besides the both suggested procedures any other of
the approaches mentioned in § 4.1.2 can be used. However we choose the
fractional Bayes approach as it worked out satisfactory in various test cases,
is computational cheap, includes parameter uncertainty and is less speculative
than the imaginary minimal experiment approach.
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4 On-line change point detection

4.2.5 Asymptotics

Assume, that we have identified a candidate change point and want to test/
decide if it is a real change point, i.e. we have to decide between two hypotheses

H() . (@1,R1) — (@2, RQ) = (0, 0) against H1 . (@1, Rl) — ((pg, RQ) 7é (0, 0)

A common procedure in this setting is to perform a likelihood ratio test,
cf. § 4.1.2, since the distribution of the likelihood ratio statistic under H,
is asymptotically known. But hypothesis testing as a decision rule is not con-
sistent. In fact, the concept of consistency is very much opposed to that of
hypothesis testing, since the essential point in hypothesis testing is to define
a decision rule with a predefined (small) level of probability to reject Hy even
if it is true. In other words, even in the asymptotic case there is a (known)
probability of making a wrong decision. Surprisingly, this does not hold if
decisions are based on Bayes factors or Bayesian probabilities, like in (4.6).
Then, under quite general assumptions, it can be shown [39,89], that under
the alternative Hy or H; the decision rule is consistent, i.e.

lim P[Ho|Z] =

T—o0

1, if Hy is true.
0, if Hy is true.

However, consistency is achieved only if the increase of data does increase
the accuracy of all parameters under both hypotheses. That is, consistency
breaks down if the amount of information in the likelihood concerning some
parameters increases significantly slower with 7 than information on other
parameters, for examples see [25, Sec. 7]. With respect to the change point
problem this means that consistency is only guaranteed if both segments of
the time series grow with 7" at the same rate. There are proposed correction
terms if information on different parameters grows at different speed [26], but
they are hard to evaluate.

4.3 Algorithmic Procedure

In this section we are going to state the proposed algorithmic procedure derived
by the considerations above. Before we do this, we will comment on how to
cope with effects due to the finiteness of the time series the change point
analysis is applied to. After stating the core algorithm, we will also comment
on post processing possibilities, followed by showing two examples in the next
section.

To make the following sections more readable we introduce the following
notation: Given some time series (segment) {2y, Z¢y+1, - - -, 2¢, } We define by
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M (to, t1) the corresponding moment matrix

1
t
M — 1 Zt—p 1 / /
(to,tl) = Z : ( Ztip Zt.)
t=to+p )
Zt

Obviously the definition depends on VAR order p, but we omit an appropriate
index if the p is evident from the context. Note that even though the notation
does not capture possible modifications of the statistics by leaving out certain
summands, as done in § 3.4.2 to cope with circular data, all of the following
holds also for modified moment matrices as such modifications only correspond
to the ignorance of some information contained in the data.

4.3.1 Margin effects

A systematic problem that occurs if change point detection based upon pa-
rameter estimation or parameter densities, as our approach, is applied to finite
a time series is that, if the segments of the time series are too short, the infor-
mation about the parameters in these segments can be very misleading. An
illustration of this effect is given in the left panel of Fig. 4.2. Therefore, if a
time series with no change point is analysed, the change point algorithm will
tend to detect change points close to the ends of the time series. The key point
is that this effect can not be overcome just by regarding parameter uncertainty,
as information contained in a short time series segment is not just insufficient
but misleading. An example is given in the right panel of Fig. 4.2. Here a
trajectory generated by a VAR model is shown together with the function

f(@) = T[My(2)]T[Ma(i)],
Mi(6) = M(L,4),  My(i) = M(i +1,T),

which determines the candidate change points when no prior information is
available, cf. § 4.2.3. It should be of no surprise that the candidate change
points are located at the margins of the time series. But if we look at the
probability that a given candidate change point is a real change point, ac-
cording to (4.6), we see that it is, as a function of candidate change points,
close to one at the margins. To prevent this effect one could add a penalty
function for change points close to the border. We implement this strategy by
testing for change points only within a window which leaves the margins large
enough. Note that we do not need a left margin if prior information about the
parameters is included from prior observations, i.e. if another moment matrix
M, is at hand such that we can set

Mi(i) = M, + M(1,i).
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Figure 4.2: Left: A realisation of an one dimensional VAR(1) process is plotted.
If parameters are estimated only from data points left to the red line they
will significantly differ from parameters obtained using the whole time series.
Right: In the upper part of the figure a two dimensional trajectory from a
VAR(1) process is plotted (blue lines). Below the black line the logarithm
of f (see text) is shown (dashed red line, arbitrary scale). Also shown is the
probability of a change point for each possible change point that would be
obtained by using the fractional Bayes approach (red line). The vertical lines
border the minimal length of a time series segment, here (d+1)(p+1) = 6.
It can be seen that in the margin regions the procedure would always detect
a change point.

4.3.2 Short Time Deviations - Recrossings

When applying change point detection to real data one naturally has to handle
with outliers, i.e. single points whose dynamical behaviour is different than the
others, or short time deviations, i.e. for a short period of time the dynamical
behaviour of the time series is different from that before and after. In the
computation of reaction rates as done in Chapter 5 such effects are encountered
quite systematically and called recrossings. Often one does not want to detect
such short time deviations as one is interested only in persistent changes of
the dynamical behaviour. One can avoid detection of deviations shorter than
some predefined time ¢, € N in the following way:

Having identified a candidate change point ¢, one calculates the probability of
a change occurring at that position based upon the matrices M;, My, M3 which
contain the sufficient statistics of the time series before, after and without a
change point, i.e.

Mle(l,C—l), MQZM(C,T), M3:M1+M2.

Instead of using these matrices one can exclude the information contained in
the trajectory for t, steps after the candidate change point by using, instead
of My and M;,

MQZM(C+tb,T), /M_;;:Ml —F/MQ
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Figure 4.3: A one dimensional time series is shown (blue) which fluctuates
mainly in [0, 1.5], at around ¢ = 400 there is an obvious rise but after approx.
50 steps it seems to regain the beforehand behaviour. The (logarithm of the)
conditional change point distribution (red line) clearly identifies a candidate
change point at the beginning of the rise. The change probability at this
candidate change point is P, = 0.99. If a window as described in the text is
used to mask out a part of the trajectory after the candidate change point
(gray shaded) the change probability drops to P; = 0.48, as after the window
the behaviour of the trajectory is similar to that before.

The rational behind this strategy is, that only if the dynamical behaviour after
the potential change point stays different longer than the predefined time t,,
it will affect the calculated probabilities because the dynamical information
between ¢ and ¢, is not used. For an example see Fig. 4.3.
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4 On-line change point detection

4.3.3 Algorithm

We summarise the results obtained so far in the basic algorithmical procedure
stated in Alg. 2.

Algorithm 2: Sequential change point detection
Parameter: ¢,, € N (minimal segment size)
t, € N (length of update window)
t, € N (length of buffer zone)
a €0, 1] (threshold value for detection of a change)

p (VAR order) or pp.. (maximal VAR order)
Input : A d-dimensional time series Z = {z1, 25, ...} with se-
quential access.

If p is not given estimate p € {0,1,..., pmax} based on z1,...,2;

M[ — M(l, tm)

tgp <« 2t, +t,

Plchange] « 0

while P[change] < o do
2.1 Determine candidate change point between t,, and tg —t,,:
for k — p+2 totg —2t,, do

My — M(t,, +1,t,, + k) + M;

li—p—1 «— I[Mi]I[ M) (cf. (4.10))
¢ =1, +p+ argmaxly

k

m*

If the candidate change point is not too close to the margin compute its
probability:

2.2 iftg —¢ > t, +t,, then

M1 — M(tm,é) + M]

2.3 My — M(c+1+4t,:tg)

b (dp+d+1)/(My(1,1))

HM(Z)[1[bM (Z,)]

P[change| = I[M(Z)I[bM (Z3)] + I[bM; + (1 — b) M)

(cf. (4.12))

Output: The change point ¢ and a corresponding moment ma-
trix M for the identified segment.

Note that in the implementation of this algorithmic scheme we substituted
quantities by their logarithmic values where suited to avoid numerical prob-
lems. A few comments on the parameters:

e Note that the most important parameter is t,,, as it determines the res-
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olution of the change point algorithm, examples are given in the § 4.4.1.
Defining a minimal segment size of course requires that there is no change
point within the first ¢,, data points.

e The parameter t;, has a double role, first it is used as described in § 4.3.2
to exclude short deviations from the change point detection and, second,
it excludes (2.2) candidate change points which are close to the right
margin of the test window, because the change might have had happen
at the very end of the time series (where it was not tested due to margin
effects). This is unproblematic as the change point will be detected in
the next circle again.

e In practice, it turns out that the threshold parameter oo should be chosen
rather large to avoid false alarms, fundamental changes will reflect in a
change probability close to one anyway.

For a long time series the stated algorithm can become quite ineffective as, after
every new received data package, the loop to determine a candidate change
point (2.1) is executed over all data points received so far. In practice this
can be overcome by testing for a candidate change point only over the last
Wmae Teceived data points, and add the information content of the beforehand
received data points to the moment matrix Mj.

In order to detect multiple change points the algorithm can be used mul-
tiple times, starting each time from the last detected change point again. In
applications it is often advisable to start the algorithm again with a certain
lag to the last detected change point, in order to prevent that the transition
phase between different dynamical phases spoils the statistics.

Note that after the information of a part of the time series is stored in
a moment matrix M this part can be completely discarded as all statistical
relevant information is now stored in M. Therefore the whole approach is
suited to handle with large data sets as e.g. occur in molecular dynamics
simulations, see § 5.3 for an example.

4.3.4 Post processing

If the change point algorithm is applied repeatedly on a time series to obtain
multiple change points, the procedure will finally generate a sequence of change
points ¢g :=1,¢1,...,¢s_1,¢s := T + 1 and therefore a segmentation of a given
time series Z, whose segments are given by

Zi:zci_u"’azci—h 1§Z§S,

and the corresponding moment matrices My, ..., My which contain the statis-
tically relevant information. These matrices can be used for post processing
purposes, e.g. to drop falsely detected change points or to group the data
globally.
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4 On-line change point detection

For this purpose we define a distance matrix D, measuring the distance
between all identified segments Zy, ..., Zs of the time series, according to the
probability that the segments are generated by the same VAR model:

[MiTbM;]

if m; > m.;
D.. — I[MZ-][[ij]+I[bMi+(1—b)Mj]’1 m; 2 m;
IDMII[M,] + I[(1 = b)M; + oM~ (4.14)
- dp+d+1

min(mi, mj) ’

with 1 < 4,5 < s and m; the upper left entry of M;. So the distance is just
the probability of a change point, where the change point has to be between
the two segments. To make the distance matrix symmetric and to avoid waste
of information from the shorter segment we always use the longer segment to
extract prior information about the parameters.

In order to exclude falsely detected change points one should test again for
a change point between adjacent segments, i.e. generate a new set of change
points Co,...,¢, and a corresponding set of moment matrices (Ml, e Mk)
using the distance defined in (4.14) by Algorithm 3.

Algorithm 3: Exclusion of falsely detected change points
=1
j=1
fori=1tos—1do
if l?i,iﬂ < a then

M; = M; + M; 1,
else
6j = 6@
J=7+1
M; = M,
end if
end for
Cip1=T

Segments may be merged again, even if the same criteria is used as in the
change point Algorithm 2, due to the fact that the decision is now based on
more data points.

Furthermore, the obtained distance matrix can be used to cluster the data,
i.e. to merge different time series segments (in fact one would first exclude the
falsely detected change points and then set up a full distance matrix with the
set of merged moment matrices), e.g. by an hierarchical clustering algorithm
[59]. Therefore, the distance between two clusters C and Cs is given by the
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maximal distance between any member of one cluster to any member of the
other cluster:
d(Cl, CQ) = 15}325(1 Dij>
M;eCs

alternatively one can define the distance between clusters by the minimal dis-
tance between any two members. The hierarchical structure appears by grad-
ually raising the maximal distance d,., allowed for objects within a cluster. If
dmax = 0 all moment matrices My, ..., M, define their own cluster. By raising
dmax eventually two segments are allowed to form a cluster, further on other
segments may join the cluster or define their own cluster or two clusters may
merge to a single cluster. After merging the moment matrices belonging to
the same cluster wrt. d,.x one would iterate the process until there is no more
merging of moment matrices, an example is given in § 4.4.3.

Of course, one can think of other clustering strategies, e.g a clustering on
parameter space instead of clustering the moment matrices.

4.4 Application to Time Series

4.4.1 1D Test Potentials

As mentioned before, the parameter for the minimal segment size ¢, in Alg. 2 is
of special importance as it controls the sensitivity of the change point detection.
To demonstrate this we define three simple one dimensional test potentials.
The first

Vi(z) = =2 (exp(—0.3(z + 3)*) + exp(—0.3(z — 3)%)) + 0.001z*  (4.15)

is a smooth double well potential with two minima at x = 3 and x = —3.
The added fourth order term embeds this structure in a basin with unbounded
walls. The second one,

Vyp(z) = — 2 (exp(—0.3(z + 3)%) + exp(—0.3(z — 3)*)) + 0.001z*

5
4.16
+ Z a; sin(b;x + ¢;), ( )

i=1

is obtained by small perturbations of the first one with sinusoidal terms. The
parameter a; € [0,0.3], b; € [0,10] and ¢; € [0, 7] are randomly drawn’. Finally

'In this example the parameters were, in vector notation
a = (0.096,0.160,0.027,0.034,0.041), b = (9.899, 5.144,8.843,5.880, 1.548) and
¢ = (0.628,1.279,2.352,2.594, 2.482).
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Figure 4.4: Left: The smooth potential V, consisting of two local wells. Middle:
The potential V; exhibits three local wells within each major well. Right: V,
is based on V; with minor irregular perturbations.

we have
= —2 (exp(—0.3(x + 3)%) + exp(—0.3(x — 3)?))
—1.8 (exp(—10(z + 4)?) + exp(—10(z — 4)?))
— (exp(—15(z + 3)?) + exp(—15(z — 3)?))

— (exp(—13(z 4+ 2)?) + exp(—13(z — 2)%)) + B(z),

(4.17)
exp

which has three pronounced local minima added to each of the major wells.
The fourth order term which appears in V; and V), is replaced a switching
potential
0.892z ,if x > 5,
B(z):= ¢ —0.892z ,ifz <5,
0 , else.

The three test potentials, which are depicted in Fig. 4.4, are used to define a
diffusion process via

(t) = =V V(x(t) + V/BW(t)

where V' is replaced by Vi, V), or V;, while the temperature parameter 3 is set
to f = 1.21 in all three cases.

We expect that the dynamical behaviour of the so defined diffusions can
be characterised by a switching process between the two dominant wells of V;
on a large time scale, while the local structure in V; should induce another
switching regime on a shorter time scale. The perturbed potential V,, was
chosen to check if the change point algorithm can handle (weak) deviations
from the model assumptions as it destroys the harmonic structure of the global
wells. From the so defined diffusions we obtain a trajectory by a simple Euler-
Maryuama discretisation

Ty = 10 — TV V () + /BTN(0, 1),

with the integration time step 7 set to 7 = 0.01 and a start value zo = 2.
Integrating until 7" = 199.99 yields three trajectories with 20000 data points
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4.4 Application to Time Series

for each of the three models, which we denote by X, X; and X, subsequently.
These trajectories where analysed with the change point algorithm applied
repeatedly so that multiple change points were detected while scanning the
time series from beginning to end. Several runs were conducted. The buffer
parameter t,, the probability threshold « and the order parameter p were kept
fixed all the times, i.e. t, = 20,a = 0.7 and p = 1, while the minimal segment
size t,, was varied and the update window ¢, was set equal to t,,. Four runs
where conducted for each trajectory with ¢,, set to 50,100,200 and 1000. The
results, after deletion of false alarms as described in Alg. 3, are shown in
Fig. 4.5.

A first glance at the results confirms that the change point detection algo-
rithm is able to detect transitions between the two major wells in all three test
cases. There are no other detected change points than these transitions if the
minimal segment size t,, is chosen large enough. Decreasing t,, corresponds to
an increase of detected change points, this is more pronounced if the potential
used for generation of the time series has a more pronounced local structure,
i.e. for ¢, = 50 the number of detected change points drastically decreases
from X to X, to X;. The reason for this can be seen in Fig. 4.6 where we
zoomed in the first 2100 data point of the three time series and marked the
change points detected with t,, = 50. Within this interval only one change
point is detected in X, the trajectory coming from the smooth potential V,
and this one corresponds to a transition between the two major wells. For the
same interval there are 4 detected change point X, and none of them corre-
sponds to a change to another major well. Instead these change points mark
two areas where the time series is trapped for a short time in one of the local
wells created by the perturbation. Finally, in the time series piece of X; there
are 13 detected change points and one can nicely see how these resolve the
local structure of the potential, i.e. how metastabilities on a faster time scale
than the transitions between the major wells are resolved.

In the first two figures of Fig. 4.7 it can be seen how the increase of ¢,,, reduces
the number of detected change points. While with ¢,, = 50 the local structure
of X is nicely resolved, setting the ¢,, = 100 prevents the detection of the first
change point in the interval [900,2000] of X; as the resulting segment would
be too small. This results into a large estimate for the variance of the current
time series segment such that excursions from one local well to another one are
not seen as jumps anymore but as excursions due to the high variance. But if
the time series stays longer than ¢,, in one of these local wells again, another
change point is detected (at t ~ 1800), since then a segment with much lower
variance can be identified. The third figure in Fig. 4.7 gives an example of a
falsely detected change point in X, looking at the MLEs for the local models
obtained from the corresponding moment matrices M; and M, (see picture)
illuminates the reason. The MLE model for the first segment is given by

i = —1.21(z(t) — 2.64) + 1.14W (1),
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Figure 4.5: Results of the change point analysis for the 3 generated time series

50, 100, 200 and 1000 (see text).

with minimal segment size set to t,,
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Figure 4.6: The first 2100 data points of the time series X, X, and X; (from
left to right) are shown. Red lines mark detected change points (with t,, =
50).
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Figure 4.7: A close up of X to the interval [900, 2000]. Detected change points,
with ¢, = 50 (left) and ¢,,, = 100 (middle), are marked by red lines.
Right: A falsely detected change point in X (t,, = 200), cf. text.

while for the second segment we have the local model
i = —0.31(z(t) + 0.58) + W (t).

This is due to the fact that the MLE setting always tries to reduce the variance
in the estimated model, i.e. if there is a random excursion away from the area
where the mean is assumed then, if possible, it is always tried to be interpreted
this as a drift to a new mean. A larger minimal segment size eliminates this
problem as with high probability the trajectory will return to the old area and
therefore making the new model implausible.

Note that the detection of change points stemming from rough potentials
or randomly generated patterns can be prevented by thinning out the time
series which destroys such “local” effects. In Fig. 4.8 we demonstrate this
by analysing the time series obtained by taking only every 20th time step in
X, X, and Xj, which corresponds to set the time discretisation step 7 from
0.01 to 0.2, yielding three time series of length 1000. Analysing them using
t, = 50 for change points gives, with a single exception in X, only jumps
between the major wells.
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Figure 4.8: The results of the change point analysis with ¢,, = 50 for the three
thinned out time series, i.e. only every 20th point was taken, is shown.

4.4.2 The Threehole Potential

The next example is diffusion in a two-dimensional potential, which for obvious
reasons it is called the Three-hole potential and is defined as

V(z,y) = —3exp(—a2® — (y — 2)%) = Sexp(—(z — 1)* — ¢/*)
—5exp(—(z+ 1) — ) + 3exp(—2” — (y — )% (4.18)
+0.22% +0.2(y — $)*.

It exhibits three minima, a shallow one at approximately (0,1.7), two deep
ones at approximately (£1,0), and a maximum at approximately (0,0.3). The
fourth order term in (4.18) again embeds the structure in a basin with un-
bounded walls. This potential has been studied in [80,92] to analyse the
dynamics of diffusion processes within it, which are given by

2(t) = =V.V(z(1t) + V/BW (), (4.19)

with z = (x,y). The invariant measure of (4.19) is the Boltzmann-Gibbs dis-
tribution, i.e. proportional to exp(—@V). It can be seen in Fig. 4.9 that at
lower temperatures the invariant measure concentrates in the minimal poten-
tial energy basins, while at higher temperatures it is more spreaded.

A linear SDE is expected to be a good approximation of the diffusion process
(4.19) as long as it moves in the vicinity of any of the potential energy basins,
since the shape of the potential energy surface is approximately quadratic
there. This approximation definitely breaks down if the process switches from
one basin to another basin, which it (rarely) does due to the random force.
But in the other basin the dynamical behaviour should be well approximated
by a linear SDE as well. Therefore, the Threehole potential should be a good
test system of our change point detection algorithm. In fact, in all our trials it
worked very satisfactory. As an illustration a segment of a trajectory, obtained
via an Euler-Maryuama integration of (4.19), with a time discretisation step
7 = 0.01 and the temperature parameter set to 3 = 2, is depicted in Fig. 4.10.
The change point detection was done with the parameters set to t,, = t, =
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Figure 4.9: Left: A surface plot of the threehole potential V(x,y) as given in
(4.18). Middle: The invariant measure is proportional to exp(—(V'), which
is plotted here for § = 0.5 (red marks larger values of the measure while
blue corresponds to nearly zero values). Right: The invariant measure for a
lower temperature (5 = 2).

t, = 50,p = 1 and a = 0.7. Note that as hops between potential are very
rare events, the testing, as described in § 4.3.3, was restricted to the last 750
data points of the time series for each cycle. Also note that after detection of
a change point ¢ the detection of a subsequent change point starts at ¢+, to
allow the trajectory to relax to a new potential well after leaving one.

In order to test if the change point algorithm can be used to obtain mean-
ingful data-based reduced models from time series, a long time simulation for
two different temperatures 3; = 2.4 (low temperature) and G = 1.2 (high
temperature) is performed until 499 change points are detected in each one
of the trajectories. Note that, as (; corresponds to a lower temperature than
(2, approximately 10 times more simulation time is needed with 3; to detect
499 change points than with (3. The output of the algorithm is, besides the
change points, 500 moment matrices M = (MW, ... M) which we keep
instead of the discarded time series segments.

The moment matrix set M, obtained by sorting out falsely detected change
points with Algorithm 3, is then clustered with the hierarchical clustering
approach described in § 4.3.4. After clustering, moment matrices within a
cluster are summed together yielding again a reduced set of moment matrices.
This clustering and summing of moment matrices is repeated until no pair of
moment matrices has a distance smaller than « (which was set to 0.7). Finally,
we obtain 20 moment matrices for the low temperature 3; where over 99% of
the overall time series information is contained in three of them. Using the
moment matrices to estimate parameters of the corresponding VAR(1) model
reveals that the estimated means of the three local SDE’s exactly correspond
to the location of the three wells in the potential function, cf. Fig. 4.11.

For the higher temperature model with 3 we end up with 23 moment ma-
trices with over 99% of the overall time series information contained in 12 of
them. The fact that more local models are needed to describe the dynamics is
of no surprise, since with higher temperature the local quadratic approxima-
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Figure 4.10: (a) After moving a long time in the left basin of the potential the
trajectory finally hops to the right basin. (b) A candidate change point ¢
is easily identified by locating the maximum of the conditional probability
(red circle = detected change point, black line = right margin defined by ¢,,,
dotted line = puffer zone defined by t;). (¢) The diffusion process seen with
bird’s eye view in the two dimensional potential, ¢ is marked with the red
circle again. (d) The procedure starts again from ¢+ t,. At first there is a
left and a right margin to our test window. (e) The first candidate change
point is invalid as it is too close to the right margin. (f)+(g) After iterating
the algorithm many times a subsequent change point occurs and is detected.
(h) From the bird’s eye view we see that the new change point corresponds
to a jump back to the vicinity of the start basin.
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4.4 Application to Time Series

tion of the potential function becomes more and more inaccurate and therefore
more local models are needed for a reasonable approximation. In both cases
it is now straightforward to obtain a local linear model for the dynamical
description of the process in the sense of (3.37) as the parameters can be ob-
tained from the moment matrices and the rates of the switching process can
be estimated from the detected change points. For comparison we define the
following approximate invariant densities of these switching models

ki ) ) Y I\ —1 )
wl-(z)—Zw?’\zwzf%xp((z—ui»”) (29 (z—;é”)), (4.20)
j=1

with i = {1, 2} corresponding to (3; and (5, which is a weighted sum of invariant
densities of the local VAR models. By Zi(j ) and ul(j ) we denote the stationary
covariance matrices and means of the local linear models. As shown in § 3.3.2
the mean can be extracted from the estimator of @. The stationary covariance
matrix can be obtained from the solution? of (A.10):

.0 exp(TFi(j))' _ eXp(TFi(j))flﬂi(j) - eXp(TFi(j))*lRi(j),

where R;) is directly estimated and exp(7F;)) is obtained from &;9) of the
corresponding local model. By w9 the weights of each model, defined by

m

e m
)

are denoted, where m,”’ is the upper left entry of the corresponding moment
matrix and k; the number of local models for the corresponding temperature.
These densities are approximate as they rely on the assumption that the in-
variant density of a local model is sampled before the process switches to
another local model, but since there is a time scale separation between the
jumps in different basins and the diffusive movement, this assumption is jus-
tified. These obtained approximate invariant densities are compared to the
Boltzmann-Gibbs distributions of the original dynamic in Fig. 4.11. It can be
seen that they resemble the major characteristics of the invariant densities at
both temperature levels, which can not be done by using a single linear model
from all the simulated data points.

e

2An analytical solution is possible in most cases as shown in [106, Appendix A].
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Figure 4.11: Top (middle) left: The Boltzmann-Gibbs density of the Threehole
potential with 8, = 2.4 ((6y = 1.2). Top (middle) right: The approximated
invariant density of the switching model as given in (4.20) for §; (). The
centrepoints of the used harmonic potentials are plotted as red and black
circles, the weights of the linear models corresponding to the red circles
would sums up to more than 99%. Bottom left (right): The invariant density
obtained by fitting a single linear model to the whole simulated trajectory

for 5 (B2) with 2898704 (307843) data points.
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Figure 4.12: Left: The simulated penta-peptide with the 10 observed torsional
backbone angles marked. Right: During the simulation the molecule trans-
forms from a structure where mainly the side chains interact to a more
compact and stable structure via several metastable intermediates. The
metastable structures at the beginning and at the end of the trajectory
are visualised by density plots showing the flexibility within a conformation
(Visualisation by AMIRA, [115]).

4.4.3 Penta-alanine

In order to demonstrate the applicability of the precedingly presented algo-
rithm to segment time series in a similar way as the HMM-VAR algorithm
does, we present an example from molecular dynamics (MD). We will use
simulation data of an artificial penta-peptide, consisting of a capped chain
of five amino-acids: glutamine-alanine-phenylalanine-alanine-argenine, shown
in Fig. 4.12. The peptide is itself an interesting object to study, as it is a
small molecule which is able to form salt bridges, an important and still not
well understood matter. We will not concern with this subject but rather
use a trajectory of the peptide for demonstration purposes of our algorithm
only. The trajectory was obtained from an MD-simulation in vacuum using
the NWChem software package [13,66]. The integration time step was set to 1
femtosecond, while the coordinates were written out every 200 femtoseconds.
The trajectory we use consists of 100000 points thus covering a time span of
20 nanoseconds in total. What can be seen in the trajectory is the folding of
the peptide from a spread out structure where only the two long side chains
interact (the salt bridge) to a more compact and very stable structure, see
Fig. 4.12.

Since the dimension of the time series is higher than in our two dimensional
example before we choose more conservative parameters, i.e. t,, = t, = t, =
100, and as before p = 1 and o = 0.7. Choosing t,, and %, in a range from 100
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Figure 4.13: In this dendrogram the allocation of the 38 identified time se-
ries segments to 23 clusters via hierarchical clustering is shown (marked by
colours and boxes). The tree represents the hierarchical cluster distances
using the distance measure given in (4.14), however as the inter cluster dis-
tances are very close to zero while the intra cluster distances are almost one,
it is not very structured.

to 500 does not significantly alter the results, if they are chosen smaller, resp.
larger, more, resp. less, change points will be detected, as these determine the
resolution of the algorithm, cf. § 4.4.1. Note that since we now deal with circu-
lar data the algorithm has to be adjusted such that the actual tested time series
segment is shifted to make it quasi non-circular, cf. § 3.4.2. Unfortunately this
means that we can not discard the time series data and instead use the moment
matrices for post processing, as shifting the time series will alter the moment
matrices in a non-reversible way (one could think of various work-arounds,
like imposing restrictions on the shifting, i.e. shift the whole time series the
same way), but this is no obstacle here as the time series is short enough. The
change point algorithm terminates with 37 detected change points. Doing the
post processing as described above (with recomputation of the moment matri-
ces), these 38 segments are clustered in 23 clusters, cf. Fig. 4.13. The outcome
is depicted in Fig. 4.14 and 4.15 and seem to be quite reasonable. Note that
the same analysis with the HMM-VAR algorithm would require much more
computational effort and is sensitive to initial conditions.
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Figure 4.14: The 10—dirrllensional backbone torsioln angle time series of the Ipep—
tide (splitted in 3 sub panels, Top: dimension 1-4, Middle: 5-7: Bottom: 8-
10). The vertical lines mark the detected change points. The digits 1 to 23
over the panels indicate the membership of the segments to the 23 clusters
obtained from hierarchical clustering as explained in the text (the digits are

distributed over different panels only for reasons of readability).
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Figure 4.15: Here the obtained time series segments, bordered by dashed lines,
are plotted in a permutation such that the ones allocated to the same
96 cluster, bordered by thick lines, are side by side.



5 Computation of Rate Constants

In this chapter we show how to employ the techniques previously described
to compute rate constants in molecular systems following some ideas of Art
Voter [122,124]. We begin by describing briefly the very basic idea of tran-
sition state theory and the estimation of rate constants, for a more complete
presentation the reader is referred to [45,120]. Afterwards, the approach of
Art Voter is presented, who tackles the problem of rate constant computation
via direct molecular dynamics simulation, which is only possible by speed-
ing up the transition events, e.g. via distributed computing. This approach
depends crucially on the detection of transitions between different potential en-
ergy basins on-line, which can be done by the on-line change point detection
developed above. At last we show how to implement the obtained procedure
for a small molecular example.

5.1 Transition State Theory

In principle Transition State Theory (TST) provides a way to compute the
(approximate) transition rate of a rare events system without simulating the
system under consideration. Assume a dynamical system which can be de-
scribed by some Langevin or Smoluchowski dynamics, cf. (3.20), i.e.

q(t) = M"'p(t)
p(t) = =VaU(q(t)) — yM~'p(t) + oW (1),
g =—-VUl(q(t)) + ZW (1),

with g,p € R%, such that the fluctuation-dissipation relation v 4+ v = Boo’
holds for an arbitrary constant 3. As seen in § 3.3.1 the invariant densities of
these dynamical systems are given by the Gibbs densities

a.p) e (<5 (G094 U@) ) v @) x oxp (-AU@).

Assume that there are m disjoint subsets S, . .., S,, € R? of the position space
such that the following two conditions hold
(1) With N; := [, Z7'exp(—BU(q))dq, 1 < i < m, defined as the invariant
weight of each subset, where Z = [, exp(—3U(q))dq is the normalisa-
tion constant,

N1+N2+Nm%1
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(2) If a realisation of the observed process stays within one subset S;, the
waiting time 7; till it reaches another subset can be approximately mod-
eled by an exponential distribution (independently of previous waiting
times), i.e.

P[T; > t] = exp(=\it), X\ >0.

Note that the second condition holds if there are potential barriers between the
subsets Sy, ..., .S, which are high compared to the stochastic excitation [100,
Ch. 5.10], as then the system will stay with high probability long enough in
one subset to loose its memory, i.e. to equilibrate locally within some time
Teorr before changing to other potential basins at a time larger than 7,. with
Teorr <& Tge. This in turn induces a metastable decomposition with respect
to the fastest local relaxation time Trel, @S ONE can embed the subsets Sl
Si,. .., Sm O Sm such that Si, ..., S, define a metastable decomposition of
the state space.

For the moment assume that there are only two subsets a := 57 and b := S,
or a :=.S; and b := U;»;S;. Since the time between hops from one set to the
other is supposed to be an independent exponential processes the dynamic of

the jump process
1 ,ifq(t)es
h(t) _ ) 1 q( ) € 1
2 if q(t) S SQ,

must be ruled by a Markov jump process [12, Ch. 8|. Therefore the population
densities in a and b over time, denoted by

Elxa(q(?)] El(g(®))]
Elxa(q(®)] + Elw(q(®)]” Elxa(q(t)] + Elxs(q(?))]

where Y is the characteristic function and the expectation is taken with respect
to the propagated initial distribution, are governed by a master equation

fla(t) —)\aﬂbna(?ﬁ) + )\bﬂanb@)
ﬁb(t) = —/\b_mnb(t) + )\a_ﬂ,na(t).

ne(t) =

nb(t) =

(5.1)

To estimate the rates A\,_;, and \,_, one can use that the expectation value
of an exponential distributions equals the inverse rate, i.e.

k? 1

a—b T

=E[T,],

b—a

= E[T],

where T,, resp. Tj, is a random variable denoting the exit time from set a,
resp. b. Due to ergodicity these expectation values can be estimated from a
trajectory, i.e. a realisation of the stochastic process. If N4 counts the number
of jumps between a and b up to time T and N,, resp. N, are the invariant
weights of the sets a, resp. b, we have

N, T 2N, NyT 2N,

BTl = fim g == BIOI=Jm 2w ==
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ab
with the jump frequency v defined as lim NTT If N, and N, are not known,
T—o0

they can be estimated from the trajectory as the fraction of time spend in set
a, resp. b. Therefore, the exit rates and therefore the first order model given
in (5.1) can in principle be estimated from a single trajectory. In practice,
however, this is infeasible in a direct way for most cases since one needs very
long trajectories to estimate the jump frequency between a and b as these
jumps are rare events.

A resort is provided by the classical transition state theory which is based
upon the insight that the escape rate constants can be approximated by the
equilibrium flux through a dividing surface. Therefore, we embed a C A and
b C B and define a dividing surface S between A and B such that AU S U B =
R?. For convenience assume that the dividing surface can be parametrised as
the level set of some scalar function s, such that S = {q : s(q) = 0} and that
s(q) < 01if g € A and s(q) > 0 if ¢ € B. With analogous notation as above
we have

-1 2Ny -1 2Np TST NiﬂB

Ma—B = 7570 AB—A = TeT = jm )

where Ny ~ N, and Ng ~ N, as N, + N, = 1. To evaluate the frequency 757
note that with the use of the heavyside function

Hiz) 1,if z > 0,
€Tr) =
0,ifx <0,

the characteristic function of the sets A and B can be written as

xa=H(s(q)), xs=H(-s(q))

This allows to express 77 as
TST 'ZéB
v = i =
1 (Td
= i 1 [ |GAta))] @
T
= Jim 7 [ 1a(0) - Vasta(0)|3(s(a(0)de
= [ M BV asla®)ld(s(a) fa.p)dadp,
R4xR4

where ergodicity was used in the last step. This integral can be evaluated by
sampling techniques, but unfortunately the obtained transition state frequency
vTST might overestimate the true frequency v significantly due to recrossings,
i.e. due to the fact that not every trajectory crossing the dividing surface S will
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5 Computation of Rate Constants

reach the other basin before recrossing it, which might happen many times.
Therefore we have
JIST >,

An obvious way to improve the estimate for the jump frequency v is to choose
the dividing surface that minimises v7°7, the so called variational TST ap-
proach [120]. But obviously optimisation is only feasible within specific classes
of dividing surfaces like planar surfaces. Furthermore there is no straightfor-
ward extension to evaluate an exit rate to a particular state, e.g. A;_; if there
are multiple states.

Another strategy to improve v7°7T is to find a dynamical correction factor c
such that cv”7 is closer to v. There are different strategies to compute this
correction factor, either one estimates a time dependent exit rate and identifies
a quasi constant plateau value which it takes on a timescale between 7., and
T2 [18], or one starts trajectories from the dividing surface and computes the
correction factor from the fraction that reaches another (specified) set after
Teorr [123]. But also the computation of the correction factor needs specification
of an appropriate dividing surface, i.e. enclosing a potential energy basin in a
dynamically meaningful way, as otherwise its sampling has to be very extensive.

S

5.2 Estimation from Time Series

We have seen in the preceding section that the need for extensive simulations
to compute exit rates can be circumvented by evaluation of integrals in phase
space. However, specification of a suitable dividing surface is in general not a
trivial task and integration in phase space can be limited in high dimensional
systems. Therefore Art Voter propagated an approach to speed up simula-
tions via distributed computing such that rare events can be observed in a
reasonable time [122,124]. The approach is based upon the observation that if
Ty, Ts,... Ty are independent exponential distributed random variables with
rates Ay, Ao, ..., Ay, i.e.

P[T; > t] = exp(—Ait),

then T, := min(Ty, T, ..., Ty) is exponential distributed as well with rate
A +Xo+- -+ Ay. Therefore, if all rates are identical,i.e. \{ = Ay =--- = Ay =
A, Thnin is exponential distributed with rate NA. Adapted to the problem of
reaction rate estimation of a molecular system this means that if one starts N
uncorrelated trajectories within the same potential energy basin the expected
time to observe an exit in any one of these trajectories is equal to

1
N\
The crucial point is that uncorrelated trajectories can be simulated on different
processors, e.g. via distributed computing, such that even if the computational

E[Tmin] = (5.2)
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5.2 Estimation from Time Series

effort is not lowered, the expected wall clock time to observe a rare event,
i.e. the exit from a start basin, is speeded up by a factor of N, while the
dynamical properties of the system are exactly retained. Due to immense
increase of computer power and the use of global networks like Folding at
Home [112] the factor N can lead to an enormous increase. It makes no
difference if the computer clock on the different processors is not equal, i.e. if
there are faster and slower processors, as we have

N
]P[Tl > tl,Tg > 1o, ... ,TN > tN] = Hexp(—)\ti) = exp(—)\(tl +---+ tN)),
=1

as long as T, Ty, ..., Ty are uncorrelated. That means that the effect of simu-
lating uncorrelated trajectories can be interpreted in two ways, as an increasing
of the exit rate (5.2), or as a (virtual) increase of the time elapsed, since the
computed time on all processors sums up. Therefore the exit rate estimate
from a single observed exit time would be

“ 1
h=7 (5.3)

where T, is the simulation time elapsed on all processors until the first exit
event is detected on one of them. This naturally leads to an estimator based

on k observed exit events T, 1(1), e ,ngk) and corresponding rate estimators
)\1, ceey )\k:
1t
A= — i 5.4
p Zl (5.4)

Based on this the procedure advocated by Art Voter is the following

e Start simulating N trajectories of the system within the same potential
basin, i.e. metastable state, but with uncorrelated initial conditions, on
N different processors.

e After some predefined time ¢, check if one of the trajectories left the
potential basin. If not proceed with simulation and repeat this step until
such exit has been detected.

e Propagate the trajectory in which the exit occurred another time span
Teorr 10 detect recrossings. If there is a recrossing continue simulating all
trajectories as before, otherwise proceed to the next step.

e Compute )\; as in (5.3) and use the end configuration of the trajectory
which left the basin to generate N uncorrelated copies of the system
within the new potential basin and start the procedure from the begin-
ning.
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5 Computation of Rate Constants

After some iterations of this procedure the transition rates from one metastable
state to another can be estimated by (5.4).

In the next paragraphs we are going to comment on three obvious hurdles
one has to overcome to employ the suggested procedure:

a) How to detect an exit from a potential basin?
b) How to create uncorrelated copies from a configuration?

¢) How to detect in which basin the process currently is, resp. in which
basin it jumps?

A more detailed description of a possible implementation of the herein sug-
gested solutions (wrt. to a molecular example) is done in § 5.3.

How to detect an exit from a potential basin? In the easiest case the
reaction coordinate as well as its mapping to different metastable states is
known. For example, if one is interested in folding and unfolding of proteins
this could be some distance between the end groups of the protein such that a
shorter distance means a folded and a larger distance an unfolded state, like it
is also used in experimental techniques [103]. Another feasible case is a smooth
potential energy surface, in this case a simple gradient descent procedure can
be used to test if the basin has been left. This is exploited in the work of Art
Voter where diffusion on metal surfaces is investigated [122,124].

However, energy surfaces in the biomolecular context are in general very
rough, such that a simple gradient descent algorithm would end up in differ-
ent local minima even if the overall basin is the same. A different approach
applied for molecular systems in MD simulations by Zagrovic et al. [128] is
to detect conformational changes by monitoring the variance of the potential
energy and defining a change if the variance grows rapidly. This approach is
based upon the reasoning that to jump from one basin to another a high en-
ergy barriers must be crossed, while within the basins the fluctuations in the
potential energy will be much lower. However, there are three potential pitfalls
with this approach, (1) it is not always the case that potential energy excita-
tion corresponds to a jump to another basin, (2) the problem of recrossings
is not treated, (3) since transitions between different basins are, in general,
fast events configurations with high potential energy may not show up in the
trajectory if the time lag between successive data points is too large.

An alternative way to detect changes is provided by the on-line change
point detection algorithm developed in § 4. This is tempting as stochastic
differential equations, e.g the Langevin dynamic, are a quite natural dynamical
description for reduced (reaction) coordinates [68]. Furthermore as shown
in § 4.4.1, the roughness of the potential energy surface can be approximated in
a dynamical sense by harmonic potentials, cf. [54]. The change point detection
algorithm can be implemented efficiently in a distributed computing setting, as
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5.3 The Alanine-Dipeptide

only moment matrices, instead of trajectories, need to be exchanged between
processors to exchange information about the models.

How to create uncorrelated copies from the system? An easy way to get
uncorrelated copies of a system within a basin is to create a number of copies
of the coordinates, randomly draw momenta from the Boltzmann distribution

fatp) cexp (- (30 'p) ), (55)

where ( is chosen according to the given temperature, for each of the copies
and propagate them in phase space for some time which is approximately 7o,
Finally the end points of the obtained trajectories can be used as uncorrelated
copies of the system. This can be refined by more sophisticated techniques
like short hybrid Monte Carlo schemes [34,35,79], see the example in § 5.3 for
further explanations, to get a (locally) representative sample of points within
a basin. However, one has to check if all obtained copies are still within the
same basin, since during sampling it is possible, even if unlikely, that an exit
event took place. A way to do this is to generate short trajectories from
the obtained points in phase space and check with the clustering techniques
suggested in § 4.3.4 if they belong to the same basin and discard all points for
which this seems not to be the case (again further explanations are given in
the next section).

How to identify different basins? The identification of different or allocation
to identical basins of trajectory pieces before and after a change point can be
done by the post processing techniques described in § 4.3.4, i.e. by clustering
the moment matrices obtained from trajectory pieces between detected change
points with, e.g., the hierarchical clustering algorithm.

5.3 The Alanine-Dipeptide

As an illustration how to employ the change point detection algorithm to
compute exit rates we use a small molecular system, the alanine-dipeptide,
depicted in Fig. 5.1. Its essential dynamics can be described by the two back-
bone torsion angles ® and W. Stabilised by the dipole of the peptide bonds,
the alanine-dipeptide will take a stable conformation in vacuum with the cen-
tral atoms O — C — N — C, — C — N — H forming a ring, a so called C;
conformation (as 7 atoms are forming the ring). By rotation of the dihedral
angles @, U the formation of this ring is possible in two ways. We call this
two ring conformation A and B, corresponding approximately to the two re-
gions [—100, —45] x [70,120] and [45,90] x [—90,20] in (P, ¥) dihedral angle
space. These two conformations, however, are not equivalently favourable due
to interference of the ring with the side chain carbon atom in conformation
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5 Computation of Rate Constants

Figure 5.1: The Alanine-Dipeptide in united atoms representation, i.e. some
hydrogen atoms are not shown as they are not treated explicitly in the used
force field. The conformational dynamic can be described by the two torsion
angles shown.

B. The conformations A and B are metastable, since at room temperature
the molecule will flip between them on the nanosecond scale, which is very
slow compared to the other molecular motions like bond vibrations on the
femtosecond scale.

To get a detailed picture we performed a long time simulation over 600
nanoseconds of the molecule coupled the Nosé Hoover thermostat at 300 Kelvin
and extracted the torsion angles every 2 picoseconds. From these we obtained
a histogram in torsion angle space approximates the projected equilibrium
density, see Fig. 5.2. First, it can be clearly seen that indeed conformation A
is preferred to B, second, we see that the projected invariant density is not
uni-modal in conformation A, as there is a second peak. This peak belongs to a
so-called C'5 conformation, a ring formed of the five central atoms H — N —C, —
C' — O, which, however, is not (meta)stable at a temperature of 300 Kelvin,
but flips rapidly back to the C; conformation again (note that exchanging the
central alanine residuum against glycine would make this conformation stable
at room temperature [78]).

Our aim is the computation of the exit rates A\4_.p and Ap_ 4 using dis-
tributed computing as outlined above. In the next paragraphs the procedure
is explained stepwise. As demonstrated in § 4.4.1 the existence of a subcon-
formation in state A should not be a problem as long as on the time scale we
perform our analysis it is not metastable. The implementation of the molec-
ular dynamic simulation needed is done in GROMACS, we do not explicate
how to set up the simulations in detail, but just remark that the communi-
cation between GROMACS and the control and analysing programs is done
file-based, i.e. saying that we have a molecular configuration to start with
means that we can create a file with the positional coordinates that can be
read in by GROMACS to specify the initial conditions. Note also that we have
shifted the dihedral angle space from [—180,180[* to [—225, 135[x[—145,215]
to circumvent problems with periodicity.
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Figure 5.2: Left: A histogram of the sampled distribution in torsion angles
space of alanine-dipeptide in vacuum obtained from a long time simulation.
Middle: Bird’s eye view, the two metastable conformations are marked with
A and B. Right: Two configurations belonging to conformation A (top) and
B (bottom).

Step 1: Generation of uncorrelated copies. Having a start configuration
q, located in a local basin of the potential energy surface, a set of uncorrelated
copies is created by a hybrid Monte Carlo (HMC) scheme. Therefore, N copies
of the start configuration q(()l), cee qéN) are created and sent to N different pro-
cessors. On each of the processors a short HMC simulation is performed, that
is, for each start configuration q(()i) momentas p(()i) are drawn from the Boltz-
mann distribution (5.5) with a temperature parameter (3 corresponding to 300
Kelvin. The initial conditions (q((f),p(()i)) are then propagated according to
the Hamiltonian equations of motion for a time span Ty yielding candi-
date configurations (qgf), pg)). This candidate configuration is accepted with
probability

Poc = min{1,exp(—5(H((¢\", ")) — H(gy'.a))},

where H denotes the total energy as in (2.2), otherwise (q(()i) ,p(()i)) are kept.
If the integrator used to generate candidate configurations is volume preserv-
ing [72,79] the ensemble generated by iteration of this scheme will approximate
the canonical ensemble. Since we do not want to sample the canonical ensemble
but only to obtain uncorrelated copies in the vicinity of the starting configu-
ration we do this iteration only a few times and finally keep the last accepted
configuration on each processor. In the given example we used N = 15 copies,
a propagation time for the HMC scheme of Tyyc = 1 picosecond and 10
iterations on every processor.

Step 2: Selection of start points from the uncorrelated copies. Even
though only a short HMC-sampling was performed to obtain start configura-
tions (q((f)7 pél)), 1 <1 < N, it is possible that either the local potential energy
well has been left during sampling and therefore an invalid starting configura-

tion has been generated. As this is a sensitive point of the algorithm, i.e. one
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has to make sure all uncorrelated copies are within the same metastable confor-
mation, we first sort out configurations which may have left the corresponding
potential energy basin.

This is done automatically by independently propagating the obtained start-
ing configurations according to the equations of motions coupled to a stochastic
thermostat for some time which yields a collection of two dimensional time se-
ries (here the thermostat was set to 300 Kelvin, with a discretisation time step
of 1 femtosecond and a total integration time of 90 picoseconds; extraction of
the torsion angles every 300 steps gives 300 data points per time series). After
shifting the angles as specified above to remove periodicity, large distances be-
tween subsequent data points are marked and the moment matrices, assuming
a VAR(1) dynamic, are computed, excluding the marked transitions as de-
scribed in § 3.4.2. Note that again these steps can all be done independently
on different processors. The obtained moment matrices are collected to one of
the processors and clustered as described in § 4.3.4 by hierarchical clustering
with complete linkage and a (very conservative) cut-off criterion of 0.3 (which
means that if the probability of a “change” between two moment matrices is
higher than 30% they do not belong to the same cluster). Now we proceed only
with the start configurations which belong to the biggest obtained cluster.

The described procedure will ensure that only start configurations within the
same potential well are taken. Before proceeding to the next step all moment
matrices in the biggest cluster are added up yielding a moment matrix M;
holding our (prior) knowledge of the dynamical behaviour in the actual poten-
tial well. This moment matrix and the end configurations of the simulations
are handled over to the next step.

Step 3: Sequential change point detection. Next, simulation of the se-
lected start points proceeds on the different processors again, and Alg. 2 is
used to detect change points. That is, iteratively ¢, = 300 (update window)
new data points on each processor are obtained by proceeding the simulation
and, after shifting and exclusion of large transitions, tested for a change point
with ¢, = 40 (buffer zone) and t,, = 100 (right margin, cf. § 4.3.1) and a thresh-
old value of o = 0.8 (setting it down to 0.6 does not significantly change the
behaviour of the algorithm). Note that we do not need to specify a left margin
and therefore we do not have a minimal segment size since prior information
is already given in matrix M;. If a change point is detected the simulations
on all processors are stopped, a moment matrix is obtained by adding up all
information generated on the different processors up to the time of the de-
tected change point to M;, and the simulation time till the change point is
stored. If no change point is detected 300 new data points are generated on
each processor and the test is repeated.

Note that we set the maximal length of the test window to detect a change
point to 1500 data points to control the computational effort. If one of the
simulated time series exceeds this length, a part from the beginning of the
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5.3 The Alanine-Dipeptide

time series is cut out and the information content in this part is added to the
moment matrix M; which is communicated to all processors.

If a change point has been detected, the configuration in the corresponding
trajectory (which is 50 steps after the detected change points to allow for
relaxation into a new well) is extracted and taken as the new start configuration
to use in Step 1 again.

Step 4: Post processing. The steps 1-3 were repeated until 400 change
points were detected. This corresponds to a simulation time, distributed upon
15 processors, of over 2.2 microseconds. The outcome of the procedure was 400
moment matrices and samples of 400 exit times. First it was tried to exclude
falsely detected change points, which may correspond to recrossing events, by
usage of Alg. 3, reducing the number of detected change points to 260. Then
the merged moment matrices are clustered with hierarchical clustering (with
single linkage and a cutoff criteria of 0.8), yielding 4 clusters. Two of the clus-
ters are marginal as they contain only a single moment matrix and less than
0.1 % of the total generated information, therefore they were discarded. Since
we knew for this example which regions in Ramachandran space correspond
to the expected two metastable states A and B, we accumulated a statistics
during the simulations, storing from which region the information compressed
in the moment matrices came. So it was possible to check afterwards that each
of the two remaining clusters indeed consists exclusively of moment matrices
containing only information from the same state A, resp. B.

Using the obtained samples of exit times from A to B and B to A the rates
A—p and Ap_ 4 can be estimated by (5.4), which yields

Mg =0.078 x 1072, and Ap_.4 = 1.127 x 1072,

with respect to a picosecond scale. In Fig. 5.3 we compared the cumulative
distribution function of the exponential distribution with the estimated rates,
ie.

F(t) :=P[T <t]=1—exp(—Xt)

for a exponential distributed random variable T" with rate A, to the empirical
distribution function obtained from our statistic of exit times for each state,

1.e.
number of exit times < ¢
Fn(t) — n ’

where n is the total number of exit times. The figure shows a very good
agreement between these two distribution functions.

With these rates a reduced model can be set up where the rates specify
the switching between the two local models obtained. In Fig. 5.4 we see the
(approximate) invariant density, based upon the parameter estimates from the
two moment-matrices, obtained by summing up all moment matrices belonging
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to the same cluster. Comparison with Fig. 5.2 reveals that this approximates
the invariant density of the original system well and that the multi-modal
local invariant density of state A is approximated by a single (wider) Gaussian
shape.
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Figure 5.3: The distribution functions of the exit time 7', i.e. P[T" < ¢], from
metastable states A (top) and B (bottom). The blue line depicts the dis-
tribution function of the exponential distribution F' corresponding to the
estimated rate, the red stars mark the empirical distribution function F,,.
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Figure 5.4: Left: The (approximate) invariant density of the reduced model,
where A and B are approximated by harmonic potentials. Right: With the
estimated rates (given beside the arrows) a Markov switching model between
A and B can be set up.
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6 Conclusions

In this thesis we provided a consistent framework for the data analysis of
time series exhibiting a complex dynamical behaviour. We showed that, while
Markov chains are a natural choice to model the change of dynamical phases,
vector autoregressive (VAR) processes provide a convincing model for the flex-
ibility within a dynamical phase. They arise naturally from the discretisation
of stochastic differential equations, allow to include non-Markovian effects and
can be used to unify several hidden Markov model (HMM) variants. A combi-
nation of a Markov model for the change of dynamical phases with VAR pro-
cesses for the modelling of internal flexibility yielded into a procedure which
we named HMM-VAR. We demonstrated how to combine HMM-VAR with
Perron cluster cluster analysis (PCCA) to analyse time series from complex
systems.

Furthermore, we developed an algorithm to detect dynamical changes in a
time series on-line, i.e. reading the data sequently. Application of so-called
objective Bayes techniques provided a change point detection procedure which
is (i) sampling free, as all needed integrals can be solved analytically, (ii)
applicable to high-dimensional time series and (iii) computationally cheap.

It turned out, that the central object of our analysis is the so-called moment
matrix, since it does not only allow a stable computation of the estimators for
parameters of a VAR process, the compression of information contained in a
time series, i.e. assuming a VAR(p) process the information of a 7" x d time
series is coded in a matrix of dimension d(p + 1) + 1 only, and combination
of information belonging to different time series by summing up their moment
matrices, and therefore allowing efficient implementation of all algorithms pre-
sented here, but also a way to cluster obtained time series segments to the same
dynamical phases without the computational effort of an HMM procedure.

Finally, we demonstrated how to apply the change point detection algorithm
within a rather complex computational setting to compute rate constants for
a small biomolecular system with the help of distributed computing.

In this work, we very much tried to avoid the usage of application specific
knowledge in the suggested procedures, which is in fact somewhat opposed
to the philosophy of the Bayesian approaches employed here. Therefore, with
respect to the conformational analysis of biomolecules, an interesting question
for future investigations could be how to include knowledge about the sta-
tistical distribution of backbone torsion angles in peptides and proteins, see
e.g. [81], via suitable prior distributions.

109



6 Conclusions

110



Appendices

111






A.1 Linear Stochastic Differential Equations

A.1 Linear Stochastic Differential Equations

In this appendix the most important results about stochastic differential equa-
tions (SDE) with emphasis on linear stochastic differential equations, as stated
e.g. in [4,38,90,100], are collected. The construction of stochastic integrals
is not treated the interested reader is referred to the excellent introduction
of Ludwig Arnold [4]. An SDE is a stochastic process z(t) € R%, t € [to, T],
which obeys the following symbolic equation

dz(t) = A(z(t), t)dt + S(=(t), )W (), (A.1)

or the corresponding integral form

t t

z(t) = z(to) +/ A(z(s),s)ds—i—/ Y(z(s),s)dW (s),
to to

where A : R% x [tg, T] — R%is called the drift coefficient and 3 : R x [to, T] —

R4™ the diffusion coefficient. By W (t) an m-dimensional Wiener process is

denoted. The term

/ Y (z(s), 8)dW (s)

to

is a stochastic integral which can be defined rigorously by means of It6’s the-
ory. A stochastic process z(t) is called a solution of the SDE (A.1) on an
interval [to, T if it is measurable wrt. to the sigma algebra generated by the
Wiener process and the initial value ¢ := z(ty) and if Eq. (A.1) is fulfilled with
probability 1 for every ¢ € [to, T]. A solution z(t) of Eq. (A.1) is called unique,
if it is continuous and if for any other continuous solution y(t) with the same
initial value ¢
P | sup |z(t)—y(t)|>0| =0
to<t<T

holds. The existence and uniqueness of solutions of a given SDE is stated in
the following fundamental theorem:

Theorem A.1.1. If, with the notations introduced above, A and ¥ are mea-
surable functions and there exist two constants K, Ky € R* such that the
following conditions hold:

a) (Lipschitz condition) For all x,y € R and t € [ty, T]

A, t) — Aly, )] + [S(@.1) — Sy, 1)] < Kl —y| < Kila — y].

b) (Growth condition) For all x € R and t € [ty, T]

Az, )" + Sz, )] < K3(1 + |z)).
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If additionally z(to) is independent of the Wiener process W (t) and has a
finite second moment, then there exist a unique and continuous solution of
(A.1) with initial condition ¢ := z(ty).

For the probability density of the solution of an SDE p(z,t) = p(z(t), t|z(t0), to),
which is conditional on the initial conditions, a most important relation, the
Fokker-Planck equation, holds:

0w ==Y 0lA, ] + 5 Y00S5 05 0 har). (A2)

In other words, the progression of the (realisation independent) probability
density function in time can be described by a known partial differential equa-
tion. This relationship can be exploited for e.g. the computation of an invari-
ant measure, i.e. a stationary distribution, by equating the left hand side of
(A.2) to zero.

Under a linear SDE in a narrow sense we understand a stochastic process
z(t) € R? which is specified by an SDE with

Az(0),1) = At)z(t) + a(t)
S(z(t),0) = S(t),

where A and X are matrices and a a vector which only depend on time, so
that we have

dz(t) = A(t)z(t) + a(t)dt + £(t)dW (t). (A.3)

For linear SDE’s the application of the so-called It6 formula reveals the nature
of its solutions more precisely:

Theorem A.1.2. A linear stochastic differential equation (A.3) has, for every
initial value z(ty) = ¢ which is independent of W (t) — W (o), t > to, a unique
solution in the interval [to, T| provided that the functions A(t),a(t), X(t) are
measurable and bounded on that interval. The solution is a Markov process
and 1s given by

z(t) = o(t) (c + /t ®(s) ta(s)ds + /t @(s)lﬂ(s)dW(s)> : (A.4)

to to

where @(t) is the (fundamental) solution of L &(t) = A(t) P(t) with (tg) = I
(the identity matriz).

Note that if A(t) = A, we have @(t) = exp((t — ty)A) and therefore

z(t) = exp((t — tg)A)ec + / exp(—(s —tg)A) (a(s)ds + X(s)dW ).

to
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The first two moments of the solution of (A.3) are easily obtained by Eq. (A.4).
If E[|¢?|] < oo we have for the mean m(t) = E[z(t)], using that the expectation
of a stochastic integral is zero,

m(t) = &(t) (E[c] + /t: @(s)_la(s)ds) : (A.5)

From Eq. (A.5) also a differential equation can be derived
m(t) = A(t)m(t) + a(t), m(ty) = Elc|.
The second moment K(s,t) is given by

K(s,t) = E[(2(s) —E[z(s)))(z(t) ~E[z(1)])] = E[2(s)2(t) | - E[z(s)] E[2(1)]
min(t,s)
= 9(s) / ¢ () 2 (u) X' (u) (27" (u) du + Ef(c — Eld])(c — E[c])] | ¢'(1).

(A.6)

Above we used the independence of z from ¢ and the stochastic integral and
that

min(t,s)

]E{ /t:G(u)dW(u) /t tH(u)dW(u)} _ / B[G(u) H(w)]du

to

for bounded matrix functions G and H. Differentiating (A.6) yields for the
covariance matrix C(t) := K(t,t) of z(t) the relation

C(t)= ®(t)C(t) + Ct)D'(t) + Z(t) Z'(¢). (A7)

Further examination of Eq. (A.4) reveals that the stochasticity of the solution
z(t) is due to two components, the stochastic integral fti O(s)71X(s)dW (s)
on the one hand and the initial value ¢ on the other hand. As a stochastic
integral over deterministic functions is normally distributed, i.e.

/t:G(u)dW(U) NN<O’/,:: G(u)G(u)’du>7 (A.8)

and the initial value is assumed to be independent of the stochastic integral,
we immediately have

Theorem A.1.3. The solution of (A.3) is a Gaussian stochastic process, if
and only if the initial value ¢ is constant or normal distributed. The first and
second moments are given by (A.5) and (A.6).

In the following corollary we adopt the above stated theory to the situation
which occurs most often in this Thesis
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Corollary A.1.4. Assume that in Eq. (A.3) the matriz functions are given by
At)=F, at) =—Fp, Y(it) =2,

where all eigenvalues of F have negative real parts, and the initial value is
given by a fized z(ty). Then the solution is a Markov process and z(t) is
normal distributed for each t € [to,T] with mean

m(t) = p + exp(F(t —10))(2(t) — p),

and covariance matrix

K(s.t) = / Cexp(F(t — )55 exp(F'(t — ))ds,

to

which is positive definite if the assumptions on the spectrum of F are met.
Furthermore, see [38, Ch. 4.4.6], a stationary solution exists, the first moment
1s giwen by p while the second moment X s the solution of the Sylvester
equation, which can be obtained by using (A.7),

LF 4+ FS, =55 (A.9)
Note that (A.9) can be transformed to
Yoexp(TF) —exp(tF) ' %, = exp(TF) 'R, (A.10)

with 7 > 0 and -
oTT
R ::/ exp(sF) XX exp(sF)ds.
to
As (A.10) can be solved easily [106, Appendix A] for diagonalisable exp(7F),
it can be used alternatively to (A.9) to compute the stationary covariance
matrix.

A.2 Integration of the likelihood function of a
VAR(p) model

Integration of the integral in (4.7) is rather straightforward but for complete-
ness we will derive it in this appendix. The aim is to integrate f(Z|®, R)mp(®, R)
,with Z a given time series of length 7" and dimension d, 7p(®, R) ]R\’%
the diffusive prior and f the density as given in (3.35). The integration shall be
done over all @ € R¥™(@+1) and over all positive definite matrices R € R,

With the notation in § 3.3.3 and § 3.3.4 we have
/f(ZIQR)wD(@, R)d®dR =

/|27TR|_T2p exp ( - %(tr (Y = oX)(Y - (PX)’R‘I))) IR|~“'d®dR.
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A.2 Integration of the likelihood function of a VAR(p) model

The argument of the trace function can be Taylor expanded around the MLE
¢ of @ yielding

/|27TR|_T2p exp ( . %(tr (Y = dX)(Y — dX)R™
+(® - ®)[R '@ XX'|(® — @)))) |R|”“* d®dR,

where @, resp. <i>, denote the vectorised notation of @, resp. Q%, and ® the
Kronecker product. From this form it can be seen that ® is normal distributed
and therefore can be integrated out, giving

. 1 . \
/|27TR1—T2|Ry—d‘51\2w<R—1®XX’)‘1!5 exp (—g(tr ((Y—@XKY—@X)’R‘I)))CZR?

which can be simplified to

_ AT —(d+1)p—1)

T—(d+1)p+d ]_ = s
(21) 2\XX'\3/|R\“5”6XP (_5(“(<Y—¢X><Y—¢X>'R1))>dR

The resulting integrand is proportional to an inverted Wishart distribution
with T'— (d + 1)p + d degrees of freedom, which has a defined density as long
as T > (d+ 1)p + d [43, ch. 3.4]. Therefore R can be integrated out giving
rise to

d .
— A A —p—dp—1 T_ _d -
R (Y - bx)(y - by (TR,

j=1

(A.11)
where I' denotes the Gamma function. The form stated in (4.7) is obtained
by simply using the notation introduced in § 3.3.4.
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A.3 Deutsche Zusammenfassung

Motiviert durch die Analyse von Daten aus Molekiil Dynamik Simulationen,
befasst sich diese Arbeit mit der Analyse von Zeitreihen mit komplexen dy-
namischen Eigenschaften. Typischerweise ldsst sich das dynamische Verhalten
von Molekiilen in verschiedene dynamische Phasen, sogenannte Konformatio-
nen, unterteilen. Diese Phasen konnen sich z.B. aus verschiedenen geometri-
schen Strukturen, zwischen denen das thermisch angeregte Molekiil wechselt,
ergeben. Solch ein komplexes Verhalten sollte bei der Erstellung eines (re-
duzierten) Modells zur Modellierung der urspriinglichen Dynamik berticksich-
tigt werden. Wir zeigen auf, dass, neben der Modellierung des Wechsels zwis-
chen verschiedenen Konformationen durch eine Markov-Kette, fiir die dynamis-
che Modellierung innnerhalb einer Konformation die Verwendung vektorwer-
tiger autoregressiver Prozesse (VAR) naheliegend ist. Da der Sprungprozess
zwischen verschiedenen Phasen in der Regel nicht beobachtbar ist, koppeln
wir diese lokalen VAR-Prozesse mit einem sogenannten Hidden Markov Model
und demonstrieren, wie dieses, zusammen mit der sogenannten Perron Cluster
Cluster Analyse, zur Analyse von Molekiildaten verwendet werden kann.

Desweiteren wird ein Algorithmus entwickelt, der es erlaubt den Wechsel zwi-
schen verschiedenen dynamischen Phasen on-line, d.h. mit sukzessiven Zugriff
auf die Daten, zu detektieren. Hierbei stellt sich als zentrales Objekt die soge-
nannte Moment-Matrix heraus. Zum einen erlaubt diese die numerisch stabile
Schétzung der Parameter der VAR-Prozesse, die Kodierung von Information in
einem kleinen Objekt und das effiziente Zusammenfassen von, in verschiedenen
Zeitreihen enthaltenen, Informationen. Zum anderen ist es, allein auf Grund-
lage der Moment-Matrizen, moglich, Zeitreihen-Segmente entsprechend ihrer
jeweiligen dynamischen Phase zusammenzufassen. Hierdurch kann der on-
line Algorithmus, kombiniert mit einem nachtraglichen Clustern der Moment-
Matrizen, alternativ zu den HMM basierten Ansatzen eingesetzt werden. Der
Vorteil hiervon liegt in der Vermeidung des komplexen Optimierungsproblem,
welches beim Einsatz von HMM'’s gelost werden muss.

Abschliessend wird das erlangte on-line Verfahren zur Schatzung von Aus-
trittsraten, d.h. die Sprunghéufigkeit zwischen verschiedenen Konformationen,
in molekularen Systemen verwendet. Die naive Simulation molekularer Sys-
teme zur Schatzung solcher Raten ist oftmals nicht praktikabel, da der, fiir
die numerische Stabilitdt notwendige, Integrationszeitschritt zu klein ist um in
vertretbarer Zeit Konformationswechsel ausreichend oft zu beobachten. Nach
wie vor ist die Suche nach Algorithmen zur Verringerung des Aufwands solcher
Simulation, ein wichtiges Forschungsthema. Eine alternative Strategie ware,
statt der Verringerung des Aufwands, eine Verteilung des Aufwand auf paral-
lele Prozessoren. Es wurde gezeigt, dass dieses sinnvoll moglich ist, sofern ein
Konformationswechsel on-line detektiert werden kann [122,124]. Anhand eines
molekularen Beispiel demonstrieren wir, wie die hier entwickelten Algorithmen
benutzt werden konnen, um diese Idee umzusetzen.
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