6. Figure Appendix

Table 1: UP-element abundance in σ^{s}-controlled promoters
I) σ^{s}-controlled promoters with putative full UP-element sites

	(AWWWWWWTTTT) (AAAAAA R			RNR) -35	4 - 15-19bp	-10			+1
	AAAWWTWTTTT	NNAAAA	(N$)$ NNN	TTGACA		C	TATACT	TATTTT	A/G
adhE (P1)	TATCTAGTTGT	GCAAAA	catg	CTAATG	TAGCCACCAAATCATA	C	TACAAT	TTATTA	A
gadY	CTTATGTTTAT	AAAAAA	atgg	CTGATC	TTATTTCCAGTAAAAG	T	TATATT	TAACTT	A
osmB (P1)	ATTTGCAGTTT	GGCAAA	tcat	CCGCTC	TAAGATGATTCCTGGT	T	GATAAT	TAAG	A
x thA	TСАААТСАСТ	AACAAC	agg	CGGTAA	GCAACGCGAAATTCTG	C	TACCAT	CCACGC	A

II) σ^{s}-controlled promoters with putative proximal UP-element half-sites

III) σ^{s}-controlled promoters with putative distal UP-element half-sites

	AWWWWWWTTTT			$\begin{gathered} -35 \\ \text { TTGACA } \end{gathered}$	C	$\begin{aligned} & -10 \\ & \text { TATACT } \end{aligned}$	TATTTT	$\begin{aligned} & +1 \\ & \mathrm{~A} / \mathrm{G} \end{aligned}$
ada	AATTAAAGCGC	AAGATT	gttg	GTTTTT	GCGTGATGGTGACCGG G	CAGCCT	AAAG	G
adhE (P2)	AAAATTTGATT	TGGATC	acg	TAATCA	GTACCCAGAAGTGA G	TĀATCT	TGCTTAC	G
aidB	GAATGTTTTAG	CAATCT	cttt	CTGTCA	TGAATCCATGGCAGTGA C	CATACT	AATGGT	G
ansP (P1)	GTGATAACTAT	CATCGC	cagg	ATGAAT	AAACATTGTTCATG G	CAACTT	ATAT	G
ansP (P2)	ATAAAGAATAA	TGGTGA	taa	CTATCA	TCGCCAGGATGAATAA A	CATTGT	TCATGGC	A
appY	TGTATTTAATT	GGTTGT	tat	TTGACT	ACTATCAACTTGTTTTA A	TTTTAT	GATAGGTGC	A
blc	GTCCGAATTTT	CGGACC	tttt	CTCCGC	TTTTCCTTGCTGTCAT ${ }^{\text {C }}$	TACACT	TAGA	A
bolA(P1)	GGTAAATATTT	GTTGTT	aag	CTGCAA	TGGAAACGGTAAAAGCGGC	TAGTAT	TTAAAG	G
cbpA (P2)	TAACATATTCT	GTGTTG	gcat	ATGAAA	TTTTGAGGATTACC C	TACACT	TATA	G
cfa(P2)	CGGTTTTTTCT	GCGAGA	ttt	CTCACA	AAGCCCAAAAAGCGT	TACGCT	GTTTT	A
csgDEF	ATTTAGTTACA	TGTTTA	acac	TTGATT	TAAGATTTGTAATGG	TAGATT	GAAATC	A
csid	AAAACAATATG	TCGCTT	ttg	TGCGCA	TTTTTCAGAAATGTAG A	TATTTT	TAGATT	A
csiE(P1)	CAACATTTCTG	ATGATT	agca	TTCCCT	TCGCCATTTCCTTGA G	CAAACT	TTAGCT	A
csiE(P2)	ATGATTAGCAT	TCCCTT	cgc	CATTTC	CTTGAGCAAACTTTAG $\mathrm{C}_{\text {C }}$	TATTCT	TATCAATT	A
dnaN(P1)	GACATTCGTTT	GCCGGG	cgaa	GTGGCG	TTCTTTATCGCCAAGCGTE	TACGAT	CTAAC	G
fbaB	AACATTTTTTC	TGATGA	atc	GAGCCA	ACAGAAAACGCTGAAAAAA	CATCCA	AAAG	A
frdA	TAAAAAAATCG	ATCTGC	tcaa	ATTTCA	GACTTATCCATCAGA	TATACT	GTTGTA	C
ftsQ (P1)	AGAAATTTTAC	CGTCAA	tacg	TATTCA	ACCGTCCGGAACCTT	TATGAT	TATGT	G
gadX	TAAATTTATTT	ATCAAT	caat	TTGACT	TAAGAGGGCGGCGTG	TACATT	AATAAACA	G
hdeAB	TTTGATATTTT	CCATCA	c	ATGACA	TATACAGAAAACCAGGTTA	TAACCT	CAGT	G
htre (P2)	ATTGAATGAAT	ATACAG	gga	ATAATA	ATTTCTATTTTATATT A	TTCCCT	GTTTTA	A
mscL	TTAATTAAATT	CATTCC	tggc	AGGAAA	ATGGCTTAACATTTG \mathbf{T}	TAGACT	TATGGTT	G
mscS	ATGAGAAATCT	GTGATC	tat	TTGGCA	AAATTATGCTTTATTGT T	TACCCT	TGTCAG	A
msyB	CTGATTTTTCG	CCTTTC	atac	TTGCAA	AAGCGGAGAATCAG	TATCCT	TTTCCCT	G
osmY	CTTATGTTTTC	GCTGAT	atcc	CGAGCG	GTTTCAAAATTGTGAT	TATATT	TAACAAA	G
proP(P2)	GTTTGATTGTA	CATTCC	ttaa	CCGGAG	GGTGTAAGCAAACCCG	TACGCT	TGTTAC	A
rraA	AATTAACAATT	GATGAT	tttg	CCAACA	GCCCACATAGCGCG A	TATACT	GAAA	A
sra	ATCAATTATGT	GGTCAG	tggc	CAGCAC	CCTACGCTTTAAGGTG C	TATGCT	TGATCG	G
talA(P1)	ACACTGATGTT	ACCTGC	ttaa	TCCAGC	AATACCATGCCTGTCTG C	TATGCT	TTTT	T
uspB	ATTGATAGTGG	TTAACC	ttc	TCGAAA	AAAAACAACCTGATCTC C	TACACT	ATCT	A
ytfk	TAAAAAAAGTT	ATACGC	gg	TGGAAA	CATTGCCCGGATAGT	TATAGT	CACTAA	G

IV) σ^{s}-controlled promoters with no putative UP-element sites

$\operatorname{acnA}(\mathrm{P} 1)$	CCGTCGTTATT	CCAGAC	gac	TGGCAA	CTAACATCGCAGCAG	AAGCCT	TTATAG
aldB	GTCGTAAAGCT	GTTACC	gac	TGGCGA	AGATTTCGCCAGTCACGTC	TACCCT	TGTTAT
artP (P3)	CCGACATTTAT	GCTCGC	cga	$\overline{\mathrm{C}} \mathrm{C} \bar{A} C C \bar{G}$	CCCCCGTTATTTTGTG $\overline{\mathbf{C}}$	TATGTT	TATTGA

Figure Appendix

	CGCGGTTTTTT	CTGCGA		TTCTCA
RA	GTGTAAAACAA	CGTAAA	gtc	TGGATT
csgBA	AAAATACAACG	CGCGGG		
cyx	AATACCTCTGG	TCGTAG	agt	
dnaN	CGCTGCGCGAC	TTGCTG		
naN (P4)	GCCGTAAGATC	GAGCAG	t	GTGAAG
dps	AGTGTGATAGG	AACAGC	caga	CG
ecnB	TCCGAAAAATC	ATCAGA	ttc	ATCA
	CATTACCAGAT	CTTGCT		TTGATA
	TGCCCGCGCT	CTGCTC		CGGCGT
	AGATTTTGGGC	TCGTCG		TTCGCC
gadA	TTAAATTAAGC	CTGTAA	c	TTGCTT
	TAAACACGAGT	CCTTTG		TTGCTT
gadC	ACGAACCCGTT	TCGGGA		TTTCCA
S	TGATCGGGGAC	CAATAT	tt	TACGCA
gor	CGGAGTAATTG	CAGCCA	tg	CTGGCA
hc	GCACTAAATCT	CTCCCC	gcc	CG
himA(P4)	TTTATCCGAAT	GTAAGA		TTGGCG
hyaAB	ATAAATCCAC	CAGTTT		TTGTTT
katE	CCGTTTCCAG	ATAGTC	tcc	AAGCG
katG	GCATCCGTGGA	TTAATT		
osmB (P2)	CGAGCAGATTT	CACGGA	ata	ATTTCA
osmC (P2)	ATTCGGAATAT	CCTGCT	at	GTGCT
	AGCCGTTTCGT	TCACGG	gcc	TTGAAA
BA	TTGGCTGTTCT	TCCTTG	C	ATGGCG
pfkB (P2)	GATGGCAGGAA	CTGTCT	ca	AAAGCT
	GССТССТTTCT	CTCCCA	tccc	TTCCCC
pqis(P2)	GGCAAAAGCAG	AAACTG	aa	ACGCA
proU(P1)	TACCCGCCAAA	TAGCTT	tt	ATCACG
rraA	TCAATTAACAA	TTGATG	t	TTGCCA
	GAAATTTGCCC	GTTCCC	at	TGGCA
sAB	CAGGTGCAACC	TTTTCA	ca	ACACA
	CAACAGGGTAA	GTTCAT	t	TTGTCT
sodC	ACTITTAGGAA	TAGCCG	ccg	TTCAAA
ssrS (P2)	CGGACGATCTG	AACCAA	cggg	TTGCAA
topA(P1)	CTGGTGGCAAG	AGCGCC	tta	CTGGCA
treA	CGCAGAATGAG	ATTTCG	t	TGCAG
ybgA (P1)	CCTGCTACAAC	AGGATT	aac	TTCACA
ybgA (P2)	GCTATGGTTAG	AAACTA	cctg	ACGTCA
ybjP	TTGCTAAGCCT	TCGATC	tca	AAAGCA
yehZXYW	TGCAACTGAAT	CCTTCC	gctc	AAGCTA
ygge (P1)	AAGTCATGAAG	CAAGGC	aga	TGGAAA
ygge (P2)	TGATGCAGTCG	CCGTGG	ttg	CTGGCG
	GAGCATGCCC	GACTTC		

AAGCCCAAAAAGCGT C	TACGCT	GTTTT
AGCGACGTCTGATGAC	TAATTT	CTGCCTC
AAAATATTTCCGCAGAC A	TACTTT	CCATC
ATAAAGAGGGAGATCTA	CATTAT	CGGGTT
GAAAAACTGGTCACCAT	GACAAT	ATTCA
AGAGCCACGATATCAAA	AAGATT	TTTCAA
GAACACATAGCCGGTG	TATACT	TAATCTC
TTTTTGGCGATGTTGT	TATTAT	TAATTT
GTGAGCAGAGAGAGACT G	CATTAT	TAATGA
AACCCGGATTTGCCGC T	TATACT	TGTGG
GGGTGCTGCAAAACCAT C	TACGCT	CAGGACT
CCATTGCGGATAAATC	TACTTT	TTTATT
ACTTTATCGATAAATC $\underline{\underline{C}}$	TACTTT	TTTAAT
AAGTCTGTTCACTG G	CATTAG	CAACGG
CGTTATGTTTAAAGGCA	TACACT	GATTGGG
CCTATTACGTCTCGCG	TACAAT	CGCGGT
TACCTCTGATAATGGT	TAAAAT	CATTGA
TAAATCAGGTAGTTGGC G	TAAACT	TATTT
TGTGCAAAAGTTTCA	TACGCT	TTATTAA
GGATCTGGCTGGTGGT	TATAGT	TAGAGA
CTTCTCTCTAACGCTGT G	TATGCT	AACGCTA
CCAGACTTATTCTTAG C	TATTAT	AGTTAT
GTTTCTCACGTAGTCT $\overline{\mathbf{A}}$	TAATTT	CCTTTTTA
AAGCGCCCAATGTATT	CAGGCT	TATCTA
ACCCCCGTCACACTGT	TATACT	TACAT
CCAATAAATCATATTG T	TAATTT	CTTCACT
CTCCGTCAGATGAA	TAAACT	TGTTACC
GCAGTAGCAAACTAAG	TATAAA	TTGCAGC
CAAATAATTTGTGGTGAT $\overline{\mathbf{C}}$	TACACT	GATACT
ACAGCCCACATAGCGCG \bar{A}	TATACT	GAAA
ATTCTCCCTTCGGCAA \underline{C}	CATAAT	TTTTGTTC
TAAGGCTGCCAACATAGGE	TATACT	CGACAGC
CACCTTTTAATTTG	TACCCT	ATCC
AATGTGTCACTGGT T	TATACT	TATTCA
GATCTGAAAGAACGCA	TAGAGT	CACAAAT
ACTTTGGATTTTGCATG $\overline{\mathrm{C}}$	TAATAA	AGTTGC
CTAGTGCGATCCTGAA	TAAGGT	TTTCTG
AATATCATTTCTCAAGGT $\overline{\mathbf{C}}$	TACACT	TACTCCT
GTCCTTGCGGGGAGCAGGE	TTTCGT	AAATTT
TTATCAGACTGATACG $\overline{\mathbf{C}}$	TATTAT	TGAAA
ACCCCGCCATTATCAA	TATGCT	TTTCTC
AATAAAACAGAGGCG	TAAGCT	TGCCTCC
AGAGACGGTATTGC	CATGCA	CAAGC
TGTCTGCTTTTCCCGA	TATTCT	TAATGA

Figure Appendix

Table 2: Kinetics of complex formation of $E \sigma^{70}$ and $E \sigma^{s}$ on promoters with different UP-element configurations (experiments performed in collaboration with M. Buckle and B. Sclavi).

	Proximal UP-element sub-site$\mathrm{K}_{\text {obs }}$		Distal UP-element sub-site$\mathrm{K}_{\text {obs }}$	
DNA-site	$E \sigma^{70}$	E\% ${ }^{\text {s }}$	EF^{70}	E\% ${ }^{\text {s }}$
-47	-	-	$\sim 3.5 \mathrm{~min}^{-1}$	$\sim 3.5 \mathrm{~min}^{-1}$
-34	++	$\sim 1 \mathrm{~min}^{-1}$	$\sim 3.5 \mathrm{~min}^{-1}$	$\sim 3.5 \mathrm{~min}^{-1}$
-12	-	-1.5-2 min ${ }^{-1}$	-	$\sim 3.5 \mathrm{~min}^{-1}$
-6	++	$\simeq 0.8 \mathrm{~min}^{-1}$	$\sim 4 / 1 \mathrm{~min}^{-1}$	$\sim 1 \mathrm{~min}^{-1}$
-4	++	$\sim 2 \mathrm{~min}^{-1}$	$\sim 4 \mathrm{~min}^{-1}$	$\sim 3.5 \mathrm{~min}^{-1}$
-2	++	$\simeq 0.8 \mathrm{~min}^{-1}$	$\sim 4 / 1 \mathrm{~min}^{-1}$	$\simeq 1 \mathrm{~min}^{-1}$

UV irradiation (5 ns) was performed at different time intervals after the addition of 50nM RNAP to 1 nM of supercoiled DNA. Time-course appearance and disappearance of different signals was monitored. Data fitting was carried out using the Origin version 5.0. The progression curves of appearance of protection/hyperesenstivity were fit individually to single or double exponential expressions:

$$
\begin{gathered}
\mathrm{y}=\mathrm{L}+(\mathrm{U}-\mathrm{L}) \mathrm{e}^{-\mathrm{kt}} \\
\mathrm{y}=\mathrm{L}+\mathrm{Ae}^{-\mathrm{kAt}}+\mathrm{Be}^{-\mathrm{kBt}}, \mathrm{U}=\mathrm{L}+\mathrm{A}+\mathrm{B}
\end{gathered}
$$

A and B are the signal amplitudes. $\mathrm{k}, \mathrm{k}_{\mathrm{A}}$ and k_{B} are the observed, apparent rate constants $\left(\mathrm{K}_{\mathrm{obs}}\right)$, which are presented in the table above. U and L represent the upper and lower limits from these fits respectively. In most cases, an expression containing a single exponential better described the results for each signal, and therefore only one rate constant is provided here, in the table. When, on the other hand, a double exponential expression described better the time-course appearance/disappearance of a signal, then two rate constants could be calculated (separated by a slash in the Table). Finally, in cases where the appearance/disappearance of a signals was completed faster that the first couple of secs (2-5 secs were the first time-points of our series of experiments), then rate constants could not be calculated, and therefore a "++" in the Table denotes that the events were extremely fast to be measurable. Note that each rate constant is calculated as an average of two or more independent experiments. Furthermore, by performing a series of promoter-binding, kinetics experiments with different $E \sigma^{S}$ concentrations, we could deduce that the rate constants of certain signals remained unchanged with increasing amounts of RNAP, whereas others increased proportionally to the amount of RNAP added. Thus, the former group of signals monitor the open complex formation of the holoenzyme (underlined in the Table), whereas the latter group represent the initial recruitment of RNAP to the promoter.

Table 3: mapped σ^{s}-dependent promoters of E. coli and other bacteria (in bold face; Sty stands for Salmonella typhimurium, Pau stands for Pseudomonas aeruginosa, Pol stands for Pseudomonas oleovorans, Bbu stands for Borrelia burgdorferi and Avi stands for Azotobacter vinelandii) grouped according to the existence/positioning of the -35 element. Existence of a -35 box was regarded relevant when it was present as three or more matches to the consensus hexamer TTGACA, in a location $15-19 \mathrm{bp}$ upstream of the -10 element. Note that some promoters contain overlapping putative -35 elements.

	$\begin{gathered} -35 \\ \text { CTTGACA } \end{gathered}$	- 17bp	C	$\begin{gathered} -10 \\ \text { TATACT } \end{gathered}$	TATTTT	$\begin{gathered} +1 \\ A / G \end{gathered}$
no-35 element						
ada	gGTTTTT	GCGTGATGGTGACCGG	G	CAGCCT	AAAG	G
adhE (P1)	gCTAATG	TAGCCACCAAATCATA	C	T $\bar{A} C A \overline{A T}$	TTATTA	A
artP (P3)	aCCACCG	CCCCCGTTATTTTGTG	C	TATGTT	TATTGA	A
csiE(P2)	cCATTTC	CTTGAGCAAACTTTAG	C	TATTCT	TATCAATT	A
dps	aATAGCG	GAACACATAGCCGGTG	\underline{C}	TATACT	TAATCTC	G
ecnB	cCCATCA	TTTTTGGCGATGTTGT	C	TATTAT	TAATTT	G
fic	cCGGCGT	AACCCGGATTTGCCGC	T	TATACT	TGTGG	G
hchA (P2)	CACCCCG	TACCTCTGATAATGGT	C	TAAAAT	CATTGA	A
katE	cGAAGCG	GGATCTGGCTGGTGGT	\underline{C}	TATAGT	TAGAGA	G
lecA (Pau)	gGCGGTA	CTTCCTCGTTGCTGTG	C	TTTGCT	AACAGG	G
osmC (P2)	tCGTGCT	GTTTCTCACGTAGTCT	A	TAATTT	CCTTTTTA	A
osmY	CCGAGCG	GTTTCAAAATTGTGAT	C	TATATT	TAACAAA	G
pfkB (P2)	aAAAGCT	CCAATAAATCATATTG	T	TAATTT	CTTCACT	T
Pm (Pau)	cTATCTC	TAGAAAGGCCTACCCC	T	TAGGCT	TTATGC	A
pqi5 (P2)	aAACGCA	GCAGTAGCAAACTAAG	C	TATAAA	TTGCAGC	G
proP(P2)	aCCGGAG	GGTGTAAGCAAACCCG	C	TACGCT	TGTTAC	A
pstS	cATATAA	CTGTCACCTGTTTGTC	C	TATTTT	GCTTCTC	G
spvA (Sty)	CACAGCA	GAAAAATAGCACATAA	A	TAAACT	CAATAT	A
sra	cCAGCAC	CCTACGCTTTAAGGTG	C	TATGCT	TGATCG	G
talA(P1)	tCCAGCA	ATACCATGCCTGTCTG	C	TATGCT	TTTT	T
treA	cATGCAG	CTAGTGCGATCCTGAA	C	TAAGGT	TTTCTG	A
ybjP	aAAAGCA	TTATCAGACTGATACG	\underline{C}	TATTAT	TGAAA	G
yehZXYW	cAAGCTA	ACCCCGCCATTATCAA	$\overline{\mathrm{C}}$	TATGCT	TTTCTC	T
yiaG	cCCGCTG	TGTCTGCTTTTCCCGA	C	TATTCT	TAATGA	G
$x \operatorname{th} A$	gCGGTAA	GCAACGCGAAATTCTG	C	TACCAT	CCACGC	A
15bp spacer						
adhE (P2)	gTAATCA	GTACCCAGAAGTGA	G	TAATCT	TGCTTAC	G
algD (Avi)	tTTGG $\overline{C A}$	CGACATTTTATTGA	C	TATAAT	TCGGCCT	G
$\operatorname{ansP}(\mathrm{P} 1)$	gATGAAT	AAACATTGTTCATG	G	CAACTT	ATAT	G
cbpA (P2)	tATGAAA	TTTTGAGGATTACC	C	TACACT	TATA	G
csgBA (P1)	aTTAAA	ATATTTCCGCAGAC	A	TACTTT	CCATC	G
dnaN (P4)	$g \overline{\mathbf{A}} \mathbf{A} G \bar{A} G \bar{A}$	GCCACGATATCAAA	G	AABGATT	TTTCAA	A
gadC	aTTTCCA	AAGTCTGTTCACTG	G	CATTAG	CAACGG	A
msyB	CTTGCAA	AAGCGGAGAATCAG	C	TATCCT	TTTCCCT	G
osmB (P2)	aTTCAC	AGACTTATTCTTAG	$\underline{\bar{C}}$	TATTAT	AGTTAT	A
poxB	CTTCCCC	CTCCGTCAGATGAA	$\overline{\mathrm{C}}$	TAAACT	TGTTACC	G
rraA	gCCAACA	GCCCACATAGCGCG	A	TATACT	GAAA	A
sodB	tTTGTCT	CACCTTTTAATTTG	C	TACCCT	ATCC	A
sodC	gTTCAAA	AATGTGTCACTGGT	T	TATACT	TATTCA	G
ygge (P2)	gCTGGCG	AGAGACGGTATTGC	T	CATGCA	CAAGC	C

16bp spacer						
acnA (P1)	CTGGCAA	CTAACATCGCAGCAG	C	AAGCCT	TTATAG	A
alkS (Pol)	tTTGCAC	CACCGATCATGCCGA	C	tACACT	TAAGT	G
cfa(P2)	t CTCACA	AAGCCCAAAAAGCGT	C	TACGCT	GTTTT	A
csgBA (P2)	9TTATTA	AAAATATTTCCGCAG	$\overline{\text { A }}$	CATACT	TTCCATC	G
csgDEF	CTTGATT	TAAGATTTGTAATGG	C	TAGATT	GAAATC	A
fbab	gCCAACA	GAAAACGCTGAAAAA	A	CATCCA	AAAG	A
frdA	a ATTTCA	GACTTATCCATCAGA	C	t $\overline{A T A} A \bar{C}$	GTTGTA	C
ftsQ(P1)	$9 T \bar{A} T T \overline{C A}$	ACCGTCCGGAACCTT	$\underline{\bar{C}}$	TATGAT	TATGT	G
gadX	tTTGACT	TAAGAGGGCGGCGTG	C	TACATT	AATAAACA	G
hyaAB	aTTGTTT	TGTGCAAAAGTTTCA	C	TACGCT	tTAtta	C
katG	t ATAACT	TCTCTCTAACGCTGT	$\overline{\text { G }}$	TATGCT	AACGCTA	A
mscL	CAGGAAA	ATGGCTTAACATTTG	T	TAGACT	tAtgGtt	G
- spF (Bbu)	tTGTAT	TTATTAGCTGTTGCG	T	TAG $\overline{A C T}$	taAgtat	T
otsBA	aTGGCGA	CCCCCGTCACACTGT	C	tatact	TACAT	G
ycigre-	$t \overline{T T} \bar{G} A \bar{T}$	AATCGGTtTAACCAA	$\overline{\mathrm{C}}$	TAATTT	AAtAGg	G
katN (Sty)						
yggE (P1)	aTGGAAA	AATAAAACAGAGGCG	C	TAAGCT	TGCCTCC	A
ytfk	gTGGAAA	CATTGCCCGGATAGT	C	TATAGT	CACTAA	G
17 bp spacer						
acnA (P1)	gCTGGCA	ACTAACATCGCAGCAG	C	AAGCCT	TTATAG	A
alkS (Pol)	tTTTGCA	CCACCGATCATGCCGA	C	TA ${ }^{\text {C }}$ CACT	TAAGT	G
ansP(P2)	aСTATCA	TCGCCAGGATGAATAA	A	CATTGT	TCATGGC	A
cpxRA	aTGGATT	AGCGACGTCTGATGAC	C	TAATTT	CTGCCTC	G
csid	9TGCGCA	TTTTTCAGAAATGTAG	A	TATTTT	TAGATT	A
gabD	tTCGCEG	GGTGCTGCAAAACCAT	C	TACGCT	CAGGACT	G
gadA	CTTGCTT	CCATTGCGGATAAATC	C	TACTTT	tTtATt	G
gadB	CTTGCTT	ACTTTATCGATAAATC	C	TACTTT	TTTAAT	G
gadY	gCTGATC	TTATTTCCAGTAAAAG	T	TATATT	TAACTT	A
gor	gCTGGCA	CCTATTACGTCTCGCG	C	TACAAT	CGCGGT	A
htre (P2)	a ATAATA	Attictattitatatt	A	TTCCCT	GTtTTA	A
ogt(Sty)	GTCGCTA	AATGTGTTATCCCTGA	C	TATCTT	TTTAGG	A
osmB (P2)	a ${ }^{\text {ATTTTCA }}$	CCAGACTTATTCTTAG	$\overline{\mathrm{C}}$	tat ${ }^{\text {che }}$	AGTTAT	A
osme	CTTGAAA	AAGCGCCCAATGTATT	C	CAGGCT	tatcta	A
otsBA	a ${ }^{\text {ATGGCG }}$	ACCCCCGTCACACTGT	C	TATACT	TACAT	G
spvR(Sty)	t $\mathrm{TGCA}^{\text {che }}$	TCAAAACATTTTTTCA	G	GATTAT	TCTGA	A
rsd (P1)	$t \overline{A T G G C A}$	ATTCTCCCTTCGGCAA	C	CATAAT	tTtTGTtC	A
ssrS (P2)	9TTGCAA	GATCTGAAAGAACGCA	C	TAGAGT	CACAAAT	A
18bp spacer						
aidB	tCTGTCA	TGAATCCATGGCAGTGA	C	CATACT	AATGGT	G
appY	tTTGACT	ACTATCAACTTGTTTTA	A	TTTTAT	GATAGGTGC	A
cfa(P2)	tTTCTCA	CAAAGCCCAAAAAGCGT	C	TACGCT	GTTTT	A
csgBA (P1)	gTTATTA	AAAATATTTCCGCAGAC	$\overline{\text { A }}$	TACTTT	CCATC	G
cyx	tTTCAGG	ATAAAGAGGGAGATCTA	C	CATTAT	CGGGTT	A
dnaN(P2)	aTTGCAG	GAAAAACTGGTCACCAT	C	GACAAT	ATTCA	G
dnaN(P4)	tGTGAAG	AGAGCCACGATATCAAA	G	A ${ }^{\text {A }}$ GATT	TTTCAA	A
esp	aTTGATA	GTGAGCAGAGAGAGACT	G	CATTAT	tAATGAT	T
gabD	aTTCGCC	GGGTGCTGCAAAACCAT	C	TACGCT	CAGGACT	G
glgS (P2)	tTACGCA	CGTTATGTTTAAAGGCA	C	TACACT	GATtGGG	A

Figure Appendix

himA (P4)	9TTGGCG	TAAATCAGGTAGTTGGC G	TAAACT	TATTT
hmp	aTTTACA	TTGCAGGGCTATTTTTT A	TAAGAT	GCATTT
katG	aTTATAA	CTTCTCTCTAACGCTGT G	TATGCT	AACGCTA
mscS	tTTGGCA	AAATTATGCTTTATTGT T	TACCCT	TGTCAG
rraA	t $\overline{T T G C} \overline{C A}$	ACAGCCCACATAGCGCG A	TATACT	GAAA
topA (Px1)	a $\overline{C T G G} \overline{C A}$	ACTTTGGATTTTGCATG	TAATAA	AGTTGC
uspB	CTCGAAA	AAAAACAACCTGATCTC $\underline{\underline{C}}$	TACACT	ATCT
19bp spacer				
aldB	CTGGCGA	AGATTTCGCCAGTCACGTC	TACCCT	TGTTAT
blc	t $\overline{\text { TTCTCTC }}$	GCTTTTCCTTGCTGTCAT든	TACACT	TAGA
bolA (P1)	$\mathrm{gCTGCA} A$	TGGAAACGGTAAAAGCGGE-	TAGTAT	TTAAAG
dnaN (P1)	aGTGGCG	TTCTTTATCGCCAAGCGTE	TACGAT	CTAAC
dnaN (P2)	CATTGCA	GGAAAAACTGGTCACCAT든	GACA $\overline{A T}$	ATTCA
f.bab	$C G \bar{A} G C \overline{C A}$	ACAGAAAACGCTGAAAAA $\overline{\mathbf{A}}$	C $\bar{A} T \overline{C C A}$	AAAG
hdeAB	CATGA $\overline{\mathbf{C A}}$	TATACAGAAAACCAGGTTA	T $\bar{A} A \bar{C} \bar{C}$	CAGT
proU (P1)	tATCACG	CAAATAATTTGTGGTGATC	TACACT	GATACT
rssAB	$a G \bar{A} C \overline{A C A}$	TAAGGCTGCCAACATAGGE-	TATACT	CGACAGC
ybgA (P1)	CTTCACA	AATATCATTTCTCAAGGTE	TACACT	TACTCCT
ybgA(P2)	$\mathrm{g} \overline{\mathbf{A C G}} \overline{\mathrm{TCA}}$	GTCCTTGCGGGGAGCAGGE-	TTTCGT	AAATTT

Table 4: The Crl regulon in an rpoS background ($\mathrm{LB}, \mathrm{OD}_{578 \mathrm{~mm}}=4,30^{\circ} \mathrm{C}$)

gene name	ID	Ratio of Medians	Function
crl	b0240	243,01	regulatory protein for curli, transcriptional regulator
paaA	b1388	0,381	subunit of putative phenylacetate-CoA oxygenase
paaB	b1389	0,461	subunit of putative phenylacetate-CoA oxygenase
paaD	b1391	0,425	subunit of putative phenylacetate-CoA oxygenase
paaF	b1393	0,293	putative enoyl-CoA hydratase/isomerase of phenylacetate degradation
paaH	b1395	0,467	putative 3-hydroxyl-acyl-CoA dehydrogenase of phenylacetate degradation
paaK	b1398	0,385	phenylacetate-CoA ligase
yeeE	b2013	0,5	putative transport system permease protein
cysP	b2425	0,432	subunit of thiosulfate ABC transporter

RH90 (MC4100 rpoS::Tn10) and its isogenic crl::cat mutant (NT225) were grown in rich medium (LB) at $30^{\circ} \mathrm{C}$. Total RNA was extracted at an OD_{578} of 4.0 (i.e. during entry into stationary phase) and further processed for genome-wide microarray analysis. Genes with expression ratios in RH90 and its crl mutant derivative of >2-fold or <0.5-fold (average of three independent experiments) were considered relevant and are presented here.

Table 5: Putative promoter-proximal pausing sites in σ^{s}-dependent promoters in E. coli. In bold face are shown the putative pausing sites that satisfy the criteria set by Nickels et al (2004). Underlined are further "-10-like" elements, situated downstream of the transcriptional start, that fail one of the criteria set by Nickels et al (2004), but are nevertheless likely to be functional pausing sites (see also Fig. 29 for the cases of the gadA and the bolA promoters). Note that in some σ^{s}-dependent promoters with putative overlapping -35 elements, only one configuration is shown here.

	-35	bp		-10		+1
	CTTGACA		C	TATACT	TATtTT	A/G
acnA (P1)	CTGGCAA	CTAACATCGCAGCAG	C	AAGCCT	TTATAG	Aactgtttgctgaagat
ada	gGTTTTT	GCGTGATGGTGACCGG	G	CAGCCT	AAAG	Gctatccttaa
adhE (P1)	gCTAATG	TAGCCACCAAATCATA	C	TACAAT	TtATTA	Actgttagctataat
adhE (P2)	gTAATCA	GTACCCAGAAGTGA	G	TAATCT	TGCTTAC	Gccacctggaagt
aidB	tCTGTCA	TGAATCCATGGCAGTGA	C	CATACT	AATGGT	Gactgccatt
aldB	CTGGCGA	AGATTTCGCCAGTCACGT	C	TACCCT	tGTtAT	Acctcacacc
ansP(P1)	gAtGAAT	AAACATTGTTCATG	G	CAACTT	ATAT	Gactttttcat
ansP(P2)	aCTATCA	TCGCCAGGATGAATAA	A	CATTGT	TCATGGC	Aacttatatgact
appY	tTTGACT	ACTATCAACTTGTTTTA	A	TTTTAT	GATAGGTGC	Aaagatggatt
artP (P3)	aCCACCG	CCCCCGTTATTTTGTG	C	TATGTT	TATTGA	Ataatgcgcttt
blc	tTTCTCC	GCTTTTCCTTGCTGTCAT	C	TACACT	TAGA	Aaaaaacca
bolA (P1)	gCtGCAA	TGGAAACGGTAAAAGCGG	C	TAGTAT	TTAAAG	Ggatggatgacatct
cbpA (P2)	tATGAAA	TTTTGAGGATTACC	C	TACACT	TATA	Ggagttaccttaca
cfa(P2)	tCTCACA	AAGCCCAAAAAGCGT	C	TACGCT	GTTTT	Aaggttctgatca
cpxRA	aTGGATT	AGCGACGTCTGATGAC	C	TAATTT	CTGCCTC	Ggaggtattta
csgBA (P1	aTTAAAA	ATATTTCCGCAGAC	A	TACTTT	CCATC	Gtaacgcagcgtt
csgBA (P2)	gTtatta	AAAATATTTCCGCAG	A	CATACT	TTCCATC	Gtaacgcagcgtt
csgDEF	CTTGATT	TAAGATTTGTAATGG	C	TAGATT	GAAATC	Agatgtaatccatt
csid	gTGCGCA	TTTTTCAGAAATGTAG	A	TATTTT	TAGATT	Atggctacgaat
csiE(P2)	CCATTTC	CTTGAGCAAACTTTAG	C	TATTCT	TATCAATT	Aatgcttatggga
cyx	tTTCAGG	ATAAAGAGGGAGATCTA	C	CATTAT	CGGGTT	Attttctctctt
dnaN(P1)	aGTGGCG	TTCTTTATCGCCAAGCGT	C	TACGAT	CTAAC	Gtacgtgagct
dnaN(P2)	aTTGCAG	GAAAAACTGGTCACCAT	C	GACAAT	ATTCA	Gaagacggtggc
dnaN(P4)	gAAGAGA	GCCACGATATCAAA	G	AAGATT	TTTCAA	Atttaatcag
dps	aATAGCG	GAACACATAGCCGGTG	C	TATACT	TAATCTC	Gttaattact
ecnB	CCCATCA	TTTTTGGCGATGTTGT	C	TATTAT	TAATTT	Gctataggca
esp	aTTGATA	GTGAGCAGAGAGAGACT	G	CATTAT	TAATGAT	Tggtaaagttaat
fbab	gCCAACA	GAAAACGCTGAAAAA	A	CATCCA	AAAG	Atggaaaaactcg
fic	CCGGCGT	AACCCGGATTTGCCGC	T	TATACT	TGTGGC	Aatggacacgtt
frdA	aATTTCA	GACTTATCCATCAGA	C	TATACT	GTTGTA	Cctataaa
ftsQ(P1)	gTATTCA	ACCGTCCGGAACCTT	C	TATGAT	TATGA	Ggcgaagtatctct
gabd	tTCGCCG	GGTGCTGCAAAACCAT	C	TACGCT	CAGGACT	Gggcgagatga
gadA	CTTGCTT	CCATTGCGGATAAATC	C	TACTTT	tTTATT	Gccttcaaataaattt
gadB	CTTGCTT	ACTTTATCGATAAATC	C	TACTTT	TTTAAT	Gcgatccaat
gadC	aTTTCCA	AAGTCTGTTCACTG	G	CATTAG	CAACGG	Aaaatattgttct
gadX	tTTGACT	TAAGAGGGCGGCGTG	C	TACATT	AATAAAC	Gtaatatgtttat
gadY	gCTGATC	TTATTTCCAGTAAAAG	T	TATATT	TAACTT	Actgagagcacaaagt
glgS (P2)	tTACGCA	CGTTATGTTTAAAGGCA	C	TACACT	GATTGGG	Aaatactgaaat
gor	gCTGGCA	CCTATTACGTCTCGCG	C	TACAAT	CGCGGT	Aatcaacgat
hchA (P2)	CACCCCG	TACCTCTGATAATGGT	C	TAAAAT	CATTGA	Agccacttgcgacg
hdeAB	CATGACA	TATACAGAAAACCAGGTT	A	TAACCT	CAGT	Gtcgaattgat
himA (P4)	gTTGGCG	TAAATCAGGTAGTTGGC	G	TAAACT	TATTT	Gacgtgtaccgc
hmp	aTtTACA	TTGCAGGGCTATTTTTT	A	TAAGAT	GCATTT	Gagatacatcaat
htre (P2)	aATAATA	Attictattitatatt	A	TTCCCT	GTTTTA	Attaactctatca
hyaAB	aTTGTTT	TGTGCAAAAGTTTCA	C	TACGCT	ttattan	Caatactttct
katE	cGAAGCG	GGATCTGGCTGGTGGT	C	TATAGT	TAGAGA	Gttttttgacc
katG	tATAACT	TCTCTCTAACGCTGT	G	TATGCT	AACGCTA	Acactgtagaggg
mscL	CAGGAAA	ATGGCTTAACATTTG	T	TAGACT	TATGGTT	Gtcggcttcat
mscS	tTTGGCA	AAATTATGCTTTATTGT	T	TACCCT	TGTCAG	Actgcccgtcataa
msyB	CTTGCAA	AAGCGGAGAATCAG	C	TATCCT	TTTCCCT	Gaaacctcatcaact
osmB (P2)	aTTCACC	AGACTTATTCTTAG	C	TATTAT	AGTTAT	Agagagcttacttc

Figure Appendix

osmC (P2)	tCGTGCT	GTTTCTCACGTAGTCT	A	TAATTT	CCTTTTTA	Agcceacag
osmE	cTTGAAA	AAGCGCCCAATGTATT	C	CAGGCT	TATCTA	Acacgetgat
osmY	CCGAGCG	GTTTCAAAATTGTGAT	C	TATATT	TAACAAA	Gtgatgacatttct
otsBA	aATGGCG	ACCCCCGTCACACTGT	C	TATACT	TACAT	Gtctgtaaag
pfkB (P2)	aAAAGCT	CCAATAAATCATATTG	T	TAATTT	CTTCACT	Ttccgctgattc
poxB	cTTCCCC	CTCCGTCAGATGAA	C	TAAACT	TGTTACC	Gttatcacatt
pqi5 (P2)	aAACGCA	GCAGTAGCAAACTAAG	C	TATAAA	TTGCAGC	Gcgaactggag
proP(P2)	aCCGGAG	GGTGTAAGCAAACCCG	C	TACGCT	TGTTAC	Agagattgcat
proU (P1)	tATCACG	CAAATAATTTGTGGTGAT	C	TACACT	GATACT	Ctgttgcattatt
pstS	CATATAA	CTGTCACCTGTTTGTC	C	TATTTT	GCTTCTC	Gtagccaacaaacaat
rraA	tTTGCCA	ACAGCCCACATAGCGCG	A	TATACT	GAAA	Atctcgcagcaact
rsd (P1)	tATGGCA	ATTCTCCCTTCGGCAA	C	CATAAT	TTTTGTTC	Atggctgacga
rssAB	aGACACA	TAAGGCTGCCAACATAGG	C	TATACT	CGACAGC	Actaccacaggg
sodB	tTTGTCT	CACCTTTTAATTTG	C	TACCCT	ATCCAT	Acgcacaataagg
sodC	gTTCAAA	AATGTGTCACTGGT	T	TATACT	TATTCA	Ggaatgcacaatg
sra	CCAGCAC	CCTACGCTTTAAGGTG	C	TATGCT	TGATCG	Gcaacctaattt
ssrs (P2)	gTTGCAA	GATCTGAAAGAACGCA	C	TAGAGT	CACAAAT	Actgaacagttggt
talA(P1)	tCCAGCA	ATACCATGCCTGTCTG	C	TATGCT	TTTTT	Gatgcgtttagcgaa
topA (Px1)	aCTGGCA	ACTTTGGATTTTGCATG	C	TAATAA	AGTTGC	Gtatcggattttat
treA	cATGCAG	CTAGTGCGATCCTGAA	C	TAAGGT	TTTCTG	Atacttgaataccgt
uspB	CTCGAAA	AAAAACAACCTGATCTC	C	TACACT	ATCT	Atagagccgctcgtatgtt
ybgA (P1)	CTTCACA	AATATCATTTCTCAAGGT	C	TACACT	TACTCCT	Gtaaaccgctcag
ybgA (P2)	gACGTCA	GTCCTTGCGGGGAGCAGG	C	TTTCGT	AAATTT	Gtcctgctacaa
ybjP	aAAAGCA	TTATCAGACTGATACG	C	TATTAT	TGAAA	Ggatatcattattat
yehZXYW	CAAGCTA	ACCCCGCCATTATCAA	C	TATGCT	TTTCTC	Ttaattcgctg
ygge (P1)	aTGGAAA	AATAAAACAGAGGCG	C	TAAGCT	TGCCTCC	Agaggtcctgaatt
ygge (P2)	gCTGGCG	AGAGACGGTATTGC	T	CATGCA	CAAGC	Cttgttcagttagg
yiaG	cCCGCTG	TGTCTGCTTTTCCCGA	C	TATTCT	TAATGA	Gcttcgatgcaatt
ytfK	gTGGAAA	CATTGCCCGGATAGT	C	TATAGT	CACTAA	Gcattaaaattt
x thA	gCGGTAA	GCAACGCGAAATTCTG	C	TACCAT	CCACGC	Actctttatctgaat

Fig. 17: An α CTD- σ interaction cannot be mediated in promoters lacking a - 35 element, no matter of the kind of UP-element configuration present in front of them. The presence of an α subunit mutant (E261A), known to defect the α - σ interaction (Ross et al, 2005), does not influence the expression of a series of synthetic promoters lacking a - 35 element and carrying different UP-element sites (for the exact sequences of the different synthetic promoters see the corresponding paper in the appendix).

Fig. 18: DNase I footprinting of $E \sigma^{70}$ and $E \sigma^{5}$ complexes at different variants of the synthetic promoter synp213 (see Typas A and Hengge R, 2005 for more details): lanes 1-3, core synp213 promoter, without an UP-element site; lanes 4-6, synp213 with a proximal UP-element sub-site; and lanes 7-9, synp213 with a distal half UP-element site. The digestion patterns of the non-template strand were revealed after primer extension (for primer used and more experimental details, see Typas A and Hengge R, 2006) in order to be able to monitor both linear and supercoiled DNA (the picture shown here is with linear DNA). Protection patterns extend for both holoenzymes between, approximately, -60 and +20 in all promoter constructs. Considerable differences between the $\mathrm{E} \mathrm{\sigma}^{70}$ and $E \sigma^{s}$ footprints can be seen: i) in the spacer region between the -10 and -35 hexamers (different intensity of the hypersensitive sites at -25 and -24), ii) in the -35 element (different degree of protection by the two RNAPs), and iii) one turn of the helix upstream of the -35 element (different intensity of the hypersensitive sites either at -46 or at -45). It is also apparent that, in the "Distal" promoter variant (carrying a distal half UP-element site), only $E \sigma^{70}$ protects the region marked with a box, between the -35 element and the Distal UP-element sub-site (the latter is located in the region between -55 and -45). This result supports the model proposed in Fig. 15.B.

Fig. 19: DNase I footprinting of $E \sigma^{70}, E \sigma^{5}$ and $E \sigma_{\text {triple }}^{S}$ complexes at the synp213 derivative carrying a distal half UP-element site (Typas A and Hengge R, 2005). $\sigma_{\text {triple }}^{S}$ is a σ^{s} mutant that carries three amino acid substitutions, $\mathrm{E} 308 \mathrm{~K}+\mathrm{E} 315 \mathrm{H}+\mathrm{Q} 318 \mathrm{R}$, and behaves more like the housekeeping σ^{70} in respect with UP-element utilisation. The digestion patterns of the template strand were revealed after primer extension (for ${ }^{32} \mathrm{P}$-labelled primer used and more experimental details, see Typas A and Hengge R, 2006) in order to be able to monitor both linear and supercoiled DNA (the picture shown here is with linear DNA). Only when $E \sigma^{70}$ bound to the promoter region, did hypersensitive sites at -39 and -38 appear. In addition, the footprint pattern of $E \sigma_{\text {triple }}^{\mathrm{s}}$ is in between of those of $E \sigma^{70}$ and $E \sigma^{5}$, at least in respect with some aspects, i.e. intensity of the hypersensitive site at -25 .

Fig. 20: $E \sigma^{70}$ and $E \sigma^{5}$ adopt different conformations in their transcription bubbles (experiments performed in collaboration with B. Sclavi and M. Buckle).
A. UV laser photo-footprinting of $E \sigma^{70}$ and $E \sigma^{5}$ complexes at the derivative of the synthetic promoter, synp213, carrying a distal half UP-element site (Typas A and Hengge R, 2005). Protein-DNA (linear/supercoiled) complexes were formed for 20 min at $37^{\circ} \mathrm{C}$, prior to irradiation by high intensity UV light. Samples were irradiated with a simple rapid (5ns) pulse of high intensity UV light (266 nm) emitted by an NdYAG laser (DCR-11 spectra physics; more experimental details for the method can be found at Pemberton et al, 2002). Primer extension was then performed on the irradiated DNA, using an adequate ${ }^{32} \mathrm{P}$-labelled primer (Typas A and Hengge R, 2006), in order to visualise the photomodification of the non-template strand. Changes in UV photo-reactivity of the promoter DNA, after incubation with either of the holoenzymes, can be observed at several positions. Appearance of hypersensitivity at nuclotides -6 and -2 reflects the open complex formation of the holoenzymes, as determined by kinetic experiments (see also Table 2), whereas hypersensitivity at positions -47 (in the middle of the hypersensitive bands appearing in between -50 and -44, the heart of the distal UPelement half site) and -34 , and protection at nucleotides -12 and -4 are due to initial recruitment of the holoenzymes to the promoter.
B. A normalised densitometric scan of the UV photo-reactivity of the non-template strand (linear DNA) in the absence (black line) or presence of holoenzymes (red line for $E \sigma^{5}$ and blue for $E \sigma^{70}$). Differences in the UV laser photo-footprinting of $E \sigma^{70}$ and $E \sigma^{5}$ reflect the discrepant mode of binding and melting of the promoter by the two holoenzymes.

Fig. 21: Role of canonically and non-canonically positioned UP-elements in $E \sigma^{s}$-dependent transcription. A. On the left can be seen a schematic representation of synp 213 derivatives with different UP-element configurations (for more information about synp213 see Typas and Hengge, 2005). On the right is plotted the promoter activity (measured by lacZ reporter fusions) of the various constructs in relation with that of the core promoter (without UP-element), which is set as 100%. Cells were grown in LB medium and specific β-galactosidase activities were measured along the growth curve. Here are compared and presented the promoter activities during middle stationary phase (4-8 hours after entry in to stationary phase, when the β-galactosidase activities have reached their maximum). Average values of more than 3 experiments are shown. Error bars indicate standard deviations from all these experiments. Only the promoter variant, carrying a canonically positioned
distal UP-element sub-site, exhibits increased σ^{s} selectivity. The construct bearing a distal UP-element sub-site, centred one turn of the DNA helix upstream of its canonical location, shows similar promoter activity and selectivity as synp213. On the contrary, the presence of an "upstream" full UP-element site (centred at -56.5) causes an increase in promoter activity and in σ^{70} promoter selectivity, similarly to the effects observed with an optimally positioned full UP-element site. Note though that the relative promoter activity of the synp213 derivative, carrying an optimally-positioned full UP-element site, is omitted here for presentational reasons; its activity is more than 10 -fold higher than that of the core synp213 promoter and if plotted then it becomes difficult to see the differences in the promoter activity of the rest of the constructs. As shown in Typas and Hengge (2005), this promoter construct is almost entirely used by $\mathrm{E} \mathrm{\sigma}^{70}$. B. The same organisation as panel A, but here are presented the results of the synp214 derivatives with different UP-element configurations (synp214 is the "-35-less" promoter variant of synp213; see Typas and Hengge, 2005). Cells were grown, specific β galactosidase activities were measured and data were calculated and presented as in panel A. Similarly to optimally positioned UP-element sites, non-canonically positioned UP-element sites did not change the promoter selectivity. The synp214 derivative, carrying an optimally positioned, full UP-element site, is omitted again for the same reasons mentioned above.

Fig. 22: Effects of changing the spacer length between -10 and -35 elements in the activity of the synthetic promoter, synp213, at $37^{\circ} \mathrm{C}$ and $30^{\circ} \mathrm{C}$. Cells were grown in LB medium $\left(30^{\circ} \mathrm{C} / 37^{\circ} \mathrm{C}\right)$ and specific β-galactosidase activities were measured along the growth curve. Here are presented the promoter activities during middle stationary phase ($4-8$ hours after entry in to stationary phase, when the β-galactosidase activities have reached their maximum). Average values of more than 4 experiments are shown. Error bars indicate standard deviations from all these experiments. Above the bars are provided the ratios between $E \sigma^{70}+E \sigma^{5}$-mediated transcription and $E \sigma^{70}$-mediated transcription, which reflect the σ^{S}-selectivity of each promoter construct. It is apparent that the presence of a - 35 element is more important for E^{S}-derived transcription at $30^{\circ} \mathrm{C}$.

Fig. 23: Role of specific amino acids of σ^{s}, mostly situated in region 4, in its ability of utilizing nonoptimal spaced promoters. A. Alignment of region 4 of σ^{s} (RpoS) with the corresponding region of σ^{70} (RpoD). Single amino acid substitutions of σ^{8} to the corresponding residue of σ^{70} used here are shown in bold. The positions of the helixes in region 4 derive from current structural data. B-D. Effects of the different σ^{s} variants in $E \sigma^{s}$ aptitude to trigger transcriptional activation from promoters with different spacer lengths (15-19bp). The mutants are divided in 3 different groups: B. no effect, C. general defect of σ^{s} activation but no change in its preference for non-optimal spacers, D. general defect of σ^{s} activation and partial alleviation of its preference for non-optimal spacers. Expression of the synthetic promoter synp213 is determined in rpoS background, in which σ^{s} wild-type (pRL40.1) and its variants are expressed under the $\mathrm{p}_{\text {tac }}$ control from a plasmid. The ratio between the promoter activity in the presence of rpoS or any of its variants, and the absence of rpoS, is plotted against the different spacer lengths. Cells were grown in LB medium and specific β-galactosidase activities were measured during middle stationary phase ($4-8$ hours after entry in to stationary phase, when the activities remained constant). Average values of more than 3 experiments are shown. Error bars indicate standard deviations from all these experiments

Fig. 24: Amino acid residues of σ_{4}^{S} affecting the σ^{s}-Fis interplay at a proP (P 2) promoter variant that has defected the CRP binding-site (centred at -121.5). Promoter activities originating from the different σ^{s} variants are presented relative to the activity generated by the wild-type σ^{s} (set as 100%), both in the presence (A) and absence (B) of Fis. Promoter activity of proP (P2) was determined in an rpo S^{-}background, in which wild-type σ^{s} and its variants were expressed under the $\mathrm{P}_{\text {tac }}$ control from a plasmid (in the absence of inducer, as this results in σ^{s} levels comparable to those in wild-type strains). Cells were grown in LB medium and specific β-galactosidase activities were measured at the onset of stationary phase (fis ${ }^{+}$) and after 3-4h in stationary phase (fis), when the proP (P 2) promoter activity reached its peak. Average values and standard deviations of more than three experiments are shown.

Fig. 25: Comparison of genome-wide gene expression in crl^{+}and $\mathrm{crl}:: \mathrm{cat}$ strains (MC4100 and NT190, respectively; panel A), and in rpoS::Tn 10 and rpoS::Tn 10 crl::cat strains (RH90 and NT225, respectively; panel B), during entry into stationary phase in LB medium at $30^{\circ} \mathrm{C}$. RNA was prepared after harvesting cells that had reached an $\mathrm{OD}_{578 \mathrm{~nm}}$ of 4 . Cy 3 - and Cy 5 -labeled cDNAs were generated from these RNA preparations and were analysed by whole-genome microarray analysis. Here are shown their normalised intensities, as scatter plots, in two representative experiments (MC4100 versus NT190 in panel A, and RH90 versus NT225 in panel B). Each set of microarray analysis was repeated three times, and the average ratios of expression of Crl-controlled genes were extracted (both in rpoS ${ }^{+}$ and rpoS background; for the latter see Table 4). In panels \mathbf{C} and \mathbf{D} can be seen the normalised intensities, as scatter plots, in similar experiments performed at $37^{\circ} \mathrm{C}$ (MC4100 versus NT190 in panel \mathbf{C}, and RH90 versus NT225 in panel \mathbf{D}). Note that the set of experiments at $37^{\circ} \mathrm{C}$ was only performed once.

Fig. 26: Crl supports $E \sigma^{s}$ formation in stationary phase, in the expense of $E \sigma^{70}$ (experiments performed in collaboration with C. Barembruch). Whole-cell lysates from wild-type (panels \mathbf{A} and \mathbf{B}; MC4100) and crl^{-}(panels \mathbf{C} and \mathbf{D}; NT190) stationary phase cells $\left(\mathrm{OD}_{578 \mathrm{~nm}}=3\right.$ in panels \mathbf{A} and \mathbf{C} and $\mathrm{OD}_{578 \mathrm{~nm}}=4$ in panels \mathbf{B} and \mathbf{D}), grown in LB at $30^{\circ} \mathrm{C}$, were fractionated by gel filtration. Fractions were subsequently analysed by SDS-PAGE, and were visualised by immunoblots, using monoclonal antibodies against the σ^{s}, σ^{70} and β^{\prime} subunits of RNAP and a polyclonal antibody against Crl. As indicated by parallel experiments using purified proteins (data not shown), σ^{s} co-eluted with RNAP mostly in fractions A1 and A2 (E σ^{S}), and was also recovered in later fractions (A7-A9) with no traces of core subunits (free σ^{S}). On the other hand, when σ^{70} was part of the RNAP assembly $\left(E \sigma^{70}\right)$, it eluted between fractions A2 and A4, whereas when it was free, it eluted mostly in fractions A6 and A7. Note that Crl always eluted where its free form would be expected (A10-A11). In panel \mathbf{E} are presented the results of the quantification performed for the four western blots, using the IMAGE GAUGE software. The ratio of free to bound sigma factor was calculated for both σ^{5} and σ^{70} in the different genetic backgrounds and the different growth stages (bound $\sigma^{\text {s }}$: A1-A3; free $\sigma^{\text {s }}$: A7-A9; bound σ^{70} : A2-A4; free $\sigma^{70}:$ A6-A8). More σ^{s} is free (hence unable to find free core RNAP to bind) in the crl mutant strain, during the early stages of transition into stationary phase in rich medium (LB),
whereas upon progression to later stages of stationary phase $\left(\mathrm{OD}_{578 \mathrm{~nm}}=4\right)$, the presence of Crl has a smaller impact in $E \sigma^{\mathrm{S}}$ formation (by then, most σ^{S} is, anyways, in complex with RNAP). On the contrary, the presence of free σ^{70} significantly increases upon progression into stationary phase, only when Crl is present in the cell. Note, however, that the presence of enhanced amounts of $E \sigma^{70}$ in the crl mutant strain at $\mathrm{OD}_{578 \mathrm{~nm}}=4$ do not cause any stimulation of $\mathrm{E} \mathrm{\sigma}^{70}$-mediated transcription, as seen by the microarray analysis.

Experimental conditions: Strains were grown in LB medium until they reached different stages of stationary phase. 450 ml of the cells was harvested and resuspended in 10 ml buffer $(10 \mathrm{mM}$ Tris- HCl pH 7.8, 0.1 mM DTT, 0.1 mM EDTA, 200 mM NaCl). Crude cell extracts were obtained using a French Pressure Cell. The extracts were subsequently centrifuged for 15 min at $16,000 \mathrm{rpm}$ (using a Sorvall SS34). A total of $100 \mu \mathrm{l}$ of the supernatant was applied to a gel filtration column (Superdex $20010 / 300 \mathrm{GL}$). Elution with reconstitution buffer was performed at a flow rate of $0.5 \mathrm{ml} / \mathrm{min}$ at room temperature, gathering fractions of 1 ml . The proteins in the elution fractions were precipitated with aceton, analysed then by SDS-PAGE (12% acrylamide), electroblotted onto PVDF membranes and, finally, detected with specific antibodies. Either polyclonal sera against Crl , or monoclonal antibodies against the $\sigma^{\mathrm{S}}, \sigma^{70}$ and β^{\prime} (Neolcone), and a Cy2-conjugated goat anti-rabbit IgG, plus a Cy2conjugated goat anti-mouse IgG (both from Dianova), were used for protein visualisation.

Fig. 27: Increased RssB levels severely impair $E \sigma^{s}$ activity, especially in a crl^{-}background. Expression of a single-copy synp9::lacZ protein fusion (synp9 is a strongly σ^{s}-dependent synthetic promoter) was determined in $r s s B^{-} r p o S^{+} c r l^{+}$(diamonds), $r s s B^{-} r p o S^{+} c r l^{-}$(triangles), $r s s B^{-} r p o S^{-} c r l^{+}$ (squares) and $r s s B^{-}$rpoS crl^{-}(circles) backgrounds, with RssB being ectopically expressed from pMP8, under the control of the $\mathrm{p}_{\text {tac }}$ promoter (no inducer present; RssB levels are even without inducer higher than physiological). Cells were grown in LB medium and optical densities (closed symbols) and specific β-galactosidase activities (open symbols) were measured along the growth curve. E $\sigma^{\text {s }}$ mediated expression is severely defected due to a dramatic decrease in σ^{s} cellular levels, caused by the increase in RssB expression (see also Figs 5 and S2 in the "Stationary phase reorganisation of the E.coli transcription machinery by Crl protein, a fine-tuner of σ^{s} activity and levels" paper; σ^{s} is only detectable when cells have reached an optical density higher than 4 and only in a crl^{+}background, in consistence with the genetic background and the time-point, in which a stimulation in E σ^{s}-mediated expression is observed here). Thus, increased cellular levels of RssB make the presence of Crl absolutely necessary for $E \sigma^{\text {S }}$-dependent transcription.

Fig. 28: Crl protects σ^{s} from degradation, only in the presence of core RNAP (experiments performed by A. Possling). In-vitro degradation of σ^{5} (panels \mathbf{A}, \mathbf{B} and \mathbf{D}) in reaction mixtures containing $2 \mu \mathrm{M}$ RpoS, $0,2 \mu \mathrm{M}$ RssB, $0,2 \mu \mathrm{M}$ reconstituted $\mathrm{ClpXP}, 5 \mathrm{mM}$ ATP, 10 mM acetyl phosphate and where applicable $4 \mu \mathrm{M} \mathrm{Crl}$ (C and D3), $0,29 \mu \mathrm{M}$ core RNAP (D2 and D3) or $2 \mu \mathrm{M}$ BSA (D1). The mixtures were incubated at $30^{\circ} \mathrm{C}$ in buffer A (20 mM Tris- $\mathrm{HCl} \mathrm{pH} 7.5,10 \mathrm{mM} \mathrm{MgCl}, 140 \mathrm{mM} \mathrm{KCl}, 1 \mathrm{mM}$ DTT, $0.1 \mathrm{mMEDTA}, 0.005 \%$ Triton X-100 and 5% glycerol $[\mathrm{v} / \mathrm{v}]$) for different time periods (stated above each lane), and were stopped with addition of SDS loading buffer, in order to be subsequently separated by SDS-PAGE and visualised by Coomasie staining. When Crl and σ^{s} were both included in the reaction, then they were separately pre-incubated for 10 min at room temperature, prior to their addition to the mixture. In panel \mathbf{B} is presented a control in-vitro degradation assay of Crl , using the same conditions and reagents as for σ^{5} (note that Crl was also stable in an in-vitro degradation assay in which RssB was omitted; data not shown). Panels \mathbf{E} and \mathbf{F} depict densitometric quantifications of the data presented in A-C and D1-3 respectively. The intensity of bands representing σ^{s} (or Crl) was calculated relative to the intensity of bands representing a stable protein that was always present in the assay, i.e. ClpX . Each experiment was repeated two or three times with highly reproducible results; here is shown a representative of those experiments. The half-life of σ^{5} is $14.5 \mathrm{~min}(\pm 1.2)$ in the absence of $\mathrm{Crl}, 15 \mathrm{~min}(\pm 2)$ in its presence (2 -fold excess), $34 \mathrm{~min}(\pm 3)$ in the presence of substoichiometric amounts of core RNAP (1:7 molecular ratio), and $57.5 \mathrm{~min}(\pm 3.5)$ in the presence of both Crl and core RNAP. Note that the presence of BSA in the mixture did not influence the degradation rates of σ^{S}.

Fig. 29: Effect of mutating putative pausing sites, which resemble a -10 recognition element and are situated directly downstream of +1 , on the expression of the σ^{s}-dependent promoters bolA (\mathbf{A}, \mathbf{B}), $\operatorname{gad} A(\mathbf{C}, \mathbf{D})$, and $\operatorname{gadX}(\mathbf{E}, \mathbf{F})$. Expression of single-copy lacZ protein fusions, carrying either the wild-type promoter (squares), or its promoter derivative with a defected promoter-proximal pausing site (circles), was determined in rpoS (left panels; \mathbf{A}, \mathbf{C} and \mathbf{E}) and rpos (right panels; \mathbf{B}, \mathbf{D} and \mathbf{F}) backgrounds. Cells were grown in LB medium and optical densities (closed symbols) and specific β gal activities (open symbols) were measured along the growth curve. Note that the scale of the β galactosidase axes changes significantly for each gene in rpoS ${ }^{+}$and rpoS background, as all of them are strongly σ^{s}-dependent. Below the six plots, in panel \mathbf{G}, is presented the promoter sequence of the three genes with the putative "-10-like" pausing sites underlined, and the mutations introduced for destroying them in bold, capital face. Only the pausing site found in gadX satisfies the criteria set by Nickels et al (2004); the other two pausing sites in gadA and bolA (P1) were predicted to be functional by their close similarity to a -10 element (although they failed to have conserved the three essential nucleotides of a -10 element, TAtaaT, they had either a $4 / 6$ match to the consensus of 10 element or they had only a $3 / 6$ match to the -10 element consensus sequence and an additional extended -10 element). In addition, gadA had two putative promoter-proximal pausing sites; the first is situated directly upstream from that depicted in panel G (tcaaat), but mutating it, did not influence the expression of gadA. Note that $E \sigma^{70}+E \sigma^{5}$-mediated transcription and $E \sigma^{70}$-mediated transcription are inhibited to a different extent by the presence of a pausing site in the gadA and gadX promoters.

