11. Abbildungsverzeichnis

Abb. 1: Ph	nasen des volumetrischen Kapnogramms	18
Abb. 2: Co re V	O ₂ -Exspirationskurven bei gesunder Versuchsperson, bei Patienten mit estriktiver und bei Patienten mit leichter und schwerer obstruktiver erteilungsstörung (modifiziert nach Ulmer <i>et al.</i> 2001)	19
Abb. 3: Co er	O ₂ -Exspirationskurven eines gesunden Pferdes (links) und eines an RAO rkrankten Pferdes (rechts) (nach Herholz <i>et al.</i> 2003)	19
Abb. 4: M K er	ischluftvolumenanteil zwischen 25 und 50 % der endtidalen CO ₂ - onzentration (Vm25-50) einer gesunden (links) und einer mphysematösen Lunge (rechts) (schematisch)	20
Abb. 5: Be Fl	ewertung der alveolären Effizienz (X/ABCDA) (modifiziert nach letcher <i>et al.</i> 1981)	22
Abb. 6: To n	otraumbestimmung nach Fowler (VD Fowler, 1948b) (modifiziert nach Smith 2003)	24
Abb. 7: To n	otraumbestimmung nach Langley <i>et al.</i> (VD Langley, 1975) (modifiziert nach Smith 2003)	24
Abb. 8: To n	otraumbestimmung nach Wolff und Brunner (VD Wolff, 1984) (modifiziert aach Smith 2003)	25
Abb. 9: To S	otraumbestimmung nach Bohr (VD Bohr, 1891) (modifiziert nach mith 2003)	26
Abb. 10: N	Monoalveoläres Lungenmodell und korrespondierendes Kapnogramm (modifiziert nach Visser und Luijendijk 1982)	27
Abb. 11: N	Modell der parallelen Inhomogenität (Fowler 1949, Otis <i>et al.</i> 1956) zur Erklärung der Neigung der Phase III	28
Abb. 12: \ (/ergrößerung der "Mischluftscheibe" bei emphysematöser Lunge (modifiziert nach Worth 1985)	30
Abb. 13: S	Schematischer Versuchsablauf pro Kalb im Versuchsabschnitt 1	37
Abb. 14: S	Schematischer Versuchsablauf im Versuchsabschnitt 2	39
Abb. 15: N	MasterScreen Capno (Messkopf)	42
Abb. 16: k	Kapnovolumetrischer Messvorgang am Kalb	43
Abb. 17: A	Aufarbeitung der ventilatorischen und kapnovolumetrischen Messwerte pro Kalb in beiden Versuchsabschnitten	48
Abb. 18: \ / (/ergleichende Darstellung des Strömungswiderstands in den distalen Atemwegen zwischen den Kälbern der Versuchsgruppen 1 (respir. Anamn) und 2 (respir. Anamn. +) vom zweiten bis zum siebenten Lebensmonat	56

Abb. 19: V <i>F</i> (L	/ergleichende Darstellung des Strömungswiderstands in den proximalen Atemwegen zwischen den Kälbern der Versuchsgruppen 1 (respir. Anamn) und 2 (respir. Anamn. +) vom zweiten bis zum siebenten Lebensmonat	56
Abb. 20a-f	f: Volumetrische Kapnogramme von jeweils fünf aufeinander folgenden Atemzügen von Kalb Nr. 012 (Versuchsgruppe 1, respir. Anamn) aus dem zweiten (a), vierten (b) und siebenten (c) Lebensmonat und von Kalb Nr. 468 (Versuchsgruppe 2, respir. Anamn. +) aus dem zweiten (d), vierten (e) und siebenten (f) Lebensmonat	57
Abb. 21: V z 2	/ergleichende Darstellung des Atemminutenvolumens pro kg Körpermasse zwischen den Kälbern der Versuchsgruppen 1 (respir. Anamn) und 2 (respir. Anamn. +) vom zweiten bis zum siebenten Lebensmonat	62
Abb. 22: V c k v	/ergleichende Darstellung der im Rahmen des lungenfunktions- diagnostischen Messvorgangs erfassten Atmungsfrequenzen zwischen den Kälbern der Versuchsgruppen 1 (respir. Anamn) und 2 (respir. Anamn. +) /om zweiten bis zum siebenten Lebensmonat	63
Abb. 23: V c 2	/ergleichende Darstellung der endtidalen CO ₂ -Konzentration zwischen den Kälbern der Versuchsgruppen 1 (respir. Anamn) und 2 (respir. Anamn. +) vom zweiten bis zum siebenten Lebensmonat	64
Abb. 24: V e c z	/ergleichende Darstellung des Quotienten aus dem pro Exspiration eliminierten CO ₂ -Volumen und dem Tidalvolumen zwischen den Kälbern der Versuchsgruppen 1 (respir. Anamn) und 2 (respir. Anamn. +) vom zweiten bis zum siebenten Lebensmonat	64
Abb. 25: V z 2	/ergleichende Darstellung der Fläche unterhalb der CO ₂ -Exspirationskurve zwischen den Kälbern der Versuchsgruppen 1 (respir. Anamn) und 2 (respir. Anamn. +) vom zweiten bis zum siebenten Lebensmonat	65
Abb. 26: V z v v z	/ergleichende Darstellung des Quotienten aus dem Mischluftvolumenanteil zwischen 25 und 50 % der endtidalen CO ₂ -Konzentration und dem /orausgegangenen Inspirationsvolumen zwischen den Kälbern der /ersuchsgruppen 1 (respir. Anamn) und 2 (respir. Anamn. +) vom zweiten bis zum siebenten Lebensmonat	65
Abb. 27: V z v \ z	/ergleichende Darstellung des Quotienten aus dem Mischluftvolumenanteil zwischen 50 und 75 % der endtidalen CO ₂ -Konzentration und dem /orausgegangenen Inspirationsvolumen zwischen den Kälbern der /ersuchsgruppen 1 (respir. Anamn) und 2 (respir. Anamn. +) vom zweiten bis zum siebenten Lebensmonat	66
Abb. 28: V z 2	/ergleichende Darstellung des Anstiegs der Phase II des Kapnogramms zwischen den Kälbern der Versuchsgruppen 1 (respir. Anamn) und 2 (respir. Anamn. +) vom zweiten bis zum siebenten Lebensmonat	67
Abb. 29: V z 2	/ergleichende Darstellung des Anstiegs der Phase III des Kapnogramms zwischen den Kälbern der Versuchsgruppen 1 (respir. Anamn) und 2 (respir. Anamn. +) vom zweiten bis zum siebenten Lebensmonat	67

Abb. 30:	Vergleichende Darstellung des Quotienten aus dem Totraumvolumen berechnet nach Wolff und Brunner und dem Tidalvolumen zwischen den Kälbern der Versuchsgruppen 1 (respir. Anamn) und 2 (respir. Anamn. +) vom zweiten bis zum siebenten Lebensmonat	68
Abb. 31:	Vergleichende Darstellung des Quotienten aus dem Totraumvolumen berechnet nach Bohr und dem Tidalvolumen zwischen den Kälbern der Versuchsgruppen 1 (respir. Anamn) und 2 (respir. Anamn. +) vom zweiten bis zum siebenten Lebensmonat	69
Abb. 32:	Vergleichende Darstellung des Strömungswiderstands in den distalen Atemwegen zwischen den Kontrolltieren (Versuchsgruppe 3) und den experimentell mit <i>M. bovis</i> infizierten Versuchstieren (Versuchsgruppe 4) bis zum Tag + 14	71
Abb. 33:	Vergleichende Darstellung des Strömungswiderstands in den proximalen Atemwegen zwischen den Kontrolltieren (Versuchsgruppe 3) und den experimentell mit <i>M. bovis</i> infizierten Versuchstieren (Versuchsgruppe 4) bis zum Tag + 14	72
Abb. 34:	Vergleichende Darstellung des Tidalvolumens zwischen den Kontrolltieren (Versuchsgruppe 3) und den experimentell mit <i>M. bovis</i> infizierten Versuchstieren (Versuchsgruppe 4) bis zum Tag + 14	73
Abb. 35:	Vergleichende Darstellung der im Rahmen des lungenfunktions- diagnostischen Messvorgangs erfassten Atmungsfrequenzen zwischen den Kontrolltieren (Versuchsgruppe 3) und den experimentell mit <i>M. bovis</i> infizierten Versuchstieren (Versuchsgruppe 4) bis zum Tag + 14	74
Abb. 36:	Vergleichende Darstellung des Atemzeitquotienten zwischen den Kontrolltieren (Versuchsgruppe 3) und den experimentell mit <i>M. bovis</i> infizierten Versuchstieren (Versuchsgruppe 4) bis zum Tag + 14	74