Aus der Klinik für Neonatologie, Campus Virchow-Klinikum der Medizinischen Fakultät der Charité – Universitätsmedizin Berlin

DISSERTATION

"Die Rolle der Caspase-1 abhängigen Cytokine, IL-1β und IL-18, bei der hyperoxie-induzierten Schädigung des unreifen Gehirns."

zur Erlangung des akademischen Grades Doctor medicinae (Dr. med.)

vorgelegt der Medizinischen Fakultät der Charité – Universitätsmedizin Berlin

von

Oliver Polley

aus Zossen

Gutachter: 1. Priv.-Doz. Dr. med. U. Felderhoff-Müser

2. Prof. Dr. med. L. Gortner

3. Priv.-Doz. Dr. med. A. Heep

Datum der Promotion: 12.10.2007

Danksagung

Die Durchführung dieser Arbeit wäre ohne zahlreiche Mitarbeiter, Freunde und Institutionen nicht möglich gewesen.

Großer Dank gilt Herrn Professor Dr. Michael Obladen, dem Direktor der Klinik für Neonatologie, Campus Virchow-Klinikum der Medizinischen Fakultät der Charité – Universitätsmedizin Berlin, der mir ermöglichte, diese Arbeit zu schreiben.

Meiner Doktormutter PD Dr. med. Ursula Felderhoff-Müser gilt mein ganz besonderer Dank für das Überlassen des Themas und die hervorragende Betreuung. Mit ihrem Ideenreichtum, ihren motivierenden Worten und konstruktiven Kritiken hat sie mein Interesse an der Forschung wecken und meinen Werdegang fördern können.

Frau Professor Dr. Chrissanthy Ikonomidou und Herrn Professor Dr. Christpoph Bührer danke ich für die Unterstützung, mein Stipendium der DFG im Graduiertenkolleg GRK 238 "Schadensmechanismen im Nervensystem – Einsatz von bildgebenden Verfahren" zu erlangen. In diesem Zusammenhang möchte ich mich auch bei Herrn Professor Dr. Uwe Heinemann und Herrn Professor Dr. Helmut Kettenmann sowie bei der Deutschen Forschungsgemeinschaft bedanken. Zu Dank verpflichtet bin ich auch dem Bundesministerium für Bildung und Forschung für die finanzielle Unterstützung.

In besonderer Weise danke ich allen Mitarbeitern unseres Labors, die mir mit Rat und Tat zur Seite standen. Frau Jessica Fassbender danke ich für die Hilfe, tierexperimentelle und histologische Methoden zu erlernen, Herrn Marco Sifringer bin ich überaus dankbar für seine geduldige Einweisung in die molekularbiologischen Methoden und seine humorvolle und immer freundlich hilfsbereite Präsenz und fachliche Beratung. Frau Dr. med. Bettina Gerstner und Herrn Dr. med. Mark Dzietko danke ich für die zahlreichen Ratschläge und ihre Hilfestellungen. Ein großes Dankeschön gilt allen hier nicht namentlich erwähnten Mitarbeitern und Freunden. Ganz besonders meiner lieben Freundin Stefanie Pietsch, die mir auch in schwierigen Zeiten geduldig zur Seite stand, danke ich für ihre Unterstützung und motivierenden Worte.

Von ganzen Herzen danke ich meinen lieben Eltern Jolanta und Detlef Polley für ihre liebevolle Unterstützung meines beruflichen wie auch privaten Werdegangs. Ohne ihre Zuwendung und Förderung wären mein Studium und diese Arbeit nicht möglich gewesen.

Inhaltsverzeichnis

Ι.	Einleitung	1
	1.1. Fortschritte der modernen Neonatologie	1
	1.2. Sauerstoff	1
	1.3. Botenstoffe	5
	1.3.1. Zytokine, Inflammation und Neurodegeneration	5
	1.3.2. Caspase-1	6
	1.3.3. Interleukin-1β	7
	1.3.4. Interleukin-18	8
	1.3.5. Der gemeinsame Weg der Signalübermittlung von IL-1β und IL-18	10
	1.4. IL-18 Bindungsprotein	13
	1.5. Die Phase des beschleunigten Hirnwachstums	14
	1.6. Der programmierte Zelltod	15
	1.7. Zentrale Fragestellung	17
2.	Material und Methoden	18
	2.1. Material	18
	2.1.1. Chemikalien	18
	2.1.2. Lösungen und Puffer	20
	2.1.3. Kits	25
	2.1.4. Enzyme und Proteine	25
	2.1.5. Antikörper	25
	2.1.6. Oligonukleotide	26
	2.1.7. Molekulargewichtsstandard	26
	2.1.8. Versuchstiere	27
	2.1.9. Geräte, Hilfsmittel und Verbrauchsmaterial	27
	2.1.10. Software und Datenbanken	29
	2.2. Methoden	29
	2.2.1. Durchführung der Tierversuche	29
	2.2.2. Aufarbeitung des Gewebes	31
	2.2.3. Histologische Methoden	31

	2.2.3.1. DeOlmos Kupfer-Silber-Färbung	31
	2.2.3.2. Fluoro-Jade-B-Färbung	32
	$2.2.3.3$. Immunhistochemische Färbungen für Caspase-3, IL-18 und IL-18R α	33
	2.2.3.4. Stereologisch-optische Dissektionsmethode	34
	2.2.3.5. Statistische Auswertung der histologischen Arbeiten	35
	2.2.4. Molekularbiologische Methoden	36
	2.2.4.1. Arbeitsschritte der molekularbiologischen Verfahren	36
	2.2.4.2. Extraktion von Gesamt-RNA aus Hirngewebe	37
	2.2.4.3. RNA-Behandlung mit DNase I	37
	2.2.4.4. Gelelektrophoretische Trennung der RNA	38
	2.2.4.5. Reverse Transkription	38
	2.2.4.6. PCR mit internem Standard	39
	2.2.4.7. Nichtdenaturierende Polyacrylamid-Gelelektrophorese	43
	2.2.4.8. Silberfärbung der Polyacrylamidgele und densitometrische Auswertung	ş 44
	2.2.5. Proteinchemische Methoden	46
	2.2.5.1. Arbeitsschritte der proteinchemischen Verfahren	46
	2.2.5.2. Proteinextraktion	47
	2.2.5.3. BCA-Methode zur Bestimmung der Proteinkonzentration	47
	2.2.5.4. Elektrophorese in SDS-Polyacrylamidgelen	48
	2.2.5.5. Western Blotting	49
	2.2.5.6. Immundetektion der membrangebundenen Proteine	50
	2.2.5.7. Entfernen gebundener Antikörper von membrangebundenen Proteinen	52
3	3. Ergebnisse	53
	3.1. Physiologische Parameter der Versuchstiere	53
	3.2. Caspase-1 (ICE): mRNA- und Proteinexpression	53
	3.3. Interleukin-1β: mRNA- und Proteinexpression	55
	3.4. Interleukin-18 und Interleukin-18Rα: mRNA- und Proteinexpression	56
	3.5. Immunhistologischer Nachweis von IL-18, IL18Rα und Caspase-3	58
	3.6. IL-18BP wirkt im Hyperoxiemodell neuroprotektiv	60
	3.7. Reduktion der hyperoxie-induzierten Hirnschädigung bei IRAK-4 (-/-) Mäusen	63

4. Diskussion	
4.1. Allgemeine Betrachtung	65
4.2. Hyperoxie bedingt gesteigerte Genexpression von Caspase-1	65
4.3. Verstärkte Expression von IL-1β bei Hyperoxie	67
4.4. Verstärkte Expression von IL-18 bei Hyperoxie	68
4.5. IL-18BP birgt die potenzielle Fähigkeit für einen therapeutischen Einsatz	70
4.6. IRAK-4 – Ansatzpunkt für die therapeutische Intervention	71
4.7. Sauerstofftherapie in der kritischen Phase der Gehirnentwicklung	72
5. Zusammenfassung	74
6. Abbildungs- und Tabellenverzeichnis	
6.1. Abbildungen	76
6.2. Tabellen	77
7. Abkürzungsverzeichnis	78
8. Literaturverzeichnis	82