
7. Variance of the Committor Function

A natural question arising the context of committor function computation on the
basis of time series is of how the discrete committor function q does depend on
uncertainties in the underlying data. In this chapter we will present an approach
which allows to estimate these uncertainties element-wise. We will restrict ourselves
to the case of Markov chains, i.e. discrete in time and in space. The idea behind
that approach is to estimate the uncertainties in terms of the element-wise variances
of a discrete committor function ensemble resulting from an ensemble of transition
matrices distributed according to the discrete likelihood function Ld. We will devise
an appropriate Monte Carlo Markov Chain (MCMC) sampling procedure and will
illustrate the approach on examples. The extension to Markov jump processes will
not be discussed here and will be subject to further investigations.

7.1. The Discrete Committor Function

Let P ∈ R
d×d be the transition matrix of a Markov chain on the state space S ∼=

{1, . . . , d}. As shown for example in [10] via first step analysis, the discrete committor
function q : S �→ [0, 1] with respect to two disjoint, non-empty sets A,B ⊂ S satisfies
the discrete committor equation:

⎧⎪⎨
⎪⎩

∑d
j=1(pij − δij)qj = 0 ∀ i ∈ S \ (A ∪ B),

qi = 0 ∀ i ∈ A,

qi = 1 ∀ i ∈ B,

(7.1)

where δij is the Kronecker symbol. When only a finite observation Y = {y0 =
X(t0), . . . , yN = X(tN )} of the Markov chain is available, the transition matrix of
the underlying Markov chain is not accessible and has to be estimated from the data.
Unlike to the case of Markov jump processes, the inverse modeling of a Markov chain,
i.e. reconstructing a Markov chain on the basis of a finite observation Y , is easy. It
is defined as the Markov chain which most likely explains the observed data, i.e.
which maximizes its discrete likelihood. Recall that the discrete likelihood function
of an observation Y is given by (cf. Sect. 5.2)

Ld(Y ; P ) =
N−1∏
k=0

pyk,yk+1
=

∏
i,j∈S

p
cij

ij , (7.2)

where P = (pij)i,j∈S is the transition matrix of the underlying Markov chain and
the frequency matrix C = (cij)i,j∈S provides the number of consecutively observed
transitions between states.
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7. Variance of the Committor Function

Remark 7.1.1. We want to point out that here and in the following we assume
that the prior probability over the transition matrices before observing any data is
simply a uniform distribution. In particular, that assumption implies

Ld(Y ; P ) = Ld(P ; Y ).

Henceforth, we will denote for a fixed observation Y the discrete likelihood function
in (7.2) by Ld(P ).

The maximum likelihood estimator (MLE) P̂ = (p̂ij)i,j∈S , i.e. the transition ma-
trix which maximize the discrete likelihood function (7.2) given the observation Y ,
is unique and its entries p̂ij can be expressed in terms of the frequency matrix,

p̂ij =
cij

ci
, (7.3)

where ci =
∑

k∈S cik is the total number of observed transitions leaving the state i.
Due to the finite number of observations, the transition probabilities in the MLE

P̂ are afflicted with uncertainty. The question is how do these uncertainties affect
the committor function q̂ computed via

⎧⎪⎨
⎪⎩

∑d
j=1(p̂ij − δij)q̂j = 0 ∀ i ∈ S \ (A ∪ B),

q̂i = 0 ∀ i ∈ A,

q̂i = 1 ∀ i ∈ B.

(7.4)

In other words, we are interested in the error ‖q − q̂‖ given an observation Y but,
unfortunately, that error cannot directly be measured since the ”true” committor
function q = (qi), i ∈ S is unknown and the MLE P̂ does not indicate the in-
volved uncertainties. However, following standard reasonings, the error ‖q − q̂‖ can
be estimated via the variance of the committor function given an observation Y .

7.2. Metropolis Markov Chain Monte Carlo

One way to estimate the variance of the committor is to draw an ensemble of transi-
tion matrices {P1, . . . , Pk} from the conditional probability distribution of all possible
transition matrices given the observation Y . Then the variance of the committor q̂ is
approximately given by the variance of the resulting ensemble of committor functions
{q1, . . . , qk} computed via (7.1), respectively. One option to generated such an en-
semble of transition matrices can be found in [85]. They follow a Bayesian approach
to derive a conditional probability distribution of all possible transition matrices
given the observation Y by assuming that the prior probability over the transition
matrices before observing any data is given by Dirichlet distributions. Moreover,
they derive efficient methods to sample from the resulting posterior distribution.
However, the resulting ensembles do depend explicitly on the choice of parameters
for the prior Dirichlet distributions and, therefore, the Bayesian approach is from
our point of view inappropriate for the computation of the variance of the committor
function q̂.
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7.2. Metropolis Markov Chain Monte Carlo

We follow an alternative approach via Markov Chain Monte Carlo (MCMC) sim-
ulation. For notational convenience we denote the set of all transition matrices by

P =

{
P = (pij)i,j∈S : pij ∈ [0, 1],

∑
k∈S

pik = 1 ∀i, j ∈ S

}
.

We devise an MCMC Metropolis scheme to generate an ensemble of transition ma-
trices which is distributed according to the discrete likelihood function Ld restricted
on the set P. Compared to the Bayesian approach, we do not assume any prior
distribution of transition matrices.

A MCMC Metropolis scheme works basically as follows. Suppose you want to
sample from a probability distribution which is induced by a density function f ∈
L1(Rd). Let xC ∈ R

d be the current state under consideration in the ensemble. In
the proposal step a new state xN ∈ R

d is generated. In the acceptance step the
proposed state xN is accepted with the probability

pacc = min
{

1,
f(xN ) · p(xC → xN )
f(xC) · p(xN → xC)

}
, (7.5)

where p(xC → xN ) is probability of generating the state xN conditional on the state
xC and p(xN → xC) is defined analogously. If the new state is accepted than xN
is added to the ensemble and the scheme restarts with xN as the current state.
Otherwise, the current state xC is added to the ensemble and is considered again in
the next iteration of the scheme.

Let us in the following comment on several issues concerning the MCMC sampling
procedure:

• The target density function f ∈ L1(Rd) does not have to be normalized because
only the ratio f(xN )/f(xC) is involved in the acceptance probability in (7.5).

• The sampling of a probability distribution restricted on a subset of the state
space, say R ⊂ R

d, can easily be achieved by modifying the density function
f according to

fR(x)
def
= 1R(x)f(x).

If the MCMC sampling procedure is started with xC ∈ R then the ratio in the
acceptance probability in (7.5),

fR(xN )
fR(xC)

=
1R(xN )f(xN )
1R(xC)f(xC)

= 1R(xN )
f(xN )
f(xC)

,

is well defined during the sampling procedure and the resulting ensemble is
distributed according to f restricted on R.

• In principle, one can use any strategy for the generation of a new state in
the proposal step as long as one is able to evaluate the probabilities p(xC →
xN ) and p(xN → xC). The choice of the proposal step strategy, however, is
crucial for the efficiency and the convergence of the sampling procedure. For
a discussion on these issues see, e.g., [13].
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7. Variance of the Committor Function

7.3. Ensemble of Transition Matrices via MCMC

We are interested in sampling the distribution induced by the discrete likelihood
function Ld(P ). In the following, it is convenient to represent the target density
function f(P ) = Ld(P ) as

f(P ) = e−g(P ) with g(P )
def
= − log(Ld(P )). (7.6)

7.3.1. Dynamics on the Transition Matrix Space

For the generation of a proposal state PN we exploit the fact that the non-normalized
probability density function ρ(P ) of the invariant measure associated with the SDE

dPt = −∇g(Pt)dt +
√

2 dWt (7.7)

is given by
ρ(P ) = e−g(P ) = Ld(P ),

where P ∈ R
d2

is understood as a d2-dimensional vector and Wt is a d2-dimensional
standard Wiener process. A scheme for the generation of a proposal state PN is
obtained by discretizing the SDE in (7.7) by means of the Euler-Maruyama-scheme,

PN = PC −∇g(PC)Δt +
√

2Δt η, (7.8)

where 0 < Δt ∈ R denotes the discretization time step and the random variable η
is drawn from a d2-dimensional standard Gaussian distribution with mean 0 ∈ d2

and covariance matrix I = diag(1, . . . , 1) ∈ R
d2×d2

. Unfortunately, the proposal step
equation in (7.8) does not preserve the transition matrix property, i.e. PN /∈ P,
because the Gaussian random variable η is unbounded. One option is to choose a
sufficiently small time discretization step Δt such that pij ∈ [0, 1], 0 ≤ i, j ≤ d but
in general PN is not a stochastic matrix, i.e.

∑
m∈S pim = 1.

7.3.2. MCMC on the Frequency Matrix Space

Motivation

As a preparation for an alternative approach, recall that if only an incomplete ob-
servation of a Markov chain with discrete state space S is available, the transition
matrix P̂ = (p̂ij), i, j ∈ S which most likely explains the data is given by

p̂ij =
cij∑

k∈S cik
, (7.9)

where an entry cij of the frequency matrix C = (cij), i, j ∈ S provides the number
of observed transitions from i to j. The relation in (7.9) can be written in compact
form,

P̂ = u(C),

where the function u(C) : R
d2 �→ P is defined as

u(C)
def
=

(
c11∑

m∈S c1m
, . . . ,

cdd∑d
m=1 cdm

)
∈ P.
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7.3. Ensemble of Transition Matrices via MCMC

To avoid any notational confusion with respect to the empirical frequency matrix,
we will denote in the following a general frequency matrix by K.

The crucial idea is now to generate an ensemble of frequency matrices K = {K ∈
R

d2

+ } via an MCMC procedure which is distributed according to the likelihood func-
tion Ld(u(C)). We will show that the ensemble P = {P = u(K) : K ∈ K} is
distributed according to Ld(P ).

Derivation of the MCMC Procedure on the Frequency Matrix Space

We consider a dynamics on the state space of frequency matrices,

dKt = −∇g̃(Kt)dt +
√

2β−1 dWt, (7.10)

where Kt = (kij)i,j∈S ∈ R
d2

, the factor β−1 can be seen as an artificial temperature.
The function g̃ : R

d2 �→ R is defined according to

g̃(K)
def
= g(u(K)),

where the function g is defined in (7.6). Then the probability density function ρ(K)
of the invariant distribution of (7.10) is given by

ρ(K) = e−βg̃(K) = [Ld(u(K))]β . (7.11)

The time discretization of (7.10) via the Euler-Maruyama-scheme yields an equa-
tion for the proposal step,

KN = KC −∇g̃(KC)Δt +
√

2β−1Δt η, (7.12)

where the gradient ∇g̃(K) takes the form

∇g̃(K) = (
c1

k1
− c11

k11
, . . . ,

cd

kd
− cdd

kdd
)T , (7.13)

with ki =
∑d

m=1 kim and Δt and η are as in (7.8).
It remains to derive an expression for the probability p(KC → KN ) but this

immediately follows by realizing that the difference ΔK = KN − KC is distributed
according to a d2-dimensional Gaussian distribution with mean −Δt∇g̃(KC) ∈ R

d2

and covariance matrix 2β−1ΔtI ∈ R
d2×d2

. Consequently, the probability to generate
the proposal state KN while being in the current state KC is

p(KC → KN ) = Z−1 exp
[
− 1

4β−1Δt
‖ΔK + ∇g̃(KC)Δt‖2

]
,

where Z is a normalization factor.
In order to ensure that the matrix u(KN ) is a transition matrix, i.e. u(KN ) ∈ P,

we generate an ensemble of frequency matrices restricted on the subset (cf. Sect. 7.2)

K =

{
K ∈ Rd2

+ : k−
i <

d∑
m=1

kim < k+
i

}
, (7.14)

where 0 < k−
i < k+

i , i = 1, . . . , d. The particular choice of the boundary conditions
for K will become clear in Section 7.3.3.

Combining all issues, we finally end up with the Metropolis algorithm, as stated
in Algorithm 9, to generate an ensemble of transition matrices distributed according
to the discrete likelihood function Ld(P ).
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7. Variance of the Committor Function

Algorithm 9 Metropolis algorithm
Input: Frequency matrix C = (cij)i,j∈S , number of MCMC steps nMCMC, time

step Δt, temperature β−1.
Output: Ensemble P of transition matrices.

(1) Initialize KC := C.
(2) FOR n = 1 TO nMCMC DO
(3) Generate proposal frequency vector KN = (kij):

KN = KC − ( c1
k1

− c11
k11

, . . . , cd
kd

− cdd
kdd

)T +
√

2Δt η.
(4) Accept KN with acceptance probability (ΔK = KN − KC):

pacc = min

{
1,1K(KN )

Ld(u(KN )) exp
[
− 1

4β−1Δt
‖ΔK+∇g̃(KC)Δt‖2

]
Ld(u(KC)) exp

[
− 1

4β−1Δt
‖−ΔK+∇g̃(KN )Δt‖2

]
}

.

(5) If KN is accepted THEN set KC := KN .
(6) Add u(KC) to the transition matrix ensemble P.
(7) END FOR

7.3.3. Proof of Correctness

It remains to prove that resulting ensemble of transition P = {u(K)} is indeed
distributed according to Ld(P ).

Theorem 7.3.1. Let K = {K ∈ K} be an ensemble of frequency matrices distributed
according to Ld(u(K)). Then the ensemble P = {u(K) : K ∈ K} is distributed
according to Ld(P ).

Proof. We prove that for all P ∈ P holds

P[u(K) = P ] ∝ Ld(P ).

Without loss of generality, we restrict ourselves to the first row vector K(1) =
(k11, . . . , k1d) of a frequency matrix K ∈ K. For the sake of notational simplicity we
write in the following

u(k11, . . . , k1d) = (
k11∑d

m=1 k1m

, . . . ,
k1d∑d

m=1 k1m

),

Ld(p11, . . . , p1d) =
d∏

j=1

(p1j)c1j .

Let P(1) = {p = (p11, . . . , p1d) : p ∈ R
d
+,

∑d
j=1 p1j = 1}. Since P(1) ⊂ R

d is an
(d-1)-dimensional manifold we represent an element p ∈ P(1) by

p = (p11, . . . , p1(d−1), 1 −
d−1∑
j=1

p1j).

Furthermore, we will denote in the following by Π(p), p ∈ P(1) the projection onto
the first (d-1) components of p, i.e,

Π(p) = (p11, . . . , p1(d−1)).
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7.3. Ensemble of Transition Matrices via MCMC

The crucial observation now is that due to the particular choice of the set K in
(7.14) we have

{K(1) : u(K(1)) = (p11, . . . , p1d)} = {(αp11, . . . , αp1d) : k−
1 < α < k+

1 }, (7.15)

which motivates to consider the new observable K̃(1) = T̃ (K(1)),

T̃ : R
d
+ → R+ × Π(P(1))

T̃ (k11, . . . , kdd) �→ (α, p11, . . . , p1(d−1)),

α =
d∑

m=1

k1m, p1j =
k1j∑d

m=1 k1m

, j = 1, . . . , d − 1.

(7.16)

If we denote the probability density function associated with the new observable
K̃(1) by L̃ then it should be clear that

P[u(K(1)) = (p11, . . . , p1d)] ∝
∫ k+

1

k−
1

L̃(α, p11, . . . , p1(d−1))dα.

In Lemma 7.3.1 we show that L̃ is simply given by

L̃(α, p11, . . . , p1(d−1)) = Ld(p11, . . . , p1d)α(d−1),

where p1d = (1 − ∑d−1
j=1 p1j). But this immediately implies

P[u(K(1)) = (p11, . . . , p1d)] ∝ Ld(p11, . . . , p1d).

and we are done.

It remains to prove

Lemma 7.3.1.

L̃(α, p11, . . . , p1(d−1)) = Ld(p11, . . . , 1 −
d−1∑
j=1

p1j)α(d−1)

Proof. The probability density function L̃(K̃(1)) associated with K̃(1) = (α, p11, . . . , p1(d−1))
is given by [58]

L̃(K̃(1)) = Ld(u(T̃−1(K̃(1))))
∣∣∣det(J(T̃−1)(K̃(1)))

∣∣∣ , (7.17)

where

T̃−1 : R+ × Π(P(1)) → R
d
+

T̃−1(α, p11, . . . , p1(d−1)) �→ (αp11, . . . , αp1(d−1), α(1 −
d−1∑
j=1

p1j)).
(7.18)

The first factor in (7.17) reduces to

Ld(u(T̃−1(K̃(1)))) = Ld(u(αp11, . . . , αp1(d−1), α(1 −
d−1∑
j=1

p1j)))

= Ld(p11, . . . , p1d),
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7. Variance of the Committor Function

where p1d = (1 − ∑d−1
j=1 p1j).

Finally, we compute the determinant in (7.17):

det J(T̃−1) =

∣∣∣∣∣∣∣∣∣∣∣

p11 α 0 0 . . .
p12 0 α 0 . . .
...

...
. . . . . .

...
p1(d−1) 0 . . . . . . α

1 − ∑d−1
j=1 p1j −α . . . . . . −α

∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣

p11 α 0 0 . . .
p12 0 α 0 . . .
...

...
. . . . . .

...
p1(d−1) 0 . . . . . . α

1 0 . . . . . . 0

∣∣∣∣∣∣∣∣∣∣∣

=(−1)(d−1)

∣∣∣∣∣∣∣∣∣∣∣

1 0 . . . . . . 0
p11 α 0 0 . . .
p12 0 α 0 . . .
...

...
. . . . . .

...
p1(d−1) 0 . . . 0 α

∣∣∣∣∣∣∣∣∣∣∣
= (−1)(d−1)α(d−1).

7.4. Numerical Experiments

7.4.1. Dirichlet Distribution

In the first example we use the derived MCMC method to sample from a two-
dimensional (non-normalized) Dirichlet-distribution

L(p1, p2) = (p1)c1 · (p2)c2 · (1 − p1 − p2)c3 (7.19)

on the state space D = {p1 +p2 +p3 = 1 : p1, p2, p3 ≥ 0} with parameters c1, c2, c3 >
0. For our numerical experiments we chose two different sets of parameters, namely
C1 = (c1 = 3, c2 = 8, c3 = 10) and C2 = (c1 = 43, c2 = 8, c3 = 15). We sampled
both distribution at the ”temperature” β−1 = 10 via Algorithm 9 and generated an
ensemble consisting of 106 transition matrices, respectively. As boundary conditions
for the restriction K in (7.14) we chose k−

1 = (
∑3

j=1 cj)− 5 and k+
1 = (

∑3
j=1 cj) + 5.

For the simulation with respect to the parameter set C1 we had for the time step
Δt = 10−3 an acceptance rate of 93% and with respect to C2 for Δt = 10−2 an
acceptance rate of 96%.

In Figure 7.1 we compare the distribution of the ensemble from the simulation
with respect to the parameter set C1 (top right panel) with the corresponding an-
alytical distribution (top left panel). For the sake of comparison, we normalized all
distributions such that their respective maximal value is one. The distributions re-
sulting for the parameter set C2 are given in the second row of Figure 7.1. One can
see both distributions are well sampled.

Let us comment on the choice of the simulation parameters. The simulation’s
temperature β−1 = 5 ensures that even states with a very low statistical weight
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Figure 7.1.: We compare the distributions of the Dirichlet distribution in (7.19) (first
column) with the distributions of the ensembles generated via Algo-
rithm 9 (second column) with respect to the parameter set C1 = (c1 =
3, c2 = 8, c3 = 10) (first row) and C2 = (c1 = 43, c2 = 8, c3 = 15) (sec-
ond row). For example, the analytical distribution with respect to C1

attains its maximum at ( c1
c1+c2+c3 , c2

c1+c2+c3) ≈ (0.14, 0, 38).

with respect to the target distribution Ld(u(K)) are sufficiently often proposed such
that the variance is right reproduced. For realistic values of the parameters (ci >
100), however, our extensive numerical experiments have shown that the Dirichlet
distribution in (7.19) is already well sampled at a low temperature β−1 = 1.

7.4.2. Small Example

In this section we demonstrate the performance of the derived Algorithm 9 on a
Markov chain with a small state space S ∼= {1, . . . , 25}. This example is constructed
such that it allows to relate the element-wise variances of the resulting ensemble of
committor functions to an underlying discretized potential landscape.

As exemplified in the Section 4.3.1, a Smoluchowski diffusion process in a potential
landscape can be approximated by a Markov jump process where the infinitesimal
generator L of the approximating Markov jump process results from a finite differ-
ences discretization scheme of the generator, associated with the diffusion process
(cf. Sect. A.3). Doing so, a transition matrix can easily be obtained because the
generator L generates a semigroup of transition matrices via P (t) = exp(tL). For a
particular choice of t > 0 we will call P (t) = exp(tL) transition matrix.

For our numerical experiments, we utilized the generator given in (4.44) which
results from an approximation of the Smoluchowski dynamics in the three-hole po-
tential landscape. We approximated the diffusion (at temperature β−1 = 1) on a
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Figure 7.2.: Left: Contour plot of the three-hole potential (3.45). Right: Box plot of
the stationary distribution associated with the 25-state Markov chain
P = exp(1.2L).
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Figure 7.3.: Box plot of the committor function associated with the transition ma-
trix P = exp(1.2L). As the sets A and B, we chose the two states with
the highest stationary distribution. The set A consists of the state cor-
responding to the left white box and the set B consists of the state
corresponding to the right white box.

5 × 5 mesh of the domain Ω = [−1.5, 1.5] × [−1, 1.5] which results in a generator
L ∈ R

25×25 on a discrete state space of 25 states.
The potential landscape of the three-hole potential in (3.45) is illustrated as a

contour plot in the left panel of Figure 7.2. In the right panel, we show a box plot of
the stationary distribution of the transition matrix P (1.2) = exp(1.2 · L) ∈ R

25×25.
Although we used an extremely coarse-grained mesh (5×5), one can clearly see that
the equilibrated dynamics of the Markov chain reflects the topology of the potential
landscape, e.g., the two states in the Markov chain with highest stationary proba-
bility correspond to the two deep minima in the potential landscape, respectively.
The discrete committor function with respect to P (1.2) is illustrated in Figure 7.3.
As the set A and B we chose the two states with the highest stationary distribu-
tion (depicted by white boxes). The main question we were interested in is of how
the element-wise variances of a committor ensemble do depend on the length N
of the observed time series of the Markov chain. For this purpose, we generated
via Algorithm 9 a sequence of committor function ensembles {q(N)

1 , . . . , q
(N)
6 } for

time series of length N = 103, . . . , N = 108 where the respective time series were
all subsampled from a fixed realization of the Markov chain. For each ensemble we
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7.4. Numerical Experiments

N 103 104 105 106 107 108

κ 13.34 14.03 12.27 11.97 11.91 11.94

Table 7.1.: The condition number κ of the matrix P̂ (N) − I after elimination of the
condition qi = 0,∀i ∈ A, qi = 1,∀i ∈ B which arises from solving of the
discrete committor equation (7.4). The table gives the condition number
κ as a function of the length N of the considered time series. Results for
time series all subsampled from the same realization.

sampled m = 500000 committor functions where we used the discretization time
step Δt = 10−3 in the proposal step equation (7.12). As boundary conditions for the
restriction K in (7.14) we chose k−

i = ci − 15 and k+
i = ci + 15 where ci =

∑d
j=1 cij .

In all simulations we had an acceptance rate of about > 93%.
In the following P̂ (N) denotes the MLE transition matrix resulting from the time

series of length N and q̂(N) is the associated committor function. The mean com-
mittor function of an ensemble {q(N)

1 , . . . , q
(N)
6 } is denoted by q̄(N) and the variance

by var(q̄(N)). In Figure 7.4 we illustrate the committor function q̂(N) (first column),
mean committor function q̄(N) (second column) and its variance var(q̄(N)) (third col-
umn) for all ensembles, respectively. At first glance, one can see that the committor
functions q̂(N) are almost identical with the corresponding mean committor function
q̄(N) of the ensemble, except for the length N = 103. Beside the observation that the
variance of the ensembles decreases by the same order of magnitude as the length
N increases, the box plots in third column reveal that the states with the lowest
stationary distribution exhibit the highest variance in the committor function. The
observations are confirmed by the graphs shown in Figure 7.5. In the left panel, we
plot the maximal variance ‖var(q̄(N))‖∞ of the mean committor functions q̄(N) as a
function of the length N of the respective time series whereas in the right panel the
error ‖q̄(N)− q̂(N)‖ (measured in the 2-norm) between the mean committor function
q̄(N) and the committor function q̂(N) is shown as a function of the length N of the
respective time series.

Our numerical experiments have shown that the committor function q̂(N) even for
short time series (N = 103) almost coincides with the expected committor function
with respect to the discrete likelihood function Ld.
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Figure 7.4.: Left column: Box plots of the committor functions q̂(N) resulting from
the MLE transition matrix P̂ (N) (7.3), respectively. Middle column: Box
plots of the mean committor functions q̄(N) of the committor function
ensembles {q(N)

1 , . . . , q
(N)
5 }, respectively. Right column: Box plots of the

variances var(q̄(N)) of the mean committor functions, respectively. Re-
sults for different lengths N = 103 (top), . . . , N = 107 (bottom) of
respective time series all subsampled from the same realization.
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Figure 7.5.: Left: The maximal variance ‖var(q̄(N))‖∞ of the mean committor func-
tions q̄(N) as a function of the length N of the respective time se-
ries. Right: The error ‖q̄(N) − q̂(N)‖ (measured in the 2-norm) between
the mean committor function and the committor function resulting from
the MLE transition matrix P̂ (N) in (7.3) as a function of the length N
of the respective time series. Results for time series all subsampled from
the same realization.

7.4.3. Glycine

In the last example we apply the MCMC methods in order to estimate the uncer-
tainties of the forward committor function q+ in the glycine in solvent example from
Section 4.3.2. We are aware that in the glycine-example the forward committor func-
tion q+ is computed via an (estimated) generator L of a Markov jump process and
not via the transition matrix of a Markov chain. Nevertheless, the MCMC method
allows to get an idea of the uncertainties because q+ is almost identical with the
discrete committor function q̂+ based on the MLE P̂ and computed via (7.4). Both
committor functions are illustrated in the panels of Figure 7.6.

For the estimation of the variance of the committor function q̂+ we generated an
ensemble of 7 · 106 transition matrices (Δt = 10−5) and computed the element-wise
variances of the resulting ensemble of committor functions. The boundary conditions
for the restriction K were the same as in the previous example. To be more precise,
instead of generating a full transition (counts) matrix in each step of the simulation,
we used the structure of the MLE P̂ as a template, i.e., we only generated entries kij

if cij > 0. In each iteration step of the Algorithm 9 we solved the discrete committor
equation in (7.4) with respect to the current transition matrix. Finally, a clever
update-scheme allowed us to compute the element-wise variances of the committor
function ensemble {q+

MCMC} on the fly (see the end of this section).
The final variances are illustrated in the left panel of Figure 7.7 where the boxes are

colored according to the log-values of the respective variances in order to emphasize
the different orders of magnitudes. Again, the comparison of the variances element
by element with the Gibbs energy of the Markov chain P̂ reveals what intuitively
should be clear; the states with high variance correspond to those with very high
discrete free energy which is equivalent to a very small stationary distribution. In
Figure 7.8 we show the maximal variance ‖var({q+

MCMC})‖∞ as a function of the
MCMC-steps.

We end this section by deriving the update-scheme for the ”on the fly” com-
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Figure 7.6.: Right: The panel shows the forward committor q+ based on an esti-
mated generator L̃ (cf. Sect. 4.3.2) and computed via (4.11). Left: The
corresponding box plot of the discrete committor q̂+ based on the MLE
P̂ and computed via (7.4). As the set A we chose the box (shown as a
white box with black boundary) which covers the peak of the restricted
stationary distribution on the lower right conformation. The set B for
the upper left conformation (shown as a white box) was chosen anal-
ogously. Results for an equidistant discretization of the torsion angle
space into 20 × 20 boxes.

putation of the variances. We derive the scheme for a one-dimensional time series
(x1, . . . , xN ), xi ∈ R. A short calculation shows that the estimator of the variance of
the time series reduces to

1
N + 1

N∑
i=1

⎛
⎝xi −

N∑
j=1

xj

⎞
⎠

2

=
1

N + 1

(
s1(N) − 1

N
s2
2(N)

)
, (7.20)

where s1(N) =
∑N

j=1 x2
j and s2(N) =

∑N
j=1 xj . But this means if one is interested

in the in the variance of the time series (x1, . . . , xN , xN+1) then only the sums s1

and s2 have to be updated and the right hand side in (7.20) yields the desired result
with respect to N ′ = N + 1.
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Figure 7.7.: The left panel illustrates the element-wise variances of the committor
functions ensemble {q+

MCMC}. In order to emphasize the variances’ mag-
nitudes of order, we chose a logarithmical scale. The comparison of the
variances with the discrete free energy of the MLE Markov chain P̂ , as
shown in the right panel, again reveals that the states with the highest
variances correspond to those with the lowest statistical weights.
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Figure 7.8.: The maximal variance ‖var({q+
MCMC})‖∞ as the function of the MCMC

steps.
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