
5. Generator Estimation of Markov Jump
Processes

We have seen that discrete TPT is a powerful tool for the investigation of the
ensemble of reaction trajectories of Markov jump processes. The central object of
discrete TPT is the committor function which satisfies a system of linear equation
involving the infinitesimal generator of the process. In applications, however, the
generator is not given but only an incomplete observation of the process is available.
This chapter is devoted to the problem of finding a generator of a Markov jump
process based on an incomplete observation of the process. The results of this chapter
are published in [63, 64].

We will focus on two methods for the estimation of a generator. The maximum
likelihood method (MLE-method) introduced by Asmussen 1996 in [5] and rein-
vented by Bladt and Sørensen 2005 in [9] finds a generator via an EM-algorithm
which maximizes the likelihood of the given incomplete observation. Furthermore,
we will discuss a significant algorithmic improvement of the MLE-method, we call
it enhanced MLE-method, which was independently derived by Holmes and Rubin
2002 in [49]. Moreover, we introduce an adaption of the enhanced MLE-method to
the case of reversible Markov jump processes. The quadratic programming approach
introduced by Crommelin and Vanden-Eijnden in [19], determines a generator via
the approximation of the eigenstructure of the empirical transition matrix.

After a comparison of both methods via their numerical performance on small
test examples, we will apply the enhanced MLE-method to data from a molecular
dynamics simulation of glycine in water. The resulting estimated generator is the
basis for the investigation of the conformational dynamics of glycine via discrete
TPT (cf. Chap. 4). Finally, we will demonstrate the performance of the enhanced
MLE-method on an example with non-constant observation time steps.

5.1. The Embedding Problem

Let {X(t), t ≥ 0} be a Markov jump process on a finite state space S ∼= {1, . . . , d}
and let L ∈ R

d×d be its generator. Then the time-dependent transition matrix P (t)
of the process can be expressed as the matrix exponential (cf. Sect. 2.2)

P (t) = exp(tL) =
∞∑

k=0

tk

k!
Lk.

In the following, the set of all generators with respect to a fixed dimension d will be
denoted by

G =

⎧⎨
⎩L = (lij)i,j ∈ R

d×d : lij ≥ 0 for all i �= j, lii = −
∑
j �=i

lij

⎫⎬
⎭ . (5.1)
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5. Generator Estimation of Markov Jump Processes

Now suppose that a process is only partially observed, i.e. the process is only
given by a finite sampling Y = {y0 = X(t0), . . . , yN = X(tN )} at discrete times
t0 < t1 < . . . < tN . In this chapter we consider the problem of how to determine the
generator if only an incomplete observation Y is available.

Several difficulties must be taken into account. First, from a finite number of
samples it is impossible to tell if the underlying process is actually Markovian.
Second, it is not clear if the observed data originates indeed from discrete samples
of a continuous-time Markov chain with some generator L, or rather from a discrete-
time Markov chain which cannot be embedded into a time-continuous counterpart.
In the latter case, a generator does not exist because the transition matrix of the
discrete chain does not belong to the set

P =
{

P ∈ R
d×d : there is a L ∈ G such that P = exp(L)

}
.

It is well-known that P is a subset of all stochastic matrices, but the so-called
embedding problem, i.e. the question what characterizes the elements of P, is widely
open for d > 3 (cf. [9, 19] and references therein). A third difficulty is the fact that
the matrix exponential function is not injective if the eigenvalues of the generator are
complex. Hence, some matrices P ∈ P can be represented as P = exp(L) = exp(L̄)
with two different generators L �= L̄. And finally, the question whether the time
points tn of the observations are equidistant plays an important role. In case of
a constant time lag τ = tn+1 − tn an estimate of the transition matrix P (τ) is
available by counting the number of transitions between each pair of states, but in
case of variable time lags the sampled data is typically not sufficient for reasonable
approximations of the transition matrix.

Due to these problems the above question has to be modified: how can we find the
generator that “agrees best” with a finite observation Y = {y0 = X(t0), . . . , yN =
X(tN )} of a process?

5.2. The Maximum Likelihood Method

In this section we explain in detail the maximum likelihood method introduced in [5]
and elaborated further in [9]. Furthermore, we present in detail the enhanced MLE-
methods which is based on results in [49]. The idea behind the MLE-method is to
find a generator L̃ such that it maximizes the discrete likelihood of the given time
series.

5.2.1. Continuous and Discrete Likelihood Functions

The basis objects in the MLE-method is the continuous and discrete likelihood func-
tion. Suppose that the Markov jump process X(t) has been observed continuously in
a certain time interval [0, T ]. Let the random variable Ri(T ) be the time the process
spent in state i before time T

Ri(T ) =
∫ T

0
1{i}X(s)ds

and denote by Nij(T ) the number of transitions from state i to state j in the time
interval [0, T ]. The continuous time likelihood function Lc of an observed trajectory
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{Xt : 0 ≤ t ≤ T} is given by [9]

Lc(L) =
d∏

i=1

∏
j �=i

l
Nij(T )
ij exp(−lijRi(T )), L = (lij). (5.2)

By definition, the maximum likelihood estimator (MLE) L̃ maximizes the likelihood
function (5.2). Exploiting the monotonicity of the log-function, L̃ is also the maxi-
mizer of

logLc(L) =
d∑

i=1

∑
j �=i

[Nij(T ) log(lij) − lijRi(T )] , (5.3)

i.e. L̃ is the null of the partial derivatives of logLc(L) with respect to lij and the
Hessian matrix of logLc(L) evaluated at L̃ is negative definite. A short calculation
shows

∂ logLc(L̃)
∂lij

= 0 ⇐⇒ l̃ij =
Nij(T )
Ri(T )

(5.4)

and

∂ logLc(L̃)
∂lij∂lkl

= −Nij(T )
l̃2ij

1{k}(i)1{l}(j) ≤ 0.

In the case where the process has only been observed at discrete time points 0 =
t0 < t1 < . . . < tN = T the discrete likelihood function Ld of a time series Y = {y0 =
X(t0), . . . , yN = X(tN )} is given in terms of the transition matrix P (t) = exp(tL),

Ld(L) =
N−1∏
k=0

pyk,yk+1
(Δtk) =

r∏
s=1

∏
i,j∈S

[pij(τs)]
cij(τs) , (5.5)

where pyk,yk+1
(Δtk) is the probability that the process makes a transition from state

yk to the state yk+1 in time Δtk, τs ∈ {τ1, . . . , τr} = ∪N−1
k=1 {Δtk} is an observed time

lag and the entry cij(τs) in the frequency matrix C(τs) = (cij(τs)), i, j ∈ S, defined
according to

cij(τs)
def
=

N−1∑
n=1

1{i}(X(tn))1{j}(X(tn+1))1{τs}(Δtn), (5.6)

provides the number of consecutively observed transitions in Y from state i to state
j in time τs.

Unfortunately, even in the simplified case of a constant time lag, i.e. τ = const,
the derivative of the discrete log-likelihood function,

logLd(L) =
N−1∑
k=0

log pyk,yk+1
(τ) =

∑
i,j∈S

[log pij(τ)]cij(τ) , (5.7)

with respect to the entries of L, that is

∂
∂L logLd(L) =

∑∞
n=1

∑n
k=1

τn

n! (L
T )k−1Z(LT )n−k,

with Z = (zij)i,j∈S , zij = cij/ exp (τL)ij ,
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5. Generator Estimation of Markov Jump Processes

has such a complicated form that the null cannot be found analytically. Hence no
analytical expression for the MLE with respect to L is available. The derivative of
logLd with respect to the transition matrix P (τ) can analytical be obtained and the
maximizer is simply given by

P̂ = (p̂ij)i,j with entries p̂ij =
cij(tau)∑d

j=1 cij(tau)
, (5.8)

where cij = cij(τ). Notice that reversibility of the transition matrix P̂ can easily be
achieved by considering the symmetric frequency matrix CREV (τ) = (cREV

ij ) with
entries given by

cREV
ij (τ) = cij(τ) + cji(τ).

Then the transition matrix which results via 5.8 on the basis of CREV (τ) is reversible
with respect to the probability distribution

π = Z−1

(
d∑

k=1

cREV
1k (τ), . . . ,

d∑
k=1

cREV
dk (τ)

)
,

where Z =
∑d

i,j=1 cREV
ij is the normalization constant.

In the following neither we assume a constant observation time lag nor we assume
reversibility.

5.2.2. Likelihood Approach Revisited

In the likelihood approach, introduced by Bladt and Sørensen in [9], a generator L̃
for a given time series is determined such that L̃ maximizes the discrete likelihood
function (5.5) for the time series. As pointed out in the previous section the discrete
likelihood function Ld does not permit an analytical maximum likelihood estimator.
On the other hand, the MLE (5.4) for a continuous time observation can be ob-
tained analytically but for an incomplete observation the information between two
consecutive observations is hidden and, hence, the observables Ri(T ) and Nij(T ) are
unknown.

Nevertheless, the discrete likelihood Ld can iteratively be maximized by means of
an Expectation-Maximization algorithm (EM-algorithm). The idea is to approximate
the hidden (not observed) information between the incomplete observations in Y by
the expected (averaged) information conditional on the data and on a given guess
of the hidden process. This step is called expectation step (E-Step) and formally
consists of the computation of the conditional log-likelihood function

G : L 
→ EL̃0
[logLc(L)|Y ] , (5.9)

where L ∈ G and for reasons of algebraical simplicity and without loss of generality
the log-likelihood function logLc is considered. The crucial observation is now that
the maximizer (M-step),

L̃1 = argmax
L∈G

G(L; L̃0)

, of the conditional log-likelihood function G(L; L̃0) satisfies [23]

Ld(L̃1) ≥ Ld(L̃0).
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5.2. The Maximum Likelihood Method

Hence, taking the maximizer as a new guess of the hidden process, the iteration of
the two described steps allows to approximate a (local) maximum of the discrete
likelihood function Ld. The resulting algorithm is stated in Algorithm 3.

Algorithm 3 General EM-algorithm
Input: Time series Y = {y0 = X(t0), . . . , yN = X(tN )}, initial guess of generator

L̃0.
Output: MLE L̃.

(1) Expectation step (E-step):
Compute the function L 
→ G(L; L̃k).

(2) Maximization step (M-Step):
L̃k+1 = argmaxL∈GG(L; L̃k)

(3) Go to Step (1), unless a certain convergence criterion is satisfied.

For our particular likelihood function in (5.2) the conditional log-likelihood func-
tion G in the E-Step reduces to

G(L; L̃0) =
d∑

i=1

∑
j �=i

[
log (lij)EL̃0

[Nij(T )|Y ] − lijEL̃0
[Ri(T )|Y ]

]
(5.10)

and the maximizer L̃ = (l̃ij), i, j ∈ S of (5.10) takes the form (cf. (5.4))

l̃ij =

⎧⎪⎨
⎪⎩

EL̃0
[Nij(T )|Y ]

EL̃0
[Ri(T )|Y ]

, i �= j

−∑
k �=i l̃ik, otherwise.

(5.11)

The non-trivial task which remains is to evaluate the conditional expectations
EL̃0

[Nij(T )|Y ] and EL̃0
[Ri(T )|Y ], respectively. The first step towards their com-

putation is the observation that by the Markov property and the homogeneity of
the Markov jump process the conditional expectations in (5.10) can be expressed as
sums [9]

EL̃0
[Ri(T )|Y ] =

r∑
s=1

d∑
k,l=1

ckl(τs)EL̃0
[Ri(τs)|X(τs) = l, X(0) = k] ,

EL̃0
[Nij(T )|Y ] =

r∑
s=1

d∑
k,l=1

ckl(τs)EL̃0
[Nij(τs)|X(τs) = l, X(0) = k] .

(5.12)

Next, the conditional expectations in the right hand sides in (5.12) can be decom-
posed further by using the identities

EL [Ri(t)|X(t) = l,X(0) = k] =
EL

[
Ri(t)1{l}(X(t))|X(0) = k

]
pkl(t)

,

EL [Nij(t)|X(t) = l,X(0) = k] =
EL

[
Nij(t)1{l}(X(t))|X(0) = k

]
pkl(t)

.

(5.13)

Finally, the authors in [5, 9] realized that the auxiliary functions defined by

M i
kl(t)

def
= EL

[
Ri(t)1{l}(X(t))|X(0) = k

]
,

F ij
kl (t)

def
= EL

[
Nij(t)1{l}(X(t))|X(0) = k

] (5.14)
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satisfy systems of ordinary differential equations. For example, let i, j ∈ S be fixed.
Then the vectors M i

k(t) = (M i
k1(t), . . . , M

i
kd(t)) and F ij

k (t) = (F ij
k1(t), . . . , F

ij
kd(t))

satisfy the two systems of ODEs

d
dt

M i
k(t) = M i

k(t)L + Ai
k(t), M i

k(0) = 0

with Ai
k(t) = pki(t)ei,

d
dt

F ij
k (t) = F ij

k (t)L + Aij
k (t), F ij

k (0) = 0

with Aij
k (t) = lijpki(t)ej ,

(5.15)

where ei and ej are the ith and jth unit vectors. To summarize, the computation of the
function G(L; L̃) in the E-step reduces to solving the systems of ODEs given in (5.15).
Solving these ODEs numerically, however, causes prohibitive computational costs
when the number of states of the system is large. Another option is to approximate
the matrix-exponentials which are involved in the analytic solutions of (5.15)

M i
k(t) =

∫ t

0
Ai

k(s) exp((t − s)L)ds,

F ij
k (t) =

∫ t

0
Aij

k (s) exp((t − s)L)ds

(5.16)

via the so-called uniformization method [67]. Choose α = maxi=1,...,d{−lii}, and
define B = I + α−1L. Then, e.g., M i(t) = (M i

kl(t))k,l∈S is given by

M i(t) = exp(−αt)α−1
∞∑

n=0

(αt)n+1

(n + 1)!

n∑
j=0

Bj(eie
T
i )Bn−j .

with eT
i denoting the transpose of the unit vector ei. However this expansion is fairly

time consuming and for high dimensional matrices intractable. Moreover the infinite
sum has to be cut off at a finite n which entails inaccuracies.

We will choose an alternative way to compute the left hand sides in (5.13) which
avoids the treatment of the ODEs. We will explain the approach in detail in the
next subsection. In Algorithm 4, we state the resulting EM-algorithm due to [9].

5.2.3. Enhanced Computation of the Maximum Likelihood Estimator

In [48], the authors showed that the conditional expectations EL [Nij(t)|X(t) = l, X(0) = k]
and EL [Ri(t)|X(t) = l, X(0) = k] can analytically be expressed in terms of the gen-
erator L. Recalling the notation of the transition matrix P (s) = exp(sL), they
proved the identities

EL [Ri(t)|X(t) = l, X(0) = k] =
1

pkl(t)

∫ t

0
pki(s)pil(t − s)ds,

EL [Nij(t)|X(t) = l, X(0) = k] =
lij

pkl(t)

∫ t

0
pki(s)pjl(t − s)ds.

(5.17)

The crucial observation is now that an eigendecomposition of the generator L leads
to closed form expressions of the integrals in (5.17). To be more precise, consider
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Algorithm 4 MLE-method (Bladt,Sørensen,[5, 9])
Input: Time series Y = {y0 = X(t0), . . . , yN = X(tN )}, initial guess of generator

L̃0.
Output: MLE L̃.

(1) E-step: FOR ALL τs ∈ {τ1, . . . , τr} DO
i) Compute for i, j, l, k = 1, . . . , d the conditional expectations

EL̃k
[Ri(τs)|X(τs) = l, X(0) = k],

EL̃k
[Nij(τs)|X(τs) = l, X(0) = k] , i �= j via (5.15),(5.13).

END FOR
ii) Compute EL̃k

[Ri(T )|Y ] and EL̃k
[Nij(T )|Y ] via (5.12).

(2) M-Step: Setup the next guess L̃k+1 of the generator by

l̃ij =

{
EL̃k

[Nij(T )|Y ] /EL̃k
[Ri(T )|Y ], i �= j

−∑
k �=i l̃ik, otherwise.

(3) Go to Step (1), unless a certain convergence criterion is satisfied.

the eigendecomposition of a generator L, that is

L = UDλU−1, (5.18)

where the columns of the matrix U consist of all eigenvectors to the corresponding
eigenvalues of L in the diagonal matrix Dλ = diag(λ1, . . . , λd). Consequently, the
expression of the transition matrix P (t) simplifies to

P (t) = exp(tL) = U exp(tDλ)U−1

and we finally end up with a closed form expression of the integrals in (5.17), that
is [49]

∫ t

0
pab(s)pcd(t − s)ds =

d∑
p=1

uapu
−1
pb

d∑
q=1

ucqu
−1
qd Ψpq(t), (5.19)

where the symmetric matrix Ψ(t) = (Ψpq(t))p,q∈S is defined as

Ψpq(t) =

{
tetλp if λp = λq

etλp−etλq

λp−λq
if λp �= λq.

(5.20)

Remark 5.2.1. We are aware of the fact that in general an eigenvalue decomposi-
tion does not have to exist. For example, consider the matrix

L =

⎛
⎝ −4 2 2

1 −4 3
1 1 −2

⎞
⎠ ∈ G.

The characteristic polynomial of L is −x(x + 5)2, hence −5 is an eigenvalue with
multiplicity two but the dimension of the corresponding eigenspace is one. However,
in all of our numerical experiments this non-decomposable case did not show up.
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For the convenience of the reader we state the resulting enhanced MLE-method
in Algorithm 5. In a single iteration step for each single observation time lag, d2

conditional expectations have to be computed where each one is decomposed into d2

conditional expectations. Hence, the computational cost of a single iteration step in
Algorithm 4 and in Algorithm 5 is O(r ·d4 ·TE) where r is the number of the different
observed time lags and TE denotes the computational cost to compute a single condi-
tional expectation in the E-Step. The numerical considerations in [9] lead to a total
computational cost per iteration in Algorithm 4 of at least O(r ·d6). According to the
closed form expressions for the expectations (5.19), the computational cost of a single
iteration in the enhanced MLE-method (Algorithm 5) is O(r · d5) which is achieved
by a simultaneously computation of the unknowns via matrix multiplication. For
example, define for a fixed i ∈ S the matrix M i

kl = EL [Ri(τ)|X(τ) = l, X(0) = k].
Let U−1

i denote the ith row of the matrix U−1 and Ui the ith column of U . Then M i

can be computed by
M i = U

[
(U−1

i Ui) ∗ Ψ
]
U−1,

where A ∗ B is the Hadamard (entrywise) product of two matrices A and B. We
want to emphasize that the algorithm works in principal even in the case of pairwise
different time lags, i.e. r = N − 1 where N is the number of observations, but in
practise this would lead to unacceptable computational costs.

Algorithm 5 Enhanced MLE-method
Input: Time series Y = {y0 = X(t0), . . . , yN = X(tN )}, the set of observed time

lags {τ1, . . . , τr}, the tolerance TOL, initial guess of generator L̃0.
Output: MLE L̃.

(1) Compute eigendecomposition (5.18) of L̃k.
(2) E-step: FOR ALL τs ∈ {τ1, . . . , τr} DO

i) Compute the auxiliary matrix Ψ(τs) (5.20).
ii) Compute for i, j, l, k = 1, . . . , d the conditional expectations

EL̃k
[Ri(τs)|X(τs) = l, X(0) = k],

EL̃k
[Nij(τs)|X(τs) = l,X(0) = k] , i �= j via (5.19),(5.17).

END FOR
iii) Compute EL̃k

[Ri(T )|Y ] and EL̃k
[Nij(T )|Y ] via (5.12).

(3) M-Step: Setup the next guess L̃k+1 of the generator by

l̃ij =

{
EL̃k

[Nij(T )|Y ] /EL̃k
[Ri(T )|Y ], i �= j

−∑
k �=i l̃ik, otherwise.

(4) Go to Step (1) unless ‖L̃k+1 − L̃k‖ < TOL.

5.2.4. Reversible Case

In the reversible case the homogeneous Markov jump process, given by its genera-
tor L, admits a unique stationary distribution π = (πi)i∈S and, moreover, detailed
balance holds:

lji =
πi

πj
lij .

This has two important consequences for the EM-algorithm. The first one is that
detailed balance guarantees a special representation of L which improves the stability
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and accuracy of the EM-algorithm. Furthermore, one has to take into account that
the M-step in general does not preserve the reversibility. To understand the first
issue, notice that L can be written as

L = D−1/2
π SD1/2

π (5.21)

with a symmetric matrix S which can be decomposed as

S = V DλV T ,

where λ1, . . . , λd ∈ R are the eigenvalues of S and V is an orthogonal matrix, i.e.
V V T = I. Combining things, we end up with [48]

P (t) = D−1/2
π V exp(Dλ)V T D1/2

π ,

where D
1/2
π = diag(

√
π1, . . . ,

√
πd). Consequently, the integrals in (5.17) reduce to∫ t

0
pab(s)pcd(t − s)ds =

(
πbπd

πaπc

)1/2 d∑
p=1

vapvbp

d∑
q=1

vcqvdqΨpq(t), (5.22)

where Ψ is defined in (5.20).
Next, we turn our attention to the problem of the non-preservation of the re-

versibility in the M-Step. The first idea could be to exploit the fact that detailed
balance implies the bisection of the unknowns because lji is determined by πi, πj

and lij . Then one could proceed as follows: Firstly, compute the MLE L̃ via the
EM-algorithm as usual and then define a reversible generator L̃REV = (l̃REV

ij )i,j∈S

by

l̃REV
ij =

⎧⎨
⎩

l̃ij if i ≤ j
πj

πi
l̃ji otherwise.

This would work in principle but it does not guarantee that the resulting generator
L̃REV is the MLE subject to the space of reversible generators. As a remedy, we
include the restriction to that space explicitly in the log-likelihood function (5.10)
via Lagrange multiplier:

GREV (L; L̃0) = G(L; L̃0) +
d∑

i=1

d∑
j>i

μij (πilij − πjlji) .

Performing the usual steps, we end up with the MLE L̃REV , given by

l̃REV
ij =

⎧⎪⎪⎨
⎪⎪⎩

EL̃0
[Nij(T )|Y ]

−μijπi + EL̃0
[Ri(T )|Y ]

, i < j

πi

πj
l̃REV
ij , otherwise

(5.23)

where the Lagrange multiplier can be determined by

μij =

[
EL̃0

[Rj(T )|Y ]
πjEL̃0

[Nji(T )|Y ]
− EL̃0

[Ri(T )|Y ]
πiEL̃0

[Nij(T )|Y ]

]

×
[
− EL̃0

[Nij(T )|Y ] · EL̃0
[Nji(T )|Y ]

EL̃0
[Nij(T )|Y ] + EL̃0

[Nji(T )|Y ]

]
.

(5.24)

Combining both issues leads to Algorithm 6.
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Algorithm 6 Enhanced MLE-method for the reversible case
Input: Time series Y = {y0 = X(t0), . . . , yN = X(tN )}, the set of observed time

lags {τ1, . . . , τr}, the tolerance TOL, initial guess of reversible generator L̃REV
0 .

Output: Reversible MLE L̃REV .
(1) Compute eigendecomposition (5.21) of L̃REV

k .
(2) E-step: FOR ALL τs ∈ {τ1, . . . , τr} DO

i) Compute the auxiliary matrix Ψ(τs) (5.20).
ii) Compute for i, j, l, k = 1, . . . , d the conditional expectations

EL̃REV
k

[Ri(τs)|X(τs) = l,X(0) = k],
EL̃REV

k
[Nij(τs)|X(τs) = l, X(0) = k] , i �= j via (5.22),(5.17).

END FOR
iii) Compute EL̃REV

k
[Ri(T )|Y ] and EL̃REV

k
[Nij(T )|Y ] via (5.12).

(4) Compute Lagrange multipliers μij via (5.24).
(5) M-Step: Setup the next guess L̃REV

k+1 of the generator via (5.23).
(4) Go to Step (1) unless ‖L̃REV

k+1 − L̃REV
k ‖ < TOL.

5.2.5. Scaling

We prove that the maximizer (5.11) in the (enhanced) MLE-method respects the
time invariance of the semigroup P (t) = exp(tL). Consequently, in the case of a
constant observation time step τ we can estimate a generator L̃(τ ′) with respect to
τ ′ = 1 and regain the generator with respect to τ by L̃(τ) = L̃(1)/τ .

Lemma 5.2.2. Let L̃(τ) be the MLE with respect to the time lag τ and L̃(1) with
respect to τ ′ = 1. Then for both cases the general and the reversible case the following
relation holds:

L̃(τ) =
1
τ
L̃(1). (5.25)

Proof:
A short calculation shows that∫ τ

0
pab(s)pcd(τ − s)ds = τ

∫ 1

0
[exp(sL̄)ab(exp((1 − s)L̄)cd]ds,

where L̄ = τL. But this immediately implies

EL [Ri(τ)|X(τ) = l, X(0) = k] = τEL̄ [Ri(1)|X(1) = l, X(0) = k]

and, by noting that lij = 1
τ l̄ij ,

EL [Nij(τ)|X(τ) = l, X(0) = k] = EL̄ [Nij(1)|X(1) = l, X(0) = k]

which proves (5.25). In the reversible case, the same reasoning shows that the La-
grange multipliers scale linearly with τ and therefore (5.25) also holds.

5.2.6. Enhanced MLE-Method vs. MLE-Method

The eigendecomposition approach has several advantages compared to the numerical
considerations proposed in [9]. Let d be the dimension of the discrete state space. As
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explained in Section 5.2.2, the computational cost is reduced to O(r·d5) thanks to the
closed form expression (5.19). Moreover, there is no longer an explicit dependency
on the length of the time series. The second advantage is the exact computation of
the conditional expectations involved in the E-step of the EM-algorithm. The steps
which introduce numerical errors are the eigendecomposition and the computation
of U−1. As before, the explicit inversion of U can be avoided by considering the
left eigenvectors of L̃. We are aware that the eigendecomposition of non-symmetric
matrices can be ill-conditioned, but any reliable numerical solver should indicate
this. Nevertheless, the computational cost of both steps (O(d3)) and their numerical
stability are superior compared to any numerical approximation scheme for solving
the ODEs in (5.15).

5.3. An Alternative Approach: The Quadratic Optimization
Method

The approach introduced by Crommelin and Vanden-Eijnden [19] yields an esti-
mate L̃ such that the spectral properties of the empirical transition matrix P̂ , i.e.
eigenvalues and eigenvectors, are well approximated by the spectral properties of
exp(τL̃).

Let P̂ ≈ P (τ) be the approximative transition matrix computed by Equation
(5.8). Now suppose an eigendecomposition

P̂ = UΛU−1 (5.26)

with a diagonal matrix Λ = diag(λ1, . . . , λd) containing the eigenvalues exists, and
that λk �= 0 for all k. (Note that U−1 can be obtained without explicit matrix
inversion since its rows are the left eigenvectors of P̂ .) Then, the matrix

L̃ = UZU−1 with Z = diag(z1, . . . , zd), zk =
log(λk)

τ
(5.27)

can be defined, and the approximative transition matrix can be expressed in terms
of the matrix exponential

exp(τL̃) = exp
(
U log(Λ)U−1

)
= UΛU−1 = P̂ .

In spite of this relation, L̃ cannot be considered as a reasonable estimate for the
generator because L̃ �∈ G in many cases. In order to find an estimate with the
correct structural properties, Crommelin and Vanden-Eijnden propose to compute
the generator L̃ ∈ G which agrees best with the eigendecomposition (5.27). This
is motivated by the fact that many properties of a continuous-time Markov chain
(such as, e.g., its stationary distribution) depend strongly on the eigenvalues and
eigenvectors of its generator. Therefore, in [19] the generator is estimated by solving
the quadratic minimization problem

L̃QP = arg min
L∈G

d∑
k=1

(
αk|U−1

k L − zkU
−1
k |2 + βk|LUk − zkUk|2

(5.28)
+ γk|U−1

k LUk − zk|2
)
,
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where Uk denotes the kth column of U , U−1
k is the kth row of U−1, and

αk = ak|zkU
−1
k |−2, βk = bk|zkUk|−2 and γk = ck|zk|−2

are weights with suitably chosen coefficients ak, bk, ck. The problem (5.28) can be
solved with a standard quadratic optimizer such as the MATLAB quadprog com-
mand after reformulating (5.28) as

L̃QP = arg min
L∈G

1
2
〈L,HL〉 + 〈F, L〉 + E0

with a tensor H ∈ R
d×d×d×d and a matrix F ∈ R

d×d; see [19] for details. If d is
so large that the tensor H cannot be stored, the problem (5.28) can still be solved
with quadprog, but this requires a function for the evaluation of Hv for arbitrary v
without composing H explicitly.

5.4. Numerical Examples for Equidistant Observation Times

5.4.1. Preparatory Considerations

In order to compare the performance of the quadratic programming approach (QP)
and the maximum likelihood method (MLE), we will first restrict ourselves to the
case of equidistant observation times and we will apply the approaches to a series
of model problems. In Section 5.5, we will focus on the case of non-equidistant
observation times.

A rather straightforward test would proceed as follows:

1. Choose an arbitrary generator L ∈ G and a time lag τ .

2. Compute the corresponding transition matrix P (τ) = exp(τL).

3. Produce a time series Y = {y0 = X(t0), . . . , yN = X(tN )} by sampling from
P (τ).

4. Pass this data to each of the two methods and compute an estimate L̃ ≈ L.

5. Compare the errors of the two approaches.

Although such a test seems to be somewhat reasonable, we will not use this proce-
dure. The reason for our refusal is the fact that the time series produced in step 3 is
just a single realization. Hence, the result of this test is random, too, and applying
the test several times to the methods yields different results even though the input
L remains unchanged. In fact, both methods are affected by the sampling error

‖P (τ) − P̂‖ with P̂ = (p̂ij)i,j and p̂ij =
cij∑d

j=1 cij

. (5.29)

(Here and below, ‖ · ‖ denotes the matrix 2-norm.) Roughly speaking, the sampling
error indicates how well the frequency matrix of a time series “represents” the un-
derlying transition matrix. In the limit N → ∞ one may expect the sampling error
to vanish, but for a finite number of observations the deviation can be considerable.
Since the outcome of a numerical method cannot be better than the input data, the
error of both methods are bounded from below by the sampling error.

Therefore, our numerical experiments are designed in a different way:
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1. a) Choose a generator L ∈ G and a time lag τ and compute the correspond-
ing transition matrix P (τ) = exp(τL),
or

b) choose a transition matrix P . This allows to test the performance of the
methods in situations where no underlying generator exists. In this case,
the time lag does not matter, and we can set τ = 1.

2. Define a virtual frequency matrix by multiplying each row of the transition
matrix P (τ) with the corresponding entry of the stationary distribution π =
(πi), i ∈ S and the length N of the (virtual) time series:

cij = round(Nπipij). (5.30)

This is the frequency matrix which, up to rounding errors, reflects the under-
lying transition matrix in an optimal way.

3. Based on the virtual frequency matrix, define the virtual transition matrix

P̂virt = (p̂ij)i,j and p̂ij =
cij∑d

j=1 cij

(5.31)

and compute an estimate L̃ ≈ L for the generator.

4. For both methods, compute and compare the errors:

a) ‖L̃ − L‖ (only if L is available, i.e. if variant (a) of step 1 was used)

b) ‖P (τ) − exp(τL̃)‖
c) ‖P̂virt − exp(τL̃)‖ with P̂virt defined in (5.31).

The advantage of this approach to numerical experiments is illustrated by a simple
example in the next section.

Of course, the choice of the initial value L̃0 for the MLE-method is crucial for
the convergence. If the matrix logarithm of P̂virt exists, then a good initial value
L̃0 can easily be obtained by taking the absolute values of the off-diagonal entries
of log(P̂virt)/τ and setting the diagonal entries to the corresponding negative row
sums, respectively.

A Simple Example Illustrating the Effect of Sampling Errors

This example illustrates the influence of the sampling error on the optimal generator
estimate. The transition matrix of the generator

L =
( −0.2 0.2

0.2 −0.2

)

with respect to the time lag τ = 1 is

P (τ) =
(

0.8352 0.1648
0.1648 0.8352

)
.

Suppose that sampling according to the transition matrix produces the time series
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time tn 0 1 2 3 4 5 6 7 8 9 10
state X(tn) 2 1 1 1 1 2 2 1 1 2 1

such that the corresponding frequency matrix is

C =
(

4 2
3 1

)
.

According to this data, the transition matrix seems to be

P̂ =
(

2/3 1/3
3/4 1/4

)
(5.32)

and since P̂ = exp(L̂) with

L̂ ≈
( −0.5003 0.5003

0.3752 −0.3752

)
∈ G (5.33)

the best result we can expect to obtain based on the time series is L̂ instead of
L. The errors ‖P̂ − P‖ ≈ 0.2670 and ‖L̂ − L‖ ≈ 0.4916 are caused by the time
series and cannot be avoided by the two methods. However, these errors decrease
if, according to the second test procedure, the frequency matrix is replaced by the
virtual frequency matrix (5.30). Since in our example the stationary distribution is
π = (0.5, 0.5), one obtains

C =
(

4 1
1 4

)
.

The corresponding transition matrix

P̂virt =
(

0.8 0.2
0.2 0.8

)

is obviously a better approximation of the true transition matrix P than (5.32), and
the generator estimate

L̃ = log(P̂virt) ≈
( −0.2554 0.2554

0.2554 −0.2554

)

is evidently better than (5.33). In fact, the new errors are only ‖P − P̂virt‖ ≈ 0.0703
and ‖L − L̃‖ ≈ 0.1108.

5.4.2. Transition Matrix with Underlying Generator

In a first example we follow variant (a) of step 1 and consider the generator

L =

⎛
⎜⎜⎜⎜⎝

−4.29 0.678 0.301 0.819 0.592 0.149 0.543 0.411 0.774 0.023
0.033 −3.83 0.633 0.260 0.636 0.878 0.485 0.527 0.147 0.231
0.857 0.995 −5.46 0.704 0.532 0.021 0.441 0.920 0.148 0.845
0.682 0.499 0.005 −4.69 0.208 0.923 0.626 0.379 0.639 0.726
0.801 0.430 0.816 0.082 −4.26 0.632 0.077 0.638 0.093 0.694
0.917 0.829 0.690 0.875 0.241 −5.58 0.544 0.173 0.928 0.383
0.388 0.116 0.981 0.077 0.720 0.632 −4.66 0.785 0.485 0.479
0.472 0.598 0.069 0.741 0.400 0.753 0.270 −4.43 0.163 0.967
0.088 0.221 0.045 0.125 0.394 0.769 0.291 0.776 −3.49 0.783
0.925 0.398 0.740 0.443 0.411 0.808 0.822 0.342 0.131 −5.02

⎞
⎟⎟⎟⎟⎠ ∈ G. (5.34)
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Figure 5.1.: Approximation error of L̃MLE with respect to the generator L in (5.34)
as a function of the iteration steps.

‖L − L̃‖ ‖ exp(τL) − exp(τL̃)‖ ‖P̂virt − exp(τL̃)‖
QP 2.07 · 10−8 1.39 · 10−9 1.18 · 10−14

MLE 1.88 · 10−5 1.19 · 10−6 1.19 · 10−6

Table 5.1.: Approximation errors of the estimated generators L̃QP and L̃MLE with
respect to the given generator (5.34), the exact transition matrix P (τ)
and the transition matrix P̂virt constructed via (5.31). Results for the
time lag τ = 0.2 and the length of the virtual time series N = 1010.

Based on the exact transition matrix P (τ) with τ = 0.2, we computed the virtual
transition matrix P̂virt, N = 1010 via (5.31) and estimated the generator with both
methods. The enhanced MLE-method (5) stopped after 1132 iteration steps because
the increment-based stopping criterion ‖L̃k − L̃k−1‖ ≤ tol with tol = 10−7 had been
met. Figure 5.1 shows the error of L̃MLE with respect to L (5.34) as a function of
the iteration steps.

Obviously, the convergence of the enhanced MLE-method is very slow. In contrast
to the MLE-method, the QP-method converged after only one iteration step. In Ta-
ble 5.1 the errors of both approaches are compared. The QP-approach approximates
the original generator clearly better than the enhanced MLE-method. This is, how-
ever, not surprising because it has to be taken into account that the QP-approach
approximates the eigendecomposition of P̂virt and for the length N = 1010 of a vir-
tual time series the difference between the exact and the virtual transition matrix
is only ‖P (0.2) − P̂virt‖ = 1.39 · 10−9.

Next, we investigate the influence of the sampling error on both estimation meth-
ods. Instead of considering realizations of the Markov jump process, we compute
estimations of L for a number of virtual time series of increasing length N . Figure
5.2 shows the resulting errors of L̃MLE and L̃QP with respect to the generator L
(5.34) as a function of the length N of the virtual time series. It reveals that for
a time series of a realistic length (N ≤ 107), the errors of L̃QP and L̃MLE are al-
most identical. The fact that the error of the MLE-method remains larger than 10−5

regardless of N is due to the chosen stopping criterion.
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Figure 5.2.: Graphs of the errors of L̃MLE and L̃QP with respect to the generator
L in (5.34), respectively, as a function of the length N of the virtual
time series. The error of the MLE-method remains larger than 10−5

regardless of N due to the stopping criterion ‖L̃k − L̃k−1‖ ≤ 10−7.

‖P − exp(τL̃)‖ ‖P̂virt − exp(τL̃)‖
QP 1.74 · 10−2 1.74 · 10−2

MLE 2.86 · 10−2 2.86 · 10−2

Table 5.2.: Approximation errors of exp(L̃QP ) and exp(L̃MLE) with respect to the
given transition matrix (5.35) and the transition matrix P̂virt constructed
via (5.31). Results of MLE-method for tol = 10−7.

5.4.3. Transition Matrix without Underlying Generator

In contrast to the first case both estimation procedures are now applied to a tran-
sition matrix which does not possess a generator:

P =

⎛
⎜⎜⎜⎜⎝

0.645 0.037 0.033 0.039 0.046 0.062 0.040 0.003 0.031 0.059
0.014 0.792 0.054 0.06 0.010 0 0 0 0.016 0.051
0.049 0.065 0.751 0.069 0.000 0 0 0 0.046 0.015
0.020 0.056 0.057 0.723 0.061 0 0 0 0.022 0.057
0.037 0.044 0.039 0.061 0.707 0 0 0 0.066 0.043
0.010 0.057 0.025 0.012 0.020 0.727 0.032 0.053 0.050 0.009
0 0 0 0.069 0.047 0.016 0.753 0.069 0.029 0.014
0 0 0 0.019 0.019 0.040 0.055 0.770 0.052 0.042
0 0 0 0.019 0.035 0.057 0.004 0.059 0.776 0.047
0 0 0 0.065 0.004 0.039 0.045 0.032 0.033 0.778

⎞
⎟⎟⎟⎟⎠ �∈ P (5.35)

One can immediately verify via Theorem A.6.8 cited in the Appendix that (5.35)
cannot be generated since, e.g, the state 6 is accessible from state 2 via state 1
but p2,6 = 0. As Table 5.2 shows, the errors of the estimated transition matrices
exp(τL̃) are of the same order of magnitude and are larger than in the first example
due to the additional difficulty that no generator exists. The error ‖P −exp(L̃MLE)‖
as a function of the first 10 iteration steps is shown in the left panel of Figure 5.3.
Surprisingly, the best accuracy is obtained after only one iteration, but the following
iterations increase the error again. The reason for this behavior is the fact that the
MLE-method aims to maximizing the likelihood instead of minimizing the error, and
the graph of the discrete log-likelihood, depicted in the right panel of Figure 5.3,
clearly shows that the maximum likelihood was not attained after the first iteration.
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Figure 5.3.: Left: Error of exp(L̃MLE) with respect to the transition matrix P (5.35)
as a function of the first 10 iteration steps. Right: The discrete log-
likelihood Ld as a function of the 10 first iteration steps.
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Figure 5.4.: The graphs of the errors of exp(L̃MLE) and exp(L̃QP ) with respect to
the transition matrix (5.35), respectively, as a function of the length N
of the virtual time series.

In contrast to the first example, Figure 5.4 shows that here increasing the length of
the virtual time series does not improve the estimation significantly in both methods.

5.4.4. Transition Matrix with Exact Generator under Perturbation

In the next example, we consider again the transition matrix P (τ) with τ = 0.2
which is generated by the generator (5.34) given in the first example. In order to
investigate the impact of perturbations due to, e.g., sampling from a time series, we
estimate a generator based on a perturbed transition matrix

Pε(τ) = exp(τL) + kε, k = 0, ..., 19,
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Figure 5.5.: Left: Approximation error of the generator estimates L̃QP and L̃MLE

with respect to the unperturbed generator (5.34) as a function of the
perturbation factor k. Right: Error of the estimated transition matrices
exp(τL̃QP ) and exp(τL̃MLE) with respect to the unperturbed transition
matrix exp(τL) as a function of the perturbation factor k. Results for
τ = 0.2.

, where ε is the perturbation matrix

ε = 10−5 ·

⎛
⎜⎜⎜⎜⎝

4.05 −3.55 1.75 0.80 −4.09 −3.51 4.71 0.04 0.69 −0.91
3.10 −3.50 −1.60 2.87 1.31 −0.67 2.02 1.45 1.27 −6.26
−3.22 −0.97 −2.61 5.67 −3.65 2.38 5.72 −2.47 0.15 −0.99
4.46 −1.23 −5.22 1.94 −1.02 −3.49 2.43 −2.04 2.68 1.49
4.69 −4.18 −1.27 1.94 −4.19 −0.45 −0.85 3.64 −4.33 4.99
4.37 −2.33 −1.60 3.41 1.55 1.85 −4.52 −2.27 4.35 −4.80
1.20 −2.23 5.50 −4.12 −1.15 −0.13 −3.34 −3.63 4.11 3.78
2.83 −1.00 2.73 −3.00 −1.06 −4.55 2.69 2.61 3.19 −4.43
−1.47 4.04 −0.31 −3.72 −0.41 1.24 0.45 −2.99 −2.15 5.33
−1.46 −1.56 5.23 −0.77 −2.61 4.25 −2.00 −0.25 0.70 −1.51

⎞
⎟⎟⎟⎟⎠ .

The left panel of Figure 5.5 shows the deviation of the estimated generators from
the unperturbed generator as a function of the perturbation factor k. The QP-
method performs slightly better but both errors ‖L − L̃QP ‖ and ‖L − L̃MLE‖ are
of the same order of magnitude. Furthermore, the errors scale linearly with the
perturbation factor k. This observation is plausible since for small perturbations the
logarithm log(P + ε) can be approximated by log(P ) + O(ε). The right panel of
Figure 5.5 illustrates the behavior of the errors of the estimated transition matrices
exp(τL̃QP ) and exp(τL̃MLE), respectively. A similar reasoning as above explains the
linear scaling.

Finally, we consider the error of the estimated transition matrices exp(τL̃QP ) and
exp(τL̃MLE) with respect to the perturbed transition matrix Pε(τ) = exp(τL) + kε,
depicted in Figure 5.6. Notice that the error ‖Pε(τ) − exp(τL̃)‖ is bounded from
above, namely

‖Pε(τ) − exp(τL̃)‖ ≤ ‖ exp(τL) − exp(τL̃)‖ + k‖ε‖.

Indeed, Figure 5.6 shows that both errors obey that bound. For the perturbation
factors up to k = 8, the matrix logarithm of Pε is still a generator whereas for
k = 9, . . . , 19 the perturbation is apparently high enough to destroy the generator
structure of the matrix logarithm of Pε. However, the accuracy of both methods is
again of the same order of magnitude.

108



5.4. Numerical Examples for Equidistant Observation Times

0 5 10 15 20
0

1

2

3

4x 10
−3

‖
P

ε
(τ

)
−

ex
p(

τ
L̃

)‖

perturbation factor k

MLE
QP
bound

Figure 5.6.: Error of the estimated transition matrices exp(τL̃QP ) and exp(τL̃MLE)
with respect to the perturbed transition matrix Pε(τ) = exp(τL)+kε as
a function of the perturbation factor k. The upper bound was computed
via L̃MLE .

5.4.5. Application to a Time Series from Molecular Dynamics

In this example, we apply the enhanced MLE-method to a time series of two torsion
angles extracted from a molecular simulation of glycine in water. The ball-and-stick
representation of glycine together with the two considered torsion angles Φ and Ψ
is shown in Figure 4.9(Sect. 4.3.2). The time series used herein was extracted out
of a molecular simulation of the glycine-molecule embedded in a cubic box of edge
length 3.51 nm with 1402 water molecules. The integration of the trajectory with
total length T = 5 nanoseconds was realized with 2 femtoseconds time steps in the
Leapfrog-integration scheme with GROMACS force field [8, 59] at room tempera-
ture of 300K. The left panel of Figure 5.7 shows the projection of the time series
onto the torsion angles Φ and Ψ which reveals the metastable behavior. The Ra-
machandran plot of the time series, given in the right panel of Figure 5.7, illustrates
the dependency among both torsion angles and indicates that the glycine-molecule
attains four different main conformations.

As explained in Section 4.3.2, the identification of conformations amounts to iden-
tify metastable states in a coarse grained model of the dynamics. We considered a
20×20 box discretization of the torsion angle space which results in a state space of
374 visited boxes. In order to ensure the Markov property, we considered only every
100th step of the original trajectory and estimated a reversible generator with re-
spect to the reversible transition matrix P̂ (cf. (5.8)) via the Algorithm 6. Moreover,
instead of using the time lag τ = 2 ·10−13, we performed the estimation with respect
to τ = 1 and re-scaled the resulting generator L̃MLE afterwards (cf. Sect. 5.2.5). As
one can see in Figure 5.8, the estimation algorithm is already converged after 200
steps (here we used the log-likelihood function as an indicator for convergence).

In Table 5.3 we compare the dominant eigenvalues of the transition matrix P̂
with those of P̃ = exp(τL̃MLE). The spectral gap as well as the eigenvalues are
more or less well reproduced. The panels of Figure 5.9 illustrate the decomposition
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Figure 5.7.: Left: We show the projection of the time series (all atomic positions)
on the torsion angles Φ and Ψ. Right: To illustrate the dependency of
the torsion angles, we show the Ramachandran plot of the time series of
the torsion angles Φ and Ψ. At first glance, the glycine-molecule attains
four different main conformations indicated by the four clusters.

λ1 λ2 λ3 λ4 λ5

P̂ 1 0.9944 0.9942 0.9890 0.9718
exp(τL̃MLE) 1 0.9988 0.9987 0.9977 0.9931

Table 5.3.: The five largest eigenvalues of the transition matrix P̂ and the transition
matrix computed from the estimated generator L̃MLE . Results for an
equidistant 20 × 20 box-discretization of the torsion angle space.

of the state space via PCCA which is based on the eigenvectors corresponding to
the largest eigenvalues. The decomposition in the left panel results from P̂ and the
right panel corresponds to the transition matrix exp(τL̃MLE). The almost identical
decompositions of the torsion angle space show that despite the slight deviations in
the dominant eigenvalues, the estimated generator contains the essential information
on the coarse grained dynamics. For a further analysis of the estimated Markov jump
process via discrete TPT see Chapter 4.

5.5. Numerical Examples for Non-Equidistant Observation
Times

In this section we demonstrate the performance of the enhanced MLE-method for
non-equidistant observation times on a test example and for a process arising in
the approximation of a genetic toggle switch. In both examples, we re-identify a
generator L of a Markov jump process from an associated artificially generated
incomplete observation. To be more precise, we drew from a generator L a continuous
time realization {X(t), 0 ≤ t ≤ T} for a prescribed T > 0 and extracted out of it
an incomplete observation Y = {y0 = X(t0), . . . , yN = X(tN )} with respect to a
prescribed set of time lags {τ1, . . . , τr}, r > 1, as follows: Suppose tk < T is the
observation time last considered then the next observation time tk+1 is given by
tk+1 = tk + τ where τ is uniformly drawn from the set of time lags {τ1, . . . , τr}. We
terminate that procedure if tk+1 > T .
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Figure 5.8.: The figure shows the log-likelihood function logLd as a function of the
EM-steps. The constancy of the log-likelihood function indicates that
the estimation procedure is converged already after 50 iteration steps.
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Figure 5.9.: Decomposition of the torsion angle state space into four metastable sets
via PCCA. Left: Decomposition with respect to the observed transition
matrix P̂ . Right: Decomposition with respect to the transition matrix
P̃ = exp(τL̃MLE). The decompositions are almost identical which indi-
cates that the estimated process captures the essential dynamics in the
coarse grained torsion angle space.
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5.5.1. Test Example

In the first example we consider a five-state Markov jump process given by its
generator

L =

⎛
⎜⎜⎜⎜⎝

−6 2 2 1 1
1 −4 0 1 2
1 0 −4 2 1
2 1 0 −3 0
1 1 1 1 −4

⎞
⎟⎟⎟⎟⎠ ∈ G. (5.36)

For the reconstruction of L, we extracted from a realization of total time T =
3.7 · 106 a time series of N = 107 observations with respect to the set of time lags
{τ1 = 0.01, τ2 = 0.1, τ3 = 1}. In (5.37) we state the estimated generator resulting
from Algorithm 5 with the prescribed tolerance TOL = 10−6. One clearly can see
that L̃ approximates the original one very well.

L̃ =

⎛
⎜⎜⎜⎜⎝

−5.9803 2.0054 1.9863 0.9911 0.9975
1.0002 −4.0018 0.0010 0.9938 2.0068
0.9921 0.0001 −3.9768 1.9938 0.9909
1.9909 0.9951 0.0004 −2.9871 0.0006
0.9982 1.0051 0.9993 1.0050 −4.0075

⎞
⎟⎟⎟⎟⎠ ∈ G. (5.37)

Next, we address the question of how the length of the respective time series and
the number of different time lags do affect the outcome of the estimation proce-
dure. To make things comparable, we generated three different time series of length
N = 108 with respect to the time lags sets {0.01}, {0.01, 0.1} and {0.01, 0.1, 1}, all
subsampled from the same underlying continues time realization, respectively, and
estimated for each time series a generator on the basis of the first N = 103, N =
104 . . . , N = 108 observed states, respectively. Furthermore, we used for all estima-
tions the same initial guess L̃0. In Figure 5.10 we illustrate the dependence of the
approximation error ‖L̃ − L‖ (measured in the 2-norm) with respect to the length
N of the respective time series and the number of different time lags. The graphs
reveal that the error ‖L̃−L‖ decays exponentially with the length of the underlying
time series approximately as N

1
2 . The second observation is that the estimations

based on multiple observation time lags give better results than the estimation on a
single time lag. The authors are not aware of how to explain this observation.

5.5.2. Application to a Genetic Toggle Switch Model

In the last example we apply the enhanced MLE-method to a Birth-Death process
which arises as a stochastic model of a genetic toggle switch consisting of two genes
that repress each others’ expression [77]. Expression of the two different genes pro-
duces two different types of proteins; let us name them PA and PB. If we denote
the number of molecules of type PA by x and of type PB by y, then the generator
in (4.47) describes their dynamics. For details on that process and its investigation
via discrete TPT we refer the reader to Chapter 4, Section 4.3.3.

For the numerical experiments to be presented, we used the parameters a1 =
156, a2 = 30, n = 3, m = 1,K1 = K2 = 1, τ1 = 1/7 and τ2 = 1/3. For this particular
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Figure 5.10.: Error of the estimated generator L̃ with respect to the original gen-
erator (5.36), measured in the 2-norm ‖L̃ − L‖, as a function of the
length N of the respective time series. Results for the three different
sets of time lags {0.01}, {0.01, 0.1} and {0.01, 0.1, 1} and the tolerance
TOL = 10−6.

choice the deterministic dynamics (4.48) has two stable stationary points approxi-
mately at (x, y) = (20, 0) and (x, y) = (0, 8) and one unstable point approximately at
(x, y) = (6, 1). This insight in the deterministic approximation helps to understand
the following analysis of the jump process:

For the sake of illustration, the left panel of Figure 5.11 shows the discrete free
energy, − log π, of the jump process instead of its stationary distribution π itself. All
states with almost vanishing stationary distribution are depicted by the white region
and in order to emphasize the states of interest, we chose a log-log representation.
The color scheme is chosen such that the darker the color of a region the higher
the probability of finding the process there. One can clearly see that the process
spends most of its time near the two stable stationary points approximately at
(x, y) = (20, 0) and (x, y) = (0, 8).

A single realization of the jump process generated by L models the evolution of
the numbers of proteins with respect to a specific initial value (x0, y0). The resulting
evolution of the associated probability density function (PDF) in time is governed
by the Master-equation: Let p0 ∈ R

|S| be the initial PDF, then the PDF evolves in
time according to

∂p(t)
∂t

= LT p(t), p(0) = p0, t > 0, (5.38)

where LT denotes the transpose of the generator given in (4.47). In order to moti-
vate the relevance of the following numerical experiment, suppose you measure the
numbers of proteins of types PA and PB discretely in time; without knowing the
generator, you are interested in fitting a Markov jump process. Assuming that the
hidden process is Markovian, one can apply the enhanced MLE-method.

Before we describe our numerical example in detail, notice that the structure of a
transition matrix P , i.e. the occupation of the entries in P , does not allow to infer
on the structure of the underlying generator. For example, the generator of a dense
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Figure 5.11.: Left: Log-log contour plot of the Gibbs energy, −logπ, where π =
(πi), i ∈ S is the stationary distribution computed via πT L = 0. Right:
Log-log contour plot of the Gibbs energy resulting from the observed
distribution π̂ of states in the time series. Result for N = 108.

transition matrix does not have to be dense too. This means that there is some
freedom in the choice of the structure of the estimated generator L̃. In this example,
we follow two options. One option – we call it option A – is to use the structure of
the observed transition matrix as a blueprint for the structure of L̃. In option B we
exploited knowledge about the hidden process. We know that the number of a gene’s
molecule can only increase or decrease by one in a single reaction while the number
of the other one remains constant. Hence, it is natural to estimate the entries l̃ij if
the states i and j (the numbers) have been observed and are adjacent in the sense
of a single reaction.

For our numerical experiment, we generated a sufficiently long realization of the
Birth-Death process on the state space Z

2∩([0, 30]× [0, 30]) and extracted out of it a
time series of length N = 108 with respect to the set of time lags {τ1 = 0.0001, τ2 =
0.001,τ = 0.01}. The Gibbs energy resulting from the distribution of the observed
states in the time series is shown in the right panel of Figure 5.11. As one can see, the
relative occupation of the states is consistent with the exact stationary distribution
depicted in the left panel.

The generated time series visits 225 states of 900 possible states, hence we had
to estimate a generator L̃ ∈ G on the state space S ∼= {1, . . . , 225}. In the following
L̃A denotes the estimated generator resulting from the estimation option A and L̃B

via option B. For both estimation options we used the tolerance TOL = 10−2. The
Figure 5.12 shows the free energies associated with L̃A (left panel) and with L̃B

(right panel). From the viewpoint of stationarity, one can see that both estimated
generators are good approximations of the original one (cf. left panel of Figure 5.11).
In order to make things more precise, we compare in the following the estimated
generators with the original generators of (4.47) restricted on the set of observed
states. Formally, we consider the restricted generator L̄ ∈ G, S ∼= {1, . . . , 225} de-
fined according to

l̄ij =

{
lij , if i �= j were visited by the time series,
−∑

k l̄ik, if i = j was visited by the time series.
(5.39)

Now we compare the spectral properties of the estimated generators with those of
the restricted generator from (5.39) in more detail. In the left panel of Figure 5.13
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Figure 5.12.: Log-log contour plot of the free energies, − log π̃, associated with the
estimated generators L̃A (left panel) and L̃B (right panel) where π̃ is
the stationary distribution of the estimated generators computed via
π̃T L̃ = 0, respectively.

we depict the real parts of the 30 largest eigenvalues of L̃A and L̃B with those of
the restricted generator L̄, respectively. Although the enhanced MLE-method is not
designed to approximate spectral properties, notice that the real parts of consid-
ered eigenvalues of L̄ are well reconstructed by both estimation options. Another
important quantity in time series analysis is the auto-correlation function (ACF) of
a process which reflects the speed of memory loss of the process. For a Markov jump
process, it is easy to see that the ACF reduces to [19]

E(Xt+τXt) =
d∑

k=1

eτλk
∑
i,j∈S

i · j · πiUikU
−1
kj , (5.40)

where L = Udiag(λ1, . . . , λd)U−1 is the eigendecomposition of the generator L of
the Markov jump process and π = (πi), i ∈ S its stationary distribution. The graphs
of the normalized ACFs associated with L̃A and L̃B together with the ACF of the
restricted generator L̄ are given in Figure 5.14. As one can see, the ACFs associated
with L̃A and L̃B are consistent with the ACF of the restricted process which shows
that besides the eigenvalues even the eigenvectors of the restricted generator L̄ are
well reproduced by both estimated generators, respectively. The almost identical
reproduction of the ACF of L̄ by L̃B shows that the incorporation of theoretical
knowledge of the hidden process leads to sightly better results.
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Figure 5.13.: The real parts of the first 30 largest eigenvalues of the estimated gener-
ators compared to the eigenvalues of the restricted generator L̄ (5.39).
Left: Real parts of eigenvalues of L̃A. Right: Real parts of eigenvalues
of L̃B.
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Figure 5.14.: The graphs of the ACFs associated with L̃A (left panel) and L̃B

(right panel) compared to the ACF of the restricted generator L̄,
respectively.
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