
4. Transition Path Theory for Markov
Jump Processes

Continuous-time Markov chains on discrete state-space have an enormous range of
applications. In recent years, especially, with the explosion of new applications in
network science, Markov chains have become the tool of choice not only to model
the dynamics on these networks but also to study their topological properties [2, 68].
In this context, there is a need for new methods to analyze Markov chains on large
state-space with no specific symmetries, as relevant for large complex networks.

A natural starting point to analyze a Markov chain is to use spectral analysis. This
is especially relevant when the chain displays metastability, as was shown in [12, 24]
in the context of time-reversible chains. By definition, the generator of a metastable
chain possesses one or more clusters of eigenvalues near zero, and the associated
eigenvectors provide a natural way to partition the chain (and hence the underlying
network) in cluster of nodes on which the walker remains for a very long time before
finding its way to another such cluster. This approach has been used not only in
the context of Markov chains arising from statistical physics (such as e.g. glassy
systems [4, 11] or bio-molecules [81]), but also in the context of data segmentation
and embedding [84, 62, 78, 6, 26, 16, 55]. The problem with the spectral approach,
however, is that not all Markov chains of interest are time-reversible and metastable,
and when they are not, the meaning of the first few eigenvectors of the generator is
less clear.

In this chapter, we take another approach which does not require metastability
and applies for non-time-reversible chains as well. The basic idea is to single out
two disjoint subsets of nodes of interest in the state-space of the chain and ask what
is the typical mechanism by which the walker transits from one of these subsets to
the other? We can also ask what is the rate at which these transitions occur, etc.
The first object which comes to mind to characterize these transitions is the path of
maximum likelihood by which they occur. However, this path can again be not very
informative with respect to its relevance for the transition process. For an attempt
to characterize transition pathways by means of the likelihood by which they occur
see Chapter 6.

The main objective of this chapter, however, is to adapt the framework of transi-
tion path theory (TPT) on discrete state space which allows to give a precise meaning
to the question of finding typical the mechanism and rate of transition even in chains
which are neither metastable nor time-reversible. We will focus only on continuous-
time Markov chains, but we note that the results can be straightforwardly extended
to the case of discrete-time Markov chains.

Besides the illustration of the output of the theory on a test example, we will apply
discrete TPT in order to study the conformational dynamics of the bio-molecule
glycine as well as the dynamics of a genetic toggle switch model.

We want to point out that tools of TPT presented here can be used for data
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4. Transition Path Theory for Markov Jump Processes

segmentation as well. In this context, TPT provides an alternative to Laplacian
eigenmaps [78, 6] and diffusion maps [16] which have become very popular recently
in data analysis. In this thesis, we will not, however, develop these ideas any further.

4.1. Theoretical Aspects

4.1.1. Preliminaries: Notations and Assumptions

We will consider a Markov jump process on the countable state-space S with in-
finitesimal generator (or rate matrix) L = (lij)i,j∈S :{

lij ≥ 0 for all i, j ∈ S, i �= j∑
j∈S lij = 0 for all i ∈ S.

as introduced in Section 2.2. We assume that this process is irreducible and ergodic
with respect to the unique, strictly positive stationary distribution π = (πi)i∈S . We
will denote by {X(t)}t∈R an equilibrium sample path (or trajectory) of the Markov
jump process, i.e. any path obtained from {X(t)}t∈[T,∞) by pushing back the initial
condition, X(T ) = x, at T = −∞. Throughout that chapter, we do not assume
reversibility.

For the algorithmic part of this chapter, it will be convenient to use the notations
and concepts of Graph Theory. We will mainly consider directed graphs G = G(S, E)
where the vertex set S is the set of all states of the Markov jump process and two
vertices i and j are connected by a directed edge if (i, j) ∈ E ⊆ (S ×S). Let E′ ⊂ E
be a subset of edges of a graph G = G(S,E), then we denote by G(S′, E′) the induced
subgraph, i.e. the graph which consists of all edges in E′ and the vertex set

S′ = {i ∈ S : ∃j ∈ S s.t. (i, j) ∈ E′ or (j, i) ∈ E′}.
We also recall that:

Definition 4.1.1. A directed pathway w = (i0, i2, . . . , in), ij ∈ S, j = 0, . . . , n in
a graph G is a finite sequence of vertices such that (ij , ij+1) ∈ E, j = 0, . . . , n − 1.
A directed pathway w is called simple if w does not contain any self-intersections
(loops), i.e. ij �= ik for j, k ∈ {0, . . . , n}, j �= k.

We will later consider several forms of weight-induced directed graphs:

Definition 4.1.2. Whenever a |S|× |S|-matrix C = (Cij) with non-negative entries
is given, the weight-induced directed graph is denoted by G{C} = G(S, E). In
this graph the vertex set S is the set of all states of the Markov jump process and
two vertices i and j are connected by a directed edge (i, j) ∈ E ⊆ (S × S) if the
corresponding weight Cij is positive.

4.1.2. Reactive Trajectories

Let A and B be two nonempty, disjoint subsets of the state space S. By ergodicity,
any equilibrium path {X(t)}t∈R oscillates infinitely many times between set A and
set B. We are interested in understanding how these oscillations happen (mechanism,
rate, etc). If we view A as a reactant state and B as a product state, each oscillation
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4.1. Theoretical Aspects

from A to B is a reaction event, and so we are asking about the mechanism, rate,
etc. of these reaction events. To properly define and characterize the reaction events,
we proceed by pruning a long ergodic trajectory {X(t)}t∈R into pieces during which
it makes a transition from A to B, and ask about various statistical properties of
these pieces, see Fig. 4.1. The pruning is done as follows.

First, given a trajectory {X(t)}t∈R we define a set of exit and entrance times
σ = {tAn , tBn }n∈Z as:

Definition 4.1.3 (Exit and entrance times). Given a trajectory {X(t)}t∈R, the exit
time tAn and the entrance time tBn belong to σ if and only if

limt→tAn− X(t) = xA
n ∈ A, X(tBn ) = xB

n ∈ B,

∀t ∈ [tAn , tBn ) : X(t) �∈ A ∪ B.
(4.1)

By ergodicity, we know that the cardinal of σ is infinite. It is also clear that the
times tAn and tBn form an increasing sequence, tAn ≤ tBn ≤ tAn+1 for all n ∈ Z. Notice
however that we may have tAn = tBn for some n ∈ Z corresponding to events when
the trajectory jumps directly from A to B. If, on the other hand, tAn < tBn , then
the trajectory visits states outside of A and B when it makes a transition from the
former to the latter.

Next, given the set σ, we define:

Definition 4.1.4 (Reactive times). The set R of reactive times is defined as

R =
⋃
n∈Z

(tAn , tBn ) ⊂ R. (4.2)

Finally, we denote by t1n ≡ tAn ≤ t2n ≤ · · · ≤ tkn
n ≤ tBn the set of all the successive

jumping times of X(t) in [tAn , tBn ], i.e. all the times in [tAn , tBn ] such that

lim
t→tkn−

X(t) �= X(tkn) =: xk
n, k = 1, . . . , kn ∈ N (4.3)

and we define:

Definition 4.1.5 (Reactive trajectories). The ordered sequence

Pn = [xA
n , x1

n, x2
n . . . , xkn

n ≡ xB
n ]

consisting of the successive states visited during the nth transition from A to B
(including the last state in A, xA

n , and the first one in B, xB
n ≡ xkn

n ) is called the
nth reactive trajectory. The set of all such sequences,

P =
⋃
n∈Z

{Pn} (4.4)

is called the set of reactive trajectories.

(Note that we have kn = 1 when the trajectory hops directly from A to B at time
tAn = tBn , in which case Pn = [xA

n , xB
n ].)

In the next sections we obtain various statistical properties of the objects defined
in this section. Note that, because of the way we defined these objects they do depend
on the particular trajectory {X(t)}t∈R used to generate them. However, their law
does not.
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Figure 4.1.: Schematic representation of a piece of an ergodic trajectory. The sub-
piece connecting A to B (shown in thick black) is a reactive trajectory,
and the collection of reactive trajectories is the ensemble of reactive
trajectories.

4.1.3. Probability Distribution of Reactive Trajectories

A first object relevant to quantify the statistical properties of the reactive trajectories
is:

Definition 4.1.6. The distribution of reactive trajectories mR = (mR
i )i∈S is defined

so that for any i ∈ S we have:

lim
T→∞

1
2T

∫ T

−T
1{i}(X(t))1R(t)dt = mR

i , (4.5)

where 1C(·) denotes the characteristic function of the set C.

The distribution mR gives the equilibrium probability to observe a reactive tra-
jectory at state i and time t.

How can we find an expression for mR? Suppose we encounter the process X(t) in
a state i ∈ S. What is the probability that X(t) be reactive? Intuitively, this is the
probability that the process came rather from A than from B times the probability
that the process will reach B rather than A in the future. This indicates that the
following objects will play an important role:

Definition 4.1.7. The discrete forward committor q+ = (q+
i )i∈S is defined as the

probability that the process starting in i ∈ S will reach first B rather than A. Anal-
ogously, we define the discrete backward committor q− = (q−i )i∈S as the probability
that the process arriving in state i came last from A rather than B.

In the next section we show that the forward and backward committor satisfy a
discrete Dirichlet problem, respectively.

We have

Theorem 4.1.1. The probability distribution of reactive trajectories defined in (4.5)
is given by

mR
i = πiq

+
i q−i , i ∈ S. (4.6)

62



4.1. Theoretical Aspects

Proof. Denote by xAB,+
i (t) the first state in A∪B reached by X(s), s ≥ t, conditional

on X(t) = i. Similarly, denote by xAB,−
i (t) the last state in A∪B left by X(s), s ≤ t,

conditional on X(t) = i or, equivalently, the first state in A ∪ B reached by XR(s),
s ≥ −t. In terms of these quantities, (4.5) can be written as

mR
i = lim

T→∞
1

2T

∫ T

−T
1{i}(X(t))1A(xAB,−

i (t))1B(xAB,+
i (t))dt.

Taking the limit as T → ∞ and using ergodicity together with the strong Markov
property, we deduce that

mR
i = πi Pi(τ+

B < τ+
A )PR

i (τ−
B > τ−

A )

which is (4.6) by definition of q+ and q−.

Notice that mR
i = 0 if i ∈ A ∪ B. Notice also that mR is not a normalized

distribution. In fact,
ZAB =

∑
j∈S

mR
j =

∑
j∈S

πjq
+
j q−j ≤ 1

is the probability that the trajectory is reactive at some given instance t in time, i.e.

ZAB = P(t ∈ R). (4.7)

The distribution
mAB

i = Z−1
ABmR

i = Z−1
ABπiq

+
i q−i (4.8)

is then the normalized distribution of reactive trajectories which gives the probability
to observe a reactive trajectory at state i at time t conditional on the trajectory being
reactive at time t.

Remark 4.1.8. If the Markov process is reversible (i.e. πilij = πjlji), then q+
i =

1 − q−i and the probability distribution of reactive trajectories reduces to

mR
i = πiq

+
i (1 − q+

i ) (reversible process). (4.9)

4.1.4. Discrete Committor Equations

The discrete forward and backward committors play a central role in TPT. Recall,
that for a state i ∈ S the discrete forward committor q+

i is defined as the probability
that the Markov jump process starting in state i will reach B rather than A. In other
words, q+

i is the first entrance probability of the process {X(t), t ≥ 0, X(0) = i})
with respect to the set B avoiding the set A. The usual step in dealing with entrance
or hitting probabilities with respect to a certain subset of states is the modification
of the process such that these states become absorbing states. Let L = (lij)i,j∈S be
the infinitesimal generator of a Markov jump process and A ⊂ S be a non-empty
subset. Suppose we are interested in the process resulting from the declaration of the
states in A to be absorbing states. Then the infinitesimal generator L̂ = (l̂ij)i,j∈S of
the modified process is given by, [89]

l̂ij =

{
lij i ∈ Ac, j ∈ S

0 i ∈ A, j ∈ S
(4.10)

From this viewpoint, now it is simple to prove the following theorem.
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4. Transition Path Theory for Markov Jump Processes

Theorem 4.1.2. Let q+
i be the probability to reach B before A provided that the

process has started in state i ∈ S. Then the discrete forward committor q+ = (q+
i )i∈S

satisfies the equations ⎧⎪⎨
⎪⎩

∑
k∈S likq

+
k = 0, ∀i ∈ (A ∪ B)c

q+
i = 0, ∀i ∈ A

q+
i = 1, ∀i ∈ B

(4.11)

Proof. If we make the states in the set A absorbing states then the discrete forward
committor q+ is the first entrance probability with respect to the set B under the
modified process. Thus q+ satisfies the discrete Dirichlet problem [89]{∑

k∈S l̂ikq
+
k = 0, ∀i ∈ Bc

q+
i = 1, ∀i ∈ B

or, equivalently, ⎧⎪⎨
⎪⎩

∑
k∈S likq

+
k = 0, ∀i ∈ (A ∪ B)c

q+
i = 0, ∀i ∈ A

q+
i = 1, ∀i ∈ B

which ends the proof.

Observe that if we substitute the “boundary conditions” into the equations in (4.11)
we end up with a linear system

Uq+ = v, (4.12)

where the matrix U = (uij)i,j∈(A∪B)c is given by

uij = lij i, j ∈ (A ∪ B)c

and an entry of the vector v = (vi)i∈(A∪B)c on the right hand side of (4.12) is defined
by vi = −∑

k∈B lik,∀i ∈ (A ∪ B)c. Now we can prove

Lemma 4.1.9. If the matrix U is irreducible then the solution of (4.11) is unique.

Proof. By the definition of the matrix U there exists at least an index k ∈ (A∪B)c

such that
|ukk| >

∑
j �=k

ukj .

But this implies that U is weakly diagonally dominant (see Definition A.58). To-
gether with its assumed irreducibility, Theorem A.6.6 in the Appendix implies that
it is invertible.

Next, we turn our attention to the discrete backward committor q−i , i ∈ S which
is defined as the probability that the process arriving at state i came rather from
A than from B. The crucial observation is now that q− = (q−i )i∈S is the discrete
forward committor with respect to the reversed time process.
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Theorem 4.1.3. The discrete backward committor q− = (q−i )i∈S satisfies the linear
system of equations ⎧⎪⎨

⎪⎩
∑

k∈S lRikq
−
k = 0, ∀i ∈ (A ∪ B)c

q−i = 1, ∀i ∈ A

q−i = 0, ∀i ∈ B,

(4.13)

where π = (πi)i∈S is a stationary distribution and lRik = πklki/πi is the generator
of the reversed time process (see (2.49)). Moreover, if the Markov jump process is
reversible then the backward committor is simply related to the forward committor
by

q− = 1 − q+. (4.14)

Proof. The derivation of (4.13) is a straightforward generalization of the one of (4.11).
To derive (4.14), note that if the Markov jump process is reversible, then the detailed
balance 2.50 condition is satisfied and the discrete backward committor solves⎧⎪⎨

⎪⎩
∑

k∈S likq
−
k = 0, ∀i ∈ (A ∪ B)c

q−i = 1, ∀i ∈ A

q−i = 0, ∀i ∈ B.

(4.15)

On one hand the solution of the discrete Dirichlet problem (4.15) is unique (see
Lemma 4.1.9). On the other hand, a short calculation shows that 1−q+ also satisfies
(4.15). Consequently, we have q− = 1 − q+ which ends the proof.

Remark 4.1.10. The committor q+
i is related to hitting times with respect to the

sets A and B by
q+
i = Pi(τ+

B < τ+
A ). (4.16)

Here Pi denotes expectation conditional on X(0) = i, τ+
A = inf{t > 0 : X(t) ∈ A}

denotes the first entrance time of the set A and τ+
B = inf{t > 0 : X(t) ∈ B} the

first entrance time of the set B; q−i can be defined similarly using the time-reversed
process as

q−i = P
R

i(τ−
B > τ−

A ), (4.17)

where P
R

i denotes expectation with respect to the time-reversed process conditional
on XR(0) = i, τ−

A = inf{t > 0 : XR(t) ∈ A} denotes the last exit time of the subset
A and τ−

B = inf{t > 0 : XR(t) ∈ B} the last exit time of the subset B.

4.1.5. Probability Current of Reactive Trajectories

In this section we are interested in the average current of reactive trajectories flowing
from state i to state j per time unit. More precisely:

Definition 4.1.11. The probability current of reactive trajectories fAB = (fAB
ij )i,j∈S

is defined so that for all pairs of states (i, j), i, j ∈ S, i �= j we have

lim
s→0+

1
s

lim
T→∞

1
2T

∫ T

−T
1{i}(X(t))1{j}(X(t + s))

×
∑
n∈Z

1(−∞,tBn ](t)1[tAn ,∞)(t + s)dt = fAB
ij .

(4.18)

In addition, we set fAB
ii = 0 for all i ∈ S.

65



4. Transition Path Theory for Markov Jump Processes

We have

Theorem 4.1.4. The discrete probability current of reactive trajectories is given by

fAB
ij =

{
πiq

−
i lijq

+
j , if i �= j

0, otherwise
(4.19)

Proof. Using the same notations as in the proof of Theorem 4.1.1, equation (4.18)
can also be written as

fAB
ij = lim

s→0+

1
s

lim
T→∞

1
2T

∫ T

−T
1{i}(X(t))1{j}(X(t + s))

× 1A(xAB,−
i (t))1B(xAB,+

j (t + s))dt.

(4.20)

Taking the limit T → ∞ and using ergodicity, we deduce that

fAB
ij = lim

s→0+

1
s
πiq

−
i Ei[q+

X(s),1{j}(X(s))],

where Ei denotes the expectation conditional on X(0) = i. To take the limit s → 0+

we use
∀Φ : S �→ R : lim

s→0+

1
s
(Ei[Φ(X(s))] − Φ(i)) =

∑
j∈S

lijΦ(j)

and we are done since i �= j.

This result implies an expected property, the conservation of the discrete proba-
bility current or flux in each node:

Theorem 4.1.5. For all i ∈ (A ∪ B)c the probability current is conserved, i.e.∑
j∈S

(fAB
ij − fAB

ji ) = 0, ∀i ∈ (A ∪ B)c. (4.21)

Proof. By definition of fAB for i ∈ (A ∪ B)c:∑
j∈S

(fAB
ij − fAB

ji ) = πiq
−
i

∑
j �=i

lijq
+
j − πiq

+
i

∑
j �=i

πj

πi
ljiq

−
j

= −q−i q+
i πilii + q−i q+

i πil
R
ii = 0,

where we used
∑

j∈S lijq
+
j = 0 if i ∈ (A ∪ B)c from (4.11) and

∑
j∈S lRijq

−
j = 0 if

i ∈ (A ∪ B)c from (4.15).

For later use we should also mention that conservation of the current in every state
i ∈ (A ∪ B)c immediately implies the following total conservation of the current,∑

i∈A,j∈S

fAB
ij =

∑
j∈S,i∈B

fAB
ji , (4.22)

where we used that fAB
ij = 0 if i ∈ S and j ∈ A, and fAB

ij = 0 if i ∈ B and j ∈ S.
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4.1.6. Transition Rate and Effective Current

In this section we derive the average number of transitions from A to B per time
unit or, equivalently, the average number of reactive trajectories observed per time
unit. More precisely, let N−

T , N+
T ∈ Z be such that

R ∩ [−T, T ] =
⋃

N−
T ≤n≤N+

T

(tAn , tBn ), (4.23)

that is, N+
T − N−

T is the number of reactive trajectories in the interval [−T, T ] in
time.

Then:

Definition 4.1.12. The transition (reaction) rate kAB is defined as

kAB = lim
T→∞

N+
T − N−

T

2T
. (4.24)

We have:

Theorem 4.1.6. The transition rate is given by

kAB =
∑

i∈A,j∈S

fAB
ij =

∑
j∈S,k∈B

fAB
jk . (4.25)

Proof. From (4.20) we get∑
i∈A,j∈S

fAB
ij = lim

s→0+

1
s

lim
T→∞

1
2T

(4.26)

×
∫ T

−T
1A(X(t))

∑
j∈S

1B(xAB,+
j (t + s))dt.

Let us consider the integral; we can always restrict our attention to generic values
of T such that there is no n ∈ Z for which T = tAn or T = tBn . The integrand in this
expression is nonzero iff X(t) ∈ A, X(t+ s) ∈ Ac and t+ s ∈ R, i.e. if tAn ∈ (t, t+ s)
for some n ∈ Z. But this means that the integral of 1A(X(t))1B(xAB,+

j (t + s)) on
every interval t ∈ (tAn − s, tAn ) is equal to s and the only contributions to the integral
in (4.26) come from the intervals in [−T, T ]∩∪n∈Z(tAn −s, tAn ). But these are exactly
N+

T −N−
T intervals such that the whole integral amounts to (N+

T −N−
T )s. From (4.26)

and (4.23), this implies the first identity for the rate kAB. The second identity follows
from (4.22).

Notice that the rate can also be expressed as

kAB =
∑

i∈A,j∈S

f+
ij , (4.27)

where:

Definition 4.1.13. The effective current is defined as

f+
ij = max(fAB

ij − fAB
ji , 0). (4.28)
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Identity (4.27) follows from (4.25) and the fact that ∀i ∈ A : f+
ij = fAB

ij since
fAB

ji = 0 and fAB
ij > 0 if i ∈ A. The effective current gives the net average number

of reactive trajectories per time unit making a transition from i to j on their way
from A to B. The effective current will be useful to define transition pathways in
Section 4.1.8.

Remark 4.1.14. If the Markov process is reversible, then the effective current re-
duces to

f+
ij =

{
πilij(q+

j − q+
i ), if q+

j > q+
i

0, otherwise
(reversible process) (4.29)

and the reaction rate can be expressed as

kAB = 1
2

∑
i,j∈S

πilij(q+
j − q+

i )2. (reversible process) (4.30)

The last identity can also be written as kAB = −∑
i∈S,j∈B πilijq

+
i (for reversible

processes!) which in turn is identical to the expression that we know from Theo-
rem 4.1.6

kAB =
∑

i∈S,j∈B
i �=j

πilij(1 − q+
i ). (reversible process)

4.1.7. Relations with Electrical Resistor Networks

Before proceeding further, it is interesting to revisit our result in the context of
electrical resistor networks [27]. Recall that an electrical resistor network is a directed
weighted graph G(S, E) = G{C} where C = (cij) is an entry-wise nonnegative
symmetric matrix (cf. Def. 4.1.2), called conductance matrix of G. The reciprocal rij

of the conductance cij is called the resistance of the edge (i, j). Establishing a voltage
va = 0 and vb = 1 between two vertices a and b induces a voltage v = (vi)i∈S\{a,b}
and an electrical current Fij which are related by Ohm’s Law

Fij =
vi − vj

rij
= (vi − vj)cij , i, j ∈ S, i �= j. (4.31)

Furthermore, the Kirchhoff’s Current Law, that is∑
j∈S

Fij = 0 ∀i ∈ S \ {a, b} (4.32)

requires that the voltages have the property

vi =
∑
j �=i

cij

ci
vj , ∀i ∈, S \ {a, b}, (4.33)

where ci =
∑

j∈S cij . A reversible Markov jump process, given by its infinitesimal
generator L, can be seen as an electrical resistor network by setting up the conduc-
tance matrix C via

cij = πilij ,
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where π = (πi)i∈S is the unique stationary distribution. Now observe that equa-
tion (4.33) reduces to

0 =
∑
j∈S

lijvj , ∀i ∈ S \ {a, b}.

But this means that the forward committor q+ with respect to the sets A = {a} and
B = {b} can be interpreted as a voltage. Moreover, a short calculation shows that
the effective flux, defined in (4.28), pertains to the electrical current.

4.1.8. Dynamical Bottlenecks and Reaction Pathways

The transition rate kAB is a quantity which is important to describe the global tran-
sition behavior. In this section we characterize the local bottlenecks of the ensemble
of reactive trajectories which determine the transition rate. In order to get a de-
tailed insight into the local transition behavior we characterize reaction pathways
by looking on the amount of reactive trajectories which is conducted from A to B
by a sequence of states.

We use the notations of Graph Theory introduced at the end of Section 4.1.1. Let
G(S, E) = G{f+} be the weight induced directed graph associated with the effective
current f+ = (f+

ij ), ij ∈ S. A simple pathway in the graph G, starting in A ⊂ S
and ending in B ⊂ S, is the natural choice for representing a specific reaction from
A to B because any loop during a transition would be redundant with respect to
the progress of the reaction.

Definition 4.1.15. A reaction pathway w = (i0, i1, . . . , in), ij ∈ S, j = 0, . . . , n
from A to B is a simple pathway such that

i0 ∈ A, in ∈ B, ij ∈ (A ∪ B)c j = 1, . . . , n − 1.

The crucial observation which leads to a characterization of bottlenecks of reaction
pathways is that the amount of reactive trajectories which can be conducted by a
reaction pathway per time unit is confined by the minimal effective current of a
transition involved along the reaction pathway.

Definition 4.1.16. Let w = (i0, i1, . . . , in) be a reaction pathway in G{f+}. We
define the min-current of w by

c(w) = min
e=(i,j)∈w

{f+
ij }. (4.34)

The dynamical bottleneck of a reaction pathway is the edge with the minimal effective
current

(b1, b2) = arg min
e=(i,j)∈w

{f+
ij }. (4.35)

We call such an edge (b1, b2) a bottleneck.

Here and in the following we somewhat misuse our notation by writing e = (i, j) ∈
w whenever the edge e is involved in the pathway w = (i0, i1, . . . , in), i.e. if there is
an m ∈ {0, . . . , n − 1} such that (i, j) = (im, im+1).

Now it is straightforward to characterize the “best” reaction pathway, namely,
that is the one with the maximal min-current.
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BA

b1 b2

wL

wR

G[L] G[R]

G[WD]

Figure 4.2.: Schematic representation of the decomposition of WD. A reaction path-
way w (shown in thick black) can be decomposed into two simple path-
ways wL and wR.

Remark 4.1.17. Notice that the problem of finding a pathway which maximizes the
minimal current is known as the maximum capacity augmenting path problem [1]
in the context of solving the maximal flow problem in a network.

In general, one cannot expect to find a unique “best” reaction pathway because
the bottleneck corresponding to the maximal min-current could be the bottleneck
of other reaction pathways too.

Definition 4.1.18. Let W be the set of all reaction pathways and denote the maxi-
mal min-current by cmax. Then we define the set of the dominant reaction pathways
WD ⊂ W by

WD = {w ∈ W : c(w) = cmax}.
Remark 4.1.19. To guarantee uniqueness of the bottleneck, we henceforth assume
that the positive currents of the effective current f+ are pairwise different, i.e. f+

e �=
f+

e′ for all pairs of edges e = (i, j), e′ = (i′, j′). Nevertheless, we are aware that
in applications the situation could show up where more than one bottleneck exists
because the corresponding currents are more or less equal. This ambiguity is taken
into account in an hierarchical decomposition of the set of all reaction pathways
described at the end of this section.

Let G[WD] = G(SD, ED) be the directed graph induced by the set WD, i.e.,
the graph whose vertex/edge set is composed of all vertices/edges that appear
in at least one of the pathways in WD. The next Lemma shows that the graph
G[WD] = G(SD, ED) possesses a special structure which is crucial for the definition
of a representative dominant reaction pathway.

Lemma 4.1.20. Let b = (b1, b2) denote the unique bottleneck in G[WD]. Then the
graph G(SD, ED \ {b}) decomposes into two disconnected parts G[L] and G[R] such
that every reaction pathway w ∈ WD can be decomposed into two pathways wL and
wR

w = (il1 , . . . , iln = b1︸ ︷︷ ︸
=wL

, b2 = ir1 , . . . , irm︸ ︷︷ ︸
=wR

),

where wL ∈ L is a simple pathway in G[L] starting in il1 ∈ A and ending in {b1}
and wR is a simple pathway in G[R] starting in {b2} and ending up in irm ∈ B.
Whenever we have L = ∅ then G[L] = ({il1}, ∅); for R = ∅ likewise.
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Here and in the following we write wL ∈ L (and wR ∈ R, respectively) if we want
to express that for every edge e ∈ wL we have e ∈ L.

Proof. It immediately follows from the definition of WD that the bottleneck b is
involved in every dominant reaction pathway because otherwise there would exist a
pathway w ∈ WD such that c(w) > cmax which leads to a contradiction. By defini-
tion, a reaction pathway does not possess any loops. Consequently, the bottleneck b
separates WD which proofs the assertion.

According to the Lemma, the set of dominant reaction pathways WD can be
represented as

WD = L × R := {(wL, wR) : wL ∈ L, wR ∈ R} . (4.36)

In Figure 4.2 we give a schematic representation of the decomposition of WD.
Next, we address the most likely case in applications where more than one dom-

inant reaction pathway exists. By definition, each dominant reaction pathway con-
ducts the same amount of current from A to B but they differ with respect to the
maximal amount of current which they conduct, e.g., from the set A to the bot-
tleneck, respectively. Now observe that the simple pathways in the set L could be
seen as reaction pathways with respect to the set A and the B-set {b1}. Hence, L

possesses itself again a set of dominant reaction pathways WD(L) and so on. This
motivates the following recursive definition of the a representative dominant reaction
pathway.

Definition 4.1.21. Let WD = L × R and suppose b = (b1, b2) is its (unique)
bottleneck. Then we define the representative dominant reaction pathway w∗ of WD
by

w∗ = (w∗
L, w∗

R), (4.37)

where w∗
L is the representative dominant pathway of the set WD(L) with respect to

the set A and the B-set {b1} and w∗
R is the representative of WD(R) with respect to

the A-set {b2} and the set B. If L = ∅ and G[L] = ({i}, ∅) then w∗
L = {i}; if R = ∅

then w∗
R is defined likewise.

Notice that the representative w∗ is unique under the assumption made in Re-
mark 4.1.19. Furthermore, it follows immediately from the recursive definition of w∗

that

w∗ =arg max
w∈WD

min
e=(i,j)∈w,

(i,j)�=(b1,b2)

{f+
ij }

=arg max
w∈WD

min
e=(i,j)∈w,

(i,j)�=(b1,b2)

{f+
ij − cmax}.

(4.38)

Finally, we turn our attention to the residuum current which results from updating
the effective current of each edge along the representative pathway w∗

1 = w∗ by
subtracting the min-current c

(1)
max = cmax. That is, the residuum current is defined

as

f r,1
ij =

{
f+

ij − c
(1)
max, if (i, j) ∈ w∗

1

f+
ij , otherwise.

(4.39)
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The graph G1 = G{f r,1
ij } induced by the residuum current satisfies the current

conservation property in analogy to (4.21). It possesses again a bottleneck, say b̃, a
set of dominant pathways and a representative pathway, say w∗

2. If we denote the
min-current of w∗

2 with respect to the residuum current by c
(2)
max then it should be

clear that cmax = c
(1)
max > c

(2)
max holds. The property (4.38) of w∗

1 guarantees that c
(2)
max

is maximal with respect to all possible residuum currents. We can obviously repeat
this procedure by introducing the residuum current f r,2

ij by subtracting c
(2)
max from

f r,1
ij along the edges belonging to w∗

2, and so on. The resulting iteration terminates
when the resulting induced graph GM+1 = G{f r,M+1

ij } no longer contains reaction
pathways and leads to a hierarchical enumeration (w∗

1, w
∗
2, . . . , w

∗
M ) of the set W of

all reaction pathways such that

c(i)
max > c(j)

max, 0 ≤ i < j ≤ M,

M∑
i=1

c(i)
max = kAB,

(4.40)

where the last identity simply follows from the following equation for the rates
kAB(Gi) associated with the graphs G1, . . . , GM :

kAB(Gi) = kAB(Gi−1) − c(i)
max,

where G0 denotes the original graph G{f+
ij }, and kAB(GM+1) = 0.

Remark 4.1.22. The composition of the total rate into fraction coming from cur-
rents along reactive pathways is a quite general concept in graph theory. We herein
just presented a specification of it. We refer the interested reader to, e.g. [1], Section
3.5.

4.1.9. Relation with Laplacian Eigenmaps and Diffusion Maps

Let us briefly comment about the relevance of our results in the context of data
analysis (in particular data segmentation and embedding, i.e., low dimensional rep-
resentation). Recently, two classes of methods have been introduced to this aim:
Laplacian eigenmaps [84, 62, 78, 6, 26] and diffusion maps [16, 55]. The idea behind
these approaches is quite simple. Given a set of data points, say S = {x1, x2, . . . , xn},
one associates a weight induced graph with weight function w(x, y). This graph is
constructed locally, e.g. by connecting all points with equal weights that are below a
cut-off distance from each other. These weights are then renormalized by the degree
of each node, which means that w(x, y) can be re-interpreted as the stochastic ma-
trix of a continuous Markov chain. Alternatively, it is also possible to interpret the
weights as rates and thereby build the generator of a continuous-time Markov chain.
In both cases, the properties of the chain are then investigated via spectral analysis
of the stochastic matrix or the generator. In particular, the first N eigenvectors with
leading eigenvalues, say, φj(x), j = 1, . . . , N can be used to embed the chain into
R

N via: x �→ (φ1(x), . . . , φN (x)). The eigenvectors can also be used to segment the
original data set into important components (segmentation).

As explained in the introduction, the spectral approach is particularly relevant
if the Markov chain displays metastability, i.e. if their exists one or more clusters
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of eigenvalues which are either very close to 1 (in the case of discrete-time Markov
chains) or 0 (in the case of continuous-time Markov chains). When the chain is
not metastable, however, the meaning of the first few eigenvectors is less clear,
which makes the spectral approach less appealing. In these situations, TPT may
provide an interesting alternative. For instance, if several points (or groups of points)
with some specific properties can be singled out in the data set, by analyzing the
reaction between pairs of such groups, one will disclose global information about
the data set (for instance, the committor functions between these pairs may be
used for embedding instead of the eigenvectors). The current of reactive trajectories
and dominant reaction pathways will also provide additional information about the
global structure of the data set which are not considered in the spectral approach.

4.2. Algorithmic Aspects

In this section we explain the algorithmic details for the computation of the various
quantities in TPT. Given the generator L and the two sets A and B, the station-
ary distribution π = (πi)i∈S is computed by solving πT L = 0, whereas the discrete
forward and backward committors, q+ = (q+

i )i∈S and q− = (q−i )i∈S , are computed
by solving (4.11) and (4.15). Solving these equations numerically can be done using
any standard linear algebra package. These objects allow one to compute the prob-
ability distribution of reactive trajectories mR = (mR

i )i∈S in (4.6), its normalized
version mAB = (mAB

i )i∈S in (4.8), the probability current of reactive trajectories
fAB = (fAB

ij )i,j∈S in (4.19), and the effective current f+ = (f+
ij )i,j∈S in (4.28). This

also gives the reaction rate kAB via (4.25) or (4.27). Next we focus on the computa-
tion of the bottlenecks and representative dominant reaction pathways which is less
standard.

4.2.1. Computation of Dynamical Bottlenecks and Representative
Dominant Reaction Pathways

From the definition in (4.35) of the bottleneck b = (b1, b2) associated with the set of
dominant reaction pathways WD, it follows that

f+
e > f+

b , ∀e ∈ ED, e �= b,

where f+ = (f+
ij )i,j∈S is the effective current and ED is the edge set of the induced

graph G = G[WD]. This observation leads to a characterization of the bottleneck
which is algorithmically more convenient. Let Esort = (e1, e2, . . . , e|E|) be an enu-
meration of the set of edges of G = G{f+} sorted in ascending order according
to their effective current. Then the edge b = em in Esort is the bottleneck if and
only if the graph G(S, {em, . . . , e|E|}) contains a reaction pathway but the graph
G(S, {em+1, . . . , e|E|}) does not. The bisection-algorithm stated in Algorithm 1 is
a direct consequence of this alternative characterization of the bottleneck and is
related to the capacity scaling algorithm ([1], section 7.3) for solving the maximum
flow algorithm. For an alternative algorithm in the context of distributed computing
which is based on a modified Dijkstra algorithm see [43].

We also have:
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Algorithm 1 Computation of the bottleneck
Input: Graph G = G{f+}.
Output: Bottleneck b = (b1, b2).

(1) Sort edges of G according to their weights in ascending order
=⇒ Esort = (e1, e2, . . . , e|E|).

(2) IF the edge e|E| connects A and B THEN RETURN bottleneck b := e|E|.
(3) Initialize l := 1,r := |E|.
(4) WHILE r − l > 1
(5) Set m := � r−l

2 �, E′(m) := {em, . . . , e|E|}.
(6) IF there exists an reaction pathway in G(S,E′(m))
(7) THEN l := m ELSE r := m.
(8) ENDWHILE
(9) RETURN bottleneck b := el.

Lemma 4.2.1. The computational cost of Algorithm 1 in the worst case is O(n log n)
where n = |E| denotes the number of edges of the graph G = G{f+}.

Proof. Assume that n = 2k, k > 1. First notice that the sorting of the edges of
G = G{f+} can be performed in O(n log n). In the worst case scenario, the edge
e1 ∈ ESort is the bottleneck.1 When this is the case, the number of edges in the jth

repetition of the while-loop would be

n

2j
,

and we would have k − 1 repetitions. The cheapest way to determine whether there
exists an reactive trajectory is to perform a breadth-first search starting in A; the
computational cost of that step depends only linearly on the number of edges to be
considered, such that we deduce for the worst case effort T (n) of the entire procedure

T (n) = O(kn) + O(
n

2
) + O(

n

4
) + . . . + O(

n

2k−1
)

= O
(
kn + n(

1
2

+
1
4

+ . . . +
1

2k−1
)
)

= O(kn)

which by noting that k = log(n) ends the proof.

The algorithm for computing the unique representative pathway w∗ of the set of
dominant reaction pathways is a direct implementation of the recursive definition
of w∗ given in (4.37). Recalling that WD can be decomposed as stated in (4.36)
and assuming that f+ takes different values for every edge (i, j), we end up with
the Algorithm 2. A rough estimation of the computational cost of this algorithm is
O(mn log n) where m is the number of edges of the resulting representative pathway
w∗ and n = |E|.

1We are aware that the edge e1 could never be the bottleneck unless all effective currents are equal
which is by Remark 4.1.19 excluded. Nevertheless, the following reasoning with respect to e1

leads only to a slight over-estimation of the computational cost.

74



4.3. Illustrative Examples

Algorithm 2 Representative Pathways
Input: Graph G = G{f+}, set A, set B.
Output: Representative w∗ = (w∗

L, w∗
R) of WD(G).

(1) Determine bottleneck b = (b1, b2) in G via Algorithm 1.
(2) Determine all edges EAB of dominant reaction pathways in G.

(3) Set w∗
L :=

{
b1, if b1 ∈ A

result of the recursion with (G[EAB], A, {b1}), if b1 /∈ A.

(4) Set w∗
R :=

{
b2, if b2 ∈ B

result of the recursion with (G[EAB], {b2}, B), if b2 /∈ B.

(5) RETURN (w∗
L, w∗

R)

4.3. Illustrative Examples

In this section we illustrate the discrete transition path theory on three examples.
The first is the discrete equivalent of a diffusion process in the three-hole potential,
which we chose because the results of discrete TPT can directly be compared with
the results in Section 3.7.1. This example also establishes a link to the case of
continuous state space. The second example deals with a problem from molecular
dynamics, the glycine-molecule, and shows that TPT allows to characterize reaction
pathways between molecular conformations. In this example we follow two different
approaches: In the first approach the dynamics of glycine is given by an incomplete
observation of the system in a certain time interval, meaning that we have to deal
with the issue of reconstructing the generator of the process given the time series.
In the second approach we utilize a discrete analog of diffusion in a free energy
landscape to approximate the effective dynamics of glycine in the torsion angle space.
The third example arise from the modeling of a genetic toggle switch in chemical
kinetics.

4.3.1. Discrete Analog of a Diffusion in a Potential Landscape

In Chapter 3, TPT for diffusion processes was illustrated on the example of a particle
whose dynamics is governed by the Smoluchowski dynamics⎧⎪⎪⎨

⎪⎪⎩
dx(t) = −∂V (x(t), y(t))

∂x
dt +

√
2β−1 dWx(t)

dy(t) = −∂V (x(t), y(t))
∂y

dt +
√

2β−1 dWy(t),
(4.41)

where (x(t), y(t)) ∈ R
2 denotes the position of the particle, V (x, y) is the potential,

and the remaining parameters are as in (3.22).
For V (x, y) we chose again the three-hole potential

V (x, y) = 3e−x2−(y−1
3 )2 − 3e−x2−(y−5

3 )2

− 5e−(x−1)2−y2 − 5e−(x+1)2−y2

+
2
10

x4 +
2
10

(y − 1
3)4

(4.42)
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which has been already considered in Section 3.7.1. As one can see in Figure 4.3 the
potential (4.42) has two deep minima approximately at (±1, 0), a shallow minimum
approximately at (0, 1.5), three saddle points approximately at (±0.6, 1.1), (−1.4, 0)
and a maximum at (0, 0.5). As already mentioned, the process defined by (4.42) is
ergodic with respect to the invariant measure

dμ(x, y) = Z−1 exp (−βV (x, y))dxdy, (4.43)

where Z =
∫

R2 exp (−βV (x, y))dx dy is a normalization constant. If β is small
enough, the measure is strongly peaked on the deep minima of the potential (see
the left panel of Figure 4.4), and the system displays metastability, i.e. the parti-
cle makes transitions between the vicinity of these minima only very rarely. In it
was shown that TPT can be used to describe the mechanism of the transition and
compute their rates. In particular, it was shown that transitions preferably occur by
the upper channel visible in Figure 4.3 when β is very small, but that they proceed
by the lower channel when β is somewhat increased. The reasons for this entropic
switch were elucidated in Section 3.7.1 and we refer the reader to this section for
details. Our purpose here is to apply TPT on a discrete analog of (4.41).

In order to construct this analog, we exploit the well-known fact that a diffusion
process can be approximated by a Markov jump process after discretization of state
space. For details on the derivation of the generator, given in (4.44), see Section A.3
in the Appendix. Here we approximate the dynamics (4.41) on a two dimensional,
rectangular domain Ω = [a, b]× [c, d] ⊂ R

2 via a Birth-Death process on the discrete
state space (mesh) S = (a + hZ × b + hZ) ∩ ([a, b] × [c, d]) where the mesh width
h > 0 is chosen such that the corners of Ω are covered by the mesh S. The generator
is given by

(Lf)(x, y) = k+
x (x + h, y)(f(x + h, y) − f(x, y))

+ k−
x (x − h, y)(f(x − h, y) − f(x, y))

+ k+
y (x, y + h)(f(x, y + h) − f(x, y))

+ k−
y (x, y − h)(f(x, y − h) − f(x, y)),

(4.44)

where

k+
x (x + h, y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

β−1

h2
− 1

2h

∂V (x, y)
∂x

, if x ∈ (a, b) ∩ (a + hZ)

0, if x = b
1
h

, if x = a

k−
x (x − h, y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

β−1

h2
+

1
2h

∂V (x, y)
∂x

, if x ∈ (a, b) ∩ (a + hZ)

0, if x = a
1
h

, if x = b

and the coefficients k+
y and k−

y are defined analogously with respect to ∂V (x, y)/∂y.
In the left panel of Figure 4.4 we show the level sets of the density function
exp(−βV (x, y)) associated with the Gibbs measure (4.43). In the right panel of
Figure 4.4 we illustrate the stationary distribution π = (πi)i∈S of the Birth-Death
process as a box plot.

We now present the results of TPT on this example. The panels in Figure 4.5
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Figure 4.3.: The figure shows the level sets of the three-hole potential given in (4.42).
In principal, the dynamics can make a transition between the two main
minima via the direct lower channel or via the upper channel through
the shallow minima.
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Figure 4.4.: Left: Contour plot of the equilibrium density function
exp(−βV (x)). Right: Box-plot of the stationary distribution (πi)i∈S .
Results for β = 1.67 and a 20 × 20 mesh discretization.
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Figure 4.5.: Box-plot of the discrete committors. Left: Forward committor q+. Right:
Backward committor q−. Results for β = 1.67 and a 20 × 20 mesh
discretization.
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Figure 4.6.: Left: Box-plot of the discrete probability distribution of reactive tra-
jectories mAB. Right: Visualization of the effective current f+ between
mesh points (boxes). An edge (i, j) with positive effective current f+

ij is
depicted by a triangle pointing from the box which corresponds to the
state i towards the box identified with j ∈ S. The darker the color of a
triangle, the higher the effective current is.

show the box plots of the forward committor q+ (left panel) and the backward
committor q− (right panel). The set A ⊂ S is chosen such that it sufficiently cov-
ers the region around the left minimum. The set B is defined analogously for the
right minimum. The symmetry of the potential together with the symmetry of the
sets A and B implies that the particular 1

2 -committor surface, defined as the set
{i ∈ S : q+

i = 0.5}, should correspond to the symmetry axis in y-direction, which
is confirmed in Figure 4.5. Notice how the presence of the shallow minima in the
upper part of the potential spreads the “level sets” of q+ in this region. This fol-
lows from the fact that the reactive trajectories going through the upper channel
get trapped in the shallow well for a long period of time before exiting towards the
set B. Next, we turn our attention to the probability distribution of the reactive
trajectories, shown in the left panel of Figure 4.6. One can see that the distribution
has a peak in the upper shallow minima whereas the effective current, visualized in
the right panel of Figure 4.6, suggests that most of the reactive trajectories prefer
the lower channel. This again can be explained by the fact that the reactive trajec-
tories going through the upper channel get trapped in the shallow well whereas the
reactive trajectories in the lower channel just need to overcome the barrier. We end
this example by discussing the family of dominant reaction pathways resulting from
the procedure described in the end of Section 4.2.1. In Figure 4.7 we plot the fam-
ily of reaction pathways which covers about 50% of the probability flux of reactive
trajectories for two different temperature, respectively. The pathways are colored
according to the values of their min-currents. The darker the color, the larger the
current conducted by the corresponding reaction pathway is. At the high temper-
ature (β = 1.67, left panel), the reaction happens mostly via the lower channel,
whereas at low temperature (β = 6.67, right panel) it occurs mostly via the upper
channel. This is consistent with the results presented in [73] and in Section 3.7.1.
Finally, we present in Figure 4.8 the family of dominant reaction pathways in the
perturbed three-hole potential which has already been considered in Section 3.7.1.
We used the same perturbation of three-hole potential as well as the same (discrete)
sets A and B as for the smooth three-hole potential above. As one can see, the
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Figure 4.7.: Reaction pathway families for two different temperatures. Both fam-
ilies cover about 50% of the probability flux of reactive trajectories,
respectively. The pathways are colored according to the values of their
min-currents. The darker the color the more current is conducted by
the corresponding reaction pathway. Left: Reaction pathway family at
a high temperature β = 1.67. Right: Reaction pathway family at a low
temperature β = 6.67. Results for a 60× 60 mesh discretization; for the
sake of illustration the mesh is chosen finer than before.

transition behavior described in Section 3.7.1 is recovered by the discrete TPT.

4.3.2. Molecular Dynamics : Glycine

In this example we use discrete TPT to study conformation changes of the glycine-
molecule which is shown in ball-and-stick representation in the left panel of Fig-
ure 4.9. We have seen that the essential object in discrete TPT is the generator
of the considered Markov jump process. Unlike in the previous example, here the
generator of the process is not directly available. Nevertheless, we will present two
approaches both yielding a generator of a Markov jump process which describes the
dynamics of glycine in terms of the torsion angles Φ and Ψ at room temperature
300K.

In the first approach the dynamics of the glycine-molecule in solvent is given by a
time series of the two torsion angles Φ and Ψ. The main challenge here was to esti-
mate a generator of a Markov jump process representing the dynamics on a coarse
grained state space of the torsion angle space (Φ, Ψ). The details of the estimation
procedure are described in Chapter 5. For a more detailed analysis of the confor-
mation see [61]. In the second approach we apply the technique presented in the
previous section in order to approximate the dynamics of glycine in an interpolated
discrete free energy landscape via a Birth-Death process.

Time Series Approach

The time series used herein was extracted out of a molecular simulation of the
glycine-molecule embedded in a cubic box of edge length 3.51 nm with 1402 water
molecules. The integration of the trajectory with total length T = 5 nanoseconds was
realized with τ = 2 fs time steps in the Leapfrog-integration scheme with GROMACS
force field [8, 59] at room temperature of 300K. In the right panel of Figure 4.9 we
give a snapshot of a trajectory where the glycine-molecule is shown together with
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Figure 4.8.: Reaction pathway families in the perturbed three-hole potential in (3.46)
at high temperatures β = 1.67 (left panel) and at low temperature
β = 6.67 (right panel). We used the same perturbation of the potential
as in Section 3.7.1. Both families cover about 50% of the probability flux
of reactive trajectories, respectively. The pathways are colored according
to the values of their min-currents. The darker the color the more current
is conducted by the corresponding reaction pathway. Results for a 60×60
mesh discretization.

Φ
Ψ

Figure 4.9.: Left: The glycine-molecule shown in ball-and-stick representation and
the two torsion angles Φ and Ψ. Right: This panel shows a snapshot of
the respective trajectory where the glycine-molecule is shown together
with the nearest water molecules.
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Figure 4.10.: Left: Projection of the time series (all atomic positions) onto the torsion
angle space spanned by Φ and Ψ. Right: The Ramachandran plot of
the time series in the torsion angle space (Φ,Ψ) reveals the metastable
behavior of the dynamics. At first glance, the molecule attains four
main conformations where each conformation could be decomposed
further into four conformations. We will focus, however, on the four
main conformations.

the nearest water molecules. In order to ensure the Markov property later on, we
considered only every 100th step of the original trajectory. Before explaining how
we constructed a Markov jump process with discrete state space (and especially its
generator) out of this time series, let us give some background about this example.

Metastability and Conformation states A conformation of a molecule is under-
stood as a mean geometric structure of the molecule which is conserved on a large
time scale compared to the fastest molecular motions. From the dynamical point of
view, a conformation typically persists for a long time (again compared to the fastest
molecular motions) such that the associated subset of configurations is metastable [82].
In the left panel of Figure 4.10 we show the projection of the time series of the torsion
angles Φ and Ψ which clearly reveals the metastable behavior. The Ramachandran
plot of the time series in the right panel of Figure 4.10 illustrates the dependency
of the conformation states on the two torsion angles. At first glance, the molecule
attains four main conformations in the torsion angle space.

Generator Estimation The first step towards the application of discrete TPT is to
determine a coarse grained model of the dynamics in the torsion angle space based
on the given time series. We discretized the two-dimensional torsion angle space
with a 20×20 equidistant box discretization and identified each element of the time
series with the box by which it is covered. Assuming that the resulting discrete time
series is Markovian, we estimated a reversible Markov jump process on the discrete
state space of boxes which most likely explains the discrete time series. This is done
by using an efficient generalization of the maximum-likelihood method presented in
detail in Chapter 5. For details on the estimation of the generator for this example
see Section 5.4.5.

In the following, we denote by L̃MLE = (l̃ij)i,j∈S the infinitesimal generator of the
estimated Markov jump process. For the sake of illustration, we show in the left panel
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Figure 4.11.: Left: Box plot of the discrete free energy, −log(πi), where (πi)i∈S is the
stationary distribution computed from the estimated generator L̃MLE .
The lighter the color of a box is the more probable to encounter the
equilibrated jump process in the corresponding state. Right: The de-
composition of the torsion angle space into four metastable subsets
resulting from PCCA .

of Figure 4.11 the discrete free energy, −log πi, where (πi)i∈S is the stationary distri-
bution computed from the estimated generator L̃MLE with respect to a 20× 20 box
discretization. The lighter the color of a box is the more probable it is to encounter
the equilibrated process in the corresponding state. In order to determine the num-
ber of metastable subsets and the subsets itself, we have to look at the dominant
eigenvalues of the transition matrix P̃ (τ) = exp(τL̃MLE), τ = 2 · 10−13 as listed
in Table 5.3 in Section 5.4.5). The gap between the fourth and the fifth dominant
eigenvalue suggests a decomposition of the state space (torsion angle space) into
four metastable subsets. Algorithmically, the decomposition was performed via the
Perron Cluster Cluster Analysis (PCCA) [24, 17]. The symmetry of the resulting
four metastable subsets, as illustrated in the left panel of Figure 4.11, shows that
the estimated generator captures the dynamics in the coarse grained torsion angle
space.

Analysis within Transition Path Theory We were interested in the reaction path-
ways between two main conformations - the upper left one and the lower right one.
As the set B we chose the box in which the discrete free energy restricted on the
upper left conformation attains its minimum. The set A was selected analogously
with respect to the lower right conformation. The discrete forward committor q+

is given in the left panel of Figure 4.12. Comparison of the distribution of reactive
trajectories mAB (illustrated in the right panel of Figure 4.12) with the family of
dominant reaction pathways (right panel of Figure 4.13) reveals again that mAB is
insufficient to describe the effective dynamics from A to B. To see this, notice that
since we deal with a periodic boundary the distribution of reactive trajectories mAB

does not tell anything about the orientation of the direction in which a reaction
takes place.

The family of dominant reaction pathways which cover about 20% of the transition
rate is given in the left panel of Figure 4.13. The darker the color of a pathway the
more current it conducts from A to B. Each of the two darkest reaction pathways
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Figure 4.12.: Left: This figure shows the forward committor q+ computed via (4.11).
As the set A we chose the box (shown as a white box with black bound-
ary) which covers the peak of the restricted stationary distribution on
the lower right conformation. The set B for the upper left conformation
(shown as a white box) was chosen analogously. Right: Box plot of the
discrete probability distribution of reactive trajectories mAB.Results
are for an equidistant discretization of the torsion angle space into
20 × 20 boxes.

covers about 6% of the rate which shows that the upper and lower reaction channel
are more or less equivalent. That observation is consistent with the symmetry of the
glycine-molecule in terms of the considered torsion angles. The family of dominant
reaction pathways with respect to 30% of the reaction rate (shown in the right panel
of Figure 4.13) reveals that there exists an additional third reaction pathways with
an opposite orientation.

Free Energy Landscape Approach

In the timeseries approach we consider the dynamical information (the trajectory)
to derive the generator of the underlying process. In the free energy approach we
assume that the dynamics of the observables (here the two torsion angles) can be
described by a Smoluchowski dynamics in a free energy landscape associated with
these observables. For a short account to free energy with respect to Smoluchowski
dynamics see Section A.5 in the Appendix.

Suppose that we are given a periodic potential landscape V (Φ, Ψ) : [0, 2π] ×
[0, 2π] → R such that the dynamics in the torsion angles Φ and Ψ is governed by

⎧⎪⎨
⎪⎩

dΦ(t) = −∂V (Φ(t),Ψ(t))
∂Φ

dt +
√

2β−1 dWΦ(t)

dΨ(t) = −∂V (Φ(t), Ψ(t))
∂Ψ

dt +
√

2β−1 dWΨ(t).
(4.45)

Our crucial observation now is that the approach presented on the three-hole ex-
ample in Section 4.3.1 can straightforwardly be generalized to that situation. The
only difference for the approximation of the dynamics in (4.45) via a Birth-Death
process is that we have to incorporate periodic boundary conditions instead of re-
flecting boundary conditions. To be more precise, we discretized the square Ω =
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Figure 4.13.: Family of dominant reaction pathways which cover about 20%
(left panel) and 30% (right panel) of the reaction rate kAB. The darker
the color of a pathway the more current it conducts from A to B. For
the sake of illustration, the dominant reaction pathways are embedded
in the box plot of the discrete free energy. Each of the two darkest
reaction pathways covers about 6% of the rate which shows that the
upper and lower reaction channel are more or less equivalent which
is consistent with the symmetry of the glycine-molecule. The family
shown in the right panel reveals that there exists an additional third
reaction pathway, indicated by the long edge in the upper part of the
panel.

[0, 2π) × [0, 2π) with a total uniform mesh

Ωh = {(Φ0 + ih,Ψ0 + jh) : 0 ≤ i, j ≤ N}

such that

Φ0 ≡ (Φ0 + (N + 1)h) mod 2π and Ψ0 ≡ (Ψ0 + (N + 1)h) mod 2π.

The condition on the boundary mesh points accounts for the periodicity of the
torsion angle space. Then the generator L of the Birth-Death process is given by (cf.
(4.44) and Sect. A.3))

(Lf)(Φ,Ψ) = k+
Φ (Φ + h, Ψ)(f(Φ + h, Ψ) − f(Φ, Ψ))

+ k−
Φ (Φ − h, Ψ)(f(Φ − h, Ψ) − f(Φ,Ψ))

+ k+
Ψ(Φ, Ψ + h)(f(Φ, Ψ + h) − f(Φ,Ψ))

+ k−
Ψ(Φ, Ψ − h)(f(Φ, Ψ − h) − f(Φ,Ψ)),

(4.46)

where

k+
Φ (Φ + h, Ψ) =

β−1

h2
− 1

2h

∂V (Φ, Ψ)
∂Φ

, if Φ ∈ (0, 2π) ∩ (Φ0 + hZ)

k−
Φ (Φ − h, Ψ) =

β−1

h2
+

1
2h

∂V (Φ, Ψ)
∂Φ

, if Ψ ∈ (0, 2π) ∩ (Φ0 + hZ)

and the coefficients k+
Ψ and k−

Ψ are defined analogously with respect to ∂V (Φ, Ψ)/∂Ψ.
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Figure 4.14.: Left: The discrete free energy, − log πi, resulting from the time series
approach with respect to the decomposition of the torsion angle space
(Φ, Ψ) into 20× 20 boxes. Right: The continuous representation of the
discrete free energy via a Fourier ansatz.

Analysis within Transition Path Theory Our crucial step towards the comparison
of the time series approach with the free energy approach is to interpolate the
discrete free energy on a mesh consisting of the box centers of the torsion angle
space decomposition.

To be more precise, consider the 20 × 20 box-decomposition of the torsion an-
gle space (Φ, Ψ) from the analysis of the time series in the previous section. Let
(Φi, Ψi), i = 1, . . . , 202 denote the centers of a decomposition boxes. Since the time
series does not visit all boxes of the decomposition, the free energy for the empty
boxes (depicted as the white regions in left panel of Figure 4.14) is not defined. For
the numerical interpolation, however, we set the free energy of not visited boxes to
a sufficiently high value such that they result in a barrier for the diffusion dynamics.

Due to the periodicity of the torsion angle space, we can use a Fourier ansatz for
the numerical interpolation:

V (Φi,Ψi) = πi =
M∑

k,l=0

[
(ak sin(kΦi) + bk cos(kΦi))(cl sin(lΨi) + dl cos(lΨi))

]
,

where i = 1, , . . . , 202 and determine the coefficients ak, bk, cl, dl, 0 ≤ l, k ≤ M by
means of the least square method. The right panel in Figure 4.14 illustrates the
interpolated discrete free energy landscape2. For our numerical experiment we set
M = 12.

The main question is now if the Birth-Death process (given via the construction
in (4.46)) in the interpolated landscape exhibits the same transition behavior as
detected with the time series approach? To answer this question, we constructed
a generator L via (4.46) on a 70 × 70 (periodic) mesh discretization of the square
[0, 360] × [0.360]. The inverse temperature β was set such that it corresponds to
room temperature of 300K. As the set A, we chose the set of mesh points which
are covered by the single discretization box associated with the reactant state in
the time series approach. The B was chosen analogously. The forward committor q+

and the distribution mAB of reactive trajectories are given in Figure 4.15.
2For illustrative convenience, we present the results in a continuous manner (contour plots) rather

than using box plots as in the previous sections.
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Figure 4.15.: The left panel shows the committor function q+ with respect to the sets
A (bottom right) and B (top left). The distribution mAB is illustrated
via a contour plot in the right panel.
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Figure 4.16.: In this figure we illustrate two families of reaction pathways. The family
which covers 10% of the transition rate (left panel) reveals that there
are two dominant symmetric reaction channels. In the family with re-
spect to 20% (right panel) two additional reaction channels appear but
with opposite orientation.

Finally, we present in the panels of Figure 4.16 two families of reaction pathways,
one family with respect to 10% (left panel) of the rate kAB and the other family is
with respect to 20% (right panel). In comparison to the time series approach, one
can see that the symmetry of the two dominant reaction channels is reproduced and
more or less their spatial relation to each other (cf. right panel of Figure 4.13). The
family with respect to 20% of reaction rate clearly reveals two additional channels
where the upper one is consistent with the third channel in the time series approach.

At the end of this example, we want to point out that the (infinitesimal) generator
L in (4.46) can also be used to compute the objects of the continuous TPT since L
results from the finite differences discretization of the generator Lbw associated with
the diffusion process in (4.45). For example, in Figure 4.17 we show the transition
tubes resulting from the streamlines associated with the probability current in (3.28)
(cf. Sect. 3.1.5). As a dividing surface we chose a circle with radius r = 1 around the
center of the set A. The resulting tubes are consistent with the reaction pathways
found within the discrete setting.

The results of this section have shown that discrete TPT can be used to analyze
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Figure 4.17.: The transition tubes resulting from the streamlines associated with the
probability current in (3.28). Results for .

transition events in conformational dynamics. We have presented two different ap-
proaches - TPT in combination with the generator estimation and the free energy
approach. Both approaches lead to reasonably and comparable results.

4.3.3. Chemical Kinetics

In the last example, we consider a Markov jump process which arises as a stochastic
model of a genetic toggle switch consisting of two genes that repress each others’
expression [77].

The expression of the each of the two respective genes results in the production
of a specific type of protein; gene GA produces protein PA and gene GB protein PB.
Denote the number of available proteins of type PA by x and of type PB by y, the
model for the toggle switch proposed in [77] is a Birth-Death process on the discrete
state space S = (Z × Z) ∩ ([0, d1] × [0, d2]), d1, d2 > 0, whose generator is given by:

(Lf)(x, y) = c1(x + 1, y)(f(x + 1, y) − f(x, y))

+
x

τ1
(f(x − 1, y) − f(x, y))

+ c2(x, y + 1)(f(x, y + 1) − f(x, y))

+
y

τ2
(f(x, y − 1) − f(x, y)),

(4.47)

where

c1(x + 1, y) =

⎧⎨
⎩

a1

1 + (y/K2)n
, if x ∈ [0, d1)

0, if x = d1,

c2(x, y + 1) =

⎧⎨
⎩

a2

1 + (x/K1)m
, if y ∈ [0, d2)

0, if y = d2.

We refer to [77] for the biological interpretation of the parameters in (4.47). For
our numerical experiments, we used the parameters a1 = 156, a2 = 30, n = 3,m =
1, K1 = K2 = 1, τ1 = τ2 = 1, consistent with [77]. With these parameters the
system’s dynamical behavior is as follows: There are two ”metastable” states; in the
first of these only gene GA is expressed and protein PA is produced until a certain
number (around x = 155 for the parameters chosen) is reached which then is rather
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stable, while gene GB is repressed and almost no protein PB is produced (so that
typically y = 0 or y = 1). After some rather long period of fluctuation in this
metastable state the system is able to exit from it which leads to expression of gene
GB and repression of GA. Then the system gets into a metastable state where the
number of protein PB fluctuates around a certain non-vanishing number (y = 30 for
our parameters) and PA is rather not produced (typically x = 0 or x = 1).

It is well-known that in the limit of large protein numbers the dynamics of the
jump process or, more precisely, of the associated Master equation is given by a
deterministic model of the biochemical kinetics in terms of the associated concen-
trations. The authors in [77] also consider this deterministic model in order to get
a rough understanding of the switch dynamics. The model consists of two coupled
ordinary differential equations,

ẋ =
a1

1 + (y/K2)n
− x

τ1
,

ẏ =
a2

1 + (x/K1)m
− y

τ2
,

(4.48)

where the parameters are the same as in the stochastic model (4.47). For our par-
ticular choice of parameters the deterministic dynamics in (4.48) has two stable
stationary points approximately at (x, y) = (155, 0) and (x, y) = (0, 30).

For the sake of illustration, we illustrate in the left panel of Figure 4.18 the Gibbs
energy, − log π, of the Birth-Death process instead of its stationary distribution π
itself. Moreover, we neglected all states with almost vanishing stationary distribution
(depicted by the white region) and in order to emphasize the states of interest, we
chose a log-log representation. The color scheme is chosen such that the darker
the color of a region the more probable to find the process there. One can clearly
see that the process spends most of its time near the two metastable core sets
(x, y) ∈ {(155, 0), (155, 1)} and (x, y) ∈ {(0, 30), (1, 30)}.

We were interested in the reaction from the set A = {(155, 0), (155, 1)} towards the
set B = {(0, 30), (1, 30)}. The different shapes of the level sets of the discrete forward
and backward committor, as shown in the left and right panel of Figure 4.19, indicate
the high non-reversibility of the Birth-Death process. Notice that the geometry of
the level sets of the forward committor q+ looks very similar to the geometry of the
eigenvector associated with the first non-trivial right eigenvalue of L, as plotted in
the right panel of Figure 4.18. Finally, the edges of the three most dominant reaction
pathways are plotted in the right panel of Figure 4.20. Again, the reaction pathways
deviate from the channel which is suggested by the distribution mAB of reactive
trajectories, shown in the left panel of Figure 4.20.
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Figure 4.18.: Left: Contour plot of the discrete free energy, −logπi, of the Birth-
Death process (4.47) on the state space S = Z×Z∩ ([0, 200]× [0, 60]).
The white region in the right upper part of the panel indicates the
subset of states with almost vanishing stationary distribution (all
boxes with distribution less than machine precision have been colored
white). Right: Contour plot of the eigenvector of the first non-trivial
right eigenvalue of L. Results for a1 = 156, a2 = 30, n = 3,m = 1, K1 =
K2 = 1, τ1 = τ2 = 1.
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Figure 4.19.: Contour plots of the discrete forward and backward committor. Due to
the logarithmic scaling, the set A = {(155, 0), (155, 1)} is depicted as a
vertical black line and the set B = {(0, 30), (1, 30)} as an ellipsoid. Left:
Discrete forward committor q+. Right: Discrete backward committor
q−.
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Figure 4.20.: Left: Contour plot of the distribution of reactive trajectories
mAB. Right: Edge plot of the three dominant reaction pathways which
cover about 6% of the current.
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