
2. Theory: Time-continuous Markov
Processes

The purpose of this chapter is to give an introduction to the theoretical framework
of time-continuous Markov processes on a continuous and a discrete state space.

2.1. Markov Diffusion Processes

2.1.1. Markov Processes

In this section we give a brief mathematical description of Markov processes. For a
detailed introduction see, e.g., [3],[86].

To begin at the beginning, a d-dimensional stochastic process {Xt, t ≥ 0} is a
collection of random variable assuming its values in R

d (for d ≥ 1) and the index t
is referred to as the time. Formally, {Xt, t ≥ 0} is defined on the probability space
(Ω,F , P) with Ω = {f : [0,∞) → R

d} is the set of R
d-valued functions defined on the

interval [0,∞), F is the sigma-algebra generated by the sets {f ∈ Ω : f(s) ∈ B}, 0 ≤
s < ∞,B ∈ Bd where Bd denotes the sigma algebra of Borel sets in R

d, P is the
probability measure defined by the finite-dimensional distributions of the process
{Xt, t ≥ 0} on the space (Ω,F) and Xt(ω) = ω(t) for all ω ∈ Ω. A sample path
(realization, trajectory) Xt(ω) of the stochastic process is therefore an R

d-valued
function defined on the time interval [0,∞). In the following, we shall denote briefly
the process by Xt.

Let FT for T ≥ 0 denote the sigma-algebra which is generated by the sets {f ∈
Ω : f(s) ∈ B}, 0 ≤ s < T,B ∈ Bd. A stochastic process Xt is called Markov process
if the so-called Markov property is satisfied:

P(Xt ∈ B|Fs) = P(Xt ∈ B|Xs), ∀ 0 ≤ s < t,∀ B ∈ Bd. (2.1)

A verbal formulation of the Markov property (2.1) is as follows [3]:

If the state of the process at a particular time s (the presents) is known,
additional information regarding the behavior of the process at r < s (the
past) has no effect on our knowledge of the probable development of the
process at t > s (in the future).

A Markov process is called a homogeneous Markov process if the right hand side
in (2.1) does only depend on the time difference (t − s), i.e.

P(Xt+h ∈ B|Xt) = P(Xh ∈ B|X0), ∀ 0 ≤ t, h, ∀ B ∈ Bd.

We write X0 ∼ v0 if the Markov process Xt is initially distributed according to the
probability density v0, i.e. if P(X0 ∈ B) =

∫
B v0(x)dx for all B ∈ Bd.
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2. Theory: Time-continuous Markov Processes

Let Xt be a homogeneous Markov process with initial distribution v0. The proba-
bility P(Xt ∈ B) to observe Xt at the time T in the subset B ⊂ Bd of the state space
is given by

P(Xt ∈ B) =
∫

Rd

p(t, x,B)v0(x)dx,

where the function p : [0,∞)×R
d×Bd → [0, 1] is called stochastic transition function

and is defined according to

p(s, x,B)
def
= P(Xs ∈ B|X0 = x), s ∈ [0,∞), x ∈ R

d,B ∈ Bd. (2.2)

The function p : [0,∞) × R
d × Bd → [0, 1] has the following properties

1. x 
→ p(s, x,B) is measurable for fixed s ∈ [0,∞) and fixed B ∈ Bd.

2. B 
→ p(s, x,B) is a probability measure for fixed s ∈ [0,∞) and fixed x ∈ R
d.

3. p(0, x, Rd \ {x}) = 0 for all x ∈ R
d.

4. the Chapman-Kolmogorov equation

p(t + s, x,B) =
∫

Rd

p(t, x, dz)p(s, z,B) (2.3)

holds for all t, s ∈ [0,∞), x ∈ R
d and B ∈ Bd.

We say that the Markov process Xt admits an invariant probability measure μ, if∫
Rd

p(t, x,B)μ(dx) = μ(B) ∀ t ∈ [0,∞), ∀ B ∈ Bd. (2.4)

In many applications, it is important to guarantee that the Markov property (2.1)
even holds if the fixed time s is replaced by a stopping time. A random variable
ν : Ω → R

+ ∪ {0} is said to be a stopping time with respect to the Markov process
Xt if

{ν ≤ t} = {ω ∈ Ω : ν(w) ≤ t} ∈ Ft, ∀t ≥ 0.

In words, it should be possible to decide whether or not ν ≤ t has occurred on the
basis of the knowledge of the process up to the time t. A time-homogeneous Markov
process Xt has the strong Markov property with respect to a stopping time ν if,

P(Xν+h ∈ B|Xν) = P(Xh ∈ B|X0), ∀t, h ≤ 0, ∀ B ∈ Bd. (2.5)

2.1.2. The Infinitesimal Operator

To every homogeneous Markov process Xt one can assign a semigroup of Markov
operators {Tt, t ≥ 0}, defined for any suitable function u : R

d → R by

Ttu(x)
def
= Ex [u(Xt)] =

∫
Rd

u(y)p(t, x,dy), (2.6)

where Ex[u(Xt)] denotes the expectation of the observable u at time t conditional
on X0 = x. Moreover, the operator T0 is the identity operator and the semigroup
property, that is,

Ts+t = TsTt = TtTs, ∀t, s ∈ [0,∞)
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2.1. Markov Diffusion Processes

follows from the Chapman-Kolmogorov equation (2.3). The generator Lbw of a ho-
mogeneous Markov process Xt is defined by an operator representing the derivative
of the family {Tt, t ≥ 0} at the point t = 0,

Lbwu(x)
def
= lim

t↓0
Ttu(x) − u(x)

t
. (2.7)

The domain DLbw
of definition of the operator Lbw is a subset of the space of bounded

measurable scalar functions defined on R
d and consists of all functions for which the

limit in (2.7) exists. The quantity Lbwu(x) is interpreted as the mean infinitesimal
rate of change of u(X0) in case X0 = x.

2.1.3. Diffusion Processes

Diffusion processes are special cases of Markov processes with continuous sample
functions. There are basically two different approaches to the class of diffusion pro-
cesses. On the one hand, one can define them in terms of the conditions on the
stochastic transition function introduced above. On the other hand, one can study
the state Xt itself and its variation with respect to time. This leads to a stochastic
differential equation. That is what we shall do in the present section. A detailed
introduction to stochastic differential equation can be found in, e.g., [70, 40].

In what follows, we restrict ourselves to time-homogeneous Markov diffusion pro-
cesses Xt which are solutions or (or which are generated by) the stochastic differ-
ential equation (SDE) of the form

dXt = b(Xt)dt + σ(Xt)dWt, (2.8)

where Xt ∈ R
d and Wt = (W 1

t , . . . , W d
t ) is a d-dimensional standard Wiener process

(see definition A.6.1 in the Appendix). The real vector field b : R
d → R

d is called
the drift field or mean velocity field of the diffusion. The real symmetric matrix
a(x) = (aij(x)) ∈ R

d×d, defined for all x ∈ R
d via the real matrix σ(x) ∈ R

d×d

according to

a(x)
def
=

1
2
σ(x)σ(x)T (2.9)

is called the diffusion matrix. Here σT (x) denotes the transposed matrix of the real
matrix σ(x).

Assumption 2.1.1. Henceforth, we make the following additional assumptions on
the coefficients of the SDE (2.8):

• The diffusion matrix a(x) is for all x ∈ R
d non-negative definite, i.e.,

d∑
i,j=1

aij(x)ξiξj ≥ 0, ∀ξ ∈ R
d. (2.10)

• The drift field b(x) and the diffusion matrix a(x) are such that there exists an
unique solution of (2.8). (See Theorem (A.6.1) in Appendix).
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2. Theory: Time-continuous Markov Processes

• The drift field b(x) and the diffusion matrix a(x) are such that the diffusion
process Xt is ergodic with respect to a unique invariant probability measure
dμ(x) = ρ(x)dx, i.e.,

lim
T→∞

1
T

∫ T

0
f(Xs)ds =

∫
Rd

f(y)ρ(y)dy (2.11)

for all f ∈ L1(Rd).

2.1.4. Reversed-time Diffusion Process

Let {Xt, 0 ≤ t ≤ T}, T > 0 be a Markov diffusion process, satisfying the SDE

dXt = b(Xt)dt + σ(x)dWt, 0 ≤ t ≤ T

and denote by v(t, x) the probability density of the law of Xt at time t, i.e.,

P[Xt ∈ C] =
∫

C
v(t, y)dy, ∀C ∈ Bd.

A Markov process remains a Markov process under time reversal, i.e., the reversed-
time process {XR

t , 0 ≤ t ≤ T} according to

XR
t

def
= XT−t

is again a Markov process, but in general the diffusion property is not preserved.
Under mild conditions on the drift field b(x), the matrix σ(x) and the probability
density v0(x) of the law of X0, it is proven in [47] that the reversed-time process
XR

t is again a Markov diffusion process. In particular, it is shown that XR
t satisfies

a SDE
dXR

t = bR(t,XR
t )dt + σ(XR

t )dWt (2.12)

where the time-dependent reversed drift field bR(t, x) : R
d+1 → R

d is given by

bR(t, x) = −b(x) +
2

v(T − t, x)
div

(
a(x)v(T − t, x)

)
. (2.13)

If the diffusion process {Xt, 0 ≤ t ≤ ∞} admits an invariant probability measure μ,
induced by the probability density ρ(x), then (2.13) reduces to

bR(x) = −b(x) +
2

ρ(x)
div

(
a(x)ρ(x)

)
(2.14)

and dμ(x) = ρ(x)dx is the invariant probability measure of the reversed process too.
If the diffusion process Xt is such that

b ≡ bR

then the original process Xt and the reversed process XR
t are statistically indistin-

guishable and the process Xt is called reversible.
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2.1. Markov Diffusion Processes

2.1.5. Backward and Forward Equations

For a Markov diffusion process Xt of the form (2.8), the infinitesimal operator Lbw is
a linear second order partial differential operator whose coefficients are determined
by the drift field b(x) and the diffusion matrix a(x),

Lbwu =
d∑

i,j=1

aij
∂2u

∂xi∂xj
+

d∑
i=1

bi
∂u

∂xi
(2.15)

acting formally on the space of twice partially differentiable functions u : R
d → R.

The first double sum in (2.15) is called the principle part of the differential operator.
Next, we establish the relation between the semigroup {Tt, 0 ≤ t < ∞} and the

partial differential operator Lbw.

Theorem 2.1.1. ([3], page 42-43) Let g : R
d → R denote a continuous bounded

scalar function such that the function u : [0,∞) × R
d → R according to

u(t, x)
def
= Ex [g(Xt)]

is continuous and bounded, as are its derivatives ∂u/∂xi and ∂2u/∂xi∂xj. Then
u(t, x) satisfies the Kolmogorov’s backward equation⎧⎨

⎩
∂u

∂t
= Lbwu in (0,∞) × R

d

u(0, ·) = g on R
d.

(2.16)

Loosely spoken, the backward equation describes the evolution of conditional ex-
pectations of observables with respect to Xt. The evolution of the probability density
of the law of a diffusion process Xt is governed by the Kolmogorov’s forward equation,
also known as Fokker-Planck equation.

Theorem 2.1.2. ([57], page 360) If the functions σij, ∂σij/∂xk, ∂2σij/∂xk∂xl, bi,
∂bi/∂xj, ∂v/∂t, ∂v/∂xi, and ∂2v/∂xi∂xj are continuous for t > 0 and x ∈ R

d, and
if bi, σij and their first derivatives are bounded, then v(t, x) satisfies the equation⎧⎨

⎩
∂v

∂t
= Lfwv in (0,∞) × R

d

v(0, ·) = v0 on R
d,

(2.17)

where X0 ∼ v0 and the operator Lfw is a linear second order partial differential
operator, defined according to

Lfwv
def
=

d∑
i,j=1

∂2(aijv)
∂xi∂xj

−
d∑

i=1

∂(biv)
∂xi

=
d∑

i=1

∂

∂xi

⎡
⎣ d∑

j=1

∂(aijv)
∂xj

− biv

⎤
⎦ .

(2.18)

Notice, that the probability density function ρ of the invariant measure μ is the
steady state solution of the Fokker-Plank equation (2.17), i.e.,

Lfwρ(x) = 0, ∀x ∈ R
d.
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2. Theory: Time-continuous Markov Processes

Remark 2.1.2. The generator of a Markov diffusion process plays a key role in
Transition Path Theory. For the sake of a compact presentation, we introduce a
compact notation for differential operations on functions. Let u : R

d → R then the
Nabla-operator ∇ is defined as

∇u = (
∂u

∂x1

, . . . ,
∂u

∂xd

)

and the Laplace-operator Δ is given by

Δu =
d∑

i=1

∂2u

∂2xi
.

Moreover, we abbreviate the divergence of a vector field b : R
d 
→ R

d by

∇ · b def
= div(b) =

d∑
i=1

∂bi

∂xi

.

The divergence ∇ · a of a matrix a(x) = (a(x)ij) ∈ R
d×d is a vector field whose ith

component is defined by

(∇ · a)i
def
=

d∑
j=1

∂aij

∂xj

, i = 1, . . . , d.

Henceforth, we will write the generator (2.15) of a diffusion process as

Lbwu = a : ∇∇u + b · ∇u, (2.19)

where we additionally abbreviate the principle part of Lbw by

a : ∇∇u
def
=

d∑
i,j=1

aij
∂2u

∂xi∂xj

and b · ∇u denotes the scalar product between the vector field b(x) and the gradient
∇u(x). In the introduced notation, the operator Lfw, defined in (2.18), takes the
form

Lfwv = ∇ · [∇ · (av) − bv] ,

where the vector field

J(x)
def
= − [∇ · (a(x)v(x)

) − b(x)v(x)
]

(2.20)

is referred to as (probability) current.

2.1.6. Partial Differential Operators

In this work we are mainly concerned with two types of linear second order partial
differential operators (PDEs): the elliptic and the degenerate elliptic type.
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2.1. Markov Diffusion Processes

Consider the general linear second order partial differential operator

Gu = a : ∇∇u + b · ∇u + cu (2.21)

with real coefficients aij(x), bi(x), c(x) defined on a domain (open and connected)
Ω ⊂ R

d. Because the Hesse matrix of a function u ∈ C2(Rd) is symmetric, we may
assume without loss of generality that the matrix a(x) = (aij(x)) is symmetric.
Second-order PDEs are classified according the behavior of a quadratic form which
is associated with their principle parts.

Definition 2.1.3. The operator G is said to be of elliptic type (or elliptic) at a
point x0 ∈ Ω if the matrix a(x0) is positive definite, i.e.,

d∑
i,j=1

aij(x0)ξiξj > 0, ∀ ξ ∈ R
d : ξ �= 0. (2.22)

The operator G is called elliptic in Ω if the matrix a(x) is positive definite for all
x ∈ Ω. If there exists a positive constant θ > 0 such that

d∑
i,j=1

aij(x)ξiξj ≥ θ ‖ξ‖2

for all x ∈ Ω, ξ ∈ R
d, then we say that G is uniformly elliptic in Ω. If the matrix

a(x) is nonnegative definite, i.e.,

d∑
i,j=1

aij(x)ξiξj ≥ 0 (2.23)

for all x ∈ Ω, ξ ∈ R
d then G is called degenerate elliptic [90].

Remark 2.1.4. Notice that besides the elliptic operators, the class of degenerate
elliptic operators includes operators of parabolic types, first order equations, ultra-
parabolic equations, and others. In the literature, a degenerate elliptic operator is
also called semi-elliptic [70] or of nonnegative characteristic form [71].

2.1.7. Relation between Lbw and Lfw

In the language of the theory of partial differential equations, the operator Lfw (2.18)
is the formal L2-adjoint of the operator Lbw (2.15), i.e.,∫

Rd

vLbwu dx =
∫

Rd

uLfwv dx, ∀u, v ∈ L2(Rd), (2.24)

where L2(Rd) = {v : R
d → R :

∫
Rd |v(x)|2dx < ∞}. The operator Lbw is called

self-adjoint if Lbw ≡ Lfw. If the domain of integration in (2.24) is restricted to a
bounded domain Ω ⊂ R

d with a sufficiently smooth boundary ∂Ω then by virtue of
Green’s theorem the identity (2.24) takes the form∫

Ω
vLbwu dx =

∫
Ω

uLfwv dx +
∫

∂Ω
R · n̂ dσ∂Ω(x), (2.25)
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2. Theory: Time-continuous Markov Processes

where n̂ is the unit normal to the boundary ∂Ω pointing outward Ω, dσ∂Ω is the
surface element on ∂Ω and the real vector field R : R

d → R
d (the concomitant of

Lbw [79]) is given by

R = va∇u − ua∇v + uv[b −∇ · a]. (2.26)

The identity (2.25) will be useful to define adjoint boundary conditions in Sec-
tion 2.1.9.

2.1.8. Stochastic Representation of Solutions of Boundary Value
Problems

Theorem 2.1.1 states that for any suitable function g the function

u(t, x) = Ex [g(Xt)]

satisfies the initial value problem⎧⎨
⎩

∂u

∂t
− Lbwu = 0 in (0,∞) × Ω

u(0, ·) = g on Ω
(2.27)

where Lbw is the generator of the considered diffusion process Xt. In other words,
the solution of (2.27) can be expressed in terms of the Markov diffusion process
Xt associated with the generator Lbw. Therefore, it is natural to ask the following
question: Given a degenerate elliptic differential operator acting on C2(Rd) of the
form

Gu = a : ∇∇u + b · ∇u,

and let Ω ⊂ R
d be a domain (open and connected). Under what conditions on

the coefficients a(x), b(x) there exists a Markov diffusion process Xt such that the
solution u ∈ C2(Ω) ∩ C(Ω) of the Dirichlet-Poisson problem for given functions
f ∈ C(Ω) and g ∈ C(∂Ω), {

Gu = f in Ω
u = g on ∂Ω

(2.28)

can be expressed in terms of the Markov diffusion process Xt?
The idea of solution is to find a diffusion process Xt such that its generator Lbw

coincides with G on C2(Rd). This is formally achieved by setting

dXt = b(Xt)dt + σ(Xt)dWt, (2.29)

where σ(x) ∈ R
d×d is chosen such that

1
2σ(x)σ(x)T = a(x).

In order to guarantee that (2.29) admits a unique solution, we assume that the
conditions on b(x) and a(x) in Theorem A.6.1 are satisfied. In particular, conditions
which guarantee the Lipschitz-continuity of the square root of a(x) are given in [40],
Theorem 1.2, page 129.

The proof of the following uniqueness result is found in [70], page 168-169.
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Theorem 2.1.3. Suppose the function g ∈ C(∂Ω) is bounded and the function
f ∈ C(Ω) satisfies

Ex

[∫ τΩ

0
|f(Xs)|ds

]
< ∞, ∀ x ∈ Ω,

where τΩ = inf{t : Xt ∈ ∂Ω} is the first exit time from Ω. Suppose further that

τΩ < ∞, a.s. ∀x ∈ Ω.

Then if u ∈ C2(Ω) ∩ C(Ω) is a solution of the Dirichlet-Poisson problem (2.28) we
have

u(x) = Ex [g(XτΩ)] − Ex

[∫ τΩ

0
f(Xs)ds

]
. (2.30)

Next we address the question of existence of a solution of the Dirichlet-Poisson
problem in (2.28). Under the assumption that the operator G is uniformly elliptic
in Ω, the following Theorem holds:

Theorem 2.1.4 ([40], page 144). Let the conditions

• (aij), bi is uniformly Lipschitz-continuous in Ω

• f is uniformly Hölder continuous in Ω

• g is continuous on ∂Ω

• ∂Ω ∈ C2

Then (2.30) is the unique classical solution of the Dirichlet-Poisson problem in (2.28).

Unfortunately, it turned out that the existence problem for the case where G
is degenerate elliptic, but not elliptic is a difficult question. Up to our knowledge
there is no result which provides conditions under which a classical solution of (2.28)
exists. For results on the existence of weak solutions of (2.28) we refer the interested
reader to [71, 88].

2.1.9. Adjoint Boundary Condition

To motivate the concept of adjoint boundary condition, suppose we are interested
in the invariant probability distribution of a Markov diffusion process restricted on
a domain Ω ⊂ R

d. We mean by ”restricted” that we require that the process must
not escape the domain. As pointed out in Section 2.1.5, the probability density
function ρ(x) of the invariant probability distribution is the steady state solution of
the Kolmogorov forward equation (2.17), hence we are interested in the solution of
the equation

Lfwv = 0 in Ω.

In order to reflect that the process must not escape the domain Ω, we have to impose
additional conditions on the probability density function v(x) on the boundary ∂Ω.
The natural choice is to require that the probability current (2.20) is tangential to
the boundary which leads to the boundary conditions

BC(v) = (∇ · (av) − bv) · n̂ = 0 on ∂Ω, (2.31)
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where n̂ is the unit normal to ∂Ω pointing outward Ω. The adjoint boundary con-
ditions BC∗(u) = 0 are chosen such that both operator Lfw and Lbw are adjoint in
the domain Ω, i.e., ∫

Ω
vLbwudx =

∫
Ω

uLfwvdx.

Recalling the integral identity (2.25), the adjoint boundary conditions BC∗(u) = 0
are formally defined [28] as a minimal set of homogeneous conditions on u such that

BC(v) = BC∗(u) = 0 on ∂Ω =⇒ R · n̂ = 0 on ∂Ω.

A short calculation shows that the adjoint boundary conditions of the boundary
conditions (2.31) take the form

BC∗(u) = a∇u · n̂ = 0 on ∂Ω. (2.32)

Notice that in the case a = I = diag(1, . . . , 1) ∈ R
d×d the conditions (2.32) reduce

to the Neumann-conditions.

2.1.10. Langevin and Smoluchowski Dynamics

In this work, we are mainly concerned with two classes of time-homogeneous Markov
diffusion processes which arise from the stochastic modeling of the dynamics of
particles in a potential landscape. Both dynamics incorporate a physical temperature
and friction.

Langevin Dynamics

The first class of time-homogeneous diffusion process, we are interested in, is gen-
erated by the famous Langevin equation which is componentwise given in its tradi-
tional form by [76]

ẋi(t) = m−1
i pi(t),

ṗi(t) = −∂V (x(t))
∂xi

− γim
−1
i pi(t) +

√
2γiβ−1ζi(t)

(2.33)

where x = (x1, . . . , xd) is the position of the particles, p = (p1, . . . , pd) is the mo-
mentum of the particles, mi > 0 is the mass of xi, the function V (x) is the potential,
γi > 0 is the friction coefficient on xi and ζi(t) is a white noise (see Definition A.6.1
in Appendix). The inverse temperature β > 0 is related to the physical temper-
ature T by β = 1/kBT where kB is the Boltzmann-constant. A system governed
by the Langevin dynamics can be regarded as a mechanical system with additional
noise and dissipation (friction). The noise can be thought of modeling the influence
of a heat bath surrounding the molecule and the dissipation is chosen such as to
counterbalance the energy fluctuations due to the noise.

The Langevin dynamics (2.33) is ergodic with respect to the equilibrium measure
(invariant probability measure)

dμ((x, p)) = Z−1e−βH(x,p)dxdp, (2.34)
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where the Hamiltonian H(x, p) is defined as

H(x, p) = V (x) +
1
2
pT M−1p, M−1 = diag(m−1

1 , . . . , m−1
d )

and Z =
∫

Rd×Rd e−βH(x,p) dxdp is the normalization constant. Notice that (2.33) can
be put in the form of (2.8) by setting

b(x, p) = (M−1p,−∇V (x) − ΓM−1p)T ∈ R
2d,

σ =
√

2β−1

(
0 0

0 Γ
1
2

)
∈ R

2d×2d,

where Γ
1
2 = diag(

√
γ1, . . . ,

√
γd).

According to (2.19), the generator of the Langevin dynamics (2.33) takes the form

Lbwu =β−1Γ : ∇p∇pu + M−1p · ∇xu

−∇xV · ∇pu − ΓM−1p · ∇pu,
(2.35)

where ∇x and ∇p act only on the positions and momenta, respectively.

Remark 2.1.5. Notice that the diffusion matrix of the Langevin dynamics

a = β−1

(
0 0
0 Γ

)
∈ R

2d×2d

is not positive definite but nonnegative definite. Hence the operator Lbw is not
elliptic but degenerate elliptic. In the literature, e.g. in [74], the Langevin process
is also called a hypoelliptic diffusion process (see definition A.6.2 in Appendix)

Next, we turn our attention to the reversed time Langevin dynamics. Recalling
the relation (2.14) between the drift fields of a diffusion process and its reversed time
process, the reversed drift field of the reversed time Langevin dynamics is given by

bR((x, p)) = (−M−1p,∇V (x) − ΓM−1p)T

and the generator of the reverse-time Langevin dynamics takes the form

LR
bwu =β−1Γ : ∇p∇pu − M−1p · ∇xu

+ ∇xV · ∇pu − ΓM−1p · ∇pu.
(2.36)

Since b(x, p) �= bR(x, p), the Langevin dynamics is a non-reversible diffusion process
on the phase space (x, p).

Smoluchowski Dynamics

A second important class of time-homogeneous diffusion processes is generated by
the overdamped Langevin or Smoluchowski dynamics which arises in the high friction
limit of the Langevin equation (2.33),

ẋi(t) = −γ−1
i

∂V (x)
∂xi

+
√

2γ−1
i β−1ζi, (2.37)
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where x = (x1, . . . , xd) denotes the position of the particles and the other quantities
are as in (2.33). For a sketch of the derivation of the Smoluchowski dynamics see [51].
The Smoluchowski dynamics (2.37) is ergodic with respect to the invariant measure
dμ(x) = ρ(x)dx, induced by the equilibrium probability density function

ρ(x) = Z−1e−βV (x), (2.38)

where Z =
∫

Rd e−βV (x)dx is the normalization constant. In contrast to the Langevin
dynamics, (2.37) defines a reversible diffusion process on the position space and the
generator is given by the elliptic operator

Lbwu = β−1Γ−1 : ∇∇u − Γ−1∇V · ∇u, (2.39)

where Γ−1 = diag(γ−1
1 , . . . , γ−1

d ).

2.2. Markov Jump Processes

In this section we will introduce time-continuous Markov processes on a discrete
state space and will provide the basic facts about this class of processes which will
be relevant for the derivation of discrete transition path theory. For further readings,
see e.g. [86, 13, 69].

Let {X(t), t ≥ 0} be an S-valued stochastic process on a probability space (Ω,F , P),
with a discrete (countable) state space S and a continuous (time) parameter 0 ≤
t < ∞. We will denote by {X(t)}t∈R an equilibrium sample path (or trajectory) of
the Markov process, i.e. any path obtained from {X(t)}t∈[T,∞) by pushing back the
initial condition, X(T ) = x, at T = −∞.

A continuous-time stochastic process {X(t), t ≥ 0} with discrete state space S is
called a Markov process if for any tk+1 > tk > · · · > t0 ≥ 0 and any j, i1, · · · , ik ∈ S

P(X(tk+1) = j|X(tk) = ik, · · · , X(t1) = i1) = P(X(tk+1) = j|X(tk) = ik) (2.40)

holds. A continuous-time Markov process is called homogeneous if the right hand
side of (2.40) only depends on the time increment τk = tk+1 − tk. The probability
distribution μ0 satisfying

μ0(i) = P(X(0) = i), ∀i ∈ S

is called the initial distribution. In the following we will focus on homogeneous
continuous-time Markov processes on a finite state space S ∼= {1, . . . , d} and we will
denote that class of processes by Markov jump processes.

For a fixed time t, the transition probabilities

pij(t) = P(X(t) = j|X(0) = i)

define a transition matrix P (t) = (pij(t))i,j∈S where pij(0) = δij and δij = 1, if i = j
and zero otherwise. By definition, P (t) is a stochastic matrix, i.e,

pij(t) ≥ 0 and
∑
k∈S

pik(t) = 1, ∀i, j ∈ S, ∀t ≥ 0. (2.41)
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Throughout this thesis, we assume that the transition probabilities are continuous
at t = 0, i.e.

lim
t↓0

p(t, i, j) = δij , ∀i, j ∈ S. (2.42)

which guarantees, that a trajectory of {X(t), t ≥ 0} is a right continuous function
with left limits (càdlàg).

The family of transition matrices {P (t), t ≥ 0} is called the transition semigroup
of the Markov jump process which is justified by the fact that {P (t), t ≥ 0} obeys
the Chapman-Kolmogorov equation

P (t + s) = P (t)P (s), s, t ≥ 0.

with P (0) = I where I = diag(1, . . . , 1) ∈ R
d×d is the identity matrix.

Furthermore, a local characterization of the transition semigroup of a Markov
jump process can be obtained by considering the infinitesimal changes of the tran-
sition probabilities. Under the assumption made in (2.42), one can show that the
right-sided limit [13]

L = lim
t→0+

P (t) − I

t

exists (entrywise). The matrix L = (lij)i,j∈S is referred to as the infinitesimal gen-
erator of the transition semigroup {P (t), t ≥ 0} because L ’generates’ the transition
semigroup via the relation

P (t) = exp(tL) =
∞∑

n=0

tn

n!
Ln.

Due to the finite state space S, the matrix L has a special structure, namely,

0 ≤ lij < ∞ and
∑
k∈S

lik = 0 ∀ i, j ∈ S, i �= j. (2.43)

where an entry lij , i �= j is interpreted as a transition rate: the average number of
transitions from state i to state j per time unit. The diagonal entries of L, given by

lii = −
∑
k �=i

lik, ∀ i ∈ S,

are called the escape rates of the states.
The Markov property (2.40) of a Markov jump process even holds for a certain

class of random times, the so-called stopping times. A real, non-negative random
variable ν is called a stopping time with respect to the process {X(t), t ≥ 0} if
for all t ≥ 0, the event {ν ≤ t} is expressible in terms of (X(s), s ∈ [0, t]), i.e. it
should be possible to decide whether or not ν ≤ t has occurred on the basis of the
knowledge of the process up to the time t.

Now let {X(t), t ≥ 0} be a Markov jump process with generator L, ν a stopping
time with respect to {X(t), t ≥ 0} and i ∈ S an arbitrary state. Then, given that
X(ν) = i,

the process after ν and the process before ν are independent, and
the process after ν is a Markov jump process with generator L.

(2.44)
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The property (2.44) is called the strong Markov property.
Analogously to the case of a continuous state space, the evolution of conditional

expectations of observables is governed by the infinitesimal generator. To be more
precise, let f : S 
→ R be an observable. Then the time derivative of the conditional
expectations u(i, t) = E[f(X(t))|X(0) = i], i ∈ S satisfies the backward Kolmogorov
equations

d

dt
u(i, t) =

∑
j∈S

liju(j, t), u(i, 0) = f(i) ∀i ∈ S, t ≥ 0 (2.45)

or, in matrix-vector notation

du

dt
= Lu, u(0) = f , t ≥ 0.

Similarly, let μ(t) = (μi(t))T
i∈S = (P(X(t) = i))T

i∈S be the probability distribution
of the Markov jump process at time t. Then the distribution μ(t) evolves in time
according to the forward Kolmogorov equation

dμ

dt
= μT L, t ≥ 0, (2.46)

also known as Master equation. A probability distribution π = (πi)i∈S is called a
stationary distribution if it satisfies

0 = πT L.

In other words, π is a left eigenvector associated with the zero eigenvalue of L.
To further illuminate the characteristics of Markov Jump processes, denote by

t0 = 0 < t1 < t2 < . . . the random jump times, at which the Markov process
changes its state. For notational convenience, we denote the left-sided limit of the
process at time t by

X∗(t) def
= lim

s→t−X(s). (2.47)

Then the sequence of jump times {tn, n ∈ N ∪ {0}}, formally given by

t0 = 0, ∀n ∈ N : tn = inf{s : s > tn−1, X(s) �= X∗(s)}.

defines according to

Xn
def
= X(tn)

the embedded process {Xn, n ∈ N0} associated with the Markov jump process. It
can be shown that {Xn, n ∈ N0} is a discrete-time Markov chain and its transition
matrix P = (pij)i,j∈S is related to the infinitesimal generator L by

pij =

{
− lij

lii
∀i �= j

0, otherwise.
(2.48)

A Markov jump process is called irreducible if the embedded process is irreducible,
i.e., if for any pair (i, j), i �= j of states there exists an m ∈ N such that (Pm)i,j > 0
(cf. Sect. A.6).

22



2.2. Markov Jump Processes

Next, we turn our attention to the reversed time process {XR(t), t ∈ R} defined
by

XR(t)
def
= X∗(−t),

where X∗(−t) denotes the left-sided limit of the process at time −t. If we assume that
{X(t), t ∈ R} is irreducible and that it admits a unique stationary distribution π =
(πi)i∈S , then the process {XR(t), t ∈ R} is again a càdlàg Markov jump process with
the same stationary distribution as {X(t)}t∈R, π, and the infinitesimal generator
LR = (lRij)i,j∈S given by

lRij =
πj

πi
lji. (2.49)

If in particular the infinitesimal generator L satisfies the detailed balance equations

πilij = πjlji, ∀i, j ∈ S (2.50)

then LR ≡ L and hence, the direct and the reversed time process are statistically
indistinguishable. Such a process is called reversible.

We end this section by stating a strong law of large numbers for Markov jump
processes, which says that the time average of an observable f : S 
→ R with respect
to the process equals the expectation of f with respect to the stationary distribution.
Formally, we have

lim
t→∞

1
t

∫ t

0
f(X(s))ds =

∑
i∈S

f(i)πi (2.51)

almost sure for all initial distributions μ0 where π is the stationary distribution
of the Markov jump process. In particular, the Markov jump process is said to be
ergodic if it satisfies (2.51).
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