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Chapter 1

Introduction

Observations indicate the existence of a large number of low-frequency (periods longer than
10 days) atmospheric regimes with planetary spatial scales(of the order of the earth’s radius∼
6300 km) that have an important influence on the variability of the atmosphere. This motivates
us to study in this thesis the atmospheric dynamics on the planetary scale making use of multiple
scale asymptotic analysis and of numerical simulations. Inparticular, we aim to identify the
relevant physical mechanisms on these large scales and to construct simplified models for their
theoretical description. These models have to incorporatein a systematic way the important
interactions between the planetary scale flow and the synoptic eddies (periods of 2 to 6 days
and spatial scales of 1000 km). Such planetary scale atmospheric models are of particular
interest not only because they elucidate general features of the atmospheric dynamics, but also
because they are potentially useful in the construction of reduced complexity models for long-
term climate simulations.

Planetary and synoptic scales in the atmosphere

A considerable part of the atmospheric variability shows spatial structures on planetary scales
(e.g. Hoskins and Pearce, 2001). We attribute to these structures atmospheric phenomena such
as the quasi-stationary Rossby waves, teleconnection patterns and the polar/subtropical jet.
Fig. 1.1 shows time-averaged 500 hPa geopotential height ofthe northern hemisphere for the
winter season. The pattern of a typical steady wave is visible: two pronounced troughs over
the eastern parts of North America and Asia and a third weakertrough over western Asia; the
wavenumber 2-3 structure implies wavelengths of the order of 12000 - 8000 km for 50◦N. Such
stationary waves are the resonant response of free Rossby waves to thermal and orographic
forcing from below; they are often referred to as quasi-stationary Rossby waves, since they are
persistent over long periods of time. They have nearly an equivalent barotropic vertical structure
and play an important role for the momentum, heat and water vapor transport in the atmosphere.

There is a high resemblance between the wavetrains generated in the horizontal propagation of
stationary Rossby waves and the teleconnection patterns inthe real atmosphere (Hoskins and
Karoly, 1981). Such planetary scale patterns can be identified from correlation maps of the
500 hPa geopotential and surface pressure (Wallace and Gutzler, 1981) and they represent the
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2 CHAPTER 1. INTRODUCTION

Figure 1.1: Time mean geopotential height of the500 hPa surface for the northern hemisphere
(DJF), units gpdm. Based upon ERA40 reanalysis data (Simmons and Gibson, 2000).

leading modes of the regional atmospheric variability, e.g., the Pacific-North-American pattern
(PNA) or the North Atlantic Oscillation (NAO). On the other hand, a zonally symmetric struc-
ture characterizes the global modes of atmospheric variability described by the northern and
southern annular modes (AM) (Thompson and Wallace, 2000) with a time scale of about 1-2
weeks. Other zonal phenomena with similar or longer time scales are the poleward propagation
of zonal mean zonal wind anomalies (Riehl et al., 1959) and the zonal index oscillation (Rossby,
1939) describing the transitions between blocked and enhanced midlatitude westerly flow.

One of the pioneering works on the subject of stationary Rossby waves is from Charney and
Eliassen (1949) who reproduced the steady anomalies of the geopotential field at a fixed latitude
using the linearized equivalent barotropic vorticity equation forced by orography. The excitation
of stationary disturbances by diabatic source terms representing the land-sea thermal contrast
was studied by Smagorinsky (1953). Their vertical propagation was investigated in the semi-
nal paper of Charney and Drazin (1961), where it was shown that for easterly and for strong
westerly background flow the waves are trapped in the lower atmosphere, whereas for weak
westerlies and for sufficiently large wavelengths they can propagate to the middle atmosphere.
The stationary planetary waves play an important role in thedynamics of the stratosphere, where
they can decelerate the polar night jet and even lead to the breakdown of the polar vortex (Mat-
suno, 1970, 1971; Holton, 1976). The horizontal propagation of Rossby waves on the sphere
was studied by Hoskins et al. (1977) using a linearized barotropic model. In Grose and Hoskins
(1979) the steady response to orography was investigated with a linearized spherical shallow
water model. They associated stationary trough and ridges with Rossby wavetrains excited by
the mountains. Their study was extended by Hoskins and Karoly (1981) by incorporating both
thermal and orographic forcing in a linear baroclinic model.

Apart from the stationary Rossby waves, other phenomena relevant to the transports in the ex-
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Figure 1.2: Power spectrum density of the meridional geostrophic wind at500 hPa and50◦N
(Fraedrich and Böttger, 1978).

tratropical atmosphere are the synoptic eddies. They are generated by the baroclinic instability
process (Charney, 1947; Eady, 1949) and are described by thequasi-geostrophic (QG) theory
(Pedlosky, 1987). The synoptic spatial scales are characterized by the internal Rossby defor-
mation radius (Holton, 1992), denoting the characteristiclength which an internal gravity wave
will travel during the earth’s rotation time. This radius isaround 1000 km for the atmosphere,
typical time periods associated with the synoptic waves are2-6 days.

The different planetary and synoptic scales are also evident in spectral analysis of tropospheric
data: observations (e.g. Blackmon, 1976; Fraedrich and Böttger, 1978; Fraedrich and Kietzig,
1983) as well as simulations (e.g. Gall, 1976; Hayashi and Golder, 1977) show the presence
of isolated peaks in the wavenumber-frequency domain. Fig.1.2 displays three such peaks in
the spectrum of the meridional geostrophic wind. There is a maximum associated with the
quasi-stationary Rossby waves with zonal wavenumberk = 1-4 and with periods larger than 20
days. The other two maxima atk = 5-6, periods of 10 days and atk = 7-8, periods of 4 days
result from the synoptic waves. These are eastward propagating long and short waves associated
with different background stratifications (Fraedrich and Böttger, 1978). The overall picture of
three maxima persists during the different seasons for the northern hemisphere. This indicates
a separation between the planetary and the synoptic scales.However, the interactions between
the two scales are of great relevance to the atmospheric dynamics as stressed in many studies
(e.g. Hoskins et al., 1983).

Reduced atmospheric models

One approach in atmospheric modeling, applied in the construction of general circulation mod-
els (GCMs), is based on the idea of solving numerically the full hydro and thermodynamic equa-
tions using the finest possible resolution and parameterizing all the unresolved phenomena. This
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is a tremendous task and currently different components of GCMs are being developed in order
to achieve more sophisticated representation of the processes in the real atmosphere. However,
their enormous complexity and the restrictions of the modern computational facilities do not
allow one to utilize GCMs for addressing all problems in the atmospheric dynamics. Thus, the
need for simplified atmospheric models do arise.

First, our understanding of the atmosphere is to a great extent based on reduced models, e.g.,
in connection with the study of regime behavior (Charney andDevore, 1979; Marshall and
Molteni, 1993) or ultra-low-frequency variability (Jamesand James, 1989, 1992). Some mod-
els are even analytically tractable, e.g., the energy balanced models (North, 1975; Oerlemans
and van den Dool, 1978). In climate modeling there is a special need for numerically attractive
reduced models, e.g., for paleoclimate studies, where interactions on time scales of the order
of millennia and more are involved, or for ensemble simulations. This has led to the develop-
ment of the Earth System Models of Intermediate Complexity (EMICs; Claussen et al., 2001)
and in the context of atmospheric modeling, more precisely,the development of the Statistical
Dynamical Models (SDMs; Saltzman, 1978).

The concept of the SDMs is based on the assumption that equations, governing the large-scale,
long term “climate” variables, can be derived by averaging the original primitive equations
over the smaller (e.g., synoptic) scales. This averaging procedure is similar to the Reynolds
averaging applied in the classical boundary layer theory, it naturally gives rise to the appearance
in the new equations of unknown correlation terms (e.g., synoptic fluxes). These terms have to
be closed, either by deriving evolution equations for them (higher order closures, e.g. Kurihara,
1970; Petoukhov et al., 2003) or parameterizing them (Saltzman and Vernekar, 1971; Yao and
Stone, 1987). Here we have to state that the parameterization of the synoptic fluxes remains an
important (not only for SDMs) topic of ongoing research. Part of the difficulties encountered
are due to the non-negligible contribution from third ordermoments (Petoukhov et al., 2008),
e.g., in the regions of synoptic eddy generation.

SDMs allowing zonal variations have a large range of applicability, e.g., global warming sce-
narios, paleoclimate and feedback studies (e.g., Ganopolski et al., 2001; Claussen et al., 2001;
Petoukhov et al., 2005; Calov and Ganopolski, 2005). The equations for the large scale motion
of such models (Petoukhov et al., 1998, 2000) are based on theplanetary geostrophic equations
(PGEs). The history of the PGEs goes back to the work of Burger(1958) who pointed out that
on the planetary scale the vorticity remains quasi-stationary and the vorticity equation reduces
to a balance between the horizontal divergence of the wind and the advection of planetary vor-
ticity. The PGEs were proposed by Phillips (1963) as a reduced system of equations for the
planetary scale motions (also referred to as geostrophic motions of type two). They consists
of the geostrophic and hydrostatic balance, of a3D divergence constraint (where the vertical
velocity results from variations of the Coriolis parameter) and of a transport equation for the
potential temperature.

The PGEs for a Boussinesq fluid are widely used for modeling the large-scale ocean circulation
(Salmon, 1998). Some of the pioneering works on the subject were from Robinson and Stommel
(1959) and Welander (1959), where the authors studied the steady version of the equations as a
model of the ocean thermocline. In the former paper the authors could reproduce some features
of the thermocline, e.g., the upwelling at the equator and the deepening in the west direction.
In their study they included simple source terms representing temperature diffusion and surface
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wind stress. The PGEs can be solved numerically in a closed domain, (e.g., Samelson and
Vallis (1997)) when Laplacian and biharmonic diffusion areadded to the temperature equation.
In Wiin-Nielsen (1961) it was shown that in the presence of a vertically sheared zonal wind the
PGEs exhibit baroclinic instability. Further, it was demonstrated that the growth rates of the
disturbances increase linearly with the zonal wave number leading to an ill posed mathematical
problem; this could be overcome if a diffusive friction is included (e.g., Colin de Verdiere,
1986). In Mundt et al. (1997) one can find the results of numerical simulations with the shallow
water formulation of the PGEs, it was shown that the numerical efficiency of the model was at
least an order of magnitude larger than other balanced models.

One important feature of the PGEs is that they require a closure for the barotropic component
of the flow, because the pressure cannot be determined through the solution of a Poisson equa-
tion (the invertibility principle in the QG theory). The barotropic component of the flow can
be closed if Rayleigh friction or some prescribed surface wind stress are added to the equa-
tions. However, such an approach is applicable to the ocean but not to the atmosphere. Current
closures for the atmosphere (Petoukhov et al., 1998, 2000) are diagnostic and based on the tem-
perature (the only prognostic variable in the PGEs); it is assumed that they might be a cause for
the limited atmospheric variability observed in some of theintermediate complexity models.

As already mentioned, the PGEs resolve only the planetary scale and the important fluxes due
to the synoptic eddies have to be parameterized. On the otherhand, the theory for the synoptic
waves, the QG theory, is valid only on the synoptic scale and is unable to describe planetary
scale flows with order one variations of the Coriolis parameter and horizontal variations of the
background stratification. This motivates our interest in atheory that merges in a systematic
manner the QG and PG model and captures the interactions between the synoptic and planetary
scales.

Asymptotic regimes for the planetary scale and synoptic scales

In this thesis we study reduced models appropriate for the description of the planetary and syn-
optic dynamics in the atmosphere, in particular we focus on the feedbacks between the two
scales. The character of the problem motivates the use of multiple scales asymptotic analysis
and we utilize a method referred to as an unified asymptotic approach to meteorological mod-
eling (Klein, 2000, 2004). It has been applied in the development of reduced models, e.g., for
the tropical dynamics (Majda and Klein, 2003), deep mesoscale convection (Klein and Ma-
jda, 2006), Hadley type circulations (Dolaptchiev, 2006) and concentrated atmospheric vortices
(Mikusky, 2007).

We consider three asymptotic regimes, accounting for the different types of phenomena on the
planetary scale, and derive reduced model equations for each. The characteristic length and time
scales of some of the regimes are presented in Fig. 1.3. The first one is the Planetary Regime
(PR), there we consider the scales described by the PGEs: planetary horizontal scales (of the
order of the earth’s radius) and a corresponding advective time scale of 7 days. For reasons
that will become clear in the next chapter, these characteristic length and time scales can be
expressed asε−3hsc andε−3hsc/uref , respectively, where we have used the small parameter
ε ∼ 1

8
. . . 1

6
, the scale heighthsc ≈ 10 km and a reference velocityuref = 10 ms−1 defining the

time scalehsc/uref ≈ 20 min.
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Figure 1.3: Scale map for the PR and PRBF, the validity range of the quasi-geostrophic (QG)
theory is also shown, see text for explanations.

Whereas in the PR the horizontal variations of the potentialtemperature are consistent with the
QG theory, an order of magnitude larger fluctuations are assumed in the Planetary Regime with
a Background Flow (PRBF). These are motivated by the observed equator to pole temperature
gradients and generate a strong zonal background flow. The larger velocities requires a faster
time scale of 1 day (ε−2hsc/uref ) for the description of the dynamics on the planetary length
scale. It matches the time scale of the QG model for the synoptic motions with a characteristic
length scale of about 1000 km (ε−2hsc).

The wavenumber-frequency spectrum in Fig. 1.2 provides no information about the meridional
scale of the quasi-stationary Rossby waves atk = 1-4. On the other hand, in many theoretical
models it is often assumed that their meridional extent is smaller than the planetary scale in
order to guarantee that the advection by the geostrophic wind of the relative vorticity and of
the planetary vorticity are of the same order. This has motivated us to consider the Anisotropic
Planetary Regime (APR) (not shown in Fig. 1.3). It describesmotions with zonal variations
on a planetary scale but with meridional variations on the synoptic scale. In all three regimes
we present, we resolve in addition the temporal and spatial scales of the QG model, aiming to
investigate the planetary-synoptic interactions.

The outline of this thesis is as follows: in Chapter 2 we introduce the asymptotic approach
and the rescaled coordinates resolving the planetary and the synoptic scales. In Chapter 3 we
consider the PR, first a reduced planetary scale model and after that a two scale planetary-
synoptic model is derived. In Chapters 4 and 5 we present the APR and the PRBF, respectively.
In Chapter 6 we study the leading balances on the planetary and synoptic scales by performing
numerical simulations with a primitive equations model; the results are interpreted with respect
to the reduced model equations derived in the previous chapters. A summary of the thesis is
presented in Chapter 7.



Chapter 2

Multiple Scales Asymptotic Approach

In Section 2.1 of this chapter we consider the asymptotic representation of the3D compressible
flow equation. We utilize the governing equations on the sphere, because we are interested in
motions with horizontal scales of the order of the earth’s radius. In Section 2.2 we introduce
spatial and temporal coordinates resolving the planetary and synoptic scales. A solvability
condition imposed in the asymptotics is discussed in Section 2.3 by using the example of the
linear damped harmonic oscillator.

In order to derive simplified model equations for the atmospheric dynamics on the planetary
and synoptic scales we use a unified asymptotic approach to meteorological modeling. It was
introduced by Klein (2000, 2004) and is based on multi-scaleperturbation methods. It provides
a self-consistent mathematical description of a phenomenon capturing only the essential physics
and is a useful theoretical tool for multi-scale interaction studies. Majda and Klein (2003)
applied the approach successfully in the systematic development of some reduced equations for
the tropical dynamics. These can be regarded as a promising theoretical model for explaining
some aspects of the Madden-Julian Oscillation (Majda and Biello, 2004; Biello and Majda,
2005). The same method was used by Dolaptchiev (2006) for thedescription of large-scale
convectively driven Hadley type circulations in the tropics. Klein and Majda (2006) extended
the asymptotic approach to include moist processes. New reduced model equations describing
deep mesoscale convection together with important interactions between different spatial scales
were derived. In the work by Mikusky (2007) the method was applied to study concentrated
atmospheric vortices (e.g. hurricanes); in particular, todescribe the vortex core structure and
the influence of the background shear flow on the vortex trajectory.

For an introduction to the unified asymptotic approach to meteorological modeling as well as
some new aspects of it we refer the reader to a recent paper by Klein (2007). The multi-scale
perturbation techniques are discussed in depth by Kevorkian and Cole (1981); Holmes (1995).

2.1 Asymptotic representation of the governing equations

We start from the governing equations in spherical coordinates for a compressible fluid on the
rotating earth and nondimensionalize them. We use the following reference quantities: the ther-
modynamic pressurepref = 105 kg m−1 s−2, the air densityρref = 1.25 kg/m3, a characteristic

7
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flow velocityuref = 10 m/s, the scale heighthsc = pref/g/ρref ≈ 10 km (g ≈ 10 m s−2 is the
gravity acceleration) and a time scaletref = hsc/uref ≈ 20 min. After nondimensionalization
the governing equations take the form

d

dt
u− uv tanφ

r
− uw

r
+

1

Ro
(w cosφ− v sinφ) +

1

M2

1

rρ cosφ

∂p

∂λ
= Su , (2.1)

d

dt
v +

u2 tanφ

r
+
vw

r
+

1

Ro
u sinφ+

1

M2

1

rρ

∂p

∂φ
= Sv , (2.2)

d

dt
w − u2

r
− v2

r
− 1

Ro
u cosφ+

1

M2

1

ρ

∂p

∂r
+

1

Fr2 = Sw , (2.3)

d

dt
θ = Sθ , (2.4)

d

dt
ρ+

ρ

r cosφ

(
∂u

∂λ
+
∂vcosφ

∂φ

)

+ ρ
∂w

∂r
+

2wρ

r
= 0 , (2.5)

ρθ = p
1
γ , (2.6)

where the coordinatesλ, φ andr measure longitude, latitude and the distance from the center
of the earth, the corresponding spherical unit vectors areeλ, eφ ander. The non-dimensional
variablesp, ρ, θ, u, v, andw denote pressure, density, potential temperature and the velocity
components in the direction ofeλ, eφ ander, respectively.Su,v,w andSθ represent momentum
and diabatic source terms andγ is the isentropic exponent. The operatord/dt is given by

d

dt
=

∂

∂t
+

u

r cosφ

∂

∂λ
+
v

r

∂

∂φ
+ w

∂

∂r
. (2.7)

The Mach, Froude and Rossby numberM,Fr, andRo are defined as

M =
uref

√

pref/ρref

, (2.8)

Fr =
uref√
ghsc

, (2.9)

Ro =
uref

2Ωhsc

, (2.10)

with Ω ≈ 7 10−5 s−1 denoting the earth’s rotation frequency. We introduce a small parameter

ε =

(
aΩ2

g

) 1
3

, (2.11)

wherea is the earth’s radius≈ 6 103 km andε ∼ 1
8
. . . 1

6
, ε ≪ 1. Next, the Mach, Froude and

Rossby numbers are expressed in terms ofε in a carefully chosen limit. A detailed discussion
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of this step can be found in Klein (2000, 2004); Majda and Klein (2003), see also Keller and
Ting (1951) who suggested to introduceε as a expansion parameter. The distinguished limit
reads

√
M ∼

√
Fr ∼ 1/Ro ∼ ε as ε→ 0 . (2.12)

It follows naturally for the radius of the earth:a = ε−3a∗hsc, wherea∗ is a constant of order
unity. Since we are interested in motions in the atmosphere,we can introduce a new non-
dimensional coordinatez, measuring the altitude from the ground

r = ε−3a∗ + z . (2.13)

Finally, the governing equations take the form

d

dt
u− ε3

(
uv tanφ

R
− uw

R

)

+ ε(w cosφ− v sin φ) = − ε−1

Rρ cos φ

∂p

∂λ
+Su , (2.14)

d

dt
v + ε3

(
u2 tanφ

R
+
vw

R

)

+ εu sinφ = −ε
−1

Rρ

∂p

∂φ
+Sv , (2.15)

d

dt
w − ε3

(
u2

R
+
v2

R

)

− εu cosφ = −ε
−4

ρ

∂p

∂z
− ε−4+Sw , (2.16)

d

dt
θ =Sθ , (2.17)

d

dt
ρ+

ε3ρ

R cos φ

(
∂u

∂λ
+
∂vcosφ

∂φ

)

+ ρ
∂w

∂z
+
ε32wρ

R
=0 , (2.18)

ρθ =p
1
γ , (2.19)

whereR = a∗ + ε3z and

d

dt
=

∂

∂t
+

ε3u

R cosφ

∂

∂λ
+
ε3v

R

∂

∂φ
+ w

∂

∂z
. (2.20)

Next, we introduce rescaled coordinates in order to resolveplanetary and synoptic motions.

2.2 Scaling of the coordinates

The lengthδs of a path increment on the surface of the earth can be expressed in terms of
variations of longitudeδλ if the latitude is fixed atφ0

δs = a cosφ0δλ . (2.21)
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If we keep the longitude constant and vary the latitude, we have

δs = aδφ . (2.22)

We are interested in motions with planetary spatial scales,i.e., motions with a reference length
of the order of the radius of the earth:xplan ∼ a. For planetary scale motions horizontal
variationsδsplan divided by the reference length have to be order one:δsplan

xplan
= O(1), asε→ 0.

Taking into account (2.21) and (2.22), we obtain the conditions

cosφ0δλP , δφP = O(1) , (2.23)

where we denote longitudinal and latitudinal variations onthe planetary scale withδλP and
δφP , respectively. This constraint is satisfied if we take variations appropriate for the planetary
scale motions:δλP ∼ π

2
. . . π ∼ O(1), δφP ∼ π

2
∼ O(1) and if we assume that the motion is

not in the vicinity of the poles:cos φ0 ∼ O(1). Thus, the nondimensional coordinatesλ andφ
resolve already motions on a planetary scale, they do not have to be rescaled and we will denote
them withλP andφP .

Suppose, we want to resolve synoptic scale motions, then thereference length scale is given by
xsyn ∼ ε−2hsc = εa. We denote synoptic scale longitudinal and latitudinal variations withδλS

andδφS, respectively. Substituting forδssyn (2.21) and (2.22) and requiringδssyn/xsyn ∼ O(1)
to hold, we obtain the conditions:

ε−1 cosφ0δλS, ε
−1δφS ∼ O(1) . (2.24)

This is satisfied only if we set

δλS = εδλP andδφS = εδφP , (2.25)

here againδλP ∼ π
2
. . . π ∼ O(1) andδφP ∼ π

2
∼ O(1). In order to resolve synoptic scale

motions, we have to introduce new “stretched” coordinatesλS, φS

λS =
1

ε
λP andφS =

1

ε
φP . (2.26)

Next, we consider the time coordinate. An appropriate planetary advective time scale, based on
the reference velocityuref , is given by

tplan =
xplan

uref
=
ε−3a∗hsc

hsc/tref
= ε−3a∗tref =

a

hsc
tref ∼ 7 days. (2.27)

A suitable time coordinate, resolving motions on the planetary time scale is

tP =
t′

tplan
= ε3t , (2.28)
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wheret′ stands for the dimensional time coordinate andt for the time coordinate nondimen-
sionalized bytref . Similarly, the characteristic synoptic time scale reads

tsyn =
xsyn

uref

= ε−2tref ∼ 1 days, (2.29)

and the synoptic time coordinate is given by

tS = ε2t . (2.30)

We assume that each dependant variable from (2.14) - (2.19) can be represented in general as
an asymptotic series in terms ofε

U(λ, φ, z, t; ε) =
∑

i

εiU (i)(λP , φP , λS, φS, z, tP , tS) . (2.31)

In some of the considered regimes we will omit the dependenceon the planetary/synoptic spatial
and temporal scales.

2.3 Sublinear growth condition

In order to guarantee a well defined asymptotic expansion (2.31), we have to require thatU (i)

grows slower than linearly in any of the coordinates, which is known as the sublinear growth
condition. Suppose,XS denotes one of the synoptic coordinatesλS, φS, tS andXP the corre-
sponding planetary coordinateλP , φP or tP . Since we haveXS = XP/ε, we can formulate the
sublinear growth condition for the coordinateXS as

lim
ε→0

U (i)(. . . , XS)

XS + 1
= lim

ε→0

U (i)(. . . ,
XP

ε
)

XP

ε
+ 1

= 0 , (2.32)

where all coordinates exceptXS are held fixed with respect toε in the limit process. An im-
mediate consequence from the last constraint is the disappearing of averages overXS of terms,
which can be represented as derivatives with respect toXS. In particular we have

∂

∂XS
U (i)

XS

= 0 . (2.33)

Here the averaging operator()
XS is defined for the different synoptic coordinates as
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U (i)
tS

(. . .) = lim
ε→0

ε

2T

tP
ε

+ T
ε∫

tP
ε
−

T
ε

U (i)(. . . , tS) dtS , (2.34)

U (i)
λS

(. . .) = lim
ε→0

ε

2π

λP
ε

+ 2π
ε∫

λP
ε

U (i)(. . . , λS) dλS , (2.35)

U (i)
φS

(. . .) = lim
ε→0

ε

π

φP
ε

+ π
2ε∫

φP
ε

−
π
2ε

U (i)(. . . , φS) dφS , (2.36)

whereT in (2.34) is a characteristic time averaging scale. Finally, we can define an averaging
operator()

S

over all synoptic scales

U (i)
S

(λP , φP , z, tP ) = U (i)
φS

λS
tS

. (2.37)

We note that in()
S

the order for averaging over the different synoptic scales is arbitrary.

Example: the linear harmonic oscillator

Typically, when multiple scales are involved in a problem, the leading order asymptotic equa-
tions determine only the structure of the (leading order) solution on the “small” scales, whereas
its “large” scale distribution appears in the next order equations together with higher order un-
known variables. In such cases the application of the sublinear growth condition provides the
uniqueness of the solution. It can be viewed as a solvabilitycondition for the next order equation
which determines the “large” scale structure of the leadingorder solution. We discuss here the
sublinear growth condition for the classical example of a weakly damped harmonic oscillator
(Holmes, 1995). In nondimensional form the problem is described by

∂2

∂t2
y + δ

∂

∂t
y + y = 0 , (2.38)

∂

∂t
y(0) = 1, y(0) = 0 , (2.39)

wheret is the time coordinate,δ ≪ 1 the friction coefficient, both nondimensionalized using
the frequency of the undamped oscillation, andy(t) measures the displacement from some
reference state. Intuitively, the problem involves two time scales: the first is fast and is given
by the period of the undamped oscillation, the second is the much longere-folding time of
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the weak damping. In order to resolve variations on these time scales, we introduce two time
coordinatest1, t2. Expressed in terms of the original one,t, they read

t1 = t , (2.40)

t2 = δt , (2.41)

where no scaling is needed fort1, sincet is already scaled with the frequency of the undamped
oscillation. We assume that the solution of (2.38), (2.39) can be represented as an asymptotic
series in powers ofδ

y(t) =
∑

i

δiyi(t1, t2) , (2.42)

where the different factorsyi depend on the new time coordinates. We transform the derivative
operators in (2.38), (2.39) according to

∂

∂t
→ ∂

∂t1
+ δ

∂

∂t2
, (2.43)

∂2

∂t2
→ ∂2

∂t21
+ δ2 ∂

2

∂t22
+ 2δ

∂

∂t1

∂

∂t2
. (2.44)

With the help of the results above, we substitute (2.42) in (2.38), (2.39) and obtain as a leading
order equation system

O(1) :

(
∂2

∂t21
+ 1

)

y0 = 0 , (2.45)

y0 = 0,
∂

∂t1
y0 = 1, for t1, t2 = 0 (2.46)

The formal solutions reads

y0 = a0(t2) sin(t1) + b0(t2) cos(t1) , (2.47)

a0(0) = 1, b0(0) = 0 . (2.48)

Till now, only the evolution ofy0 on the fast time scale has been found, the constantsa0(t2) and
b0(t2) have to be determined from the next order asymptotic equation
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O(δ) :

(
∂2

∂t21
+ 1

)

y1 = −2
∂

∂t1

∂

∂t2
y0 −

∂

∂t1
y0 , (2.49)

y1 = 0,
∂

∂t1
y1 = − ∂

∂t2
y0, for t1, t2 = 0 . (2.50)

Substituting (2.47) in(2.49), we obtain

O(δ) :

(
∂2

∂t21
+ 1

)

y1 =

(

2
∂b0
∂t1

+ b0

)

sin(t1) −
(

2
∂a0

∂t1
+ a0

)

cos(t1) . (2.51)

Since the linear operator on the left hand side of (2.51) is forced from the right with its eigenfre-
quency, we expect a resonant behavior of the solution. It canbe easily verified that the solution
will contain terms proportional tot1 sin(t1), t1 cos(t1). Such terms will grow unbounded int1
leading to a violation of the asymptotic expansion (2.42). They can be suppressed by requiring
the terms in the brackets on the right hand side of (2.51) to vanish. This solvability condition
and the boundary conditions (2.48) give us

a0 = e−t2/2 , (2.52)

b0 = 0 . (2.53)

Finally, the leading order solution of (2.38), (2.39) reads

y0(t1, t2) = sin(t1)e
−t2/2 . (2.54)



Chapter 3

The Planetary Regime

In Section 3.1 of this chapter we systematically derive reduced model equations for the Plan-
etary Regime (PR). It describes atmospheric motions with planetary spatial scales and a tem-
poral scale of the order of about one week, see Fig 1.3. We assume variations of the back-
ground potential temperature comparable in magnitude withthose adopted in the classical
quasi-geostrophic theory. At leading order the resulting equations include the planetary geostro-
phic balance. In order to apply these equations to the atmosphere, one has to prescribe a closure
for the barotropic component of the flow. In Section 3.1.3 such closure is derived in a sys-
tematic way from the asymptotic analysis, it represents an evolution equation for the vertically
averaged pressure. In Section 3.2 the planetary scale modelis extended to a two scale model by
incorporating the synoptic scales in it, different interaction mechanisms between the two scales
are discussed.

The results from Section 3.1 have been published by Dolaptchiev and Klein (2008).

3.1 Single scale model

A priori assumptions for the background stratification

In this regime we assume that the deviations from a constant reference value of the potential
temperatureθ are small throughout the troposphere and are of the orderε2. This was justified
in Majda and Klein (2003), where typical values of the dry buoyancy-frequencies of the at-
mosphere were considered. In this case the expansion for thepotential temperature takes the
form

θ = 1 + ε2Θ(2)(λP , φP , z, tP ) + ε3Θ(3)(λP , φP , z, tP ) + O(ε4) . (3.1)

As pointed out in Klein and Majda (2006); Klein (2007), variations of the potential temperature
of the orderε are associated with long term radiative balances. This is confirmed if one consid-
ers the large equator-to-pole surface temperature difference: ∼ 40 − 60 K (Peixoto and Oort,
1992). The regime associated withO(ε) potential temperature variations will be presented in
Chapter 5.

15



16 CHAPTER 3. THE PLANETARY REGIME

Source terms

Before starting with the asymptotic analysis, we consider the source terms in the governing
equations. On the planetary scale radiative effects have animportant contribution toSθ, a
simple parameterization of these processes is the relaxation ansatz (e.g. Fraedrich et al., 1998)

Sθ =
Θe − Θ

τ
. (3.2)

Hereτ is the radiative relaxation time scale,Θe denotes the radiative equilibrium temperature
of the atmosphere. A typical value for the radiative relaxation time scale is20 days∼ ε−3tref .
Taking into account (3.1), we can estimate the magnitude ofSθ to beO(ε5). This is consistent
with the values in the literature for the radiative heating/cooling rates of about1 K day−1, e.g.,
Gill (2003); Holton (1992). In nondimensional form they give the same order forSθ as men-
tioned here, see Dolaptchiev (2006). Thus, we obtainS

(i)
θ = 0 for i = 0, . . . , 4 and the first

nontrivial term has the form

S
(5)
θ =

Θe − Θ(2)

τ
. (3.3)

The source terms in the momentum equation represent effectsdue to friction. We will show
later on that the vertical velocities disappear up toO(ε3), consequently we will setS(i)

w = 0
up to this order. For the sinks of horizontal momentum we use the same representation as in
Marshall and Molteni (1993)

Su = −ku , Sv = −kv , (3.4)

with a drag coefficientk(λ, φ, z) given through

k =
1

τf
(1 + α1LS(λ, φ) + α2H(λ, φ, z)) . (3.5)

The functionLS describes variations of the drag over land and sea, the function H variations
due to the topography. The constantsα1, α2 are user defined weights between0 and1. Taking
the proposed value in Marshall and Molteni (1993) of3 days for the relaxation timeτf , we
estimate the magnitude of the momentum source termsSu, Sv to be somewhere betweenO(ε3)
andO(ε2). Since we expect that frictional effects in the free atmosphere affect the time evolu-
tion of the wind but not its geostrophic balance, we considerin the current analysis onlyO(ε3)
momentum sources (compare (3.28) and (3.29),(3.30)). Thus, the first nontrivial friction terms
read

S(3)
u = −ku(0) , S(3)

v = −kv(0) . (3.6)

In order to study the influence of friction on the evolution ofthe wind on the fast synoptic
time scale, one should considerO(ε2) dissipation terms. This estimate is appropriate for the
asymptotic analysis in Section 3.2, where we resolve the synoptic length and time scales. Next,
we proceed with the asymptotic derivation of the reduced equations.
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3.1.1 Derivation of the Planetary Regime

Notation

From here on we drop the subscripts of the temporal and spatial variables, keeping in mind
that they resolve motions with temporal scales of the order of about7 days and spatial scales
comparable with the radius of the earth

tP , λP , φP → t, λ, φ . (3.7)

The superscript of the order one variablea∗ will be dropped as well. The following notation for
the operators is used

∇ =
eλ

a cosφ

∂

∂λ
+

eφ

a

∂

∂φ
, (3.8)

∆ =
1

a2 cos2 φ

(
∂2

∂λ2
+ cosφ

∂

∂φ

(

cosφ
∂

∂φ

))

, (3.9)

er · (∇× u) =
1

a cosφ

(
∂v

∂λ
− ∂u cosφ

∂φ

)

, (3.10)

u = eλu+ eφv . (3.11)

Key steps of the derivation

We substitute the ansatz (2.31) in the governing equations and collect terms of the same order in
ε. From the vertical momentum balance follows that the atmosphere is hydrostatically balanced
up top(4)

∂

∂z
p(i) = −ρ(i), i = 0, . . . 4 . (3.12)

From the horizontal momentum balance (2.14) and (2.15) we obtain thatp(0) andp(1) do not
depend on the horizontal coordinates

∇p(i) = 0, i = 0, 1 , (3.13)

where for the expansion of the advection operator (2.20) we have used the Taylor series

1

R
=

1

a + ε3z
=

1

a
− 1

a2
ε3z + O

(
ε6
)
. (3.14)
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We will drop the time dependence inp(0) andp(1), since it is unphysical that the leading orders
of the pressure change in time horizontally uniform on the considered scales (it is possible
to derive this assumption starting from the thermodynamic equation rewritten as an evolution
equation for the pressure). Expanding the equation of state(2.19) we have

ρ(0) = p(0)
1
γ , (3.15)

ρ(1) = p(0)
1
γ
p(1)

γp(0)
, (3.16)

ρ(2) + ρ(0)Θ(2) = p(0)
1
γ

(

p(2)

γp(0)
+

(1 − γ)p(1)2

2γ2p(0)2

)

. (3.17)

If the pressurep(i) is hydrostatically balanced, we have the following useful relationship

− ρ(i)

ρ(0)

︸ ︷︷ ︸

1

ρ(0)

∂p(i)

∂z

+
p(i)

γp(0)

︸ ︷︷ ︸

p(i) ∂

∂z

1

ρ(0)

=
∂

∂z
π(i) , (3.18)

here we have introduced the variable

π(i) = p(i)/ρ(0) . (3.19)

We combine (3.15) and (3.12) and obtain for the pressure

p(0)(z) = p0

(

1 − γ − 1

γ
z

) γ
γ−1

. (3.20)

p0 is an integration constant. In the Newtonian limit, i.e.,γ−1 = O(ε) asε → 0 (for details see
Klein and Majda (2006)), the leading order pressure and density reads:p(0) = ρ(0) = exp(−z),
which are exactly the profiles for an isothermal atmosphere.Transforming (3.16) with the
help of (3.18) and integrating overz we havep(1)(z) = p1p

(0), wherep1 is another constant
of integration. Note that in the expansion of the pressurep(0) can now absorb thep(1) term.
Consequently the series for the pressure takes the form

p(λ, φ, z, t) = (p0 + εp1)p
(0)(z) + ε2p(2)(λ, φ, z, t) + O

(
ε3
)
, (3.21)

where without loss of generality the constant factorp0 + εp1 can be set to1 by an appropriate
choice of nondimensionalization. From (3.17) we can represent the hydrostatic balance ofp(2)

with the help ofΘ(2)
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∂

∂z
π(2) = Θ(2) . (3.22)

For the zero order continuity equation we obtain

∂

∂z
ρ(0)w(0) = 0 . (3.23)

Integration gives forz → ∞ andρ(0) → 0 : w(0)(∞) → ∞which is not physical. So we require
w(0) = 0. Analogously it can be shown from the next two order equations thatw(1) = w(2) = 0.
The higher order equations are

∇ · u(0) +
1

ρ(0)

∂

∂z
ρ(0)w(3) = 0 , (3.24)

∂

∂z
ρ(0)w(4) + ρ(0)∇ · u(1) = 0 , (3.25)

∂

∂t
ρ(2) + u(0) · ∇ρ(2) +

∂

∂z

(
ρ(0)w(5) + ρ(2)w(3)

)
+ ρ(0)∇ · u(2) + ρ(2)∇ · u(0) = 0 . (3.26)

The first two terms in the expansion of the velocity field are geostrophically balanced

u(0) =
1

f
er ×∇π(2) , (3.27)

u(1) =
1

f
er ×∇π(3) . (3.28)

The time evolution ofu(0) appears in the next order

∂

∂t
u(0) + u(0) · ∇u(0) + w(3) ∂

∂z
u(0) − u(0)v(0) tanφ

a
− fv(2) = (3.29)

− 1

aρ(0) cosφ

(
∂

∂λ
p(4) − ρ(2)

ρ(0)

∂

∂λ
p(2)

)

+ Su
(3) ,

∂

∂t
v(0) + u(0) · ∇v(0) + w(3) ∂

∂z
v(0) +

u(0)u(0) tanφ

a
+ fu(2) = (3.30)

− 1

aρ(0)

(
∂

∂φ
p(4) − ρ(2)

ρ(0)

∂

∂φ
p(2)

)

+ Sv
(3) .

From the expansion of the potential temperature equation weobtain

(
∂

∂t
+ u(0) · ∇ + w(3) ∂

∂z

)

Θ(2) = Sθ
(5) . (3.31)

From the equations of the asymptotic expansion we can derivenow some practical relations.
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The vorticity and the PV equation

We can combine (3.27) and (3.22) in a thermal wind equation

∂

∂z
u(0) =

1

f
er ×∇Θ(2) . (3.32)

The leading order vorticity balance can be obtained by calculating the divergence of (3.27)

f∇ · u(0) = −u(0) · ∇f = −v
(0) cosφ

a
. (3.33)

This equation states that the generation of vorticity through stretching is balanced by the advec-
tion of planetary vorticity (Sverdrup balance). Making useof the continuity equation (3.24) we
can also write it as

1

ρ(0)

∂ρ(0)w(3)

∂r
=

1

f
u(0) · ∇f . (3.34)

Applying−1
a

∂
∂φ

on (3.29) and 1
a cos φ

∂
∂λ

on (3.30), one can derive a vorticity equation

∂

∂t
ζ (0) + ∇ · u(0)ζ (0) + w(3) ∂

∂z
ζ (0) + er · (∇w(3) × ∂

∂z
u(0)) + ∇ · fu(2) =

er ·
(

1

ρ(0)2
∇ρ(2) ×∇p(2)

)

+ er · ∇ × S(3) .
(3.35)

HereS(3) = (S
(3)
u , Sv

(3))T and the vorticityζ (0) is given through

ζ (0) = er · (∇× u(0)) =
1

f
∆π(2) +

u(0) cotφ

a
. (3.36)

The first term on the right hand side of the last equation represents vorticity due to the curvature
of the isobars, in contrast to the QG vorticity heref is not constant. The second term represents a
shear vorticity – even in the presence of a constant meridional pressure gradient, the geostrophic
zonal wind has meridional variations becausef varies. In the vorticity equation (3.35) nearly
all terms from the general form are present and it is quite complex when compared with its QG
counterpart. This is in accordance with the study of Burger (1958), who pointed out that for PG
motions it is difficult to gain more precise information thanthe quasi-stationary character of the
vorticity (3.33).

Equations (3.24), (3.31) and (3.32) can be combined in a conservation equation for the potential
vorticity (the exact derivation is presented in Appendix A.2)
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(
∂

∂t
+ u(0) · ∇ + w(3) ∂

∂z

)
f

ρ(0)

∂Θ(2)

∂z
= Spv

(5) , (3.37)

whereSpv
(5) = f

ρ(0)

∂S
(5)
θ

∂z
. This completes the derivation of the hierarchy of perturbation equa-

tions needed for the construction of a closed, leading-order system of planetary scale equations.
The system of equations derived up to this point is not closedbecause of the (usual) appearance
of a higher-order velocity – hereu(2) – in the relative vorticity transport equation (3.35). The
subsequent derivation in Section 3.1.3 of the evolution equation for the barotropic part of the
pressure provides the desired closure as it allows us to eliminate this higher-order velocity in
a way similar to that encountered in the classical derivation of QG theory. In the next section
the planetary geostrophic equations (PGEs) are summarizedand we briefly discuss the closure
problem.

3.1.2 The PGEs for the atmosphere

Equations (3.27), (3.22), (3.24) and (3.31) represent the PGEs for the atmosphere (Phillips
(1963), for applications to the ocean see Robinson and Stommel (1959); Welander (1959)).
Here we recapitulate them

u(0) =
1

f
er ×∇π(2) , (3.38)

∂

∂z
π(2) = Θ(2) , (3.39)

∇ · u(0) = − 1

ρ(0)

∂

∂z
ρ(0)w(3) , (3.40)

∂

∂t
Θ(2) + u(0) · ∇Θ(2) + w(3) ∂

∂z
Θ(2) = Sθ

(5) . (3.41)

As shown in the previous section, these equations can be combined in one transport equation
for the PV variable f

ρ(0)
∂Θ(2)

∂z
, see (3.37).

The energy of the system is only potential – the PV equation contains only the stretching vor-
ticity term and the relative vorticity is absent due to the fact that the momentum equation is
inertialess. Consequently, the pressure cannot be found through the solution of an elliptic equa-
tion as in the QG theory. Supposeπ(2) is known, then one can find the horizontal wind from
the geostrophic balance, assuming periodic boundary conditions inλ andφ, and the vertical ve-
locity from the divergence constraint, applying vanishingw(3) at the bottom of the atmosphere.
Once the velocities are known, the potential temperature can be calculated from the evolution
equation for it. By integrating vertically the hydrostaticbalance, one can determine the pres-
sure. In doing so one needs a boundary condition for the pressure – it has to be specified at
some level, e.g., at the ground. In general, the pressure depends on the motion and prescribing
it at some level using a closure or parameterization that is not rooted directly in the governing
equations is a considerable limitation of the model.
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In the next section we systematically derive a closure condition for the PGEs within the present
asymptotic framework. In analogy with the classical derivation of the PV transport equation in
the QG theory, we eliminate higher-order unknown terms fromthe transport equation of relative
vorticity (3.35). We obtain a new evolution equation for thevertically averaged second-order
pressurep(2)

z

that may be interpreted again as a planetary barotropic PV transport equation.
Knowing the distribution ofΘ(2) andp(2)

z

, the surface pressurep(2)
0 (note thatp(2) = π(2) at

z = 0) can be easily found from the hydrostatic balance

p(2)
z

=

∫ 1

0

{

ρ(0)(z′)

∫ z′

0

Θ(2)(λ, φ, z, t)dz

}

dz′ + p
(2)
0

∫ 1

0

ρ(0)(z′)dz′ . (3.42)

Again using the hydrostatic balance andp(2)
0 as a boundary condition, the pressure at any level

can be reconstructed.

3.1.3 The evolution of the barotropic pressure

Assuming a constant Coriolis parameterf , Bresch et al. (2006) proposed a closure for the PGEs
in the form of a barotropic vorticity equation. Such assumption helped the authors to study
the existence of unique solutions, however, it is not realistic for the planetary scale dynamics
(remark 3 in Bresch et al. (2006)). Even aβ plane approximation forf is inappropriate, since
the PGEs describe motions with order one variations of the Coriolis parameter (Pedlosky, 1987).
In our analysis we take into account the full variations of the Coriolis parameter; we make use
of the higher order vorticity equation (3.35) from the asymptotic expansion and derive a closure
condition for (3.38) - (3.41). This closure represents an evolution equation for the barotropic
component of the pressure.

We performed an asymptotic analysis (not shown here) for thedynamics within a layer above
the troposphere with vertical variations of the potential temperature similar to the observed in
the stratosphere: of the orderε. The analysis revealed vanishing vertical velocitiesw(3) at the
tropopause. Consequently, we assume a rigid lid as a boundary condition at the top for the
equations presented here, since they are valid within the troposphere. If we average (3.40) with
respect toz and applyw(3) = 0 at z = 0, 1, we obtain

∇ · ρ(0)u(0)
z

= 0 , (3.43)

where we have used the averaging operator()
z

, defined for a general functionf(λ, φ, z, t) as

f
z

(λ, φ, t) =

∫ 1

0

f(λ, φ, z, t) dz . (3.44)

From (3.43) using (3.33) we can represent the horizontal divergence through the geostrophically
balanced meridional componentv(0) and we have

∂

∂λ
p(2)

z

= 0 . (3.45)
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Consequently, the pressure can be written in the form

p(2) = p(2)
z

(φ, t) + p(2)′(λ, φ, z, t) , p(2)′
z

= 0. (3.46)

Next, we can multiply the vorticity equation (3.35) byρ(0) and average it with respect toz and
λ (note thatp(2)

z,λ

= p(2)
z

)

∂

∂t
ρ(0)ζ (0)

z,λ

+ ∇ · u(0)ρ(0)ζ (0) + ρ(0)w(3)
∂

∂z
ζ (0)

z,λ

+ ρ(0)er · (∇w(3) × ∂

∂z
u(0))

z,λ

+ er ·
1

ρ(0)
∇ ∂

∂z
p(2) ×∇p(2)

z,λ

+ ∇ · ρ(0)fu(2)
z,λ

= er · ∇ × ρ(0)S(3)
z,λ

. (3.47)

We have to eliminate terms containingu(2) in order to have a closed equation. The fifth term
on the left hand side can be written as

∇ · ρ(0)fu(2)
z,λ

= f∇ · ρ(0)u(2)
z,λ

+ βρ(0)v(2)
z,λ

= −f
(
∂

∂t
ρ(2)

z,λ

+ ∇ · u(0)ρ(2)
z,λ

)

+ βρ(0)v(2)
z,λ

.
(3.48)

Here we have used the continuity equation (3.26) and the notation β = 1
a

∂f
∂φ

. Using (3.22) and

ρ(0) = exp (−z) we can express the densityρ(2) in terms of pressure and potential temperature

ρ(2)
z,λ

= − ∂

∂z
p(2)

z,λ

= − ∂

∂z
ρ(0)π(2)

z,λ

= −ρ(0)
∂

∂z
π(2)

z,λ

+ ρ(0)π(2)
z,λ

= −ρ(0)Θ(2)
z,λ

+ p(2)
z,λ

.

(3.49)

If we average the potential temperature equation (3.41) over z andλ, the temporal evolution of
ρ(2) can be written as

− ∂

∂t
ρ(2)

z,λ

=
∂

∂t

(

ρ(0)Θ(2)
z,λ − p(2)

z,λ
)

(3.50)

= −ρ(0)u(0) · ∇Θ(2) − ρ(0)w(3)
∂

∂z
Θ(2)

z,λ

+ ρ(0)Sθ
(5)

z,λ

− ∂

∂t
p(2)

z

(3.51)

= −∇ · ρ(0)u(0)Θ(2)
z,λ − ∂

∂z
ρ(0)w(3)Θ(2)

z,λ

︸ ︷︷ ︸

=0

+ρ(0)Sθ
(5)

z,λ

− ∂

∂t
p(2)

z

. (3.52)

Applying (3.49) and (3.52), (3.48) takes the form



24 CHAPTER 3. THE PLANETARY REGIME

∇ · ρ(0)fu(2)
z,λ

= − f




∂

∂t
p(2)

z

+ ∇ · u(0)p(2)
z,λ

︸ ︷︷ ︸

=0

−ρ(0)Sθ
(5)

z,λ



+ βρ(0)v(2)
z,λ

. (3.53)

The second term on the r.h.s. disappears if periodic boundary conditions inλ are assumed. We
can expressρ(0)v(2)

z,λ

in terms of known variables, if we use the momentum equation (3.29)

ρ(0)v(2)
z,λ

=
1

f




∂ρ(0)u

(0)

∂t

z,λ

− ρ(0)Su
(3)

z,λ

+ρ(0)

(

u(0) · ∇u(0) + w(3)
∂

∂z
u(0) − u(0)v(0) tanφ

a
− ρ(2)

a cosφρ(0)2

∂p(2)

∂λ

)z,λ
)

.

(3.54)

Substituting the last two equations in (3.47), the vorticity equation takes finally the form

∂

∂t

(

ρ(0)ζ (0)
z,λ

+
β

f
ρ(0)u(0)

z,λ − fp(2)
z

)

+NV
z,λ

+NM
z,λ

= Sp
z,λ

. (3.55)

Here we have used the notations

NV
z,λ

= ∇ · u(0)ρ(0)ζ (0) + ρ(0)w(3)
∂

∂z
ζ (0)+ (3.56)

ρ(0)er · (∇w(3) × ∂

∂z
u(0)) +

er

ρ(0)
· ∇ ∂

∂z
p(2) ×∇p(2)

z,λ

,

NM
z,λ

=
β

f

(

ρ(0)u(0) · ∇u(0) + ρ(0)w(3)
∂

∂z
u(0)− (3.57)

ρ(0)u(0)v(0) tanφ

a
− ρ(2)

a cosφρ(0)

∂p(2)

∂λ

z,λ
)

,

Sp
z,λ

= er · ∇ × ρ(0)S(3)
z,λ

+
β

f
ρ(0)Su

(3)
z,λ

− fρ(0)Sθ
(5)

z,λ

. (3.58)

Terms from the vorticity equation (3.47) are contained inNV
z,λ

: horizontal advection of relative
vorticity by the leading order windu(0), divergence of this wind multiplied by the relative
vorticity, vertical advection of vorticity, the twisting term and the solenoidal term. The terms in
NM

z,λ

and the second term in the brackets of (3.55) result from the elimination of the advection
of planetary vorticity by the zonally and vertically averaged ageostrophic meridional velocity
v(2)

z,λ

(see (3.29)). The last term in the brackets of (3.55) resultsfrom the density tendencies
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caused by the divergence ofu(2) (see (3.26)). We express the bracketed terms in (3.55) in terms
of p(2)

z

using (3.36) and the geostrophic balance

∂

∂t

(
1

a2 cosφ

∂

∂φ

cosφ

f

∂

∂φ
p(2)

z − β

f 2a

∂

∂φ
p(2)

z − fp(2)
z

)

+NV
z,λ

+NM
z,λ

= Sp
z,λ

. (3.59)

The termsNV
z,λ

andNM
z,λ

can be calculated if the distribution ofp(2) is known, then (3.59)
can be integrated in time and after inverting the Helmholtz operator acting onp(2)

z

the evolution
of the barotropic component of the pressure is determined. The surface pressurep(2)

0 can be
calculated from (3.42), this provides the necessary boundary condition for (3.38)-(3.41).

As we have already mentioned, some EMICs solve the PGEs presented in Section 3.1.2 but use
a diagnostic parameterization forp(2)

z

in order to close the system. The closure is based on a
linear relationship between the pressure and the temperature (Petoukhov et al., 2000). In this
way the model has only one prognostic equation – an advectionequation for the temperature.
This considerably reduces the computational time but may also be a cause of the limited atmo-
spheric variability observed in simulations based on this model. The closure presented here is
an additional evolution equation, which will be added to thePGEs. Since it has only one spatial
dimension, because of the averaging inλ andz, equation (3.59) will not severely decrease the
numerical efficiency of the model. Nevertheless, it will addan additional degree of freedom to
the system which can improve the representation of the atmospheric variability in the model.
As shown, the evolution equation for the barotropic pressure arises from the vorticity equation;
it contains terms such as advection of planetary vorticity and of relative vorticity which are
not present in the classical PG model. This gives the possibility to capture additional physical
phenomena with the model, e.g., zonal planetary Rossby waves.

Some EMICs are vertically averaged models, other have a verycrude vertical resolution, e.g.,
some universal linear structure for the temperature is assumed (Claussen et al., 2001). This mo-
tivates us to analyze the special case when the pressure distribution is represented as the product
of two functions, one depending only onz and another on the horizontal and time coordinates.
From the condition (3.45) we obtain that there are no variations inλ. As a consequencev(0)

andw(3) disappear, the termsNV
z,λ

andNM
z,λ

are zero and the initial pressure distribution
remains constant in time. We conclude that in the model presented one should consider at least
two modes in order to have non trivial evolution ofp(2)

z

. Such an assumption is implicitly made
in the CLIMBER EMIC (Petoukhov et al., 2000), taking into account the atmospheric lapse rate
dependence on the surface temperature, e.g., Mokhov and Akperov (2006).

3.1.4 Discussion

Using an asymptotic approach, we derived reduced model equations valid for one particular
regime of planetary scale atmospheric motions with temporal variations of the order of about
one week. Such temporal and spatial scales characterize atmospheric phenomena like the quasi-
stationary Rossby waves and teleconnection patterns. Herewe summarize the equations
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u(0) =
1

f
er ×∇π(2) , (3.60)

∂

∂z
π(2) = Θ(2) , (3.61)

∇ · u(0) = − 1

ρ(0)

∂

∂z
ρ(0)w(3) , (3.62)

∂

∂t
Θ(2) + u(0) · ∇Θ(2) + w(3) ∂

∂z
Θ(2) = Sθ

(5) , (3.63)

∂

∂t

(
1

a2 cosφ

∂

∂φ

cos φ

f

∂

∂φ
p(2)

z − β

f 2a

∂

∂φ
p(2)

z − fp(2)
z

)

+NV
z,λ

+NM
z,λ

= Sp
z,λ

, (3.64)

see (3.56), (3.57), (3.58) for the definition ofNV
z,λ

, NM
z,λ

andSp
z,λ

. The above equations
contain the PGEs and a planetary barotropic vorticity equation (3.64). The PGEs alone do not
represent a closed system, since a boundary condition for the surface pressure, or equivalently
for the barotropic pressure, is needed. We derived the evolution equation (3.64) which uniquely
determines the barotropic component of the flow and providesthe desired closure. Consistent
with previous studies on planetary scale motions, it contains terms absent in the classical QG
model: the advection of planetary vorticity by the ageostrophic wind, the solenoidal, the twist-
ing and the vertical advection term (where the vertical velocity results from the variation of
f ). The new equation gives the possibility to capture additional physical phenomena, not in-
cluded in the models based on the PGEs only. It suggests itself as a prognostic alternative to the
temperature-based diagnostic closure adopted in reduced-complexity planetary models (e.g.,
CLIMBER Petoukhov et al. (2000)) and may provide for more realistic increased large-scale,
long-time variability in future implementations. Wiin-Nielsen (1961) showed that the PGEs
produce baroclinic instability in the presence of a shearedwind. The addition of (3.64) to the
system should not affect this property, since the last equation governs the barotropic component
of the flow and we regard it as a boundary condition for closingthe PGEs. Nevertheless, it is
important to emphasize that in our model there is an important coupling between the barotropic
dynamics (3.64) and the temperature equation (3.63) through the surface pressurep(2)

0 from
(3.42). Equation (3.42) shows that changes in the barotropic pressurep(2)

z

will alter the p(2)
0

distribution and thus the surface wind field, which will change the temperature through advec-
tion. In this way (3.64) will considerably modify the behavior of the model compared to other
models based only on the classical PGEs.

Expressed in dimensional units the variations near the ground ofp(2) from (3.64) are of the order
∼ 20 hPa. Such fluctuations are comparable to those associatedwith meridional variations of the
zonal mean surface pressure and with anomalies due to quasi-stationary Rossby waves (Peixoto
and Oort, 1992). Sinceπ(2) from (3.61) is defined asp(2) scaled withρ(0) (3.19), the estimated
fluctuations will increase with height in accordance with the equivalent barotropic structure of
the quasi-stationary anomalies (Hoskins and Pearce, 2001).

Our analysis shows that the planetary distribution of the vertically averaged leading order pres-
surep(2)

z

is zonally symmetric. Such property possess some planetaryoscillations with dynam-
ical relevance to the atmosphere, e.g., the zonal index (Rossby, 1939) describing the transitions
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between blocked and enhanced midlatitude westerly flow. Another zonal phenomenon charac-
terized by planetary scales is the poleward propagation of zonal mean zonal wind anomalies
(Riehl et al., 1959) with period of about 60 days (Lee et al., 2007). The leading modes of
variability in the extratropical circulation, also known as northern and southern annular modes
(AM) (Thompson and Wallace, 2000), are also zonally symmetric; they are characterized by
planetary time scales of about 1-2 weeks. The derived new reduced equations may help in
understanding the structure of the AM better. In our model the zonal symmetry is a direct
consequence from the averaged continuity equation. On the other hand, idealized experiments
(Cash et al., 2002) have indicated that the zonally symmetric AM structure can be interpreted as
the resulting distribution of many zonally localized events with a meridional structure similar
to that of the AM.

In the derivation of the equation for the barotropic flow we used the boundary condition of
vanishing vertical velocity at the bottom and at the top of the domain. This condition was
motivated from the asymptotic analysis of the dynamics within a layer above the troposphere
with vertical variations of the potential temperature similar to the observed in the stratosphere:
of the order ofε. In this case we have shown that the vertical velocitiesw(3) vanish and we have
assumed a rigid lid at the top of the troposphere which is alsoconsistent with the QG theory. An
open question here is how other boundary conditions, e.g., vanishing zonally averaged vertical
mass flux, will modify the presented prognostic closure. Additional analysis is required in
order to find the type of the energy conserved in the PR when thenew evolution equation for
the barotropic pressure is added. This equation was derivedfrom the zonally and vertically
averaged vorticity equation (3.47), which indicates that some zonally symmetric barotropic
kinetic energy is conserved in addition to the potential energy (conserved in the PGEs).

We want to compare our approach for the derivation of reducedmodels with the one based on
mode truncation. In the latter the governing equations, e.g., the PEs, are projected on suitable
basis functions. One can choose basis functions motivated by the large-scale flow structures,
e.g., the slow Hough harmonics (Kasahara, 1977; Tanaka, 2003) or some empirical orthogonal
functions (EOFs) (Schubert, 1985; Achatz and Branstator, 1999; Achatz and Opsteegh, 2003).
Such models predict the time evolution only of the leading functions and the effects from the
unresolved modes are parameterized, e.g., through some linear regression. Instead of truncating
the degrees of freedom of the large-scale solution by considering a small number of horizontal
or vertical modes, here we filter the governing equations through the asymptotic technique so
that they are valid only for the planetary scales. In this wayphenomena not relevant for the
planetary scale dynamics like barotropic acoustic waves orhydrostatic gravity waves (present
in the PEs) are neglected, retaining the full 3D structure ofthe solution. In both approaches
the question of the representation of the unresolved scales(here the synoptic eddies) remains
open. They can be parameterized applying a linear regression fitting procedure (Tanaka, 1991;
Achatz and Branstator, 1999) or a macroturbulent diffusion(Petoukhov et al., 2000). The uni-
fied asymptotic technique applied here gives us another toolfor representing the synoptic scales
and their interactions with the planetary scales. In the next section we capture these interactions
in a systematic way. By using a two scale asymptotic expansion we derive coupled reduced
equations governing both the planetary scale motion and thesynoptic scale flow. In summary,
we consider our approach as an alternative to the one based onmode truncation; it reveals new
insights in the atmospheric dynamics and because of its systematic basis it has the potential to
be utilized for studies of multiple scales phenomena.
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3.2 Two scale model

A challenging problem in the atmospheric science is the question about the interactions between
the synoptic scales and the planetary scale motions. In Section 2.2 we introduced the scaling
of the coordinates for the synoptic scale motions. Assumingthat the solution of the govern-
ing equations depends on these coordinates, one can rederive the classical QG equations on a
sphere. The complete derivation is presented in Section 4.1.1. The unified asymptotic approach
gives one the possibility of deriving model equations validnot only on the synoptic scale but on
the planetary scale as well. Applying a two scale asymptoticexpansion the PG theory and the
QG theory can be merged in a systematic manner. In this section we present the corresponding
model equations.

3.2.1 Derivation of the Planetary Regime with synoptic scale interactions

A priori assumptions for the background stratification

The a priori assumptions from Section 3.1 remain the same. Inaddition we require that the
largest potential temperature variations on the synoptic scale (tS, λS, φS) are ot the orderε3.
This is consistent with the classical QG theory, where a horizontally uniform Brunt-Väisälä fre-
quency∼ 2 × 10−2 s−1 is assumed (Klein, 2000; Majda and Klein, 2003). In this casethe
expansion of the potential temperature takes the form

θ = 1 + ε2Θ(2)(λP , φP , z, tP ) + ε3Θ(3)(λP , φP , λS, φS, z, tP , tS) + O(ε4) . (3.65)

Notation

We use the following notation

(λS, φS), (λP , φP ) → XS,XP (3.66)

f = sinφP , (3.67)

β =
1

a

∂

∂φp
sinφP , (3.68)

∇S,P =
eλ

a cosφP

∂

∂λS,P
+

eφ

a

∂

∂φS,P
, (3.69)

∆S,P =
1

a2 cos2 φP

(
∂2

∂λS,P
2 + cosφP

∂

∂φS,P

(

cosφP
∂

∂φS,P

))

, (3.70)

∇S,P · u =
1

a cosφP

(
∂u

∂λS,P
− ∂v cosφP

∂φS,P

)

, (3.71)

er · (∇S,P × u) =
1

a cosφP

(
∂v

∂λS,P

− ∂u cosφP

∂φS,P

)

, (3.72)

u = eλu+ eφv . (3.73)
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Note that we do not need to make the traditionalβ-plane approximation for the Coriolis param-
eterf , since its full variations are resolved by the planetary scale coordinateφP .

Asymptotic expansion

Here we present the leading non-trivial equations in the asymptotic expansion. The magnitudes
of the source terms in (2.14) - (2.19) have been estimated at the beginning of Section 3.1 and
here we omit them for simplicity.

Horizontal Momentum Balance

The leading order velocities are geostrophically balancedwith respect to the pressure gradient
on both synoptic and planetary scale

O(ε1) : − sin φPv
(0) =

1

a cosφP

(

− ∂

∂λS

π(3) − ∂

∂λP

π(2)

)

, (3.74)

O(ε1) : sin φPu
(0) =

1

a

(

− ∂

∂φS
π(3) − ∂

∂φP
π(2)

)

(3.75)

As in the QG theory the evolution of the velocity fieldu(0) on the synoptic time scale appears
in the next order equation, here we have an additional planetary scale pressure gradient term

O(ε2) :
∂

∂tS
u(0) +

u(0)

a cos φP

∂

∂λS
u(0) +

v(0)

a

∂

∂φS
u(0) − sin φPv

(1) (3.76)

=
1

a cosφP

(

− ∂

∂λS

π(4) − ∂

∂λP

π(3)

)

,

O(ε2) :
∂

∂tS
v(0) +

u(0)

a cosφP

∂

∂λS

v(0) +
v(0)

a

∂

∂φS

v(0) + sin φPu
(1) (3.77)

=
1

a

(

− ∂

∂φS
π(4) − ∂

∂φP
π(3)

)

.

In the next order we have not only all terms from (3.29) and (3.30) but also terms such as
synoptic scale advection byu(1) and its time derivative with respect totS.

O(ε3) :
∂

∂tS
u(1) +

∂

∂tP
u(0) + u(0) · ∇Su(1) + u(1) · ∇Su(0) (3.78)

+ u(0) · ∇Pu(0) + w(3) ∂

∂z
u(0) + sin φPer × v(2) − eλ

u(0)v(0) tanφP

a

+ eφ
u(0)u(0) tanφ

a
= −∇Pπ

(4) +
ρ(2)

ρ(0)2
∇Pπ

(2) −∇Sπ
(5) +

ρ(2)

ρ(0)2
∇Sπ

(3) .



30 CHAPTER 3. THE PLANETARY REGIME

Vertical momentum balance

The expansion of the vertical momentum equation shows that the atmosphere is in hydrostatic
balance up to a very high order, the first non-trivial equations read

O
(
ε2
)

: Θ(2) =
∂

∂z
π(2) , (3.79)

O
(
ε3
)

: Θ(3) =
∂

∂z
π(3) . (3.80)

In accordance with the a priori assumption for the potentialtemperature variations and with the
observations, we assume that the surface distribution ofπ(2) does not depend on the synoptic
scales. If we allow for such dependence, the geostrophic balance will imply horizontal velocities
of the orderε−1uref near the surface. Observations, however, show that the synoptic scale
velocity fields are an order of magnitude weaker. We integrate (3.79) from0 to z and we obtain

π(2) = π(2)(λP , φP , tP , z). (3.81)

Applying the results (3.81), (3.74) and (3.75), we find that the synoptic scale divergence ofu(0)

disappears, i.e.,

f∇S · u(0) = 0 . (3.82)

Continuity equation

The first three orders in the mass conservation expansion givew(0) = w(1) = w(2) = 0. The
O(ε3) order equation reads

O(ε3) : ∇P · ρ(0)u(0) + ∇S · ρ(0)u(1) +
∂

∂z
ρ(0)w(3) = 0 . (3.83)

Here the synoptic scale divergence ofu(1) (interpreted in the classical QG theory as the di-
vergence due to the ageostrophic velocities) appears in thesame order as the planetary scale
divergence of the leading order fieldu(0).

Potential temperature

From the expansion of the potential temperature equation wehave

O(ε5) :
∂

∂tS
Θ(3) +

∂

∂tP
Θ(2) +

u(0)

a cosφP

(
∂

∂λS

Θ(3) +
∂

∂λP

Θ(2)

)

(3.84)

+
v(0)

a

(
∂

∂φS
Θ(3) +

∂

∂φP
Θ(2)

)

+ w(3) ∂

∂z
Θ(2) = 0 .
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It is worth to compare again the result for the two scale modelwith the corresponding QG
equation. In the latter theoryΘ(2) is interpreted as a constant background temperature distribu-
tion and all terms involving it, except the stratification term, are set to zero. Here we consider
the variations on the planetary spatial and temporal scalesof Θ(2) and their influence on the
synoptic scale dynamics ofΘ(3).

We have summarized the equations for the dynamics of the leading order non-trivial variables.
These equations involve higher-order unknown variables, e.g.,u(1); in the next section they will
be eliminated.

3.2.2 PV formulation

In this section we proceed with a derivation of a PV type equation in a way similar to that
encountered in the classical QG theory.

Applying− 1
a cos φP

∂
∂φS

cosφP to (3.76) and 1
a cos φP

∂
∂λS

to (3.77) we obtain

∂

∂tS
ζ (0) + u(0) · ∇Sζ

(0) + f∇S · u(1)

=
1

a2 cosφP

∂

∂φS

∂

∂λP

π(3) − 1

a2 cos φP

∂

∂λS

∂

∂φP

π(3) ,

(3.85)

where

ζ (0) = er · (∇S × u(0)) =
1

f
∆Sπ

(3) . (3.86)

With the help of (3.74) and (3.75) we can write

f∇P · u(0) = − 1

a2 cos φP

∂

∂φS

∂

∂λP
π(3) +

1

a2 cos φP

∂

∂λS

∂

∂φP
π(3) − βv(0) . (3.87)

Thus, the vorticity equation reduces to

∂

∂tS
ζ (0) + u(0) · ∇Sζ

(0) + f∇P · u(0) + f∇S · u(1) + βv(0) = 0 . (3.88)

Using the continuity equation (3.83) the last equation can be expressed as

∂

∂tS
ζ (0) + u(0) · ∇Sζ

(0) + βv(0) =
f

ρ(0)

∂

∂z
ρ(0)w(3) . (3.89)
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Eliminating the vertical velocity with the help of (3.84), we have

∂

∂tS
ζ (0) + u(0) · ∇Sζ

(0) + βv(0) =

− f

ρ(0)

∂

∂z

ρ(0)

∂
∂z

Θ(2)

(
∂

∂tS
Θ(3) +

∂

∂tP
Θ(2) + u(0) · ∇SΘ(3) + u(0) · ∇P Θ(2)

)

.
(3.90)

In the equation above both the planetary and the synoptic scales are involved; we have reduced
the unknown variables to twoπ(2)(XP , tP , z) andπ(3)(XS,XP , tS, tP , z), sinceu(0),Θ(2),Θ(3)

andζ (0) can be expressed in terms of them, see (3.75),(3.76), (3.79), (3.80) and (3.86). Next,
we derive two separate equations for the unknowns, as usual in the multiple scales asymptotic
techniques this is achieved by applying the sublinear growth condition.

Sublinear growth condition

The variableπ(3) can be represented as

π(3)(XS,XP , tS, tP , z) = π(3)
S

(XP , tP , z) + π
(3)
S (XS,XP , tS, tP , z) (3.91)

= π
(3)
P (XP , tP , z) + π

(3)
S (XS,XP , tS, tP , z) , (3.92)

where the operator()
S

was defined in (2.37) and we have

π
(3)
S

S

= 0 . (3.93)

Consequently, we can write

u(0) =
1

f
er ×∇Sπ

(3)
S

︸ ︷︷ ︸

:= u
(0)
S

+
1

f
er ×∇Pπ

(2)

︸ ︷︷ ︸

:= u
(0)
P

. (3.94)

Note thatu(0)
S is a function of the synoptic and planetary scales butu

(0)
P of the planetary scales

only and we have

u
(0)
S

S

= 0 . (3.95)

Equation (3.90) can be rewritten, with the terms depending on the planetary scales only appear-
ing on the right hand side, as
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∂

∂tS

(

ζ (0) +
f

ρ(0)

∂

∂z

(
ρ(0)∂π(3)/∂z

∂Θ(2)/∂z

))

+
(

u
(0)
S + u

(0)
P

)

· ∇S

(

ζ (0) +
f

ρ(0)

∂

∂z

(
ρ(0)∂π(3)/∂z

∂Θ(2)/∂z

))

+βv
(0)
S +

f

ρ(0)
u

(0)
S · ∂

∂z

∇Pρ
(0)Θ(2)

∂Θ(2)/∂z
= −βv(0)

P − f

ρ(0)

∂

∂z

(
ρ(0)

∂Θ(2)∂z

(
∂

∂tP
Θ(2) + u

(0)
P · ∇P Θ(2)

))

.

(3.96)

Here we used the hydrostatic balance and the transformationrelation

f

ρ(0)

(
∂

∂z
u

(0)
S

)

· ∇PΘ(2) +
f

ρ(0)

(
∂

∂z
u

(0)
P

)

· ∇SΘ(3)

=
f

ρ(0)

(
∂

∂z
u

(0)
S

)

· ∇SΘ(3) =
f

ρ(0)

(
∂

∂z
u

(0)
P

)

· ∇PΘ(2) = 0 .

(3.97)

With the definition

PV (3) =
1

f
∆Sπ

(3) +
f

ρ(0)

∂

∂z

(
ρ(0)∂π(3)/∂z

∂Θ(2)/∂z

)

, (3.98)

equation (3.96) can be written in the form

∂

∂tS
PV (3) + ∇S ·

(

(u
(0)
S + u

(0)
P )PV (3) +

βeλπ
(3)

f
− ezπ

(3)

ρ(0)
× ∂

∂z

∇Pρ
(0)Θ(2)

∂Θ(2)/∂z

)

= −βv(0)
P − f

ρ(0)

∂

∂z

(
ρ(0)

∂Θ(2)∂z

(
∂

∂tP
Θ(2) + u

(0)
P · ∇P Θ(2)

))

.

(3.99)

The left hand side of (3.99) vanishes after averaging the equation over the synoptic scales and
applying the sublinear growth condition. Thus

βv
(0)
P +

f

ρ(0)

∂

∂z

(
ρ(0)

∂Θ(2)/∂z

(
∂

∂tP
Θ(2) + u

(0)
P · ∇PΘ(2)

))

= 0 , (3.100)

therefore we have from (3.99)

∂

∂tS
PV (3) +

(

u
(0)
S + u

(0)
P

)

· ∇SPV
(3) + βv

(0)
S +

f

ρ(0)
u

(0)
S · ∂

∂z

∇Pρ
(0)Θ(2)

∂Θ(2)/∂z
= 0 . (3.101)
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Equation (3.100) can further be simplified. We average (3.83) and (3.84) over the synoptic
scales to obtain

∇P · u(0)
P +

1

ρ(0)

∂

∂z
ρ(0)w

(3)
P = 0 , (3.102)

∂

∂tP
Θ(2) + u

(0)
P · ∇P Θ(2) + w

(3)
P

∂

∂z
Θ(2) = 0 , (3.103)

wherew(3)
P = w(3)

S

. Thus, (3.100) can be written as

βv
(0)
P +

f

ρ(0)

(
∂

∂z

ρ(0)

∂Θ(2)/∂z

)(
∂

∂tP
Θ(2) + u

(0)
P · ∇P Θ(2)

)

+
f

ρ(0)

ρ(0)

∂Θ(2)/∂z

∂

∂z

(
∂

∂tP
Θ(2) + u

(0)
P · ∇P Θ(2)

)

=
f

ρ(0)

∂

∂z
ρ(0)w

(3)
P +

f

ρ(0)

(
∂

∂z

ρ(0)

∂Θ(2)/∂z

)(

−wP
∂

∂z
Θ(2)

)

+
f

ρ(0)

ρ(0)

∂Θ(2)∂z

∂

∂z

(
∂

∂tP
Θ(2) + u

(0)
P · ∇P Θ(2)

)

=
f

ρ(0)

ρ(0)

∂Θ(2)/∂z

∂

∂z
ρ(0)w

(3)
P +

f

ρ(0)

ρ(0)

∂Θ(2)∂z

∂

∂z

(
∂

∂tP
Θ(2) + u

(0)
P · ∇PΘ(2)

)

= 0 . (3.104)

Applying similar steps as in the derivation of the potentialvorticity equation (A.37), equation
(3.104) can be written in a compact form as

(
∂

∂tP
+ u

(0)
P · ∇P + wP

∂

∂z

)
f

ρ(0)

∂

∂z
Θ(2) = 0 . (3.105)

This completes the derivation of the two scale model for the Planetary Regime. In the next
section we summarize the model equations and discuss them.

3.2.3 Discussion

Using a two scale asymptotic ansatz, we extended in a systematic way the region of validity
of the planetary scale model from Section 3.1 to the synopticspatial and temporal scales. The
model presented relies on the assumption that the variations of the background potential temper-
ature are comparable in magnitude with those adopted in the classical quasi-geostrophic theory.
The model equations can be transformed into two advection equations (3.105), (3.101) for a PV
type quantity, namely,
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(
∂

∂tP
+ uP

(0) · ∇P + w
(3)
P

∂

∂z

)

PV (2) = 0 , (3.106)

(
∂

∂tS
+
(

u
(0)
S + u

(0)
P

)

· ∇S

)

PV (3) + βv
(0)
S +

f

ρ(0)
u

(0)
S · ∂

∂z

∇Pρ
(0)Θ(2)

∂Θ(2)/∂z
= 0 , (3.107)

where the underlined terms, discussed below in details, describe planetary-synoptic interactions
and we have

PV (2) =
f

ρ(0)

∂Θ(2)

∂z
, (3.108)

PV (3) =
1

f
∆Sπ

(3) +
f

ρ(0)

∂

∂z

(
ρ(0)∂π(3)/∂z

∂Θ(2)/∂z

)

. (3.109)

Equation (3.106) describes the planetary scale dynamics and (3.107) – the synoptic scale dy-
namics. If we leave the planetary scales dependence of the variables out, equation (3.106)
reduces trivially and the underlined terms in (3.107) vanish. In this case (3.107) is the classical
PV equation from the QG theory. On the other hand, if we assumethat the variables do not
depend on the synoptic scales, only (3.106) remains and we have the planetary scale model
derived in Section 3.1.

In the general case, when both synoptic and planetary scalesare included, equations (3.106)
and (3.107) with appropriate boundary conditions provide the planetary scale structure ofΘ(2)

(π(2)) and the synoptic scale structure ofπ(3). The derivative∂Θ(2)

∂z
in (3.107),(3.109) can be in-

terpreted as the background stratification. But whereas in the classical QG model a horizontally
uniform stratification is assumed, here it is governed by theevolution equation (3.106). Further
difference to the QG theory is that we do not utilize aβ-plane approximation in the derivation
of the synoptic scale model (3.107). In the last model variation of the Coriolis parameterf (as
well asβ) on a planetary length scale are allowed. As we will discuss in Chapter 7, further
investigation is required for the case whenf tends to zero. In this limit the model should be
matched in a systematic way to the planetary equatorial synoptic scale model of Majda and
Klein (2003).

As usual in the asymptotic analysis, the planetary scale structure ofπ(3) and its evolution on the
slow time scaletP appear in the equations one order higher than (3.106), (3.107). These higher
order equations involve unknowns such as the fast time variations ofπ(4) and its gradients on the
small spatial scale, see (3.76), (3.77) and (3.78). We postpone the discussion of the planetary
scale dynamics ofπ(3) to the next chapter, where motions with planetary zonal variations are
considered.

The two underlined terms in (3.107) describe interactions between the planetary and the syn-
optic scales, or more precisely the influence of the planetary scale variations of the background
temperature (pressure) distribution on the synoptic pressure field. The first term can be inter-
preted as the advection of synoptic scale PV by the planetaryscale velocity field, the second
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as the advection of PV resulting from the planetary scale gradient ofΘ(2) by the synoptic scale
velocities. It is important to note that in (3.106) there is no feedback from the synoptic scale
to the planetary scale distribution ofΘ(2); we discuss later an interaction mechanism through
the boundary condition. From the perspective of the classical wave-mean-flow interaction the-
ory, one might expect that the divergence over theXS spatial scale of the synoptic fluxes will
change the planetary background state. The reason for the absence of interactions of this kind is
sublinear growth condition. Because of the vanishing synoptic scale divergence ofu(0) (3.82),
the synoptic scale advection byu(0) of any quantity can be represented as the synoptic scale
divergence of a flux. Averages over the synoptic scales of such terms should vanish because of
the sublinear growth condition; consequently there is no net influence from the synoptic scale
on the planetary scale variableΘ(2).

As pointed out in Section 3.1.2 the PGEs are closed up to a boundary condition for the barotropic
component of the flow, e.g., for the vertically averaged pressurep(2)

z

. Considering plane-
tary scales only, in Section 3.1.3 we derived a closure condition in the form of planetary
barotropic vorticity equation (3.55). Note, that in the last equation the vorticity is defined as
ζ (0) = er · ∇P × u(0) and should not be confused with the vorticity from (3.86). Ifwe include
the synoptic scales in the analysis, terms of the formu(1) · ∇Sρ(0)ζ (0)

z,λ

will appear in (3.55),
with ζ (0) build with∇P . After averaging over the synoptic scales, such terms will give nonzero
contribution, since the synoptic scale divergence ofu(1) does not vanish. These terms represent
a feedback from the synoptic scale to the planetary scale dynamics. We should note that without
applying a solvability condition these terms are not closedat this stage (see also the discussion
at the end of Section 4.2.2).

The closure problem motivated us to study a case, where the departures from the geostrophic
wind are an order of magnitude smaller, by simply settingu(1) to zero in the two scale model.
In this case we can apply similar manipulations as in Section3.2.2 and we obtain the same
equations as (3.106) and (3.107). Moreover, the unknown terms involvingu(1) vanish in the
evolution equation for the barotropic pressure and it takesthe same form as the synoptic scale
averaged (3.55). An interesting finding is that some of the nonlinear terms in the evolution
equation (3.55) generate new forms of synoptic-planetary interactions. In the two scale case the

term ∇P · u(0)ρ(0)ζ (0)
z,λ

has a contribution from∇P · u(0)
S ρ(0)(er · ∇P × u

(0)
S )

z,λ

. The latter
term can be interpreted as planetary divergence of a flux depending on the synoptic scales
and it does not vanish after applying the averaging procedure. The discussion above shows
that the two scale version of (3.55) will provide the closurecondition for the planetary scale
dynamics in (3.106) and a new mechanism for a feedback from the synoptic scale dynamics.
We have studied other possible types of closed interaction terms, which can affect the slow time
evolution ofu(0) (π(2)). It can be easily shown that terms of the form∇S × (u(0) · ∇P u(0)) and
∇P × (u(0) · ∇Su(0)) will vanish after synoptic scale averaging. On the other hand, nonlinear
terms from (3.55) involvingw(3) andu(0) components will give nonzero contributions.

Equations (3.106) and (3.107) can be regarded as the anelastic analogon of Pedlosky’s two
scale model for the large-scale oceanic circulation (Pedlosky, 1984). As in the atmosphere,
also in the ocean there are planetary scale phenomena important for the heat and momentum
transport, e.g., the gyre scale circulation and the thermocline. On the other hand, we have in the
ocean some considerable differences: an incompressible flow with much smaller characteristic
velocities≈ 10 cm/s and horizontal scales of the eddies generated by baroclinic instability
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(synoptic eddies) about 50 km. In his study Pedlosky (1984) applied an asymptotic expansion
in two small parameters: one is the Rossby number and the other is the ratio between the
synoptic and the planetary length scale. For the derivationof his model he considered the case
when the ratio between the two small parameters is of the order one. Expressing in terms ofε
Pedlosky’s expansion parameters for our model, it can be shown that their ratio is again one,
which means that we have considered the same distinguished limit. The analysis of Pedlosky
starts from the incompressible equations on a plane, here westudy the compressible ones on
a sphere. Nevertheless, both model equations have the same structure and are identical if we
setρ(0) in (3.106), (3.107) to one and neglect the effects due to the spherical geometry. A
fundamental difference is the absence of a counterpart to the barotropic vorticity equation (3.55)
in the Pedlosky’s model. In the ocean the barotropic component of the planetary scale flow is
determined either by prescribing the surface wind or by including some additional friction in the
leading order momentum equation. This is not applicable to the atmosphere, since the surface
winds should be a part of the solution and the frictional effects are much smaller than in the
ocean.

We have already mentioned that in (3.106) there is no feedback from the synoptic scale dynam-
ics to the planetary scale flow, whereas there is an interaction in the reverse direction. The same
is also true for the model of Pedlosky (1984), but in the last paper some terms are discussed,
which might provide the missing feedback under a particulardistinguished limit. Our analysis
showed that such terms will vanish (regardless of the distinguished limit) after averaging over
the synoptic scales (they can be brought in a form similar to the term∇S × (u(0) · ∇P u(0))
which we already discussed above). The last finding stressesthe importance of the evolution
equation for the barotropic flow for the complete representation of the interactions between the
synoptic and planetary scales.



Chapter 4

Anisotropic Planetary Regime

The existence of anisotropic quasi-stationary Rossby waves motivated us to consider in the
Anisotropic Planetary Regime (APR) motions with zonal variations on a planetary scale but
with meridional extent restricted to the synoptic scale. Weresolve the synoptic zonal and the
planetary/synoptic temporal coordinates as well. The samemagnitude of the potential temper-
ature variations as in the PR is assumed. As leading order reduced system the QG model is
derived (Section 4.1.1), it determines the dynamics on the synoptic scale, see Fig. 1.3. For the
evolution on the planetary time scale of the leading order solution we consider the next order
system of equations in the asymptotic expansion (Section 4.1.2). We discuss this system in
Section 4.2.1 for the case of small meridional velocities and in Section 4.2.2 for the case of a
plane geometry. All results are summarized and discussed inSection 4.3.

4.1 Derivation of the Anisotropic Planetary Regime

Coordinates scaling

We introduced in Section 2.2 the coordinates(λP , φP , tP ) and(λS, φS, tS) resolving planetary
and synoptic spatial and temporal scales. In this chapter wewill use the same coordinates, but
since we consider motions with meridional variations confined to the synoptic scale only, we
setφP = const. Thus,φP can be interpreted as the latitude in the classical QG theoryaround
which one expands the Coriolis parameterf , typicallyφP = 45 ◦.

A priori assumptions

In accordance with the discussions in the previous chapter,see Sections 3.2.1, we allow po-
tential temperature variations on the planetary zonal scale of the orderε2. We assume that the
fluctuations on the synoptic spatial and temporal scales areone order of magnitude smaller, thus
the expansion for the potential temperature takes the form

θ = 1 + ε2Θ(2)(λP , z, tP ) + ε3Θ(3)(λP , λS, φS, z, tP , tS) + O
(
ε4
)
. (4.1)

38
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Preliminary expansions

We will make use of the following Taylor series expansions inthe derivation

sin(φP + εφG) = sinφP + εφS cos φP + O
(
ε2
)
, (4.2)

1

cos(φP + εφS)
=

1

cosφP − εφS sinφP + O(ε2)

=
1

cosφP

(
1 + εφS tanφP + O

(
ε2
))
,

(4.3)

In the APR the divergence from the continuity equation (2.18) can be expanded as

ε2

a cos(φP + εφS)

(
∂u

∂λS
+
∂v cos(φP + εφS)

∂φS

)

+
ε3

a cos(φP + εφS)

∂u

∂λP
=

ε2

a cosφP

(
∂u

∂λS

+
∂v cos φP

∂φS

)

+ ε3φS tanφP

a cosφP

(
∂u

∂λS

+
∂v cos φP

∂φS

)

−

ε3

a cosφP

∂

∂φS
vφS sinφP + ε4φ

2
S

2a

(
1

cos φP
+

2 sin2 φP

cos3 φP

)(
∂u

∂λS
− ∂v cosφP

∂φS

)

−ε4φS tanφP

a cosφP

∂

∂φS
vφS sin φP − ε4 1

a cosφP

∂

∂φS
vφ2

S

cosφP

2

+
ε3

a cosφP

∂u

∂λP
+ ε4φS tanφP

a cosφP

∂u

∂λP
+ O

(
ε5
)
.

(4.4)

Notation

Taking into account a constant planetary scale variableφP , we introduce the following notation
for the regime considered here
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f0 = sin φP , β =
1

a
cosφP , (4.5)

∇P =
eλ

a cosφP

∂

∂λP

, (4.6)

∇S =
eλ

a cosφP

∂

∂λS
+

eφ

a

∂

∂φS
, (4.7)

∇S · u =
1

a cosφP

(
∂u

∂λS

+
∂v cosφP

∂φS

)

, (4.8)

∇P · u =
1

a cosφP

∂u

∂λP
, (4.9)

∆S =
1

a2 cos2 φP

(
∂2

∂λS
2 + cosφP

∂

∂φS

(

cosφP
∂

∂φS

))

, (4.10)

er · (∇S × u) =
1

a cosφP

(
∂v

∂λS

− ∂u cosφP

∂φS

)

. (4.11)

Asymptotic expansion

We represent all dependent variables in (2.14) - (2.19) as anasymptotic series (2.31) and collect
terms with the same order inε. Again we omit for simplicity the source terms. We estimated
their magnitudes at the beginning of Chapter 3 and the terms can be added to the equations
without changing the derivation. Here we summarize the results.

Horizontal Momentum Balance

Making use of (4.2) and (4.3), the first two orders from theu andv components of the momen-
tum equation read

O(ε) : − f0v
(0) = − 1

a cos φP

(
∂

∂λS
π(3) +

∂

∂λP
π(2)

)

, (4.12)

O(ε) : f0u
(0) = −1

a

∂

∂φS

π(3) (4.13)

O(ε2) :
∂

∂tS
u(0) + u(0) · ∇Su

(0) − f0v
(1) − φS cos φPv

(0)

=
1

a cosφP

(

− ∂

∂λS
π(4) − ∂

∂λP
π(3)

)

− φS tanφP

a cosφP

(
∂

∂λS
π(3) +

∂

∂λP
π(2)

)

,

(4.14)

O(ε2) :
∂

∂tS
v(0) + u(0) · ∇Sv

(0) + f0u
(1) + φS cos φPu

(0) = −1

a

∂

∂φS
π(4) . (4.15)

In the equations above one can identify all terms from the momentum equations in the quasi-
geostrophic approximation. Additionally, we have terms involving derivatives with respect to
the planetary zonal coordinateλP and theφS tanφP terms result from the inclusion of spherical
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geometry. For reasons which will become clear later, we go one order further in the asymptotic
expansion. The next order corrections to the QG momentum equations are

O(ε3) :
∂

∂tS
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(4.16)
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∂
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∂z
v(0) + f0u

(0) + φS cosφPu
(1)

−φ
2
S

2
sin φPu

(0) +
u(0)u(0) tanφP

a
= −1

a

∂

∂φS
π(5) +

ρ(2)

aρ(0)

∂

∂φS
π(3) .

(4.17)

In accordance to the two scale model from Section 3.2, we havein (4.16), (4.17) the evolution
on the planetary time scale of the leading order velocity field and the synoptic evolution of the
next order corrections of that field. Additional terms due tothe expansion of the trigonometric
functions inεφS appear.

Vertical momentum balance

The expansion of the vertical momentum equation remains thesame as in the previous chapter
and we obtain hydrostatic balance up top(4)

∂

∂z
p(i) = −ρ(i), i = 0, . . . 4 . (4.18)

Making use of the ideal gas law (see Section 3.1.1), we can rewrite the first nontrivial equations
as

O
(
ε2
)

: Θ(2) =
∂

∂z
π(2) , (4.19)

O
(
ε3
)

: Θ(3) =
∂

∂z
π(3) , (4.20)

O
(
ε4
)

: Θ(4) =
∂

∂z
π(4) +

Θ(2)

ρ(0)

∂

∂z
p(2) +

p(2)

2p(0)2

1

γ

(
1

γ
− 1

)

. (4.21)
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Continuity equation

Applying the arguments from Sections 3.1, 3.2 it can be shownthat the vertical velocities dis-
appear up tow(2). Making use of (4.4), we obtain from the continuity equation

O(ε3) : ∇P · ρ(0)u(0) + ∇S · ρ(0)u(1) − tanφPρ
(0)

a

∂

∂φS
v(0)φS +

∂

∂z
ρ(0)w(3) = 0 , (4.22)

O(ε4) : ∇P · ρ(0)u(1) + φS tanφP∇P · ρ(0)u(0) + ∇S · ρ(0)u(2)+ (4.23)

φS tanφP∇S · ρ(0)u(1) − tanφPρ
(0)

a

∂

∂φS
v(1)φS − φS tan2 φPρ

(0)

a

∂

∂φS
v(0)φS

− ρ(0)

a

∂

∂φS

v(0)φ
2
S

2
+

∂

∂z
ρ(0)w(4) = 0 .

Potential temperature

At leading order we have forΘ(3) the potential temperature equation from the QG theory. As
in Section 3.2 we have additional terms describing planetary scale variations of the background
Θ(2)

O(ε5) :
∂

∂tS
Θ(3) +

∂

∂tP
Θ(2) + u(0) · ∇SΘ(3) + u(0) · ∇P Θ(2) + w(3) ∂

∂z
Θ(2) = 0 . (4.24)

Again we proceed in the derivation one order beyond the expansion for the QG theory

O(ε6) :

(
∂

∂tS
+ u(0) · ∇S

)

Θ(4) +

(
∂

∂tP
+ u(0) · ∇P

)

Θ(3) + u(1) · ∇SΘ(3)

u(1) · ∇PΘ(2) +
φS tanφPu

(0)

a cosφP

(
∂

∂λS
Θ(3) +

∂

∂λP
Θ(2)

)

+ w(3) ∂

∂z
Θ(3)

+ w(4) ∂

∂z
Θ(2) = 0 .

(4.25)

Up until now we have summarized the equations resulting fromthe asymptotic expansion, next
we derive reduced equations for the leading order solution.

4.1.1 Leading order solution: QG model

The next manipulations follow closely the derivation of thetwo scale model in Section 3.2.2.
Taking − ∂

∂φS
of (4.14) and ∂

∂λS
of (4.15), using (4.22), (4.12), (4.13) we derive a vorticity

equation of the form

∂

∂tS
ζ (0) + u(0) · ∇Sζ

(0) + βv(0) =
f0

ρ(0)

∂

∂z
ρ(0)w(3) , (4.26)
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where

ζ (0) = er · (∇S × u(0)) =
1

f0
∆Sπ

(3) . (4.27)

We eliminate in (4.26) the unknown vertical velocityw(3) using (4.24) and rewrite the result in
such a way that all terms on the right hand side depend on the planetary scaleλP only, whereas
the terms on the left depend on the synoptic scales as well (compare with (3.99))

∂

∂tS
PV (3) + ∇S ·

(

(u
(0)
S + u

(0)
P )PV (3) +

βeλπ
(3)

f0
− ezπ

(3)

ρ(0)
× ∂

∂z

∇Pρ
(0)Θ(2)

∂Θ(2)/∂z

)

(4.28)

= −βv(0)
P − f0

ρ(0)

∂

∂z

(
ρ(0)

∂Θ(2)∂z

(
∂

∂tP
Θ(2) + u

(0)
P · ∇P Θ(2)

))

.

Hereu
(0)
S ,u

(0)
P andPV (3) are defined as (compare with (3.94), (3.98))

u(0) =
1

f0
er ×∇Sπ

(3)

︸ ︷︷ ︸

:= u
(0)
S

+
1

f0
er ×∇Pπ

(2)

︸ ︷︷ ︸

:= u
(0)
P

, (4.29)

PV (3) =
1

f0
∆Sπ

(3) +
f0

ρ(0)

∂

∂z

(
ρ(0)∂π(3)/∂z

∂Θ(2)/∂z

)

. (4.30)

We average (4.28) over the synoptic scales and apply the sublinear growth condition. The left
hand side vanishes and we obtain the solvability condition that the right hand side is equal to
zero. We note that in contrast to the regime presented in Chapter 3, here we have vanishing
planetary scale divergence ofu

(0)
P

∇P · u(0)
P = 0 . (4.31)

By averaging the continuity equation (4.22) over the synoptic scales we obtainw(3)
S

= 0. The
averaged potential temperature equation (4.24) reads

∂

∂tP
Θ(2) + u

(0)
P · ∇P Θ(2)

︸ ︷︷ ︸

=0

= 0 . (4.32)

We obtainΘ(2) = Θ(2)(λP , z). The requirement that the right hand side of (4.28) vanishes,
reduces to
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βv
(0)
P = 0 . (4.33)

It follows Θ(2) = Θ(2)(z). Thus, the interaction terms on the left hand side of (4.28) involving
gradients inλP of Θ(2) or π(2) disappear and we obtain the classical QG model on a sphere for
the synoptic scale dynamics

∂

∂tS
PV (3) + u

(0)
S · ∇SPV

(3) + βv
(0)
S = 0 . (4.34)

4.1.2 Next order equations, general case

Here we summarize the next order equations system derived from the asymptotic expansion.
We have shown in the previous section thatΘ(2) is function ofz only, consequently some terms
in (4.25) can be set to zero. From (4.16) and (4.17) we obtain the general form of the next order
vorticity equation

∂

∂tS
ζ (1) + u(1) · ∇Sζ

(0) + u(0) · ∇Sζ
(1) + ζ (0)∇S · u(1) + w(3) ∂

∂z
ζ (0) + er · (∇w(3) × ∂

∂z
u(0))

−1

a

∂

∂φS

φS tanφP

a cosφP
u(0) ∂

∂λS
u(0) +

1

a cosφP

∂

∂λS

φS tanφP

a cosφP
u(0) ∂

∂λS
v(0) + ∇S · φS cosφP u(1)+

f0∇S · u(2) −∇S · φ
2
S

2
sin φPu(0) +

1

a

∂

∂φ

u(0)v(0) tanφP

a
+

1

a cosφP

∂

∂λS

u(0)u(0) tanφP

a
+

∂

∂tP
ζ (0) + u(0) · ∇P ζ

(0) +
1

a cosφP

∂u(0)

∂λS

1

a cosφP

∂v(0)

∂λP
− 1

a

∂u(0)

∂φS

1

a cosφP

∂u(0)

∂λP

=
1

a2 cosφP

∂

∂λP

∂

∂φS
π(4) +

1

a

∂

∂φS

φS tanφP

a cosφP

(
∂

∂λS
π(4) +

∂

∂λP
π(3)

)

+
1

a

∂

∂φS

(
φ2

S

2

(
1

cosφ
+

2 tan2 φ

cosφ

)
∂

∂λS

π(3)

)

,

(4.35)

where

ζ (1) = er · (∇S × u(1)) . (4.36)

Making use of the continuity equation (4.23), (4.35) can be written as
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∂

∂tS
ζ (1) + u(1) · ∇Sζ

(0) + u(0) · ∇Sζ
(1) + ζ (0)∇S · u(1) + w(3) ∂

∂z
ζ (0) + er · (∇w(3) × ∂

∂z
u(0))

+
φS tanφP

a cosφP

(

u(0) ∂

∂λS
ζ (0) + ζ (0) ∂

∂λS
u(0)

)

− tanφP

a cosφP
u(0) ∂

∂λS
u(0) +

φS tanφPf0

ρ(0)

∂

∂z
ρ(0)w(3)

− f0

ρ(0)

∂

∂z
ρ(0)w(4) − φS cosφP

ρ(0)

∂

∂z
ρ(0)w(3) + βv(1) − 2f0φS

a
v(0) +

1

a

∂

∂φS

u(0)v(0) tanφP

a

+
1

a cosφP

∂

∂λS

u(0)u(0) tanφP

a
+

∂

∂tP
ζ (0) + u(0) · ∇P ζ

(0) +
1

a cos φP

∂u(0)

∂λS

1

a cosφP

∂v(0)

∂λP

−1

a

∂u(0)

∂φS

1

a cosφP

∂u(0)

∂λP
− φS tanφPf0∇P · u(0) +

∂

∂tS

1

a cosφP

∂v(0)

∂λP

+
1

a2 cos2 φP

∂

∂λP

(

u(0) ∂

∂λS

v(0)

)

+
1

a2 cosφP

∂

∂λP

(

v(0) ∂

∂φS

v(0)

)

= −tanφP

a

(
∂

∂tS
u(0) + u(0) · ∇Su

(0)

)

+φS tanφP

(
∂

∂tS
+ u(0) · ∇S

)(

− 1

a cos φP

∂u(0) cosφP

∂φS

)

.

(4.37)

The vertical velocityw(4) in (4.37) can be eliminated with the help of (4.25). In this way an
equation combining the synoptic evolution ofζ (1), ∂

∂z
Θ(4) and the planetary evolution ofζ (0),

∂
∂z

Θ(3) can be derived. This will be demonstrated in Section 4.2.2 for a plane geometry.

4.2 Special cases

We proceed with a discussion of two special cases of the APR: in the first case we assume that
the leading order meridional velocities areO(ε), in the second we consider a plane geometry.

4.2.1 Regime(λP , λS, φS, tP , tS), v(0) = 0

In this section we restrict the analysis to the case when the leading order meridional velocities
vanish. Sincev(0) is geostrophically balanced we obtain

∂

∂λS
π(3) = 0 → π(3)(λP , φS, tP , tS, z) . (4.38)

Now, averaging (4.14), (4.22) and (4.24) overλS and applying the sublinear growth condition
we have
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∂

∂tS
u(0)

λS − f0v(1)
λS

= − 1

a cos φP

∂

∂λP

π(3)
λS
, (4.39)

1

a cosφP

∂

∂λP
ρ(0)u(0)

λS
+
ρ(0)

a

∂

∂φS
v(1)

λS
+

∂

∂z
ρ(0)w(3)

λS
= 0 , (4.40)

∂

∂tS
Θ(3)

λS
+ w(3)

λS ∂

∂z
Θ(2) = 0 . (4.41)

The equations above can be combined into one

∂

∂tS

(

ζ
(0)
x

λS

+
f0

ρ(0)

∂

∂z

ρ(0)Θ(3)
λS

∂Θ(2)/∂z

)

= 0 , (4.42)

where we have used the definition

ζ (i)
x = − 1

a cos φP

∂u(i) cosφP

∂φS

, i = 0, 1, . . . . (4.43)

From (4.42) it follows thatπ(3) does not depend ontS. Together with (4.39), (4.40) and (4.41)
this gives

π(3) = π(3)(λP , φS, tP , z) , (4.44)

w(3)
λS

= 0 , (4.45)

v(1)
λS

= v(1)
λS

(λP , φS, tP , z) . (4.46)

We average the continuity equation (4.23) overλS and make use of (4.40), we obtain

ρ(0)

a cosφP

(
∂

∂λP

u(1)
λS

+
∂

∂φS

cosφP v(2)
λS

)

− tanφPρ
(0)

a

∂

∂φS

v(1)
λS
φS +

∂

∂z
ρ(0)w(4)

λS
= 0 .

(4.47)

By applying− ∂
∂φS

and ∂
∂λP

to the averaged inλS (4.16) and (4.15) and combining the result
with (4.47), we obtain a vorticity equation of the form

∂

∂tS
ζ

(1)
x

λS

+
∂

∂tP
ζ (0)
x +

u(0)

a cosφP

∂

∂λP
ζ (0)
x +

v(1)
λS

a

∂

∂φS
ζ (0)
x

+βv(1)
λS

=
f0

ρ(0)

∂

∂z
ρ(0)w(4)

λS
.

(4.48)
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The averaged potential temperature equation (4.25) reads

∂

∂tS
Θ(4)

λS
+

∂

∂tP
Θ(3) +

u(0)

a cosφP

∂

∂λP

Θ(3) +
v(1)

λS

a

∂

∂φS

Θ(3) + w(4)
λS ∂

∂z
Θ(2) = 0 . (4.49)

From the results above we can derive a PV equation

∂

∂tS
PV (4)

λS
+

∂

∂tP
PV (3) +

u(0)

a cosφP

∂

∂λP

PV (3) +
v(1)

λS

a

∂

∂φS

PV (3) + βv(1)
λS

= 0 , (4.50)

where

PV (i) =

(

ζ (i−3)
x +

f0

ρ(0)

∂

∂z

ρ(0)Θ(i)

∂Θ(2)/∂z

)

. (4.51)

Sincev(1)
λS
, π(3) andΘ(3) are functions only ofλP , φS, tP andz, it can be shown from (4.50),

applying the sublinear growth condition ittS, that

∂

∂tS
PV (4)

λS
= 0 , (4.52)

∂

∂tP
PV (3) +

u(0)

a cosφP

∂

∂λP
PV (3) +

v(1)
λS

a

∂

∂φS
PV (3) + βv(1)

λS
= 0 . (4.53)

Using the averaged versions of (4.15) and (4.21), we can write (4.52) in terms ofπ(4) as

∂

∂tS

(

1

f0a2

∂2

∂φ2
S

π(4)
λS

+
f0

ρ(0)

∂

∂z

ρ(0)∂π(4)
λS
/∂z

∂Θ(2)/∂z

)

= 0 . (4.54)

It follows thatπ(4)
λS

does not depend ontS. On the other hand (4.53) gives us the evolution
on planetary time scale of the(λP , φS) spatial structure ofπ(3). Knowing this distribution,

Θ(3), u(0) andv(1)
λS can be calculated.

Next, we discuss some dispersion properties of the equations.
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Barotropic Case

We introduce the Mercator coordinatesXP , yS (Holton, 1992), given through

∂XP = a cosφP∂λP , (4.55)

∂yS = a∂φS . (4.56)

We consider the barotropic version of thetS averaged vorticity equation (4.48), in the new
coordinates it reads

∂

∂tP
ζ (0)
x + u(0) ∂

∂XP
ζ (0)
x + v(1)

λS ∂

∂yS
ζ (0)
x + βv(1)

λS
= 0 . (4.57)

We look for solutions of the form

π(3) = Π(kXP − ωtP )eilyS . (4.58)

Substituting the ansatz in the vorticity equation, one can show that the nonlinear terms drop out

v(1)
λS ∂

∂yS

ζx + u(0) ∂

∂XP

ζx = 0 . (4.59)

We end with an equation for the amplitudesΠ(kXP − ωtP )

−l2 ∂

∂tP
Π + β

∂

∂XP
Π = 0 . (4.60)

From here we obtain the phase speedc = ω
k

of the anisotropic barotropic Rossby waves

c = −β

l2
, ω = −βk

l2
. (4.61)

This dispersion relation can be considered as thek → 0 limit of the classical Rossby wave
dispersion relationc = −β/(k2 + l2). If we linearize the barotropic vorticity equation (4.57)
about a zonal mean stateu and look for stationary solutions of the formπ(3) = Π(XP )eilyS , we
obtain
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u − β

l2
= 0 . (4.62)

For a given background zonal flowu, the last result can be interpreted as a constraint on the
meridional wavenumberl for which the Rossby waves became stationary. Eq. (4.62) canbe
obtained by lettingk → 0 in the corresponding classical result; which shows some consistency
between the considered regime and the QG theory. Nevertheless, it is important to state that
both results in (4.61), (4.62) were derived under much weaker assumptions when comparing
them with the QG theory. In the QG theory the wavy ansatz is applied for the zonal structure
of the solution as well. In our regimeΠ can be arbitrary for (4.62) to be valid and has to satisfy
only Π = Π(kXP − ωtP ) for (4.61). As a consequence the derived dispersion relations can be
applied to a larger class of problems.

4.2.2 Plane geometry, Regime(X, x, y, tP , tS)

Here we consider the special case when we have a plane geometry, we convert the spherical
coordinates to Cartesian ones. For simplicity we setρ(0) and ∂

∂z
Θ(2) to one.

Notation

eλ, eφ, er → ex, ey, ez (4.63)

λP , λS, φS → X, x, y (4.64)

1

a cosφP

∂

∂λP
,

1

a cosφP

∂

∂λS
,
1

a

∂

∂φS
→ ∂

∂X
,
∂

∂x
,
∂

∂y
(4.65)

ρ(0),
∂

∂z
Θ(2) = 1 (4.66)

d

dtS,P
=

(
∂

∂tS,P
+ u(0) · ∇S,P

)

(4.67)

∇̃S = ∇S + ez
∂

∂z
, (4.68)

∆̃S =
1

f0

∆S + f0
∂2

∂z2
. (4.69)

For the sake of completeness we write the leading order solution from Section 4.1.1

d

dtS
q(3) = 0 . (4.70)

where
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q(3) = ζ (0) + f0
∂

∂z
Θ(3) + βy = ∆̃Sπ

(3) + βy . (4.71)

Next, we rewrite (4.25) and (4.37) in the new Cartesian coordinates, the metric terms and all
terms resulting from the expansion of trigonometric functions, except for the expansion of the
Coriolis parameter, vanish. Combining the two equations into one PV equation gives

d

dtS
q(4) + u(1) · ∇Sq

(3) + w(3) ∂

∂z
q(3) + f0

∂w(3)

∂z

∂Θ(3)

∂z
− ζ (0)

a

∂

∂z
w(3) + f0

∂u(1)

∂z
· ∇SΘ(3)

+f0
∂u(0)

∂z
· ∇SΘ(4) + ez · ∇Sw

(3) × ∂

∂z
u(0) = − d

dtP
q(3) − d

dtS

∂

∂X
v(0) ,

(4.72)

where we have used the definitions

ζ (0)
a = ζ (0) + βy , (4.73)

q(4) = ζ (1) + f0
∂

∂z
Θ(4) − f0

2
y2 . (4.74)

Using (4.24) and (4.26), we combine the fourth and fifth term on the left hand side of (4.72) as

f0
∂w(3)

∂z

∂Θ(3)

∂z
− ζ (0)

a

∂

∂z
w(3) =

∂Θ(3)

∂z

d

dtS
ζ (0)
a + ζ (0)

a

d

dtS

∂Θ(3)

∂z

=
d

dtS

(

ζ (0)
a

∂Θ(3)

∂z

)

=
d

dtS

((
1

f0
∆Sπ

(3) + βy

)
∂2π(3)

∂z2

) (4.75)

We express the last three terms on the left hand side of (4.72)in terms ofπ(3) andu(0), too.
Applying (4.14), (4.15) and (4.24) we obtain

f0
∂u(1)

∂z
· ∇SΘ(3) + f0

∂u(0)

∂z
· ∇SΘ(4) = − d

dtS

1

2f0

(

∇S
∂

∂z
π(3)

)2

− ∂

∂x

(
∂π(3)

∂z

)
∂u(0)

∂z
· ∇S

∂π(3)

∂x
− ∂

∂y

(
∂π(3)

∂z

)
∂u(0)

∂z
· ∇S

∂π(3)

∂y
,

(4.76)

ez · ∇Sw
(3) × ∂

∂z
u(0) = − d

dtS

1

2f0

(

∇S
∂

∂z
π(3)

)2

− ∂

∂x

(
∂π(3)

∂z

)
∂u(0)

∂x
· ∇S

∂π(3)

∂z
− ∂

∂y

(
∂π(3)

∂z

)
∂u(0)

∂y
· ∇S

∂π(3)

∂z
.

(4.77)
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Further, it can be easily shown that the last two terms on the right hand side of (4.76) and of
(4.77) will cancel when summed. With the help of the results above, (4.72) takes the form

d

dtS
q(4) + u(1) · ∇Sq

(3) = Sqg −
d

dtP
q(3) − d

dtS

∂

∂X
v(0) , (4.78)

where we have used the definition

Sqg = −w(3) ∂

∂z
q(3) − d

dtS

(

ζ (0)
a

∂Θ(3)

∂z

)

+
1

f0

d

dtS

(

∇S
∂

∂z
π(3)

)2

. (4.79)

Since we have the identity

1

f0

d

dtS

(

∇S
∂

∂z
π(3)

)2

=
1

f0

d

dtS

(
∂v(0)

∂z

∂Θ(3)

∂x
− ∂v(0)

∂y

∂Θ(3)

∂y

)

, (4.80)

the last two terms in the definition ofSqg can be written as the advection of a PV type quantity

d

dtS

(

ζ (0)
a

∂Θ(3)

∂z

)

+
1

f0

d

dtS

(

∇S
∂

∂z
π(3)

)2

=
d

dtS

((

∇̃S × u(0) + ezβy
)

· ∇̃SΘ(3)
)

. (4.81)

We briefly discuss the different terms in (4.78). The variable q(3) can be interpreted as the
leading order synoptic scale PV, it is advected by the vertical motion and by the ageostrophic
velocity field u(1). The second term on the right hand side of (4.78) represents the planetary
evolution ( d

dtP
) of q(3). The variablesq(4) and(∇̃S ×u(0) +ezβy) · ∇̃SΘ(3) can be considered as

the next order corrections toq(3); in (4.78) the dynamics of these variables evolves only on the
synoptic scale (d

dtS
). Finally, the third term on the right hand side of (4.78) canbe interpreted

as the synoptic evolution of the planetary scale vorticity (∂
∂X
v(0)). Thus, equation (4.78) de-

scribes the coupling between the synoptic scale dynamics ofthe next order PV corrections,the
planetary scale dynamics of the leading order PV and the synoptic evolution of the planetary
scale vorticity. The equation however is not closed, since the synoptic structure ofq(4) and the
planetary structure ofq(3) are unknown. The closure can be achieved by applying a solvability
condition, i.e., the sublinear growth condition, we will return to this issue later on.

In a way similar to the QG theory we want to construct the synoptic distributions of the variables
u(1), w(3) andΘ(4) from q(4). Making use of the three-dimensional Helmholtz decomposition
introduced in Muraki et al. (1999) (see eq.(24) there), we can express all higher order variables
in terms of a gradient potentialΦ(4) and a curl potential with the componentsF (4) andG(4)
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u(1) = − 1

f0

∂

∂y
Φ(4) − f0

∂

∂z
F (4) , (4.82)

v(1) =
1

f0

∂

∂x
Φ(4) +

1

f0

∂

∂X
π(3) − f0

∂

∂z
G(4) , (4.83)

Θ(4) =
∂

∂z
Φ(4) +

∂

∂x
G(4) − ∂

∂y
F (4) . (4.84)

In order to be consistent with the asymptotic results, we introduced in the decomposition ofv(1)

the additional term1
f0

∂π(3)

∂X
. Consider the case when all variables (the potentialsΦ(4), F (4), G(4)

too) do not depend on the synoptic scalesx, y, tS. Then it can easily be shown thatu(0), w(3) = 0

and we obtain thatv(1) is geostrophically balanced with respect to1
f0

∂π(3)

∂X
, which is guaranteed

by the ansatz (4.83).

Differentiating the Cartesian versions of the momentum equations (4.16), (4.17) with respect to
z and the Cartesian version of the temperature equation (4.24) with respect tox or y, one can
derive elliptic equations for the potentialsF (4) andG(4)

∆̃SF
(4) = − 1

f 2
0

∂

∂x

(
d

dtS
Θ(3)

)

− βy

f0

∂

∂y
Θ(3) +

1

f0

∂

∂z

(
d

dtS
v(0)

)

, (4.85)

∆̃SG
(4) = − 1

f 2
0

∂

∂y

(
d

dtS
Θ(3)

)

+
βy

f0

∂

∂x
Θ(3) − 1

f0

∂

∂z

(
d

dtS
u(0)

)

. (4.86)

We identify the right hand sides of the equations above as thecomponents of theQ vector
(Holton, 1992). Rewriting the continuity equation (4.22) in Cartesian coordinates and making
use of (4.82) and (4.83), we derive a diagnostic relation forw(3)

w(3) = f0

(
∂

∂x
F (4) +

∂

∂y
G(4)

)

. (4.87)

After applying∆̃S to the last equation, we will obtain the well known Omega equation (Holton,
1992). With the help of the Helmholtz decomposition we express q(4) in terms of the new
potentialΦ(4)

q(4) = ∆̃SΦ(4) +
1

f0

∂

∂X

∂

∂x
π(3) − f0

2
y2 . (4.88)

The conservation ofq(3) (4.70) gives the synoptic scale structure ofπ(3). Ones we haveπ(3),
we can evaluateu(0) andΘ(3) and hence the right hand side of (4.85) and (4.86). Inverting
the Laplacians we can determine the synoptic structure ofF (4) andG(4). From (4.87) we can
find w(3) and all the fields needed to calculateSqg in (4.78). We assume for a moment that we
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know the planetary scale structure ofπ(3) and its evolution on thetP time scale. Provided with
appropriate initial conditions, we can simply integrate (4.78) forward in time, determineq(4)

and after inverting (4.88) find the new value ofΦ(4). Since we can determine the fieldsF (4) and
G(4) by integrating (4.70) in time and solving (4.85) and (4.86),we can evaluate the velocity and
temperature correctionsu(1) andΘ(4) at the next time step. Repeating this procedure iteratively,
we can solve (4.70) and (4.78).

The planetary scale structure ofπ(3) and its evolution on thetP time scale have to be determined
from a solvability condition applied to the right hand side of (4.78). The left hand side of (4.78)
can be considered as a linear operator acting onΦ(4). The sublinear growth condition states that
we have to suppress terms on the right hand side which will lead to an unbounded growth of the
solutionΦ(4). In other words we have to remove the terms exciting the linear operator with its
eigenfrequency and thus leading to a resonant behavior. Thesolvability condition should lead
to separation of (4.78) into two equations, one for the synoptic scale dynamics ofq(4) and one
for the planetary scale dynamics ofq(3), compare with the condition for the two scale model
in Section 3.2. Unfortunately, the author has been unsuccessful to perform this splitting in the
presented regime, except for the special case of a meridionally averaged model. Applying the
usual procedure by averaging overxS andtS, meridional fluxes of the form∂

∂y
v(0)q(4)

x,tS
will

remain not closed in the equation forq(3). Such fluxes can be parameterized from observational
data.

4.3 Discussion

In this chapter we considered motions with synoptic meridional extent and with zonal and tem-
poral variations on the synoptic and on the planetary scales. We assumed that the background
potential temperature distribution does not depend on the synoptic scale and its fluctuations are
at mostO(ε2) to be consistent with the QG scaling.

We compare the leading order reduced equations for the APR and for the two scale PR from
Chapter 3.2. After applying a solvability condition, we have shown that in the present regime
the background potential temperature distribution remains constant, whereas in the PR it is
governed by the PGEs. Further, the synoptic dynamics in the APR is completely described by
the classical QG theory and all planetary interaction termsfrom the two scale PR vanish.

In Section 4.2.1 we discussed the APR whenO(ε) meridional velocities are assumed. We
have shown that in this case the restoringβ force enters the barotropic vorticity equation (4.57)
and affects the slow time evolution of the synoptic vorticity. The dispersion properties of (4.57)
indicate that Rossby waves are allowed as solutions, these waves are consistent with the classical
Rossby waves in the long wavelength limit. Despite the fact that we resolved two zonal scales
in Section 4.2.1, we obtain as a result that the leading orderpressure does not depend onλS.
Equation (4.53) which describes the evolution of that pressure on the slow planetary time scale,
remains the same if we redo the analysis (not shown here) without the coordinateλS. This
means that under the assumption of smaller meridional velocities, there is no net influence from
the synoptic zonal scale on the planetary dynamics.
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If spherical effects are neglected, eq. (4.53) takes the same form as the model of Dickinson
(1968a) for stratospheric disturbances with planetary zonal scales. In this model the time and
meridional coordinates are rescaled in such a way as to guarantee that the horizontal advection
of relative vorticity balances the planetary vorticity advection. This implies zonal velocities of
the order of50 m/s and a Oboukhov meridional scale, if the value of the stratospheric static
stability is used for the scaling. If instead of it the value for the troposphere is substituted, the
rescaled length and time scales match exactly those from Section 4.2.1, the zonal velocities
become10 m/s and the meridional are an order of magnitude smaller.

The assumption of small meridional velocities was dropped in Section 4.2.2. In the case of a
plane geometry we derived a PV type equation (4.78) for the next order dynamics (as already
mentioned, in the general case we obtain the QG theory as leading order solution). This equation
describes a coupling between the planetary evolution of theleading order PV field, the synoptic
evolution of the planetary scale vorticity field and the synoptic dynamics of higher order PV
corrections.

If we leave the planetary scale dependence in (4.78) out, we obtain theO(ε) corrections to
the QG model, also known as the QG+1 model (Muraki et al., 1999). Similarly to the QG
theory, QG+1 describes balanced flows and the dynamics is completely determined from the
advection of the PV type variableq(4). A discussion of analytical solutions of the QG+1 model
for the finite-amplitude Eady edge wave can be found in Murakiet al. (1999). In the last
paper the authors also address the issue of boundary conditions and solvability. The region of
validity of QG+1 equations is restricted only to the synoptic scale, however, these equations
contain higher order effects not present in the QG model. Rotunno et al. (2000) demonstrated
that these effects explain the mesoscale structure of the synoptic eddies and features of the
frontogenesis processes. Studying numerically unstable baroclinic waves, they showed that the
QG+1 equations account for the asymmetries between cyclones andanticyclones or between
the cold and warm fronts. The QG+1 model can be also viewed as a tool for observational
analysis, since its mathematical structure is relatively simple and it incorporates some well
known diagnostic relations, e.g., the omega equation.

There is one essential difference in the derivation of the QG+1 model presented here and the one
in Muraki et al. (1999) – the asymptotic expansions start from different equations. The latter
QG+1 model is derived by QG rescaling of the primitive equations (PE) and of the Ertel’s PV
equation, assuming a hydrostatic Boussinesq fluid on af plane. A priori it is not clear that the
rescaled PV equation will be the same as the one derived from the rescaled PE, it is an implicit
assumption that both equations are consistent. In the derivation presented here we do not make
use of the additional PV equation. Moreover, we can show thatfrom the leading two systems
of asymptotic equations, one can derive the same PV equations as those from the asymptotic
expansion of the PV equation in Muraki et al. (1999).

Another difference in our derivation is that we do not have toassume that the fluid is in hydro-
static balance, this can be shown as a leading order result. Of course the hydrostatic balance
comes automatically from the vertical momentum equation when applying a QG scaling, but a
rescaled general Ertel’s PV differs from the PV in Muraki et al. (1999) derived under the hy-
drostatic approximation. In the definition of the latter PV there are no contributions from the
vertical winds. It turns out that such terms can be neglectedwhenO(ε) corrections to the QG
are considered, however they will become important for the construction of higher order cor-
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rections. Finally, equations (4.37) and (4.25) can be regarded as a generalization of the QG+1

model to spherical geometry. The three-dimensional Helmholtz decomposition of the variables
can be applied in the same way as in the case of plane geometry.



Chapter 5

Planetary Regime with Background Flow

In the Planetary Regime with Background Flow (PRBF) we consider systematically larger vari-
ations of the background potential temperature, namelyO(ε). A justification for this can be
found in Section 5.1. The stronger temperature gradients imply zonal velocities of the order
of the jets, because of them the planetary scale dynamics in this regime evolves on the fast
(synoptic) time scale, see Fig 1.3. Using an asymptotic ansatz resolving both the planetary
and synoptic scales we derive in Section 5.2 a hierarchy of reduced equations. We show in
Section 5.3 that the leading order equations determine the vertical structure of the solution. Its
temporal and spatial structure enters the next order equations. These equations are presented
in Section 5.4 and we consider them under the Boussinesq approximation (Section 5.4.1). The
chapter ends with a summary and a discussion of the results.

5.1 Coordinates scaling and a priori assumptions

In this chapter we use the two scale asymptotic ansatz from Section 3.2, resolving the planetary
and the synoptic spatial and temporal variations.

A priori assumptions

Observations of the potential temperature distribution (Gill, 2003; Peixoto and Oort, 1992) re-
veal the following key features: i) large equator to pole andsurface to tropopause temperature
differencesδΘ ∼ 40−60 K evolving on a seasonal time scale, the nondimensional order of these
temperature differences isδΘ/Θref ∼ 1/6 ∼ O(ε) (Θref = 300 K); ii) an order of magnitude
smaller zonal variations on the planetary scale; iii)O(ε3) synoptic scale variations, see the a
priori assumptions from Sections 3.1, 3.2.1; iv) quasi linear vertical structure (Petoukhov et al.,
2000; Mokhov and Akperov, 2006). The properties i)-iv) motivate the following asymptotic
expansion for the potential temperature

θ = 1 + εΘ(1)(φP , z) + ε2Θ(2)(λP , φP , z, tP , tS) + ε3Θ(3)(λP , φP , λS, φS, z, tP , tS) + O(ε4) .
(5.1)

56
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HereΘ(1) represents a prescribed (since it evolves on a much longer time scale than the one
considered here) background potential temperature profileof the form

Θ(1)(φP , z) = Θh(φP ) +Nz , (5.2)

where the meridional structureΘh(φP ) and the constant lapse rateN are given. As we will
show later,O(ε) temperature variations induce through the hydrostatic andgeostrophic balance
strong zonal winds of the order ofε−1uref . Such winds are comparable in magnitude with the
atmospheric jets. We use for the horizontal wind the expansion

u = ε−1u(−1)(λP , φP , z, tP , tS) + u(0) + εu(1) + O
(
ε3
)
, (5.3)

whereu(i) for i ≥ 0 depends on both the planetary and synoptic scales. Sinceε−1uref planetary
scale surface winds are not observed and the meridional variations of the zonally averaged
surface pressure are small (Peixoto and Oort, 1992, p. 146):δp ∼ 5 − 10 hPa∼ O(ε2 − ε3),
we set

π(1)(φP , z = 0) = 0 , (5.4)

as a lower boundary condition for the model.

5.2 Derivation of the Planetary Regime with Background Flow

Notation

We use the following notation

(λS, φS), (λP , φP ) → XS,XP (5.5)

f = sin φP , (5.6)

β =
1

a

∂

∂φP
sin φP , (5.7)

∇S,P =
eλ

a cosφP

∂

∂λS,P
+

eφ

a

∂

∂φS,P
, (5.8)

∆S,P =
1

a2 cos2 φP

(
∂2

∂λS,P
2 + cosφP

∂

∂φS,P

(

cosφP
∂

∂φS,P

))

, (5.9)

∇S,P · u =
1

a cosφP

(
∂u

∂λS,P
− ∂v cosφP

∂φS,P

)

, (5.10)

er · (∇S,P × u) =
1

a cosφP

(
∂v

∂λS,P

− ∂u cosφP

∂φS,P

)

, (5.11)

u = eλu+ eφv . (5.12)
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Asymptotic expansion

We summarize the leading order equations resulting from theasymptotic expansion, again we
omit for simplicity the momentum and diabatic source terms.

Horizontal momentum balance

At leading order we obtain a geostrophically balanced zonalvelocityu(−1) and vanishingv(−1)

component

O(1) : u(−1)(φP , z) = − 1

fa

∂

∂φP
π(1)(φP , z) , (5.13)

O(1) : v(−1) = 0 . (5.14)

Theu(0) components of the velocity are no longer in geostrophic balance, since terms like the
synoptic scale advection byu(−1) and the metric terms appear at the same order as the Coriolis
force and the pressure gradient

O(ε1) :
u(−1)

a cosφP

∂

∂λS
u(0) − sinφP v

(0) =
1

a cosφP

(

− ∂

∂λS
π(3) − ∂

∂λP
π(2)

)

, (5.15)

O(ε1) :
u(−1)

a cosφP

∂

∂λS
v(0) +

u(−1)u(−1) tanφP

a
+ sin φPu

(0)

=
1

a

(

− ∂

∂φS

π(3) − ∂

∂φP

π(2) +
ρ(1)

ρ(0)

∂

∂φP

π(1)

)

. (5.16)

TheO(ε2) momentum equations read

O(ε2) :
∂

∂tS
u(0) +

u(−1)

a cosφP

∂

∂λS

u(1) +
u(0)

a cosφP

∂

∂λS

u(0) +
u(−1)

a cosφP

∂

∂λP

u(0)

+
v(0)

a

∂

∂φS

u(0) +
v(0)

a

∂

∂φP

u(−1) + w(3) ∂

∂z
u(−1) − u(−1)v(0) tanφP

a

− sin φPv
(1) =

1

a cosφP

(

− ∂

∂λS
π(4) +

ρ(1)

ρ(0)

∂

∂λS
π(3) − ∂

∂λP
π(3) +

ρ(1)

ρ(0)

∂

∂λP
π(2)

)

,

(5.17)

O(ε2) :
∂

∂tS
v(0) +

u(−1)

a cosφP

∂

∂λS
v(1) +

u(0)

a cosφP

∂

∂λS
v(0) +

u(−1)

a cosφP

∂

∂λP
v(0)

+
v(0)

a

∂

∂φS
v(0) +

2u(−1)u(0) tanφP

a
+ sin φPu

(1) =
1

a

(

− ∂

∂φS
π(4)

+
ρ(1)

ρ(0)

∂

∂φS
π(3) − ∂

∂φP
π(3) +

ρ(1)

ρ(0)

∂

∂φP
π(2) +

(

−ρ
(1)2

ρ(0)2
+
ρ(2)

ρ(0)

)

∂

∂φP
π(1)

)

.

(5.18)
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In the last two equations we can identify all terms in (3.76) and (3.77). In addition we have the
u(−1) advection terms and the planetary gradient ofπ(1).

Vertical momentum balance

Pressure and density variations up to the order ofε3 are hydrostatically balanced.

∂

∂z
p(i) = −ρ(i), i = 0, . . . 3 . (5.19)

In the next order equation the hydrostatic balance ofp(4) andρ(4) is disturbed by the Coriolis
force resulting from the horizontal component of the earth’s rotation vector.

O(1) : ρ(0)u(−1) cos φP =
∂

∂z
p(4) + ρ(4) . (5.20)

Making use of the ideal gas law (see Section 3.1.1, but nowΘ(1) 6= 0), we obtain from the first
nontrivial equations in the vertical momentum balance

ρ(0) = p(0)1/γ ⇒ ρ(0)(z), p(0)(z) , (5.21)

Θ(1)(φP , z) =
∂

∂z
π(1) ⇒ π(1)(φP , z), ρ

(1)(φP , z) , (5.22)

Θ(2) =
∂

∂z
π(2) − ρ(1)Θ(1)

ρ(0)
+

(1 − γ)z2ρ(0)2

2γ2p(0)2
Θ(1)2 ,

⇒ π(2)(φP , λP , z, tP , tS) (5.23)

Potential temperature

The leading order potential temperature equation reduces to

O(ε3) : w(2) ∂

∂z
Θ(1) = 0 ⇒ w(2) = 0 . (5.24)

The next order equation takes the form

O(ε4) :
u(−1)

a cosφP

(
∂

∂λS
Θ(3) +

∂

∂λP
Θ(2)

)

+
v(0)

a

∂

∂φP
Θ(1) + w(3) ∂

∂z
Θ(1) = 0 . (5.25)

The time evolution ofΘ(2) andΘ(3) on the planetary and synoptic scale, respectively, appears
in the next order equation
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O(ε5) :
∂

∂tS
Θ(3) +

∂

∂tP
Θ(2) +

u(−1)

a cosφP

(
∂

∂λS
Θ(4) +

∂

∂λP
Θ(3)

)

+
u(0)

a cosφP

(
∂

∂λS
Θ(3) +

∂

∂λP
Θ(2)

)

+
v(0)

a

(
∂

∂φS
Θ(3) +

∂

∂φP
Θ(2)

)

+
v(1)

a

∂

∂φP
Θ(1) + w(4) ∂

∂z
Θ(1) + w(3) ∂

∂z
Θ(2) = 0 . (5.26)

Higher order unknown variablesΘ(4), v(1) andw(4) appear in this potential temperature equation
unlike (3.84).

Continuity equation

Making use of the fact thatu(−1) does not depend on the synoptic scales, we obtain from the
leading order continuity equation

O(ε1) :
ρ(0)

a cosφP

∂

∂λS

u(−1) +
ρ(0)

a

∂

∂φS

v(−1)

︸ ︷︷ ︸

=0

+
∂

∂z
ρ(0)w(1) = 0 ⇒ w(1) = 0 . (5.27)

Although not geostrophically balanced, theu(0) field is divergence free on the synoptic scale

O(ε2) :
ρ(0)

a cosφP

∂

∂λS

u(0) +
ρ(0)

a

∂

∂φS

v(0) = 0 . (5.28)

The continuity equation imposes a constraint on the synoptic scale structure ofπ(3). Together
with (5.15) and (5.16) it gives

∂

∂λS

er ·
(
∇S × u(0)

)
=

∂

∂λS

∆S
π(3)

f
= 0 . (5.29)

The next order continuity equation reads

O(ε3) : ∇P · ρ(0)u(0) + ∇S · ρ(0)u(1) +
∂

∂z
ρ(0)w(3) = 0 . (5.30)
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5.2.1 Averaging over the synoptic scalesλS, φS and tS

Next, we regroup the results from the asymptotic analysis indifferent equation systems, each
containing a momentum, mass and potential temperature balance. In order to see the net effect
from the synoptic scale on the planetary scale, we average the equations overXS andtS and
apply the sublinear growth condition.

We have the prescribed background state

u(−1)(φP , z) = − 1

af

∂

∂φP

π(1)(φP , z) , (5.31)

Θ(1)(φP , z) =
∂

∂z
π(1) → π(1)(φP , z), ρ

(1)(φP , z) , (5.32)

(5.33)

The first nontrivial system of equations reads

sin φPv(0)
S

=
1

a cosφP

∂

∂λP
π(2) , (5.34)

u(−1)u(−1) tanφP

a
+ sin φPu(0)

S

=
1

a

(

− ∂

∂φP

π(2) +
ρ(1)

ρ(0)

∂

∂φP

π(1)

)

(5.35)

Θ(2) =
∂

∂z
π(2) − ρ(1)Θ(1)

ρ(0)
+

(1 − γ)z2ρ(0)2

2γ2p(0)2
Θ(1)2 , (5.36)

u(−1)

a cosφP

∂

∂λP

Θ(2) +
v(0)

S

a

∂

∂φP

Θ(1) + w(3)
S ∂

∂z
Θ(1) = 0 , (5.37)

∇P · ρ(0)u(0)
S

+
∂

∂z
ρ(0)w(3)

S

= 0 , (5.38)

where the operator()
S

was defined in (2.37). It is shown in the next Section that the last system
of equations determines the vertical structure ofπ(2). The next order equations read
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u(−1)

a cosφP

∂

∂λP
u(0)

S

+
v(0)

S

a

∂

∂φP
u(−1) + w(3)

S ∂

∂z
u(−1) − u(−1)v(0)

S

tanφP

a

− sinφP v(1)
S

=
1

a cosφP

(

− ∂

∂λP
π(3)

S

+
ρ(1)

ρ(0)

∂

∂λP
π(2)

)

, (5.39)

u(−1)

a cosφP

∂

∂λP

v(0)
S

+
2u(−1)u(0)

S

tanφP

a
+ sin φPu(1)

S

= −1

a

∂

∂φP

π(3)
S

+
1

a

[

ρ(1)

ρ(0)

∂

∂φP
π(2) +

(

−ρ
(1)2

ρ(0)2
+
ρ(2)

ρ(0)

)

∂

∂φP
π(1)

]

, (5.40)

∂

∂tP
Θ(2) +

u(−1)

a cosφP

∂

∂λP
Θ(3)

S

+
u(0)

S

a cosφP

∂

∂λP
Θ(2) +

v(0)
S

a

∂

∂φP
Θ(2)

+
v(1)

S

a

∂

∂φP
Θ(1) + w(4)

S ∂

∂z
Θ(1) + w(3)

S ∂

∂z
Θ(2) = 0 , (5.41)

Θ(3)
S

=
∂

∂z
π(3)

S − ρ(1)Θ(2)

ρ(0)
− ρ(2)Θ(1)

ρ(0)
− ρ(1)Θ(1)

ρ(0)

+
(1 − γ)p(1)p(2)

γ2p(0)2
+

(1 − γ)(1 − 2γ)p(1)3

6γ3p(0)3
, (5.42)

∂

∂z

(

ρ(0)w(4)
S

+ ρ(1)w(3)
S
)

+ ∇P ·
(

ρ(0)u(1)
S

+ ρ(1)u(0)
S
)

+
u(−1)

a cosφP

∂

∂λP
ρ(2)

S

= 0 . (5.43)

In the above system there is no feedback from the synoptic scale to the planetary scale dynam-
ics, since the averages over the synoptic scale advection terms in (5.17), (5.18) and (5.26) vanish
because of (5.28) and of the sublinear growth condition. Following the discussion from Sec-
tion 3.2.3, we expect that some planetary-synoptic interaction terms will appear in the higher
order averaged equations; for example in the form ofu(1) · ∇S(er · ∇S × u(0))

z,λ

(the synoptic
advection of synoptic scale relative vorticityer ·∇S ×u(0) by higher order velocity corrections)
or ∇P · u(0)(er · ∇P × u(0))

z,λ

(the planetary divergence of the flux of planetary scale relative
vorticity er · ∇P × u(0)).

5.3 Vertical structure π(2)

We proceed with the discussion of the leading order equations (5.34)-(5.38). We show that the
system (5.34)-(5.38) can be written in the same form as the stationary, linearized (about a zon-
ally symmetric flow) potential vorticity equation for the PR(3.106). Further, we present some
analytical solutions for the vertical structure ofπ(2) for the cases where first the background
densityρ(0) and second the background zonal flow are set to constant.
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Case:ρ(0) = const

Differentiating (5.37) with respect toz and expressing all unknown variables in terms ofπ(2),
we can combine (5.34) – (5.38) in one equation

ρ(0)

a cosφP

∂

∂λP








∂2

∂z2
π(2) − βN

fFz
︸ ︷︷ ︸

:=α2/z

π(2)








= 0 , (5.44)

whereN is defined in (5.2) andF = 1
a

∂
∂φP

Θ(1). The formal solution forπ(2) reads

π(2)(λP , φP , z, tP ) =

∫ λP

0

πh(λ, φP , z, tP )dλ+ π0(φP , z, tP ) . (5.45)

Hereπh satisfies( ∂2

∂z2 + α2

z
)πh = 0 and is given by

πh(XP , z, tP ) =
√
zJ1(2α

√
z)C∗

1(XP , tP ) +
√
zY1(2α

√
z)C∗

2(XP , tP ) , (5.46)

whereJ1, Y1 are the Bessel functions of the first and second kind (Abramowitz and Stegun,
1964),C∗

1 , C
∗

2 andπ0 are integration constants and we haveα = α(φP ).

Thus,π(2) has the form

π(2)(XP , z, tP ) = f1(φP , z)C1(XP , tP ) + f2(φP , z)C2(XP , tP ) + π0(φP , z, tP ) , (5.47)

wheref1 =
√
zJ1(2α

√
z), f2 =

√
zY1(2α

√
z), C1 =

∫ λP

0
C∗

1dλ andC2 =
∫ λP

0
C∗

2dλ. We
expect the functionsC1, C2 andπ0 to be determined from the next order asymptotic equations
by applying the sublinear growth condition, see Section 5.4and Appendix A.3. The profiles of
f1 andf2 are displayed in Fig. 5.1. For largez these functions behave like

f1 ∼ z1/4 cos(2α
√
z − 3

4
π) + O

(
|z|−1) , (5.48)

f2 ∼ z1/4 sin(2α
√
z − 3

4
π) + O

(
|z|−1) , (5.49)

(Abramowitz and Stegun, 1964) implying that the amplitude of π(2) oscillates between+∞ and
−∞ for z → ∞. Such an unbounded growth is limited if we set the backgroundzonal wind
u(−1) = const above some heightzt (denoting the height of tropopause)
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Figure 5.1: The vertical structure off1, f2. The functions are computed withN andΘh in (5.44)
equal to one and forφP = 60◦N.

u(−1) =







− 1
f
Fz, z ≤ zt

− 1
f
Fzt, z ≥ zt .

(5.50)

For the layer above the troposphere we can setz = zt in (5.44) and the solution takes the form

π(2) = C1
t(XP , tP ) cos(αtz) + C2

t(XP , tP ) sin(αtz) + πt
0(φP , z, tP ) , (5.51)

whereα2
t = α2/zt andC1

t, C2
t,πt

0 are integration constants. Further investigation is required
here to determine a matching condition for the solutions (5.47) and (5.51) atz = zt.

Caseρ(0) = e−z, u(−1) = const

Next, we consider the vertical structure equation forπ(2) assumingu(−1) = const but relaxing
the condition of constant densityρ(0). We set the background density to a much more realistic
profile: ρ(0) = e−z, which was derived analytically in Section 3.1.1, see (3.20) and the discus-
sion thereafter. Under these assumptions, (5.34) – (5.38) can be written as a single equation for
π(2)

∂

∂λP

∂

∂z
ρ(0) ∂

∂z
π(2) +

β

f 2u(−1)

∂Θ(1)

∂z

∂

∂λP

ρ(0)π(2) = 0 . (5.52)

Substituting the ansatz
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π(2) = A(z)ez/2eikλP V (φP ) , (5.53)

we obtain an equation for the amplitudeA(z)

∂2

∂z2
A(z) +

(
β

f 2u(−1)

∂Θ(1)

∂z
− 1

4

)

A(z) = 0 . (5.54)

We want to compare this result with the QG theory. Linearizing the PV equation (4.70) about a
constant zonal mean flowU and using the ansatzπ(3) = A(z)ez/2ei(kx+ly), we obtain the vertical
structure equation for stationary Rossby waves in the QG theory

∂2

∂z2
A(z) +

(
β

f 2
0U

∂Θ(2)

∂z
− k2 − l2 − 1

4

)

A(z) = 0 . (5.55)

Depending on the sign of the expression in the bracket in (5.55), the solutionA(z) will either
be a vertically propagating or evanescent wave. We note thatfor the large wavelength limit
k, l → 0, (5.55) takes the same form as (5.54).

5.4 Vertical structure π(3), horizontal structure π(2)

Usually in the asymptotic analysis the leading order systemof equations determines only the
spatial structure of the solution, its temporal evolution is found by applying the sublinear growth
condition in the next order equations. In the case considered here, we obtain from the leading
order equations (5.34) – (5.38) the vertical structure ofπ(2), but the time evolution together with
the horizontal structure are determined from the next orderequations.

Motivated by the discussion in the previous section, one canrepresent (5.39) – (5.43) as the lin-
ear operator from (5.44) but now acting onπ(3) with the right hand side depending onπ(2) only.
Introducing the functionsF (1)

x , F
(1)
y , G(1), T (1) andK(1), which do not depend onΘ(3), π(3), w(4)

or u(1), we can write (5.39) – (5.43) as

−fv(1) +
1

a cos φP

∂

∂λP

π(3) = F (1)
x , (5.56)

fu(1) +
1

a

∂

∂φP
π(3) = F (1)

y , (5.57)

Θ(3) − ∂

∂z
π(3) = G(1) , (5.58)

u(−1) 1

a cosφP

∂

∂λP

Θ(3) + v(1) 1

a

∂

∂φP

Θ(1) + w(4) ∂

∂z
Θ(1) = T (1) , (5.59)

∂

∂z
ρ(0)w(4) + ∇P · ρ(0)u(1) = K(1) , (5.60)
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where we have dropped the bars denoting synoptic scale averages. From (5.39) and (5.40) we
can derive the vorticity equation

∇P · fu(1) + u(−1) · ∇P ζ
(0) + u(0) · ∇P ζ

(−1) + ζ (−1)∇P · u(0) + w(3) ∂

∂z
ζ (−1)

+er · (∇Pw
(3) × ∂

∂z
u(−1)) =

er

ρ(0)2
·
(
∇Pρ

(1) ×∇p(2) + ∇Pρ
(2) ×∇Pp

(1)
)
,

(5.61)

where

ζ (−1) = er · (∇P × u(−1)) =
1

f
∆Pπ

(1) +
u(−1) cotφP

a
, (5.62)

ζ (0) = er · (∇P × u(0)) =
1

f
∆Pπ

(2) − ρ(1)

ρ(0)f
∆Pπ

(1) +
u(0) cotφP

a
−

ρ(1)

ρ(0)

u(−1) cotφP

a
+
u(−1)

aρ(0)

∂

∂φP

ρ(1) +
1

a2 cosφ

∂

∂φP

u(−1)2 .

(5.63)

Comparing the last equation with the definition of the planetary scale vorticityζ (0) in the PR
(3.36), we note the additional terms due to theρ(1), π(1) variations. IntroducingV (1) as an
abbreviation, (5.61) takes the form

∇P · fu(1) = V (1) (5.64)

Case:ρ(0)(z) = e−z

Making use of the fact thatρ(0)(z) = e−z, we combine (5.56) – (5.60) to

1

a cosφP

∂

∂λP

{

−Fz ∂
∂z

(

ρ(0) ∂

∂z
π(3)

)

+

(
βN

f
− F

)

ρ(0)π(3)

}

= Q′ , (5.65)

where

Q′ = f
∂

∂z
ρ(0)T (1) +Nρ(0)V (1) −NfK(1) +

Nρ(0)β

f
F (1)

x +

F
∂

∂z
ρ(0)

(
z

a cosφP

∂

∂λP
G(1) + F (1)

x

)

.

(5.66)
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Substituting the expressions forT (1), V (1), K(1), F
(1)
x andG(1),Q′ can be written as

Q′ = −f ∂
∂z

{

ρ(0)

(
∂

∂tP
Θ(2) +

u(0)

a cosφP

∂

∂λP
Θ(2) +

v(0)

a

∂

∂φP
Θ(2) + w(3) ∂

∂z
Θ(2)

)}

−Nρ(0)

(

u(−1) · ∇P ζ
(0) + ∇P · u(0)ζ (−1) + w(3) ∂

∂z
ζ (−1) + er · ∇Pw

(3) × ∂

∂z
u(−1)

− er

ρ(0)2
·
(
∇Pρ

(1) ×∇Pp
(2) + ∇Pρ

(2) ×∇Pp
(1)
)
)

+ fN

(
∂

∂z
ρ(1)w(3) + ∇P · ρ(1)u(0)

+
u(−1)

a cosπP

∂

∂λP
ρ(2)

)

− βρ(0)N

f

(
u(−1)

a cosφP

∂

∂λP
u(0) +

v(0)

a

∂

∂φP
u(−1) + w(3) ∂

∂r
u(−1)

−u
(−1)v(0) tanφP

a
− 1

a cosφP

ρ(1)

ρ(0)

∂

∂λP
π(2)

)

− F
∂

∂z

{

ρ(0)

[
z

a cosφ

∂

∂λP

(
ρ(1)Θ(2)

ρ(0)
+
ρ(2)Θ(1)

ρ(0)

−(1 − γ)p(1)p(2)

γ2p(0)2

)

+
u(−1)

a cosφP

∂

∂λP

u(0) +
v(0)

a

∂

∂φP

u(−1) + w(3) ∂

∂z
u(−1)

−u
(−1)v(0) tanφP

a
− 1

a cosφP

ρ(1)

ρ(0)

∂

∂λP

π(2)

]}

.

(5.67)

Case:ρ(0) = const

When we assume a constant densityρ(0), the operator on the left hand side of (5.65) takes the
same form as the one in (5.44) and we have

ρ(0)

a cosφP

∂

∂λP

(
∂2

∂z2
− βN

fFz

)

π(3) = − 1

Fz
Q′ . (5.68)

In the next section we analyze this equation under some additional assumptions.

5.4.1 Boussinesq fluid

Since we are interested in the general properties of (5.68),we restrict the analysis to a Boussi-
nesq fluid in order to make the discussion easier. We assume a constant background density
stateρ(0) = const and set all higher order density fluctuationsρ(i), i ≥ 1 to zero, except those
in the vertical momentum equation. In this caseQ′ simplifies to
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Q′ = −ρ(0)N

{(
∂

∂tP
+ u(0) · ∇P + w(3) ∂

∂z

)
f

N

∂2

∂z2
π(2) + u(−1) · ∇P ζ

(0) + ∇P · u(0)ζ (−1)

+w(3) ∂

∂z
ζ (−1) + er · (∇Pw

(3) × ∂

∂z
u(−1)) − tanφP

aN

∂u(−1)

∂z

2u(−1)

a cosφP

∂

∂λP

∂π(2)

∂z

+
β

f

(
u(−1)

a cosφP

∂

∂λP

u(0) +
v(0)

a

∂

∂φP

u(−1) + w(3) ∂

∂z
u(−1) − u(−1)v(0) tanφP

a

)

+
F

N

∂

∂z

(
u(−1)

a cosφP

∂

∂λP
u(0) +

v(0)

a

∂

∂φP
u(−1) + w(3) ∂

∂z
u(−1) − u(−1)v(0) tanφP

a

)}

.

(5.69)

We have the following relations

u(0) =
1

f
ez ×

(

∇Pπ
(2) +

u(−1)2 tanφP

a
eφ

)

, (5.70)

Θ(2) =
∂

∂z
π(2) , (5.71)

ζ (−1) =
1

f
∆Pπ

(1) +
u(−1) cotφP

a
, (5.72)

ζ (0) =
1

f
∆Pπ

(2) +
u(0) cotφP

a
+

1

a2 cosφP

∂

∂φP

u(−1)2 , (5.73)

0 = ∇P · u(0) +
∂

∂z
w(3) , (5.74)

v(1) =
1

af cosφP

∂

∂λP
π(3) +

u(−1)

a cosφP

∂

∂λP
u(0) +

v(0)

a

∂

∂φP
u(−1)

+ w(3) ∂

∂z
u(−1) − u(−1)v(0) tanφP

a
.

(5.75)

The terms that appear in (5.69) include: advection of the relative vorticityζ (0) by theu(−1) field,
vertical vorticity advection, twisting term, advection ofplanetary vorticity by the ageostrophic
component ofv(1) (third line) and the product of the vertical derivative of this component with
the meridional background temperature gradientF (last line). From Section 3.1.2 we know that
in the case whenΘ(1) is set to zero, the left hand side of (5.68) vanishes andQ′ contains only
the terms involvingf

N
∂2

∂z2π
(2).

One can view on (5.68) as an equation for the vertical structure ofπ(3). One has to ensure that
the linear operator acting onπ(3) is not excited by its eigenfrequency, which will lead to an
unbounded growth ofπ(3) (secular terms). We expect that such solvability conditionfor the
right hand side of (5.68) may provide an equation forζ (0) which will uniquely determineπ(2).

It remains an open question how to suppress the secular termsin (5.68). To our knowledge
there is no general approach applicable to practical problems. In Appendix A.3 we give an
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example how the secular terms in (5.68) can be removed under some additional assumptions.
We also note that if we average zonally (5.68) and apply periodic boundary conditions, the
linear operator vanishes and we obtain a closed model.

5.5 Discussion

In this chapter we systematically extended the two scale PR allowing O(ε) variations of the
background potential temperature. Such temperature fluctuations are motivated by the observed
equator to pole and surface to tropopause temperature gradients. Since they evolve on a much
slower – seasonal time scale, we have prescribed the background temperature distribution in the
present model. The background state of the model is characterized throughO(ε−1) zonal winds,
linearly increasing with height and in thermal wind balance. The leading order asymptotic
equations (5.34)-(5.38) can be combined into one PV equation which has the same form as the
steady, linearized (about a zonal mean flow) PV equation (3.106) for the PR. In the case of a
constant background density this PV equation is (5.44) and in the case of a constant background
zonal flow – (5.52). At this asymptotic order the PV contains only the vorticity stretching term
and the energy of the system is only potential. As in the two scale PR, at this asymptotic order
there is no net influence from the synoptic scales on the leading order pressure correctionπ(2).

We discussed in Section 5.3 that the leading order system (5.34)-(5.38) can be interpreted as
a constraint for the vertical structure ofπ(2). Analytical solutions have been given in the case
of constant background density: (5.47), (5.51). It was found that the PV transport equation
(5.44) represents the steady version of the planetary wave model of Welander (1961) if the
vertical variations of the background stratification are neglected there. We could show (not
presented here) that if we allowz variations in the lapse rateN from (5.2), both models are
equivalent (if no time variations are considered). Here we have to mention that the Welander
(1961) model was derived by combining the linearized PEs into a wave equation and expanding
its coefficients in small Rossby and Richardson numbers under the assumption of order one
zonal wave numbers.

In the case of a constant background zonal flow, eq. (5.54) forthe vertical structure ofπ(2) is
the long wave length limit of the corresponding equation in the QG theory. This demonstrates a
consistency between the two models. Such consistency is nota priori guaranteed since the QG
theory is derived under assumptions which cannot be appliedto the planetary scale (e.g., small
variations of the Coriolis parameter, constant backgroundstratification). This has as a conse-
quence that identical terms in both models describe different physical mechanisms. Whereas in
the QG the vertical derivative ofw(3) balances the divergence of the ageostrophic wind compo-
nents, in the present regime (in the PR as well) it balances the advection of planetary vorticity.

The second order equation system in the PRBF is given through(5.39)-(5.43) and it can be
regarded as a constraint on the vertical structure of the pressure correction termπ(3), see (5.65).
The terms on the right hand side of the last equation represent a coupling with the dynamics of
theπ(2) field, e.g., the nonlinear advection ofΘ(2) and the linearized advection of the relative
vorticity ζ (0). In the case of a Boussinesq fluid, (5.65) is modified to (5.68)(with the right hand
side given in (5.69)). We discussed the problem with the solvability condition for (5.68), we
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expect that such additional condition determines the full horizontal structure ofπ(2). Our ex-
pectation was supported by the derivation in Appendix A.3 ofa solvability condition for (5.68)
under some additional assumptions. The presented analysisin the appendix can be extended
straightforward to the general case considered here.

In the literature on the vertical propagation of planetary waves (e.g. Charney and Drazin, 1961;
Dickinson, 1968a,b; Matsuno, 1970; Tung and Lindzen, 1979)it is often assumed that the ad-
vection by the geostrophic wind of relative vorticity and ofplanetary vorticity are of the same
order. In (5.69) the planetary vorticity is advected by the next order velocity correctionsv(1),
which are not in geostrophic balance. The reason for the difference to the above mentioned
models in the literature, is that (although not stated oftenexplicitly) these models apply only
to anisotropic flows, similar to those discussed in Chapter 4. These flows a characterized by
sub-planetary meridional scales and “small” variations ofthe Coriolis parameter, whereas in
the PRBF we consider planetary meridional scales andO(1) variations off .

Recently, Klein (2007) considered a slightly modified distinguished limit in the multiple scales
asymptotic approach. The new limit implies higher reference velocity∼ 25 m/s, whereas here
a value of 10 m/s was assumed. We have studied if our results are sensitive with respect to the
new modification. It was shown by Klein (2007) applying the new approach that the variations
of the background potential temperature in the QG theory areof the same order as the observed
equator to pole and surface to tropopause temperature variations, namelyO(ε). In the present
approach the variations of background temperature in the QGmodel are onlyO(ε2), because
of this we studied the PRBF. Applying the modified approach, all regimes considered in the
last three chapters were rederived. The new reduced model equations involve everywhere an
order of magnitude larger temperature and pressure fluctuations (the variablesΘ(i), π(i) change
to Θ(i−1), π(i−1) in the equations). This is feasible if one considers that larger geostrophically
balanced horizontal velocities require larger pressure and temperature variations. Thus, in the
modified approach the planetary scale evolution ofO(ε) potential temperature variations is
described by the PR from Chapter 3, rather than by the PRBF. Inorder to derive the model
equations for the PRBF with the new approach, one has to assume O(1) background tem-
perature variations. However, temperature variations exceedingO(ε) are not observed in the
troposphere. The discussion above gives us a hint that the PRis of greater relevance for the
real atmosphere than the PRBF. This is supported also by the numerical simulations with a PEs
model which are presented in the next chapter. Nevertheless, the study of the PRBF helped us
to understand some general properties of the PR such as the vertical structure of the solution.
This was possible because the leading order asymptotic equations in the PRBF and the steady,
linearized PGEs from the PR have similar form. Finally, we want to mention another advantage
of the modified distinguished limit introduced by Klein (2007). It allows one to distinguish
between the Oboukhov scale (or external Rossby deformationradius) and the planetary scale.
The Oboukhov scale is defined as the ratio between the fast barotropic wave speed and the
earth’s rotation frequency. Applying the new limit, this scale can be expressed in terms ofε as
ε−5/2hsc. In the approach used here, on the other hand, the Oboukhov scale is of the same order
as the planetary scale, namely,ε−3hsc. The modified approach gives one the possibility to study
phenomena characterized by the Oboukhov scale such as atmospheric blockings. An example
of asymptotic models for blockings is given in Appendix A.5.



Chapter 6

Balances on the Planetary and Synoptic
Scales in Numerical Experiments

In the previous chapters we presented three asymptotic regimes valid for planetary and synoptic
scales and various background stratifications. In this chapter we address the question how close
the reduced models are able to describe the atmospheric flow.For that purpose we perform
simulations with a model based on the primitive equations (PEs). Since the PEs are derived from
the full compressible flow equations by assuming only hydrostatic balance and a small aspect
ratio of the vertical to horizontal length scale, these equations are much more comprehensive
than the asymptotic models and apply to a wider range of scales. From the simulations with the
PEs model we study the balances in the vorticity transport onthe planetary and synoptic scale.
After comparing the results with the reduced asymptotic equations, we find that whereas the PR
and APR capture main features of the large-scale atmospheric dynamics, the PRBF fails. In the
next section we introduce briefly the PEs model, the experiment setup and the method we use
for calculating the balances. The results from the simulations are interpreted in Section 6.2 with
respect to the PR and in Section 6.3 with respect to the PRBF and APR.

6.1 Model description and methodology

6.1.1 The model

For the numerical experiments we use the simplified global circulation model Portable Univer-
sity Model of the Atmosphere (PUMA; Fraedrich et al., 1998).The model solves the primitive
equations on a sphere for a dry ideal gas applying the spectral transform method. A semi implicit
time scheme (Hoskins and Simmons, 1975) and a finite difference vertical scheme (Simmons
and Burridge, 1981) are implemented in the model; the vertical levels are equally spacedσ lev-
els. All diabatic and dissipation effects are linearly parameterized through Newtonian cooling
and Raylaigh friction, respectively (Held and Suarez, 1994). This reduced complexity model
represents the dynamical core of an atmospheric general circulation model (AGCM) and it is
widely used for idealized experiments, e.g., for studying low-frequency variability, storm track
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dynamics (Franzke et al., 2000, 2001; Franzke, 2002) and theatmospheric entropy production
(Kleidon et al., 2003). We continue with a summary of the model equations, for a complete
description of the model we refer the reader to Fraedrich et al. (1998); Lunkei et al. (2005);
Liakka (2006).

The PEs implemented in PUMA are in the form

Vorticity equation

∂

∂t
ζa =

1

1 − µ2

∂

∂λ
Fv −

∂

∂µ
Fu − ζ

τF
−K(−1)h∇2hζ , (6.1)

Divergence equation

∂

∂t
D =

1

1 − µ2

∂

∂λ
Fu +

∂

∂µ
Fv −∇2

(
U2 + V 2

2(1 − µ2)
+ Φ + T0 ln pS

)

− D

τF
−K(−1)h∇2hD ,

(6.2)

Temperature equation

∂

∂t
T ′ = − 1

1 − µ2

∂

∂λ
UT ′ − ∂

∂µ
V T ′ +DT ′ − σ̇

∂

∂σ
T + κ

Tω

p
+
TR − T

τR
−K(−1)h∇2hT ′ ,

(6.3)

Continuity equation

∂

∂t
ln pS = − U

1 − µ2

∂

∂λ
ln pS − V

∂

∂µ
ln pS −D − ∂

∂σ
σ̇ , (6.4)

Hydrostatic balance

∂

∂ ln σ
Φ = −T , (6.5)

where

Fu = V ζa − σ̇
∂

∂σ
U − T ′

∂

∂λ
ln pS , (6.6)

Fv = −Uζa − σ̇
∂

∂σ
V − T ′(1 − µ2)

∂

∂µ
ln pS . (6.7)

All variables have been nondimensionalized usingΩ, a, pref andg (for the definitions see Sec-
tion 2.1) and the reference temperaturea2Ω2/R (R ideal gas constant). In the model equationst,
λ andµ = sin(φ) denote time, zonal and meridional coordinate, respectively, whereφmeasures
the latitude. The vertical coordinateσ = p/ps is a pressure coordinatep scaled with the surface
pressureps. The absolute vorticityζa is the sum of the relative vorticityζ and the planetary
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vorticity f . The variablesD, T andΦ denote divergence, temperature and geopotential, respec-
tively. T ′ measures the departure of the temperature from a constant reference profileT0; σ̇ and
w are vertical velocities defined by theσ andp coordinate, respectively. Expressed in terms of
the zonal and meridional velocitiesu, v, the variablesU andV read:U = cos φu, V = cosφv.
Further we have the restoration temperatureTR, the diabatic and friction relaxation time scales
τR andτf , the adiabatic coefficientκ and the hyperdiffusion coefficientK. With the help of a
stream functionψ and a velocity potentialχ the vorticity and the divergence are expressed as

ζ = ∆ψ , D = ∆χ , (6.8)

and the horizontal velocities are given through

U = −
(
1 − µ2

) ∂ψ

∂µ
+
∂χ

∂λ
, (6.9)

V =
∂ψ

∂λ
+
(
1 − µ2

) ∂χ

∂µ
. (6.10)

6.1.2 The methodology

As already mentioned, the equations in PUMA are solved usingthe spectral transform method
(Bourke, 1988), where all nonlinear products are calculated on the grid but are then transformed
spectrally for the computation of theλ, µ derivatives. For this purpose each prognostic variable
(denoted here withQ) is expressed in terms of a truncated series of spherical harmonics

Q(t, λ, µ, σ) =

N∑

m

N∑

n=m

Qm
n (t, σ)Pm

n (µ)eimλ , (6.11)

whereQm
n denotes the spectral coefficients,m the zonal wavenumber andPm

n (µ) the associ-
ated Legendre polynomials.N gives the number of the considered modes, since a triangular
truncation is applied, the model resolution is denoted withTN .

Using PUMA output we compare the magnitude of the different terms in the vorticity equation
(6.1). For this purpose the tendency and the dissipation terms are given directly by the model,
but the nonlinear terms have to be calculated from the output. Here we give an example of how
this is done by considering the∂V ζa

∂µ
term. Applying the product rule we have

∂

∂µ
V ζa = ζ

∂V

∂µ
+ f

∂V

∂µ
+ V

∂ζ

∂µ
+ V

∂f

∂µ
. (6.12)

Whereas in PUMA the whole product ofV ζa is differentiated with respect toµ, here we are
interested in the contributions from the different terms onthe right hand side of (6.12). The
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asymptotic analysis from the previous three chapters showed that at leading order the wind is
geostrophically balanced, this has as a consequence that onthe synoptic scalef ∂V

∂µ
is much

larger than all other terms (see the discussion in Section 6.2). However, we found that the
approximation error in the computation off ∂V

∂µ
can be comparable in magnitude with some of

the terms on the right hand side of (6.12), if in the computation the same spectral resolution
as the one of the originalV field is used. This makes a comparison of the terms difficult even
for high resolutions withN = 85. The large approximation error can easily be understood by
substituting in the definition ofV (6.10) the spectral representation (6.11) forχ.

V = (1 − µ2)
∂

∂µ

N∑

m=0

N∑

n=m

χm
n P

m
n (µ)eimλ +

∂ψ

∂λ
. (6.13)

Making use of this equation and of the recursive relation forthe associated Legendre polyno-
mials

(1 − µ2)
∂Pm

n

∂µ
= ǫmn+1P

m
n+1 + ǫmn−1P

m
n−1 , (6.14)

whereǫmn−1, ǫ
m
n+1 are some constants dependant only onm andn (Abramowitz and Stegun,

1964), it can be shown thatV requiresN + 1 spectral coefficients more than those needed for
the representations ofχ, ψ

V =
N∑

m=0

N+1∑

n=m

V m
n Pm

n (µ)eimλ . (6.15)

These additional spectral coefficients are omitted by each transformation from the physical
space into the spectral one leading to large approximation errors. The problem could be over-
come by doubling the number of spectral modes in the transformation. We used T21 model
output but a T42 resolution for the computation of the nonlinear terms. Finally, only modes
corresponding to a T21 resolution were used in the analysis.Applying this method the relative
approximation error was at mostO(10−6), which is reasonable if one considers that PUMA
variables are single precision.

6.1.3 Model setup

We performed simulations with an aquaplanet or a realistic orography as lower boundary con-
dition. The model was run at a T21 resolution, with 10 vertical σ-levels and with a time step
of 30 min. For the analysis an output with 1 day time incrementwas used, the first 360 days
were ignored due to spin up effects. We used the default valueof 70 K for the equator to
pole temperature difference in the restoration temperature profile and the seasonal cycle in the
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model was switched off. The initial condition was an atmosphere at rest with a small amplitude
perturbation of the surface pressure.

PUMA is able to produce all key features of the atmospheric circulation reasonably well for
a simplified atmospheric model. At midlatitudes in the lowerand middle troposphere a pro-
nounced wavenumber 6-7 structure with a period of ca. 7 days is visible over the most time of
the simulations. This wave implies a characteristic lengthscale of∼ 2000 km for the individual
synoptic eddies, its time period is overestimated comparedwith the real atmosphere where the
maximum of the synoptic activity lies around 4 days (Fig. 1.2). In the simulation with orogra-
phy we studied time mean fields of the 500 hPa geopotential height. The model reproduces the
trough over Eastern Asia, but it shifts the trough over Canada to Greenland. In the experiment
the weak trough over Western Asia is absent but a weak minimumover the Aleutian islands is
visible. In the real atmosphere the depression over these islands is confined to the lower tro-
posphere only. These discrepancies can be due to absence of land-sea thermal forcing in the
model.

6.2 The PR in simulations

In this section we analyze the magnitudes of the different terms in the PUMA vorticity equation
(6.1) and compare the leading order balances with the two scale PR model. We consider the
vorticity formulation of the PR momentum equations, the first two orders vorticity equations
(see (3.82), (3.88)) are

f∇S · u(0) = 0 , (6.16)

∂

∂tS
ζ (0) + u(0) · ∇Sζ

(0) + f∇P · u(0) + f∇S · u(1) + βv(0) = 0 . (6.17)

Next, we present the results for the balances in the PUMA vorticity transport on the synoptic
and planetary scales.

6.2.1 Synoptic scale dynamics

All terms in the PUMA vorticity equation (6.1) are listed in Table 6.1, Fig. 6.1 and 6.2 display
the zonal and temporal variations of some of them. Overall, depending on the amplitude of
the fluctuations three groups of terms can be identified. The first includesV7 andV8 denoting
the horizontal divergence multiplied with the Coriolis parameterf . The second group includes
the vorticity tendencyV1; the zonal and meridional vorticity advectionV2, V3; the horizontal
divergence multiplied with vorticityV4, V5 and the planetary vorticity advection termV6. The
third group of terms contains corrections from theσ coordinate transformationV9, V10; the
vertical vorticity advection and soledoinal term combinedasV11, V12 and the dissipation term
V13. Group one contains terms with the largest variations. The terms in the second group have
typically smaller amplitudes by a factor of 4 to 10 as compared to group one with an exception
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of V2. In Fig. 6.1(a) and 6.2(a) we see thatV2 fluctuations are much larger than those of the
other terms in the group and are sometimes even comparable with V7 andV8 (but rarely exceed
them). This can be understood if one takes into account thatV2 describes the zonal advection of
the vorticityζ and that the results presented in the figures correspond to geographical locations
nearly coinciding with the position of the jets. At other locations, outside the maximum of
zonal wind,V2 was comparable with the terms in the second group (not shown here). This is
why we have attributedV2 to the second group. The fluctuations of the different terms from
group one and two discussed so far are mainly due to the synoptic eddies and are characterized
by the synoptic spatial and temporal scales: see the wavenumber 6 structure in Fig. 6.1(a) or
the 7 day oscillation in Fig. 6.2(a). From Fig. 6.1(c) and 6.2(b) we conclude that the variations
of the terms in the third group are an order of magnitude smaller than group two. Overall, the
separation between the three groups of terms remained pronounced at all vertical levels between
30◦N(S) and 80◦N(S) and for experiments with or without orography.

We studied balances between the terms in the different groups. One would expect from Fig. 6.1(a)
and 6.2(a) thatV7 andV8 nearly balance. This is confirmed by Fig. 6.3(a) where a typical time
series ofV7 + V8 is plotted. The balance betweenV7 andV8 implies that the leading order con-
tribution to the PUMA wind comes from a component that is divergence-free on the synoptic
scale. This result is in accordance with the leading order asymptotic balance (6.16) and we con-
clude that this divergent-free component corresponds tou(0) in the asymptotic analysis. This
analysis states further that if we consider only the terms inthe leading order asymptotic balance
the error due to omitting all other terms in the vorticity equation is not larger than the next order
correction terms, namely, at mostO(ε). Fig. 6.3(a) confirms this result too, one can see that
around day 102 the sumV7 + V8 (equal to the contribution from all other terms) is comparable
with the terms in the second group and around day 111 it is of the order of the terms in group
three.

Fig. 6.3(b) shows the time evolution ofVqg, whereVqg is the sum of the terms from group one
and two together with the termV13. Looking at the time between day 100 and 110, one can say
that the error we make in the vorticity transport by taking theVqg terms is an order of magnitude
smaller than the one if we take only the leading order termsV7 andV8. Interestingly the effects
due to friction cannot be neglected here, as theVqg − V13 curve shows. If we substitute in the
Vqg according to the QG approximation the geostrophic and ageostrophic wind, we obtain all
terms in the classical QG vorticity equation with friction.Each term inVqg have a counterpart in
(6.17); the friction termV13 is an exception because no frictional effects have been considered
in the two scale model. We showed that the wind in the simulations is to a first approximation
described by a divergence-free (on the synoptic scale) wind. This wind amounts for the largest
variations of the terms in group two. Thus, we can say that at leading order these terms can
be approximated by substituting everywhere the divergence-free wind in their definitions. In
this caseV6 corresponds toβv(0). Since the spatial and temporal variations in Fig. 6.1(a),(b)
and 6.2(a) are on the synoptic scale,V1, V2, V3, V4 andV5 can be associated with∂

∂tS
ζ (0),u(0) ·

∇Sζ
(0) andζ (0)∇S · u(0). The termζ (0)∇S · u(0) is absent in (6.17) sinceu(0) is divergence

free (6.16). From the perspective of the asymptotics the residual betweenV7 andV8 is (to a first
approximation) due to the synoptic divergence of the first order wind corrections:f∇S · u(1)

and, as we will show in Section 6.2.2, due to the planetary divergence of the leading order wind:
f∇P ·u(0). Comparing this result with the QG theory, we interpretf∇S ·u(1) as the divergence
due to the ageostrophic wind components, however, the termf∇P · u(0) does not appear in the
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V1 =
∂

∂t
ζ V9 =

1

1 − µ2

∂

∂λ

(

T ′(1 − µ2)
∂

∂µ
ln pS

)

V2 = U
1

1 − µ2

∂

∂λ
ζ V10 = − ∂

∂µ

(

T ′
∂

∂λ
ln pS

)

V3 = V
∂

∂µ
ζ V11 =

1

1 − µ2

∂

∂λ

(

σ̇
∂

∂σ
V

)

V4 = ζ
1

1 − µ2

∂

∂λ
U V12 = − ∂

∂µ

(

σ̇
∂

∂σ
U

)

V5 = ζ
∂

∂µ
V V13 =

ζ

τF
+K(−1)h∇2hζ

V6 = V
∂

∂µ
f Vqg = V1 + V2 + V3 + V4 + V5 + V6 + V7 + V8 + V13

V7 = f
1

1 − µ2

∂

∂λ
U Vdv = V2 + V3 + V4 + V5

V8 = f
∂

∂µ
V Vdf = V6 + V7 + V8

Table 6.1: Notation used for the different terms in the vorticity equation (6.1).

classical QG model.

As mentioned earlier in this section, the variations considered up until now are mostly on the
synoptic scales. In order to see fluctuations on different spatial and temporal scales, we per-
formed a wavenumber-frequency analysis of the different terms. Some of the results for the
experiment with orography are presented in Fig. 6.4. For thecalculation of the frequency spec-
tra we have multiplied the data with a Bartlett window (Presset al., 2002). In all spectra of
terms from group one and two the maximum atk = 6, 7 and around 7 days associated with
the synoptic waves is clearly evident. Its magnitude is at least an order of magnitude larger
for V7 andV8. In the spectra of the terms from group three (not shown) no synoptic peak can
be identified, the spectral density there is overall an orderof magnitude smaller than the one
corresponding to group two. In the spectrum ofV6 a second maximum of activity atk = 2 and
periods larger than 40 days is visible. This peak results from the quasi-stationary Rossby waves,
its magnitude is comparable to the one of the synoptic peak and it appears only in the simulation
with orography. In general, the spectral properties discussed above are robust with regard to the
length of the time series and are observed for different vertical levels and latitudes.

6.2.2 Planetary scale dynamics

In order to study the net effect from the synoptic scales on the planetary scale motions, we
average (6.17) over the synoptic scales and obtain
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Figure 6.1: Zonal variations of terms from Table 6.1. Shown is the distribution at ca. 50◦N and
at 500 hPa for day 100 of the aquaplanet simulation; all termsare nondimensionalized using
Ω2.

f∇P · u(0)
S

+ βv(0)
S

= 0 . (6.18)

Here we applied the sublinear growth condition, which amongst others requires

∇S · u(0)ζ (0)
S

= 0 . (6.19)

Equations (6.18) and (6.19) motivated us to study the termsVdf andVdv representing the diver-
gence of thef - and of theζ-flux (see Table. 6.1). The averaging over the synoptic spatial scales
can be performed in the spectral model by simply omitting allmodes higher than some cut-off
mode (if scales smaller than the synoptic are neglected). Suppose we have a function dependent
on λ only and represented as a Fourier series withN zonal modes. We assume that there is a
spectral gap at the zonal wavenumberk = 4; all modes withk ≤ 3 are attributed to the plane-
tary scale and those withk ≥ 5 to the synoptic one. Then the average of the function over the
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Figure 6.2: Time variations of terms from Table 6.1. Shown isthe distribution at ca. 100◦E,
50◦N and at 500 hPa from the aquaplanet simulation; all terms arenondimensionalized using
Ω2.

Figure 6.3: The same as in Fig. 6.2 but for different terms

synoptic scale is simply the truncated series atk = 3, since all higher modes will vanish when
integrating over them. The same argument can be applied whenaveraging a series of spherical
harmonics, but instead of some cut-off zonal wavenumber, there is a cut-off truncation number
N and all modes withn > N are ignored. The synoptic time averaging can be performed by
simply filtering the fields in time.

From (6.18) and (6.19) we expect thatVdv andVdf vanish on the planetary scale. Since the
spherical harmonics form an orthogonal set, we consider separate modes fromVdv andVdf and
inspect for which total wavenumbersn their amplitudes vanish. For that reason we transformed
the data into spherical harmonics and analyzed the spectralcoefficients weighted with the cor-
responding Legendre polynomialsPm

n . The differencen −m defines the so-called meridional
wavenumber and gives the zero-crossings of the polynomial.Looking at the structure of the
polynomials in Fig. A.1, one can say that modes with smalln and a low number of nodes are
characterized by planetary meridional scales, whereas those with largen have smaller merid-
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Figure 6.4: Frequency spectra of terms from Table 6.1 for different zonal wavenumbersk.
Shown are spectra at ca. 50◦N and 500 hPa from an 360 day experiment with orography, see
text for details.

ional scales. By weighting the Legendre polynomial with thecorresponding spectral coefficient
its contribution to the amplitude of the field is evaluated.

We compared the amplitudes of the weighted spectral coefficients forVdv andVdf with the am-
plitudes associated with individual terms in their definitions. The corresponding time series for
different coefficients are displayed in Fig. 6.5 and 6.6. Indeed, for Legendre polynomials with
n ≤ 2 the fluctuations ofVdv are very small [see Fig. 6.5(a),(b)], we refer to these modesas
planetary modes. It is important to note that the projections of the different termsV2, V3, V4

andV5 on the planetary modes show “large” variations, but when combined inVdv they nearly
balance. Another point we want to stress is that no spatial ortemporal filtering was applied
in the computation ofV2, V3, V4 andV5. The inspection of the profiles ofζ, U andV shows
that the leading order spatial variations are on the synoptic scale (and not on the planetary),
consequently at leading order only the synoptic gradients are involved inVdv, such gradients
vanish when averaging over the synoptic spatial scales (a synoptic time averaging is not neces-
sary for that). If modes withn > 2 are considered, the termVdv is comparable or even larger
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Figure 6.5: Time series of the spectral coefficients (real parts) forVdv andV3 weighted with the
value at 50◦N of the Legendre polynomial: (a)P 1

1 , (b) P 2
2 , (c) P 3

6 and (d)P 7
15. Shown are the

results at 500 hPa for the experiment with orography, for notation see Table 6.1. Similar plots
are obtained for the imaginary parts of the spectral coefficients and for different latitudes.

thanV3 [Fig. 6.5(c), (d)]. This corresponds to the synoptic case already discussed, which is
characterized through a balance between the terms inVqg.

Further, we found that for planetary modesV6 is of the same order asV7, V8 and the three terms
approximately balance [Fig. 6.6(a),(b)]. For such modes the variations ofVdf are smaller than
these of the individual termsV6, V7, V8 and are mainly on the synoptic time scale. If these
synoptic variations are filtered out (which is required for the synoptic scale averaging) we will
obtain forVdf approximately some time constant value. The fact thatV6, V7 andV8 balance only
up to some constant, becomes clear if we take into account that in the asymptotic averaging we
divide the integral by an interval growing as1

ε
for ε → 0, see (2.34)-(2.36). No such weighting

was applied in the numerical calculation ofVdf . It was found that for planetary modes the
synoptic fluctuations inVdf and its time averaged mean are removed, if we add the termsV9
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Figure 6.6: The same notation as in Fig. 6.5 but forVdf , (Vdf + V9 + V10) andV6.

andV10 [Fig. 6.6(a),(b)]. The Legendre polynomialP 0
2 was here an exception, one can show

analytically that for it the relationV6 + V7 + V8/2 = 0 is satisfied exactly. The results for all
other modes indicates, that on the planetary scale (n ≤ 2) we have a balance in the form of
(6.18). For modes withn > 2 we observed again the synoptic balance [Fig. 6.6(c),(d)].

6.3 The PRBF and the APR in simulations

We compare the observations from the numerical simulationswith the other two asymptotic
regimes. In the APR we obtain thatu(0) is divergence-free (see (4.12), (4.13) and (4.33)),
which is consistent with the balance betweenV7 andV8 as already discussed. Further, in the
APR we obtain as leading order model the QG model (4.34). Thisis also supported by the
numerical experiments, since we find that for anisotropic modes with planetary zonal scale but
with a synoptic meridional extent (e.g.,P 3

6 (µ)) we have in the vorticity equation a balance
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Figure 6.7: Contour lines of (a)ζ , (b) 1
1−µ2

∂ζ
∂λ

and (c) ∂ζ
∂µ

at 500 hPa for day 30; all terms are
nondimensionalized usingΩ.

between the terms inVqg.

No evidence was found for the vorticity constraint (5.29) inthe PRBF. This constraint implies
that the zonal gradient of the vorticity is at least an order of magnitude smaller than the merid-
ional one. No such anisotropy can be found in the data, see Fig. 6.7. Without the constraint the
leading order nontrivial vorticity balance in the PRBF reads (see (5.15), (5.16))

u(−1)

a cosφP

∂

∂λS
ζ (0) + f∇S · u(0) = 0 . (6.20)

Fig. 6.1(a) and 6.2(a) show that in the regions of the jets thezonal advection termV2 is compa-
rable to the divergence termsV7 andV8, nevertheless, no balance between the three terms was
observed.V7+V8 is balanced on the synoptic scale by the complete sumV1+V2+V3+V6+V13,
rather than byV2 alone. The simulations reveal also that the assumption of a constant zonal
background flowu(−1) is not satisfied. The inspection of the eddy momentum fluxes and of
the zonal mean wind indicates that the synoptic eddies transform eddy kinetic energy to kinetic
energy of the mean flow, in this way zonal jets result. However, such mechanism is not captured
in the present asymptotic setup of the PRBF, since we assumedthatu(−1) does not depend on
the synoptic dynamics of theu(0) field. The observations discussed in this chapter show that
atmospheric motions with isotropic planetary horizontal scales are governed by the Planetary
Regime rather than by the Planetary Regime with Background Flow.



Chapter 7

Conclusion

Aiming to improve our understanding of the atmospheric dynamics on the planetary and syn-
optic scale, we presented in this thesis an approach based onasymptotic analysis and numer-
ical experiments. We applied a multiple scales asymptotic method (Klein, 2000, 2004, 2007)
and systematically derived reduced model equations describing three different planetary scale
regimes and accounting for the planetary-synoptic interactions. Additionally, we performed
numerical simulations with a much more comprehensive primitive equations (PEs) model and
studied the balances on the planetary and synoptic scale between different terms in the vorticity
transport. The combination between multiple scales asymptotic analysis and model simula-
tions turned out to be advantageous. On the one hand, the numerical experiments helped us to
identify the relevance of the asymptotic regimes for the atmosphere and on the other hand the
asymptotic analysis was useful for the interpretation of different aspects of the planetary scale
dynamics in the numerical simulations.

We summarize the asymptotic regimes in this thesis: the Planetary Regime (PR), the Anisotropic
Planetary Regime (APR) and the Planetary Regime with Background Flow (PRBF). The PR is
characterized by planetary horizontal scales and by a corresponding advective time scale of
about one week. We assume variations of the background potential temperature comparable
in magnitude with those adopted in the classical quasi-geostrophic theory. At leading order
the resulting equations include the planetary geostrophicequations (PGEs). In order to apply
these equations to the atmosphere, one has to prescribe a closure for the vertically averaged
(barotropic) pressure. We presented an evolution equationfor this component of the pressure,
which was derived in a systematic way from the asymptotic analysis. Relative to the prognostic
closures adopted in existing reduced-complexity planetary models, this new dynamical closure
may provide for more realistic increased large scale, long term variability in future implemen-
tations. Using a two scale asymptotic ansatz, we extended the region of validity of the PR to
the synoptic spatial and temporal scales. The derived two scale model includes in addition to
the equations governing the single scale PR a modified quasi-geostrophic potential vorticity
equation, describing the dynamics on the synoptic scale. Without the evolution equation for the
barotropic pressure, the two scale model in the PR can be regarded as the anelastic analogon of
the model of Pedlosky (1984) for the large scale oceanic circulation. This model accounts only
for a feedback from the planetary scale dynamics to the synoptic scale but not for the reverse
interaction. We discussed in this thesis different terms describing such reverse interactions, e.g.,
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the planetary scale divergence of the vorticity flux with vorticity resulting from the planetary
scale curl of the wind. We found that the evolution equation for the barotropic pressure provides
a feedback from the synoptic scale to the planetary scale.

The PRBF describes motions with isotropic planetary horizontal scales too, but unlike the PR
we consider in this regime systematically larger variations of the background potential temper-
ature. Such temperature variations are of the order of the observed equator to pole temperature
difference and we have further assumed that they do not evolve on the 7 days time scale. The nu-
merical results presented in this thesis showed that planetary atmospheric motions are governed
by the PR rather than by the PRBF. A theoretical justificationwas found when we performed the
analysis for the PR and PRBF with the slightly modified distinguished limit recently introduced
by Klein (2007). Under the new limit the variations of the background potential temperature in
the QG theory are of the same order as the equator to pole temperature difference. Variations
of such order are then described by the PR alone. Larger background temperature variations,
required for the derivation of the PRBF under the new limit, are not observed in the troposphere,
but they may become relevant for motions in the upper atmosphere or on other planets. Never-
theless, the study of the PRBF was valuable for understanding the PR, since the leading order
model in the PRBF and the steady, linearized version of the PGEs from the PR have similar
form. We showed that this leading order model represents thelong wavelength limit of the
vertical structure equation in the QG theory and found some analytical solutions of it.

Motions with planetary modulation in zonal direction but with a meridional extent confined
to the synoptic scale are investigated in the APR. This regime is motivated by the large body
of theoretical studies on the quasi-stationary planetary waves (e.g. Charney and Drazin, 1961;
Dickinson, 1968a; Matsuno, 1970; Tung and Lindzen, 1979) where it is assumed that the ad-
vection of the relative vorticity and of the planetary vorticity by the geostrophic wind are of
the same magnitude. In accordance with these studies, we assume in the APR the same magni-
tude of the background potential temperature variations asin the PR. We resolve the planetary
and the synoptic time scales and, in addition to the planetary zonal and meridional synoptic
scales, the synoptic zonal scale too. As a leading order model we obtained a condition for a
horizontally uniform background and the QG model. This model determines the evolution of
the leading order synoptic potential vorticity on the synoptic time scale. The next order model
equations represent a coupling between the planetary evolution of the leading order synoptic
PV field, the synoptic evolution of the planetary scale vorticity field and the synoptic dynamics
of higher order PV corrections. In the case of small meridional velocities we showed that the
dynamics evolves only on the planetary time scale and derived a closed transport equation for
the leading order synoptic PV. Further, we demonstrated that this equation allows anisotropic
Rossby waves and that it does not contain a feedback from the synoptic zonal scale. In the
case when the planetary scales are left out, the APR equations are a generalization of the QG+1

model of Muraki et al. (1999) to spherical geometry. The QG+1 model accounts for the lead-
ing order corrections to the QG theory and our general equations for the APR show that such
corrections influence the planetary scale dynamics.

In order to explore the validity of the derived asymptotic models, we studied the balances in
the vorticity transport utilizing a PEs model. As expected,the synoptic spatial and temporal
variations of the different terms in the vorticity equationare explained by the QG model. We
obtain as leading order balance the divergence-free condition for the horizontal wind, the next
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order balance is between all terms entering the QG vorticityequation. However, this picture
changes drastically when variations on planetary scales are considered. By projecting the terms
on different spectral modes, it was shown that the horizontal divergence of the wind is of the
same order as the advection of planetary vorticityf and they approximately balance, if modes
with a total wavenumber less than or equal to two are considered. Further, we observed that the
divergence of the horizontal vorticity flux vanishes for such modes. We demonstrated that both
results are consistent with the two scale model for the PR. The synoptic scale averaged vorticity
equation of this model reduces to a balance between the advection of planetary vorticity and
the planetary divergence of the leading order geostrophically balanced wind. Such planetary
divergence term is absent in the classical QG model where thedivergence is only due to the
higher order ageostrophic wind components. By consideringanisotropic modes with planetary
zonal scale but with a synoptic meridional extent, we found in the numerical experiments as
leading order balance the QG balance and confirmed the results from the APR. On the other
hand, no evidence was found in the simulations for the predicted by the PRBF weaker zonal
vorticity gradients and we concluded that this asymptotic regime is not applicable for the real
atmosphere.

The comparison between the numerical experiments and the asymptotic models can be extended
in the present framework by considering the thermodynamic equation or higher order balances
between terms on the planetary scale. The asymptotic analysis revealed that some higher order
terms involve corrections to the leading order wind. These corrections can be calculated from
the model output by considering only the divergent part of the wind. One can apply a time
filtering to the data too, in order to distinguish for examplebetween the vorticity tendency on
the planetary and on the synoptic time scale. Of course the best way to prove the validity of the
asymptotic models is to solve the equations numerically andsee if they reproduce the planetary
scale atmospheric flow. The two scale PR is of particular interest here since it can be used as
a global model: it accounts for planetary-synoptic interactions and allows order one variations
of the Coriolis parameterf . One important question is how the model behaves in the tropics
wheref tends to zero. This would mean that the geostrophically balanced leading order wind
has a singularity at the equator. However, the asymptotic analysis of Majda and Klein (2003)
showed that the background temperature field in the tropics is horizontally uniform (also known
as the weak temperature gradient approximation). This condition on the temperature implies a
vanishing leading order pressure gradient which in the caseof the single scale PR compensates
the growth due tof . In the case of the two scale PR further analysis is required,this model
should be matched in a systematic way to the intraseasonal planetary equatorial synoptic scale
model of Majda and Klein (2003).

The multiple scales asymptotic approach in this thesis can be easily applied for the derivation of
reduced models for the ocean dynamics. In the ocean the scaleseparation between the planetary
and synoptic scales is much more pronounced than in the atmosphere. Whereas the character-
istic length for the planetary scale flow in the ocean remainsthe earth’s radius, the synoptic
eddies have a length scale only of the order of 50 km. Because of this, we expect asymptotic
regimes for the synoptic and planetary scales in the ocean tobe much more pronounced in
observation and simulation data. We briefly discuss which modifications are required in the
asymptotic approach when applying it for ocean studies. First, the governing equations change:
the continuity equation reduces to an incompressibility condition; in the absence of salinity the
density can be expressed as a function only of the temperature (equation of state) and the ther-
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modynamic equation takes the form of a transport equation for the density. Since the pressure is
hydrostatically balanced to a high accuracy, the Mach number in the equations becomes of the
order of the Froude number. For comparison, we have in the atmosphereM ∼ Fr too, because
we insert in the definition ofFr (andM) the scale heighthsc, denoting thee-folding length of
the hydrostatically balanced pressure. Taking into account characteristic values for the ocean
depth≈ 4 km and for the horizontal velocity≈ 10 cm/s, the Rossby and Froude numbers for
the ocean can be expressed in terms of the universal parameter ε as: Ro ∼ ε andFr ∼ ε4.
The rescaled coordinatesXS = εx′ andXP = ε3x′ resolve the synoptic and planetary length
scales, respectively. Since the characteristic vertical length scale of the planetary and synoptic
motions in the ocean is about 1 km, we introduce a new verticalcoordinatez = 1

ε
z′. With the

above mentioned distinguished limit and rescaled coordinates we rederived the PG and the QG
equations for the ocean as well as the two scale model of Pedlosky (1984). In order to study the
feedback from the synoptic scale to the planetary scale, higher order asymptotic equations have
to be considered as we have done this for the atmosphere. However, we stop the discussion
here, since it goes beyond the scope of the thesis.

We derived in this thesis simplified models by reducing the full hydro- and thermodynamic
equations on the basis of asymptotic analysis. There are other more empirical approaches for
the construction of low order models, which are based on the fitting of mathematical models
to observation or simulation data. Such models proved to be auseful tool for understanding
the low-frequency variability of the planetary scale flow. In the recent works by Majda et al.
(2006) and Franzke et al. (2008) hidden Markov models (HMMs)were utilized successfully
for determining metastable regime behavior of planetary waves. Horenko et al. (2008b) pre-
sented a method which simultaneously combines the metastability analysis of the HMM with
dimension reduction and provides a reduced model in the formof multidimensional stochastic
differential equations. This method employs the concept oflocal principal component analysis
(Horenko et al., 2006b) in combination with the fitting of stochastic models for the dynamics
within the different metastable states (Horenko et al., 2006a). We demonstrated (Horenko et al.,
2008b) the performance of the technique by analyzing surface temperature data for Europe. In
comparison with standard multidimensional autoregressive methods (such as the seasonal au-
toregressive moving average model), the new method is much less computationally expensive.
Further, it provides additional insight into the dynamics of the system in the form of a Markov
jump process describing the transitions between the hiddenmetastable states and in the form
of correlation patterns characterizing the leading modes of variability within each metastable
state. Horenko et al. (2008a) extended the method in order tostudy time series with gaps show-
ing some memory in the underlying process. Using the idea of extended space representation
(Horenko, 2008) such processes can be casted into the Markovian framework. We applied the
new method (Horenko et al., 2008a) for analyzing 500 hPa geopotential height fields (daily
mean values from the ERA 40 data set for a period of 44 winters)and identified two metastable
states characterizing a weakening of the zonal flow. We foundthat the time evolution of the
most blocking events in the considered atmospheric region is described by the hidden probabil-
ity paths for these two states.

Another approach for the construction of reduced models, often combined with some empirical
method, is based on a truncation of the degrees of freedom of the large-scale solution by con-
sidering a small number of horizontal or vertical modes (e.g. Kasahara, 1977; Schubert, 1985;
Achatz and Opsteegh, 2003). The unresolved scales are then parameterized, e.g., applying a lin-
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ear regression fitting procedure (Tanaka, 1991; Achatz and Branstator, 1999). In our approach,
we filter the governing equations through the asymptotic technique, the new equations are valid
for some particular scales but the full 3D structure of the solution is retained. The unresolved
scales, e.g., the synoptic scales in the single scale PR, canbe represented using the same meth-
ods as in the mode truncation approach. Recently a stochastic mode reduction strategy referred
to as MTV (Majda et al., 2003; Franzke et al., 2005; Franzke and Majda, 2006) was introduced.
An additional asymptotic analysis may be advantageous for the MTV procedure. As we shown
applying two scale asymptotic expansions, our method depicts the important interaction terms
accounting for the feedback from the smaller scales (the synoptic scales) to the planetary scale
flow. One may use the stochastic mode reduction strategy for closing only such terms, which
may considerably reduce the computation time for the MTV procedure. The unified multiple
scales asymptotic technique itself may be viewed as a strategy for constructing models for the
smaller scales. For the two scale PR we derived such reduced model, it describes the synoptic
scale motion and is coupled to the planetary scale flow. Thus,the asymptotic method gives the
possibility systematically to build a hole hierarchy of coupled reduced models covering a width
range of scales: from the meso up to the planetary scale. Suchmodels will be a useful tool for
studying multiple scales phenomena in the atmosphere.



Acknowledgement

First of all, I am especially thankful to Prof. Dr. Rupert Klein for supervising the thesis, his
advice and continuous support.

In addition, I want to thank Dr. Antony Owinoh for providing expertise regarding the asymp-
totic methods and for the proof-reading of the manuscript. Ithank Dr. Christian Franzke and
Dr. Edilbert Kirk for their help on PUMA and Prof. Dr. Vladimir Petoukhov for introducing
me to CLIMBER. Thanks are expressed to Prof. Andrew J. Majda,Prof. Bjorn Stevens and
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Carqué, Patrik Marschalik, Daniel Ruprecht, Stefan Vaterand Dr. Nicola Botta for providing
advice and a friendly atmosphere.

I am especially thankful to my partner Gergana Dimova and my family for their encouragement
and support.

89



Appendix A

A.1 Spherical coordinates

In this appendix we introduce the spherical coordinate system and show how some operators,
e.g., the nabla operator, are transformed into the new coordinate system.

Using the spherical coordinatesλ, φ andr and Cartesian unit vectorsex, ey andez, we can
represent an arbitrary vectorr as

r = r cosλ cosφex + r sinλ cosφey + r sin φez , (A.1)

whereλ denotes longitude,φ latitude andr is the distance from the center of the earth. The
spherical coordinates can be expressed in terms of the Cartesian coordinatesx, y, andz as

r =
√

x2 + y2 + z2 , (A.2)

φ = arctan

(

z
√

x2 + y2

)

, (A.3)

λ = arctan
(y

x

)

. (A.4)

Using the last equations, we obtain the following useful relations

∂r

∂x
= cos φ cosλ ,

∂r

∂y
= cosφ sinλ ,

∂r

∂z
= sinφ , (A.5)

∂λ

∂x
= − sin λ

r cosφ
,
∂λ

∂y
=

cos λ

r cosφ
,
∂λ

∂z
= 0 , (A.6)

∂φ

∂x
= −sin φ cosλ

r
,
∂φ

∂y
= −sin φ sinλ

r
,
∂φ

∂z
=

cosφ

r
. (A.7)

In the new coordinate system(λ, φ, r) we have as unit vectorseλ, eφ ander. Applying the
definition of the unit vectorei belonging to the coordinatei
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ei =
1

|∂r/∂i|
∂r

∂i
, (A.8)

we can expresseλ, eφ ander in terms ofex, ey andez

eλ = − sinλex + cosλey , (A.9)

eφ = − cosλ sinφex − sin λ sinφey + cosφez , (A.10)

er = cosλ cosφex + sinλ cosφey + sinφez . (A.11)

We can solve the above equations forex, ey andez

ex = cos λ cosφer + sin λeλ − cosλ sinφeφ , (A.12)

ey = sin λ cosφer + cosλeλ − sinφ sinλeφ , (A.13)

ez = sin φer + cosφeφ . (A.14)

The Cartesian Nabla operator can be written formally as

∇ = ex
∂

∂x
+ ey

∂

∂y
+ ez

∂

∂z

= ex

(
∂r

∂x

∂

∂r
+
∂λ

∂x

∂

∂λ
+
∂φ

∂x

∂

∂φ

)

+ ey

(
∂r

∂y

∂

∂r
+
∂λ

∂y

∂

∂λ
+
∂φ

∂y

∂

∂φ

)

+ ez

(
∂r

∂z

∂

∂r
+
∂λ

∂z

∂

∂λ
+
∂φ

∂z

∂

∂φ

)

.

(A.15)

Making use of (A.2), (A.3), (A.4) (in order to compute the partial derivatives ofλ, φ, r with re-
spect tox, y, z) and of (A.12), (A.13), (A.14), the Nabla operator takes in spherical coordinates
the form

∇ =
eλ

r cosφ

∂

∂λ
+

eφ

r

∂

∂φ
+ er

∂

∂r
. (A.16)

In the spherical coordinate system some of the unit vectorseλ, eφ ander depend on the coordi-
natesλ andφ.
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∂

∂φ
eφ = − cosλ cosφex − sin λ cosφey − sin φez = −er , (A.17)

∂

∂φ
eλ = 0 , (A.18)

∂

∂φ
er = eφ , (A.19)

∂

∂λ
er = cosφeλ , (A.20)

∂

∂λ
eφ = − sinφeλ , (A.21)

∂

∂λ
eλ = − cosφer + sinφeφ , (A.22)

∂

∂r
eλ =

∂

∂r
eφ =

∂

∂r
er = 0 . (A.23)

Note that
∂e(x,y,z)

∂(λ, φ, r)
= 0 . (A.24)

Thus, we can easily derive the following useful relationship for the substantial (material) deriva-
tive of the unit vectors in spherical coordinates

d

dt
eλ =

u tanφ

r
eφ − u

r
er , (A.25)

d

dt
eφ = −u tanφ

r
eλ − v

r
er , (A.26)

d

dt
er =

u

r
eλ +

v

r
eφ . (A.27)

Hereu, v andw are components of the velocity vector in the direction ofeλ, eφ ander, respec-
tively. They are defined as

u =
d

dt
λ, v =

d

dt
φ, w =

d

dt
r . (A.28)

Using (A.25), (A.26), (A.27), it can be easily shown foru = ueλ + veφ that

∇ · u =
1

r cosφ

(
∂u

∂λ
+
∂vcosφ

∂φ

)

, (A.29)

and
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er · (∇× u) =
1

r cosφ

(
∂v

∂λ
− ∂ucosφ

∂φ

)

. (A.30)

For the3D divergence we obtain:

∇ · (u + wer) =
1

r cosφ

(
∂u

∂λ
+
∂vcosφ

∂φ

)

+
1

r2

∂r2w

∂r
. (A.31)

Applying the horizontal Laplacian to a scalarζ , we have

∆hζ =
1

r2cos2φ

(
∂2

∂λ2
ζ + cosφ

∂

∂φ

(

cosφ
∂

∂φ
ζ

))

. (A.32)

Spherical harmonics

Figure A.1: The leading spherical harmonicsY m
n (λ, µ) = Pm

n (µ)eimλ: redY 0
1 , greenY 0

2 , blue
Y 0

3 and blackY 0
4 . For the notation see (6.11) and the text below.
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A.2 PV equation

We differentiate (3.31) w.r.t.z and multiply it byf/ρ(0)

∂

∂t

(
f

ρ(0)

∂Θ(2)

∂z

)

+ fu(0) · ∇
(

1

ρ(0)

∂Θ(2)

∂z

)

+
f

ρ(0)

∂u(0)

∂z
· ∇Θ(2)

︸ ︷︷ ︸

=0 (3.32)

+
f

ρ(0)

∂

∂z

(

w(3) ∂

∂z
Θ(2)

)

=
f

ρ

∂

∂z
S

(5)
θ .

(A.33)

For the last term we can write also

f

ρ(0)

∂

∂z

(

w(3) ∂

∂z
Θ(2)

)

= w(3) ∂

∂z

f

ρ(0)

∂Θ(2)

∂z
+

f

ρ(0)

∂Θ(2)

∂z

1

ρ(0)

∂ρ(0)w(3)

∂z
. (A.34)

From (3.24) and (3.33) we obtain

1

ρ(0)

∂ρ(0)w(3)

∂z
=

1

f
u(0) · ∇f . (A.35)

Using the last two equations, the fourth term on the l.h.s. of(A.33) takes the form

f

ρ(0)

∂

∂z

(

w(3) ∂

∂z
Θ(2)

)

= w(3) ∂

∂z

f

ρ(0)

∂Θ(2)

∂z
+

1

ρ(0)

∂Θ(2)

∂z
u(0) · ∇f . (A.36)

So (A.33) can be finally written in the form

(
∂

∂t
+ u(0) · ∇ + w(3) ∂

∂z

)
f

ρ(0)

∂Θ(2)

∂z
= Spv

(5) , (A.37)

where we have definedSpv
(5) = f/ρ(0)∂Sθ

(5)/∂z.
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A.3 Solvability condition for the PRBF

In this appendix we derive a solvability condition for (5.68) under the assumption of positive
F . In this caseπ(2) takes the same form as in (5.47) but withf1 andf2 defined as

f1 = α
√
zI1(2α

√
z) , (A.38)

f2 = 2α
√
zK1(2α

√
z) . (A.39)

HereI1,K1 are the modified Bessel functions of the first and second kind,respectively. Further,
we make the additional assumption that our solution consists only of thef1 component and we
setC2 andπ0 from (5.47) to zero. All terms inQ′ from (5.69) which can be represented as
somez-independent factor multiplied byzf1 will lead to a resonance, sinceQ′ is divided byz
andf1 is a eigenfunction to the linear operator in (5.68). In orderto suppress these terms, we
have to set their coefficients to zero. This will provide an equation for the horizontal structure
of C1(XP , tP ).

We proceed with the identification of the terms inQ′ parallel tozf1. For this purpose, we make
some preliminary calculations. We have some useful relations for the modified Bessel function
In(x)

In(x) =

∞∑

k=0

(
x
2

)2k+n

k!Γ(n + k + 1)
, (A.40)

d

dx
In(x) = In−1(x) −

n

x
In(x) , (A.41)

In−1(x) − In+1(x) =
2n

x
In(x) . (A.42)

With the help of these relations we can calculated the following derivatives off1

∂

∂z
f1 = α2I0(2α

√
z) , (A.43)

∂2

∂z2
f1 =

α3

√
z
I−1(2α

√
z) =

α2

z
f1 , (A.44)

∂3

∂z3
f1 = −α

2

z2
f1 +

α3

√
z
I0 , (A.45)

∂

∂φ
f1 = 2αα′zI0(2α

√
z) , (A.46)

∂

∂φ

∂

∂z
f1 = 2αα′ (I0 + f1) , (A.47)

∂2

∂φ2
f1 = 2zI0(α

′2 + αα′′) + 4α′2zf1 , (A.48)
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∫ z

0

f1(φ, z
′)dz′ = zI2(2α

√
z) , (A.49)

∂

∂φ

∫ z

0

f1(φ, z
′)dz′ =

2zα′

α
(f1 − I2) , (A.50)

∂

∂φ

∂2

∂z2
f1 =

2αα′

z
f1 + 2α3α′I0 , (A.51)

where we have dropped all subscripts of the planetary variables. All linear inπ(2) terms fromQ′

can be represented as linear combinations of the terms above. From there it is easy to see which
will give contributions parallel tozf1. In order to identify the contributions from the nonlinear
terms inQ′, we calculate the products

f1
∂2

∂z2
f1 =

α4

Γ(2)
f1 +

α6

Γ(3)
zf1 +

α8

2!Γ(4)
z2f1 + . . . , (A.52)

∂

∂φ
f1
∂2

∂z2
f1 = 2α3α′

{
1

Γ(1)
f1 +

α2

Γ(2)
zf1 +

α4

2!Γ(3)
z2f1 + . . .

}

, (A.53)

zI2
∂3

∂z3
f1 = α3

√
zI0I2 −

α4

Γ(3)
f1 −

α6

Γ(4)
zf1 −

α8

Γ(5)
z2f1 + . . . . (A.54)

We consider the zonal advection off
N

∂2

∂z2π
(2), it can be written in terms off1 as

u(0)

a cosφ

∂

∂λ

f

N

∂2

∂z2
π(2) =

u(0)

a cosφ

f

N

∂

∂λ
C1

∂2

∂z2
f1 (A.55)

=
f

a cosφN

{

− 1

fa

∂

∂φ
π(2) − u(−1)2

a cosφ

}

∂

∂λ
C1

∂2

∂z2
f1 (A.56)

= − 1

a2 cosφN

{

f1
∂

∂φ
C1 + C1

∂

∂φ
f1 + u(−1)2 tanφ

}
∂

∂λ
C1

∂2

∂z2
f1 (A.57)

Making use of (A.52) and (A.53), we collect all terms in the equation above which are multiplied
with zf1, these are

− 1

a2N cosφ

{
α6

Γ(3)

∂

∂λ
C1

∂

∂φ
C1 +

2α5α′

Γ(2)
C1

∂

∂λ
C1

}

zf1 −
tanφ

a2N cos φ

F 4α4

β2N2

∂

∂λ
C1zf1 .

(A.58)

When substituted in the right hand side of (5.68), the terms will lead to an unbounded growth
of π(3). Therefore their coefficients have to be set to zero. We proceed analogous with the
remaining terms inQ′ and we can derive an equation forC1(λ, φ, t)
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{

a1
∂2

∂λ2
+ a2

∂2

∂φ2
+ a3

∂

∂φ
+ a4

}
∂

∂λ
C1 + a5

∂

∂φ
C1

∂

∂λ
C1 + a6C1

∂

∂λ
C1 = 0 (A.59)

Hereαi are known functions ofN andF and are given through

α1 = −F
2α

βN

1

fa3 cos3 φ
(A.60)

α2 = −F
2α

βN

1

a3f cos φ
(A.61)

α3 =
F 2α

βN

(
1

a3 cos2 φ
+

1

f 2a2

)

(A.62)

α4 = −4α′2F
2α

βN
+

1

Nfa2 cos φ

∂

∂φ

(
1

cosφ

∂

∂φ
αF 2

)

(A.63)

− β

Nf 2a cosφ

(
1

cosφ

∂

∂φ
αF 2

)
β

f

F 2α

Nfβa2 cosφ
+

2α′F 2

Na2f 2 cosφ
+
β

f

αF 2

βN

1

a2 cos φ

− β

f

1

Nfa2 cosφ

∂

∂φ

F 2α

β
+
F 2α

βN

2Fαα′

Nfa2 cos φ

α5 =
α6

a2N cosφΓ(3)
(A.64)

α6 =
βα6

fNa2 cosφΓ(3)

2α5α′

a2N cosφ

(
1

Γ(3)
+

1

Γ(2)

)

− βα6

Nfa cosφΓ(4)
(A.65)
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A.4 The Ekman layer and the planetary scale

In this appendix we study the effect of the strong zonal windsin the PRBF on the planetary
boundary layer. As shown by Klein et al. (2005) the classicalEkman layer theory is derived by
utilizing a two scale asymptotic expansion: horizontal andvertical scales of the order of 200
m and a 20 s time scale are resolved in addition to the synopticspatial and temporal scales.
With this expansion the vertical turbulent fluxes are obtained by averaging over the small-scale
horizontal variables. Here we simplify the analysis and resolve in addition to the planetary
scales only the 200 m vertical scale, we will make use of the analysis by Klein et al. (2005)
and associate the vertical advection terms in expansion of the momentum equation with the
turbulent momentum fluxes. The rescaled vertical coordinate for the Ekman layer reads

zE =
z

ε2
. (A.66)

In the PRBF assume in the free atmosphere a constant background zonal windu(−1) . In the
present regime we allow arbitrary directions of this background wind, deviations from the zonal
direction may result from the strong frictional effects in the boundary layer. Thus, the expansion
for the horizontal wind takes the form

u = ε−1u(−1)(λP , φP , zE , tp) + u(0)(λP , φP , zE , tp) + O(ε) . (A.67)

From the leading order horizontal and vertical momentum balance we obtainp(0) = const,
which combined with the expansion of the equation of state givesρ(0) = const. TheO(ε−5)
vertical momentum balance implies that the pressurep(1) shows no vertical variations in the
Ekman layer

O
(
ε−5
)

:
∂

∂zE
p(1) = 0 . (A.68)

From the horizontal momentum equation we have

O(1) : fer × u(−1) + w(3) ∂

∂zE
u(−1)

︸ ︷︷ ︸

−K∂2u(−1)

∂z2
E

= − 1

ρ(0)
∇Pp

(1) . (A.69)

As we mentioned at the beginning, we associate the vertical momentum advection with the
vertical transport due to turbulent eddies and use a simple gradient flux ansatz in order to pa-
rameterize it. Further, we assume as boundary conditions: i) no surface wind ii) the wind at
the upper boundary of the Ekman layer matches the geostrophically balanced wind in the free
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atmosphere iii) the pressure in the Ekman layer matches the value of the pressure from the free
atmosphere. The last condition implies that the pressure depends only onφ, since we have zonal
wind in the free atmosphere. Summarized the boundary conditions read

u(−1)(zE = 0) = 0 , (A.70)

v(−1)(zE → ∞) = 0 , (A.71)

u(−1)(zE → ∞) = u(−1)
g , (A.72)

p(1) = p(1)
g (φ) , (A.73)

where we denoted with the subscriptg the variables from the free atmosphere. Making use of
the last boundary condition, the momentum equation (A.69) can be written as

−K∂2u

∂z2
− fv = 0 , (A.74)

−K∂2v

∂z2
+ fu = − 1

aρ

∂p

∂φ
, (A.75)

(A.76)

where we dropped the indices ofρ(0),u(−1) and p(1) and the subscripts of the independent
variables. From the meridional component of the momentum equation we obtain

u =
1

f
(K

∂2v

∂z2
− 1

aρ

∂p

∂φ
) . (A.77)

Substituting the last result in the zonal component, we obtain a fourth order ODE forv

∂4v

∂z4
+

f 2

K2
︸︷︷︸

= α2

v = 0 . (A.78)

This equation is solved by

v =
4∑

k=1

ck(λ, φ, t)e
βkz , (A.79)

where

β1,2 = ±
√

i sinφ

K
, (A.80)

β3,4 = ±
√

−i sinφ
K

. (A.81)
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Making use of the relations

√
i = exp(

i

2
(
π

2
+ 2πn)) =

√

1

2
((−1)n + i(−1)n) , n = 0, 1, . . . , (A.82)

√
−1i = exp(

3i

2
(
π

2
+ 2πn)) =

√

1

2

(
(−1)n+1 + i(−1)n

)
, n = 0, 1, . . . , (A.83)

we obtain for the meridional velocity

v = c1e
√

α
2
(1+i)z + c2e

−

√
α
2
(1+i)z + c3e

−

√
α
2
(1−i)z + c4e

√
α
2
(1−i)z . (A.84)

We setc1 = c4 = 0 to prevent an unbounded growth of the solution forz → ∞. In this case the
conditionsv(z → ∞) = 0 andu(z → ∞) = ug are satisfied. From the conditionv(z = 0) = 0
we have

c2 + c3 = 0 . (A.85)

Substituting the conditionu(z = 0) = 0 in the meridional momentum balance, we have

∂2v

∂z2
= − 1

aρK

∂pg

∂φ
= − f

K
ug (A.86)

where we have used the definition of the geostrophic wind. This gives the constraint for the
constant

c3 = −−iug

2
(A.87)

and we obtain for the meridional velocity the classical result

v = ug sin(

√
α

2
z)e

−
√
α

2
z
. (A.88)
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A.5 Blockings

In this section we derive two asymptotic regimes for length and time scales characterizing block-
ing situations in the atmosphere. In the first regime we consider isotropic horizontal length
scales of the order of the external Rossby deformation radius (Oboukhov scale), this regime
corresponds to a typical blocking anticyclone. The second regime describes anisotropic block-
ings like the Omega blocking with meridional scale of the order of the external Rossby defor-
mation radius but with a planetary zonal extent. In both regimes we resolve the corresponding
advective time scales. In order to distinguish between the external Rossby deformation radius
and the planetary scale we apply the recently introduced modified asymptotic approach of Klein
(2007). In this new approach the distinguished limit for theMach, Froude and Rossby numbers
reads (compare with (2.12))

M
2
3 ∼ Fr

2
3 ∼ 1/Ro ∼ ε as ε→ 0 . (A.89)

For simplicity we consider the case of plane geometry.

Regime 1

The rescaled spacial and temporal scales for the first asymptotic regime read

xO = ε
5
2x , (A.90)

yO = ε
5
2y , (A.91)

tO = ε
5
2 t , (A.92)

z = z . (A.93)

We can expand the Coriolis parameterf around some constant latitudeφo as

f = sin(φ) = sin(φ0 +
y

a
) = sin(φ0 +

√
ε
yO

a
) = f0 +

√
εβyO + O(ε) . (A.94)

The expansion for the potential temperature and the wind takes the form

θ = 1 + εΘ( 2
2
)(z) + ε

3
2 Θ( 3

2
)(xO, yO, tO, z) + O(ε

4
2 ) , (A.95)

u = u(0)(xO, yO, tO, z) + ε
1
2 u( 1

2
)(xO, yO, tO, z) + O(ε

2
2 ) . (A.96)

Next, we summarize the equations resulting from the asymptotic expansion of the governing
equations
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Horizontal Momentum Balance

O(εi− 1
2 ) : ∇Op

(i) = 0 , i = 0,
1

2
, 1 , (A.97)

O(ε1) : f0er × u(0) = − 1

ρ(0)
∇Op

( 3
2
) , (A.98)

O(ε
3
2 ) : f0er × u( 1

2
) + βyOer × u(0) = −

(
1

ρ
∇Op

)( 4
2
)

. (A.99)

Vertical momentum balance

∂

∂z
p(i) = −ρ(i), i = 0, . . .

8

2
. (A.100)

Continuity equation

O(i) : w(i) = 0, , i = 0, . . . ,
4

2
, (A.101)

O(ε
5
2 ) : ∇O · ρ(0)u(0) = 0 , (A.102)

O(ε
6
2 ) : ∇O · ρ(0)u( 1

2
) +

∂

∂z
ρ(0)w( 6

2
) = 0 . (A.103)

Potential temperature

O(ε
7
2 ) : w( 5

2
) ∂

∂z
Θ( 2

2
) = 0 , (A.104)

O(ε
8
2 ) :

∂

∂tO
Θ( 3

2
) + u(0) · ∇OΘ( 3

2
) + w( 6

2
) ∂

∂z
Θ( 2

2
) = 0 . (A.105)

From the momentum equation (A.99) we obtain

∇O · u( 1
2
) = − β

f0
u(0) (A.106)

Combining the last result with (A.103) and (A.105), we derive the following PV equation

(
∂

∂tO
+ u(0) · ∇O

)
f0

ρ(0)

∂

∂z

ρ(0) ∂
∂z
π( 3

2
)

∂Θ(1)

∂z

+ βv(0) = 0 . (A.107)
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Regime 2

The rescaled spacial and temporal scales for the second asymptotic regime read

XP = ε
6
2x , (A.108)

yO = ε
5
2y , (A.109)

tO = ε
5
2 t , (A.110)

tP = ε
6
2 t , (A.111)

z = z . (A.112)

We use the following expansion for the potential temperature and the horizontal wind

θ = 1 + εΘ( 2
2
)(XP , z) + ε

3
2 Θ( 3

2
)(XP , yO, tO,P , z) + O(ε

4
2 ) , (A.113)

u = u(0)(XP , yO, tO,P , z) + ε
1
2 u( 1

2
)(XP , yO, tO,P , z) + O(ε

2
2 ) . (A.114)

We introduce the notation

∇O = ey
∂

∂yO

, (A.115)

∇P = ex
∂

∂XP
(A.116)

We summarize the results from the asymptotic expansion of the governing equations

Horizontal Momentum Balance

O(ε1) : f0er × u(0) = − 1

ρ(0)
∇Op

( 3
2
) − 1

ρ(0)
∇Pp

( 2
2
) , (A.117)

O(ε
3
2 ) : f0er × u( 1

2
) + βyOer × u(0) = −

(
1

ρ
∇Op

)( 4
2
)

−
(

1

ρ
∇Pp

)( 3
2
)

. (A.118)

From the last equations we have

∇O · u(0) =
∂

∂yO
v(0) = 0 , (A.119)

f0∇O · u( 1
2
) =

∂

∂yO

∂

∂XP
π( 3

2
) − βv(0) . (A.120)
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Vertical momentum balance

∂

∂z
p(i) = −ρ(i), i = 0, . . . ,

8

2
. (A.121)

Continuity equation

O(i) : w(i) = 0, i = 0, . . . ,
4

2
, (A.122)

O(ε
5
2 ) : ∇O · ρ(0)u(0) = 0 , (A.123)

O(ε
6
2 ) : ∇O · ρ(0)u( 1

2
) + ∇P · ρ(0)u(0) +

∂

∂z
ρ(0)w( 6

2
) = 0 . (A.124)

Potential temperature

O(ε
8
2 ) :

∂

∂tO
Θ( 3

2
) + u(0) · ∇OΘ( 3

2
) +

∂

∂tP
Θ( 2

2
) + u(0) · ∇P Θ( 2

2
) + w( 6

2
) ∂

∂z
Θ( 2

2
) = 0 .

(A.125)

The leading order PV equation for this asymptotic regime takes the form

(
∂

∂tO
+ v(0) ∂

∂yO

)
f0

ρ(0)

∂

∂z

ρ(0) ∂
∂z
π( 3

2
)

∂Θ(1)

∂z

+ βv(0) + u(0) f0

ρ(0)

∂

∂z

ρ(0) ∂
∂XP

∂
∂z
π(1)

∂Θ(1)

∂z

+
f0

ρ(0)

∂

∂z

ρ(0) ∂
∂tP

∂
∂z
π(1)

∂Θ(1)

∂z

= 0 .

(A.126)
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