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Chapter 1

Introduction

Observations indicate the existence of a large number offlequency (periods longer than
10 days) atmospheric regimes with planetary spatial s¢afdébe order of the earth’s radius
6300 km) that have an important influence on the variabilitthe atmosphere. This motivates
us to study in this thesis the atmospheric dynamics on threepday scale making use of multiple
scale asymptotic analysis and of numerical simulationspdrticular, we aim to identify the
relevant physical mechanisms on these large scales anas$tract simplified models for their
theoretical description. These models have to incorparagesystematic way the important
interactions between the planetary scale flow and the symegdties (periods of 2 to 6 days
and spatial scales of 1000 km). Such planetary scale atredspimodels are of particular
interest not only because they elucidate general featdde @tmospheric dynamics, but also
because they are potentially useful in the constructiorad@iced complexity models for long-
term climate simulations.

Planetary and synoptic scales in the atmosphere

A considerable part of the atmospheric variability showestisp structures on planetary scales
(e.g. Hoskins and Pearce, 2001). We attribute to thesetstascatmospheric phenomena such
as the quasi-stationary Rossby waves, teleconnectiorrpatand the polar/subtropical jet.
Fig. 1.1 shows time-averaged 500 hPa geopotential heigtiteofiorthern hemisphere for the
winter season. The pattern of a typical steady wave is @sitwo pronounced troughs over
the eastern parts of North America and Asia and a third welagagh over western Asia; the
wavenumber 2-3 structure implies wavelengths of the ortl&2000 - 8000 km for 5EN. Such
stationary waves are the resonant response of free Rossi®swa thermal and orographic
forcing from below; they are often referred to as quasiistary Rossby waves, since they are
persistent over long periods of time. They have nearly aivatgnt barotropic vertical structure
and play an important role for the momentum, heat and watgnaansport in the atmosphere.

There is a high resemblance between the wavetrains gedénatee horizontal propagation of
stationary Rossby waves and the teleconnection pattertngireal atmosphere (Hoskins and
Karoly, 1981). Such planetary scale patterns can be idedtffom correlation maps of the
500 hPa geopotential and surface pressure (Wallace ande6Ui281) and they represent the

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: Time mean geopotential height of #06 hPa surface for the northern hemisphere
(DJF), units gpdm. Based upon ERA40 reanalysis data (Sirsrand Gibson, 2000).

leading modes of the regional atmospheric variability,,élge Pacific-North-American pattern
(PNA) or the North Atlantic Oscillation (NAO). On the otheaid, a zonally symmetric struc-

ture characterizes the global modes of atmospheric véityatescribed by the northern and
southern annular modes (AM) (Thompson and Wallace, 2000) aviime scale of about 1-2

weeks. Other zonal phenomena with similar or longer timéescare the poleward propagation
of zonal mean zonal wind anomalies (Riehl et al., 1959) aadtimal index oscillation (Rossby,
1939) describing the transitions between blocked and ex@thmidlatitude westerly flow.

One of the pioneering works on the subject of stationary Bpsgaves is from Charney and
Eliassen (1949) who reproduced the steady anomalies otthygogential field at a fixed latitude
using the linearized equivalent barotropic vorticity etipraforced by orography. The excitation
of stationary disturbances by diabatic source terms reptegy the land-sea thermal contrast
was studied by Smagorinsky (1953). Their vertical propagatas investigated in the semi-
nal paper of Charney and Drazin (1961), where it was shownftihaasterly and for strong
westerly background flow the waves are trapped in the lowapgphere, whereas for weak
westerlies and for sufficiently large wavelengths they carpagate to the middle atmosphere.
The stationary planetary waves play an important role irdthr&amics of the stratosphere, where
they can decelerate the polar night jet and even lead to #ektown of the polar vortex (Mat-
suno, 1970, 1971; Holton, 1976). The horizontal propagadibRossby waves on the sphere
was studied by Hoskins et al. (1977) using a linearized bapat model. In Grose and Hoskins
(1979) the steady response to orography was investigatibdawinearized spherical shallow
water model. They associated stationary trough and ridg#sRossby wavetrains excited by
the mountains. Their study was extended by Hoskins and K&t8i81) by incorporating both
thermal and orographic forcing in a linear baroclinic model

Apart from the stationary Rossby waves, other phenomepaaset to the transports in the ex-
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Figure 1.2: Power spectrum density of the meridional gepsic wind at500 hPa andb0°N
(Fraedrich and Bottger, 1978).

tratropical atmosphere are the synoptic eddies. They arergeed by the baroclinic instability

process (Charney, 1947; Eady, 1949) and are described lmuts-geostrophic (QG) theory

(Pedlosky, 1987). The synoptic spatial scales are chaizeteby the internal Rossby defor-

mation radius (Holton, 1992), denoting the characterlstigth which an internal gravity wave

will travel during the earth’s rotation time. This radiusaound 1000 km for the atmosphere,
typical time periods associated with the synoptic waveedalays.

The different planetary and synoptic scales are also evidespectral analysis of tropospheric
data: observations (e.g. Blackmon, 1976; Fraedrich arttgB6 1978; Fraedrich and Kietzig,
1983) as well as simulations (e.g. Gall, 1976; Hayashi antil€p1977) show the presence
of isolated peaks in the wavenumber-frequency domain. ERdisplays three such peaks in
the spectrum of the meridional geostrophic wind. There issximum associated with the
guasi-stationary Rossby waves with zonal wavenunbef.-4 and with periods larger than 20
days. The other two maxima &at= 5-6, periods of 10 days and at= 7-8, periods of 4 days
result from the synoptic waves. These are eastward prapgdanhg and short waves associated
with different background stratifications (Fraedrich arttBer, 1978). The overall picture of
three maxima persists during the different seasons for dhin@rn hemisphere. This indicates
a separation between the planetary and the synoptic s¢dédegever, the interactions between
the two scales are of great relevance to the atmosphericyigaas stressed in many studies
(e.g. Hoskins et al., 1983).

Reduced atmospheric models

One approach in atmospheric modeling, applied in the coctsbn of general circulation mod-
els (GCMs), is based on the idea of solving numerically thdftdro and thermodynamic equa-
tions using the finest possible resolution and parameterili the unresolved phenomena. This
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is a tremendous task and currently different component¥&are being developed in order
to achieve more sophisticated representation of the psesas the real atmosphere. However,
their enormous complexity and the restrictions of the modsmputational facilities do not
allow one to utilize GCMs for addressing all problems in thm@spheric dynamics. Thus, the
need for simplified atmospheric models do arise.

First, our understanding of the atmosphere is to a greahekesed on reduced models, e.g.,
in connection with the study of regime behavior (Charney Bedore, 1979; Marshall and
Molteni, 1993) or ultra-low-frequency variability (Jamasd James, 1989, 1992). Some mod-
els are even analytically tractable, e.g., the energy lbathmodels (North, 1975; Oerlemans
and van den Dool, 1978). In climate modeling there is a spaekd for numerically attractive
reduced models, e.g., for paleoclimate studies, whereaictiens on time scales of the order
of millennia and more are involved, or for ensemble simaolai This has led to the develop-
ment of the Earth System Models of Intermediate CompleXt\ICs; Claussen et al., 2001)
and in the context of atmospheric modeling, more precisieé/development of the Statistical
Dynamical Models (SDMs; Saltzman, 1978).

The concept of the SDMs is based on the assumption that egeagoverning the large-scale,
long term “climate” variables, can be derived by averaging original primitive equations
over the smaller (e.g., synoptic) scales. This averagingquure is similar to the Reynolds
averaging applied in the classical boundary layer thebngturally gives rise to the appearance
in the new equations of unknown correlation terms (e.g.optin fluxes). These terms have to
be closed, either by deriving evolution equations for thargher order closures, e.g. Kurihara,
1970; Petoukhov et al., 2003) or parameterizing them (8atzand Vernekar, 1971; Yao and
Stone, 1987). Here we have to state that the parametenzztibe synoptic fluxes remains an
important (not only for SDMs) topic of ongoing research. tRdirthe difficulties encountered
are due to the non-negligible contribution from third ordesments (Petoukhov et al., 2008),
e.g., in the regions of synoptic eddy generation.

SDMs allowing zonal variations have a large range of appllitg, e.g., global warming sce-
narios, paleoclimate and feedback studies (e.g., Ganaptlal., 2001; Claussen et al., 2001,
Petoukhov et al., 2005; Calov and Ganopolski, 2005). Thataps for the large scale motion
of such models (Petoukhov et al., 1998, 2000) are based @iahetary geostrophic equations
(PGESs). The history of the PGEs goes back to the work of BUf#$8) who pointed out that
on the planetary scale the vorticity remains quasi-statiypand the vorticity equation reduces
to a balance between the horizontal divergence of the widdtaadvection of planetary vor-
ticity. The PGEs were proposed by Phillips (1963) as a redlisystem of equations for the
planetary scale motions (also referred to as geostrophtonsof type two). They consists
of the geostrophic and hydrostatic balance, dffadivergence constraint (where the vertical
velocity results from variations of the Coriolis paramgtand of a transport equation for the
potential temperature.

The PGEs for a Boussinesq fluid are widely used for modeliagdeige-scale ocean circulation
(Salmon, 1998). Some of the pioneering works on the subjet fvom Robinson and Stommel
(1959) and Welander (1959), where the authors studied #aelgtversion of the equations as a
model of the ocean thermocline. In the former paper the asitmuld reproduce some features
of the thermocline, e.g., the upwelling at the equator arddéepening in the west direction.
In their study they included simple source terms represgriémperature diffusion and surface



wind stress. The PGEs can be solved numerically in a closetholp (e.g., Samelson and
Vallis (1997)) when Laplacian and biharmonic diffusion adeled to the temperature equation.
In Wiin-Nielsen (1961) it was shown that in the presence oédiwally sheared zonal wind the
PGEs exhibit baroclinic instability. Further, it was derstrated that the growth rates of the
disturbances increase linearly with the zonal wave nundzeting to an ill posed mathematical
problem; this could be overcome if a diffusive friction icinded (e.g., Colin de Verdiere,
1986). In Mundt et al. (1997) one can find the results of nuca¢sgimulations with the shallow
water formulation of the PGEs, it was shown that the numeefteiency of the model was at
least an order of magnitude larger than other balanced model

One important feature of the PGEs is that they require a otofu the barotropic component
of the flow, because the pressure cannot be determined tihtbagolution of a Poisson equa-
tion (the invertibility principle in the QG theory). The lmropic component of the flow can
be closed if Rayleigh friction or some prescribed surfacedastress are added to the equa-
tions. However, such an approach is applicable to the ocgiamdb to the atmosphere. Current
closures for the atmosphere (Petoukhov et al., 1998, 208@iagnostic and based on the tem-
perature (the only prognostic variable in the PGES); it g1ased that they might be a cause for
the limited atmospheric variability observed in some ofititermediate complexity models.

As already mentioned, the PGEs resolve only the planetaig snd the important fluxes due
to the synoptic eddies have to be parameterized. On the lo#imel, the theory for the synoptic
waves, the QG theory, is valid only on the synoptic scale anghable to describe planetary
scale flows with order one variations of the Coriolis para@nand horizontal variations of the
background stratification. This motivates our interest theory that merges in a systematic
manner the QG and PG model and captures the interactionséetive synoptic and planetary
scales.

Asymptotic regimes for the planetary scale and synoptitesca

In this thesis we study reduced models appropriate for teergeion of the planetary and syn-
optic dynamics in the atmosphere, in particular we focushenfeedbacks between the two
scales. The character of the problem motivates the use dipteu$cales asymptotic analysis
and we utilize a method referred to as an unified asymptopecageh to meteorological mod-
eling (Klein, 2000, 2004). It has been applied in the develept of reduced models, e.g., for
the tropical dynamics (Majda and Klein, 2003), deep medeswanvection (Klein and Ma-
jda, 2006), Hadley type circulations (Dolaptchiev, 200&) aoncentrated atmospheric vortices
(Mikusky, 2007).

We consider three asymptotic regimes, accounting for tfierdnt types of phenomena on the
planetary scale, and derive reduced model equations far @&ae characteristic length and time
scales of some of the regimes are presented in Fig. 1.3. ®@fie is the Planetary Regime
(PR), there we consider the scales described by the PGEsetats horizontal scales (of the
order of the earth’s radius) and a corresponding advedtive scale of 7 days. For reasons
that will become clear in the next chapter, these charatietength and time scales can be
expressed as 3h,. ande>hg./u,.s, respectively, where we have used the small parameter

1

E~ g % the scale heighti;. ~ 10 km and a reference velocity., = 10 ms* defining the

time scale,./u,.; ~ 20 min.
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Figure 1.3: Scale map for the PR and PRBF, the validity rarigbeeoquasi-geostrophic (QG)
theory is also shown, see text for explanations.

Whereas in the PR the horizontal variations of the potetdraperature are consistent with the
QG theory, an order of magnitude larger fluctuations arerasdtin the Planetary Regime with
a Background Flow (PRBF). These are motivated by the obdexgaator to pole temperature
gradients and generate a strong zonal background flow. Therlgelocities requires a faster
time scale of 1 daye(hs./u.r) for the description of the dynamics on the planetary length
scale. It matches the time scale of the QG model for the symopitions with a characteristic
length scale of about 1000 kmah,..).

The wavenumber-frequency spectrum in Fig. 1.2 providesifomation about the meridional
scale of the quasi-stationary Rossby wavek at 1-4. On the other hand, in many theoretical
models it is often assumed that their meridional extent ialenthan the planetary scale in
order to guarantee that the advection by the geostrophid wirthe relative vorticity and of
the planetary vorticity are of the same order. This has mtgny us to consider the Anisotropic
Planetary Regime (APR) (not shown in Fig. 1.3). It descriimegions with zonal variations
on a planetary scale but with meridional variations on theogyic scale. In all three regimes
we present, we resolve in addition the temporal and spatadés of the QG model, aiming to
investigate the planetary-synoptic interactions.

The outline of this thesis is as follows: in Chapter 2 we idtrce the asymptotic approach
and the rescaled coordinates resolving the planetary ansythoptic scales. In Chapter 3 we
consider the PR, first a reduced planetary scale model aad thafit a two scale planetary-

synoptic model is derived. In Chapters 4 and 5 we present Bfe &nd the PRBF, respectively.

In Chapter 6 we study the leading balances on the planetargyaroptic scales by performing

numerical simulations with a primitive equations modeg thsults are interpreted with respect
to the reduced model equations derived in the previous erapA summary of the thesis is

presented in Chapter 7.



Chapter 2

Multiple Scales Asymptotic Approach

In Section 2.1 of this chapter we consider the asymptoticssgntation of th8 D compressible
flow equation. We utilize the governing equations on the sphgecause we are interested in
motions with horizontal scales of the order of the earthdius. In Section 2.2 we introduce
spatial and temporal coordinates resolving the planetadysynoptic scales. A solvability
condition imposed in the asymptotics is discussed in Se@i8 by using the example of the
linear damped harmonic oscillator.

In order to derive simplified model equations for the atmesghdynamics on the planetary
and synoptic scales we use a unified asymptotic approachteonoéogical modeling. It was
introduced by Klein (2000, 2004) and is based on multi-spalturbation methods. It provides
a self-consistent mathematical description of a phenomeapturing only the essential physics
and is a useful theoretical tool for multi-scale interactgiudies. Majda and Klein (2003)
applied the approach successfully in the systematic dpueat of some reduced equations for
the tropical dynamics. These can be regarded as a promisagetical model for explaining
some aspects of the Madden-Julian Oscillation (Majda amdld3i2004; Biello and Majda,
2005). The same method was used by Dolaptchiev (2006) fodekeription of large-scale
convectively driven Hadley type circulations in the trapi&lein and Majda (2006) extended
the asymptotic approach to include moist processes. Nemceeddmodel equations describing
deep mesoscale convection together with important inierssbetween different spatial scales
were derived. In the work by Mikusky (2007) the method waslieppto study concentrated
atmospheric vortices (e.g. hurricanes); in particulageéscribe the vortex core structure and
the influence of the background shear flow on the vortex trajgc

For an introduction to the unified asymptotic approach toemeetiogical modeling as well as
some new aspects of it we refer the reader to a recent papelelny (R007). The multi-scale
perturbation techniques are discussed in depth by Kevoddaa Cole (1981); Holmes (1995).

2.1 Asymptotic representation of the governing equations

We start from the governing equations in spherical cootdmér a compressible fluid on the
rotating earth and nondimensionalize them. We use thedolpreference quantities: the ther-
modynamic pressurg..; = 10° kg m™' s72, the air density,.; = 1.25kg/m?, a characteristic

7



8 CHAPTER 2. MULTIPLE SCALES ASYMPTOTIC APPROACH

flow velocity u,.; = 10 m/s, the scale heighit,. = p,es/g/pre; ~ 10km (g ~ 10ms 2 is the
gravity acceleration) and a time scalgy = hs./u,.; ~ 20 min. After nondimensionalization
the governing equations take the form

%u—umfnd)_%+%(wcos¢_vsm¢)+%mclos¢%:S"’ (2.1)
%U+UQtjn¢+$+%usin¢+%$g—zz . @2)
%w—g—vj—%ucos¢+#%% %:Swa (2.3)

%«9:59, (2.4)
i roosd (% * avgfd)) g0 9
0 =p7,  (2.6)

where the coordinatek, ¢ andr measure longitude, latitude and the distance from the cente
of the earth, the corresponding spherical unit vectorseare, ande,. The non-dimensional
variablesp, p, 0, v, v, andw denote pressure, density, potential temperature and tbeitye
components in the direction ef,, e, ande,, respectively.s,, , ., and S, represent momentum
and diabatic source terms ands the isentropic exponent. The operaigtit is given by

d—g_|_ u 24_23_'_ g (27)
dt Ot rcosdpON 1O Yor - '

The Mach, Froude and Rossby numBér F'r, and Ro are defined as

Uref

V pref/pref 7

M = (2.8)

(2.9)

(2.10)

with Q =~ 7 1075 s~! denoting the earth’s rotation frequency. We introduce algpagameter

_ <@_92) | (2.11)
g

whereq is the earth’s radius: 6 102 km ande ~ % % e < 1. Next, the Mach, Froude and

Rossby numbers are expressed in termsiafa carefully chosen limit. A detailed discussion
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of this step can be found in Klein (2000, 2004); Majda and Ki&003), see also Keller and
Ting (1951) who suggested to introduc@s a expansion parameter. The distinguished limit
reads

VM ~VFr~1/Ro~¢ as e—0. (2.12)
It follows naturally for the radius of the earth: = ==3a*h,., wherea* is a constant of order

unity. Since we are interested in motions in the atmosph&escan introduce a new non-
dimensional coordinate, measuring the altitude from the ground

r=ca" + 2. (2.13)

Finally, the governing equations take the form

%u el <“”12n¢ . %) + e(wcos ¢ — vsin ) = —R;;w%wu, (2.14)
%wre?’ (U%gw +%) + eusin ¢ = —gR—_plg—ZJrSU, (2.15)

%w — g’ (U—RQ + U—;) — cucos g = —%% — e 48, (2.16)

%9 —S, | (2.17)

b () e

00 =p (2.19)

whereR = a* + 3z and

d 0 Su 0 o 0
e_2, fu 9,8v9 2. 2.20
dt 8t+Rcosgb8>\+ Ra¢+waz ( )

Next, we introduce rescaled coordinates in order to regubeetary and synoptic motions.

2.2 Scaling of the coordinates

The lengthés of a path increment on the surface of the earth can be expr@sgerms of
variations of longitudeé \ if the latitude is fixed at),

0S8 = acos Pgo\ . (2.21)
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If we keep the longitude constant and vary the latitude, wesha

0s =adg. (2.22)

We are interested in motions with planetary spatial scakes motions with a reference length
of the order of the radius of the earth;,,, ~ a. For planetary scale motions horizontal
variationsds,,,, divided by the reference length have to be order (ﬁxﬁﬁ = 0O(1),ase — 0.
Taking into account (2.21) and (2.22), we obtain the coadsi

cos oo Ap, 0pp = O(1) , (2.23)

where we denote longitudinal and latitudinal variationstio@ planetary scale with\p and
d0¢p, respectively. This constraint is satisfied if we take awies appropriate for the planetary
scale motionsdAp ~ 7 ...m ~ O(1), d¢p ~ 5 ~ O(1) and if we assume that the motion is
not in the vicinity of the polescos ¢g ~ O(1). Thus, the nondimensional coordinateand¢
resolve already motions on a planetary scale, they do nettoeve rescaled and we will denote

them withAp and¢p.

Suppose, we want to resolve synoptic scale motions, theretbeence length scale is given by
Tsyn ~ € 2hs. = ca. We denote synoptic scale longitudinal and latitudinalataons withd\ s
andd¢g, respectively. Substituting fars,,, (2.21) and (2.22) and requirinG,,, /sy, ~ O(1)

to hold, we obtain the conditions:

et cos podlg, e g ~ O(1) . (2.24)

This is satisfied only if we set

0As = ed\p and5¢s =edop, (225)

here agaiA\p ~ % ... 7 ~ O(1) anddgp ~ 5 ~ O(1). In order to resolve synoptic scale

motions, we have to introduce new “stretched” coordinatesys

Ag = éAp andgg = %d)P. (2.26)

Next, we consider the time coordinate. An appropriate glagedvective time scale, based on
the reference velocity,., is given by

-3
o Tplan o € a*hsc =3 % o
tplan - g a tref -

a
_ _ L s~ Td 2.27
Uref hsc/tref d ! s ( )

h/SC

A suitable time coordinate, resolving motions on the planetime scale is

tp = = &%, (2.28)
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wheret’ stands for the dimensional time coordinate arfdr the time coordinate nondimen-
sionalized byt,.;. Similarly, the characteristic synoptic time scale reads

Lygn = " = =2, ~ 1days, (2.29)
Uref

and the synoptic time coordinate is given by

tg =e’t. (2.30)

We assume that each dependant variable from (2.14) - (2&kBbe represented in general as
an asymptotic series in terms of

U()\a ¢a Z7t7 5) = ZSZU(Z)()\PU ¢Pa )\Sa ¢Sa Z7tP7tS) . (231)

In some of the considered regimes we will omit the dependentlee planetary/synoptic spatial
and temporal scales.

2.3 Sublinear growth condition

In order to guarantee a well defined asymptotic expansi@if2we have to require that®
grows slower than linearly in any of the coordinates, whgknown as the sublinear growth
condition. SupposeXs denotes one of the synoptic coordinates ¢s,ts and Xp the corre-
sponding planetary coordinalg, ¢p or tp. Since we hav&Xs = Xp /e, we can formulate the
sublinear growth condition for the coordinatg as

| w( X
U9 xs) . UG )
=1 ey, =0 (2:32)

where all coordinates excepis are held fixed with respect toin the limit process. An im-
mediate consequence from the last constraint is the dissipgeof averages oveYs of terms,
which can be represented as derivatives with respekitdn particular we have

Xs

0 ,
_U@  =90. 2.
0Xs 0 (2:33)

Here the averaging operat@rxs is defined for the different synoptic coordinates as
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U0 = lim UD(... tg)dts, (2.34)

U@ () = lim — UD(..., xs)d)s, (2.35)
e—0 27
Ap
L
U0 () = lim = / UO(..., ¢s) dps, (2.36)
e—0 7T
d)_P ™

whereT in (2.34) is a characteristic time averaging scale. Finally can define an averaging
operator()s over all synoptic scales

t
S S

. ——
U (Ap, ¢p, 2, tp) = DO (2.37)

We note that ir@s the order for averaging over the different synoptic scaesbitrary.

Example: the linear harmonic oscillator

Typically, when multiple scales are involved in a problehe teading order asymptotic equa-
tions determine only the structure of the (leading ordel)tgmn on the “small” scales, whereas
its “large” scale distribution appears in the next orderagguns together with higher order un-
known variables. In such cases the application of the seligrowth condition provides the
uniqueness of the solution. It can be viewed as a solvaliitylition for the next order equation
which determines the “large” scale structure of the leadirdgr solution. We discuss here the
sublinear growth condition for the classical example of akle damped harmonic oscillator
(Holmes, 1995). In nondimensional form the problem is dbscr by

0? 0
0
ay(o) =1, y(0)=0, (2.39)

wheret is the time coordinate} < 1 the friction coefficient, both nondimensionalized using
the frequency of the undamped oscillation, ajid) measures the displacement from some
reference state. Intuitively, the problem involves twodistales: the first is fast and is given
by the period of the undamped oscillation, the second is tbhehntongere-folding time of
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the weak damping. In order to resolve variations on these soales, we introduce two time
coordinates,, t,. Expressed in terms of the original origthey read

ty = Ot (2.41)

where no scaling is needed far, sincet is already scaled with the frequency of the undamped
oscillation. We assume that the solution of (2.38), (2.38) be represented as an asymptotic
series in powers aof

y(t) = Z Syilty, ta) (2.42)

where the different factorg depend on the new time coordinates. We transform the dimevat
operators in (2.38), (2.39) according to

o 0 0
9,9 159 2.43
ot oty i Oty (2.43)
2 2 2
O L9 20 500 (2.44)

oz o "o ot oty

With the help of the results above, we substitute (2.42) i8R, (2.39) and obtain as a leading
order equation system

a?
1
Yo = 0, iyo = 1, for t1,lo = 0 (246)
oty

The formal solutions reads

Yo = Ap (tg) sin(tl) -+ b() (tg) COS(t1> s (247)

Till now, only the evolution ofy, on the fast time scale has been found, the constg(its) and
bo(t2) have to be determined from the next order asymptotic equatio
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0? 0 0 0
5 - | = 92— gy = — 2.49
0(9) ((‘%f + )yl ot 8t2y0 8t1y0’ ( )
—ofz __ 9 forty, ty =0 (2.50)
v = ’8t1y1 = 8t2y0’ 1,02 =U. .

Substituting (2.47) in(2.49), we obtain

0 b _ da
O(9) : (0—15% + 1) Yy = (20—1;) + bo) sin(ty) — <28—tf + ao) cos(ty) . (2.51)

Since the linear operator on the left hand side of (2.51)risgit from the right with its eigenfre-
guency, we expect a resonant behavior of the solution. Ibeagasily verified that the solution
will contain terms proportional té; sin(¢;), ¢; cos(¢1). Such terms will grow unbounded in
leading to a violation of the asymptotic expansion (2.42)eyl can be suppressed by requiring
the terms in the brackets on the right hand side of (2.51) testaa This solvability condition
and the boundary conditions (2.48) give us

ag = e /%, (2.52)

Finally, the leading order solution of (2.38), (2.39) reads

yo(tl, tg) = sin(tl)e_t2/2 . (254)



Chapter 3

The Planetary Regime

In Section 3.1 of this chapter we systematically derive cedumodel equations for the Plan-
etary Regime (PR). It describes atmospheric motions wiingtiary spatial scales and a tem-
poral scale of the order of about one week, see Fig 1.3. Warassariations of the back-
ground potential temperature comparable in magnitude titise adopted in the classical
quasi-geostrophic theory. At leading order the resultopgagions include the planetary geostro-
phic balance. In order to apply these equations to the atn@wspone has to prescribe a closure
for the barotropic component of the flow. In Section 3.1.3hsclosure is derived in a sys-
tematic way from the asymptotic analysis, it representsvatugon equation for the vertically
averaged pressure. In Section 3.2 the planetary scale nscgdended to a two scale model by
incorporating the synoptic scales in it, different inteéi@c mechanisms between the two scales
are discussed.

The results from Section 3.1 have been published by Dolaptend Klein (2008).

3.1 Single scale model

A priori assumptions for the background stratification

In this regime we assume that the deviations from a consgdetance value of the potential
temperature are small throughout the troposphere and are of the afdeFhis was justified
in Majda and Klein (2003), where typical values of the dry ymcy-frequencies of the at-
mosphere were considered. In this case the expansion faotieatial temperature takes the
form

0=1+ 626(2)(>\P7 ¢P7 <, tP) + 636(3)(>\P7 ¢P7 <, tP) + 0(64) . (31)

As pointed out in Klein and Majda (2006); Klein (2007), vaioas of the potential temperature
of the order: are associated with long term radiative balances. Thisnfiroeed if one consid-
ers the large equator-to-pole surface temperature diftere~ 40 — 60 K (Peixoto and Oort,
1992). The regime associated with =) potential temperature variations will be presented in
Chapter 5.

15



16 CHAPTER 3. THE PLANETARY REGIME

Source terms

Before starting with the asymptotic analysis, we consitier gource terms in the governing
equations. On the planetary scale radiative effects havienportant contribution taSy, a
simple parameterization of these processes is the retexatisatz (e.g. Fraedrich et al., 1998)

(3.2)

Herer is the radiative relaxation time scal@, denotes the radiative equilibrium temperature
of the atmosphere. A typical value for the radiative relaatime scale i20 days~ ¢ 3¢,;.
Taking into account (3.1), we can estimate the magnitudg o6 be O (). This is consistent
with the values in the literature for the radiative heatimgling rates of aboutK day !, e.g.,
Gill (2003); Holton (1992). In nondimensional form they githe same order fd§, as men-
tioned here, see Dolaptchiev (2006). Thus, we ob@ihz 0 fori = 0,...,4 and the first
nontrivial term has the form

0, — 0O
g =22 (3.3)
T
The source terms in the momentum equation represent effaetso friction. We will show
later on that the vertical velocities disappear ug@?), consequently we will sesl =0
up to this order. For the sinks of horizontal momentum we hgeseme representation as in

Marshall and Molteni (1993)

Sy =—ku, S,=—kv, (3.4)

with a drag coefficient(\, ¢, z) given through

- T—lf (1+ a LSA, @) + azH(\, ,2)) - (3.5)
The functionL.S describes variations of the drag over land and sea, theifumét variations
due to the topography. The constanisa, are user defined weights betweeand1. Taking
the proposed value in Marshall and Molteni (1993)3adlays for the relaxation time;, we
estimate the magnitude of the momentum source t&fms, to be somewhere betweéhc?*)
andO(=?). Since we expect that frictional effects in the free atmesplaffect the time evolu-
tion of the wind but not its geostrophic balance, we consiidéne current analysis onkp(=?)
momentum sources (compare (3.28) and (3.29),(3.30))., Thedirst nontrivial friction terms
read

SL(LZ')) _ —ku(o) 7 5(3) — —kﬂ)(o) . (36)

v

In order to study the influence of friction on the evolutiontbé wind on the fast synoptic
time scale, one should considéxs?) dissipation terms. This estimate is appropriate for the
asymptotic analysis in Section 3.2, where we resolve the@ymlength and time scales. Next,
we proceed with the asymptotic derivation of the reducecgqos.
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3.1.1 Derivation of the Planetary Regime

Notation

From here on we drop the subscripts of the temporal and $pati@bles, keeping in mind
that they resolve motions with temporal scales of the ord@bout7 days and spatial scales
comparable with the radius of the earth

tP7>\P7¢P _>t7 )‘7¢ (37)

The superscript of the order one variabfewill be dropped as well. The following notation for
the operators is used

€) 0 €y 0

v:&cos¢a+;8_¢’ (3.8)
1 0? 0 0
A= Py (8)\2 + cos d)a—¢ (cos d)a—¢>) , (3.9)
1 0 Ju cos
e - (Vxu)= pp— (a—z - u(;;bqb) ) (3.10)
U= e\u+ ey. (3.11)

Key steps of the derivation

We substitute the ansatz (2.31) in the governing equatiodsallect terms of the same order in
e. From the vertical momentum balance follows that the atrhespis hydrostatically balanced
up top®

90— iz, 4. (3.12)
0z

From the horizontal momentum balance (2.14) and (2.15) waimbhatp® andp™ do not
depend on the horizontal coordinates

vp =0, i=0,1, (3.13)
where for the expansion of the advection operator (2.20)ave lnsed the Taylor series

1 1 1 1
E = ar 832 = E — 9632 + O<€6) . (314)
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We will drop the time dependence i) andp, since it is unphysical that the leading orders
of the pressure change in time horizontally uniform on thesttered scales (it is possible

to derive this assumption starting from the thermodynargicagion rewritten as an evolution

equation for the pressure). Expanding the equation of §&at8) we have

1
p© — pO7 (3.15)
1 p(l)
PV = p©> 5 (3.16)
P
1 p® (1= y)p?
@ 4 0g@ — o5 (P 7P . 3.17
P P p <fyp(0) 2’}/2}9(0)2 ( )

If the pressure” is hydrostatically balanced, we have the following useflationship

(@) (@) o
P p . ()
_W -+ (0) - a—ﬂ' 5 (318)
P P z
‘\/—/‘ ——
Lo 90 1
P00z U 020
here we have introduced the variable
0 — p(i)/p(O) ] (3.19)

We combine (3.15) and (3.12) and obtain for the pressure

PO (2) = o (1 - 1= 12) o (3.20)

Po IS an integration constant. In the Newtonian limit, i-e 1 = O(e) ase — 0 (for details see
Klein and Majda (2006)), the leading order pressure anditereads:p® = p©) = exp(—=z),
which are exactly the profiles for an isothermal atmosphéfensforming (3.16) with the
help of (3.18) and integrating overwe havep™ (z) = p;p¥, wherep, is another constant
of integration. Note that in the expansion of the pressiitecan now absorb thge(!) term.
Consequently the series for the pressure takes the form

p()‘> ¢7 2 t) - (pO + 5p1)p(0)(2) + 52]7(2)()\, ¢7 2 t) + 0(53) ) (321)

where without loss of generality the constant fagigr- p; can be set td by an appropriate
choice of nondimensionalization. From (3.17) we can regmrethe hydrostatic balance pf
with the help ofo®
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9
0z

For the zero order continuity equation we obtain

@ =@ (3.22)

0
— 00y = . (3.23)
0z

Integration gives for — oo andp® — 0 : w® (00) — oo which is not physical. So we require
w® = 0. Analogously it can be shown from the next two order equatibatw™) = w® = 0.
The higher order equations are

1 0
V- -u® 4 — = 50,08 = 3.24
0
(9zp(0)w(4) + p(O)v ) = 0, (3.25)

0 0
- PONBONE SN — pOuw® + pPu®) 4 pOV . 4@ 4 sOV . 4O =0, (3.26)

The first two terms in the expansion of the velocity field areggephically balanced

u® = %er x Vr® (3.27)
1
uV) = Fer X va® . (3.28)

The time evolution oi”) appears in the next order

0),,(0
90 4 O wy® 4 @90 w P tang fo® = (3.29)
ot 0z a
1 0 p? 0
- (Zw_ P Y @) g ®
ap®) cos ¢ ((9>\p p© ar’ +ou
0),,(0
D0 1 @ . gp© 4 @2y Wutang Fu® = (3.30)
ot 0z a
2
L (0w 2P0 ) g®.
From the expansion of the potential temperature equatioobisn
0 0
—+u? . V+uw® = )e?® =;5,06. (3.31)
ot 0z

From the equations of the asymptotic expansion we can deowesome practical relations.
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The vorticity and the PV equation
We can combine (3.27) and (3.22) in a thermal wind equation

0 1
“u® = = 2)
P fer x VO . (3.32)

The leading order vorticity balance can be obtained by ¢atitiy the divergence of (3.27)

v cos ¢

vV-ul® =—40.vf= (3.33)

This equation states that the generation of vorticity tgrostretching is balanced by the advec-
tion of planetary vorticity (Sverdrup balance). Making w$é¢he continuity equation (3.24) we
can also write it as

1 9903 1

Applying —1 7> on (3.29) and_ 7% on (3.30), one can derive a vorticity equation

0 0 0
— (O L. 400 (3) (0 A(Vuw® x =4 vV - (2 —
tC + u Y +w ZC + e, ( w X Z’u, ) + fu

. (3.35)
e - ( sVp® x Vp(2)) +e -V xS,
0
HereS® = (S{¥, 5,17 and the vorticity© is given through
(O =e - (Vxu?)= %AW@) + uDcot - (3.36)
a

The first term on the right hand side of the last equation ssrEs vorticity due to the curvature
of the isobars, in contrast to the QG vorticity hgns not constant. The second term represents a
shear vorticity — even in the presence of a constant merdijgnessure gradient, the geostrophic
zonal wind has meridional variations becaysearies. In the vorticity equation (3.35) nearly
all terms from the general form are present and it is quitegierwhen compared with its QG
counterpart. This is in accordance with the study of Bur@868), who pointed out that for PG
motions it is difficult to gain more precise information thitve quasi-stationary character of the
vorticity (3.33).

Equations (3.24), (3.31) and (3.32) can be combined in aszgason equation for the potential
vorticity (the exact derivation is presented in Appendi2A.
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) o\ f 00®
9 ® 9\ _ 1 _ g ® .
<at Fut Vi az) S0 9 T o (3.37)
®)
wheres,,® = 2% This completes the derivation of the hierarchy of perttideequa-

tions needed for the construction of a closed, leadingr@y&tem of planetary scale equations.
The system of equations derived up to this point is not clbssaduse of the (usual) appearance
of a higher-order velocity — herg® — in the relative vorticity transport equation (3.35). The
subsequent derivation in Section 3.1.3 of the evolutioragqo for the barotropic part of the
pressure provides the desired closure as it allows us taretethis higher-order velocity in

a way similar to that encountered in the classical derivatibQG theory. In the next section
the planetary geostrophic equations (PGEs) are summaaimkave briefly discuss the closure
problem.

3.1.2 The PGEs for the atmosphere

Equations (3.27), (3.22), (3.24) and (3.31) represent B&dfor the atmosphere (Phillips
(1963), for applications to the ocean see Robinson and S&r(tA59); Welander (1959)).
Here we recapitulate them

1
u® = For X Vr® (3.38)
0 & _ g
5, =0, (3.39)
19
0 — = = 50),® 3.40
v p(o) azp w ) ( )
0 0
&@(2) +u®.ve® ¢ w<3>$@<2> = 5, (3.41)

As shown in the previous section, these equations can beinethin one transport equation

for the PV variabl%ag—?, see (3.37).

The energy of the system is only potential — the PV equatiartasos only the stretching vor-
ticity term and the relative vorticity is absent due to thetfthat the momentum equation is
inertialess. Consequently, the pressure cannot be fowadgh the solution of an elliptic equa-
tion as in the QG theory. Suppos€) is known, then one can find the horizontal wind from
the geostrophic balance, assuming periodic boundary tondiin A and¢, and the vertical ve-
locity from the divergence constraint, applying vanishirld at the bottom of the atmosphere.
Once the velocities are known, the potential temperatunebeacalculated from the evolution
equation for it. By integrating vertically the hydrostatialance, one can determine the pres-
sure. In doing so one needs a boundary condition for the ypressit has to be specified at
some level, e.g., at the ground. In general, the pressuendsmpn the motion and prescribing
it at some level using a closure or parameterization thadvigaoted directly in the governing
equations is a considerable limitation of the model.
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In the next section we systematically derive a closure dadior the PGEs within the present
asymptotic framework. In analogy with the classical ddromof the PV transport equation in
the QG theory, we eliminate higher-order unknown terms ftioetransport equation of relative
vorticity (3.35). We obtain a new evolution equation for tretically averaged second-order
pressurep® that may be interpreted again as a planetary barotropic &sport equation.
Knowing the distribution 0 andp®", the surface pressugg” (note thatp® = 7 at

z = 0) can be easily found from the hydrostatic balance

. 1 2 1
p2) = / {p(o)(z’) / 0P\, ¢, z, t)dz} dz’ + péQ) / PO (2)dz . (3.42)
0 0 0

Again using the hydrostatic balance qvﬁﬂ as a boundary condition, the pressure at any level
can be reconstructed.

3.1.3 The evolution of the barotropic pressure

Assuming a constant Coriolis paramefeBresch et al. (2006) proposed a closure for the PGEs
in the form of a barotropic vorticity equation. Such assuorphelped the authors to study
the existence of unique solutions, however, it is not réalfer the planetary scale dynamics
(remark 3 in Bresch et al. (2006)). Eversglane approximation fof is inappropriate, since
the PGEs describe motions with order one variations of threo@®parameter (Pedlosky, 1987).

In our analysis we take into account the full variations @& @oriolis parameter; we make use
of the higher order vorticity equation (3.35) from the asyotic expansion and derive a closure
condition for (3.38) - (3.41). This closure represents amlgion equation for the barotropic
component of the pressure.

We performed an asymptotic analysis (not shown here) fodyimamics within a layer above
the troposphere with vertical variations of the potengshperature similar to the observed in
the stratosphere: of the order The analysis revealed vanishing vertical velociti¢d at the
tropopause. Consequently, we assume a rigid lid as a bogpwedadition at the top for the
equations presented here, since they are valid within dposphere. If we average (3.40) with
respect ta: and applyw® = 0 atz = 0, 1, we obtain

z

V- 0u® =0, (3.43)

where we have used the averaging oper@igrdefined for a general functiof(\, ¢, z, t) as

— 1
f (A o0,t) :/O f(\ @, 2,t)dz. (3.44)

From (3.43) using (3.33) we can represent the horizontardence through the geostrophically
balanced meridional componerit) and we have
0

ﬁﬁz _ (3.45)
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Consequently, the pressure can be written in the form

p® =p@ (6,8) + p@' (N g, 2,t),  p®@ =0 (3.46)

Next, we can multlply the vorticity equation (3.35) p{) and average it with respect toand
) (note thap® ™~ = p7)

2, A

—p(O)C(O)Z’/\ +V. u(o)p(O)C(O) -+ p(o)w(?’)gC(O) -+ p(o)er . (Vw(?)) X gu(o))
z z

A

1 8 -, Z,A
ter Vo p? x Vp V- p0 ful T, VxpO0SI (3.47)
P z

We have to eliminate terms containimg® in order to have a closed equation. The fifth term
on the left hand side can be written as

PO fu@)“ = V. pOu®@” 1 G0y

3.48
=—f( SR u®p@” )—l—ﬁp )@ ( )

Here we have used the continuity equation (3.26) and thdionta = 1 8f Using (3.22) and
p¥ = exp (—z) we can express the densjt{’ in terms of pressure and potentlal temperature

S
P o S N SN A Y R 7y

0z 0z (3.49)

If we average the potential temperature equation (3.41) oaad \, the temporal evolution of
p?) can be written as

_%ﬁ“ gt <p<o>@< > p<2>“> (3.50)
——T2%,A _
= —pOyu©) . VO — p0)qy3) ; 0@ 4 05, _ %p@) (3.51)
Z,A - .
— V- )0u00® " — % PO 40)5,0) t %p@) . (3.52)

-~
=0

Applying (3.49) and (3.52), (3.48) takes the form
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Vo0 fu®@ = f %p@) LV w007 05,07 | £ 3,0,@ . (3.53)
—————

=0

The second term on the r.h.s. disappears if periodic boyradenditions in\ are assumed. We
— %A . . .
can expresg©v(@ " in terms of known variables, if we use the momentum equatdzg)

| =
0@ = = OFHE)
Py i\ v
i (3.54)
OO @ @\
+p0 (u<o>.w<o>+w<3>ﬁu<0> Jtme )
0z a acos¢p(0) O\

Substituting the last two equations in (3.47), the vorgieiquation takes finally the form

a r——-1 N+ a2 52 —~ =,
= ( 0O 4 ffp(o w® — fp@ ) + NV +NM" =5, (3.55)
Here we have used the notations
NV =V - u©p0)(0) 4 p0)y() g(o (3.56)
B e, _ 0 .
p(o)er . (Vw( X au( )) + p(O) . Vgp@) X Vp@) ,
. 0
NI — ? (p<0>u Tl 4 g0l 0 (3.57)
PO tang  p®  gp@ "
a acos pp) I\ ’
—z.\ (3)2,/\ ﬂ (3)2,/\ 7(5)2,/\
S, =€, -V x p0 8B " 4 ?p@su — fp05,5 (3.58)

Terms from the vorticity equation (3.47) are containedii : horizontal advection of relative
vorticity by the leading order wind:(?), divergence of this wind multiplied by the relative
vorticity, vertical advection of vorticity, the twistingtm and the solenoidal term. The terms in
NDM " and the second term in the brackets of (3.55) result fromlthrtion of the advection
of planetary vorticity by the zonally and vertically aveeaageostrophic meridional velocity

@ (see (3.29)). The last term in the brackets of (3.55) redudta the density tendencies
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caused by the divergenceaf? (see (3.26)). We express the bracketed terms in (3.55)nmster
of p@~ using (3.36) and the geostrophic balance

0/ 1 0cospd— e
9 B Oy L @\ s NV A NI =5 (3.
ot (a2cos¢a¢ 7 as? T paag?” TP )+ Vo S - (3:59)

The termsNV ™" andNM " can be calculated if the distribution pf) is known then (3.59)
can be integrated in time and after inverting the Helmhgpierator acting op® the evolution

of the barotropic component of the pressure is determindtk strface pressum% can be
calculated from (3.42), this provides the necessary baymatandition for (3.38)-(3.41).

As we have already mentioned, some EMICs solve the PGEsmieesia Section 3.1.2 but use
a diagnostic parameterization fo " in order to close the system. The closure is based on a
linear relationship between the pressure and the temperé®@etoukhov et al., 2000). In this
way the model has only one prognostic equation — an adveetjaation for the temperature.
This considerably reduces the computational time but msxy la¢ a cause of the limited atmo-
spheric variability observed in simulations based on thiglel. The closure presented here is
an additional evolution equation, which will be added toRt&Es. Since it has only one spatial
dimension, because of the averaging\iand z, equation (3.59) will not severely decrease the
numerical efficiency of the model. Nevertheless, it will addadditional degree of freedom to
the system which can improve the representation of the gtheog variability in the model.
As shown, the evolution equation for the barotropic pressuises from the vorticity equation;
it contains terms such as advection of planetary vorticitgt af relative vorticity which are
not present in the classical PG model. This gives the pdggitn capture additional physical
phenomena with the model, e.g., zonal planetary Rossbysvave

Some EMICs are vertically averaged models, other have acrene vertical resolution, e.g.,
some universal linear structure for the temperature ismsdyClaussen et al., 2001). This mo-
tivates us to analyze the special case when the pressuibutisin is represented as the product
of two functions, one depending only arand another on the horizontal and time coordinates.
From the condition (3.45) we obtain that there are no vametiin \. As a consequence”)
andw® disappear, the term&V ™" and NAM " are zero and the initial pressure distribution
remains constant in time. We conclude that in the model ptedeone should consider at least
two modes in order to have non trivial evolutiony6? . Such an assumption is implicitly made
in the CLIMBER EMIC (Petoukhov et al., 2000), taking into aaat the atmospheric lapse rate
dependence on the surface temperature, e.g., Mokhov anerékf2006).

3.1.4 Discussion

Using an asymptotic approach, we derived reduced modeltieqsavalid for one particular
regime of planetary scale atmospheric motions with temp@maations of the order of about
one week. Such temporal and spatial scales characteriosplrric phenomena like the quasi-
stationary Rossby waves and teleconnection patterns. wieseimmarize the equations
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1
u® = e, x Vr? (3.60)

f
0 @ _ g
—r? = e®, (361)
1 0
w®— L9 0,®
V.-u" = p(o)azp w' | (3.62)
%@@) L u® . ve® | w(3)%@<2> _ 5,9 (3.63)

8( 1 8cos¢gﬁz 3

a —z —z —_—z, —=z, -z,
o @ — fp® ) + NV '+ NM™" =5, (3.64)

Pcospd f 000 fadé

see (3.56), (3.57), (3.58) for the definition df ", NM " andS,”". The above equations
contain the PGEs and a planetary barotropic vorticity équdB.64). The PGEs alone do not
represent a closed system, since a boundary conditionéasutface pressure, or equivalently
for the barotropic pressure, is needed. We derived the gwolaquation (3.64) which uniquely
determines the barotropic component of the flow and provideslesired closure. Consistent
with previous studies on planetary scale motions, it cost&erms absent in the classical QG
model: the advection of planetary vorticity by the ageqstio wind, the solenoidal, the twist-
ing and the vertical advection term (where the vertical e#joresults from the variation of
f). The new equation gives the possibility to capture addéighysical phenomena, not in-
cluded in the models based on the PGEs only. It suggestsatsalprognostic alternative to the
temperature-based diagnostic closure adopted in redvaragiexity planetary models (e.g.,
CLIMBER Petoukhov et al. (2000)) and may provide for mordistia increased large-scale,
long-time variability in future implementations. Wiin-8lsen (1961) showed that the PGEs
produce baroclinic instability in the presence of a sheariedl. The addition of (3.64) to the
system should not affect this property, since the last égugbverns the barotropic component
of the flow and we regard it as a boundary condition for closimgPGEs. Nevertheless, it is
important to emphasize that in our model there is an impbdampling between the barotropic
dynamics (3.64) and the temperature equation (3.63) ttrdig surface pressu;né” from
(3.42). Equation (3.42) shows that changes in the baratnoggssure® will alter thep((f)
distribution and thus the surface wind field, which will cigarthe temperature through advec-
tion. In this way (3.64) will considerably modify the behawof the model compared to other
models based only on the classical PGEs.

Expressed in dimensional units the variations near thergtofip® from (3.64) are of the order
~ 20 hPa. Such fluctuations are comparable to those assowidibaderidional variations of the
zonal mean surface pressure and with anomalies due to sfadisinary Rossby waves (Peixoto
and Oort, 1992). Since® from (3.61) is defined ag® scaled withp(®) (3.19), the estimated
fluctuations will increase with height in accordance with #guivalent barotropic structure of
the quasi-stationary anomalies (Hoskins and Pearce, 2001)

Our analysis shows that the planetary distribution of th&icaly averaged leading order pres-
surep®@ is zonally symmetric. Such property possess some planesailfations with dynam-
ical relevance to the atmosphere, e.g., the zonal indexs{iB04939) describing the transitions
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between blocked and enhanced midlatitude westerly flow.teraonal phenomenon charac-
terized by planetary scales is the poleward propagatioronélzmean zonal wind anomalies
(Riehl et al., 1959) with period of about 60 days (Lee et @02). The leading modes of
variability in the extratropical circulation, also knows aorthern and southern annular modes
(AM) (Thompson and Wallace, 2000), are also zonally symitietiney are characterized by
planetary time scales of about 1-2 weeks. The derived newcsstlequations may help in
understanding the structure of the AM better. In our model zbnal symmetry is a direct
consequence from the averaged continuity equation. Onthiex band, idealized experiments
(Cash et al., 2002) have indicated that the zonally symma structure can be interpreted as
the resulting distribution of many zonally localized evenith a meridional structure similar
to that of the AM.

In the derivation of the equation for the barotropic flow wedishe boundary condition of
vanishing vertical velocity at the bottom and at the top & ttomain. This condition was
motivated from the asymptotic analysis of the dynamics withlayer above the troposphere
with vertical variations of the potential temperature $anto the observed in the stratosphere:
of the order of. In this case we have shown that the vertical velociti€'s vanish and we have
assumed a rigid lid at the top of the troposphere which is@ssistent with the QG theory. An
open question here is how other boundary conditions, eagiskiing zonally averaged vertical
mass flux, will modify the presented prognostic closure. iiddal analysis is required in
order to find the type of the energy conserved in the PR whenéheevolution equation for
the barotropic pressure is added. This equation was defived the zonally and vertically
averaged vorticity equation (3.47), which indicates th@ne zonally symmetric barotropic
kinetic energy is conserved in addition to the potentiakgynéconserved in the PGES).

We want to compare our approach for the derivation of redusedels with the one based on
mode truncation. In the latter the governing equations, thg PEs, are projected on suitable
basis functions. One can choose basis functions motivateédeblarge-scale flow structures,
e.g., the slow Hough harmonics (Kasahara, 1977; Tanak&)20Gome empirical orthogonal
functions (EOFs) (Schubert, 1985; Achatz and Bransta991Achatz and Opsteegh, 2003).
Such models predict the time evolution only of the leadingcfions and the effects from the
unresolved modes are parameterized, e.g., through soeae hegression. Instead of truncating
the degrees of freedom of the large-scale solution by cenisigla small number of horizontal
or vertical modes, here we filter the governing equationsugih the asymptotic technique so
that they are valid only for the planetary scales. In this whgnomena not relevant for the
planetary scale dynamics like barotropic acoustic wavdsydrostatic gravity waves (present
in the PES) are neglected, retaining the full 3D structuréhefsolution. In both approaches
the question of the representation of the unresolved s¢aérs the synoptic eddies) remains
open. They can be parameterized applying a linear regretiiog procedure (Tanaka, 1991;
Achatz and Branstator, 1999) or a macroturbulent diffugleetoukhov et al., 2000). The uni-
fied asymptotic technique applied here gives us anothefdgootpresenting the synoptic scales
and their interactions with the planetary scales. In the sestion we capture these interactions
in a systematic way. By using a two scale asymptotic expansi® derive coupled reduced
equations governing both the planetary scale motion andytheptic scale flow. In summary,
we consider our approach as an alternative to the one basadaa truncation; it reveals new
insights in the atmospheric dynamics and because of itesydic basis it has the potential to
be utilized for studies of multiple scales phenomena.
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3.2 Two scale model

A challenging problem in the atmospheric science is thetipreabout the interactions between
the synoptic scales and the planetary scale motions. InodBeZ?2 we introduced the scaling
of the coordinates for the synoptic scale motions. Assurtiiad) the solution of the govern-
ing equations depends on these coordinates, one can edeegiclassical QG equations on a
sphere. The complete derivation is presented in Sectiofi.4The unified asymptotic approach
gives one the possibility of deriving model equations valad only on the synoptic scale but on
the planetary scale as well. Applying a two scale asympttgansion the PG theory and the
QG theory can be merged in a systematic manner. In this seggqresent the corresponding
model equations.

3.2.1 Derivation of the Planetary Regime with synoptic scalinteractions

A priori assumptions for the background stratification

The a priori assumptions from Section 3.1 remain the sameddfition we require that the
largest potential temperature variations on the synoggtesis, \s, ¢s) are ot the ordee?.
This is consistent with the classical QG theory, where azootially uniform Brunt-Vaisala fre-

quency~ 2 x 1072 s7! is assumed (Klein, 2000; Majda and Klein, 2003). In this dhse
expansion of the potential temperature takes the form

0=1 + 52@(2)()\]37 ¢P7 Z7tP> + 83@(3)()\137 ¢P7 )‘57 ¢57 Z7tP7tS) + 0(64) : (365)

Notation

We use the following notation

(As; ¢s), (Ap, ¢p) — X5, Xp (3.66)
f = sin ¢Pa (367)
10 .
p= a% singp , (3.68)
Vepo—2 0 € 0 (3.69)

acos gp ONg.p ;8¢57P '

Agp = L o + cos ¢ 0 cos ¢ 0 (3.70)
5P 42 cos? g OXs.p r Ods,p Pad)S,P ’ .

B 1 ou Ov cos ¢p
Vsp-u= acos ¢p (0)\571: B 0¢s.p ) ’ (3.71)
B 1 v Ou cos ¢p
[P (VS,p X ’U,) = . ¢P (8)\5713 a¢S7P ) , (372)

U = eyu+eg. (3.73)
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Note that we do not need to make the traditionigdlane approximation for the Coriolis param-
eter f, since its full variations are resolved by the planetaryescaordinatepp.

Asymptotic expansion

Here we present the leading non-trivial equations in theggtic expansion. The magnitudes
of the source terms in (2.14) - (2.19) have been estimatdueadbeginning of Section 3.1 and
here we omit them for simplicity.

Horizontal Momentum Balance

The leading order velocities are geostrophically balamveitlal respect to the pressure gradient
on both synoptic and planetary scale

1 0 0
D —singp = — 7 — —7? 3.74
) S g acos gp ( e g ) , (3.74)
1/ 2 0
OE i O - (__Z B _ (2) K
O(ff ) sin ¢ pu 4 < 8¢S7T a¢P7r ) (3.75)

As in the QG theory the evolution of the velocity fiedd” on the synoptic time scale appears
in the next order equation, here we have an additional pdaystale pressure gradient term

0 0
(0) u® 9 (0) v 9 (0)

2 - - 7 & 1)
0(6 ) atsu + aCOqup (9>\3u + a a¢su s ¢PU (376)
1 0 0
= _ @4 _ = 3
acos dp ( s hp ) ’
o). 2,0y R S A sin ppuld) (3.77)
) Otg acos dp O\g a Opg F '
1 0 0
_1( 0w _W(3>) _
a ( Oos Odp

In the next order we have not only all terms from (3.29) an@Bbut also terms such as
synoptic scale advection ly") and its time derivative with respect tg.

00 4 0 4 0 T ) © (3.78)

3\ .
O : Ots Otp

(0),,(0)
+u® . Vpul® + w(?’)gu(o) +sin ¢pe, x v — exw

0z a

(0)4,(0) @ ®
vuTtang —Vpr® 4 £ vpr® _ vgn® 4 %
P

V57T(3) .
2
a p(o)

‘|—6¢
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Vertical momentum balance

The expansion of the vertical momentum equation shows tieahtmosphere is in hydrostatic
balance up to a very high order, the first non-trivial equagicead

0
2) . @_ 92,0
oE): o NGRS (3.79)
0
3) . @) - =203
oE*): o LA (3.80)

In accordance with the a priori assumption for the potetgia@perature variations and with the
observations, we assume that the surface distributiori®fdoes not depend on the synoptic
scales. If we allow for such dependence, the geostrophambalwill imply horizontal velocities
of the order=~'u,.; near the surface. Observations, however, show that theptigrecale
velocity fields are an order of magnitude weaker. We integf@(79) from0 to z and we obtain

7@ =7 (\p, ¢p.tp, 2). (3.81)

Applying the results (3.81), (3.74) and (3.75), we find that$ynoptic scale divergencewf”)
disappears, i.e.,

fVs-u®=0. (3.82)

Continuity equation

The first three orders in the mass conservation expansi@ugV = w") = w® = 0. The
O(e%) order equation reads

9
O0E?):  Vp-pDu® 4 vy pOul) 4 ap@w(iﬂ =0. (3.83)

Here the synoptic scale divergencewf) (interpreted in the classical QG theory as the di-
vergence due to the ageostrophic velocities) appears iadime order as the planetary scale
divergence of the leading order fiedd”.

Potential temperature

From the expansion of the potential temperature equationave

0 0 u© 0 0
5) . — 0B L Z @ Gy~ 9@ 3.84
O") 8155@ + 0tp@ + acos ¢p (0)\56 + 8)\p@ ) ( )

@ /9 0 0
R Y 1 C) B = 1¢)) B L@ =
+ . (39255@ +(9¢P@ )+w (92@ 0.
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It is worth to compare again the result for the two scale maed#i the corresponding QG
equation. In the latter theoy® is interpreted as a constant background temperaturelistri
tion and all terms involving it, except the stratificatiomnte are set to zero. Here we consider
the variations on the planetary spatial and temporal sa@l€x? and their influence on the
synoptic scale dynamics 6§,

We have summarized the equations for the dynamics of thdnl@zmjder non-trivial variables.
These equations involve higher-order unknown variablegs,#" ; in the next section they will
be eliminated.

3.2.2 PV formulation

In this section we proceed with a derivation of a PV type eiguain a way similar to that
encountered in the classical QG theory.

Applying —acowp (% cos ¢p 10 (3.76) andcmm to (3.77) we obtain

—C(O +u® . V@ 4+ Vg u

dts
I R A S SR (3.85)
a2cos ¢p Obg ONp a?cos ¢pp ONg Opp
where
(O —e, . (Vsgxu?)= %Agw(?’) . (3.86)
With the help of (3.74) and (3.75) we can write
1 o 0 1 o 0
(N 3) _ 3, 7
Ve a?cos ¢pp 0pg 8)\137r + a? cos ¢p OAg 8¢p7r . (3.87)
Thus, the vorticity equation reduces to
0
5+ ul? V(O (Ve 4 (Vs ul 4 g = (3.88)
S
Using the continuity equation (3.83) the last equation caexpressed as
000 4 40 . @ 4 50 = L9 0,60 (3.89)

Otg P 9z P
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Eliminating the vertical velocity with the help of (3.84) gvhave

a%gw) +u® . Vec® 4 g =
° (3.90)

f 0 P(O) 9oy 9 6@ .0 3) 1 (0 @)

In the equation above both the planetary and the synoptiesage involved; we have reduced
the unknown variables to twe® (X p, tp, z) andr® (X g, X p, tg, tp, 2), sinceu® 62 o)
and¢© can be expressed in terms of them, see (3.75),(3.76), (3F8P) and (3.86). Next,

we derive two separate equations for the unknowns, as ustia imultiple scales asymptotic
techniques this is achieved by applying the sublinear draendition.

Sublinear growth condition

The variabler® can be represented as

W(g)(XSaXPatSatP7Z):mS(XPatPa )+Wé)(XS,XP,tS,tP, ) (391)
=18 (Xp,tp,2) + 75 (Xs, Xp,ts,tp,2),  (3.92)

where the operatq_rjs was defined in (2.37) and we have

3 =0, (3.93)

Consequently, we can write

1 1
u® = Ze, x Vsﬂ' )+ —e, x Vpr® . (3.94)
d g )
—u? —u?

Note thatug)) is a function of the synoptic and planetary scalesdiﬂ)t of the planetary scales
only and we have

—S

u? —o0. (3.95)

Equation (3.90) can be rewritten, with the terms dependimtie planetary scales only appear-
ing on the right hand side, as
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©o73) /9 £ 0 ©9r® /92

m_LﬁpW/z © .0 ©) __p U

Oty << P 9z < 00 /0~ )) + (us +U’P> Vs << + 0 9z 00 [0z

O o 0 Vpp20® i Q[ pv 3 B @

"‘ﬁUS p(o) — Ug aZ 00 2)/82 - 61)]3 p )a 90 2)82 %@ + U’P V O .
(3.96)

Here we used the hydrostatic balance and the transformaiation

[ (9 [ (9
FO) augm - VpO® 4 FO) @uggn V00
PO o ( Pl o (3.97)
-2 [ = . SR . (2 —
= p(o) <8 Ug ) VS@ = p(o) <aZuP ) VP@ =0.
With the definition
1 f o (p2or® /02
()R (&) R i
PV = fASw + 20 92 ( 560 /52 , (3.98)
equation (3.96) can be written in the form
0 ﬁe,\w(?’) e.m® 0 Vppe®
Y py® ) (0) P _ -
3755 V —l—VS ((us +up ) V f p(o) X Bl @@(2)/82 (3 99)

_ <0>_Lﬁ PO (D o0, O v.e®
=P = 0 <a@<2>az o0 Tup Vo '

The left hand side of (3.99) vanishes after averaging thatemuover the synoptic scales and
applying the sublinear growth condition. Thus

f 0 p(O) o
fvp +T& (0@(2)/02 atp@@ tup VpO® ) ) =0, (3.100)

therefore we have from (3.99)

0
@) 4 (40 (0)
atSPV <uS —|—up) VsPV® + pug’ +

f w0 9 Vep”e®
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Equation (3.100) can further be simplified. We average (328® (3.84) over the synoptic
scales to obtain

o, 19 w0 ©_
i@<2> VpO®? 4l )9 o) _ (3.103)
otp 8 '
Wherew( ) = w®” . Thus, (3.100) can be written as

0
Buy +i ( 0 _b ) < 0 @(2>+u§9-vp@(2>)

)0 \ 92000/0z ) \ otp
b ()
+ { 8(;)((20)82382 <£p@2)+u0) Vo 2))

R A I R A A ( 0

- 00 /o> o) = ® —0. (3.104
p0 90@ /929, P +p(0)a@(2)az(92 (9tp@ +uf) - Vp0r ) 0. (3.104)

Applying similar steps as in the derivation of the poteraiticity equation (A.37), equation
(3.104) can be written in a compact form as

0 0\ 1 940 _
<atp+up vp+wpa) ¥ —j. (3.105)

This completes the derivation of the two scale model for tlené&tary Regime. In the next
section we summarize the model equations and discuss them.

3.2.3 Discussion

Using a two scale asymptotic ansatz, we extended in a sySteway the region of validity
of the planetary scale model from Section 3.1 to the syngpiatial and temporal scales. The
model presented relies on the assumption that the vargatitthe background potential temper-
ature are comparable in magnitude with those adopted indlssical quasi-geostrophic theory.
The model equations can be transformed into two advectioatens (3.105), (3.101) for a PV
type quantity, namely,
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(i +up® - Vp + w(?’)ﬁ) PV® =0, (3.106)
atp aZ

0 (0) o f o 0Vep2e®
<8t5+<u5 +up) VS)PV +ﬁ’US +WUS ‘&W—Oa (3107)

where the underlined terms, discussed below in detailsritbesplanetary-synoptic interactions
and we have

00®
pvmzp{; R (3.108)
_1 LQ pOor? /02
Py® _fASW por ( 5600 ) (3.109)

Equation (3.106) describes the planetary scale dynamit¢3ah07) — the synoptic scale dy-
namics. If we leave the planetary scales dependence of tiebles out, equation (3.106)
reduces trivially and the underlined terms in (3.107) vania this case (3.107) is the classical
PV equation from the QG theory. On the other hand, if we assilnaiethe variables do not
depend on the synoptic scales, only (3.106) remains and we tha planetary scale model
derived in Section 3.1.

In the general case, when both synoptic and planetary saedesicluded, equations (3.106)
and (3.107) with appropriate boundary conditions provideplanetary scale structure ©f?
(7)) and the synoptic scale structurerd?). The derivative?2” in (3.107),(3.109) can be in-
terpreted as the background stratification. But wheredseghassical QG model a horizontally
uniform stratification is assumed, here it is governed byetlw@ution equation (3.106). Further
difference to the QG theory is that we do not utilizeé-plane approximation in the derivation
of the synoptic scale model (3.107). In the last model viamatf the Coriolis parametef (as
well as3) on a planetary length scale are allowed. As we will discas€hapter 7, further
investigation is required for the case whgériends to zero. In this limit the model should be
matched in a systematic way to the planetary equatorialymecale model of Majda and
Klein (2003).

As usual in the asymptotic analysis, the planetary scaletsire ofr® and its evolution on the
slow time scalép appear in the equations one order higher than (3.106), {B.Ihese higher
order equations involve unknowns such as the fast timetiammof () and its gradients on the
small spatial scale, see (3.76), (3.77) and (3.78). We pastphe discussion of the planetary
scale dynamics of® to the next chapter, where motions with planetary zonaktians are
considered.

The two underlined terms in (3.107) describe interactiogtsvben the planetary and the syn-
optic scales, or more precisely the influence of the plapetzale variations of the background
temperature (pressure) distribution on the synoptic presgeld. The first term can be inter-
preted as the advection of synoptic scale PV by the planstale velocity field, the second
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as the advection of PV resulting from the planetary scaldigra of ©® by the synoptic scale
velocities. It is important to note that in (3.106) there esfeedback from the synoptic scale
to the planetary scale distribution 6f%); we discuss later an interaction mechanism through
the boundary condition. From the perspective of the classrave-mean-flow interaction the-
ory, one might expect that the divergence over Xg spatial scale of the synoptic fluxes will
change the planetary background state. The reason for se@ed of interactions of this kind is
sublinear growth condition. Because of the vanishing stingale divergence ai® (3.82),

the synoptic scale advection myf® of any quantity can be represented as the synoptic scale
divergence of a flux. Averages over the synoptic scales df terens should vanish because of
the sublinear growth condition; consequently there is rtdnfience from the synoptic scale
on the planetary scale variatfg? .

As pointed out in Section 3.1.2 the PGEs are closed up to adasyieondition for the barotropic
component of the flow, e.g., for the vertically averaged guesp® . Considering plane-
tary scales only, in Section 3.1.3 we derived a closure ¢mmdin the form of planetary
barotropic vorticity equation (3.55). Note, that in thetlaguation the vorticity is defined as
(0 =e, . Vp x u® and should not be confused with the vorticity from (3.86)wé include
the synoptic scales in the analysis, terms of the faitn - V gp(© ((©)  will appear in (3.55),
with ¢© build with V ». After averaging over the synoptic scales, such terms ié gonzero
contribution, since the synoptic scale divergenca¢f does not vanish. These terms represent
a feedback from the synoptic scale to the planetary scalardigs. We should note that without
applying a solvability condition these terms are not clogktlhis stage (see also the discussion
at the end of Section 4.2.2).

The closure problem motivated us to study a case, where therttiees from the geostrophic
wind are an order of magnitude smaller, by simply setti'g to zero in the two scale model.
In this case we can apply similar manipulations as in Seci@®2 and we obtain the same
equations as (3.106) and (3.107). Moreover, the unknownsténvolvingu vanish in the
evolution equation for the barotropic pressure and it tdhkessame form as the synoptic scale
averaged (3.55). An interesting finding is that some of thelinear terms in the evolution
equation (3.55) generate new forms of synoptic-planetagractions. In the two scale case the

Z,A

term Vp - 1,:,(0>p(0>g(0>z’A has a contribution fronVp - ug))p(o)(er -Vp % ug))) . The latter
term can be interpreted as planetary divergence of a fluxriipg on the synoptic scales
and it does not vanish after applying the averaging proeediihe discussion above shows
that the two scale version of (3.55) will provide the closooadition for the planetary scale
dynamics in (3.106) and a new mechanism for a feedback frensyhoptic scale dynamics.
We have studied other possible types of closed interaationg, which can affect the slow time
evolution ofu(® (7?). It can be easily shown that terms of the fokg x (u(?) - Vpu(?) and
Ve x (u® - Vu®) will vanish after synoptic scale averaging. On the otherdhaonlinear
terms from (3.55) involvingy® and«(®) components will give nonzero contributions.

Equations (3.106) and (3.107) can be regarded as the aondastiogon of Pedlosky’s two

scale model for the large-scale oceanic circulation (P#01984). As in the atmosphere,
also in the ocean there are planetary scale phenomena anptéwt the heat and momentum
transport, e.g., the gyre scale circulation and the thelimeadOn the other hand, we have in the
ocean some considerable differences: an incompressikleniih much smaller characteristic

velocities~ 10 cm/s and horizontal scales of the eddies generated byllmacainstability
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(synoptic eddies) about 50 km. In his study Pedlosky (198g)iad an asymptotic expansion
in two small parameters: one is the Rossby number and the @thke ratio between the
synoptic and the planetary length scale. For the derivatfdns model he considered the case
when the ratio between the two small parameters is of ther @i Expressing in terms ef
Pedlosky’s expansion parameters for our model, it can benshioat their ratio is again one,
which means that we have considered the same distinguishigd The analysis of Pedlosky
starts from the incompressible equations on a plane, hergtwady the compressible ones on
a sphere. Nevertheless, both model equations have the sarmowiee and are identical if we
setp® in (3.106), (3.107) to one and neglect the effects due to pierical geometry. A
fundamental difference is the absence of a counterparétbdlotropic vorticity equation (3.55)
in the Pedlosky’s model. In the ocean the barotropic compbokthe planetary scale flow is
determined either by prescribing the surface wind or byuditlg some additional friction in the
leading order momentum equation. This is not applicabl&éécatmosphere, since the surface
winds should be a part of the solution and the frictional @feare much smaller than in the
ocean.

We have already mentioned that in (3.106) there is no feddipam the synoptic scale dynam-
ics to the planetary scale flow, whereas there is an interattithe reverse direction. The same
is also true for the model of Pedlosky (1984), but in the lagiqr some terms are discussed,
which might provide the missing feedback under a particdistinguished limit. Our analysis
showed that such terms will vanish (regardless of the @jsished limit) after averaging over
the synoptic scales (they can be brought in a form similahéotermVyg x (u® - Vpu®)
which we already discussed above). The last finding strébseisnportance of the evolution
equation for the barotropic flow for the complete repredemtaof the interactions between the
synoptic and planetary scales.



Chapter 4

Anisotropic Planetary Regime

The existence of anisotropic quasi-stationary Rossby svavetivated us to consider in the
Anisotropic Planetary Regime (APR) motions with zonal &aans on a planetary scale but
with meridional extent restricted to the synoptic scale. M&olve the synoptic zonal and the
planetary/synoptic temporal coordinates as well. The sagnitude of the potential temper-
ature variations as in the PR is assumed. As leading ordeceedsystem the QG model is
derived (Section 4.1.1), it determines the dynamics onyhegtic scale, see Fig. 1.3. For the
evolution on the planetary time scale of the leading ordértgm we consider the next order
system of equations in the asymptotic expansion (Sectibr24. We discuss this system in
Section 4.2.1 for the case of small meridional velocitied emSection 4.2.2 for the case of a
plane geometry. All results are summarized and discuss8dation 4.3.

4.1 Derivation of the Anisotropic Planetary Regime

Coordinates scaling

We introduced in Section 2.2 the coordinatas, ¢p, tp) and(As, ¢s, ts) resolving planetary
and synoptic spatial and temporal scales. In this chaptevilese the same coordinates, but
since we consider motions with meridional variations cadino the synoptic scale only, we
set¢p = const. Thus,¢p can be interpreted as the latitude in the classical QG thaaynd
which one expands the Coriolis paramefetypically ¢pp = 45 °.

A priori assumptions
In accordance with the discussions in the previous chapser,Sections 3.2.1, we allow po-
tential temperature variations on the planetary zonaksohthe ordee?. We assume that the

fluctuations on the synoptic spatial and temporal scalesra@rder of magnitude smaller, thus
the expansion for the potential temperature takes the form

0 =1+c*0P(\p, 2, tp) + 0B (Ap, As, ¢, 2, tp, ts) + O(e*) . (4.1)

38
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Preliminary expansions

We will make use of the following Taylor series expansionthig derivation

sin(¢p + e¢c) = sindp + edgcos pp + O(£?) | (4.2)
1 1
cos(¢pp + cpg)  cospp — £pgsinpp + O(e?) 4.3)
. )
= - (1 + epgtan op + 0(52>> 7
In the APR the divergence from the continuity equation (2ckh be expanded as
g2 ( ou N v cos(pp + 59253)) 3 ou
acos(¢p +eps) \ OAg Oog acos(dp +cps) OAp
g2 ou N Ov cos Pp +€3¢Stan¢p ou N ducosgp\
a cos ¢p (‘3)\3 8¢3 a cos ¢p (‘3)\3 8¢3
e 0 , L% 1 2sin® ¢p du  Qvcospp 4.4
acos ¢p 8¢SU¢S singp + ¢ 2a \ cos ¢p + cos? ¢p O\g Oopg (44)
B 4¢5tan¢pi . o1 0 5 COS Op
c acos ¢p 8¢5U¢SSID¢P c acosgzﬁpad)gv 52
g3 Odu  ,¢pstandp Ou 5
acospp O\p acos dp mjLO(S) )

Notation

Taking into account a constant planetary scale variapleve introduce the following notation
for the regime considered here
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fo=singp, =~ cosdp (4.5)

€) 0
= — 4.6
Ve acos¢p ONp (4.6)

€) 0 €y 0

vszacosgzﬁp@—)\g—i_;%’ 4.7)
]
Ve u= acolwp%, (4.9)

Ag = 2 C0182 o <8§252 + cos ¢p% (cos ¢p%)) ) (4.10)

e, (Vs xu) = acols . ( 88;3 - a“(;;i“bp) . (4.11)

Asymptotic expansion

We represent all dependent variables in (2.14) - (2.19) asamptotic series (2.31) and collect
terms with the same order in Again we omit for simplicity the source terms. We estimated
their magnitudes at the beginning of Chapter 3 and the teanshe added to the equations
without changing the derivation. Here we summarize theltesu

Horizontal Momentum Balance

Making use of (4.2) and (4.3), the first two orders from thendv components of the momen-
tum equation read

1 0 0
L0 @, 9 @ 4.12
O(e) fov acos ¢p (8)\57r + 0)\137r ) ’ ( )
1 0
: o__L19 4.1
O@): ¥ =~z (4.1
O(e?) %u(o) +u® . Veu® — fou® — pgcos ppv®
s
1 0 0 9253 tan ¢p 0 0
— _ @ _ 7 3\ _ G L 7 (2
acosgzﬁp ( 8)\37T a>\pﬂ- ) CLCOSpr ((9>\37T + a>\pﬂ- ) '
(4.14)
2 O 4 0 © o) o__ 19
O(e?) : 8—tgv +u"” - Vo' + fou') + ¢pgcos ppu'” = —E%W ) (4.15)

In the equations above one can identify all terms from the smdom equations in the quasi-
geostrophic approximation. Additionally, we have termgiring derivatives with respect to
the planetary zonal coordinakg and theps tan ¢ p terms result from the inclusion of spherical
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geometry. For reasons which will become clear later, we goavder further in the asymptotic
expansion. The next order corrections to the QG momenturatemns are

0 0 s tan ¢p 0
O(3) - =, = (0 (OIS vaNe; 1) .Y o, (0) (0)
(%) 0tgu +8tpu +u su’ +u su’ + e u 8)\Su
2 0 0
44Am.VP¢m+%¢agle__ﬁwmy_¢SaE¢P¢n_F%§$n¢Pwm__Ei@iﬁﬁﬂfi
z a
1 0 o, 9 ) _9¢standr (0 4 0
acospp \ OAg OAp acospp \ O\g O\p
2 2
_9s (L 2tantopN [0 O
2a \ cos ¢p cos ¢p OAg OA\p
s 0 ., 9 o
acos opp® \ O\g O\p '
(4.16)
0 0
O(e?) : — v 4 =@ 1 4@ V@ 4y Ve 4y Ve @y
Otg Otp
tangp 0 9 0, 9,0 O 1)
Sacosqbpu a)\sv +w 8zv + fou'”’ + ¢gcos ppu (4.17)

QS% . (0) U/(O)U/(O) tan ¢P o 1 a (5) p(2) a 3)
5 sin ppu'”’ + = aad)sw + 00 aﬁf)sﬂ

In accordance to the two scale model from Section 3.2, we ima{416), (4.17) the evolution

on the planetary time scale of the leading order velocitylfaeld the synoptic evolution of the
next order corrections of that field. Additional terms du¢hte expansion of the trigonometric
functions inc¢s appeatr.

Vertical momentum balance

The expansion of the vertical momentum equation remainsdhe as in the previous chapter
and we obtain hydrostatic balance ugtd

o .

20—

(92p
Making use of the ideal gas law (see Section 3.1.1), we cantesthe first nontrivial equations

as

PV, i=0,...4. (4.18)

o(E?): e¥= aw@), (4.19)
o@E*):  e¥= 837#3), (4.20)
z
0 0® o p? 1 /1
1y . @W_ 9w, 29 0y, P L1
(9(5 ) : 0% = 55" + 0 2.7 + 29077 <’y 1) . (4.21)
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Continuity equation

Applying the arguments from Sections 3.1, 3.2 it can be shilvahthe vertical velocities dis-
appear up tav®. Making use of (4.4), we obtain from the continuity equation

t © 9 0
OE) . Vp pOu® 4 Vg pOu® - 22007 0 0y 9 00,0 _ o (4.22)
a 0og 0z
Ot Ve pOuV +ggtanppVp - pOu® + Vg - pOu®+ (4.23)
tan ¢pp® 0 ¢stan® gpp® 9
tan e e - pO g Wy (0)
¢stangpVs - pu . 3¢sv Os - 0¢SU bs
0 2
Y0 0% D e,
a Oopg 2 0z

Potential temperature

At leading order we have fo®® the potential temperature equation from the QG theory. As
in Section 3.2 we have additional terms describing plageteale variations of the background
[S1)

0 Loy 260 4y, 700 440 . 700 1@ Le® _o. (4.24)
Dt Dtp 0z

Again we proceed in the derivation one order beyond the esiparior the QG theory

O(e9) 9 +u® . Ve ) OW 4+ 9 +u® . Vp ) 0B 4+ 4. vet
8155 Otp
© 7o 0 0
W . v,o@ . Pstangpu ® 1 9 go ® 9 o® (4.25)
v VO acos ¢p 8)\5@ + 8)\p@ T 0z

+u®Le® g,
0z

Up until now we have summarized the equations resulting fiteerasymptotic expansion, next
we derive reduced equations for the leading order solution.

4.1.1 Leading order solution: QG model

The next manipulations follow closely the derivation of th scale model in Section 3.2.2.
Taking — ;5 of (4.14) and;{- of (4.15), using (4.22), (4.12), (4.13) we derive a voryicit
equation of the form

0 fo O
8—155C(O) + 0. VSC(O) + ﬁv(o) — p(_g)ap(O)w(i%) : (4.26)
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where

(O — e (Vg x u®) = -
Jo

Agn® (4.27)

We eliminate in (4.26) the unknown vertical velocity®) using (4.24) and rewrite the result in
such a way that all terms on the right hand side depend on #metary scale » only, whereas
the terms on the left depend on the synoptic scales as watiface with (3.99))

o gew(iﬁ) e.m® o Vpp(0)9(2)

org Vs ((us Tup )PV 0 % 8: 900, ) 428
_ o _fo 0 P00 60 o oo
= o 5 (8@(2)82 i, 0 tup VO]

Hereug)), u§9> and PV ) are defined as (compare with (3.94), (3.98))

1 1
u® = Ter x Ver® + f—er x Vpr® (4.29)
0 0
= ul = ul)
1 fo 0 (pP0r® 0z
PV® — —Aeg® 4 20 2 (2 7 T~ 4.30
Lo T 0 a: \ aem - (4.30)

We average (4.28) over the synoptic scales and apply thensablgrowth condition. The left
hand side vanishes and we obtain the solvability conditiat the right hand side is equal to
zero. We note that in contrast to the regime presented in €€h&p here we have vanishing
planetary scale divergence of)

Vp-ud) =0. (4.31)

By averaging the continuity equation (4.22) over the syitsgttales we obtain® = 0. The
averaged potential temperature equation (4.24) reads

%@@) +ul? . vpe® =0, (4.32)
=0

We obtain0® = 0@ (\p, 2). The requirement that the right hand side of (4.28) vanishes
reduces to
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g =0, (4.33)

It follows ©) = ©®)(z). Thus, the interaction terms on the left hand side of (4.2®)lving

gradients in\p of 0 or 7 disappear and we obtain the classical QG model on a sphere for
the synoptic scale dynamics

0

5 PVt u? VgPV® 4 5 — 0. (4.34)
S

4.1.2 Next order equations, general case

Here we summarize the next order equations system derioed thie asymptotic expansion.
We have shown in the previous section tB&t is function ofz only, consequently some terms

in (4.25) can be set to zero. From (4.16) and (4.17) we obtaigéneral form of the next order
vorticity equation

O e 4 0 g 4 4 . Tgc® 4 Oy 4® 1y L0 4o (vu® x L)
Otg 0z 0z

1 0 ¢stangp ) 0 (o 1 d gstangp o 0 (o 0
adps acosd)Pu s +acos¢p8)\s acos¢pu g + Vs - ¢scosppu’+

2 1 0 u®vO tan¢p 1 0 u Oy tan ¢p
Ve u® — Ve 2 gnopu® 4 29
foVs - u 5779 sin gpu +aa¢ a a cos ¢p OAg a i
0 1 0@ 1 9w®@ 10u® 1 ou®

(0) 0) . (0) _ =
(‘%pC tu VeCT acospp OAg acosop ON\p  a Opg acospp OAp

1 8 (9 1 (9 QZSS tan ¢p (9 a
— 4 . = 4 L =7 (3
a? cos pp O\p 8¢57r + a Opg acospp (aASW + 8)\p7r )

10 (¢h( 1 2tan?e) 9
+E% (7 (cosgb - cosd ) Ohs ’
(4.35)

where

(W=e, (Vs xul). (4.36)

Making use of the continuity equation (4.23), (4.35) can bbitten as
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O 4 @ g0 gD Oy D) g C(O L (Vu® x D)

8155 aZ
(Ostande (9 9 oy 0 2 o) _ taner o 3 L0 4 Pstandrfo 0 )

acos dp O)\g o\ acosdp  OAg p© 0z
fo O o w Pscosop D g s W 2f00s @, 1 9 w0 tangp
PO FUNN A o © " ad0s a
0),,(0 0 0
n 1 0 u®u tan ¢p n 0 O 4 40 g, ¢ 1 ou® 1 o90®
acos ¢p O\g a Otp acospp OAg acospp O\p
1ou® 1 9u©® 0 1 ow®
- t \Vi v

a Opg acospp ONp ~ ¢stanopfoVe- u® + Ots acospp O\p

1 0 0 1 0 0
(0) (0) A N (1) (0)
+a20052¢p8)\p <u aASU ) +a2cos¢p8)\p < 8¢5U )
_ g (0 ) 0 g,
a 8?55

9 1 0u®coso

9 0. . .
ostanen (g +0 V) (g )
(4.37)

The vertical velocityw™® in (4.37) can be eliminated with the help of (4.25). In thisyvem
equatlon combining the synoptic evolution@t), Z0® and the planetary evolution gf®,
8 @ can be derived. This will be demonstrated in Section 4.2.2folane geometry.

4.2 Special cases

We proceed with a discussion of two special cases of the AP first case we assume that
the leading order meridional velocities aP<), in the second we consider a plane geometry.

4.2.1 Regime\p, \g, ¢s,tp,ts), v =0

In this section we restrict the analysis to the case whenethaihg order meridional velocities
vanish. Since) is geostrophically balanced we obtain

0 — 0 1O (Ap, b5, tpr b, 2). (4.38)

O\s
Now, averaging (4.14), (4.22) and (4.24) overand applying the sublinear growth condition
we have
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1 0

a — g s s
— u©@7F (1) — — 7 4.39
atsu Jov acos ¢p 8)\p7T ’ ( )
1 a - p(o) a N a —A
0@ L 2= )™ 4 = 50,3 = 4.40
acos¢p8App U + o aéf)SU + 8zp w 0, ( )
a NS As a
— 06 —0® = 4.41
Otg 0z ( )
The equations above can be combined into one
0 0)s fo 0 PO)@
— | =0, 4.42
Dis ( 50 92 000 0z (4.42)
where we have used the definition
. 1 Oucoso
() — _ Eooi=01,.... 4.43

From (4.42) it follows thatr® does not depend an. Together with (4.39), (4.40) and (4.41)
this gives

7 =7 (\p, g5, tp, 2), (4.44)
w® =0, (4.45)
00" = 505 (Ap, g, tp, 2) (4.46)

We average the continuity equation (4.23) oxerand make use of (4.40), we obtain

(0) (0) - -
P < 0 (1) —i—icosgzﬁ 2@ s) _tand)pp 0 U(l)ASQbs-i-g (0)w(4)As —0.

acos ¢p 8)\p Oopg a Oopg Gzp
(4.47)
By applylng—— and 57— to the averaged ins (4.16) and (4.15) and combining the result
with (4.47), we obtaln a vorticity equation of the form
—g s
0w C(O 2o 9 o
Otg v a cos ¢p o p * a Opg ™" (4.48)

0 (g —>
oS ﬂ_ 0@
+pv 0 50 W
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The averaged potential temperature equation (4.25) reads

As
Dgms, 2 go v 0 ge 07 9 gw s D

@ =0. (449
Ots atp acos gp O\p a Opg 6@ 0. (4.49)

From the results above we can derive a PV equation

0 ——s 0 u® 9 DI rs
— PV — pv® —pv® —Pv<3 v =0, (4.50
8155 + atp + acosgzﬁp a>\p a qbs _'_ﬂ ( )
where
, o p0ew
pv® = (¢ Jo 451
v (Cx T 092 900 /0: (4.51)

Sincemks, 73 and©® are functions only of\ p, ¢g, tp andz, it can be shown from (4.50),
applying the sublinear growth conditionty, that

%PV(W —0, (452
0 W® 9 v 9

— pv® — py®
atp + acosgzﬁp a)\p + a (‘3¢5

PV® 4 3™ =, (4.53)

Using the averaged versions of (4.15) and (4.21), we cae\@i62) in terms ofr¥) as

o (1 fo @ pO9r® 92
9 s O p70mt Joz _ 454
Ots ( R0z T 0a: 00®/a: 0 (4.54)

It follows that7®° does not depend ar. On the other hand (4.53) gives us the evolution
on planetary time scale of the\p, ¢5) spatial structure ofr®. Knowing this distribution,

06 4 andv™®’* can be calculated.

Next, we discuss some dispersion properties of the equsation
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Barotropic Case

We introduce the Mercator coordinat&s, ys (Holton, 1992), given through

0Xp = acosppOAp, (4.55)
ys = adopg . (4.56)

We consider the barotropic version of the averaged vorticity equation (4.48), in the new
coordinates it reads

0 0 —g O ——
B ORI () B () BTGy R el ) s — ¢ 457
g8 a0 e (0 (0 4 D = 0 (4.57)
We look for solutions of the form
78 =TI(kXp — wtp)e™s . (4.58)

Substituting the ansatz in the vorticity equation, one dawsthat the nonlinear terms drop out

——g O 0
L2 (0) —
v s Crt+u P PCx 0. (4.59)

We end with an equation for the amplitudé&k X p — witp)

0 0
E— 2— —_— p—
P =0, (4.60)

From here we obtain the phase speed 7 of the anisotropic barotropic Rossby waves

g Bk

C:—l—2, u):—l—2

(4.61)
This dispersion relation can be considered askthe> 0 limit of the classical Rossby wave
dispersion relatiom = —3/(k* + [?). If we linearize the barotropic vorticity equation (4.57)
about a zonal mean staieand look for stationary solutions of the forn®®) = I1(Xp)e'™s, we
obtain
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_0. (4.62)

For a given background zonal flow; the last result can be interpreted as a constraint on the
meridional wavenumbdr for which the Rossby waves became stationary. Eq. (4.62pbean
obtained by letting: — 0 in the corresponding classical result; which shows somsistancy
between the considered regime and the QG theory. Nevestheatas important to state that
both results in (4.61), (4.62) were derived under much weaksumptions when comparing
them with the QG theory. In the QG theory the wavy ansatz idieghfor the zonal structure

of the solution as well. In our reginié& can be arbitrary for (4.62) to be valid and has to satisfy
only IT = TI(kXp — wtp) for (4.61). As a consequence the derived dispersion relatian be
applied to a larger class of problems.

4.2.2 Plane geometry, RegiméX, z,y,tp,tg)

Here we consider the special case when we have a plane ggpmetconvert the spherical
coordinates to Cartesian ones. For simplicity we/8tand-2 ©® to one.

Notation

€\ €5, € — €;,€,. €, (4.63)
>\P7>\57¢S_>X7‘T7y (464)
L9 1 010 000 .65
acos pp ONp acosop ONs a Dpg 0X 0z’ Jy
), aﬁ@@) =1 (4.66)
z
d 0
= 0) .
dt&p (at&p + u VS,p) (467)
Vg =Vg+ ez2 , (4.68)
0z
Ag = iA + fi 8—2 (4.69)
s = 7 st logz- .

For the sake of completeness we write the leading orderisolfrom Section 4.1.1

4B~ 4.70
2l 0 (4.70)

where
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0 -
¢® =¢O+ foa@w) + By = Ast® + By. (4.71)

Next, we rewrite (4.25) and (4.37) in the new Cartesian coaités, the metric terms and all
terms resulting from the expansion of trigonometric fuoic, except for the expansion of the
Coriolis parameter, vanish. Combining the two equatiots ame PV equation gives

d d ow® 96 6) 0 ou
@) 1), (3) 3) 2 (3) _ 0 =2 03) . (3)
dtgq Ut Vgt w 8zq +fo 0z 0z S (9zw +fo 0z Vs
ou® 0 d d 0
. (4) . B 20— 3 _ = ~ (0
+fo % VO +e, - Vew'” x (9zu dtpq dtSaXU ,
(4.72)
where we have used the definitions
(O =¢0+ gy, (4.73)
0
0 =t fos o Loy (4.74)
z 2

Using (4.24) and (4.26), we combine the fourth and fifth temhe left hand side of (4.72) as

3 3 3 3
0w 009 (0 ¢ _ 909 d o .0 d 0P

"0z 0z ¢ 0z 0z dtg’™* “ dtg 0z
d 00 d 1 P

S (A O) _ ([ LEA®
dis (Ca 9: ) dis <( Jo 8T +By) 922 )

We express the last three terms on the left hand side of (@72yms ofr® and«?, too.
Applying (4.14), (4.15) and (4.24) we obtain

(4.75)

1) (0) 2
foﬁu - V0®) 4 foﬁu - V0W = a1 ngﬂ(i%)
0z 0z dts 2 fy 0z (4.76)
0 (0r\ 0w _ ox 0 (or) 0u® _ ox) |
_8_95(82)82.3895 _Ky(@z)@z.sﬁy’
d 1 0 5\
o i L L (g0 )
0z dts 2 fy 0z (4.77)

9] (aw@)) ou v or® 9 ((%(3)) oul® or®

S0z \ 0z ox % 0z dy
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Further, it can be easily shown that the last two terms onitte hand side of (4.76) and of
(4.77) will cancel when summed. With the help of the resubigve, (4.72) takes the form

d d d 0
— @ D). yeg® =g — = 408 _ = = )0 4.78
ag 1T Vst AT TS Gl (4.78)
where we have used the definition
) d 00 1 d ) 2
S = _w® B 0 — = (ve=a® ) . 4.79
w =~ d T = e\ S o ) T s \VSasT (4.79)
Since we have the identity
2 0 3 0 3
ii Sgﬁ(?ﬂ — ii v 961 — v 961 (4.80)
fodts 0z fodts \ 0z Ox oy oy )’

the last two terms in the definition 6f, can be written as the advection of a PV type quantity

d 00®) 1 d 9 *d e N
- (0) - — 3 - (0) . (3)
e (ca - ) + (vs w ) T ((vs X u —|—ezﬁy) V0 ) . (4.81)

We briefly discuss the different terms in (4.78). The vagapf) can be interpreted as the
leading order synoptic scale PV, it is advected by the \vartivotion and by the ageostrophic
velocity fieldu"). The second term on the right hand side of (4.78) represhatplanetary
evolution (ﬁ) of ¢®. The variableg® and(Vs x u® + e, fy) - V4O® can be considered as
the next order corrections t6%; in (4.78) the dynamics of these variables evolves only en th
synoptic scale;%). Finally, the third term on the right hand side of (4.78) ¢eninterpreted

as the synoptic evolution of the planetary scale vortic'ﬁﬁ((o)). Thus, equation (4.78) de-
scribes the coupling between the synoptic scale dynamittseafiext order PV corrections,the
planetary scale dynamics of the leading order PV and thepgimevolution of the planetary
scale vorticity. The equation however is not closed, siheestynoptic structure of¥ and the
planetary structure af®® are unknown. The closure can be achieved by applying a stityab
condition, i.e., the sublinear growth condition, we wiltum to this issue later on.

In a way similar to the QG theory we want to construct the syieajstributions of the variables
u®, w® andO® from ¢¥. Making use of the three-dimensional Helmholtz decompmsit
introduced in Muraki et al. (1999) (see eq.(24) there), weegress all higher order variables
in terms of a gradient potentidl® and a curl potential with the componedt§) andG®



52 CHAPTER 4. ANISOTROPIC PLANETARY REGIME

10 1 0 0
o = f_%@(ﬁl) + f_a_XW(i%) _ fO&GH) ’ (4.83)
0 0
0 0 0
@ oWy ZqW_ Zp@ 4.84
© 0z + c%cG oy ( )

In order to be consistent with the asymptotic results, wethiced in the decomposition of")

the additional termy- 8;;;) . Consider the case when all variables (the potendi&ls F*) G®

too) do not depend on the synoptic scaleg, ts. Then it can easily be shown that”, w® =0
and we obtain that") is geostrophically balanced with respect}—ig@%, which is guaranteed
by the ansatz (4.83).

Differentiating the Cartesian versions of the momentunreéiqus (4.16), (4.17) with respect to
z and the Cartesian version of the temperature equation)(¥i24 respect tor or y, one can
derive elliptic equations for the potentiai$? andG®

- 10 (d By O 10 /d
AF@O o 29 [Cge) _PY %90 L 29 (2 0 a
° 3 ox (dtS@ ) Jo0y | fooz (dts“ ) (4.85)
- 10 /(d By O 10 /d

@4 __ - "7 [ 2 B = 1¢) I R (V)]
BsG=—m5 (dtS@ )+ hor” T fy0s (dts“ ) - 489

We identify the right hand sides of the equations above asdingponents of th&) vector
(Holton, 1992). Rewriting the continuity equation (4.28)Cartesian coordinates and making
use of (4.82) and (4.83), we derive a diagnostic relation/6t

w®=ﬁ(aF@+éﬂw). (4.87)

o oy

After applyingA ¢ to the last equation, we will obtain the well known Omega éipug(Holton,
1992). With the help of the Helmholtz decomposition we egpig? in terms of the new
potentiald®

. 10 0 o
@ — Aqd®W 4 — 2 Z ;03 _ 20,2 4.
q s *ﬂmaxaxﬁ 5 Y (4.88)

The conservation of® (4.70) gives the synoptic scale structurend?. Ones we have®,

we can evaluate”) and©® and hence the right hand side of (4.85) and (4.86). Inverting
the Laplacians we can determine the synoptic structubfandG*). From (4.87) we can
find w® and all the fields needed to calculatg in (4.78). We assume for a moment that we
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know the planetary scale structuresof) and its evolution on thep time scale. Provided with
appropriate initial conditions, we can simply integrater@) forward in time, determing®

and after inverting (4.88) find the new value®f). Since we can determine the fiel#§" and
G'™ by integrating (4.70) in time and solving (4.85) and (4.86,can evaluate the velocity and
temperature corrections!) andO™ at the next time step. Repeating this procedure iteratively
we can solve (4.70) and (4.78).

The planetary scale structuresdf) and its evolution on the time scale have to be determined
from a solvability condition applied to the right hand sid€478). The left hand side of (4.78)
can be considered as a linear operator acting'éh The sublinear growth condition states that
we have to suppress terms on the right hand side which wdltean unbounded growth of the
solution®™®. In other words we have to remove the terms exciting the lioparator with its
eigenfrequency and thus leading to a resonant behaviorsdlkeability condition should lead
to separation of (4.78) into two equations, one for the syingeale dynamics of¥ and one
for the planetary scale dynamics gf), compare with the condition for the two scale model
in Section 3.2. Unfortunately, the author has been unsstdds perform this splitting in the
presented regime, except for the special case of a meritlianeeraged model. Applylng the
usual procedure by averaging ovwey andts, meridional fluxes of the forn§v(0 @7 will

remain not closed in the equation fg?). Such fluxes can be parameterized from observational
data.

4.3 Discussion

In this chapter we considered motions with synoptic menidl@xtent and with zonal and tem-
poral variations on the synoptic and on the planetary sc&l&sassumed that the background
potential temperature distribution does not depend onytheic scale and its fluctuations are
at mostO(e?) to be consistent with the QG scaling.

We compare the leading order reduced equations for the ABRaarthe two scale PR from
Chapter 3.2. After applying a solvability condition, we kashown that in the present regime
the background potential temperature distribution resha@onstant, whereas in the PR it is
governed by the PGEs. Further, the synoptic dynamics in e & completely described by
the classical QG theory and all planetary interaction tefrors the two scale PR vanish.

In Section 4.2.1 we discussed the APR wh@(e) meridional velocities are assumed. We
have shown that in this case the restorihfprce enters the barotropic vorticity equation (4.57)
and affects the slow time evolution of the synoptic voricithe dispersion properties of (4.57)
indicate that Rossby waves are allowed as solutions, thagesrare consistent with the classical
Rossby waves in the long wavelength limit. Despite the faat tve resolved two zonal scales
in Section 4.2.1, we obtain as a result that the leading groessure does not depend ban
Equation (4.53) which describes the evolution of that pressen the slow planetary time scale,
remains the same if we redo the analysis (not shown herepuiitthe coordinate\s. This
means that under the assumption of smaller meridional iesgcthere is no net influence from
the synoptic zonal scale on the planetary dynamics.
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If spherical effects are neglected, eq. (4.53) takes theedanm as the model of Dickinson
(1968a) for stratospheric disturbances with planetanakecales. In this model the time and
meridional coordinates are rescaled in such a way as to igie&r éhat the horizontal advection
of relative vorticity balances the planetary vorticity adtion. This implies zonal velocities of
the order of50 m/s and a Oboukhov meridional scale, if the value of the adateric static
stability is used for the scaling. If instead of it the valoe the troposphere is substituted, the
rescaled length and time scales match exactly those frorio8et.2.1, the zonal velocities
becomel0 m/s and the meridional are an order of magnitude smaller.

The assumption of small meridional velocities was droppe8action 4.2.2. In the case of a
plane geometry we derived a PV type equation (4.78) for tix¢ oxeler dynamics (as already
mentioned, in the general case we obtain the QG theory astpadier solution). This equation
describes a coupling between the planetary evolution dktduding order PV field, the synoptic
evolution of the planetary scale vorticity field and the gytodynamics of higher order PV
corrections.

If we leave the planetary scale dependence in (4.78) out, merotheO(e) corrections to
the QG model, also known as the @Gmodel (Muraki et al., 1999). Similarly to the QG
theory, QG describes balanced flows and the dynamics is completelyrdieted from the
advection of the PV type variablg?. A discussion of analytical solutions of the @Gmodel
for the finite-amplitude Eady edge wave can be found in Musdkal. (1999). In the last
paper the authors also address the issue of boundary aorgdénd solvability. The region of
validity of QG"! equations is restricted only to the synoptic scale, howehesse equations
contain higher order effects not present in the QG modeluiRad et al. (2000) demonstrated
that these effects explain the mesoscale structure of thepsig eddies and features of the
frontogenesis processes. Studying numerically unstabtachbnic waves, they showed that the
QG'! equations account for the asymmetries between cyclonesuaicyclones or between
the cold and warm fronts. The Q& model can be also viewed as a tool for observational
analysis, since its mathematical structure is relativatypge and it incorporates some well
known diagnostic relations, e.g., the omega equation.

There is one essential difference in the derivation of the Q@odel presented here and the one
in Muraki et al. (1999) — the asymptotic expansions stannfidifferent equations. The latter
QG model is derived by QG rescaling of the primitive equatioP&) and of the Ertel's PV
equation, assuming a hydrostatic Boussinesq fluid ¢mpkne. A priori it is not clear that the
rescaled PV equation will be the same as the one derived fiemescaled PE, it is an implicit
assumption that both equations are consistent. In theadenivpresented here we do not make
use of the additional PV equation. Moreover, we can showftbat the leading two systems
of asymptotic equations, one can derive the same PV eqsati®those from the asymptotic
expansion of the PV equation in Muraki et al. (1999).

Another difference in our derivation is that we do not havageume that the fluid is in hydro-
static balance, this can be shown as a leading order restito@se the hydrostatic balance
comes automatically from the vertical momentum equatioemdypplying a QG scaling, but a
rescaled general Ertel's PV differs from the PV in Muraki et(2999) derived under the hy-
drostatic approximation. In the definition of the latter F\éite are no contributions from the
vertical winds. It turns out that such terms can be neglesteeh O(<c) corrections to the QG

are considered, however they will become important for trestruction of higher order cor-
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rections. Finally, equations (4.37) and (4.25) can be digghas a generalization of the QG
model to spherical geometry. The three-dimensional Heltaldecomposition of the variables
can be applied in the same way as in the case of plane geometry.



Chapter 5

Planetary Regime with Background Flow

In the Planetary Regime with Background Flow (PRBF) we abmissystematically larger vari-
ations of the background potential temperature, nandgly). A justification for this can be
found in Section 5.1. The stronger temperature gradienptyironal velocities of the order
of the jets, because of them the planetary scale dynamidssmrégime evolves on the fast
(synoptic) time scale, see Fig 1.3. Using an asymptotictarmesolving both the planetary
and synoptic scales we derive in Section 5.2 a hierarchy cifaed equations. We show in
Section 5.3 that the leading order equations determinedheal structure of the solution. Its
temporal and spatial structure enters the next order epgatiThese equations are presented
in Section 5.4 and we consider them under the Boussines@édpmation (Section 5.4.1). The
chapter ends with a summary and a discussion of the results.

5.1 Coordinates scaling and a priori assumptions

In this chapter we use the two scale asymptotic ansatz frandde3.2, resolving the planetary
and the synoptic spatial and temporal variations.

A priori assumptions

Observations of the potential temperature distributioifl,(@003; Peixoto and Oort, 1992) re-
veal the following key features: i) large equator to pole andace to tropopause temperature
differences$/© ~ 40—60 K evolving on a seasonal time scale, the nondimensionaf ofdeese
temperature differences é®/0,.; ~ 1/6 ~ O(¢) (©,.r = 300K); ii) an order of magnitude
smaller zonal variations on the planetary scale;dix*) synoptic scale variations, see the a
priori assumptions from Sections 3.1, 3.2.1; iv) quasidimeertical structure (Petoukhov et al.,
2000; Mokhov and Akperov, 2006). The properties i)-iv) mate the following asymptotic
expansion for the potential temperature

=1+ 8@(1)(¢p, Z) + 82@(2)(>\p, gZ5p, Z,tp,ts) + 83@(3)()\]3, gZ5p, )\5, qbs, Z,tp,ts) + 0(64) .
(5.1)

56
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Here ©M) represents a prescribed (since it evolves on a much longergcale than the one
considered here) background potential temperature puadftlee form

0W(pp, 2) = Ou(dp) + Nz, (5.2)

where the meridional structu@,(¢p) and the constant lapse radé are given. As we will
show later((e) temperature variations induce through the hydrostatig@odtrophic balance
strong zonal winds of the order ef 'v,.;. Such winds are comparable in magnitude with the
atmospheric jets. We use for the horizontal wind the exmamsi

u=c'u"(\p, ¢p, 2, tp, ts) + u® + eu® + O(%) | (5.3)
whereu® fori > 0 depends on both the planetary and synoptic scales. Silee.; planetary
scale surface winds are not observed and the meridionatiars of the zonally averaged
surface pressure are small (Peixoto and Oort, 1992, p. 346} 5 — 10hPa~ O(c? — &3),
we set

W (pp,2=0)=0, (5.4)

as a lower boundary condition for the model.

5.2 Derivation of the Planetary Regime with Background Flow

Notation

We use the following notation

(As, ¢s5), (Ap, ¢p) — X5, Xp (5.5)
f=sngp, (5.6)
0= %% sin ¢p , (5.7)

€) 0 €y 0

Vsp = acosgp O\g p ;8¢57P ’ (5.8)

Agp = " 00152 . (8)\652,1:2 + cos ¢P8¢ip (cos ¢P3¢i,13)) , (5.9)

Vsp u= &Cols . < afzp - 8%2:}?13) , (5.10)

e e (Varxu) = (I - emer) (5.11)

U = eyu+ey. (5.12)
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Asymptotic expansion

We summarize the leading order equations resulting fronaflyenptotic expansion, again we
omit for simplicity the momentum and diabatic source terms.

Horizontal momentum balance

At leading order we obtain a geostrophically balanced zuekicity »(~!) and vanishing ("
component

1 0
1) =D = ——— 7 5.13
O( ) u (¢P72> faad)PTr (¢P7Z)7 ( )
o1): oY =o. (5.14)

The«” components of the velocity are no longer in geostrophicrizaasince terms like the

synoptic scale advection hy~ and the metric terms appear at the same order as the Coriolis
force and the pressure gradient

=0 9 1 0 0
O(h) - v 9 L0 _ g 0) — _ @ __9 @ 515
(=) acos¢p8)\gu sin g pv @ cos ¢p 8)\57r 8)\137r o )
SV (DD tan ¢
1 u 9 0 u u an op . (0)
O(e") P 8)\5U + - + sin ¢pu
1 0 0 oM 9
— -2 2 @ 7 1)) 5.16
a( R T Y P (>16)
The O(£?) momentum equations read
—1 0 —1
o) Lo, R A O B A S A ()
Otg acos ¢p O\g acos ¢p O\g acos ¢p ONp
0 0 ~1),,(0
L0 o Oy @0 ey uT e tangp
a Oog a O0¢p 0z a
1 0 pM 0 0 pM 0
e 1 — _ @ 7~ B __Z 3@, r Z (2
sin ¢ pv @ cos ¢p ( 0)\57T + p© 8)\57T 0)\p7T + p© 0)\p7T '
(5.17)
—1 0 —1
o O W0y WY D g WY D
Otg acos ¢p O\g acos ¢p O\g acos ¢p ONp
© 9 20Dy tan ¢ 1 o
v 9 po 2w wtangp o W_2(_ % @
+ . 8¢SU + . + sin ¢ppu ; 8¢57r

1 1 12 2
O S e A R B i BT
Pl Ogs dpp Pl dgp p? = p® | Opp

(5.18)
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In the last two equations we can identify all terms in (3.7&) €3.77). In addition we have the
u(~Y) advection terms and the planetary gradient of.

Vertical momentum balance
Pressure and density variations up to the order afre hydrostatically balanced.
0 o _ _

=.P

pP, i=0,...3. (5.19)
0z

In the next order equation the hydrostatic balance8fand p* is disturbed by the Coriolis

force resulting from the horizontal component of the eartbtation vector.

o) :  pOuY cosgp = %p”) + oW, (5.20)

Making use of the ideal gas law (see Section 3.1.1, but@W=+ 0), we obtain from the first
nontrivial equations in the vertical momentum balance

1/
PO = p@77 PO (2), pV(2), (5.21)
W (¢p, 2) = §w<” = 7 (ép,2), 0" (0p,2), (5.22)
z
2
0@ — QW@) _ pDOW (1 —~)z2p0 (1)2
0z p(o) 272p(0)2 '

= 7r(2)(¢Pa)\P7ZatPatS) (523)

Potential temperature

The leading order potential temperature equation reduces t

29

oE): w 826(1) =0=w?=0. (5.24)
The next order equation takes the form
oey: Y (g0, 9 g0} " 2 gn 0 len_g (525
‘ acosdp \ O\g O\p a Opp 0z o '

The time evolution 0B and©® on the planetary and synoptic scale, respectively, appears
in the next order equation
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0 0 w1 0 0
5Y . oL~ o® (4) (3)
O(e") 8155@ + 8tp@ + acos ¢p <8)\5@ + 0)\p@ )
u(®) 0 0 v /9 0
B L 2 @ R o ¢) R o ¢

acos gp ((‘3)\5@ i 8)\p® ) i a (8¢5@ * (9qbp@ )
o™ 9 0 0
7 el COMae1eY) B L@ —

+ - 3¢P@ +w &z@ +w &z@ 0. (5.26)

Higher order unknown variablgs® , v( andw® appear in this potential temperature equation
unlike (3.84).

Continuity equation

Making use of the fact thai-") does not depend on the synoptic scales, we obtain from the
leading order continuity equation

© 9 © 9 )
p )y L7 9 ey 0,0 — g =@ =0, (5.27
gcos¢p0Agu + a 8¢5U /Jr@zp v v - (6:27)

=0

O(e') :

Although not geostrophically balanced, ta€’ field is divergence free on the synoptic scale

0 0
P9 o " 9 oy, (5.28)

2y . g
0 : @ cos ¢p (9)\5u a Opg

The continuity equation imposes a constraint on the synagtle structure of®). Together
with (5.15) and (5.16) it gives

0

Pyl (Vs xu?) = —Ag— =0. (5.29)

The next order continuity equation reads

0
O(e?) : Ve pOu® + Vg pOul® 4 ap(o)w(?’) =0. (5.30)
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5.2.1 Averaging over the synoptic scaless, ¢g and tg

Next, we regroup the results from the asymptotic analysgiffierent equation systems, each
containing a momentum, mass and potential temperaturad®ldn order to see the net effect
from the synoptic scale on the planetary scale, we averagedhations oveX ¢ andtg and
apply the sublinear growth condition.

We have the prescribed background state

1 0

uD(pp,z) = —E%W(l)(d)ﬂz% (5.31)
3}
0W (¢p,z) = @W(l) — 7MW (¢p, 2), p D (p, 2), (5.32)
(5.33)
The first nontrivial system of equations reads
— 1 0
in gpu© = = @ 5.34
sin ¢ pv acosgzﬁpa)\pw ; ( )
uVuY tan ¢p —s 1 0 pM 0
i 0 — - ([ &4 ~ -1 5.35
o + sin ¢ppu - < @¢P7T + 0 8¢P7T ) ( )
9 MEM) (1 — ~)2,0?
0® — a_W(Q) _ P - (I—79)z ﬁ; @(1)27 (5.36)
z P 272p(0)
w9 BIOR 59
— 0® — M [6) Jaiiiy's {65 Ry 5.37
acos ¢p O\p a Odp tw 0z ' ( )
Ve pOu@” 4 %p@ms =0, (5.38)

where the operatq_ljs was defined in (2.37). It is shown in the next Section thatalsedystem
of equations determines the vertical structure-@f. The next order equations read
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W0 PONEF

R G ) BTN
acosgzﬁp@Ap + a (9qbpu tw 8zu a
— 1 9 —s pM 9
o m° _ _ 3) P Y @ 5.39
sin gpv acos ¢p ( 8)\p7T + p© (9>\p7T ' (5-39)
(-1) _ (1)@ - __
U i (05+ 2u ™V u0) tan ¢p +sin¢pu(1)s _liﬂ(:%)s
CLCObqbpa)\p a(‘?qbp
1pV 0 pL2 2N\ 9 0
— | — | — 5.40
T L@ oor T\ T2 T ag |0 549
0 ga, w0 s WO 0 e v 0 g
atp aCOSgZSpa)\p acosgzﬁp@Ap a (‘3¢p
PICM — s d — 59
— W 4@ =W 4 w® —e® =0 5.41
i a Opp T 0z T 0z ’ ( )
1e®) 2)g@) el
o0’ 37T(3)s_p o= pPet)  pre
= 9z PO PO PO
1— NpWp® (1 =~ (1 = 2~)pD3
L z)p » L 3= 37)19 7 (5.42)
¥ p(o) 673p(0)
aa (P(O)w(“) + pWw®) )+Vp < )u(1)5+p(1)ms)
z
(Gt . —
Uu S
—p@ =0. 5.43
Jracosqbp (9)\pp ( )

In the above system there is no feedback from the synoptie sz¢he planetary scale dynam-
ics, since the averages over the synoptic scale advectios ta (5.17), (5.18) and (5.26) vanish
because of (5.28) and of the sublinear growth conditionloahg the discussion from Sec-
tion 3.2.3, we expect that some planetary-synoptic intemaderms will appear in the higher
order averaged equations; for example in the form®f - Vs(e, - Vg x u(©) ) (the synoptic

advection of synoptic scale relatlve vorticity- Vg x 49 by higher order velocity corrections)

orVpe-uO(e, - Vp x ul0)" (the planetary divergence of the flux of planetary scaldixela
vorticity e, - Vp x u(?).

5.3 Vertical structure 7%

We proceed with the discussion of the leading order equa{i5:34)-(5.38). We show that the
system (5.34)-(5.38) can be written in the same form as #t®sary, linearized (about a zon-
ally symmetric flow) potential vorticity equation for the RR106). Further, we present some
analytical solutions for the vertical structure of) for the cases where first the background
densityp® and second the background zonal flow are set to constant.
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Case: pl" = const

Differentiating (5.37) with respect to and expressing all unknown variables in termsrot,
we can combine (5.34) — (5.38) in one equation

0 2
PP 0| P BN

acosqbp% @W _sz
——

=a?/z

=0, (5.44)

whereN is defined in (5.2) and” = é%@m. The formal solution forr® reads

Ap
7T(2)()\p,¢p,2,tp) = / 7Th(>\, ¢p,2,tp)d>\+ﬂ'0(¢p,z,tp). (545)
0

Herer, satisfie 2 + <), = 0 and is given by

(X p, 2, tp) = V2J1(20¢/2)CY (X p, tp) + /2Y1(20v/2)C5 (X p, tp) (5.46)
where J;, Y; are the Bessel functions of the first and second kind (Abraitmcand Stegun,
1964),C7, C; andm, are integration constants and we have: a(¢p).

Thus, 7 has the form

7T(2)(Xp, z, tp) = f1(¢p, Z)Cl(Xp,tp) + f2(¢p, Z)CQ(XP, tp) + 7T0(¢p, Z,tp) s (547)

where fi = z2J1(204/2), f» = /2Yi(204/2), C1 = [ CidhandCy = [ C3d\. We
expect the functioné’,, Cy; andr, to be determined from the next order asymptotic equations
by applying the sublinear growth condition, see Sectiorehd Appendix A.3. The profiles of

f1 and f, are displayed in Fig. 5.1. For largehese functions behave like

fi ~ 24 cos(20/z — Zﬂ') +0(27Y) . (5.48)
fo ~ 24 sin(2ay/z — Zﬂ') +0(2 7Y, (5.49)

(Abramowitz and Stegun, 1964) implying that the amplitutle® oscillates betweesoco and
—oo for z — oo. Such an unbounded growth is limited if we set the backgraomil wind
w1 = const above some height (denoting the height of tropopause)
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z [10 km]
N

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Figure 5.1: The vertical structure ¢f, f>. The functions are computed withh and©,, in (5.44)
equal to one and fapp = 60°N.

—%Fz, z2 <z
u™Y = (5.50)
—%th, zZ> .

For the layer above the troposphere we can:setz, in (5.44) and the solution takes the form

7@ = O\ (X p, tp) cos(ayz) + Co (X p, tp) sin(agz) + 7t (dp, 2, tp) (5.51)

wherea? = o?/z andC,?, Ogt,’ﬂ'(t) are integration constants. Further investigation is negli
here to determine a matching condition for the solutioréqband (5.51) at = z;.

CasepV = e=% ul=) = const

Next, we consider the vertical structure equationfé? assuming.(~") = const but relaxing
the condition of constant densitf”). We set the background density to a much more realistic
profile: p(® = ¢~#, which was derived analytically in Section 3.1.1, see (B&2@l the discus-

sion thereafter. Under these assumptions, (5.34) — (5&88be written as a single equation for
2
m

0.0 00 @, B 000 0
O\p 0z" 0Oz f2ut=Y 09z O\p

pOr® =0. (5.52)

Substituting the ansatz
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7@ = A(2)e*2e* PV (6p), (5.53)

we obtain an equation for the amplitudez)

0? g oem 1

We want to compare this result with the QG theory. Lineagzime PV equation (4.70) about a
constant zonal mean flol and using the ansatz®) = A(z)e*/2ei(k=+w) we obtain the vertical
structure equation for stationary Rossby waves in the QGryhe

1
Sl e 1) A(2) = 0. (5.55)

o 3 00®
—A
5. (2) + (

Depending on the sign of the expression in the bracket irbf5the solutionA(z) will either
be a vertically propagating or evanescent wave. We noteftihdhe large wavelength limit
k,l — 0, (5.55) takes the same form as (5.54).

5.4 Vertical structure 7, horizontal structure 7

Usually in the asymptotic analysis the leading order systéequations determines only the
spatial structure of the solution, its temporal evolut®found by applying the sublinear growth
condition in the next order equations. In the case consideeee, we obtain from the leading
order equations (5.34) — (5.38) the vertical structure(®f but the time evolution together with
the horizontal structure are determined from the next cedeations.

Motivated by the discussion in the previous section, oneaepresent (5.39) — (5.43) as the lin-
ear operator from (5.44) but now acting of? with the right hand side depending af?) only.
Introducing the functions”, £V, G, 7™ and K, which do not depend 0®8®), 7(3), 1®
oru™), we can write (5.39) — (5.43) as

1 0
— fp — 70 = p@) 5.56
fo +acosqbp(9>\p7T ° (5:56)

1 0
Wy = 20 = g 57
fu' + a8¢P7T . (5.57)
o® - 21 — g (5.58)

0z ’

1 0 1 0 0
(=1 — 0B WZ_~Z oM 4ol — 7 5.59
acos ¢p O\p v adpp tw 0z ' ( )

9 o

5P w® + Vp - pQu® = KO (5.60)
z
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where we have dropped the bars denoting synoptic scalegaser&rom (5.39) and (5.40) we
can derive the vorticity equation

Vp - fu 44D TpcO 4 4 . FpctD 4 (VT @ 4 @ 2 )
0z

0 e, (5.61)
ter (Vrul x @U( "= p(0)? (Vpp" x Vp® 4+ Vpp? x VppM) |
where
(-1) -1y _ 1 a , utV cot gp
1 0
(V=e - (Vpxu) = lﬁpﬂ(” Y AprD + ul® cot ¢p

T ! oo ¢ (5.63)
p(l) uD cot bp G V) 1 P . .
H(0) p + —u7Y7,
P a ap®) Opp a®cos ¢ Dpp

Comparing the last equation with the definition of the planescale vorticity(® in the PR
(3.36), we note the additional terms due to #&, (! variations. Introducing’" as an
abbreviation, (5.61) takes the form

Ve ful) =y (5.64)

Case:p(z) = ¢*

Making use of the fact that®) (z) = ¢~*, we combine (5.56) — (5.60) to

1 0 0 0 BN
R S AP N () B C)) _F) )03\ _ oy .
acos gp O\p { “9 (P GG R 7 pm Q' (5.65)

where

0
O = 2,070 L NV _ N N8
0z 5 5 rr (5.66)
rl (2 9 a0 p0)
8zp (acosgzﬁpa)\pG tha
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Substituting the expressions f6f), VO, KO Y andG®, Q' can be written as

s, 9, u® 9 ACG) 9,
A D I (Ul s | ©) BT o 1) R & | ) B) L@
@ f@z {p (0tp@ +acos¢p0)\p@ * a 8¢p@ T 826 )}

0
_Np® (u<1> VPO 4V p @D 4 w<3>$c<*1> te  Vpw® x LaD

r 0
_ 2)2 . (Vpp(l) x Vpp? + Vpp? x va(l))) + fN(a—p(l)w(3) +Vp - pDy®
p z
—1 0 —1 0
A R o\ e O B A A S O
acosTp OAp f a cos op OA\p a Opp or
_u(—1)v(0) tan ¢p 1 & ) @) Fﬁ 0 P o (pPe® el
a acosgp pO) O\p 921" |acos GO p \ pO p©)
1),,(2 -1 0
_(a- V)P(;P( )) A W L S N Co Sy
72p(©) acos ¢p O\p a O¢p 0z
@ angp 1 pM 9 —®
a acosgp p© O\p )

(5.67)

Case: p\") = const

When we assume a constant dengity, the operator on the left hand side of (5.65) takes the
same form as the one in (5.44) and we have

(0)
PO ( * BN ) - Lo (5.68)

acosgzﬁp% @_sz Fz

In the next section we analyze this equation under someiadditassumptions.

5.4.1 Boussinesq fluid

Since we are interested in the general properties of (5vé8)estrict the analysis to a Boussi-
nesq fluid in order to make the discussion easier. We assuroastant background density
statep®) = const and set all higher order density fluctuatign8, i > 1 to zero, except those
in the vertical momentum equation. In this c@gesimplifies to
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The terms that appear in (5.69) include: advection of thatire vorticity((?) by theu(" field,
vertical vorticity advection, twisting term, advection ganetary vorticity by the ageostrophic
component ob™ (third line) and the product of the vertical derivative ofstiomponent with
the meridional background temperature gradiérfiast line). From Section 3.1.2 we know that
in the case whe®) is set to zero, the left hand side of (5.68) vanishes@hdontains only
the terms involving. 22, 72,

One can view on (5.68) as an equation for the vertical straaiéi=®. One has to ensure that
the linear operator acting on® is not excited by its eigenfrequency, which will lead to an
unbounded growth of® (secular terms). We expect that such solvability condifmmthe
right hand side of (5.68) may provide an equationdf@t which will uniquely determiner®.

It remains an open question how to suppress the secular ter(ds68). To our knowledge
there is no general approach applicable to practical pnaleln Appendix A.3 we give an
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example how the secular terms in (5.68) can be removed uodez additional assumptions.
We also note that if we average zonally (5.68) and apply péeriboundary conditions, the
linear operator vanishes and we obtain a closed model.

5.5 Discussion

In this chapter we systematically extended the two scale IRRiag O(¢) variations of the
background potential temperature. Such temperature #tiotws are motivated by the observed
equator to pole and surface to tropopause temperatureegtadiSince they evolve on a much
slower — seasonal time scale, we have prescribed the baskdjtemperature distribution in the
present model. The background state of the model is chaizedehrough? (1) zonal winds,
linearly increasing with height and in thermal wind balancEhe leading order asymptotic
equations (5.34)-(5.38) can be combined into one PV equatioch has the same form as the
steady, linearized (about a zonal mean flow) PV equatior0@.for the PR. In the case of a
constant background density this PV equation is (5.44) atitk case of a constant background
zonal flow — (5.52). At this asymptotic order the PV contain/dhe vorticity stretching term
and the energy of the system is only potential. As in the tvadesPR, at this asymptotic order
there is no net influence from the synoptic scales on thergaatider pressure correctiai®.

We discussed in Section 5.3 that the leading order syste3d)(§5.38) can be interpreted as
a constraint for the vertical structure of?. Analytical solutions have been given in the case
of constant background density: (5.47), (5.51). It was tbtlmt the PV transport equation
(5.44) represents the steady version of the planetary wagehof Welander (1961) if the
vertical variations of the background stratification arglaeted there. We could show (not
presented here) that if we allowvariations in the lapse rat& from (5.2), both models are
equivalent (if no time variations are considered). Here aeehto mention that the Welander
(1961) model was derived by combining the linearized PEsanwave equation and expanding
its coefficients in small Rossby and Richardson numbers rutdeassumption of order one
zonal wave numbers.

In the case of a constant background zonal flow, eq. (5.54htwertical structure of® is

the long wave length limit of the corresponding equatiorh®G theory. This demonstrates a
consistency between the two models. Such consistency & mabdri guaranteed since the QG
theory is derived under assumptions which cannot be apfigte planetary scale (e.g., small
variations of the Coriolis parameter, constant backgraatratification). This has as a conse-
qguence that identical terms in both models describe diftgpaysical mechanisms. Whereas in
the QG the vertical derivative af® balances the divergence of the ageostrophic wind compo-
nents, in the present regime (in the PR as well) it balanceadkrection of planetary vorticity.

The second order equation system in the PRBF is given thr¢a@9)-(5.43) and it can be
regarded as a constraint on the vertical structure of thespre correction term®, see (5.65).
The terms on the right hand side of the last equation reptreseoupling with the dynamics of
the 7(? field, e.g., the nonlinear advection &> and the linearized advection of the relative
vorticity (. In the case of a Boussinesq fluid, (5.65) is modified to (5(6@h the right hand
side given in (5.69)). We discussed the problem with theamlity condition for (5.68), we
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expect that such additional condition determines the fatizontal structure of-(®. Our ex-
pectation was supported by the derivation in Appendix A.38 sblvability condition for (5.68)
under some additional assumptions. The presented analyfis appendix can be extended
straightforward to the general case considered here.

In the literature on the vertical propagation of planetaayves (e.g. Charney and Drazin, 1961;
Dickinson, 1968a,b; Matsuno, 1970; Tung and Lindzen, 1%79)often assumed that the ad-
vection by the geostrophic wind of relative vorticity andpdénetary vorticity are of the same
order. In (5.69) the planetary vorticity is advected by tlegtrorder velocity corrections,
which are not in geostrophic balance. The reason for theréifice to the above mentioned
models in the literature, is that (although not stated oéxeplicitly) these models apply only
to anisotropic flows, similar to those discussed in Chaptefldese flows a characterized by
sub-planetary meridional scales and “small” variationshaf Coriolis parameter, whereas in
the PRBF we consider planetary meridional scales@qd variations off.

Recently, Klein (2007) considered a slightly modified aigtiished limit in the multiple scales
asymptotic approach. The new limit implies higher refeeenelocity~ 25 m/s, whereas here
a value of 10 m/s was assumed. We have studied if our reseltseasitive with respect to the
new modification. It was shown by Klein (2007) applying thevregoproach that the variations
of the background potential temperature in the QG theorpftiee same order as the observed
equator to pole and surface to tropopause temperaturdivgaganamelyO(<). In the present
approach the variations of background temperature in thex@@el are onlyO(=?), because
of this we studied the PRBF. Applying the modified approadhregimes considered in the
last three chapters were rederived. The new reduced modatieqs involve everywhere an
order of magnitude larger temperature and pressure flichsatthe variable®®, =) change
to ©0~Y 701 in the equations). This is feasible if one considers thadageostrophically
balanced horizontal velocities require larger pressudcetamperature variations. Thus, in the
modified approach the planetary scale evolution2gf) potential temperature variations is
described by the PR from Chapter 3, rather than by the PRBé&tder to derive the model
equations for the PRBF with the new approach, one has to &6l background tem-
perature variations. However, temperature variationgeaitgO (<) are not observed in the
troposphere. The discussion above gives us a hint that this BRgreater relevance for the
real atmosphere than the PRBF. This is supported also byutihhemcal simulations with a PEs
model which are presented in the next chapter. Neverthalesstudy of the PRBF helped us
to understand some general properties of the PR such astiealstructure of the solution.
This was possible because the leading order asymptoti¢iegsan the PRBF and the steady,
linearized PGEs from the PR have similar form. Finally, wextia mention another advantage
of the modified distinguished limit introduced by Klein (200 It allows one to distinguish
between the Oboukhov scale (or external Rossby deformeditins) and the planetary scale.
The Oboukhov scale is defined as the ratio between the fastrbpic wave speed and the
earth’s rotation frequency. Applying the new limit, thisasgecan be expressed in terms:ads
£-%2h,.. In the approach used here, on the other hand, the Oboukhl®isof the same order
as the planetary scale, namely;h,.. The modified approach gives one the possibility to study
phenomena characterized by the Oboukhov scale such aspdtenmsblockings. An example
of asymptotic models for blockings is given in Appendix A.5.



Chapter 6

Balances on the Planetary and Synoptic
Scales in Numerical Experiments

In the previous chapters we presented three asymptotimesgyalid for planetary and synoptic
scales and various background stratifications. In thistemage address the question how close
the reduced models are able to describe the atmospheric Howthat purpose we perform
simulations with a model based on the primitive equatiosjPSince the PEs are derived from
the full compressible flow equations by assuming only hy@tasbalance and a small aspect
ratio of the vertical to horizontal length scale, these ¢éigna are much more comprehensive
than the asymptotic models and apply to a wider range of scBlem the simulations with the
PEs model we study the balances in the vorticity transpotherplanetary and synoptic scale.
After comparing the results with the reduced asymptoti@squs, we find that whereas the PR
and APR capture main features of the large-scale atmospiharamics, the PRBF fails. In the
next section we introduce briefly the PEs model, the experireetup and the method we use
for calculating the balances. The results from the simaitatare interpreted in Section 6.2 with
respect to the PR and in Section 6.3 with respect to the PRBRARR.

6.1 Model description and methodology

6.1.1 The model

For the numerical experiments we use the simplified globautation model Portable Univer-
sity Model of the Atmosphere (PUMA,; Fraedrich et al., 199B)e model solves the primitive
equations on a sphere for adry ideal gas applying the speeamaform method. A semiimplicit
time scheme (Hoskins and Simmons, 1975) and a finite diféereertical scheme (Simmons
and Burridge, 1981) are implemented in the model; the \@ri&vels are equally spacedev-
els. All diabatic and dissipation effects are linearly paegerized through Newtonian cooling
and Raylaigh friction, respectively (Held and Suarez, 399his reduced complexity model
represents the dynamical core of an atmospheric genecailaiion model (AGCM) and it is
widely used for idealized experiments, e.qg., for studymg-frequency variability, storm track

71
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dynamics (Franzke et al., 2000, 2001; Franzke, 2002) andtthespheric entropy production
(Kleidon et al., 2003). We continue with a summary of the matpiations, for a complete
description of the model we refer the reader to FraedricH.€0898); Lunkei et al. (2005);

Liakka (2006).

The PEs implemented in PUMA are in the form
Vorticity equation

O -1 0p 0pn C p iy
8t<a_1—u20AFv 0uFu TF K="V (6.1)

Divergence equation

0 1 0 0 U+ v? D
D= P+ B, -V o + P+ Tyl — = —K(-D)"V”D
ot 1— pu2oX +(9,u vV (2(1—,112)Jr + onps) TF (=D"v ’
(6.2)
Temperature equation
.., r 9. ., 0. ., , .0 Tw Tr—-T b 2hrt
—17=——--—UT ——VT'"+ DT —6—T + k— — K(-1 T
ot 2ol T Tt o0 Ty T T (=1)"VET,
(6.3)
Continuity equation
u o 0 0
—1 =1 —V—I —D——0 6.4
ot nps 1— 120\ nps En nps 000’ (6.4)
Hydrostatic balance
0
b=-T 6.5
Olno ’ (6.5)
where
.0 , 0
F, = VCa—aa—aU—TﬁlnpS, (6.6)
0 0
F,=-U( — 6=V -T'(1 — p*)=-1 : 6.7
v UC Uao_v ( 1% )(9,u nps ( )

All variables have been nondimensionalized using, p,.r andg (for the definitions see Sec-
tion 2.1) and the reference temperatut®? / R (R ideal gas constant). In the model equatians
A andyp = sin(¢) denote time, zonal and meridional coordinate, respegtivéierep measures

the latitude. The vertical coordinate= p/p, is a pressure coordinatescaled with the surface
pressurep,. The absolute vorticity,, is the sum of the relative vorticity and the planetary
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vorticity f. The variable®, T"and® denote divergence, temperature and geopotential, respec-
tively. 7" measures the departure of the temperature from a constargnee profilé/y; 6 and

w are vertical velocities defined by tlkeandp coordinate, respectively. Expressed in terms of
the zonal and meridional velocities v, the variabled/ andV read:U = cos ¢u, V' = cos ¢v.
Further we have the restoration temperatiizethe diabatic and friction relaxation time scales
Tr and7;, the adiabatic coefficient and the hyperdiffusion coefficiedt. With the help of a
stream function) and a velocity potentia} the vorticity and the divergence are expressed as

(=AY, D=Ay, (6.8)

and the horizontal velocities are given through

(1 K ) o 0N’ (6.9)
_ o oy OX
V N + (1 — ) _a,u . (6.10)

6.1.2 The methodology

As already mentioned, the equations in PUMA are solved usiegpectral transform method
(Bourke, 1988), where all nonlinear products are calcdlatethe grid but are then transformed
spectrally for the computation of the i, derivatives. For this purpose each prognostic variable
(denoted here withl)) is expressed in terms of a truncated series of sphericaldracs

N N
QU p,0) =YD Qr(t, o) Pl (n)e™, (6.11)

where@!" denotes the spectral coefficients,the zonal wavenumber and" () the associ-
ated Legendre polynomialsV gives the number of the considered modes, since a triangular
truncation is applied, the model resolution is denoted With

Using PUMA output we compare the magnitude of the differentis in the vorticity equation

(6.1). For this purpose the tendency and the dissipationgare given directly by the model,
but the nonlinear terms have to be calculated from the oukperte we give an example of how
this is done by considering tt?%’% term. Applying the product rule we have

0 e _ VOV 0o
aﬂvga_gau+fau+vau+vau. (6.12)

Whereas in PUMA the whole product &f(, is differentiated with respect to, here we are
interested in the contributions from the different termstloa right hand side of (6.12). The
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asymptotic analysis from the previous three chapters stidiag at leading order the wind is
geostrophically balanced, this has as a consequence thtaemynoptic scalg"g—g is much
larger than all other terms (see the discussion in Sectigh @dowever, we found that the
approximation error in the computation ﬁ%‘; can be comparable in magnitude with some of
the terms on the right hand side of (6.12), if in the compatathe same spectral resolution
as the one of the origindl field is used. This makes a comparison of the terms difficiéhev
for high resolutions withV = 85. The large approximation error can easily be understood by
substituting in the definition of” (6.10) the spectral representation (6.11)for

o NN ' (9¢
V=(1-p a—ZZﬂPS(MW = (6.13)

Making use of this equation and of the recursive relationtifierassociated Legendre polyno-
mials

oPm
(1_lu2) 8,U _€n+lpn+1+€n IP;Lnl? (614)

wheree]" |, €, are some constants dependant onlyrerandn (Abramowitz and Stegun,
1964), it can be shown th&t requiresN + 1 spectral coefficients more than those needed for
the representations gf ¢

N N+1

V=YY VrPr(ue™. (6.15)

m=0n=m

These additional spectral coefficients are omitted by eeamfstormation from the physical
space into the spectral one leading to large approximatianse The problem could be over-
come by doubling the number of spectral modes in the tramsfton. We used T21 model
output but a T42 resolution for the computation of the nagdinterms. Finally, only modes
corresponding to a T21 resolution were used in the analpgiplying this method the relative
approximation error was at mo&t(10-9), which is reasonable if one considers that PUMA
variables are single precision.

6.1.3 Model setup

We performed simulations with an aquaplanet or a realisbg@phy as lower boundary con-
dition. The model was run at a T21 resolution, with 10 vefticdevels and with a time step
of 30 min. For the analysis an output with 1 day time increnveas$ used, the first 360 days
were ignored due to spin up effects. We used the default vallug® K for the equator to
pole temperature difference in the restoration tempesgiwfile and the seasonal cycle in the



6.2. THE PR IN SIMULATIONS 75

model was switched off. The initial condition was an atmasphat rest with a small amplitude
perturbation of the surface pressure.

PUMA is able to produce all key features of the atmosphercutation reasonably well for
a simplified atmospheric model. At midlatitudes in the lowed middle troposphere a pro-
nounced wavenumber 6-7 structure with a period of ca. 7 daysible over the most time of
the simulations. This wave implies a characteristic lersgtile of~ 2000 km for the individual
synoptic eddies, its time period is overestimated compaigdthe real atmosphere where the
maximum of the synoptic activity lies around 4 days (Fig.)118 the simulation with orogra-
phy we studied time mean fields of the 500 hPa geopotentighhelhe model reproduces the
trough over Eastern Asia, but it shifts the trough over CartadGreenland. In the experiment
the weak trough over Western Asia is absent but a weak miniowenthe Aleutian islands is
visible. In the real atmosphere the depression over thémeds is confined to the lower tro-
posphere only. These discrepancies can be due to abseram@degda thermal forcing in the
model.

6.2 The PR in simulations

In this section we analyze the magnitudes of the differemi$an the PUMA vorticity equation

(6.1) and compare the leading order balances with the twle $8& model. We consider the
vorticity formulation of the PR momentum equations, thet fivgo orders vorticity equations
(see (3.82), (3.88)) are

Vs -u® =0, (6.16)
f

%C(O’ +u® . Vec® 4 £ u® 4 Vg u® 4 g =0 (6.17)
S

Next, we present the results for the balances in the PUMAGrtyrttransport on the synoptic
and planetary scales.

6.2.1 Synoptic scale dynamics

All terms in the PUMA vorticity equation (6.1) are listed imfle 6.1, Fig. 6.1 and 6.2 display
the zonal and temporal variations of some of them. Overalhedding on the amplitude of
the fluctuations three groups of terms can be identified. TheificludesV; andVy denoting
the horizontal divergence multiplied with the Coriolis gareterf. The second group includes
the vorticity tendency/;; the zonal and meridional vorticity advectidf, Vs; the horizontal
divergence multiplied with vorticity/;, V5 and the planetary vorticity advection teivp. The
third group of terms contains corrections from thecoordinate transformatioiy, V1o; the
vertical vorticity advection and soledoinal term combireesd/;;, V;, and the dissipation term
Vi3. Group one contains terms with the largest variations. &g in the second group have
typically smaller amplitudes by a factor of 4 to 10 as comgddoegroup one with an exception
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of V5. In Fig. 6.1(a) and 6.2(a) we see tHat fluctuations are much larger than those of the
other terms in the group and are sometimes even comparatblé&mandV; (but rarely exceed
them). This can be understood if one takes into accountthaescribes the zonal advection of
the vorticity ¢ and that the results presented in the figures correspondtrgghical locations
nearly coinciding with the position of the jets. At other &ions, outside the maximum of
zonal wind,V; was comparable with the terms in the second group (not sh@ng).hThis is
why we have attributed’ to the second group. The fluctuations of the different temosf
group one and two discussed so far are mainly due to the Sgresfities and are characterized
by the synoptic spatial and temporal scales: see the wavasuénstructure in Fig. 6.1(a) or
the 7 day oscillation in Fig. 6.2(a). From Fig. 6.1(c) and(6)2ve conclude that the variations
of the terms in the third group are an order of magnitude sméilan group two. Overall, the
separation between the three groups of terms remainedymoad at all vertical levels between
30°N(S) and 80N(S) and for experiments with or without orography.

We studied balances between the terms in the different gradipe would expect from Fig. 6.1(a)
and 6.2(a) that; andV; nearly balance. This is confirmed by Fig. 6.3(a) where a glgime
series ofl; + V; is plotted. The balance betwe&handl; implies that the leading order con-
tribution to the PUMA wind comes from a component that is diemce-free on the synoptic
scale. This result is in accordance with the leading ord@nasotic balance (6.16) and we con-
clude that this divergent-free component corresponds(toin the asymptotic analysis. This
analysis states further that if we consider only the ternteerieading order asymptotic balance
the error due to omitting all other terms in the vorticity atjan is not larger than the next order
correction terms, namely, at ma®{<). Fig. 6.3(a) confirms this result too, one can see that
around day 102 the sui} + Vg (equal to the contribution from all other terms) is comp#ab
with the terms in the second group and around day 111 it iseobther of the terms in group
three.

Fig. 6.3(b) shows the time evolution &f,, whereV,, is the sum of the terms from group one
and two together with the terii 3. Looking at the time between day 100 and 110, one can say
that the error we make in the vorticity transport by takingth, terms is an order of magnitude
smaller than the one if we take only the leading order terfnsndV;. Interestingly the effects
due to friction cannot be neglected here, asWhe— Vi3 curve shows. If we substitute in the
V,, according to the QG approximation the geostrophic and agwgasc wind, we obtain all
terms in the classical QG vorticity equation with frictidéach term irl/;, have a counterpartin
(6.17); the friction term/;5 is an exception because no frictional effects have beendenes

in the two scale model. We showed that the wind in the sinaatis to a first approximation
described by a divergence-free (on the synoptic scale).wiihés wind amounts for the largest
variations of the terms in group two. Thus, we can say tha¢adihg order these terms can
be approximated by substituting everywhere the divergémeewind in their definitions. In
this casel;; corresponds t@v®). Since the spatial and temporal variations in Fig. 6.13),(
and 6.2(a) are on the synoptic scalg, V5, V5, V;, andV; can be associated Wi%%C(O), u® .
Vs¢® and¢(OVg - u®. The term(OV - u© is absent in (6.17) sinca®) is divergence
free (6.16). From the perspective of the asymptotics thduasbetweerl; andVj is (to a first
approximation) due to the synoptic divergence of the firdeomwind corrections;f Vg - u
and, as we will show in Section 6.2.2, due to the planetargrdence of the leading order wind:
fVp-ul®, Comparing this result with the QG theory, we interpf&ts - u(!) as the divergence
due to the ageostrophic wind components, however, the f&m- v*) does not appear in the
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Table 6.1: Notation used for the different terms in the aittiequation (6.1).

classical QG model.

As mentioned earlier in this section, the variations com®d up until now are mostly on the
synoptic scales. In order to see fluctuations on differeatigpand temporal scales, we per-
formed a wavenumber-frequency analysis of the differemhse Some of the results for the
experiment with orography are presented in Fig. 6.4. Focé#heulation of the frequency spec-
tra we have multiplied the data with a Bartlett window (Pressl., 2002). In all spectra of
terms from group one and two the maximumkat 6, 7 and around 7 days associated with
the synoptic waves is clearly evident. Its magnitude is astl@n order of magnitude larger
for V; and V5. In the spectra of the terms from group three (not shown) mogtc peak can
be identified, the spectral density there is overall an oodenagnitude smaller than the one
corresponding to group two. In the spectrumigfa second maximum of activity at= 2 and
periods larger than 40 days is visible. This peak results fitte quasi-stationary Rossby waves,
its magnitude is comparable to the one of the synoptic peditappears only in the simulation
with orography. In general, the spectral properties disedsbove are robust with regard to the
length of the time series and are observed for differenteadrievels and latitudes.

6.2.2 Planetary scale dynamics

In order to study the net effect from the synoptic scales enplanetary scale motions, we
average (6.17) over the synoptic scales and obtain
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Figure 6.1: Zonal variations of terms from Table 6.1. Shosvthe distribution at ca. 38 and

at 500 hPa for day 100 of the aquaplanet simulation; all teaarasnondimensionalized using

02

)S

Ve -u® 4+ u®° =0, (6.18)

Here we applied the sublinear growth condition, which ansbthers requires

Vs a0 =0, (6.19)

Equations (6.18) and (6.19) motivated us to study the téfmandV, representing the diver-
gence of thef- and of the(-flux (see Table. 6.1). The averaging over the synoptic apstales
can be performed in the spectral model by simply omittingraddes higher than some cut-off
mode (if scales smaller than the synoptic are neglectegh)p&e we have a function dependent
on A\ only and represented as a Fourier series Witaonal modes. We assume that there is a
spectral gap at the zonal wavenumber 4; all modes witht < 3 are attributed to the plane-
tary scale and those with > 5 to the synoptic one. Then the average of the function ower th



6.2. THE PR IN SIMULATIONS 79

100 11;0 1}0 1},0 14;,0 150 100 110 120 130 140 150
time [doy} time [dOyJ

Figure 6.2: Time variations of terms from Table 6.1. Showthes distribution at ca. 10,

50°N and at 500 hPa from the aquaplanet simulation; all term&ianelimensionalized using
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Figure 6.3: The same as in Fig. 6.2 but for different terms

synoptic scale is simply the truncated series at3, since all higher modes will vanish when
integrating over them. The same argument can be applied eteraging a series of spherical
harmonics, but instead of some cut-off zonal wavenumberegtls a cut-off truncation number

N and all modes witm > N are ignored. The synoptic time averaging can be performed by
simply filtering the fields in time.

From (6.18) and (6.19) we expect tHdt, and Vs vanish on the planetary scale. Since the
spherical harmonics form an orthogonal set, we consideraggpmodes fronl, andVy and
inspect for which total wavenumbetgheir amplitudes vanish. For that reason we transformed
the data into spherical harmonics and analyzed the speciefficients weighted with the cor-
responding Legendre polynomialy®. The differencen — m defines the so-called meridional
wavenumber and gives the zero-crossings of the polynoniabking at the structure of the
polynomials in Fig. A.1, one can say that modes with smahd a low number of nodes are
characterized by planetary meridional scales, whereaethath largen have smaller merid-
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Figure 6.4: Frequency spectra of terms from Table 6.1 fde#ht zonal wavenumbers
Shown are spectra at ca. “d0and 500 hPa from an 360 day experiment with orography, see
text for details.

ional scales. By weighting the Legendre polynomial withedberesponding spectral coefficient
its contribution to the amplitude of the field is evaluated.

We compared the amplitudes of the weighted spectral cagit€iforl;, andVys with the am-
plitudes associated with individual terms in their defoniis. The corresponding time series for
different coefficients are displayed in Fig. 6.5 and 6.6.ele| for Legendre polynomials with
n < 2 the fluctuations o#/;, are very small [see Fig. 6.5(a),(b)], we refer to these mades
planetary modes. It is important to note that the projectiohthe different term3s, V3, V,
andV; on the planetary modes show “large” variations, but whenlmoed inV;, they nearly
balance. Another point we want to stress is that no spati&émporal filtering was applied
in the computation o, V3, V, and V5. The inspection of the profiles @f, U and V" shows
that the leading order spatial variations are on the syoguale (and not on the planetary),
consequently at leading order only the synoptic gradiergsravolved inV,, such gradients
vanish when averaging over the synoptic spatial scalesn@psic time averaging is not neces-
sary for that). If modes witlh > 2 are considered, the teriy, is comparable or even larger



6.2. THE PR IN SIMULATIONS 81

ao® @ | ot (O

) ‘ ‘ ‘ ) ‘ ‘ ‘ ‘
20 40 60 80 100 20 40 60 80 100
time [day] time [day]
x10~° (C) x10~° (d)
1 ; ; ‘ ; 5 : : ‘ ‘
A - Vdv
\ - V3
A A
/ / [\ \ ’/\ /\/ J/
OF I AL | \ MY VIV VL
/ VW ' ; v
\/
v
i
|
— dv \/
— 3
) ‘ ‘ ‘ ‘ 5 ‘ ‘ ‘ ‘
20 40 60 80 100 20 40 60 80 100

time [day] time [day]

Figure 6.5: Time series of the spectral coefficients (redbkpéor V,, andV; weighted with the
value at 50N of the Legendre polynomial: (&)}, (b) PZ, (c) P} and (d)P);. Shown are the
results at 500 hPa for the experiment with orography, foatian see Table 6.1. Similar plots
are obtained for the imaginary parts of the spectral coefiisiand for different latitudes.

than Vs [Fig. 6.5(c), (d)]. This corresponds to the synoptic caseaaly discussed, which is
characterized through a balance between the terriig,in

Further, we found that for planetary modesis of the same order d¢, V5 and the three terms
approximately balance [Fig. 6.6(a),(b)]. For such modeswiriations ofl;; are smaller than
these of the individual termg;, V7, V5 and are mainly on the synoptic time scale. If these
synoptic variations are filtered out (which is required tog synoptic scale averaging) we will
obtain forV;; approximately some time constant value. The factyat’z andV; balance only
up to some constant, becomes clear if we take into accounitktze asymptotic averaging we
divide the integral by an interval growing aor ¢ — 0, see (2.34)-(2.36). No such weighting
was applied in the numerical calculation ;. It was found that for planetary modes the
synoptic fluctuations iV and its time averaged mean are removed, if we add the tésms
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Figure 6.6: The same notation as in Fig. 6.5 butifgr (Vs + Vo + Vi) and V.

andVy, [Fig. 6.6(a),(b)]. The Legendre polynomi&) was here an exception, one can show
analytically that for it the relatiois + V7 + V5/2 = 0 is satisfied exactly. The results for all
other modes indicates, that on the planetary scale (2) we have a balance in the form of
(6.18). For modes with > 2 we observed again the synoptic balance [Fig. 6.6(c),(d)].

6.3 The PRBF and the APR in simulations

We compare the observations from the numerical simulatatis the other two asymptotic
regimes. In the APR we obtain that? is divergence-free (see (4.12), (4.13) and (4.33)),
which is consistent with the balance betwdénandV; as already discussed. Further, in the
APR we obtain as leading order model the QG model (4.34). Bh&dso supported by the
numerical experiments, since we find that for anisotropidesowith planetary zonal scale but
with a synoptic meridional extent (e.g; (1)) we have in the vorticity equation a balance
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No evidence was found for the vorticity constraint (5.29)He PRBF. This constraint implies
that the zonal gradient of the vorticity is at least an ordenagnitude smaller than the merid-
ional one. No such anisotropy can be found in the data, se&HigWithout the constraint the
leading order nontrivial vorticity balance in the PRBF redskee (5.15), (5.16))

w9

(0) L0 — 2
oS Vs ul =0, (6.20)

Fig. 6.1(a) and 6.2(a) show that in the regions of the jetztmal advection tern, is compa-

rable to the divergence termié andVj, nevertheless, no balance between the three terms was

observedV; + Vs is balanced on the synoptic scale by the complete8uml, + Vs + Vg + Vs,
rather than by, alone. The simulations reveal also that the assumption ahatant zonal
background flom:(~) is not satisfied. The inspection of the eddy momentum fluxelscdn
the zonal mean wind indicates that the synoptic eddiesfsemsddy kinetic energy to kinetic
energy of the mean flow, in this way zonal jets result. Howesarh mechanism is not captured
in the present asymptotic setup of the PRBF, since we asstimed ") does not depend on
the synoptic dynamics of the(® field. The observations discussed in this chapter show that
atmospheric motions with isotropic planetary horizontalles are governed by the Planetary
Regime rather than by the Planetary Regime with Backgrolow. F



Chapter 7

Conclusion

Aiming to improve our understanding of the atmospheric ayica on the planetary and syn-
optic scale, we presented in this thesis an approach basasdyomptotic analysis and numer-
ical experiments. We applied a multiple scales asymptoathiod (Klein, 2000, 2004, 2007)
and systematically derived reduced model equations dsgrthree different planetary scale
regimes and accounting for the planetary-synoptic inteyas. Additionally, we performed
numerical simulations with a much more comprehensive pumequations (PEs) model and
studied the balances on the planetary and synoptic scaleéetdifferent terms in the vorticity
transport. The combination between multiple scales asyticpanalysis and model simula-
tions turned out to be advantageous. On the one hand, therizairexperiments helped us to
identify the relevance of the asymptotic regimes for thecspmere and on the other hand the
asymptotic analysis was useful for the interpretation &edent aspects of the planetary scale
dynamics in the numerical simulations.

We summarize the asymptotic regimes in this thesis: thes®daypnRegime (PR), the Anisotropic
Planetary Regime (APR) and the Planetary Regime with Backgt Flow (PRBF). The PR is
characterized by planetary horizontal scales and by a sjmoreling advective time scale of
about one week. We assume variations of the background tmdtegmperature comparable
in magnitude with those adopted in the classical quasitggaisic theory. At leading order
the resulting equations include the planetary geostrophi@tions (PGESs). In order to apply
these equations to the atmosphere, one has to prescribswaelor the vertically averaged
(barotropic) pressure. We presented an evolution equédiathis component of the pressure,
which was derived in a systematic way from the asymptotidysis Relative to the prognostic
closures adopted in existing reduced-complexity plagetavdels, this new dynamical closure
may provide for more realistic increased large scale, lengn tvariability in future implemen-
tations. Using a two scale asymptotic ansatz, we extendedetfion of validity of the PR to
the synoptic spatial and temporal scales. The derived tate snodel includes in addition to
the equations governing the single scale PR a modified geastrophic potential vorticity
equation, describing the dynamics on the synoptic scalthadvi the evolution equation for the
barotropic pressure, the two scale model in the PR can bededjas the anelastic analogon of
the model of Pedlosky (1984) for the large scale oceanial@tion. This model accounts only
for a feedback from the planetary scale dynamics to the dimegale but not for the reverse
interaction. We discussed in this thesis different ternsedbing such reverse interactions, e.g.,
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the planetary scale divergence of the vorticity flux withtioty resulting from the planetary
scale curl of the wind. We found that the evolution equatmnrthie barotropic pressure provides
a feedback from the synoptic scale to the planetary scale.

The PRBF describes motions with isotropic planetary hatialbscales too, but unlike the PR
we consider in this regime systematically larger variatiohthe background potential temper-
ature. Such temperature variations are of the order of teerebd equator to pole temperature
difference and we have further assumed that they do notewolthe 7 days time scale. The nu-
merical results presented in this thesis showed that @anatmospheric motions are governed
by the PR rather than by the PRBF. A theoretical justificatvas found when we performed the
analysis for the PR and PRBF with the slightly modified digtiished limit recently introduced
by Klein (2007). Under the new limit the variations of the bgound potential temperature in
the QG theory are of the same order as the equator to pole tatnpedifference. Variations
of such order are then described by the PR alone. Larger bawkd temperature variations,
required for the derivation of the PRBF under the new linri¢, i@ot observed in the troposphere,
but they may become relevant for motions in the upper atmergpdr on other planets. Never-
theless, the study of the PRBF was valuable for understgrniim PR, since the leading order
model in the PRBF and the steady, linearized version of thEdPfGom the PR have similar
form. We showed that this leading order model representsotig wavelength limit of the
vertical structure equation in the QG theory and found sonagysical solutions of it.

Motions with planetary modulation in zonal direction butthva meridional extent confined
to the synoptic scale are investigated in the APR. This regsmimotivated by the large body
of theoretical studies on the quasi-stationary planetayes (e.g. Charney and Drazin, 1961;
Dickinson, 1968a; Matsuno, 1970; Tung and Lindzen, 197%relit is assumed that the ad-
vection of the relative vorticity and of the planetary voityy by the geostrophic wind are of
the same magnitude. In accordance with these studies, wmass the APR the same magni-
tude of the background potential temperature variations #% PR. We resolve the planetary
and the synoptic time scales and, in addition to the plapetanal and meridional synoptic
scales, the synoptic zonal scale too. As a leading order imeel®btained a condition for a
horizontally uniform background and the QG model. This matitermines the evolution of
the leading order synoptic potential vorticity on the syinmopme scale. The next order model
equations represent a coupling between the planetary tewolof the leading order synoptic
PV field, the synoptic evolution of the planetary scale watifield and the synoptic dynamics
of higher order PV corrections. In the case of small meridiaelocities we showed that the
dynamics evolves only on the planetary time scale and dtavelosed transport equation for
the leading order synoptic PV. Further, we demonstratetthis equation allows anisotropic
Rossby waves and that it does not contain a feedback fromyth@psc zonal scale. In the
case when the planetary scales are left out, the APR egsatiera generalization of the Q6
model of Muraki et al. (1999) to spherical geometry. The'®@odel accounts for the lead-
ing order corrections to the QG theory and our general egusifior the APR show that such
corrections influence the planetary scale dynamics.

In order to explore the validity of the derived asymptoticdats, we studied the balances in
the vorticity transport utilizing a PEs model. As expecttt synoptic spatial and temporal
variations of the different terms in the vorticity equatiare explained by the QG model. We
obtain as leading order balance the divergence-free dondir the horizontal wind, the next
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order balance is between all terms entering the QG vortegjiyation. However, this picture
changes drastically when variations on planetary scaksarsidered. By projecting the terms
on different spectral modes, it was shown that the horizathv@rgence of the wind is of the
same order as the advection of planetary vorti¢ignd they approximately balance, if modes
with a total wavenumber less than or equal to two are consitidturther, we observed that the
divergence of the horizontal vorticity flux vanishes for lsusodes. We demonstrated that both
results are consistent with the two scale model for the PR.s{/hoptic scale averaged vorticity
equation of this model reduces to a balance between the tolvet planetary vorticity and
the planetary divergence of the leading order geostropibalanced wind. Such planetary
divergence term is absent in the classical QG model wheréitlgegence is only due to the
higher order ageostrophic wind components. By considermgotropic modes with planetary
zonal scale but with a synoptic meridional extent, we foumthie numerical experiments as
leading order balance the QG balance and confirmed the sdsuith the APR. On the other
hand, no evidence was found in the simulations for the ptediby the PRBF weaker zonal
vorticity gradients and we concluded that this asymptagime is not applicable for the real
atmosphere.

The comparison between the numerical experiments and yhepastic models can be extended
in the present framework by considering the thermodynamp@gon or higher order balances
between terms on the planetary scale. The asymptotic ana¢yealed that some higher order
terms involve corrections to the leading order wind. Theseections can be calculated from
the model output by considering only the divergent part efwind. One can apply a time
filtering to the data too, in order to distinguish for examipé&tween the vorticity tendency on
the planetary and on the synoptic time scale. Of course tsiansgy to prove the validity of the
asymptotic models is to solve the equations numericallysaedf they reproduce the planetary
scale atmospheric flow. The two scale PR is of particularé@stehere since it can be used as
a global model: it accounts for planetary-synoptic intéoas and allows order one variations
of the Coriolis parametef. One important question is how the model behaves in thedsopi
where f tends to zero. This would mean that the geostrophicallyreaid leading order wind
has a singularity at the equator. However, the asymptoatyais of Majda and Klein (2003)
showed that the background temperature field in the tropicsiizontally uniform (also known
as the weak temperature gradient approximation). Thisitonan the temperature implies a
vanishing leading order pressure gradient which in the oa#ee single scale PR compensates
the growth due tof. In the case of the two scale PR further analysis is requttes,model
should be matched in a systematic way to the intraseascerafalry equatorial synoptic scale
model of Majda and Klein (2003).

The multiple scales asymptotic approach in this thesis eagalily applied for the derivation of
reduced models for the ocean dynamics. In the ocean thesyadeation between the planetary
and synoptic scales is much more pronounced than in the ptraos Whereas the character-
istic length for the planetary scale flow in the ocean reméiesearth’s radius, the synoptic
eddies have a length scale only of the order of 50 km. Becaluespwe expect asymptotic
regimes for the synoptic and planetary scales in the ocedne tmuch more pronounced in
observation and simulation data. We briefly discuss whicldifitations are required in the
asymptotic approach when applying it for ocean studiest Rine governing equations change:
the continuity equation reduces to an incompressibilityditoon; in the absence of salinity the
density can be expressed as a function only of the temperétguation of state) and the ther-
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modynamic equation takes the form of a transport equatiothé&density. Since the pressure is
hydrostatically balanced to a high accuracy, the Mach nunmogne equations becomes of the
order of the Froude number. For comparison, we have in thesgiherel/ ~ Fr too, because
we insert in the definition of'r (and M) the scale height,., denoting the=-folding length of
the hydrostatically balanced pressure. Taking into accobaracteristic values for the ocean
depth~ 4 km and for the horizontal velocity 10 cm/s, the Rossby and Froude numbers for
the ocean can be expressed in terms of the universal paramase Ro ~ ¢ and F'r ~ &%,
The rescaled coordinatéés = cx’ and X p = 3z’ resolve the synoptic and planetary length
scales, respectively. Since the characteristic verteayth scale of the planetary and synoptic
motions in the ocean is about 1 km, we introduce a new vertoatdinate: = éz’. With the
above mentioned distinguished limit and rescaled cootdgwae rederived the PG and the QG
equations for the ocean as well as the two scale model of 8lgd(@984). In order to study the
feedback from the synoptic scale to the planetary scal@ghigrder asymptotic equations have
to be considered as we have done this for the atmosphere. udgwee stop the discussion
here, since it goes beyond the scope of the thesis.

We derived in this thesis simplified models by reducing thé Hydro- and thermodynamic
equations on the basis of asymptotic analysis. There as¥ atbre empirical approaches for
the construction of low order models, which are based on thegiof mathematical models
to observation or simulation data. Such models proved to beeéul tool for understanding
the low-frequency variability of the planetary scale flow. the recent works by Majda et al.
(2006) and Franzke et al. (2008) hidden Markov models (HMiesj)e utilized successfully
for determining metastable regime behavior of planetaryesa Horenko et al. (2008b) pre-
sented a method which simultaneously combines the metkistainalysis of the HMM with
dimension reduction and provides a reduced model in the &@multidimensional stochastic
differential equations. This method employs the concepb@dl principal component analysis
(Horenko et al., 2006b) in combination with the fitting of dtastic models for the dynamics
within the different metastable states (Horenko et al. 6200We demonstrated (Horenko et al.,
2008b) the performance of the technique by analyzing sertmperature data for Europe. In
comparison with standard multidimensional autoregressiethods (such as the seasonal au-
toregressive moving average model), the new method is nesshdomputationally expensive.
Further, it provides additional insight into the dynamiésh® system in the form of a Markov
jump process describing the transitions between the hidustastable states and in the form
of correlation patterns characterizing the leading modespability within each metastable
state. Horenko et al. (2008a) extended the method in ordstutty time series with gaps show-
ing some memory in the underlying process. Using the idexteineled space representation
(Horenko, 2008) such processes can be casted into the Markivamework. We applied the
new method (Horenko et al., 2008a) for analyzing 500 hPa gtfeopial height fields (daily
mean values from the ERA 40 data set for a period of 44 winterd)identified two metastable
states characterizing a weakening of the zonal flow. We fahatthe time evolution of the
most blocking events in the considered atmospheric regidescribed by the hidden probabil-
ity paths for these two states.

Another approach for the construction of reduced modetenafombined with some empirical
method, is based on a truncation of the degrees of freedohedatge-scale solution by con-
sidering a small number of horizontal or vertical modes.(Kasahara, 1977; Schubert, 1985;
Achatz and Opsteegh, 2003). The unresolved scales arednemeterized, e.g., applying a lin-
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ear regression fitting procedure (Tanaka, 1991; Achatz aaddBator, 1999). In our approach,
we filter the governing equations through the asymptoticriegue, the new equations are valid
for some particular scales but the full 3D structure of thieitsan is retained. The unresolved
scales, e.g., the synoptic scales in the single scale PRyeceapresented using the same meth-
ods as in the mode truncation approach. Recently a stocimastie reduction strategy referred
to as MTV (Majda et al., 2003; Franzke et al., 2005; FranzkeMajda, 2006) was introduced.
An additional asymptotic analysis may be advantageoush®MTV procedure. As we shown
applying two scale asymptotic expansions, our method t&fhe important interaction terms
accounting for the feedback from the smaller scales (themymscales) to the planetary scale
flow. One may use the stochastic mode reduction strategyldeing only such terms, which
may considerably reduce the computation time for the MT\tpdure. The unified multiple
scales asymptotic technique itself may be viewed as a giréde constructing models for the
smaller scales. For the two scale PR we derived such reduoddInt describes the synoptic
scale motion and is coupled to the planetary scale flow. Thesasymptotic method gives the
possibility systematically to build a hole hierarchy of pted reduced models covering a width
range of scales: from the meso up to the planetary scale. i8adkls will be a useful tool for
studying multiple scales phenomena in the atmosphere.
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Appendix A

A.1 Spherical coordinates

In this appendix we introduce the spherical coordinateesysand show how some operators,
e.g., the nabla operator, are transformed into the new ttatrdsystem.

Using the spherical coordinates ¢ andr and Cartesian unit vectoks,, e, ande., we can
represent an arbitrary vecteras

T = 1 COS A coSs pe, + rsin A cos ¢e, + rsin ge., , (A1)

where A denotes longitude) latitude andr is the distance from the center of the earth. The
spherical coordinates can be expressed in terms of thedzarteoordinates, y, andz as

P VTP, (A2)

z
=arctan | — | , A.3
oo () A3
A = arctan (g> . (A.4)
x
Using the last equations, we obtain the following usefludtiehs
or or ) or )
%—cos¢cos)\,a—y—cos¢sm)\,$—sm¢, (A.5)
O\ sin A\ O\ cos A O\
Ox rcos¢’ dy rcos¢ Oz ' (A6)
%__sin¢cos)\ %__sin¢sin)\ %_COS¢ (A7)

Ox r Oy r "0z r

In the new coordinate systefm, ¢,r) we have as unit vectors,, e, ande,. Applying the
definition of the unit vectoe; belonging to the coordinate
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1 or
= A.8
“ = lor/0i 0i (A8)
we can express,, e, ande, in terms ofe,, e, ande,
e, = —sin \e, + cos \e, , (A.9)
e; = — cos \sin ¢e, — sin Asin pe, + cos ge. , (A.10)
e, = COs A cos ¢e, + sin A cos ge, + sin ge,, . (A.11)
We can solve the above equationségre, ande,
€, = COs A cos e, + sin \ey — cos Asin gegy , (A.12)
e, = sin A cos ¢e, + cos A\ey — sin ¢ sin ey , (A.13)
e, = sin ge, + cos e . (A.14)
The Cartesian Nabla operator can be written formally as
0 0
V = €$a—x + eya—y + eza
L (O D8 0N (o 90 oY
" \ozor 9z oN O 0o Y\oyor oOyox 0Oy oo (A.15)

(00 N 00
“\0z0r 020N 0z0¢)

Making use of (A.2), (A.3), (A.4) (in order to compute the fparderivatives of\, ¢, r with re-
spect tar, y, z) and of (A.12), (A.13), (A.14), the Nabla operator takespherical coordinates
the form

_ e 9 ed O
V_rcos¢8A+ r 8¢+6T8r‘ (A.16)

In the spherical coordinate system some of the unit veetgrs, ande, depend on the coordi-
nates\ ande.
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é%% = — cos A cos pe, — sin A cos pe, — sin ge, = —e, , (A.17)
2e =0 (A.18)
ad) A— Yy .
0
e — A.l
955 = € (A.19)
ge = cos ¢e (A.20)
O\ r A .
0 .
) 8¢ = —sin oey, (A.21)
%eA = —cos e, +sin pey, (A.22)
0 0 0
ey = —es— —e.=0. A.2
or A or o or er =10 (A.23)
Note that 5
e(x7y7z)
—®E . A.24
0001 (.24

Thus, we can easily derive the following useful relatiopdbr the substantial (material) deriva-
tive of the unit vectors in spherical coordinates

d utan ¢ U
7 e el (A.25)
d utan ¢ v
&= e e, (A.26)
d u v
Eer = ?6)\ -+ ;6¢ . (A27)

Hereu, v andw are components of the velocity vector in the directior gofe,, ande,., respec-
tively. They are defined as

d d d
u = E)\, v = %qb, w = %7‘. (A.28)

Using (A.25), (A.26), (A.27), it can be easily shown fer= ue, + ve, that

1 ou  Ovcosp
v'u_rcosgb(ﬁ—i_ 3 ), (A.29)

and
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1 ov  OJucosp
er-(qu)—TCOS¢ <5— 9 ) . (A.30)
For the3 D divergence we obtain:
1 ou  Ovcoso 1 orw
. - | = — . A.31
V- (utwe) 7 COS ¢ (0)\+ 0o ) r2 or (A-31)
Applying the horizontal Laplacian to a scalgrwe have
1 0? 0 0
Al =——| = — — . A.32
rG 2c0s’% (8)\2C+cos¢a¢ <cos¢8¢g)) (A.32)

Spherical harmonics

60S 308 EQ 30N 60N

Figure A.1: The leading spherical harmonicg& (), i) = P™(u)e™*: red Y, greenYy, blue
Yy and blacky}. For the notation see (6.11) and the text below.
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A.2 PV equation

We differentiate (3.31) w.r.t: and multiply it by f /o

For the last term we can write also

9z p0 9z +p(0) 0z pO Iz

f 0 <w<3> a@(2)) _ @9 00®  f 90@ 1 9p0u®
0z )

709: \" 22
From (3.24) and (3.33) we obtain

0 3
LM = lu(o) -Vf.
p© 9z f

Using the last two equations, the fourth term on the I.h.4Ad33) takes the form

f o <w<3>§;@<2>) _ @0 f 0% 1000 ) o

0 0 9200 0z 0 5z ©

So (A.33) can be finally written in the form

) o\ f 90
9 L0, ® 9\ S _o ®
<at+" Vi az) POR S

where we have defines,,”) = f/p©05,® /02.

(A.33)

(A.34)

(A.35)

(A.36)

(A.37)
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A.3 Solvability condition for the PRBF

In this appendix we derive a solvability condition for (5)@8der the assumption of positive
F. In this caser® takes the same form as in (5.47) but wjthand f, defined as

fi = avzh(2av/2), (A.38)
fa = 202K, (20/2) . (A.39)

Herel,,K; are the modified Bessel functions of the first and second kesghectively. Further,
we make the additional assumption that our solution camsisty of thef; component and we
setCy andm, from (5.47) to zero. All terms i)’ from (5.69) which can be represented as
somez-independent factor multiplied byf, will lead to a resonance, sin¢g is divided byz
and f; is a eigenfunction to the linear operator in (5.68). In orbesuppress these terms, we
have to set their coefficients to zero. This will provide anatepn for the horizontal structure
of Ol(Xp, tp).

We proceed with the identification of the termshparallel toz f;. For this purpose, we make
some preliminary calculations. We have some useful relatior the modified Bessel function

In(x)

o) (£>2k+n
1 = 2 A.4
() ;klr(n+k+1)’ (A.40)
d n
%In(a:) =1, 1(x) — ;In(x) , (A.41)
Fua(e) = T () = 21, (1) (A.42)
With the help of these relations we can calculated the fatigvderivatives off;
0 2
a_fl = o’ [(2av/2) (A.43)
Z
0? a? a?
@ﬁ = ﬁLl(QOC\/E) = ?fu (A.44)
0? a? a?
ﬁfl = _?fl + ﬁ[(), (A.45)
é%fl = 200’215 (2a/2) (A.46)
0 0 ,
%@fl =2aa’ (I + f1) , (A.47)
2
0 fi = 221(a"* + ) + 40’2 f; | (A.48)

9¢?
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/Z fi(o, 2)d2 = 2L,(2a4/2) , (A.49)
0
g [* N 2za
= /0 f1(9, #)dz (fi— L) . (A.50)
2
a%% fi= 20‘0‘ £ 4201, , (A.51)

where we have dropped all subscripts of the planetary vasaill linear in7(® terms fromQ”
can be represented as linear combinations of the terms abowa there it is easy to see which
will give contributions parallel ta f;. In order to identify the contributions from the nonlinear
terms inQ)’, we calculate the products

2 Oé4 6 8

0
LS o e A.53
gzbfl f 0404{ ()f1+@f 2'F() 2 fi + }, (A.53)
o of
ZIQ—fl = a’Vzlpl, — Ji— zf1— P+ (A.54)

r'(3) (5)

We consider the zonal advection )éf%w@), it can be written in terms of; as

u© g @ u®  f 0 o2

f o
acosqb@)\N&z??T n acosgzﬁN&)\Ol 022 fi (A.55)
I A B U R S
~ acos N fa (9qb acos ¢ a)\cl 9.2 N (A.56)
1 a o2
- @ ( 1
a? cos N {fl ¢Cl +Cl@¢f1 +u tan¢} a1 9s —— (A.57)

Making use of (A.52) and (A.53), we collect all terms in th@atjon above which are multiplied
with z f;, these are

—~Cizf1.
(A.58)

6 5 4.4
1 {a o , 0 2a°a/ (901} . tang F'a* 0

" a?N cos r(3)aAcla¢Cl ()ClaA a2N cos ¢ 2N2 O\

When substituted in the right hand side of (5.68), the ternfidead to an unbounded growth
of 7(®. Therefore their coefficients have to be set to zero. We pa@malogous with the
remaining terms i))’ and we can derive an equation for(\, ¢, t)



A.3. SOLVABILITY CONDITION FOR THE PRBF

97

(A.59)

(A.60)
(A.61)
(A.62)

(A.63)

2 2
{al% + ag% + aga%b +a } aa)\Cl + a5aa¢ aa)\Cl + aﬁClaiCl =0
Hereq; are known functions ofV and F' and are given through
F?a 1
= BN fa3cos? ¢
F2a 1
@2 = " BN a3 fcos¢
F? 1 1
a8 = BN <a3cos2qb + f2a2)
_ _4q n o N 1 9 ( )
BN  Nfa?cos¢do cos¢8¢
B g ( 1 0 g Fa 20/ F? +ﬂozFQ 1
N f2acos ¢ cos¢8¢ foﬂaQCos¢ Na?f?cos¢p [ BN a?cos¢

3 1 0 F?’a F’a 2Fad
" fNfa?cosp 0o f3 * BN N fa?cos ¢

of
%5 = 22N cos oI'(3)

B Ba’ 2050/ 1 1 Ba’
6= fNa?cos ¢I'(3) a® N cos ¢ (F(?)) * F(2)) ~ Nfacos¢D(4)

(A.64)

(A.65)
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A.4 The Ekman layer and the planetary scale

In this appendix we study the effect of the strong zonal wimdthe PRBF on the planetary
boundary layer. As shown by Klein et al. (2005) the clasditahan layer theory is derived by
utilizing a two scale asymptotic expansion: horizontal &edical scales of the order of 200
m and a 20 s time scale are resolved in addition to the synepatal and temporal scales.
With this expansion the vertical turbulent fluxes are olediby averaging over the small-scale
horizontal variables. Here we simplify the analysis andiesin addition to the planetary
scales only the 200 m vertical scale, we will make use of tradyars by Klein et al. (2005)
and associate the vertical advection terms in expansioheofrtomentum equation with the
turbulent momentum fluxes. The rescaled vertical coordif@mtthe Ekman layer reads

z
= (A.66)
In the PRBF assume in the free atmosphere a constant backromal windu(~") . In the
present regime we allow arbitrary directions of this backd wind, deviations from the zonal
direction may result from the strong frictional effectsietooundary layer. Thus, the expansion
for the horizontal wind takes the form

w=c UV \p, dp, 25, t,) + D (Ap, dp, 21, 1,) + O(e) . (A.67)

From the leading order horizontal and vertical momentunaheg we obtain®) = const,
which combined with the expansion of the equation of stategj®) = const. The O(c~?)
vertical momentum balance implies that the pressiireshows no vertical variations in the
Ekman layer

O(?): ip<1> =0. (A.68)

aZE

From the horizontal momentum equation we have

0 1
O(1) : fe. x u™Y 4 w(3)%u(’l) = —vap(l) : (A.69)
Pu-b
Dz%,

As we mentioned at the beginning, we associate the verticahemtum advection with the
vertical transport due to turbulent eddies and use a simpl@gient flux ansatz in order to pa-
rameterize it. Further, we assume as boundary conditign®o surface wind ii) the wind at
the upper boundary of the Ekman layer matches the geostaphbalanced wind in the free
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atmosphere iii) the pressure in the Ekman layer matchesdlloe wf the pressure from the free
atmosphere. The last condition implies that the pressyert¥s only orp, since we have zonal
wind in the free atmosphere. Summarized the boundary donditead

u (25 =0)=0, (A.70)
vV (25 — 00) =0, (A.71)

u ™ (zp — 00) = u(g_l) : (A.72)
P = pi(g), (A.73)

where we denoted with the subscripthe variables from the free atmosphere. Making use of
the last boundary condition, the momentum equation (A.&8)ke written as

82

(v
K~ fo=0, (A.74)
o*v 1 Op

(A.76)

where we dropped the indices pf?), u(~" andp™) and the subscripts of the independent
variables. From the meridional component of the momentuunagon we obtain

=—-(K— ———). A.T7
Substituting the last result in the zonal component, weinlatdourth order ODE fop

ot 12

@ -+ ﬁ v =U. (A78)

= OéQ
This equation is solved by
4
v = Z Ck(>\7 ¢7 t)eﬁkz ) (A79)
k=1
where
1 sin
Buo = £y (280
Byq = 1) 500 (A.81)



100 APPENDIX A.

Making use of the relations

Vi= exp(%(g 4 2mn)) = % ()" +i(—1)") n=0,1,....  (A82)
V—1li = exp(%(g +27n)) = \/g (=)™ +i(-D)") ,n=0,1,..., (A.83)

we obtain for the meridional velocity

v = cle\/gu”)z + CQe_\/g(Hi)z + Cge_ﬁ(l_i)z + c;;eﬁu_i)z . (A.84)

We setr; = ¢4 = 0 to prevent an unbounded growth of the solutionfer oco. In this case the
conditionsv(z — oo0) = 0 andu(z — oo) = u, are satisfied. From the conditiefiz = 0) = 0
we have

co+c3=0. (A.85)

Substituting the condition(z = 0) = 0 in the meridional momentum balance, we have

0*v L op,  f

022 apK 0 K

(A.86)

where we have used the definition of the geostrophic winds ghves the constraint for the
constant

—lUg

2

(A.87)

C3 — —

and we obtain for the meridional velocity the classical lesu

a
U=, sin(\/?)e\/gz . (A.88)
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A.5 Blockings

In this section we derive two asymptotic regimes for lengith time scales characterizing block-
ing situations in the atmosphere. In the first regime we a®misisotropic horizontal length
scales of the order of the external Rossby deformation sa@boukhov scale), this regime
corresponds to a typical blocking anticyclone. The secegtdme describes anisotropic block-
ings like the Omega blocking with meridional scale of theesrdf the external Rossby defor-
mation radius but with a planetary zonal extent. In bothrmezs we resolve the corresponding
advective time scales. In order to distinguish between xiereal Rossby deformation radius
and the planetary scale we apply the recently introducedfradésymptotic approach of Klein
(2007). In this new approach the distinguished limit for kk@ch, Froude and Rossby numbers
reads (compare with (2.12))

M%NFT%Nl/RONS as e£—0. (A.89)

For simplicity we consider the case of plane geometry.

Regime 1

The rescaled spacial and temporal scales for the first agyimpegime read

z0 = 27, (A.90)
Yo = £y, (A.91)
to = e3t, (A.92)
z2=2z. (A.93)

We can expand the Coriolis paramefesiround some constant latitudeg as
f = sin($) = sin(¢o + %) — sin(¢o + \/E%O) = fo+ VEByo + O(e) . (A.94)

The expansion for the potential temperature and the winestéhke form

0 =1+e03)(2)+22008) (z0,y0,t0, 2) + Oe2), (A.95)
u=u""(z0,y0,t0,2) + eéu(%)(xo,yo, to, z) + (9(5%) . (A.96)

Next, we summarize the equations resulting from the asynepeapansion of the governing
equations
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Horizontal Momentum Balance

1
O(e72) Vop =0, =051, (A.97)
1 5
1 0) _ 3
O(e’) foer x u® = —W op'?) (A.98)
: , 1 @
O@E2): foer x uD) 4+ Byoe, x u® = — <;Vop) . (A.99)
Vertical momentum balance
o : 8
—pW =—p0)  i=0,...=. A.100
5.7 pY, 1=0,...0 ( )
Continuity equation
. : , 4
o@l):  w?=0,, i=0,...5, (A.101)
(9(6%) : Vo pPu® =0, (A.102)
O@E?): Vo pQu + agp(%(%) =0. (A.103)
z
Potential temperature
O(e?) 59 o) (A.104)
Gz '
0
O(e?) : ieﬂ )+ u® . v,00) 4w =B =0, (A.105)
dto 0z
From the momentum equation (A.99) we obtain
Vo u® = _B o (A.106)

0

Combining the last result with (A.103) and (A.105), we derilie following PV equation

27(3)

a fO a (0) o
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Regime 2

The rescaled spacial and temporal scales for the secong&syairegime read

Xp =e2x, (A.108)
Yo = agy, (A.109)
to = et, (A.110)
tp =edt, (A.111)

2=z (A.112)

We use the following expansion for the potential temperaéund the horizontal wind

=1+ 56(%)(XP7 Z) + 6%@(%)(}(137 Yo, tO,P; Z) + O(S%) ) (A113)
u=u? (Xp,yo,top,z) + eéu(%)(Xp,yo, top, %)+ 0(5%) ) (A.114)
We introduce the notation
Vo=c¢€ i (A.115)
o — yayo ) '
Vp=e i (A.116)
P — a:aXP .

We summarize the results from the asymptotic expansioneoftiverning equations

Horizontal Momentum Balance

.1
OEY: foer xu® = ——Vop®) — —Vpp3) | (A.117)

)/ )
—(;vpp) . (A118)

Vo -u® = 9 o 0, (A.119)
o
foVo - u®) = iiﬂ(%) — 30O (A.120)

B dyo 0Xp
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Vertical momentum balance

0 : 8
—Zp® = _,0 s —0g . 2. A.121
5.7 P i=0, 5 ( )
Continuity equation
, 4
O(i) w® =0, i=0,.0,5, (A.122)
O(&“%) : Vo - pWu® =0, (A.123)
0
O(e?) Vo pOu? +vp- pOu® 4 8—p(0)w(g) =0. (A.124)
z
Potential temperature
0 9 2 ) 0 2
O(e?) : (%O@ Vo0 4 %@ 2) . VpO2) <%>§@<a> =0.
(A.125)
The leading order PV equation for this asymptotic regimesake form
3 0) 1
9 00 fo 00057 o0, 0 9 P ez o
Oto oo ) p© 9z 960 0 9z 200
k2 " (Bf) (A.126)
f_g o tp 5:" -0
FOKE 201 o

Tz
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