11 Anhang

11.1 Plasmidkarten

11.2 Genspezifische BP-Rekombinationsprimer

Oligonukleotide für die BP-Rekombination. Primer für die Klonierung der ZKS-Gene mittels der BP-Rekombination. Die für die BP-Rekombination benötigten Sequenzen sind in eckige Klammern gesetzt.

Oligonukleotid	Sequenz $(5^{\circ} \rightarrow 3^{\circ})$
AHK1-attB1	[AAAAAgCAggCTTg]AgAAgAgCTgAAgCTTC
AHK1-attB2	[AgAAAgCTgggTA]TCAAgCggACAATgAAg
AHK2-attB1	[AAAAAgCAggCTTg]AAAgCTCgTgCTgAggCC
AHK2-attB2	[AgAAAgCTgggTA]TTAACAAggTTCAAAgAATC
AHK2-Domäne1-attB2	[AgAAAgCTgggTA]TTAgACTACAACATCAggAAC
AHK2-Domäne2-attB1	[AAAAAgCAggCTTg]ggTgATCCgAgTCggTTC
AHK2-Domäne2-attB2	[AgAAAgCTgggTA]TTATTTCCCgAAAACTCCAg
AHK2-Domäne3-attB1	[AAAAAgCAggCTTg]gCAgAAACAAATACgTCg
AHK2-Domäne3-attB2	AgAAAgCTgggTA]TTATTCTCTTAgCAAgTgTC
AHK2-Domäne4-attB1	[AAAAAgCAggCTTg]AAACAgATTCTggTTgTg
AHK3-attB1	[AAAAAgCAggCTTg]gCTgAAgCAgCAgATg
AHK3-attB2	AgAAAgCTgggTA]TTATgATTCTgTATCTgAAg
AHK4-attB1	[AAAAAgCAggCTTg]gTTCgAgCAgAAgCTgC
AHK4-attB2	[AgAAAgCTgggTA]TTACgACgAAggTgAg
ETR1-attB1	[AAAAAgCAggCTTg]CgAgAAgCAgAAACAgCAATCC
ETR1-attB2	[AgAAAgCTgggTA]TTACATgCCCTCgTACAgTACC
AHP1-attB1	[AAAAAgCAggCTTg]ATggATTTggTTCAgAAg
AHP1-attB2	[AgAAAgCTgggTA]TCAAAATCCgAgTTCg
AHP2-attB1	[AAAAAgCAggCTTg]ATggACgCTCTCATTg
AHP2-attB2	[AgAAAgCTgggTA]TTAgTTAATATCCACTTg
AHP4-attB1	[AAAAAgCAggCTTg] ATGACTAATATAGGAAAATG
AHP4-attB2	[AgAAAgCTgggTA]TTATTGGCTCGCCTGGAAATAA
AHP5-attB1	[AAAAAgCAggCTTg]ATgAACACCATCgTCgTTg
AHP5-attB2	[AgAAAgCTgggTA]CTAATTTATATCCACTTg
AHP5-Domäne1-attB2	
AHP5-Domäne2-attB1	[AAAAAgCAggCTTg]CTggAgCggCCAgATAATg
ARR1-attB1	[AAAAAgCAggCTTg]ATgATgAATCCgAgTC
ARR1-attB2	[AgAAAgCTgggTA]TCAAACCTgCTTAAgAAg
ARR2-attB1	[AAAAAgCAggCTTg]ATggTAAATCCgggTC
ARR2-attB2	[AgAAAgCTgggTA]TCAgACCTggATATTATC
ARR3-attB1	[AAAAAgCAggCTTg]ATggCCAAAgACggTgg
ARR3-attB2	[AgAAAgCTgggTA]CTAAgCTAATCCgggAC
ARR4-attB1	[AAAAAgCAggCTTg]ATggCCAgAgACCgTgg
ARR4-attB2	[AgAAAgCTgggTA]CTAATCTAATCCgggAC
ARR4-Domäne1-attB2	[AgAAAgCTgggTA]TTATCTCAGACgTTTCAC
ARR4-Domäne2-attB1	[AAAAAgCAggCTTg]AgTCATTTAACTAAAgAC
ARR6-attB1	AAAAAgCAggCTTgATggCTgAAgTTATgC
ARR6-attB2	[AgAAAgCTgggTA]TCAgATCTTTgCgCgTTTg
ARR7-attB1	[AAAAAgCAggCTTg]ATggCggTTggTgAggTC
ARR7-attB2	[AgAAAgCTgggTA]TCAAAgTAgAgAAAAAAgg
ARR12-attB1	AAAAAgCAggCTTgATgACTgTgAACAAAATTTAg
ARR12-attB2	[AgAAAgCTgggTA]TCACACCTgCTTCATCgTgg
ARR14-attB1	[AAAAAgCAggCTTg]ATgCCgATCAACgATCAg
ARR14-attB2	[AgAAAgCTgggTA]CTATCTTTgTCTTgAAgATC
ARR14-Domäne1-attB2	AgAAAgCTgggTA]TTACCAAATgTTCTTAAg
ARR14-Domäne2-attB1	[AAAAAgCAggCTTg]CAACATgTTgTTAgAAg
ARR18-attB1	AAAAAgCAggCTTgATggAgTTTggAAgCACTgAAg
ARR18-attB2	[AgAAAgCTgggTA]CTAAggTggAggAAATgAATC
ARR22-attB1	[AAAAAgCAggCTTg]ATggCAACAAAATCCACC
ARR22-attB2	[AgAAAgCTgggTA]TCAAgCATCgAAgAggTgg
PhyB173-attB1	[AAAAAgCAggCTTg]ATggTTTCCggAgTCg
PhyB173-attB2	[AgAAAgCTgggTA]TTAAATCgAgCTCgAAg

11.3 Genspezifische TOPO-Rekombinationsprimer

Oligonukleotide für die TOPO-Rekombination. Primer für die Klonierung der ZKS-Gene mittels der TOPO-Rekombination. Die für die TOPO-Rekombination benötigten Sequenzen sind in eckige Klammern gesetzt.

Oligonukleotid	Sequenz $(5^{\circ} \rightarrow 3^{\circ})$
AHK2-TO sense	[CACC]AAAgCTCgTgCTgAggCC
AHK2-TO antisense	TTAACAAggTTCAAAgAATC
AHP3-TO sense	[CACC]ATggACACACTCATTgCTC
AHP3-TO antisense	TTATATATCCACTTgAggg
AHP5-TO sense	[CACC]ATgAACACCATCgTCg
AHP5-TO antisense	CTAATTTATATCCACTTg
ARR5-TO sense	[CACC]ATggCTgAggTTTTgCgTC
ARR5-TO antisense	TCAgATCTTTgCgCgTTTTAg
ARR8-TO sense	[CACC]ATggTAATggAAACAgAg
ARR8-TO antisense	TCAgACCgAggTTgTg
ARR9-TO sense	[CACC]ATgggTATggCAgCAgAATCg
ARR9-TO antisense	TCAgACAgCggTTgCgATACC
ARR10-TO sense	[CACC]ATgACTATggAgCAAgAAATTg
ARR10-TO antisense	TCAAgCTgACAAAgAAAAggg
ARR11-TO sense	[CACC]ATggAgAAAAgCggCTTCTC
ARR11-TO antisense	TCAAgCTTCTTCAgAATCgCC
ARR12-TO sense	[CACC]ATgACTgTTgAACAAAATTTAg
ARR12-TO antisense	TCACACCTgCTTCATCgTggAg
ARR13-TO sense	[CACC]ATggCTTTTgCTCAATCTgTC
ARR13-TO antisense	CTAAACTTCTAAACCCgAAAAC
ARR14-TO sense	[CACC]ATgCCgATCAACgATCAgTTTC
ARR14-TO antisense	CTATCTTTgTCTTgAAgATCTTTC
ARR15-TO sense	[CACC]ATggCTCTCAgAgATTTATC
ARR15-TO antisense	TTAACCCCTAgACTCTAATTTgATC
ARR16-TO sense	[CACC]ATgAACAgTTCAggAggTTC
ARR16-TO antisense	TTAgCTTCTgCAgTTCATgAg
ARR17-TO sense	[CACC]ATgAATAAgggCTgTggAAg
ARR17-TO antisense	TCAgCTTCTgCAATTTAAAAgATgg
ARR18-TO sense	[CACC]ATggAgTTTggAAgCACTgAAg
ARR18-TO antisense	CTAAggTggAggAAATgAATC
ARR19-TO sense	[CACC]ATgTTggTgggAAAgATAAg
ARR19-TO antisense	CTAATTATAATTgTAgCCATTg
ARR20-TO sense	[CACC]ATgTCAgTTTTTTCgAACATAC
ARR20-TO antisense	TCAATTgTgACCAATCTgATCg
ARR21-TO sense	[CACC]ATggCTTCTgCTCAATCTTTC
ARR21-TO antisense	TCAATTCATgTCATTgTTgAAC

11.4 Proteinaufreinigungen

Aufreinigung des GST-AHK2 Fusionsproteins. (1) Proteinmarker, (2) Abzentrifugiertes Pellet nach Ultraschall-Aufschluss, (3) Überstand nach der Immobilisierung an die Glutathion-Matrix aus dem ersten, (4) zweiten, (5) dritten und (6) vierten Waschschritt, (7) erste, (8) zweite und (9) dritte spezifische Elution.

Aufreinigung des GST-AHK3 Fusionsproteins. (1) Proteinmarker, (2) Abzentrifugiertes Pellet nach Ultraschall-Aufschluss, (3) Überstand nach der Immobilisierung an die Glutathion-Matrix aus dem ersten, (4) zweiten, (5) dritten und (6) vierten Waschschritt, (7) erste, (8) zweite und (9) dritte spezifische Elution.

Aufreinigung des GST-ETR1 Fusionsproteins. (1) Proteinmarker, (2) Abzentrifugiertes Pellet nach Ultraschall-Aufschluss, (3) Überstand nach der Immobilisierung an die Glutathion-Matrix aus dem ersten, (4) zweiten, (5) dritten und (6) vierten Waschschritt, (7) erste, (8) zweite, (9) dritte und (10) vierte spezifische Elution.

Aufreinigung des GST-AHP1 Fusionsproteins. (1) Proteinmarker, (2) Abzentrifugiertes Pellet nach Ultraschall-Aufschluss, (3) Überstand nach der Immobilisierung an die Glutathion-Matrix aus dem ersten, (4) zweiten und (5) dritten Waschschritt, (6) erste, (7) zweite, (8) dritte und (9) vierte spezifische Elution.

Aufreinigung des GST-AHP2 Fusionsproteins. (1) Proteinmarker, (2) Abzentrifugiertes Pellet nach Ultraschall-Aufschluss, (3) Überstand nach der Immobilisierung an die Glutathion-Matrix aus dem ersten, (4) zweiten und (5) dritten Waschschritt, (6) erste, (7) zweite, (8) dritte und (9) vierte spezifische Elution.

Aufreinigung des GST-AHP3 Fusionsproteins. (1) Proteinmarker, (2) Abzentrifugiertes Pellet nach Ultraschall-Aufschluss, (3) Überstand nach der Immobilisierung an die Glutathion-Matrix aus dem ersten, (4) zweiten und (5) dritten Waschschritt, (6) erste, (7) zweite, (8) dritte und (9) vierte spezifische Elution.

Aufreinigung des GST-AHP5 Fusionsproteins. (1) Proteinmarker, (2) Abzentrifugiertes Pellet nach Ultraschall-Aufschluss, (3) Überstand nach der Immobilisierung an die Glutathion-Matrix aus dem ersten, (4) zweiten und (5) dritten Waschschritt, (6) erste, (7) zweite, (8) dritte und (9) vierte spezifische Elution.

Aufreinigung des GST-AHP5 (H83K) Fusionsproteins. (1) Proteinmarker, (2) Abzentrifugiertes Pellet nach Ultraschall-Aufschluss, (3) Überstand nach der Immobilisierung an die Glutathion-Matrix aus dem ersten, (4) zweiten, (5) dritten und (6) vierten Waschschritt, (7) erste, (8) zweite, (9) dritte und (10) vierte spezifische Elution.

Aufreinigung des GST-AHP5 (H83A) Fusionsproteins. (1) Proteinmarker, (2) Abzentrifugiertes Pellet nach Ultraschall-Aufschluss, (3) Überstand nach der Immobilisierung an die Glutathion-Matrix aus dem ersten, (4) zweiten, (5) dritten und (6) vierten Waschschritt, (7) erste, (8) zweite, (9) dritte und (10) vierte spezifische Elution.

Aufreinigung des GST-ARR14 Fusionsproteins. (1) Proteinmarker, (2) Abzentrifugiertes Pellet nach Ultraschall-Aufschluss, (3) Überstand nach der Immobilisierung an die Glutathion-Matrix aus dem ersten, (4) zweiten, (5) dritten und (6) vierten Waschschritt, (7) erste, (8) zweite und (9) dritte spezifische Elution.

Aufreinigung des GST Proteins. (1) Proteinmarker, (2) Abzentrifugiertes Pellet nach Ultraschall-Aufschluss, (3) Überstand nach der Immobilisierung an die Glutathion-Matrix aus dem ersten, (4) zweiten, (5) dritten und (6) vierten Waschschritt, (7) erste, (8) zweite, (9) dritte und (10) vierte spezifische Elution.