Effekt von Endothelin-1 und Endothelin-A-Rezeptor-Antagonist auf die Mikrozirkulation bei TNBS-Colitis

zur Erlangung des akademischen Grades
Doctor medicinae (Dr. med.)

vorgelegt der Medizinischen Fakultät
Charité - Universitätsmedizin Berlin

von
Tanja Anderson
aus Berlin
Gutachter: 1. Priv.-Doz. Dr. med. M. Kruschewski
2. Priv.-Doz. Dr. med. B. Siegmund
3. Prof. Dr. med. M. Kirschner

Datum der Promotion: 16.05.2010
INHALTSVERZEICHNIS

1. EINLEITUNG .. 1

1.1. Hintergrund .. 1

1.1.1. Die chronisch entzündlichen Darmerkrankungen:
 Colitis ulcerosa und Morbus Crohn .. 1

1.1.2. Die Pathogenese der chronisch entzündlichen Darmerkrankungen 2

1.1.3. Bedeutung der Mikrozirkulation im Rahmen der Pathogenese
 der chronisch entzündlichen Darmerkrankungen ... 3

1.2. Zielsetzung und Fragestellung .. 5

2. MATERIAL UND METHODE .. 7

2.1. Versuchstiere .. 7

2.2. TNBS-Colitis-Induktion .. 7

2.3. Präparation .. 7

2.4. Intravitalmikroskopie .. 8

2.4.1. Bestimmung des kapillären Blutflusses ... 10

2.4.2. Bestimmung der funktionellen Kapillardichte ... 11

2.4.3. Bestimmung der Gefäßpermeabilität .. 11

2.4.4. Bestimmung des Leukozytenstickings ... 12

2.5. Bestimmung der weiteren Zielparameter .. 12

2.6. Versuchsaufbau (Gruppen I-IV) ... 13

2.7. Histologie ... 15

2.8. Ausschlusskriterien ... 15

2.9. Statistik .. 15
3. ERGEBNISSE ..17

3.1. Kapillärer Blutfluss der Gruppen Ia-IVa ...17
3.2. Funktionelle Kapillardichte der Gruppen Ia-IVa ...18
3.3. Gefäßpermeabilität der Gruppen Ia-IVa ..20
3.4. Leukozytensticking der Gruppen Ib-IVb ..21
3.5. Gewichtsverlauf der Gruppen I-IV ..23
3.6. Hämatokrit der Gruppen I-IV ...24
3.7. Urinausscheidung der Gruppen I-IV ...26
3.8. Stuhlqualität der Gruppen I-IV ..27
3.9. Histologie der Gruppen I-IV ..27

4. DISKUSSION ..30

4.1. Ätiopathogenese der chronisch entzündlichen Darmerkrankungen ..30
 4.1.1. Die Bedeutung der Mikrozirkulation im Rahmen der Pathogenese
 der chronisch entzündlichen Darmerkrankungen ...30
 4.1.2. Tierexperimentelle Untersuchungen der Mikrozirkulation ..32

4.2. Material und Methode ...32
 4.2.1. Die Methodik der Intravitalmikroskopie - Parameter der Mikrozirkulation32
 4.2.2. Die Präparation der Tiere ...32
 4.2.3. Charakterisierung des TNBS-Colitis-Modells ..33
 4.2.4. Histologischer Colitis-Score ...34
 4.2.5. Hypothese ..34
 4.2.6. Versuchsaufbau ..35
 4.2.7. Zielparameter ..36
 4.2.8. Charakterisierung der Testsubstanzen ..37
 4.2.8.1. Endothelin-1 ...37
 4.2.8.2. Endothelin-A-Rezeptor-Antagonist LU-135252 ..38
4.3. Ergebnisse .. 39
 4.3.1. Kontrollgruppe (Gruppe I) .. 39
 4.3.2. Colitisgruppe (Gruppe II) .. 40
 4.3.3. Endothelingruppe (Gruppe III) .. 40
 4.3.4. Endothelin-A-Rezeptor-Antagonisten-Gruppe (Gruppe IV) 40
 4.3.5. Gruppenvergleich (Gruppen I-IV) ... 41
 4.3.6. Zusammenfassung und Schlussfolgerungen.. 43

5. ZUSAMMENFASSUNG UND AUSBlick... 45
 5.1. Hintergrund .. 45
 5.2. Zielsetzung ... 45
 5.3. Material und Methode .. 45
 5.4. Ergebnisse ... 46
 5.5. Schlussfolgerungen ... 46
 5.6. Ausblick .. 46

6. LITEraturverzeichnis ... 48

7. ABKÜRZUNGSVERZEICHNIS... 61

8. DANKSAGUNG .. 62

9. ERKLÄRUNG ... 63

10. LEBENSLAUF ... 64

11. PUBLIKATIONSLISTE ... 66
1. Einleitung

1.1. Hintergrund

1.1.1. Die chronisch entzündlichen Darmerkrankungen: Colitis ulcerosa und Morbus Crohn

Die Colitis ulcerosa und der Morbus Crohn sind rezidivierend verlaufende chronisch entzündliche Darmerkrankungen (CED), deren Ätiologie-Pathogenese nicht eindeutig geklärt ist.

Besonders bei alleinigem Befall von Kolon und Rektum kann im Einzelfall die sichere Differenzierung trotzdem schwierig sein, worauf die Zusammenfassung unter dem Begriff „chronisch entzündliche Darmerkrankungen“ hinweist. Daher wird in ca. 10% der Fälle (vorerst) von einer „Colitis indeterminata“ gesprochen [4, 5].

Die Inzidenz beträgt für beide Erkrankungen 7-15/100.000 Einwohner pro Jahr [6-8]. Dabei kommt es zu einer ansteigenden Prävalenz, da überwiegend junge Menschen davon betroffen sind. Heutzutage wird in Mitteleuropa mit 90-300 Erkrankten/100.000 Einwohner gerechnet [9-11].

Trotz intensiver Forschungsbemühungen ist die Ätiologie-Pathogenese bislang nicht geklärt. Angesichts der teilweise mit erheblichen Nebenwirkungen behafteten bisher etablierten konservativen (Langzeit-)Therapie, wie z.B. dem Cushing-Syndrom, Osteoporose und Knochenmarkschädigung [12, 13], stellen die chronisch entzündlichen Darmerkrankungen immer noch ein klinisch und wissenschaftlich relevantes Problem dar.
Einleitung

1.1.2. Die Pathogenese der chronisch entzündlichen Darmerkrankungen

Auch wenn die für die Entstehung der chronisch entzündlichen Darmerkrankungen auslösenden ätiologischen Faktoren zum großen Teil unklar sind, deuten vorliegende Daten auf die Bedeutung immunologischer und genetischer Ursachen hin. Zudem dürften darüber hinaus Umwelteinflüsse eine Rolle spielen.

Einleitung

1.1.3. Bedeutung der Mikrozirkulation im Rahmen der Pathogenese der chronisch entzündlichen Darmerkrankungen

die Epithelnekrose nach sich zieht [33, 45, 46]. Das Endothel, nicht das Epithel, ist demzufolge der primäre Angriffspunkt der Entzündungskette.

Von der Angioarchitektur auf die pathologischen Funktionen zu schließen schien in allen Studienfällen schwierig zu sein, egal welche Herangehensweise gewählt wurde. Aus diesem Grund wurden seit 1966 diverse funktionelle Untersuchungen durchgeführt, ohne eindeutige Ergebnisse zu liefern [47-52].

Die Tragweite der Mikrozirkulation bei chronischen entzündlichen Darmerkrankungen wird zusätzlich durch Veröffentlichungen erkennbar, welche durch Heparin-Gaben einen positiven Effekt auf die Colitis-Aktivität bewirkten [66-68]. Eine vorangegangene durchgeführte tierexperimentelle Untersuchung demonstrierte gleichermassen eine günstige Wirkung auf die Colitis durch Heparin-Gabe [69]. Dieser folgte eine weitere Arbeit, welche die vorherig gewonnenen Ergebnisse jedoch nicht bestätigen konnte [70].

Brahme und Lindström berichteten schon im Jahre 1970 über die anatomische Beziehung zwischen Ulceration und mesenterialer Eintrittsstelle der Arterien in die Tunica muscularis bei Morbus Crohn [41]. Diesem Ergebnis wurde nicht viel Aufmerksamkeit geschenkt bis Wakefield et al. dieses Resultat weiter untersuchten und den zuvor beschriebenen Zusammenhang ebenfalls bestätigten [71-73].

1.2. Zielsetzung und Fragestellung
Trotz zahlreicher Untersuchungen mittels unterschiedlicher Methoden ist der Stellenwert der Mikrozirkulation im Rahmen der Pathogenese der chronisch entzündlichen Darmerkrankungen nach wie vor unklar.

Um die Bedeutung der Mikrozirkulation für die Ätiopathogenese der chronisch entzündlichen Darmerkrankungen näher zu charakterisieren, wurde in der Arbeitsgruppe ein Colitis-Modell etabliert, an dem intravitalmikroskopische Untersuchungen des mukosalen kapillären Blutflusses im Bereich des Kolons durchgeführt werden können [77].

Aus diesem Grund wurde die Hypothese aufgestellt, dass der Colitisverlauf u.a. von der (gestörten) Mikrozirkulation abhängig ist. Stimmte diese Hypothese, so müsste auf der anderen Seite eine Besserung der Mikrozirkulation zu einem mildereren Krankheitsverlauf führen.

Zur Überprüfung dieser Hypothese wurde daher die vorliegende Studie durchgeführt und es wurden in der Frühphase der TNBS-Colitis zwei Substanzen appliziert, die eine direkte Wirkung auf die Mikrozirkulation haben. Dabei handelte es sich zum einen um Endothelin-1, dem stärksten bekannten Vasokonstriktor, und zum anderen um seinen selektiven Antagonisten. Als
Folge dieser Substanzgaben sollte somit eine Verschlechterung bzw. eine Verbesserung der Mikrozirkulation bewirkt werden. Zusätzlich zum kapillären Blutfluss, zur funktionellen Kapillardichte, zur Gefäßpermeabilität und zum Leukozytensticking als Parameter der Mikrozirkulation wurde der Entzündungsgrad der Colitis mittels eines histologischen Colitis-Score’s und klinischer Parameter wie Urinausscheidung, Stuhlqualität, Hämatokrit und Gewichtsverlauf erfasst.

Folgende Fragen sollten im Einzelnen beantwortet werden:

1. Welchen Effekt auf die Mikrozirkulation und den Krankheitsverlauf hat die Gabe
 a.) des hoch potenten Vasokonstriktors Endothelin-1?
 b.) eines Endothelin-A-Rezeptor-Antagonisten?

2. Welche Parameter der Mikrozirkulation werden jeweils beeinflusst?

3. Sind pathomorphologische Unterschiede nachweisbar?
2. MATERIAL und METHODE

2.1. Versuchstiere
Als Versuchstiere dienten durchgängig männliche Sprague-Dawley-Ratten mit einem Körpergewicht von 295g ± 29g. Die Tiere wurden den gesamten Versuch über einzeln in Stoffwechselkäfigen gehalten und hatten währenddessen freien Zugang zu fester Nahrung (Altromin 1324; Altromin GmbH; Lage) und Trinkwasser.

2.2. TNBS-Colitis-Induktion
Die Induktion der TNBS-Colitis erfolgte modifiziert nach dem in 1989 beschriebenen Protokoll der Arbeitsgruppe um Morris [78]. Nach einer Initialanästhesie mittels Äther (24042; Chinosolfabrik; Seelze) und einer Tiefenanästhesie unter Zuhilfenahme von Rompun® (Xylazinhydrochlorid; 0,5ml/kg KG; intramuskulär) und Ketanest® (Ketaminhydrochlorid; 0,5ml/kg KG; intramuskulär) wird bei diesem Modell die Colitis durch die einmalige intrarektale Instillation von 0,25ml Trinitrobenzensulfonsäure (TNBS; P-2297; Sigma Aldrich Chemie GmbH; Steinheim) induziert, welche in 0,25ml reinem Äthanol gelöst ist [78]. Im Anschluss an die intrarektale Applikation wurden die Tiere für 15 Minuten nach Trendelenburg gelagert, um eine Standardisierung der Kontaktzeit zwischen dem verabreichten Agens und der Darmschleimhaut zu erreichen.

2.3. Präparation
Nach der Induktion wurden die Versuchstiere gewogen und deren Halsbereich mit einer Schermaschine rasiert. Im Anschluss an eine quere cervicale Hautinzision, Gefäßdarstellung, Anschlingung des Gefäßes nach proximal und distal mit Seidenfäden und Verknoten der distalen Ligatur erfolgte die quere Venotomie der V. jugularis interna dextra mithilfe einer Mikroschere. In die Veneninzisionsstelle wurde nun vorsichtig ein Katheter (interner ∅ 0,5mm; B. Braun Melsungen AG; Melsungen) vorgeschoben und mit der distalen Ligatur befestigt. Der Katheter wurde dann von der Halsvorderseite subcutan zum Nacken durchgezogen, durch die Haut ausgeleitet und zum Beißschutz durch eine flexible Stahlscheide gezogen, welche die Tiere nur geringfügig in ihrer Bewegungsfreiheit einschränkte. Das Katheterisieren diente der späteren intravenösen Applikation der Versuchssubstanzen Endothelin-1 (E 7764; Sigma Aldrich Chemie GmbH; Steinheim) und Endothelin-A-Rezeptor-Antagonist (LU-135252; Knoll AG; Ludwigshafen) (s. Kap. 2.6., Seite 13). Um einem etwaigen Katheterverschluss vorzubeugen und um die allgemeinen Bedingungen konstant zu halten, wurde den Ratten von Beginn der
Induktion an kontinuierlich über 48 Stunden Ringer-Lactat-Lösung (2ml/kg KG/Std.; B. Braun Melsungen AG; Melsungen) infundiert.

Die intravitalmikroskopischen Untersuchungen am Rattenkolon erfolgten nach einem standardisierten Schema. 36 Stunden nach Beginn der Applikation der Testsubstanzen bzw. 48 Stunden nach der Colitisinduktion wurden die Versuchstiere abermals mittels Rompun® und Ketanest® anästhesiert. Nach erneuter Gewichtskontrolle wurde über die nochmalige Eröffnung des collaren Zugangs neben dem schon vorhandenen Venenkatheter ein weiterer Katheter in die A. carotis communis zur direkten Blutdruckmessung und zur Blutgasanalyse implantiert (s. Kap. 2.8., Seite 15). Hierüber entnommenes Blut wurde ferner zur Bestimmung des Hämatokrits (Htk) verwendet, der als Indikator für die Krankheitsaktivität diente. Über den Venenkatheter wurden im Weiteren die Markersubstanzen zur Intravitalmikroskopie appliziert (s. Kap. 2.4., Seite 8).

Innerhalb des vorweg rasierten Abdomens erfolgte schließlich eine Medianlaparotomie, bei der das distale Kolon atraumatisch im Bereich der avasculären Zone des Mesenteriums mobilisiert und spannungsfrei vor die Bauchdecke auf eine eigens dafür angefertigte Kunststoffschiene ausgelagert wurde. Anschließend erfolgte die antimesenteriale Lumeneröffnung des Kolons in der weitgehend avasculären Zone und die Armierung der Darmwand mittels 4 Prolene-Fäden der Stärke 7/0 zur Fixierung zur Intravitalmikroskopie der Mukosa (Abb. 1, Seite 9).

2.4. Intravitalmikroskopie

Neben der Bestimmung des kapillären Blutflusses unter Zuhilfenahme der Intravitalmikroskopie lassen sich damit auch die funktionelle Kapillardichte, die Gefäßpermeabilität und das so genannte Leukozytensticking als Parameter der Mikrozirkulation untersuchen. Da die Tests sich zeitlich aufwendig gestalteten, wurden die Tiere zur Stabilisierung und zum Ausschluss von systematischen Fehlern auf eine thermostatisch geregelte Heizmatte gelegt. Diese hieß die durch rektale Messungen überprüfte Körpertemperatur konstant bei einem Soll-Wert von 37,5°C [79]. Im selben Rahmen wurde darum zum Schutz vor Austrocknung der eröffnete Darmabschnitt mit 37°C warmer Ringer-Lactat-Lösung äquilibriert [79]. Alle intravitalmikroskopischen Untersuchungen wurden für die nachfolgende Offline-Analyse auf Videokassetten (FUJI Super VHS PRO) aufgezeichnet. Auf der folgenden Abbildung 2 (Seite 9) ist der schematische Aufbau der verwendeten intravitalmikroskopischen Untersuchungseinheit dargestellt.
Abb. 1: Präparation zur Untersuchung der mukosalen Mikrozirkulation. Das Colon descendens ist vor die Bauchdecke mobilisiert, antimesenterial eröffnet, mit feinen Fäden armiert und locker aufgespannt (entnommen aus [77]).

Abb. 2: Der schematische Aufbau eines intravitalmikroskopischen Messplatzes.
2.4.1. Bestimmung des kapillären Blutflusses

Nach Blutentnahme für die arterielle Blutgasanalyse (BGA; ABL-System 625; Radiometer A/S Copenhagen; Kopenhagen; Dänemark) wurden FITC (Fluoresceinisothiocyanat)-markierte autologe Erythrozyten (0,05ml/100g KG; FITC; Isomer I; No. F-7250, Sigma Aldrich Chemie GmbH; Steinheim) über den in der V. jugularis interna dextra gelagerten Katheter injiziert. Erst die FITC-Markierung macht die Erythrozyten unter dem Fluoreszenzmikroskop erkenntlich. Um die vorherig notwendige Färbung der an dieser Stelle verabreichten Erythrozyten zu ermöglichen, mussten diese initial in einem gesonderten Arbeitsgang von gesunden Tieren gewonnen werden, die keiner Versuchsgruppe angehörten. Daraufhin wurden sie nach der von Mithöfer et al. detailliert beschriebenen Methode markiert [79]. 25 Minuten nach Applikation der FITC-markierten Erythrozyten begannen die intravitalmikroskopischen Bestimmungen des kapillären Blutflusses (cbf), um eine gleichmäßige Dispersion derer im Blut des Versuchstieres zu garantieren [79]. Dann wurden die Versuchstiere mit dem vorher préparierten Darm (s. Kap. 2.3., Seite 7) unter das Fluoreszenzmikroskop (Objektiv: Apo 25/0,65 Fluoreszenz; Leitz; Wetzlar) gelegt und es erfolgte die Messung von 10 unterschiedlichen Mukosafeldern des Colon descendens. Die untersuchten Felder konnten dank des mit dem Monitor verbundenen Mikroskops optisch dargestellt werden (Abb. 3, Seite 11). Jedes Feld wurde 1 Minute lang auf einem Videoband zur späteren Auswertung aufgenommen. Zur Bestimmung des Anteils der FITC-markierten Erythrozyten bezogen auf das Volumen (n_{FITC}) wurde den Ratten zum Versuchsende Blut abgenommen. Ein Teil dessen wiederum unterlag einer erneuten BGA-Analyse zwecks Stabilitätskontrolle des Versuchstieres. Die Messdatenauswertung gelang unter Zuhilfenahme einer Neubauer-Kammer (Neubauer IMPROVED Bright-line; Tiefe 0,100 mm; Superior; Marienfeld). Nach Beendigung der Messungen wurden die 10 aufgezeichneten Mukosafelder einzeln betrachtet, innerhalb jedes Feldes 10 Kapillaren nach dem Zufallsprinzip ausgewählt und an einem Fixpunkt innerhalb dieses Gefäßes über einen Zeitraum von 1 Minute alle vorbeifließenden, markierten Erythrozyten gezählt. Bei 10 untersuchten Feldern mit jeweils 10 ausgezählten Kapillaren wurden somit 100 Gefäße pro Tier ausgezählt, deren Mittelwert den Wert f_{FITC} (markierte Erythrozyten pro Minute und Kapillare) ergab. Aus dem f_{FITC} und dem dazugehörigen Neubauer-Kammer-Wert konnte sodann der kapilläre Blutfluss eines Tieres nach der von Mithöfer et al. angegeben Formel \(V_{nl/min/cap} = f_{FITC} / (n_{FITC} \times 0,76) \) kalkuliert werden. Er entspricht dem volumetrischen Blutfluss (V), angegeben in Nanoliter (nl), pro Minute (min) pro Kapillare (cap). Durch Mittelwertbildung des V aller Gruppeniere erhält man den jeweiligen kapillären Gruppenflow [79].
2.4.2. Bestimmung der funktionellen Kapillardichte

Die funktionelle Kapillardichte (fKD) ist das Maß der mikrovaskulären Perfusion und gibt die Länge aller durchbluteten Kapillaren innerhalb eines Beobachtungsfeldes in cm/cm² an [80]. Unter Anwendung eines speziellen Computerprogramms namens CAP-IMAGE (Version 6.01; Dr. Zeintl; Heidelberg) zur Analyse der funktionellen Kapillardichte erfolgte die Messdatenauswertung anhand der bereits für die Untersuchung des kapillären Blutflusses aufgezeichneten 10 Video-Felder pro Versuchstier [81].

2.4.3. Bestimmung der Gefäßpermeabilität

Unter Gefäßpermeabilität wird die Durchlässigkeit eines Gefäßes für Substanzen verstanden. Sie entspricht der relativen Änderung des perivaskulären Grauwertes (Helligkeit) vom Ausgangswert (in %). Sie wird durch die Verabreichung eines Plasmamarkers namens FITC-Dextran (Fluorescein-Isothiocyanate-Dextran; FD-150S, Molekulargewicht 70.000 Da; Sigma Aldrich Chemie GmbH; Steinheim) determiniert. Zuerst erfolgte die einminütige Referenzmessung eines
Sichtfeldes der Kolonmukosa durch Zufallsauswahl, dann die Injektion von 0,2ml 5% FITC-Dextran i.v.. Um eine gleichmäßige Verteilung des Plasmamarkers zu erlauben, begannen die Videoaufnahmen von 5 wiederum zufällig ausgesuchten Feldern für jeweils 1 Minute (Objektiv: ACHROPLAN 20x/0,50w Ph2; Zeiss, Deutschland) erst nach 30-minütiger Wartezeit [82, 83]. Die nachgestellte Auswertung geschah wiederum unter Verwendung des Computervideoanalysesystem CAP-IMAGE (s. Kap. 2.4.2.). Die ermittelten Ergebnisse wurden mit dem Ausgangswert in Relation gesetzt und der Mittelwert der Gruppe gebildet.

2.4.4. Bestimmung des Leukozytenstickings
Als „Sticker“ wurden Leukozyten definiert, die mindestens 30 Sekunden an einer Stelle der Gefäßwand haften und sich nicht fortbewegen [82, 84, 85]. Die zur Beurteilung notwendige Leukozytenfärbung geschah anhand der i.v.-Gabe von 0,3ml Rhodamine 6G (C.I. 45160; Basic Red 1; Sigma Chemical Co.; St. Louis; USA). Nun wurde 10 Minuten abgewartet um abermals eine gleichmäßige Dispersion zu gewährleisten. Am Messplatz (Abb. 2, Seite 9) wurden hiernach wieder 5 Gesichtsfelder zufällig unter Verwendung des 20x/0,50w Ph2-Objektivs (ACHROPLAN; Zeiss, Deutschland) bestimmt und erneut 1 Minute lang auf Video aufgenommen. Die Anzahl der Leukozytensticker eines Versuchstieres wird in Zellen/mm² angegeben und berechnet sich aus dem Mittelwert der ausgezählten 5 Felder.

2.5. Bestimmung der weiteren Zielparameter
Während sämtlicher Messungen am Intravitalmikroskopischen Messplatz wurden alle Versuchstiere kontinuierlich auf ihre kardiorespiratorische Stabilität hin überprüft, um zufällige wie auch systematische Fehler auszuschließen (s. Ausschlusskriterien, Kap. 2.8., Seite 15). So konnte der arterielle Blutdruck direkt über den an einem Druckwandlermodul (Fa. Hellige GmbH; Freiburg im Breisgau) angeschlossenen in der A. carotis communis liegenden Katheter (s. Kap. 2.3., Seite 7) gemessen werden. Darüber hinaus wurde vor Versuchsbeginn wie auch nach Versuchsende eine arterielle BGA gemacht.

Abgesehen davon wurden der Gewichtsverlauf, der Hämatokrit, die Urinausscheidung und die Änderung der Stuhlqualität als Indikatoren für die Krankheitsaktivität dokumentiert. Vor der Colitisinduktion, wie auch vor der Präparation für die Intravitalmikroskopie, erfolgten daher Gewichtskontrollen der Ratten, um Aussagen über den Verlauf zu erlauben. Des Weiteren wurde vor dem Intravitalmikroskopiebeginn der Hämatokrit bestimmt. Damit eine Beobachtung der
Stuhlqualitätsänderung und die Messung der Diurese erfolgen konnten, wurden die Versuchstiere das gesamte Experiment über einzeln in Stoffwechselkäfigen gehalten.

2.6. Versuchsaufbau (Gruppen I-IV)
Zur Beantwortung der Fragestellungen in Kapitel 1.2. auf Seite 6 wurden die Folgen der vasoaktiven Substanzapplikation auf die Parameter der Mikrozirkulation und auf die Erkrankungsschwere der Ratten getestet. Dazu wurden 12 Stunden nach der Colitis-Induktion einerseits Endothelin-1 (E 7764) und andererseits ein Endothelin-A-Rezeptor-Antagonist (LU-135252) i.v. appliziert.

Als Versuchstiere dienten 64 männliche Sprague-Dawley-Ratten mit einem Körpergewicht von 295g ± 29g. Unmittelbar vor der TNBS-Colitis-Induktion erfolgte die Randomisierung in 4 Versuchsgruppen (Gruppen I-IV) mit jeweils 16 Tieren (Tabelle 1, Seite 13).

<table>
<thead>
<tr>
<th>Gruppen</th>
<th>Gruppenbezeichnung</th>
<th>Gruppenbeschreibung</th>
<th>Anzahl (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Kontrollgruppe</td>
<td>Gesunde Tiere + Ringer-Lösung i.v.</td>
<td>16</td>
</tr>
<tr>
<td>II</td>
<td>Colitisgruppe</td>
<td>TNBS-Colitis + Ringer-Lösung i.v.</td>
<td>16</td>
</tr>
<tr>
<td>III</td>
<td>Endothelingruppe</td>
<td>TNBS-Colitis + Endothelin-1 i.v.</td>
<td>16</td>
</tr>
<tr>
<td>IV</td>
<td>ET-RA-Gruppe</td>
<td>TNBS-Colitis + Endothelin-A-Rezeptor-Antagonist i.v.</td>
<td>16</td>
</tr>
</tbody>
</table>

Tabelle 1: Subgruppenbildung (I-IV).

Die Kontrollgruppe (Gruppe I) setzte sich aus gesunden Versuchstieren zusammen, bei denen mittels intrarektaler Kochsalzinjektion (0,5ml 0,9% NaCl-Lösung; B. Braun Melsungen AG; Melsungen) eine Scheininduktion durchgeführt wurde. Über den Venenkatheter erhielten sie kontinuierlich über 48 Stunden, welches der gesamten Versuchsdauer entspricht, Ringer-Lactat-Lösung (2ml/kg KG/Std.) infundiert, um einem etwaigen Katheterverschluss vorzubeugen und um die allgemeinen Bedingungen gegenüber den Gruppen III und IV konstant zu halten. Dasselbe galt auch für die Colitisgruppe (Gruppe II) nach erfolgter Induktion. 12 Stunden nach der Colitis-Induktion wurden den Gruppen III und IV nach bisheriger ausschließlicher Ringer-Lactat-Zufuhr die jeweiligen Testsubstanzen verabreicht. Die Endothelingruppe (Gruppe III) erhielt von da an kontinuierlich über 24 Stunden hin Endothelin-1 (1,25µg/kg KG/Std.) i.v. [83], während der ET-RA-Gruppe (Gruppe IV) der Endothelin-A-Rezeptor-Antagonist LU-135252
(50mg/kg KG) [83, 86-88] in Form eines intravenösen Bolus appliziert wurde. Weitere 12 Stunden später erfolgte bei der Gruppe IV eine erneute Bolusgabe. Zwischen den Bolusgaben und bis zum Ende der Versuchsduer wurde der ET-RA-Gruppe (Gruppe IV), wie auch der Endothelingruppe (Gruppe III) nach Infusionsende bis zum Versuchsende, zur Standardisierung Ringer-Lactat-Lösung i.v. dargereicht. Insgesamt 48 Stunden nach der Colitis-Induktion begannen die Messungen am intravitalmikroskopischen Messplatz (Abb. 4, Seite 14).

Abb. 4: Schema des Versuchsablaufs der Studie (Gruppen I-IV). (In Anlehnung an [89])

Wegen der damit verbundenen Belastung der Ratten und aus methodischen Gründen konnten die gesamten Untersuchungen nicht an einem einzelnen Versuchstier durchgeführt werden. Aus diesem Grund wurden die Tiere innerhalb aller vier Gruppen nach der zu testenden Substanzapplikation nochmals randomisiert. Die Gruppen I-IV mit jeweils 16 Versuchstieren wurden somit in 2 Untergruppen (Ia-IVa und Ib-IVb) mit je 8 Versuchstieren aufgeteilt (Tabelle 2, Seite 14). Die Tiere der Subgruppen Ia-IVa unterzogen sich den Messungen des kapillären Blutflusses (cbf), der funktionellen Kapillardichte (fKD) und der Gefäßpermeabilität (GPM), die der Subgruppen Ib-IVb andererseits lediglich dem Leukozytensticking (LS).

<table>
<thead>
<tr>
<th>Zielparameter</th>
<th>Gruppen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I</td>
</tr>
<tr>
<td>cbf + fKD + GPM</td>
<td>Ia</td>
</tr>
<tr>
<td>LS</td>
<td>Ib</td>
</tr>
</tbody>
</table>

2.7. Histologie
Am Ende der intravitalmikroskopischen Untersuchungen wurden alle Versuchstiere durch Injektion von 0,3ml T61® (Hoechst Roussel Vet. Vertrieb GmbH; Unterschleißheim) eingeschläfert. Im Anschluss wurde das für die Experimente préparierte Darmsegment entnommen und zur weiteren histologischen Untersuchung in 4%-igem Formalin fixiert.

2.8. Ausschlusskriterien
Nur während der intravitalmikroskopischen Untersuchungen kardiorespiratorisch und hämodynamisch stabile Ratten wurden analysiert.
Die im Vorfeld definierten Ausschlusskriterien waren ein systolischer Blutdruck von <80 mm Hg sowie eine (schlechte) BGA mit (1) pO₂ < 10,6 kPa (≈80 mm Hg) und/oder (2) pCO₂ > 6,6 kPa (≈50 mm Hg) und/oder (3) pH < 7,3 bzw. > 7,5 [83, 88].
Versuchstiere, welche keine entsprechende Colitis-Expression aufwiesen (Histologischer Colitis-Score <5), wurden ebenfalls aus der Bewertung genommen.

2.9. Statistik
Sämtliche Zielparameter unterlagen abschließend der statistischen Auswertung mittels Student’s T-Test für unabhängige Stichproben. Unterschiede mit einer Irrtumswahrscheinlichkeit <5% wurden als statistisch signifikant angesehen. Alle folgenden Ergebnisse sind als Mittelwerte ± SEM (Standard Error of Mean) angegeben.
Abb. 5: Histologischer Colitis-Score (entnommen aus [77])

<table>
<thead>
<tr>
<th>Akute Entzündungszeichen</th>
<th>Befund</th>
<th>Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schleimhautintegrität</td>
<td>Einzelzelluntergang</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Erosionen</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Floride Ulcerationen</td>
<td>6</td>
</tr>
<tr>
<td>Infiltration von neutrophilen Granulozyten in der Lamina propria mucosae</td>
<td>Zellzahl (n) =</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(n = 1-5)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(n = 6-10)</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>(n > 10)</td>
<td>3</td>
</tr>
<tr>
<td>Kryptitis (Granulozyten in Kryptenepithelien)</td>
<td>Entzündungszellen</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Kryptenabszeß</td>
<td>2</td>
</tr>
<tr>
<td>Ödem der Mukosa / Submukosa</td>
<td>vorhanden</td>
<td>1</td>
</tr>
</tbody>
</table>

Summe

<table>
<thead>
<tr>
<th>Chronische Entzündungszeichen</th>
<th>Befund</th>
<th>Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schleimhautumbau</td>
<td>vereinzelt verzweigte Krypten</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>deutlich veränderte Kryptenarchitektur</td>
<td>6</td>
</tr>
<tr>
<td>Rundzellinfiltrate in der Lamina propria mucosae</td>
<td>Zellzahl (n) =</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(n = 0-20)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>(n = 21-40)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(n = 41-60)</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>(n > 60)</td>
<td>3</td>
</tr>
<tr>
<td>Becherzellen</td>
<td>Untergang</td>
<td>1</td>
</tr>
<tr>
<td>Fibrose der Tela submucosa</td>
<td>vorhanden</td>
<td>1</td>
</tr>
<tr>
<td>Granulome</td>
<td>vorhanden</td>
<td>1</td>
</tr>
</tbody>
</table>

Summe

Schweregradeinteilung

akut: keine Entzündung (0)
leichtgradige Entzündung (1-4)
mittelgradige Entzündung (5-8)
hochgradige Entzündung (9-12)

chronisch: keine Entzündung (0)
leichtgradige Entzündung (1-4)
mittelgradige Entzündung (5-8)
hochgradige Entzündung (9-12)

Bei der Auswertung hat zunächst die Sichtung sämtlicher Schnitte zu erfolgen, um wesentliche Befunde nicht zu übersehen. Scheinen die Veränderungen regelmäßig zu sein, so werden 5 Regionen zufällig ausgewählt und ausgezählt. Dazu wird ein Netzmiometer (10x10/5, 10, d=19mm; Fa. Carl Zeiss Jena GmbH, Best.-Nr. 434008) bei einer Vergrößerung von 40x12,5 verwendet. Es werden jeweils 10 Felder entlang einer Diagonalen von links oben nach rechts unten ausgezählt und addiert. Der Wert \(n \) wird in die Tabelle eingetragen.
3. ERGEBNISSE

Entsprechend der Versuchsvorlage wurden die Untersuchungen an der Schleimhaut des Colon descendens gemacht. Während des Versuchszeitraumes verstarb kein Tier. Zeichen der kardiorespiratorischen oder hämodynamischen Insuffizienz, die gemäß den Anforderungen in Kapitel 2.8. (Seite 15) einen Ausschluss erforderten, lagen nicht vor. Insgesamt 3 Versuchstiere mussten allerdings aufgrund ungenügender Colitis-Expression (Score <5) aus der Wertung herausgenommen werden.

3.1. Kapillärer Blutfluss der Gruppen Ia-IVa

Die scheininduzierten, gesunden Tiere der Kontrollgruppe Ia zeigen einen kapillären Blutfluss von 2.25 ± 0.02 nl/min/cap. Im Kontrast dazu ist der Flow aller Colitis-Tiere (Gruppen IIa-IVa) signifikant vermindert (p<0.01). Bei der Colitisgruppe IIa (0.62 ± 0.02 nl/min/cap) und bei der Endothelingruppe IIIa (0.68 ± 0.01 nl/min/cap) ist der kapilläre Blutfluss sehr deutlich im Hinblick auf die Kontrollgruppe Ia vermindert. Dem gegenübergestellt bewirkt die Applikation des Endothelin-A-Rezeptor-Antagonisten bei der Gruppe IVa (1.85 ± 0.02 nl/min/cap) eine signifikante Verbesserung des Flows (p<0.01) (Abb. 6, Seite 18).

Die Tabelle 3 auf Seite 17 subsumiert die kompletten Einzelwerte aller Versuchstiere, wobei diese Ergebnisse auf den Untersuchungen von insgesamt 2849 Kapillaren basieren.

<table>
<thead>
<tr>
<th>Versuchsgruppe</th>
<th>Kontrollgruppe Ia n=800 Kapillaren</th>
<th>Colitisgruppe IIa n=650 Kapillaren</th>
<th>Endothelingruppe IIIa n=727 Kapillaren</th>
<th>ET-RA-Gruppe IVa n=672 Kapillaren</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tier 1</td>
<td>1.79 ± 0.02</td>
<td>0.73 ± 0.02</td>
<td>0.57 ± 0.01</td>
<td>1.42 ± 0.02</td>
</tr>
<tr>
<td>Tier 2</td>
<td>2.00 ± 0.01</td>
<td>0.98 ± 0.01</td>
<td>0.80 ± 0.02</td>
<td>2.16 ± 0.02</td>
</tr>
<tr>
<td>Tier 3</td>
<td>2.17 ± 0.02</td>
<td>Ausschluss</td>
<td>0.61 ± 0.01</td>
<td>2.00 ± 0.01</td>
</tr>
<tr>
<td>Tier 4</td>
<td>2.07 ± 0.01</td>
<td>0.70 ± 0.03</td>
<td>0.81 ± 0.01</td>
<td>1.75 ± 0.01</td>
</tr>
<tr>
<td>Tier 5</td>
<td>2.53 ± 0.02</td>
<td>0.60 ± 0.02</td>
<td>0.64 ± 0.02</td>
<td>Ausschluss</td>
</tr>
<tr>
<td>Tier 6</td>
<td>2.38 ± 0.02</td>
<td>0.53 ± 0.01</td>
<td>0.68 ± 0.01</td>
<td>1.84 ± 0.02</td>
</tr>
<tr>
<td>Tier 7</td>
<td>2.40 ± 0.01</td>
<td>0.32 ± 0.02</td>
<td>0.82 ± 0.01</td>
<td>1.92 ± 0.02</td>
</tr>
<tr>
<td>Tier 8</td>
<td>2.63 ± 0.02</td>
<td>0.41 ± 0.02</td>
<td>0.48 ± 0.02</td>
<td>1.85 ± 0.02</td>
</tr>
<tr>
<td>Gruppenmittelwert</td>
<td>2.25 ± 0.02</td>
<td>0.62 ± 0.02</td>
<td>0.68 ± 0.01</td>
<td>1.85 ± 0.02</td>
</tr>
</tbody>
</table>

Tabelle 3: Einzelwerte und Mittelwerte des kapillären Blutflusses (cbf) mit Standardabweichung (in nl/cap/min) im Bereich der Mukosaschleimhaut des Colon descendens nach 48 Stunden (Gruppen Ia-IVa).
Ergebnisse

Abb. 6: Der kapilläre Blutfluss (cbf) der Gruppen Ia-IVa.
* = p<0.01 im Vergleich zur Kontrollgruppe (Ia).
° = p<0.01 im Vergleich zur Colitisgruppe (IIa).

3.2. Funktionelle Kapillardichte der Gruppen Ia-IVa

Die Resultate der funktionellen Kapillardichte entsprechen in etwa denen des kapillären Blutflusses. Im Vergleich zu den gesunden Tieren der Gruppe Ia mit einer fKD von 390 ± 3 cm/cm² ist die Dichte der funktionellen Kapillaren bei allen anderen Versuchstieren nach Colitis-Induktion (Gruppen IIa-IVa) signifikant vermindert (p<0.01). Nach Applikation des Endothelin-A-Rezeptor-Antagonisten der Gruppe IVa ist ihr Wert im Vergleich zur Colitisgruppe IIa mit 240 ± 8 cm/cm² signifikant erhöht (p<0.01, Abb. 7, Seite 19). Zwischen der Colitisgruppe IIa und der Endothelingruppe IIIa liegt kein deutlicher Unterschied vor (IIa: 106 ± 8 cm/cm² im Vergleich zu IIIa: 90 ± 4 cm/cm²). Die Tabelle 4 auf Seite 19 zeigt eine Aufstellung der Einzelwerte der 300 ausgewerteten Felder.
<table>
<thead>
<tr>
<th>Versuchsgruppe</th>
<th>Kontrollgruppe Ia n=80 Felder</th>
<th>Colitisgruppe IIa n=70 Felder</th>
<th>Endothelingruppe IIIa n=80 Felder</th>
<th>ET-RA-Gruppe IVa n=70 Felder</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tier 1</td>
<td>399 ± 2</td>
<td>84 ± 9</td>
<td>71 ± 4</td>
<td>208 ± 8</td>
</tr>
<tr>
<td>Tier 2</td>
<td>382 ± 3</td>
<td>97 ± 7</td>
<td>86 ± 4</td>
<td>305 ± 9</td>
</tr>
<tr>
<td>Tier 3</td>
<td>388 ± 3</td>
<td>Ausschluss</td>
<td>74 ± 3</td>
<td>273 ± 7</td>
</tr>
<tr>
<td>Tier 4</td>
<td>397 ± 3</td>
<td>80 ± 9</td>
<td>88 ± 5</td>
<td>111 ± 9</td>
</tr>
<tr>
<td>Tier 5</td>
<td>381 ± 4</td>
<td>120 ± 8</td>
<td>92 ± 6</td>
<td>Ausschluss</td>
</tr>
<tr>
<td>Tier 6</td>
<td>394 ± 3</td>
<td>132 ± 8</td>
<td>102 ± 3</td>
<td>250 ± 7</td>
</tr>
<tr>
<td>Tier 7</td>
<td>396 ± 2</td>
<td>70 ± 6</td>
<td>123 ± 4</td>
<td>308 ± 8</td>
</tr>
<tr>
<td>Tier 8</td>
<td>382 ± 3</td>
<td>162 ± 9</td>
<td>87 ± 4</td>
<td>228 ± 8</td>
</tr>
<tr>
<td>Gruppenmittelwert</td>
<td>390 ± 3</td>
<td>106 ± 8</td>
<td>90 ± 4</td>
<td>240 ± 8</td>
</tr>
</tbody>
</table>

Tabelle 4: Einzelwerte und Mittelwerte der funktionellen Kapillardichte (fKD) mit Standardabweichung (in nl/cap/min) im Bereich der Mukosaschleimhaut des Colon descendens nach 48 Stunden (Gruppen Ia-IVa).

![Diagramm der funktionellen Kapillardichte (fKD) der Gruppen Ia-IVa.](image)

* = p<0.01 im Vergleich zur Kontrollgruppe (Ia).
° = p<0.01 im Vergleich zur Colitisgruppe (IIa).
3.3. Gefäßpermeabilität der Gruppen Ia-IVA
Der Ausgangswert der Gefäßpermeabilität liegt bei 100%. Bei der Kontrollgruppe Ia sinkt der Wert auf 79 ± 5% ab. Dieses ist ein Ausdruck der fehlenden Permeabilität für die innerhalb dieser Studie verwendeten Dextrane mit einer Molekularmasse von 70.000 Da. Im Gegensatz dazu weisen alle Colitisgruppen (IIa-IVA) einen signifikanten Anstieg der Gefäßpermeabilität auf (p<0.01). Die Ergebnisse der Colitisgruppe IIa und der Endothelingruppe IIIa sind sich dabei ähnlich (IIa: 329 ± 8% und IIIa: 315 ± 6%). Die Gefäßpermeabilität der Endothelin-A-Rezeptor-Antagonistengruppe IVa ist mit 125 ± 6% im Vergleich zur Colitisgruppe IIa signifikant reduziert (p<0.01, Abb. 8, Seite 21). Den Ergebnissen in Tabelle 5 auf Seite 20 liegt die Auswertung von insgesamt 150 Feldern zu Grunde.

<table>
<thead>
<tr>
<th>Versuchsgruppe</th>
<th>Kontrollgruppe Ia n=40 Felder</th>
<th>Colitisgruppe IIa n=35 Felder</th>
<th>Endothelingruppe IIIa n=40 Felder</th>
<th>ET-RA-Gruppe IVa n=35 Felder</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tier 1</td>
<td>54 ± 5</td>
<td>287 ± 9</td>
<td>290 ± 7</td>
<td>96 ± 7</td>
</tr>
<tr>
<td>Tier 2</td>
<td>74 ± 4</td>
<td>280 ± 9</td>
<td>325 ± 6</td>
<td>121 ± 6</td>
</tr>
<tr>
<td>Tier 3</td>
<td>98 ± 5</td>
<td>Ausschluss</td>
<td>357 ± 6</td>
<td>113 ± 5</td>
</tr>
<tr>
<td>Tier 4</td>
<td>78 ± 4</td>
<td>293 ± 7</td>
<td>317 ± 6</td>
<td>138 ± 5</td>
</tr>
<tr>
<td>Tier 5</td>
<td>66 ± 5</td>
<td>310 ± 7</td>
<td>397 ± 8</td>
<td>Ausschluss</td>
</tr>
<tr>
<td>Tier 6</td>
<td>101 ± 5</td>
<td>422 ± 8</td>
<td>248 ± 6</td>
<td>142 ± 6</td>
</tr>
<tr>
<td>Tier 7</td>
<td>109 ± 62</td>
<td>467 ± 8</td>
<td>330 ± 6</td>
<td>154 ± 7</td>
</tr>
<tr>
<td>Tier 8</td>
<td>55 ± 6</td>
<td>256 ± 8</td>
<td>255 ± 6</td>
<td>112 ± 6</td>
</tr>
<tr>
<td>Gruppenmittelwert</td>
<td>79 ± 5</td>
<td>329 ± 8</td>
<td>315 ± 6</td>
<td>125 ± 6</td>
</tr>
</tbody>
</table>

Tabelle 5: Einzelwerte und Mittelwerte der Gefäßpermeabilität (GPM) mit Standardabweichung (in nl/cap/min) im Bereich der Mukosaschleimhaut des Colon descendens nach 48 Stunden (Gruppen Ia-IVA).
3.4. Leukozytensticking der Gruppen Ib-IVb

Die Ergebnisse des Leukozytenstickings sind mit denen der Gefäßpermeabilität vergleichbar. Sind die Tiere wie bei der Kontrollgruppe Ib gesund, so tritt die Erscheinung des Leukozytenstickings fast nicht auf (0,4 ± 0,2 Zellen/mm²). Das Gegenteil ist bei jedem Colitis-Tier der Gruppen IIb-IVb zu beobachten. Bei allen ist ein signifikanter Anstieg (p<0,01) des Leukozytenstickings im Vergleich zur Kontrollgruppe Ib zu verzeichnen, wobei auch in diesem Fall wieder nur eine geringe Differenz zwischen der Colitisgruppe IIb und der Endothelingruppe IIIb zu erkennen ist (IIb: 52,2 ± 4,9 Zellen/mm² gegenüber IIIb: 48,7 ± 5,0 Zellen/mm²). Das Leukozytensticking nimmt bei Endothelin-A-Rezeptor-Antagonisten-Gabe (Gruppe IVb) mit 17,2 ± 1,4 Zellen/mm² im Unterschied zur Colitisgruppe IIb mit 52,2 ± 4,9 Zellen/mm² signifikant ab (p<0,01, Abb. 9, Seite 22). Es wurden 155 Felder ausgezählt. Die Einzelwerte sind in Tabelle 6 auf Seite 22 zusammengefasst.
<table>
<thead>
<tr>
<th>Versuchsgruppe</th>
<th>Kontrollgruppe Ib n=40 Felder</th>
<th>Colitisgruppe IIb n=40 Felder</th>
<th>Endothelingruppe IIIb n=40 Felder</th>
<th>ET-RA-Gruppe IVb n=35 Felder</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tier 1</td>
<td>0.4 ± 0.1</td>
<td>50.6 ± 5.3</td>
<td>69.8 ± 5.3</td>
<td>15.4 ± 1.9</td>
</tr>
<tr>
<td>Tier 2</td>
<td>0.6 ± 0.2</td>
<td>80.6 ± 4.5</td>
<td>51.8 ± 4.7</td>
<td>12.8 ± 1.8</td>
</tr>
<tr>
<td>Tier 3</td>
<td>0.7 ± 0.3</td>
<td>58.9 ± 6.4</td>
<td>16.6 ± 5.9</td>
<td>Ausschluss</td>
</tr>
<tr>
<td>Tier 4</td>
<td>0.6 ± 0.2</td>
<td>62.7 ± 4.6</td>
<td>26.9 ± 4.5</td>
<td>17.9 ± 1.0</td>
</tr>
<tr>
<td>Tier 5</td>
<td>0.2 ± 0.2</td>
<td>13.9 ± 3.9</td>
<td>33.3 ± 4.6</td>
<td>14.1 ± 1.6</td>
</tr>
<tr>
<td>Tier 6</td>
<td>0.5 ± 0.2</td>
<td>61.4 ± 4.7</td>
<td>59.5 ± 5.0</td>
<td>23.2 ± 1.3</td>
</tr>
<tr>
<td>Tier 7</td>
<td>0.2 ± 0.2</td>
<td>46.1 ± 5.7</td>
<td>48.6 ± 5.4</td>
<td>19.8 ± 1.1</td>
</tr>
<tr>
<td>Tier 8</td>
<td>0.3 ± 0.2</td>
<td>43.5 ± 4.3</td>
<td>81.9 ± 4.6</td>
<td>17.2 ± 1.1</td>
</tr>
<tr>
<td>Gruppenmittelwert</td>
<td>0.4 ± 0.2</td>
<td>52.2 ± 4.9</td>
<td>48.7 ± 5.0</td>
<td>17.2 ± 1.4</td>
</tr>
</tbody>
</table>

Tabelle 6: Einzelwerte und Mittelwerte mit Standardabweichung des Leukozytenstickings (LS) im Bereich der Mukosa des distalen Kolons nach 48 Stunden (Gruppen Ib-IVb).

Abb. 9: Das Leukozytensticking (LS) der Gruppen Ib-IVb.
* = p<0.01 im Vergleich zur Kontrollgruppe (Ib).
° = p<0.01 im Vergleich zur Colitisgruppe (IIb).
3.5. Gewichtsverlauf der Gruppen I-IV

Bis zum Untersuchungszeitpunkt nehmen die Kontrolltiere (Gruppe I) generell an Gewicht zu (1.6 ± 0.4%). Dem gegenüber verlieren die Colitis-Tiere der Gruppen II-IV ausnahmslos und signifikant an Gewicht (p<0.01). Besonders drastisch ist die Abnahme bei der Colitisgruppe II (-12.8 ± 1.1%) und der Endothelingruppe III (-10.8 ± 1.2%). Weniger stark ist das bei der Endothelin-A-Rezeptor-Antagonisten-Gruppe IV (-8.2 ± 0.8%) der Fall, während die Differenz zur Colitisgruppe II signifikant ist (p<0,01, Abb. 10, Seite 24). In Tabelle 7 auf Seite 23 werden die Einzelwerte zusammengefasst. Bei drei Versuchstierausschlüssen wurden hierfür und für alle weiteren Zielparameter 61 der ursprünglich 64 Tiere ausgewertet.

<table>
<thead>
<tr>
<th>Versuchsgruppe</th>
<th>Kontrollgruppe I n=16 Tiere</th>
<th>Colitisgruppe II n=15 Tiere</th>
<th>Endothelingruppe III n=16 Tiere</th>
<th>ET-RA-Gruppe IV n=14 Tiere</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tier 1</td>
<td>2.4</td>
<td>-14.3</td>
<td>-9.3</td>
<td>-9.1</td>
</tr>
<tr>
<td>Tier 2</td>
<td>1.1</td>
<td>-11.3</td>
<td>-11.3</td>
<td>-8.8</td>
</tr>
<tr>
<td>Tier 3</td>
<td>0.9</td>
<td>Ausschluss</td>
<td>-9.8</td>
<td>-7.9</td>
</tr>
<tr>
<td>Tier 4</td>
<td>1.8</td>
<td>-12.1</td>
<td>-10.1</td>
<td>-8.1</td>
</tr>
<tr>
<td>Tier 5</td>
<td>2.0</td>
<td>-11.7</td>
<td>-10.4</td>
<td>Ausschluss</td>
</tr>
<tr>
<td>Tier 6</td>
<td>1.5</td>
<td>-11.6</td>
<td>-11.2</td>
<td>-6.9</td>
</tr>
<tr>
<td>Tier 7</td>
<td>1.4</td>
<td>-13.4</td>
<td>-12.1</td>
<td>-8.7</td>
</tr>
<tr>
<td>Tier 8</td>
<td>1.9</td>
<td>-12.3</td>
<td>-13.4</td>
<td>-9.2</td>
</tr>
<tr>
<td>Tier 9</td>
<td>1.1</td>
<td>-14.0</td>
<td>-10.2</td>
<td>-8.8</td>
</tr>
<tr>
<td>Tier 10</td>
<td>0.9</td>
<td>-13.8</td>
<td>-9.2</td>
<td>-7.3</td>
</tr>
<tr>
<td>Tier 11</td>
<td>1.7</td>
<td>-12.7</td>
<td>-11.9</td>
<td>Ausschluss</td>
</tr>
<tr>
<td>Tier 12</td>
<td>1.5</td>
<td>-13.6</td>
<td>-10.3</td>
<td>-7.5</td>
</tr>
<tr>
<td>Tier 13</td>
<td>1.6</td>
<td>-11.5</td>
<td>-10.6</td>
<td>-6.9</td>
</tr>
<tr>
<td>Tier 14</td>
<td>1.7</td>
<td>-12.5</td>
<td>-11.4</td>
<td>-8.9</td>
</tr>
<tr>
<td>Tier 15</td>
<td>1.8</td>
<td>-11.9</td>
<td>-9.9</td>
<td>-9.2</td>
</tr>
<tr>
<td>Tier 16</td>
<td>1.7</td>
<td>-14.6</td>
<td>-12.4</td>
<td>-7.8</td>
</tr>
<tr>
<td>Gruppenmittelwert</td>
<td>1.6 ± 0.4</td>
<td>-12.8 ± 1.1</td>
<td>-10.8 ± 1.2</td>
<td>-8.2 ± 0.8</td>
</tr>
</tbody>
</table>

Tabelle 7: Einzelwerte und Mittelwerte des Gewichtsverlaufes mit Standardabweichung innerhalb von 48 Stunden (Gruppen I-IV).
3.6. Hämatokrit der Gruppen I-IV

Der Hämatokrit der gesunden Kontrolltiergruppe I liegt bei 45.8 ± 2.0%. Die Ratten der Endothelingruppe III bieten einen leicht angestiegenen, dennoch nicht signifikanten Hämatokrit dar (46.6 ± 2.5%), gemessen an den Kontrollen. Zum anderen ist dieser bei den Versuchstieren der Colitisgruppe (II) mit 48.8 ± 2.0% signifikant erhöht (p<0.01). Auffällig ist der Hämatokritlevel der Tiere der Endothelin-A-Rezeptor-Antagonisten-Gruppe (IV). Er liegt bei 39.0 ± 2.8% und ist damit im Vergleich zur Kontrollgruppe I ebenso wie zur Colitisgruppe II signifikant erniedrigt (p<0.01, Abb. 11, Seite 25). Die entsprechenden Einzelwerte sind in der Tabelle 8 auf Seite 25 angeordnet.
<table>
<thead>
<tr>
<th>Versuchsgruppe</th>
<th>Kontrollgruppe I (n=16 Tiere)</th>
<th>Colitisgruppe II (n=15 Tiere)</th>
<th>Endothelingruppe III (n=16 Tiere)</th>
<th>ET-RA-Gruppe IV (n=14 Tiere)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tier 1</td>
<td>44</td>
<td>49</td>
<td>45</td>
<td>35</td>
</tr>
<tr>
<td>Tier 2</td>
<td>47</td>
<td>53</td>
<td>44</td>
<td>38</td>
</tr>
<tr>
<td>Tier 3</td>
<td>42</td>
<td>Ausschluss</td>
<td>46</td>
<td>39</td>
</tr>
<tr>
<td>Tier 4</td>
<td>47</td>
<td>50</td>
<td>47</td>
<td>40</td>
</tr>
<tr>
<td>Tier 5</td>
<td>44</td>
<td>51</td>
<td>49</td>
<td>Ausschluss</td>
</tr>
<tr>
<td>Tier 6</td>
<td>42</td>
<td>48</td>
<td>46</td>
<td>38</td>
</tr>
<tr>
<td>Tier 7</td>
<td>45</td>
<td>48</td>
<td>47</td>
<td>40</td>
</tr>
<tr>
<td>Tier 8</td>
<td>48</td>
<td>50</td>
<td>50</td>
<td>45</td>
</tr>
<tr>
<td>Tier 9</td>
<td>47</td>
<td>46</td>
<td>45</td>
<td>42</td>
</tr>
<tr>
<td>Tier 10</td>
<td>47</td>
<td>47</td>
<td>50</td>
<td>37</td>
</tr>
<tr>
<td>Tier 11</td>
<td>45</td>
<td>47</td>
<td>44</td>
<td>Ausschluss</td>
</tr>
<tr>
<td>Tier 12</td>
<td>49</td>
<td>49</td>
<td>51</td>
<td>42</td>
</tr>
<tr>
<td>Tier 13</td>
<td>45</td>
<td>47</td>
<td>43</td>
<td>36</td>
</tr>
<tr>
<td>Tier 14</td>
<td>47</td>
<td>52</td>
<td>44</td>
<td>40</td>
</tr>
<tr>
<td>Tier 15</td>
<td>47</td>
<td>48</td>
<td>46</td>
<td>36</td>
</tr>
<tr>
<td>Tier 16</td>
<td>47</td>
<td>47</td>
<td>48</td>
<td>38</td>
</tr>
<tr>
<td>Gruppenmittelwert</td>
<td>45.8 ± 2.0</td>
<td>48.8 ± 2.0</td>
<td>46.6 ± 2.5</td>
<td>39.0 ± 2.8</td>
</tr>
</tbody>
</table>

Tabelle 8: Einzelwerte und Mittelwerte des Hämatokrits mit Standardabweichung nach 48 Stunden (Gruppen I-IV).

Abb. 11: Der Hämatokrit der Gruppen I-IV.

* = p<0.01 im Vergleich zur Kontrollgruppe (I).
° = p<0.01 im Vergleich zur Colitisgruppe (II).
3.7. Urinausscheidung der Gruppen I-IV

Die Kontrolltiere (Gruppe I) scheiden in dem Untersuchungszeitraum von 48 Stunden 22.3 ± 1.0 ml Urin aus. Die Diurese der Colitisgruppe (II) ist mit derjenigen der Endothelingruppe vergleichbar (II: 12.4 ± 1.3 ml vs. III: 14.5 ± 1.0 ml), sie ist gegenüber der Kontrollgruppe (I) signifikant vermindert (p<0.01). Nach Gabe des Endothelin-A-Rezeptor-Antagonisten (Gruppe IV) kommt es sowohl gegenüber der Kontrollgruppe (I) als auch gegenüber der Colitisgruppe (II) zu einer signifikanten Steigerung der Urinmenge (IV: 33.2 ± 1.8 ml, p<0.01) (Abb. 12, Seite 27). In Tabelle 9 auf Seite 26 sind die Einzelergebnisse aufgeführt.

<table>
<thead>
<tr>
<th>Versuchsgruppe</th>
<th>Kontrollgruppe I n=16 Tiere</th>
<th>Colitisgruppe II n=15 Tiere</th>
<th>Endothelingruppe III n=16 Tiere</th>
<th>ET-RA-Gruppe IV n=14 Tiere</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tier 1</td>
<td>22.4</td>
<td>12.4</td>
<td>14.3</td>
<td>35.0</td>
</tr>
<tr>
<td>Tier 2</td>
<td>21.9</td>
<td>13.1</td>
<td>16.2</td>
<td>32.2</td>
</tr>
<tr>
<td>Tier 3</td>
<td>23.2</td>
<td>Ausschluss</td>
<td>13.5</td>
<td>36.4</td>
</tr>
<tr>
<td>Tier 4</td>
<td>21.6</td>
<td>10.2</td>
<td>11.9</td>
<td>34.2</td>
</tr>
<tr>
<td>Tier 5</td>
<td>21.7</td>
<td>11.4</td>
<td>15.4</td>
<td>Ausschluss</td>
</tr>
<tr>
<td>Tier 6</td>
<td>23.1</td>
<td>13.5</td>
<td>14.6</td>
<td>32.6</td>
</tr>
<tr>
<td>Tier 7</td>
<td>21.4</td>
<td>14.0</td>
<td>13.9</td>
<td>32.9</td>
</tr>
<tr>
<td>Tier 8</td>
<td>23.6</td>
<td>14.2</td>
<td>14.1</td>
<td>31.9</td>
</tr>
<tr>
<td>Tier 9</td>
<td>21.7</td>
<td>12.7</td>
<td>15.1</td>
<td>32.5</td>
</tr>
<tr>
<td>Tier 10</td>
<td>22.4</td>
<td>11.4</td>
<td>15.5</td>
<td>31.7</td>
</tr>
<tr>
<td>Tier 11</td>
<td>22.6</td>
<td>10.8</td>
<td>14.4</td>
<td>Ausschluss</td>
</tr>
<tr>
<td>Tier 12</td>
<td>24.3</td>
<td>11.2</td>
<td>14.7</td>
<td>35.2</td>
</tr>
<tr>
<td>Tier 13</td>
<td>21.4</td>
<td>13.2</td>
<td>15.1</td>
<td>31.2</td>
</tr>
<tr>
<td>Tier 14</td>
<td>21.0</td>
<td>14.3</td>
<td>14.3</td>
<td>30.9</td>
</tr>
<tr>
<td>Tier 15</td>
<td>23.3</td>
<td>12.7</td>
<td>14.1</td>
<td>35.9</td>
</tr>
<tr>
<td>Tier 16</td>
<td>21.1</td>
<td>11.3</td>
<td>14.9</td>
<td>31.8</td>
</tr>
<tr>
<td>Gruppenmittelwert</td>
<td>22.3 ± 1.0</td>
<td>12.4 ± 1.3</td>
<td>14.5 ± 1.0</td>
<td>33.2 ± 1.8</td>
</tr>
</tbody>
</table>

Tabelle 9: Einzelwerte und Mittelwerte der Diurese mit Standardabweichung innerhalb von 48 Stunden (Gruppen I-IV).
3.8. Stuhlqualität der Gruppen I-IV

Der Stuhl gesunder Ratten (Gruppe I) ist fest und geformt, der der Colitistiere der Gruppe II und der Endothelingruppe III demgegenüber wässrig und ungeformt. Dieses entspricht dem Bild einer floriden Diarrhoe. Im Gegensatz dazu ist der Stuhl der Versuchstiere nach Endothelin-A-Rezeptor-Antagonisten-Gabe (Gruppe IV) teilweise geformt und weicher als bei den Kontrolltieren (I).

3.9. Histologie der Gruppen I-IV

48 Stunden nach der Colitis-Induktion zeigen sämtliche kranken Versuchstiere mit Colitis-Expression (Gruppen II-IV) zum Versuchsende das histologische Bild einer hochgradigen akuten Entzündungsreaktion mit floriden Schleimhautulcerationen, Kryptenabszessen, massenhafter Infiltration von neutrophilen Granulozyten in der Lamina propria mucosae und einem ausgedehnten Submukosaödem (Abb. 14, Seite 29). Beurteilt nach dem im Kapitel 2.7. auf Seite 15 beschriebenen histologischen Score ist dieser bei allen Colitisgruppen (II-IV) im Hinblick auf die Kontrollgruppe I signifikant erhöht (p<0.01). Die Scorewerte stellen sich wie folgt dar: I: 0.1 ± 0.3, II: 9.8 ± 0.9, III: 10.3 ± 0.9, IV: 9.3 ± 0.8. Werden die Colitisgruppen (II-VI) untereinander verglichen, so zeigen sich nur minimale, nicht signifikante Abweichungen der Messwerte (Abb. 13, Seite 28). Die Tabelle 10 auf Seite 28 fasst die dazugehörigen Einzelwerte zusammen.
Ergebnisse

<table>
<thead>
<tr>
<th>Versuchsgruppe</th>
<th>Kontrollgruppe (I) n=16 Tiere</th>
<th>Colitisgruppe (II) n=15 Tiere</th>
<th>Endothelingruppe (III) n=16 Tiere</th>
<th>ET-RA-Gruppe (IV) n=14 Tiere</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tier 1</td>
<td>0</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Tier 2</td>
<td>0</td>
<td>10</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Tier 3</td>
<td>0</td>
<td>Ausschluss</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Tier 4</td>
<td>1</td>
<td>11</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>Tier 5</td>
<td>0</td>
<td>9</td>
<td>10</td>
<td>Ausschluss</td>
</tr>
<tr>
<td>Tier 6</td>
<td>0</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>Tier 7</td>
<td>0</td>
<td>11</td>
<td>11</td>
<td>8</td>
</tr>
<tr>
<td>Tier 8</td>
<td>0</td>
<td>11</td>
<td>11</td>
<td>9</td>
</tr>
<tr>
<td>Tier 9</td>
<td>0</td>
<td>9</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>Tier 10</td>
<td>0</td>
<td>10</td>
<td>11</td>
<td>9</td>
</tr>
<tr>
<td>Tier 11</td>
<td>0</td>
<td>9</td>
<td>11</td>
<td>Ausschluss</td>
</tr>
<tr>
<td>Tier 12</td>
<td>1</td>
<td>11</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>Tier 13</td>
<td>0</td>
<td>10</td>
<td>11</td>
<td>9</td>
</tr>
<tr>
<td>Tier 14</td>
<td>0</td>
<td>9</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>Tier 15</td>
<td>0</td>
<td>9</td>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td>Tier 16</td>
<td>0</td>
<td>9</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

Gruppenmittelwert: 0.1 ± 0.3 9.8 ± 0.9 10.3 ± 0.9 9.3 ± 0.8

Tabelle 10: Einzelwerte und Mittelwerte des histologischen Entzündungsgrades mit Standardabweichung (Score) nach 48 Stunden (Gruppen I-IV).

Abb. 13: Der histologische Entzündungsgrad der Gruppen I-IV nach dem Colitis-Score. * = p<0.01 im Vergleich zur Kontrollgruppe (I).

(A) Kontrollgruppe I (HE-Färbung, x100)
(B) Colitisgruppe II (HE-Färbung, x100)
(C) Endothelingruppe III (HE-Färbung, x40)
(D) ET-RA-Gruppe IV (HE-Färbung, x40)
4. DISKUSSION

4.1. Ätiopathogenese der chronisch entzündlichen Darmerkrankungen

Auf der Suche danach wird wiederholt die Mikrozirkulation und deren Einfluss auf den Verlauf der Pathogenese bei den chronisch entzündlichen Darmerkrankungen betrachtet. Im Falle der Vermutungsbestätigung eines solchen Effektes könnten dann darauf basierend neue und möglicherweise besser verträgliche Therapieoptionen entwickelt werden.

4.1.1. Die Bedeutung der Mikrozirkulation im Rahmen der Pathogenese der chronisch entzündlichen Darmerkrankungen

Trotz zahlreicher morphologischer und funktioneller Untersuchungen ist der Stellenwert der Mikrozirkulation im Rahmen der Pathogenese der chronisch entzündlichen Darmerkrankungen unklar und weiterhin in der Diskussion (Übersicht [95, 96]).

Neben diesen Untersuchungen gibt es verschiedene klinische Beobachtungen, die als Hinweis auf eine pathogenetische Bedeutung der Durchblutung bei den chronisch entzündlichen Darmerkrankungen interpretiert werden.

Darüber hinaus scheint die Heparin-Gabe durch direkte Wirkung auf die Mikrozirkulation einen positiven Einfluss auf den Erkrankungsverlauf bei Morbus Crohn und Colitis ulcerosa zu haben. Dieses unterstützt die Zusammenhangshypothese zwischen der Mikrozirkulation und den chronischen entzündlichen Darmerkrankungen [66-69].

Zu guter Letzt wurden in homogenisierten Biopsien von an Morbus Crohn und Colitis ulcerosa erkrankten Patienten signifikant angestiegene Level des Vasokonstriktors Endothelin festgestellt. Dessen locale Produktion könnte durch Vasokonstriktion eine intestinale Ischämie bewirken, welche für die Pathogenese und den Erkrankungsverlauf der chronisch entzündlichen Darmerkrankungen von Bedeutung wäre [74-76].
4.1.2. Tierexperimentelle Untersuchungen der Mikrozirkulation

Bis zum jetzigen Zeitpunkt stehen noch immer systematische Untersuchungen der pathogenetischen Relevanz der Mikrozirkulation bei den chronisch entzündlichen Darmerkrankungen aus.

Aus diesem Grund wurde in der Arbeitsgruppe zunächst an gesunden Tieren die Intravitalmikroskopie des Rattenkolons etabliert und diese Kenntnisse auf Colitis-Modelle übertragen. Dadurch konnte eine Charakterisierung verschiedener Modelle erfolgen [77]. Infolgedessen wurden die Voraussetzungen für weiterführende Untersuchungen zur pathogenetischen Bedeutung sowie zur Evaluation alternativer Therapieoptionen geschaffen.

4.2. Material und Methode

4.2.1. Die Methodik der Intravitalmikroskopie - Parameter der Mikrozirkulation

Die Intravitalmikroskopie ist bislang die unübertroffene Methode zur Studie der Mikrozirkulation [79, 97]. Sie ermöglicht eine Untersuchung des kapillären Blutflusses, des Leukozytenstickings und unter Zuhilfenahme eines speziellen Computerprogramms zur Datenauswertung sogar die der Gefäßpermeabilität und der funktionellen Kapillardichte [81]. Bei allen handelt es sich um Parameter der Mikrozirkulation. Die gesamten Messungen wurden vorerst auf Videokassetten aufgenommen, um nach Beendigung der Versuche analysiert werden zu können. Dabei wurde die Methode nach Mithöfer et al. zur Bewertung des kapillären Blutflusses verwendet [79]. Bedingt durch die hierdurch gewonnene große Menge an ausgezählten Kapillaren fällt der SEM (Standard Error of Mean) vergleichsweise klein aus. Zur Auswertung der funktionellen Kapillardichte und der Gefäßpermeabilität wurde sodann das Computerprogramm CAP-IMAGE (Version 6.01; Dr. Zeintl; Heidelberg) hinzugezogen [81]. Des Weiteren wurden dann als Leukozytensticker diejenigen Leukozyten definiert, welche mindestens 30 Sekunden an demselben Ort haften und sich nicht fortbewegen [82, 84, 85].

4.2.2. Die Präparation der Tiere

Zu diesem Zweck wurde das distale Kolon mobilisiert und so spannungsfrei wie nur möglich auf eine eigens dafür angefertigte und eingebuchtete Kunststoffschiene vor die Bauchdecke verlagert. Das Lumen wurde antimesenterial in dem fast avaskulären Bereich eröffnet. Mit Hilfe feiner atraumatischer Fäden (Prolene 7/0) wurde das eröffnete Kolon sodann armiert und locker aufgespannt (Abb. 1, Seite 9). Neben dem Ausbau einer normierten Methodik konnte so eine Blutungsminderung wie auch eine Durchblutungsstörung durch Gewebeüberspannung vermieden werden.

4.2.3. Charakterisierung des TNBS-Colitis-Modells
Das 1989 beschriebene Modell nach Morris et al. ruft eine Colitis durch einmalige intrarektale Instillation von zuvor in 100%-igem Alkohol gelöster Trinitrobenzensulfonsäure (TNBS) hervor [78]. Durch das Äthanol wird die gesunde Kolonschleimhaut geschädigt und somit dem TNBS der Eintritt in die Darmwand ermöglicht. Binnen weniger Stunden entsteht eine akute transmurale Entzündung. Diese wandelt sich dann graduell in ein bei Ratten bis zu 8 Wochen anhaltendes chronisches Stadium um. Dabei scheint die chronische Entzündung durch T-Lymphozyten (TH1) getriggert zu werden, welches anhand von Experimenten an Mäusen dargestellt werden konnte. Das verwendete TNBS agiert in diesem Fall als Hapten. Es bindet sich an die E-Aminogruppe der Aminosäure Lysin, formt dabei die Oberflächenantigenstruktur um und löst so eine Immunreaktion vom verzögerten Typ aus (Hapten-Colitis) [78, 98-103]. Der genaue Pathomechanismus bei der Ratte ist aber noch unklar. Der Einfluss von toxischen Noxen in diesem Rahmen wird untersucht [18].

Besonders stark ist die Entzündungsreaktion an der Induktionsstelle im Rektum und im aboralen Kolon. Von da aus dehnt sie sich ununterbrochen mit fokalen Ulcerationen aus. Im Zuge dessen zeigt sich makroskopisch das Bild eines paralytischen Ileus: der Darm ist dilatiert, die Darmwand verdickt und die Mukosa nekrotisch-ulcerös verändert. Auf histologischer Ebene

4.2.4. Histologischer Colitis-Score

4.2.5. Hypothese
den pathomorphologischen (der Entzündung) vorgeschaltet zu sein. In diesem Sinn bedingt die gestörte Mikrozirkulation die funktionellen Störungen und diese prägen dann die Schwere der Erkrankung. Bestätigt sich die Annahme des krankheitsbedingten Einflusses der gestörten Mikrozirkulation, so dürfte eine Verbesserung der Mikrozirkulation im Frühstadium der Colitis den Krankheitsverlauf mildern.

Um diese Vermutung zu hinterfragen, wurde das Endothelin-1 als Testsubstanz bestimmt, weil dieses als stärkster bekannter vom Gefäßendothel gebildeter Vasokonstriktor eine direkte Wirkung auf die Mikrozirkulation hat. Außerdem mutet es an, einen Effekt auf die experimentelle Colitis wie auch auf die chronisch entzündlichen Darmerkrankungen zu haben. In homogenisierten Biopsien und im Serum von an Colitis ulcerosa und Morbus Crohn erkrankten Patienten konnten signifikant gesteigerte Endothelinlevel festgestellt werden [74, 75, 108]. Diese hatten besonders während der aktiven Phase der Erkrankung zugenommen [76], ebenso wie die Menge der Endothelin-Rezeptoren am Darmgefäßenendothel [108]. In bereits durchgeführten tierexperimentellen Untersuchungen bedingte die Applikation eines Endothelin-Rezeptor-Antagonisten (ET-RA) eine Besserung des Colitisverlaufs [109, 110].

Daraus lässt sich folgende Hypothese ableiten: (1) die Endothelingabe in der Colitisfrühphase verschlimmert durch eine zusätzliche Verminderung des kapillären Blutflusses die Erkrankung und (2) die Endothelin-Rezeptor-Blockade hingegen verbessert den kapillären Blutfluss und damit den Erkrankungsverlauf.

4.2.6. Versuchsaufbau

Im Rahmen dieser Studie wurden Untersuchungen an gesunden (Kontrollgruppe I), unbehandelten (Colitisgruppe II), mit Endothelin-1 behandelten (Endothelingruppe III) und mit einem Endothelin-A-Rezeptor-Antagonisten behandelten Tieren (ET-RA-Gruppe IV)
vorgenommen. Aus methodischen Gründen ist die Messung aller Zielparameter an einer Ratte unmöglich. Deswegen mussten die Gruppen bestehend aus 16 Versuchstieren ohne Ausnahme in jeweils zwei Untergruppen mit 8 Versuchstieren randomisiert werden (Gruppen Ia-IVa und Ib-IVb, Tabelle 2, Seite 14).

4.2.7. Zielparameter

Bewirkte die Endothelin-A-Rezeptor-Antagonistengabe eine Verbesserung der Mikrozirkulation, so kommt es nach den Erkenntnissen der Vorversuche zur Charakterisierung des TNBS-Colitis-Modells nicht innerhalb von 48 Stunden zu einer histologischen Wandlung des Befundes. Wenn auch die funktionellen Veränderungen vor den morphologischen abliefen, so ist ein Zeitabschnitt von 36 Stunden dafür nicht ausreichend. Um nun die Erkrankungsschwere bewerten zu können, war die Festlegung funktioneller Zielparameter erforderlich, weil bei fehlender Sterblichkeit dieses Colitis-Modells diese hierfür nicht herangezogen werden konnte.

Der Vermehrung des interstitiellen Volumens folgt anschließend eine Zunahme des Perfusionsdrucks. Daraus resultiert eine Verringerung der Anzahl durchbluteter Kapillaren [83], welches mit einer Minderung der funktionelle Kapillardichte im Rahmen der Entzündung gleichgesetzt werden darf [130]. Bei der funktionellen Kapillardichte handelt es sich somit gleichermaßen um ein Maß der Entzündungsaktivität. Eine weitere Arbeitsgruppe untersuchte die Mikrozirkulation bei Sepsis und berichtet auch von einer Reduzierung der Anzahl durchbluteter Kapillaren [131].

4.2.8. Charakterisierung der Testsubstanzen
4.2.8.1. Endothelin-1
Im Jahre 1992 deuteten die Arbeitsergebnisse der Gruppe um Murch zum ersten Mal auf einen möglichen Zusammenhang zwischen Endothelin-1 und der Erkrankungsschwere bei chronisch entzündlichen Darmerkrankungen hin [74]. In Resektaten von CED-Patienten fanden sie gesteigerte Endothelin-1-Werte. Ihrer Interpretation nach wurde die Ischämie durch eine Vasokonstriktion bewirkt, die durch die zunehmende Endothelinausschüttung hervorgerufen wurde. Weitere Veröffentlichungen konnten ebenfalls angestiegene Endothelin-1-Werte bei Patienten mit chronisch entzündlichen Darmerkrankungen nachweisen. In diesem Rahmen verglich die Arbeitsgruppe um Letizia die Endothelin-1-Werte zwischen gesunden und an CED erkrankten Menschen. Dabei zeigte sich eine signifikante Steigerung der Werte innerhalb des Pools der Erkrankten gegenüber denen der Gesunden (Kontrolle: 6.2 ± 1.5 pg/ml, Colitis ulcerosa: 11.2 ± 2.7 pg/ml und Morbus Crohn: 22.3 ± 8.2 pg/ml) [75]. Gleichzeitig scheint die Endothelin-1-Erhöhung auch in Wechselbeziehung zur Krankheitsstärke zu stehen [76]. Die in dieser Studie verwendete kontinuierliche intravenöse Verabreichungsart sowie die Dosismenge von 1,25 µg/kg KG/Std. wurden in Anlehnung an eine andere Studie gewählt [83].

4.2.8.2. Endothelin-A-Rezeptor-Antagonist LU-135252

Menschen, die an chronisch entzündlichen Darmerkrankungen leiden, weisen gesteigerte Level an Endothelin-1 auf [74-76]. Um der postulierten Hypothese nachzugehen, erhielt die dritte Versuchsgruppe (Endothelgruppe) innerhalb dieser Arbeit Endothelin-1 intravenös. Demzufolge wurde der vierten Versuchsgruppe (ET-RA-Gruppe) der selektive Endothelin-A-Rezeptor-Antagonist LU-135252 verabreicht. Bislang liegen der Fachliteratur nur Ergebnisse von Arbeiten vor, die am Colitis-Modell exklusiv mit Endothelin-Rezeptor-Antagonisten

Die Wahl der Verabreichung des Endothelin-A-Rezeptor-Antagonisten LU-135252 in Form von i.v.-Boli ebenso wie die Dosismenge von 50 mg/kg KG geschah in Übereinstimmung mit vorliegenden Veröffentlichungen [83, 86, 87, 129].

4.3. Ergebnisse

4.3.1. Kontrollgruppe (Gruppe I)

Weil innerhalb dieser Arbeit der kapilläre Blutfluss, die funktionelle Kapillardichte, die Gefäßpermeabilität und das Leukozytensticking zum ersten Mal an den Kapillaren des Kolons der Ratte analysiert wurden, existieren hierzu keine Daten zum Vergleich.

4.3.2. **Colitisgruppe (Gruppe II)**

Zum Versuchsende weisen die kranken Ratten makroskopisch wie auch histologisch das Bild einer hochgradigen akuten Colitis auf. Dieses entspricht insgesamt den Ergebnissen der Literatur [77]. Der kapilläre Blutfluss und die funktionelle Kapillardichte sind im Vergleich zur Gruppe I signifikant verringert. Derweil sind die Gefäßpermeabilität und das Leukozytensticking signifikant erhöht. Während die Versuchstiere Gewicht verlieren und unter Durchfall leiden, bewirkt der Volumenverlust Richtung Interstitium gleichzeitig einen Anstieg des Htk auf 48.8% und eine Reduktion der Urinausscheidung.

4.3.3. **Endothelingruppe (Gruppe III)**

Die makroskopische und histologische Erkrankungsschwere der Endothelingruppe gleicht denen der Colitisgruppe. Stimmte unsere in Kap. 4.2.5. auf Seite 34 beschriebene Annahme, so müsste die Gabe von Endothelin-1 die Krankheitsschwere verschlimmern. Dieses konnte so in Pankreatitisstudien nachgewiesen werden [154, 155]. Wider Erwarten löst die Endothelin-1-Gabe im Rahmen dieser Studie, verglichen mit der Colitisgruppe, keine signifikante Verschlechterung aus. Beim Ablauf einer Colitis produziert der Körper eigenes Endothelin-1 [74-76], welches an seinem entsprechenden Rezeptor bindet. Die exogene Verabreichung von Endothelin-1 bewirkt wahrscheinlich keinen Unterschied mehr, weil die exprimierten Rezeptoren schon damit komplett belegt sind [83].

4.3.4. **Endothelin-A-Rezeptor-Antagonisten-Gruppe (Gruppe IV)**

4.3.5. Gruppenvergleich (Gruppen I-IV)

Bei der Colitisgruppe II zeigt sich 48 Stunden nach durchgeführter TNBS-Colitis-Induktion, gemessen an der Kontrollgruppe I, eine signifikante Reduktion des kapillären Blutflusses. Die Applikation von Endothelin-1 innerhalb der Endothelingruppe III setzt diesen nicht weiter herab. In anderen Arbeiten wies Endothelin-1 nicht nur eine besonders effektive Wirkung bei der Minderung der Pankreasdurchblutung auf, sondern auch bei der des Kolons [158, 159]. Zudem
präsentieren sich bei der TNBS induzierten Colitis gesteigerte Endothelin-Werte [160]. Die nicht vorhandene Wirkungszunahme deutet auf eine mögliche komplette Besetzung aller Endothelin-Rezeptoren hin, weil das applizierte Endothelin-1 keinen Unterschied mehr herbeiführen kann. Dieses wird noch durch den fehlenden Kontrast bei der Colitisgruppe II und der Endothelingruppe III unterstrichen.

Gegenüber der Colitisgruppe II sind bei der ET-RA-Gruppe IV sämtliche mikrozirkulatorischen (kapillärer Blutfluss, funktionelle Kapillardichte, Gefäßpermeabilität und Leukozytensticking) wie auch klinischen Zielparameter (Diurese, Faecesqualität, Hämatokrit und Gewichtsverlauf) signifikant gebessert. Die Werte der Kontrollgruppe I wurden dabei aber nicht erlangt.

Eine Zunahme des kapillären Blutflusses in der Colitisfrühphase bedingt eine abgeschwächte Entzündungsprogression und hebt damit den pathogenetischen Stellenwert der Mikrozirkulation bezüglich des Verlaufs bei chronisch entzündlichen Darmerkrankungen hervor.

4.3.6. Zusammenfassung und Schlussfolgerungen

Als Fazit dieser Arbeit ist hervorzuheben: (1) Die Folgen der akuten TNBS-Colitis zeichnen sich durch eine umfangreiche Beeinträchtigung der Mikrozirkulation bis zum SIRS aus. (2) Die Applikation von exogenem Endothelin-1 zieht höchstwahrscheinlich wegen einer Endothelin-A-Rezeptor-Blockade beruhend auf endogenem Endothelin-1 keine Verschlechterung dieser Veränderungen nach sich. (3) Die Endothelin-A-Rezeptor-Blockade mittels Applikation seines
Antagonisten bessert diesen Zustand signifikant. (4) Die Resultate untermauern demnach den pathogenetischen Stellenwert der Mikrozirkulation für Colitisverlauf.
5. ZUSAMMENFASSUNG und AUSBlick

5.1. Hintergrund

5.2. Zielsetzung

5.3. Material und Methode

5.4. Ergebnisse

5.5. Schlussfolgerungen

5.6. Ausblick

6. LITERATURVERZEICHNIS

7. ABKÜRZUNGSVERZEICHNIS

A. Arteria
Abb. Abbildung
BGA Blutgasanalyse
°C Grad Celsius
cbf Kapillärer Blutfluß
CDAI Crohn’s disease activity index
CED Chronisch entzündliche Darmerkrankungen
Da Dalton
DSS Dextran sulfate sodium (Dextran-Natriumsulfat)
ET-RA Endothelin-Rezeptor-Antagonist
f_{FITC} Markierte Erythrozyten pro Minute und Kapillare
FITC Fluoresceinisothiocyanat
FITC-Dextran Fluorescein-Isothiocyanate-Dextran
fKD Funktionelle Kapillardichte
GPM Gefäßpermeabilität
HE Hämatoxylin-Eosin
Htk Hämatoxikrit
Kap. Kapitel
kg KG Kilogramm-Körpergewicht
LS Leukozytensticking
n_{FITC} Markierte Erythrozyten pro Nanoliter
nl/cap/min Nanoliter/Kapillare/Minute
NOD2 Nucleotid-bindende Oligomerisations-Domäne 2
SEM Standard Error of Mean
SIRS Systemic inflammatory response syndrome
Std. Stunde
T61® Embrutamid und Mebenzoniumjodid
TNBS Trinitrobenzensulfonsäure
TNF tumor necrosis factor
V Volumetrischer Blutfluß
V. Vena
8. DANKSAGUNG

Mein Dank gilt zuallererst Herrn Priv.-Doz. Dr. med. Martin Kruschewski für die Überlassung des Themas dieser Promotionsarbeit und die damit verbundene Möglichkeit, Einblicke in das wissenschaftliche Arbeiten zu erlangen. Außerdem möchte ich ihm für die intensive Betreuung, die zahlreichen anregenden Diskussionen sowie für seine vielen aufmunternde Worte in schwierigen Momenten während der Erstellung meiner Arbeit ganz herzlich danken.

Des Weiteren gebührt Frau Dr. med. Alejandra Perez-Cantó und Herrn Prof. Dr. med. Christoph Loddenkemper aus dem Institut für Pathologie der Charité – Campus Benjamin Franklin Dank für die Hilfe bei der Herstellung der HE-Schnitte und v.a. für die verblindete Bewertung der Präparate nach dem Colitis-Score.

Nicht zuletzt gilt mein herzlichster Dank meinen Eltern, meinem Bruder, meinem Mann, meiner Tochter und meinem Sohn für die grenzenlose Unterstützung, ohne die mein Studium und diese Doktorarbeit nicht möglich gewesen wären.
9. ERKLÄRUNG

19.8.2009 Tanja Anderson
10. LEBENSLAUF

Mein Lebenslauf wird aus datenschutzrechtlichen Gründen in der elektronischen Version meiner Arbeit nicht veröffentlicht.
Mein Lebenslauf wird aus datenschutzrechtlichen Gründen in der elektronischen Version meiner Arbeit nicht veröffentlicht.
11. PUBLIKATIONSLISTE

ORIGINALPUBLIKATIONEN

Kruschewski M, Savic T, Foitzik Th, Loddenkemper C, Buhr HJ
Die selektive COX-2-Inhibition reduziert das Leukozytensticking und verbessert
die Mikrozirkulation bei der TNBS-Colitis
Deutsche Gesellschaft für Chirurgie, Forumband 2002, Band 31, S. 153-155

Kruschewski M, Anderson T, Buhr HJ, Loddenkemper C
Selective COX-2 Inhibition Reduces Leukocyte Sticking and Improves the
Microcirculation in TNBS Colitis.
Dig Dis Sci. 2006 April; 51(4):662-70

Kruschewski M, Anderson T, Loddenkemper C, Buhr HJ
Endothelin-1 Receptor Antagonist (LU-135252) Improves the Microcirculation and
Course of TNBS Colitis in Rats.
Dig Dis Sci. 2006 Jul 26; 51(8):1461-1470

ABSTRACTS

Kruschewski M, Savic T, Foitzik Th, Loddenkemper C, Buhr HJ
Stabilisierung der erhöhten Kapillarpermeabilität bei der TNBS-Colitis durch
Endothelin-Rezeptorblockade
UKBF Jahrbuch (2000), S. 365, ISDN 3-9806076-8-2

Kruschewski M, Savic T, Loddenkemper C, Buhr HJ
Die selektive COX-2-Inhibition reduziert das Leukozytensticking und
verbessert die Mikrozirkulation bei der TNBS-Colitis
UKBF Jahrbuch (2002), S. 387, ISDN 3-9806076-0-7
Savic T
Einfluß von Endothelin- und COX-2 Antagonisten auf die TNBS-Colitis
4. Workshop Chirurgische Forschung der Chirurgischen Klinik I des
Universitätsklinikums Benjamin Franklin, Berlin 2001

Kruschewski M, Savic T, Foitzik Th, Loddenkemper C, Buhr HJ
Die selektive COX-2-Inhibition reduziert das Leukozytensticking und verbessert
die Mikrozirkulation bei der TNBS-Colitis
Chirurgisches Forum, 119. Kongreß der Deutschen Gesellschaft für Chirurgie,
Berlin, 7.5.-10.5.2002