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Abstract

Investigating and understanding the stability, variability and change of psychological con-
structs is a major goal in longitudinal psychological assessment. It has been suggested
that for a complete understanding of a longitudinal process under investigation, it is crucial
to apply multimethod research designs (Eid, Lischetzke, Nussbeck, & Trierweiler, 2003).
Since Campbell and Fiske (1959) it is widely acknowledged that psychological constructs
are always assessed using a specific method of observations, and an observation does not
only reflect the psychological construct under consideration but does also contain system-
atic method-specific influences. Multitrait-multimethod (MTMM) designs allow researchers
to explicitly model method effects and analyze convergent and discriminant validity of a
construct. Despite the growing interest in longitudinal and MTMM data analysis, only few
attempts have been made to combine sophisticated longitudinal latent variable models and
MTMM data analysis.
To successfully apply longitudinal CFA-MTMM models in practice, it is important to con-
sider specific aspects of the measurement design. First, an increasing number of MTMM
measurement designs include a combination of different methods (e.g., different types of
raters). Eid et al. (2008) provided a typology of CFA-MTMM models for interchangeable
methods, structurally different methods, and a combination of both types of methods. Inter-
changeable methods are methods that are randomly selected from the same set of methods
(e.g., raters). As interchangeable raters are drawn in a multi-stage sampling procedure, the
resulting multilevel structure has to be modeled adequately. In contrast, structurally differ-
ent methods are not selected from the same set of methods and can therefore not be easily
replaced by one another (e.g., self-ratings). Until now, only few CFA-MTMM models have
been presented allowing researchers to analyze longitudinal MTMM data with structurally
different and interchangeable methods (Koch, 2013; Koch, Schultze, Eid, & Geiser, 2014;
Koch, Schultze, Holtmann, Geiser, & Eid, 2017).
Second, in longitudinal research, an increasing number of psychological constructs are as-
sessed using short-scales in large-scale panel studies, with an associated increase in the need
for models that allow analyses on the item-level. As items are commonly measured on a
categorical response scale, measurement models of item response theory (IRT) have to be
considered to properly model the response format. Thus far, only few models have been
presented allowing researchers to analyze complex MTMM data with ordered response vari-
ables (Crayen, Geiser, Scheithauer, & Eid, 2011; Eid, 1996; Jeon & Rijmen, 2014; Nussbeck,
Eid, & Lischetzke, 2006), but none of these models can be used for longitudinal MTMM
measurement designs combining structurally different and interchangeable methods. The
present work fills this gap by introducing several longitudinal multilevel CFA-MTMM mod-
els for ordered response variables: a latent state (LS-Com), a latent change (LC-Com), a
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latent state-trait (LST-Com), and a latent growth curve (LGC-Com) graded response model
(GRM). These longitudinal latent variable models belong to the most widely applied CFA
approaches to longitudinal data modeling and serve to answer different research questions.
The presented models combine the advantages of multilevel MTMM measurement designs
and longitudinal CFA models for categorical observed variables.
The complexity of these models with several latent variables and ordinal indicators exceed
computational and practical limitations of numerical integration. Presently, only Bayesian
estimation methods allow for the estimation of the models proposed in this work.
The statistical performance of the models is investigated via three simulation studies using
Bayesian estimation techniques. As the results of the simulation studies show, the LS-Com
GRM and LST-Com GRM can be accurately estimated under realistic sample sizes if low
degrees of convergent validity are present. These results are encouraging and suggest that
even complex multilevel longitudinal CFA-MTMM models can be applied in a wide range
of situations using Bayesian methods. However, estimation of the models reaches its limits
in cases of high convergent validity and for the LGC-Com GRM with small slope variances.
The results of the simulation studies are discussed and practical guidelines for empirical
applications are given. An application of the models to multi-rater data on life satisfaction
and subjective happiness illustrates the applicability and advantages of the models in applied
research as well as the advantages of sampling the model coefficients by Bayesian MCMC
methods. Finally, the advantages and limitations of the models are discussed and an outlook
on future research topics is provided.

v



Zusammenfassung

Die Untersuchung und Erklärung der Stabilität, Variabilität und Veränderung psychologisch-
er Konstrukte ist ein wichtiges Ziel längsschnitlicher psychologischer Forschung. Für ein
umfassendes Verständnis des zu untersuchenden längsschnittlichen Prozesses wurde dem
Einsatz multimethodaler Forschungsdesigns äußerste Wichtigkeit zugesprochen (Eid, Lis-
chetzke, Nussbeck, & Trierweiler, 2003). Seit Campbell and Fiske (1959) ist die Idee all-
gemein anerkannt, dass psychologische Konstrukte immer mit einer spezifischen Beobach-
tungsmethode gemessen werden und somit Beobachtungen neben dem relevanten, zu mes-
senden psychologischen Konstrukt auch systematische methoden-spezifische Einflüsse er-
fassen. Multitrait-multimethod (MTMM) Designs ermöglichen es, solche Methodeneffekte
explizit zu modellieren und die konvergente und diskriminante Validität eines Konstruktes
zu analysieren. Trotz des steigenden Interesses an längsschnittlichen sowie an MTMM Da-
tenanalysen wurden nur wenige Versuche unternommen, anspruchsvolle längsschnittliche
Modelle für latente Variablen und MTMM Analysen miteinander zu kombinieren.
Für die erfolgreiche Anwendung längsschnittlicher CFA-MTMM Modelle in der Praxis ist es
von zentraler Bedeutung, Aspekte des Messdesigns zu berücksichtigen. Zum einen umfasst
eine steigende Anzahl von MTMM Messdesigns eine Kombination verschiedener Metho-
den (z.B. verschiedene Rater-Typen). Eid et al. (2008) erstellten eine Typologie von CFA-
MTMM Modellen für austauschbare, strukturell verschiedene, sowie die Kombination bei-
der Typen von Methoden. Austauschbare Methoden sind Methoden (z.B. Rater), welche
zufällig aus der gleichen Menge von Methoden gezogen werden. Da austauschbare Rater
in einem mehrstufigen Prozess der Stichprobenziehung gewonnen werden, muss die entste-
hende Multilevel-Struktur der Daten adäquat modelliert werden. Strukturell verschiedene
Methoden hingegen werden nicht aus einer Menge gleicher Methoden gezogen und könenn
daher nicht einfach durch einander ersetzt werden (z.B. Selbstberichte). Bisher gibt es nur
wenige CFA-MTMM Modelle, welche es ermöglichen längsschnittliche MTMM Daten mit
einer Kombination von strukturell verschiedenen und austauschbaren Methoden zu analysie-
ren (Koch, 2013; Koch, Schultze, Eid, & Geiser, 2014; Koch, Schultze, Holtmann, Geiser,
& Eid, 2017).
Zweitens wird eine steigende Zahl von psychologischen Konstrukten in Panel-Studien an-
hand von Kurzskalen erhoben, womit der Bedarf an Modellen, welche Analysen auf der
Item-Ebene erlauben, wächst. Da Items häufig mit kategorialen Antwortformaten erfasst
werden ist es entscheidend dieses kategoriale Antwortformat durch die Verwendung von
Messmodellen der Item-Response-Theorie angemessen zu berücksichtigen. Bisher wurden
nur wenige Modelle für die Analyse komplexer MTMM Daten mit geordnet kategorialen
Antwortvariablen eingeführt (Crayen, Geiser, Scheithauer, & Eid, 2011; Eid, 1996; Jeon
& Rijmen, 2014; Nussbeck, Eid, & Lischetzke, 2006). Keines dieser Modelle kann je-
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doch für länggschnittliche MTMM Messmodelle mit einer Kombination von austauschbaren
und strukturell verschiedenen Methoden angewendet werden. Die vorgelegte Arbeit schließt
diese Lücke und präsentiert mehrere längsschnittliche multilevel CFA-MTMM Modelle für
geordnet kategoriale Antwortvariablen: ein Latent State (LS-Com), ein Latent Change (LC-
Com), ein Latent State-Trait (LST-Com), und ein Latent Growth Curve (LGC-Com) Graded
Response Modell (GRM). Diese längsschnittlichen latenten-Variablen-Modelle gehören zu
den weit verbreitesten CFA Ansätzen längsschnittlicher Datenanalyse und können zur Beant-
wortung verschiedener Forschungsfragen herangezogen werden. Die eingeführten Modelle
kombinieren die Vorteile von multilevel MTMM Messdesigns und längsschnittlichen CFA
Modellen für kategoriale beobachtete Variablen.
Die Komplexität der eingeführten Modelle mit mehreren latenten Variablen und ordinalen
Indikatoren überschreitet die Grenzen der Anwendbarkeit und Rechenkapazitäten von Ver-
fahren der numerischen Integration. Folglich können die präsentierten Modelle bisher nur
mit Bayesianischen Methoden geschätzt werden.
Die statistische Performanz der Modelle wurde in drei Simulationsstudien mithilfe Bayesian-
ischer Schätzverfahren untersucht. Die Ergebnisse der Simulationsstudien zeigen, dass das
LS-Com GRM und das LST-Com GRM unter realistischen Stichprobengrößen akkurat ge-
schätzt werden können, wenn ein moderates Level konvergenter Validität vorliegt. Die
Ergebnisse zeigen, dass solch komplexe längsschnittliche multilevel CFA-MTMM Modelle
in einer breiten Zahl von Situationen mithilfe Bayesianischer Schätzmethoden angewendet
werden können. Die Schätzbarkeit der Modelle stößt jedoch an ihre Grenzen wenn niedrige
Level konvergenter Validität vorliegen oder wenn die Slope Varianzen im LGC-Com GRM
gering sind.
Die Ergebnisse der Simulationsstudien werden diskutiert und praktische Anwendungsrichtlin-
ien werden vorgestellt. Eine Anwendung der Modelle auf Multi-Rater Daten von subjektiver
Happiness und Lebenszufriedenheit illustriert die Anwendbarkeit und die Vorteile der Mo-
delle in angewandter Forschung sowie die Vorteile der Modellschätzung mittels Bayesiani-
scher MCMC Verfahren. Vorteile und Grenzen der Modelle werden diskutiert und ein Aus-
blick auf zukünftige Forschungsfragen wird gegeben.
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Chapter 1

Introduction

1.1 Longitudinal multitrait-multimethod modeling
The analysis of the stability and change of interindividual differences is one of the most fun-
damental goals in psychology1. Today, a plethora of statistical models are available for the
examination of intra- and interindividual change using manifest or latent variable approaches
(Heck, Thomas, & Tabata, 2013; Little, Schnabel, & Baumert, 2000; Rabe-Hesketh & Skro-
ndal, 2004; Singer & Willett, 2003; Steele, 2008).
Since Campbell and Fiske first introduced multitrait-multimethod (MTMM) analysis into the
social sciences in 1959, it has been repeatedly suggested that researchers should use multi-
method designs (Eid & Diener, 2006). Multimethod designs enable researchers to scrutinize
important properties of their measures (e.g., convergent and discriminant validity) and in-
vestigate method effects. This investigation is essential, as, how Fiske and Campbell (1992)
have stated, ”Method and trait or content are highly interactive and interdependent”. To
evaluate the convergent and discriminant validity, at least two methods have to be considered
(Campbell & Fiske, 1959; Eid & Diener, 2006). According to Campbell and Fiske (1959,
p. 394), convergent validity can be investigated through associations between two distinct
methods (e.g., self-reports and parent reports) assessing the same construct or attribute (e.g.,
happiness). Discriminant validity refers to the associations between two methods assessing
different constructs or attributes.
Presently, latent variable approaches such as confirmatory factor analysis (CFA) are com-
monly used to analyze MTMM data (Eid, 2000; Eid & Diener, 2004; Eid et al., 2003, 2008).
Latent variable models allow researchers to model MTMM structures in more sophisticated
and versatile ways. In this framework, method effects are not regarded as errors or nuisance
parameters but as an integral part of a psychological measure that is worth to be investi-
gated. Numerous CFA-MTMM models have been proposed so far, including traditional and,
more recently, design-oriented modeling approaches (Eid, Geiser, & Koch, 2016). Examples
of traditional MTMM models are the correlated trait-correlated uniqueness model (CT-CU;
Kenny, 1976), the correlated trait-uncorrelated method model (CT-UM; Marsh & Grayson,
1995), and the correlated trait-correlated method model (CT-CM; Marsh & Grayson, 1995).
Current developments in MTMM research focus on specific aspects of the measurement de-
sign in order to formulate adequate statistical models. Examples of such design-oriented

1Note that parts of this introduction have been pre-published in Holtmann, Koch, Bohn, and Eid (2017).
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CFA-MTMM models are the CTC(M-1) model (Eid, 2000), the latent difference model
(Pohl, Steyer, & Kraus, 2008), or the latent means model (Pohl & Steyer, 2010).
Despite the growing interest in longitudinal and MTMM data analysis, only few attempts
have been made to combine sophisticated longitudinal latent variable models and MTMM
data analysis (Courvoisier, Nussbeck, Eid, Geiser, & Cole, 2008; Geiser, Eid, Nussbeck,
Courvoisier, & Cole, 2010; Grimm, Pianta, & Konold, 2009; Kenny & Zautra, 2001; Koch,
2013; Koch et al., 2014). However, longitudinal CFA-MTMM models bear many advantages
(Geiser et al., 2010; Koch et al., 2014). For example, they allow researchers to:

1. explicitly model measurement error and investigate inter- and intraindividual change
apart from measurement error influences,

2. evaluate the convergent and discriminant validity of different measures within and
across occasions of measurement and thereby evaluate construct validity over time,

3. specify method effects as latent variables and study the change and stability with regard
to construct and method effects,

4. test important assumptions of longitudinal data analysis such as measurement invari-
ance, and

5. relate external (explanatory or criterion) variables to the latent variables in the model.

To successfully apply longitudinal CFA-MTMM models in practice, it is important to con-
sider specific aspects of the measurement design. First, an increasing number of MTMM
measurement designs include a combination of different methods (e.g., different types of
raters). Second, in many empirical applications researchers use single items as indicators.
Because items are typically measured on categorical response scales, measurement models
of item response theory (IRT) have to be considered.
A design-oriented approach to MTMM modeling requires researchers to consider specific
aspects of their measurement design in order to formulate an appropriate model. For that
purpose, Eid et al. (2008) provided a typology of CFA-MTMM models for interchangeable
methods, structurally different methods, and a combination of both types of methods. Inter-
changeable methods are methods that are randomly selected from the same set of methods.
Consider, for example, multiple peer ratings of students’ empathy or well-being. Because
multiple peer ratings stem from the same pool of methods (e.g., raters), they will have a sim-
ilar access to the target’s behavior (Eid et al., 2008). As interchangeable methods are drawn
in a multi-stage sampling procedure, the resulting multilevel structure has to be modeled ad-
equately.
In contrast, structurally different methods are not selected from the same set of methods and
can therefore not be easily replaced by one another. For example, self-ratings, parent ratings,
and physiological measures can be considered structurally different methods, as they stem
from different sets of methods and often reflect different perspectives on the target’s behav-
ior. Thus, the distinction between interchangeable and structurally different methods can be
understood in analogy to the distinction between random and fixed effects.
Many of today’s MTMM measurement designs incorporate a combination of structurally
different and interchangeable methods. For example, a combination of structurally differ-
ent and interchangeable methods is frequently encountered in educational studies (Eid et al.,



1.1 LONGITUDINAL MTMM DATA WITH ORDERED RESPONSES 3

2008; Koch et al., 2016; Pham et al., 2012), organizational studies (Mahlke et al., 2016), and
studies from social and personality psychology (Carretero-Dios, Eid, & Ruch, 2011).
Until now, only few CFA-MTMM models have been presented allowing researchers to
analyze longitudinal MTMM data with structurally different and interchangeable methods
(Koch, 2013; Koch, Schultze, Eid, & Geiser, 2014; Koch, Schultze, Holtmann, Geiser, &
Eid, 2017). The model by Koch et al. (2014) can be seen as a longitudinal variant of the
original multilevel CFA-MTMM model for structurally different and interchangeable meth-
ods proposed by Eid et al. (2008). Despite their advantages, these models are limited to
continuous observed variables and cannot be used for single item analysis. In the present
work, the models by Koch (2013) are extended to ordinal response variables.

1.2 Analyzing longitudinal MTMM data with ordered re-
sponse variables

Several reasons call for models that allow to analyze MTMM data with ordered response
variables. In recent years, an increasing number of psychological instruments are being used
in large-scale social surveys (Rammstedt & Beierlein, 2015). Large-scale panel studies are
costly and face economic constraints, requiring time-efficient and short assessments of any
construct of interest. Additionally, survey length has been found to be negatively associ-
ated with response rates (Edwards, Roberts, Sandercock, & Frost, 2004). Hence, the use of
short-scales has become highly relevant in longitudinal survey studies, such as the German
Socio-Economic Panel (SOEP; Wagner, Frick, & Schupp, 2007; see, e.g., Boyce, Wood, &
Brown, 2010; Headey, Muffels, & Wagner, 2013; Lang, Weiss, Stocker, & von Rosenbladt,
2007; S. M. Schneider & Schupp, 2014, for example studies using psychological short-scales
of the SOEP). Using short-scales, however, precludes analyses on a scale level. Instead, re-
searchers are forced to conduct item-level analyses, which is the preferred approach when
only few items are available. An appropriate treatment of the categorical response format in
item-level analyses is essential, as treating categorical variables as continuous can result in
biased parameter estimates as well as incorrect standard errors and test statistics (Beauducel
& Herzberg, 2006; Dolan, 1994; Moshagen & Musch, 2014; Rhemtulla, Brosseau-Liard, &
Savalei, 2012). Using single items as indicators has further advantages. In longitudinal stud-
ies, researchers should ensure that a measure assesses the same construct in the same way
across the different measurement occasions. This refers to the concept of measurement (or
factorial) invariance (Meredith, 1993; Meredith & Teresi, 2006). To test for factorial invari-
ance, it has been suggested to use single items as indicators (Meredith, 1993). Furthermore,
the comparison and selection of items demands a detailed examination of their psychome-
tric properties (e.g., consistencies, stabilities, reliabilities or difficulties), which cannot be
investigated if items are aggregated to test parcels.
Thus far, only few models have been presented allowing researchers to analyze MTMM
data with ordered response variables (Crayen, Geiser, Scheithauer, & Eid, 2011; Eid, 1996;
Jeon & Rijmen, 2014; Nussbeck, Eid, & Lischetzke, 2006). However, none of these models
can be used for longitudinal MTMM measurement designs combining structurally different
and interchangeable methods. The present work fills this gap by introducing a longitudinal
multilevel CFA-MTMM model for ordered response variables.
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1.3 The need for and possibilities of analyzing MTMM data
with Bayesian estimation techniques

Bayesian analysis facilitates the estimation of highly complex models, such as multilevel
structural equation models with categorical response variables (Asparouhov & Muthén, 2010b;
Fox, 2005; B. Muthén & Asparouhov, 2012). For these, the use of maximum likelihood esti-
mation would require high-dimensional numerical integration, and the complexity of models
with several latent variables and ordinal indicators often exceeds computational and practi-
cal limitations of numerical integration. Accordingly, only Bayesian methods allow for the
estimation of the models proposed in this work.
Additionally, Bayesian methods bear some advantages for the analysis of MTMM data. First,
MTMM studies that include the ratings of several interchangeable raters per target often en-
counter the problem of small sample sizes. For example, in psychological multirater studies,
often two to 10 interchangeable raters are collected for each target-person. Studies have
shown that Bayesian methods outperform classical estimation methods (e.g., maximum like-
lihood) with regard to singlelevel (Lee & Song, 2004) and multilevel factor models with few
clusters (Asparouhov & Muthén, 2010b; Hox, van de Schoot, & Matthijsse, 2012). The pos-
sibility to incorporate informative prior information in the estimation process might further
increase the applicability of the aforementioned models in small samples (Depaoli & Clifton,
2015; Holtmann, Koch, Lochner, & Eid, 2016; Lee, Song, & Cai, 2010). Bayesian methods
may also improve convergence problems in multilevel SEM associated with improper solu-
tions and inadmissible parameter estimates, such as negative variances, by assigning zero
prior probability to these parameter spaces (Depaoli & Clifton, 2015; Hox et al., 2012).
Second, Bayesian methods allow researchers to compute credibility intervals for key quan-
tities in longitudinal CFA-MTMM models, for example, with respect to coefficients of con-
vergent and discriminant validity, method specificities, or the stability of states or method
effects. In contrast, classical calculations of confidence intervals based on normal theory
may be unreliable for these types of parameters (e.g., variance and covariances).
Third, Bayesian methods allow researchers to include information from previous studies in
a meta-analytical way. This option seems especially interesting for (longitudinal) MTMM
analysis if researchers aim to include past findings concerning the convergent and discrimi-
nant validity of a particular measure or instrument in future studies.
Fourth, longitudinal data often suffer from attrition and the problem of missing data. In the
presence of missing data that could be missing at random, full information estimation meth-
ods should be applied. Bayesian estimation provides a valid full-information approach that
can ensure that missing data is properly accounted for in cases where it is computationally
not feasible to use maximum likelihood due to the need of numerical integration over high-
dimensional integrals (Asparouhov & Muthén, 2010b).
Although Bayesian methods have been successfully applied in IRT modeling (Béguin &
Glas, 2001; Fox & Glas, 2001; Hojtink & Molenaar, 1997; Miyazaki & Hoshino, 2009;
Patz & Junker, 1999) and longitudinal data analysis (Dunson, 2003; Song, Lu, Hser, &
Lee, 2011), they have not been used for the analysis of longitudinal multilevel MTMM data
with ordinal response variables. In the next chapters, new models that complement longi-
tudinal CFA-MTMM modeling approaches for the combination of structurally different and
interchangeable methods by analyses suitable for ordinal response variables and Bayesian
estimation techniques are introduced.



1.4. BASIC IDEAS OF THE MODELING TECHNIQUES 5

1.4 Basic ideas of the modeling techniques
In the following chapters, different longitudinal multilevel MTMM graded response models
for measurement designs combining structurally different and interchangeable methods are
introduced: a latent state, a latent change, a latent state-trait, and a latent growth curve GRM.
These longitudinal latent variable models belong to the most widely applied CFA approaches
to longitudinal data modeling and serve to answer different research questions. Furthermore,
all of the models presented in this work are constructively defined based on psychometric
theory as well as on design-oriented CFA-MTMM modeling approaches (Eid et al., 2016).
In the following, the basic ideas of these modeling approaches are introduced.

1.4.1 Approaches to MTMM modeling
CFA MTMM modeling approaches offer a more accurate estimation of convergent and dis-
criminant validity than could be obtained by correlations of observed variables, separating
measurement error from true scores and estimating correlations based on the measurement-
error free true score variables.
In design-oriented modeling approaches, model definitions are based on psychometric the-
ory (i.e., stochastic measurement theory) and a well-defined random experiment (Eid et al.,
2016). Latent variables are explicitly defined as random variables based on mathematical
functions of true score variables, and thereby, have a clear meaning. It has been argued that
explicitly taking the measurement design and sampling procedure into account when defin-
ing complex CFA models may reduce the risk of estimation and interpretation problems (Eid
et al., 2016; Geiser, Koch, & Eid, 2014; Geiser, Bishop, & Lockhart, 2015).
In the context of MTMM modeling, each measured variable is conceived as a trait-method-
unit (TMU; Campbell & Fiske, 1959). Each measured variable, that is, each TMU, is as-
sumed to have its own true score variable. As in the basic decomposition of classical psycho-
metric test theory (CTT; Steyer, 1989), each measured variable Yjk can then be decomposed
into a true score and an error variable,

Yjk = t jk + e jk, (1.4.1)

where Yjk is the observed variable of construct j measured by method k, the true score t jk
represents the expectation of Yjk given a person, i.e., the mean of a person’s intraindividual
score distribution, and e jk is an error term.
Latent factors can then be identified by imposing restrictions on the correlation structure
of the true score variables. To obtain identified CFA MTMM models in designs with only
a single indicator per TMU, it is necessary to impose the assumption that method effects
are perfectly correlated across different constructs (Eid, 2000; Marsh & Grayson, 1995).
This is a rather strong assumption that is often too restrictive for empirical applications. In
order to obtain trait-specific method effects, multiple-indicator MTMM designs have been
developed (Eid et al., 2003, 2008; Marsh & Hocevar, 1988; Marsh, 1993). These designs
use multiple indicators per TMU and are built on the assumption that true scores are uni-
dimensional across items pertaining to the same TMU (Eid et al., 2003). The most basic
multiple-indicator MTMM measurement model building on this assumption is the baseline
TMU model by Marsh and Hocevar (1988) depicted in Figure 1.1. The latent correlation
matrix between the factors in this model could be interpreted along the same lines as in the
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Figure 1.1: Path diagram of the baseline TMU model with two constructs and three (structurally different)
methods, measured with three indicators each. ei jk: residual variable for indicator i of construct
j and method k; li jk: loading parameter for indicator i of construct j and method k; t jk: true
score variable for construct j and method k; Yi jk: observed variables of the i-th item of construct j
measured by method k.

classical MTMM matrix as proposed by Campbell and Fiske (1959), with the difference that
the convergent and discriminant validity are being explored at the latent level.
The models presented in this work are based on a design-oriented CFA-MTMM modeling
approach (Eid et al., 2016), the CTC(M-1) approach (Eid, 2000; Eid et al., 2003, 2008).
The idea underlying the CTC(M-1) approach is that method effects can be analyzed by defin-
ing one method as a reference method and contrasting the remaining methods against this
reference. The CTC(M-1) model is thereby an extension of the baseline TMU model, which
focuses on different contrasts between the methods. Given certain parameter restrictions, the
(restricted ) CTC(M-1) model is a perfect reparameterization of the baseline TMU model,
i.e., has the same model fit (Geiser, Eid, & Nussbeck, 2008).
In the CTC(M-1) approach, method effects are defined as latent residual variables, reflecting
the over- or underestimation of the construct under investigation by the non-reference method
with respect to the reference method (Eid et al., 2003, 2008). That is, the true score variables
of the non-reference methods are regressed on the true scores of the reference methods,
obtaining method effects as residual variables of this latent regression:

E[t jk | t j1] = a jk +b jkt j1 (1.4.2)

and

Mjk := t jk �E[t jk | t j1] (1.4.3)

The trait factor in this model corresponds to the true score variable of the reference method
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(here t j1). Consequently, trait and method factors are defined relative to the chosen reference
method and there is no method factor for the indicators of the reference method.
It has been argued that the CTC(M-1) model overcomes many methodological problems of
the well-known CT-CM model, which has been repeatedly associated with interpretation
problems, non-convergence, improper solutions, and vanishing method factors (Eid et al.,
2016; Geiser, Bishop, & Lockhart, 2015).
Besides the CTC(M-1) approach, there are other desing-oriented approaches to MTMM
modeling that use constructively defined latent variables and are equivalent to the basic TMU
measurement model. These are the latent difference (LD) model (Pohl et al., 2008) and la-
tent means (LM) model (Pohl & Steyer, 2010). While in the LD model method factors are
defined as latent difference scores with respect to a reference method, the LM model defines
the trait factor as the grand mean of the true score variables pertaining to the same construct
and method factors as deviations from this average true score variable.
Each of these models has its own strengths and weaknesses. A detailed comparison of the
approaches can be found in Geiser, Eid, West, Lischetzke, and Nussbeck (2012) as well as
in Koch, Eid, and Lochner (in press). The CTC(M-1) approach was chosen as it features
the following advantages. First, it allows researchers to compare methods that are measured
on different scales, for instance, contrasting physiological measures with rating scales. In
contrast, the LD model requires the items representing different methods to be measured on
a common metric (Geiser et al., 2012). Second, Geiser et al. (2012) have shown that the
CTC(M-1) model allows to separate three types of method bias: general, conditional, and
individual method bias. In contrast, individual and conditional method bias are not separable
in the LD and LM models. The conditional method bias in the CTC(M-1) model depends on
the deviation of the regression line from a 45 line (Geiser et al., 2012). That is, it depends
on the regression intercept and regression slope, the latter of which quantifies the degree to
which the over- or underestimation by the non-reference method depends on the value of the
reference method. The individual values of the residual and its variance represent the degree
of individual bias, that is, the deviation of an individual value from the value predicted by
the regression. While the conditional method bias is perfectly correlated with the reference
method factor, the residual represents a pure method effect that is corrected for influences
of the reference method (Geiser et al., 2012). Third, the CTC(M-1) approach implies an
additive decomposition of the observed variables’ variances and thereby allows to compute
additive variance components associated with trait or method effects (e.g., quantifying the
degree of convergent validity). This additive decomposition in the CTC(M-1) model is possi-
ble as method effects have been corrected for reference trait influences, while method effects
can be correlated with trait influences in the LD and LM models.

1.4.2 Situational influences
As Steyer, Mayer, Geiser, and Cole (2015, p. 71) postulate in their revision of latent state-trait
(LST) theory, ”observations are fallible, they never happen in a situational vacuum, they are
always made using a specific method of observations, and there is no person without a past”.
While the necessity to account for measurement error and method-specificity of observations
was discussed in the previous sections, the following sections turn to the issue of situational
influences and the representation of change in models of longitudinal data analysis.
All of the models presented in this work incorporate the basic idea of LST theory (Steyer,
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Ferring, & Schmitt, 1992; Steyer, Schmitt, & Eid, 1999) that psychological measurements
do not take place in a situational vacuum. Additionally, they take into account that targets
and raters may be affected differently by inner and outer aspects of a particular situation.
Although targets and raters may experience the same outer situation (e.g., answering a ques-
tionnaire), their inner situations may be quite different (they may, for instance, be happy,
tired, or stressed). The term situation will be used in a broader sense in this work, that is,
encompassing all inner and outer aspects of a situation that can affect a person (target or
rater) at a specific time and place. Note that this definition of a situation is not restricted to
the experimental situation in the moment of the assessment (measurement, rating). Instead,
it encompasses all experiences and circumstances that might temporarily affect a person’s
measurement (rating), regardless of whether they are a characteristic of the measurement
situation per se (e.g., the temperature in the room where the assessment takes place) or not
(e.g., a stressful day at work influencing the target’s or rater’s present mood).

1.4.3 Longitudinal CFA modeling
The longitudinal latent variable models treated in this work (latent state, latent change, latent
state-trait and latent growth curve) belong to the most widely applied CFA approaches to
(continuous) longitudinal data modeling (Newsom, 2015). Note that the models in this work
address longitudinal modeling of continuous latent variables. That is, approaches for cate-
gorical latent variables, such as latent class or latent transition analysis (Collins & Flaherty,
2002; Eid, 2006; Langeheine, 1994), as well as approaches aiming at predicting the (time
of) occurrence of a discrete event, such as survival analysis (Cox & Oakes, 1984), are not
discussed here.
Khoo, West, Wu, and Kwok (2006) identify three general classes of longitudinal models for
analyzing change: autoregressive models, growth curve models, and latent state-trait models.
Similarly, Eid and Langeheine (1999) distinguish between five groups of models, depending
on the kind of change they assume: latent state models, autoregressive models, growth curve
models, variability models, and autoregressive variability models. Latent state (LS) models
represent the simplest models for analyzing change. In LS models, the covariance structure
of the latent variables is not restricted, and change is quantified indirectly via the strength of
associations between the latent variables over time. Different restrictions of the covariance
structure between the latent variables in LS models lead to one of the more complex models.
Collins (2006) argues that the first step to longitudinal data analysis should always be to
consider the theoretical model of change, that is, the nature of the change phenomenon that is
to be studied. In this framework, variability and change are treated as distinct processes that
can be distinguished (Eid & Kutscher, 2014; Nesselroade & Ram, 2004). While variability
refers to short-term, reversible fluctuations around a stable set-point (time-constant trait),
change is conceptualized to be more enduring and independent of short-term influences (i.e.,
trait change; Nesselroade, 1991; Eid & Kutscher, 2014; Geiser, Keller, et al., 2015; Steyer et
al., 2015).
Hence, the different models obtained by imposing restrictions on the latent association struc-
ture over time assume different processes of change and serve to answer different research
questions. While LS models can be used to investigate the stability of constructs via their
correlations over time, latent change (LC) models present a reparameterization of LS mod-
els, parameterizing change as latent difference scores of the latent states between measure-
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ment occasions. Variances of the latent difference score factors then serve to quantify the
amount of inter-individual differences in intra-individual change. Latent first-order autore-
gressive models, in contrast, model longitudinal processes by regressing a latent variable
on the latent variable at the preceding time point. Change is then defined as the regression
residual of this latent autoregression. Autoregressive models implicitly assume that stability
declines with an increasing time lag and that the process is characterized by temporal inertia
(Hertzog & Nesselroade, 1987). Consequently, these models are typically applied to model
long-lasting and irreversible change (Eid & Langeheine, 1999). Similar to LC models, latent
growth curve (LGC) models (Bollen & Curran, 2006; McArdle & Epstein, 1987) serve to
investigate inter-individual differences in intra-individual change. However, LGC models
impose the restriction that change follows a function of time, thereby allowing to estimate
person-specific growth curves and identify trends in the data. In contrast, latent state-trait
(LST) models (Steyer et al., 1992, 1999) are commonly understood as models focusing on
variability. They allow to evaluate the variability of a construct by differentiating between
occasion-specific and stable influences.
Change is a phenomenon that occurs within the individual, making intraindividual variabil-
ity the primary interest in modeling longitudinal data (Collins, 2006; Hertzog & Nessel-
roade, 1987). Accordingly, old as well as newer approaches stress the importance of sepa-
rating inter- and intraindividual variability, i.e., the between-person from the within-person
level, in the specification of lagged-panel or autoregressive models (e.g., Hamaker, Kuiper,
& Grasman, 2015; Hertzog & Nesselroade, 1987; Rovine & Walls, 2006). While Rovine
and Walls (2006) have introduced an autoregressive model in the context of multilevel anal-
ysis, Hamaker et al. (2015) focused on the cross-lagged panel model and argued that it is
essential to model stable inter-individual differences by the inclusion of a latent trait or ran-
dom intercept in the model. By inclusion of a stable latent trait factor in autoregressive panel
models, the modeling approach essentially becomes equivalent to models separating trait and
occasion-specific components of an observation (i.e., LST models) with autoregressive ef-
fects on the occasion-specific components (Cole, Martin, & Steiger, 2005; Luhmann, Schim-
mack, & Eid, 2011). One difference is that the model by Hamaker et al. (2015) does not take
measurement error into account. A multiple-indicator, latent-variable variant of this model,
termed the Trait-State-Occasion (TSO) model, was introduced by Cole et al. (2005), who
argued that autoregressive effects should be modeled on the level of the occasion-specific
(residual) variables instead of the latent state variables to avoid a recursiveness in the model.
Other approaches have integrated autoregressive structures in latent growth models (e.g.,
Bollen & Curran, 2004). These models fall into the category of ”autoregressive variability
models” in the classification given by Eid and Langeheine (1999). The class of autoregres-
sive variability models comprises those models that assume a combination of different kinds
of change, such as incorporating latent time-constant and occasion-specific variables with an
autoregressive structure into a hybrid model (Eid & Langeheine, 1999). Due to the afore-
mentioned shortcoming of failing to differentiate between inter- and intraindividual levels
of change, the classical autoregressive model is not among the models covered in this work.
Instead, autoregressive models will be merely discussed in the context of LST models in the
following.
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1.5 Aims and scope of the present work
The aim of the present work is to present longitudinal multilevel CFA-MTMM models for
ordered categorical response variables. The presented models combine the modeling possi-
bilities of the continuous indicator models for measurement designs combining structurally
different and interchangeable methods introduced by Koch (2013) with the advantages of
an IRT approach to analyzing longitudinal MTMM data. In addition, it will be shown how
Bayesian estimation techniques can address a number of important issues that typically arise
in longitudinal multilevel MTMM studies. Bayesian estimation techniques do not only ren-
der the estimation of complex MTMM-IRT models possible, but also offer additional advan-
tages over classical frequentist approaches. The performance of the models is investigated
in three Monte Carlo simulation studies. Additionally, the practical use of the models is il-
lustrated with regard to an empirical application to subjective well-being data. Advantages
and limitations of the presented models and their estimation using Bayesian methods are
discussed.
All of the models presented in this work build on the definition of latent variables on a spec-
ified random experiment. This random experiment and the probability space used to define
the random variables are introduced within the definition of the LS-Com GRM (Chapter 2),
however, apply to all of the following models, too.



Chapter 2

Latent State (LS-Com) Graded
Response Model

2.1 General introduction to the model definitions

In the following chapters, different longitudinal multilevel MTMM graded response models
for measurement designs combining structurally different and interchangeable methods are
introduced. The graded response model (Samejima, 1969, 2010) was chosen as it is equiva-
lent to the measurement model of CFA models for response variables with ordered response
categories (Takane & De Leeuw, 1987). As models for measurement designs combining
structurally different and interchangeable methods, the presented models are multilevel mod-
els. Recall that interchangeable methods are those methods that are randomly drawn from
a set of equivalent methods, such as multiple peer ratings for the same target. As they are
the result of a multi-stage sampling procedure, interchangeable raters are measured on the
within-level. It is assumed that the interchangeable raters are fully nested within targets (i.e.,
there is no cross-classification structure). An adequate approach to model these data has to
take the resulting multilevel structure into account (e.g., Eid et al., 2008; Koch et al., 2014).
Ignoring the dependencies in multilevel structures can have detrimental effects such as bi-
ased parameter estimates and standard errors (Julian, 2001).
Structurally different methods, in contrast, are methods that cannot be easily replaced by
one another, such as self-ratings or a parent rating of a child’s characteristics. In contrast to
the interchangeable raters, the structurally different raters are fixed given the target. Hence,
there is no additional sampling step for the structurally different raters once a target has been
selected. Therefore they are measured on the target-level. However, also the responses of
the structurally different raters are observed in rater-specific situations.
As longitudinal MTMM models, the presented GRMs are designed to model data including
measures on multiple constructs j that are assessed with different methods k on multiple
measurement occasions l. Furthermore, each construct is assumed to be measured by several
indicators i (for a list of indices used in the model definition see Table 2.1). The observed
variables are assumed to be measured on a rating scale with ordered categorical response
options s 2 Si j, with Si j = {0, · · · ,qi j �1}, where qi j is the number of response categories of
item i of construct j.
The following model definitions are based on a model with one set of interchangeable and
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Table 2.1: List of Indices used in the Model Definitions.

Index Meaning
r rater
t target
i indicator
j construct
k method
l measurement occasion
s response category

qi j number of response categories
of indicator i of construct j

two structurally different methods. The index k serves for the distinction between reference
and non-reference as well as structurally different and interchangeable methods. Choosing
the first, structurally different method (k = 1) as the reference method, the second method
(k = 2) indicates the non-reference interchangeable method (e.g., peer reports). All methods
k > 2 are assumed to be structurally different non-reference methods. Adding an additional
set of interchangeable or structurally different methods is straightforward. The basic struc-
ture of the models will be explained using raters as methods (Kenny, 1995). Thus, a self-
report (structurally different reference method), different interchangeable peer ratings (inter-
changeable non-reference method), and parent reports (structurally different non-reference
method) serve as an example.

2.2 The random experiment, probability space, and condi-
tional probability distributions

First, the random experiment that characterizes the sampling procedure for longitudinal mea-
surement designs of a graded response model with structurally different and interchangeable
methods is specified1. Based on the specified random experiment, the variables in the LS-
Com, LC-Com, LST-Com, and LGC-Com GRM can then be properly defined as random
variables. This approach is based on stochastic measurement theory following the approach
by Eid (2000), Koch, Eid, and Lochner (in press), Steyer and Eid (2001) as well as Steyer
(1988). The latent variables in the GRMs defined in the following chapters are thereby ran-
dom variables that are well-defined on a specified random experiment and, therefore, have a
clear meaning. Note that recently Steyer et al. (2015) proposed a revision of LST (LST-R)
theory building on a different definition of the random experiment, in which the probabil-
ity space W explicitly includes persons’ experiences between measurement occasions. It is
noteworthy that, although the conceptualization of the random experiment and the definition
of the probability space given in the following differs from that in LST-R theory, the vast
majority of models that can be specified on the basis of these theories are identical. That
is, all of the models defined in the following sections could also be defined based on LST-R
theory. LST-R theory is discussed in Section 4.13.
The following model definitions are designed for data including measures on multiple con-
structs j that are assessed with different methods k using several indicators i on multiple

1Note that parts of the this chapter have been pre-published in Holtmann et al. (2017)
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measurement occasions l. Let the first method k = 1 be a structurally different self-report
method, the second method (k = 2) an interchangeable method, and all methods k > 2 struc-
turally different informant report methods. Then, consider the probability space (W,A,P)
with the set

W = WT ⇥WT S1 ⇥ . . .⇥WT Sl ⇥ . . .⇥WT S f ⇥WR ⇥WR2S1 ⇥ . . .⇥WRkSl ⇥ . . .⇥WReS f ⇥WO

where WT is the set of targets assessed within a target-specific situation WT Sl on measurement
occasion l 2 L = {1, · · · , f }, WR is the set of interchangeable raters, and WRkSl is the set of
possible rater-situations for rater k, k > 1, on measurement occasion l. Note that the set of
interchangeable raters WR does not get an index (k = 2) for simplicity reasons, as the random
experiment is defined for one set of interchangeable raters only. WO is the set of possible
outcomes given by

WO = WO11 ⇥ · · ·⇥WOkl ⇥ · · ·⇥WOe f (2.2.1)

where each WOkl for method k 2 K = {1, · · · ,e} and measurement occasion l is the product
set WOkl = A1kl ⇥ · · · ⇥ A jkl ⇥ · · · ⇥ Adkl . Each set A jkl is the cross-product of the c j sets
Oi jkl , A jkl = O1 jkl ⇥ · · ·⇥ Oi jkl ⇥ · · ·⇥ Oc j jkl , containing the possible outcomes for item i,
i 2 I j = {1, · · · ,c j}, of construct j, method k and occasion l.
Define the projections pT : W ! WT as the mapping of the possible outcomes to the set of
targets, the projection pR : W ! WR as the mapping of the possible outcomes to the set of
interchangeable raters, the projection pT Sl : W ! WT Sl as the mapping of the possible out-
comes to the set of target-situations, and the projection pRkSl : W ! WRkSl as the mapping of
the possible outcomes to the set of rater-situations for the raters of method k.
The variables Yrti j2l and Yti jkl are random variables on (W,A,P), defined by the following
mappings: (1) for a level-1 observation belonging to an interchangeable rater the variable
Yrti j2l is defined as Yrti j2l : WT ⇥ WT Sl ⇥ WR ⇥ WR2Sl ⇥ WO ! Si j, (2) for a level-2 obser-
vation as rated by a structurally different rater other than the target, Yti jkl : WT ⇥ WT Sl ⇥
WRkSl ⇥ WO ! Si j, with k > 2, and (3) for a level-2 self-report observation (structurally dif-
ferent), the observed variable is defined by the projection Yti j1l : WT ⇥WT Sl ⇥WO ! Si j, with
Si j = {0, · · · ,qi j �1}, where qi j is the number of response categories of item i of construct j
(cf. Eid, 1995; Koch, 2013). Note that, for the sake of simplicity, the possible response cate-
gories for an item i of construct j are assumed to be equal across methods and measurement
occasions.
The observed values of an indicator i of construct j, assessed by an interchangeable method
k = 2, on the lth occasion of measurement for target t as rated by rater r are denoted by the
values of the level-1 variable Yrti j2l . These variables are measured on the rater-level (Level
1) as they are not only target- but also rater-specific. In contrast, the variables Yti jkl , k 6= 2,
are level-2 variables, and the values of Yti jkl are the observed values of indicator i for con-
struct j, assessed by a structurally different method k on the lth occasion of measurement for
target t. Only the interchangeable methods are measured on the within-level, as they are the
result of a multi-stage sampling procedure. In contrast, the structurally different raters are
fixed given the target. Hence, there is no additional sampling step for the structurally dif-
ferent raters once a target has been selected. However, also the responses of the structurally
different raters are observed in rater-specific situations, and thus depend on the projection
pRkSl . Note that the model definitions of the GRMs given here deviate from their continuous
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indicator model counterparts in that the latter did not contain rater-specific situations for the
structurally different raters and hence did not include the projection pRkSl for k > 2.
The set of rater situations on measurement occasion l is assumed to include all the situations
any of the raters could potentially encounter. As stated earlier, the term situation refers to
all inner and outer situations encompassing all experiences and circumstances that might
temporarily affect a person’s measurement (rating) at a specific time and place. In order
to distinguish between the rater-situations of the structurally different and interchangeable
raters, the subscript k is used.
The graded response model in normal ogive form is based on cumulative probit link models
(Agresti, 2007; B. Muthén & Asparouhov, 2002). For the present model, latent response
variables prtsi jkl and ptsi jkl are defined for each observed variable Yrti jkl and Yti jkl , respec-
tively, and for each category s 2 Si j by the application of a probit link (Eid, 1995, 1996):

ptsi j1l := F�1[P(Yti j1l � s | pT , pT Sl)] (2.2.2)

prtsi j2l := F�1[P(Yrti j2l � s | pT , pT Sl , pR, pR2Sl)] (2.2.3)

ptsi jkl := F�1[P(Yti jkl � s | pT , pT Sl , pRkSl)] k > 2 (2.2.4)

with F denoting the cumulative distribution function of the standard normal distribution,
taking k = 1 as the reference method, k = 2 as the interchangeable non-reference method,
k > 2 as structurally different non-self-report methods, and

P(Yti j1l � s | pT , pT Sl) = E[I{Yti j1l�s} | pT , pT Sl ] (2.2.5)

P(Yrti j2l � s | pT , pT Sl , pR, pR2Sl) = E[I{Yrti j2l�s} | pT , pT Sl , pR, pR2Sl ] (2.2.6)

P(Yti jkl � s | pT , pT Sl , pRkSl) = E[I{Yti jkl�s} | pT , pT Sl , pRkSl ] k > 2, (2.2.7)

where E[· | ·] denotes the conditional expectation and I denotes the indicator function with,
e.g., I{Yti j1l�s} = 1, if Yti j1l � s, and I{Yti j1l�s} = 0, otherwise. It is assumed that common
latent response variables pti jkl and prti j2l exist, which are common latent variables of all
latent variables ptsi jkl and prtsi j2l , respectively, belonging to the same item i of construct j at
time l:

pti jkl := ptsi jkl +ksi jkl k 6= 2 (2.2.8)
prti j2l := prtsi j2l +ksi j2l (2.2.9)

The constants ksi jkl and ksi j2l represent the position of the normal ogives on the latent con-
tinua pti jkl and prti j2l , their values being the inflection points of the normal ogives that de-
pict the dependence of the probabilities P(Yti j1l � s | pT , pT Sl), P(Yti jkl � s | pT , pT Sl , pRkSl),
k > 2, and P(Yrti j2l � s | pT , pT Sl , pR, pR2Sl) on the latent response variables pti j1l , pti jkl ,
k > 2, and prti j2l , respectively. They can be interpreted as difficulty parameters of the
dichotomized variables. The probability functions P(Yrti j2l � s | pT , pT Sl , pR, pR2Sl) and
P(Yti j1l � s | pT , pT Sl) can thus be expressed as:

P(Yrti j2l � s | pT , pT Sl , pR, pR2Sl) = P(Yrti j2l � s | prti j2l)

= F(prti j2l �ksi j2l) =
Z

prti j2l�ksi j2l

�•

1p
2p

e
�x2

2 dx
(2.2.10)



2.2 INTRODUCTION TO THE LS-COM GRM 15

P(Yti j1l � s | pT , pT Sl) = P(Yti j1l � s | pti j1l)

= F(pti j1l �ksi j1l) =
Z

pti j1l�ksi j1l

�•

1p
2p

e
�x2

2 dx
(2.2.11)

and analogously for Yti jkl , k > 2.
The higher a person’s score on the latent response variable, the higher the probability that
this person in a certain situation will respond in category s or higher to the respective item.
The conditional probability that Yrti j2l takes on the value of category s is then given by (Eid,
1995):

P(Yrti j2l = s | prti j2l) = P(Yrti j2l � s | prti j2l)�P(Yrti j2l � s+1 | prti j2l)

= F(prti j2l �ksi j2l)�F(prti j2l �k(s+1)i j2l)
(2.2.12)

with P(Yrti j2l � 0 | prti j2l) = 1 and P(Yrti j2l � s | prti j2l) = 0 for s > qi j �1. The conditional
probabilities P(Yti jkl = s | pti jkl), k 6= 2, are computed in the same manner.

2.3 Introduction to the LS-Com GRM
This chapter introduces the Latent-State-Combination-Of-Methods-Graded-Response-Model
(LS-Com GRM). The model is based on the LS-Com model for continuous indicator vari-
ables developed by Koch (2013); Koch et al. (2014). The present model combines the mod-
eling possibilities of the continuous indicator LS-Com model with the advantages of an IRT
approach to analyzing longitudinal MTMM data. The LS-Com GRM allows to

1. analyze convergent and discriminant validity over time,

2. specify method factors on different measurement levels,

3. analyze change and stability of construct and method effects over time,

4. investigate the generalizability of method effects across methods or time,

5. test the degree of measurement invariance over time on the item-level,

6. compare item difficulties, item discrimination and reliability for different methods, and

7. test mean changes of constructs over time.

The following derivation of the latent variables in the LS-Com GRM build on the definition
of the random experiment and the latent response variables in Section 2.2.
According to these definitions, the latent response variables pti jkl , k 6= 2, are target specific,
measured on Level 2, while the latent response variables prti j2l are rater-target specific, and
thereby measured on Level 1. Having defined the latent response variables pti jkl and prti j2l ,
the latent state and method variables can be defined in terms of conditional expectations
(analogous to the continuous indicator case; Koch, 2013). Selecting the second method
(k = 2) as the set of interchangeable (non-reference) methods, each latent variable prti j2l can
be decomposed into the following random variables on (W,A,P):

Sti j2l = E[prti j2l | pT , pT Sl ] (2.3.1)
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UMrti j2l = prti j2l �E[prti j2l | pT , pT Sl ]

= prti j2l �Sti j2l
(2.3.2)

The target-level latent state variables Sti j2l can be conceived as the expected peer rating
of target t across the interchangeable peer ratings for this target on occasion l for indica-
tor i measuring construct j. That is, they can be considered as the occasion-specific ”true
means” of the interchangeable ratings for this target and are thereby rater-unspecific. The
unique method variables UMrti j2l are rater-specific level-1 variables. They represent the
true occasion-specific unique deviation of a particular rater from the expected rating over
all interchangeable raters for target t (Sti j2l), that is, the over- or underestimation of the true
expected peer rating by a particular rater r (Koch, 2013). Due to their definition as latent
residual variables, the UMrti j2l variables have an expectation of zero and are uncorrelated
with the level-2 latent state variables Sti j2l .
The latent state variable of the structurally different self-report Sti j1l as well as structurally
different informant reports Sti jkl , k > 2, measured on Level 2, correspond to the common
latent variables pti jkl for indicator i, construct j and time point l:

Sti jkl = pti jkl k 6= 2 (2.3.3)

Having defined the target-level latent variables Sti j2l for the interchangeable method, the
latent state variables belonging to different types of methods (Sti j2l and Sti jkl) are measured
on the same level (Level 2) and can be contrasted against each other. This idea follows
the CTC(M � 1) approach for structurally different methods (Eid, 2000; Eid et al., 2003,
2008), regressing the non-reference latent state variables on the latent state variables of the
reference-method:

E[Sti jkl | Sti j1l] = lSi jklSti j1l k 6= 1 (2.3.4)

Note that the regression equations do not include intercepts, as intercept and threshold pa-
rameters ksi jkl are not separately identifiable (see Sections 2.5 and 2.13). The residuals of
this latent regression analysis can be defined as latent method variables on the target-level,
the common method variables CMti j2l and the method variables Mti jkl , k > 2:

CMti j2l = Sti j2l �E[Sti j2l | Sti j1l] (2.3.5)
Mti jkl = Sti jkl �E[Sti jkl | Sti j1l] 8 k > 2 (2.3.6)

The CMti j2l variables are that part of the true expected rating of the interchangeable raters
(e.g. peer ratings) that is not shared with the reference method (here: self-ratings). The latent
variables CMti j2l are termed common method variables, as they represent a common view of
the interchangeable raters on the target, that is not shared with the self-reports (on a particular
occasion of measurement for construct j; Koch, 2013). The method variables Mti jkl for
structurally different methods k > 2 represent the part of the true informant rating that is not
shared with the reference method. Due to their definition as latent residual variables, the
common method variables as well as the method variables are uncorrelated with the latent
state variables of the reference method (Sti j1l) and have an expectation of zero (Koch, 2013).
Assuming that the latent method variables of the same method differ only by multiplicative
constants, common latent method factors can be defined (Koch, 2013):
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CMti j2l = lCMi j2lCMt j2l (2.3.7)
UMrti j2l = lUMi j2lUMrt j2l (2.3.8)

Mti jkl = lMi jklMt jkl k > 2 (2.3.9)

This assumption implies that the method variables of different indicators i but belonging
to the same construct j and measurement occasion l are perfectly correlated. Note that it is
necessary to make assumptions (2.3.8) and (2.3.9) for identifiability reasons, as a model with
indicator-specific factors UMrti j2l or Mti jkl , k > 2, would not be identified.
Overall, the common latent response variables of the non-reference interchangeable method
(k = 2) in the LS-Com GRM can be expressed as:

prti j2l = Sti j2l +lUMi j2lUMrt j2l

= lSi j2lSti j1l +lCMi j2lCMt j2l +lUMi j2lUMrt j2l
(2.3.10)

The measurement equation for the non-reference structurally different methods is given by:

pti jkl = lSi jklSti j1l +lMi jklMt jkl k > 2 (2.3.11)

Additionally, it could be assumed that the indicator-specific latent state variables are per-
fectly correlated, resulting in one common latent state factor per construct j and time point
l:

pti j1l = Sti j1l = lSi j1lSt j1l (2.3.12)

The LS-Com GRM for one interchangeable and two structurally different methods with
indicator-specific latent state factors is depicted in Figure 2.1, the analogous LS-Com GRM
with common latent state factors is depicted in Figure 2.2.
Based on the above definition of the latent state and latent method variables, the variance
of the latent response variables pti jkl and prti j2l can be additively decomposed into different
variance components. The additive decomposition is based on the fact that all of the method
factors are defined as latent residual variables with regard to their respective latent state vari-
ables and are, therefore, uncorrelated with their regressors (see Section 2.10). The variances
of the latent response variables can hence be additively decomposed in the following ways:

Var(pti j1l) = Var(Sti j1l) (2.3.13)

Var(prti j2l) = l

2
Si j2lVar(Sti j1l)+l

2
CMi j2lVar(CMt j2l)+ l

2
UMi j2lVar(UMrt j2l) (2.3.14)

Var(pti jkl) = l

2
Si jklVar(Sti j1l)+l

2
Mi jklVar(Mt jkl) k > 2 (2.3.15)

Analogous to the LS-Com model with continuous indicators, different variance components
for the non-reference method indicators can be defined. The following variance components
correspond to the coefficients introduced by Koch (2013), with the only difference that they
are defined based on the latent response variables pti jkl and prti j2l .
The consistency coefficients are defined as:
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Con(pti jkl) =
l

2
Si jkl

Var(Sti j1l)

l

2
Si jkl

Var(Sti j1l)+l

2
Mi jkl

Var(Mt jkl)
k > 2 (2.3.16)

Con(prti j2l) =
l

2
Si j2l

Var(Sti j1l)

l

2
Si j2l

Var(Sti j1l)+l

2
CMi j2l

Var(CMt j2l)+l

2
UMi j2l

Var(UMrt j2l)
(2.3.17)

They represent that part of the non-reference method’s latent response variable’s variance
that can be explained by the reference method. For structurally different non-reference meth-
ods (k > 2), the consistency coefficient is the amount of true interindividual differences in
the informant report that is shared with the reference method. In case of interchangeable non-
reference methods, the consistency coefficient represents the part of the true interindividual
differences between the individual informant reports on the rater-level that is shared with
the reference method. The square root of the consistency coefficient can be interpreted as
an indicator of the convergent validity between the reference and the non-reference method.
Furthermore, for the interchangeable non-reference method an additional consistency coef-
ficient on the target-level can be defined,

Con(pti j2l) =
l

2
Si j2l

Var(Sti j1l)

l

2
Si j2l

Var(Sti j1l)+l

2
CMi j2l

Var(CMt j2l)
, (2.3.18)

representing the amount of interindividual differences in the expected rating over all inter-
changeable raters that can be explained by the reference method (Koch et al., 2014). Fur-
thermore, three different method specificity coefficients can be defined. The unique method
specificity coefficient

UMS(prti j2l) =
l

2
UMi j2l

Var(UMj2l)

Var(prti j2l)
(2.3.19)

that quantifies the proportion of the variance of an interchangeable method variable that is
due to the unique views of the raters, neither shared with the reference-method nor with the
other interchangeable raters. In contrast, the common method specificity coefficient indicates
the degree of interindividual differences in the interchangeable raters’ ratings that goes back
to a common view of the raters but is not shared with the reference method (Koch, 2013; Eid
et al., 2008):

CMS(prti j2l) =
l

2
CMi j2l

Var(CMj2l)

Var(prti j2l)
(2.3.20)

The method specificity coefficient MS(pti jkl) for the structurally different non-reference
method represents the amount of the indicator’s latent response variable’s variance that is
not shared with the reference method:

MS(pti jkl) =
l

2
Mi jkl

Var(Mjkl)

Var(pti jkl)
k > 2 (2.3.21)

In analogy to the continuous indicator LS-Com model, indicator reliability coefficients can
also be computed in the LS-Com GRM. Furthermore, a true (i.e., measurement-error free)
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intraclass correlation coefficient (ICC) can be computed, indicating how much of the reli-
able variance of the within-level variables is accounted for by between-level inter-individual
differences. See Section 2.11 for definitions.
While convergent validity in the LS-Com GRM is quantified by the consistency coefficients,
discriminant validity is reflected in the correlation coefficients between the latent state vari-
ables of different constructs j (high correlations indicating low discriminant validity). Fur-
thermore, correlations between method variables of the same type but different constructs j
are a measure of the generalizability of method effects across constructs. Correlations be-
tween latent state variables or method variables of different measurement occasions l, on the
other hand, can be interpreted in terms of construct or method effect stability, respectively.
For an exhaustive list of interpretations of the permissible correlations between factors in the
LS-Com model see Koch (2013). Note that the latent state variables are uncorrelated with
any method variable of the same construct j and measurement occasion l by definition. Also,
the unique method variables are uncorrelated with the level-2 latent method variables (see
Section 2.10 for details).
In the following sections, the LS-Com GRM will be formally defined. The uniqueness of the
latent variables and their coefficients, as well as admissible transformations and meaning-
ful statements regarding the former are discussed. Necessary independence assumptions are
introduced and testable consequences for the covariance structure of the model are derived.
Last but not least, identification conditions for the model are presented and conditions for
testing measurement invariance in the LS-Com GRM are discussed.
Note that the LS-Com GRM is an extension of the LS-Com model for continuous indica-
tors (Koch, 2013). As such, some of the properties of the LS-Com continuous indicator
model apply to the LS-Com GRM with no or only minor modifications. These are the ex-
istence, uniqueness, admissible transformations and meaningful statements concerning the
latent method variables (and their coefficients). These properties are elaborated and proofed
in detail by Koch (2013) and will only be reported shortly in Sections 2.4 and 2.5. All other
properties deviate from those of the continuous indicator case and are defined in detail in the
following sections.
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Figure 2.1: Path diagram of the Latent-State-Com graded response model with indicator-specific latent state variables. The model is depicted for two structurally different methods and one set of interchangeable
methods at two measurement occasions for two constructs. Method 1 is selected as reference method. Note that for illustration purposes, the path diagram is depicted for the observed variables Y(r)ti jkl ,
which are, however, not linearly linked but probabilistically linked to the latent variables by a probit link. For convenience, the constant indicator k = 1 has been dropped from the latent state variables
(Sti jl = Sti j1l ). For the sake of clarity, correlations between latent variables are omitted and loading parameters are only shown for exemplary indicators. Correlations that are not permissible by definition
of the LS-Com GRM are correlations between the latent state variables and the latent (common) methods variables of the same construct j and occasion l, as well as correlations between any level-1 and
any level-2 latent variable. CM: common method variable; M: method variable; S: latent state variable; UM: unique method variable; Yrti jkl : observed variable for the rating of rater r for target t of the
i-th item of trait j and method k on measurement occasion l.
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Figure 2.2: Path diagram of the Latent-State-Com graded response model with common latent state variables. The model is depicted for two structurally different methods and one set of interchangeable methods at
two measurement occasions for two constructs. Method 1 is selected as reference method. Note that for illustration purposes, the path diagram is depicted for the observed variables Y(r)ti jkl , which are,
however, not linearly linked but probabilistically linked to the latent variables by a probit link. For convenience, the constant indicator k = 1 has been dropped from the latent state variables (St jl = St j1l ).
For the sake of clarity, correlations between latent variables are omitted and loading parameters are only shown for exemplary indicators. Correlations that are not permissible by definition of the LS-Com
GRM are correlations between the latent state variables and the latent (common) methods variables of the same construct j and occasion l, as well as correlations between any level-1 and any level-2
latent variable. CM: common method variable; M: method variable; S: latent state variable; UM: unique method variable; Yrti jkl : observed variable for the rating of rater r for target t of the i-th item of
trait j and method k on measurement occasion l.
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2.4 Formal Definition of the LS-Com GRM
In the following the LS-Com GRM is formally defined building on the definition of the graded
response model (Samejima, 1969, 2010) and the LS-Com model for continuous indicators (Koch,
2013). The definition is based on stochastic measurement theory according to the approach by Eid
(2000), Koch, Eid, and Lochner (in press), Steyer and Eid (2001) as well as Steyer (1988). The model
is defined for two structurally different methods and one set of interchangeable methods. Adding
additional methods is straightforward and does not need further definitions.

Definition 2.1. LS-Com GRM

The random variables {Yrt1111, . . . ,Yrti jkl, . . . ,Yrtcdde f } and {Yt1111, . . . ,Yti jkl, . . . ,Ytcdde f } on a prob-
ability space (W,A,P) are variables of an LS-Com graded response model if the following con-
ditions hold:

(a) (W,A,P) is a probability space such that

W = WT ⇥WT S1 ⇥ . . .⇥WT Sl ⇥ . . .⇥WT S f ⇥WR ⇥WR2S1 ⇥ . . .⇥WRkSl ⇥ . . .⇥WReS f ⇥WO

where

WO = WO11 ⇥ . . .⇥WOkl ⇥ . . .⇥WOe f ,
WOkl = A1kl ⇥ . . .⇥A jkl ⇥ . . .⇥Adkl , 8 k, l,
A jkl = O1 jkl ⇥ . . .⇥Oi jkl ⇥ . . .⇥Oc j jkl , 8 j,k, l

with i 2 I j = {1, . . . ,c j}, j 2 J = {1, . . . ,d}, k 2 K = {1, . . . ,e}, and l 2 L = {1, . . . , f }.

(b) The projections pT : W ! WT , pT Sl : W ! WT Sl , pR : W ! WR, and pRkSl : W ! WRkSl are
random variables on (W,A,P).

(c) Without loss of generality, the first method (k = 1) is selected as reference method and de-
fined as a self-report variable in the following. The second method (k = 2) refers to the
set of interchangeable methods which serve as non-reference methods. All other methods
(k > 2) refer to structurally different methods (that are not self-reports) which serve as non-
reference methods. Then the variables

Yti j1l : WT ⇥WT Sl ⇥WO ! Si j
Yrti j2l : WT ⇥WT Sl ⇥WR ⇥WR2Sl ⇥WO ! Si j
Yti jkl : WT ⇥WT Sl ⇥WRkSl ⇥WO ! Si j k > 2

with i, j,k, l as in (a), are random variables on (W,A,P) that map the results of the random
experiment onto the set Si j 2 N0, Si j = {0, . . . ,qi j �1}, where qi j is the number of response
categories of item i of construct j.

(d) Then the latent response variables ptsi jkl and prtsi j2l are random variables on (W,A,P)

defined by:
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ptsi j1l := F�1[P(Yti j1l � s | pT , pT Sl )] (2.4.1)

prtsi j2l := F�1[P(Yrti j2l � s | pT , pT Sl , pR, pR2Sl )] (2.4.2)

ptsi jkl := F�1[P(Yti jkl � s | pT , pT Sl , pRkSl )] k > 2 (2.4.3)

with F denoting the cumulative distribution function of the standard normal distribution,
s 2 Si j and

P(Yti j1l � s | pT , pT Sl ) = E[I{Yti j1l�s} | pT , pT Sl ] (2.4.4)

P(Yrti j2l � s | pT , pT Sl , pR, pR2Sl ) = E[I{Yrti j2l�s} | pT , pT Sl , pR, pR2Sl ] (2.4.5)

P(Yti jkl � s | pT , pT Sl , pRkSl ) = E[I{Yti jkl�s} | pT , pT Sl , pRkSl ], k > 2 (2.4.6)

(e) Essential pti jkl- and prti jkl-equivalence. For each (s, i, j,k, l), s 2 Si j, i 2 I j = {1, . . . ,c j},
j 2 J = {1, . . . ,d}, k 2 K = {1, . . . ,e}, and l 2 L = {1, . . . , f } there is a constant ksi jkl 2 R
and latent variables pti jkl and prti j2l such that:

pti jkl := ptsi jkl +ksi jkl k 6= 2 (2.4.7)
prti j2l := prtsi j2l +ksi j2l (2.4.8)

where pti jkl and prti j2l are common latent response variables of all latent response variables
ptsi jkl and prtsi j2l , respectively, belonging to the same item i of construct j measured by
method k at time l.

(f) Then, the following variables are random variables on (W,A,P) with finite first- and second-
order moments:

Rater-level (Level 1):

UMrti j2l = prti j2l �E[prti j2l | pT , pT Sl ] (2.4.9)

Target-level (Level 2):

Sti j1l = pti j1l (2.4.10)

Sti j2l = E[prti j2l | pT , pT Sl ] (2.4.11)

Sti jkl = pti jkl 8 k > 2, (2.4.12)

CMti j2l = Sti j2l �E[Sti j2l | Sti j1l] (2.4.13)

Mti jkl = Sti jkl �E[Sti jkl | Sti j1l] 8 k > 2, (2.4.14)

(g) For each construct j, measured by a non-reference method (k 6= 1) on occasion of measure-
ment l with item i, there are constants ai jkl 2 R and lSi jkl 2 R+ such that

E[Sti jkl | Sti j1l] = ai jkl +lSi jklSti j1l. (2.4.15)
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(h) For each construct j, measured by an interchangeable non-reference method (k = 2) on
occasion of measurement l and for each pair (i, i0) 2 I j ⇥ I j , (i 6= i0), there is a constant
lCMii0 j2l 2 R+ such that

CMti j2l = lCMii0 j2lCMti0 j2l. (2.4.16)

(i) For each construct j, measured by an interchangeable non-reference method (k = 2) on
occasion of measurement l and for each pair (i, i0) 2 I j ⇥ I j , (i 6= i0), there is a constant
lUMii0 j2l 2 R+ such that

UMrti j2l = lUMii0 j2lUMrti0 j2l. (2.4.17)

(j) For each construct j, measured by a non-reference method (k > 2) on occasion of measure-
ment l and for each pair (i, i0) 2 I j ⇥ I j , (i 6= i0), there is a constant lMii0 jkl 2 R+ such
that

Mti jkl = lMii0 jklMti0 jkl 8 k > 2. (2.4.18)

Remarks. The indices used in the above definition stand for: r for rater, t for target, i for indicator, j
for construct, k for method, and l for the occasion of measurement. The index k represents the type of
method that is used (reference vs. non-reference method, self-report vs. informant report, structurally
different vs. interchangeable method). The model is defined for one set of interchangeable methods
only, denoted by k = 2. The index r indicates that a variable is measured on the within-level (level-
1). Only the interchangeable methods are measured on the within-level, as they are the result of a
multi-stage sampling procedure. That is, the interchangeable rater is sampled from a set of raters for
a specific target. In contrast, the structurally different raters are fixed given the target. Hence, there is
no additional sampling step for the structurally different raters once a target has been selected. How-
ever, also the responses of the structurally different raters are observed in rater-specific situations, and
thus depend on the projection pRkSl . Note that this model definition of the GRM deviate from their
continuous indicator model counterparts in that the latter did not contain rater-specific situations for
the structurally different raters and hence did not include the projection pRkSl for k > 2.
In order to distinguish between the rater-situations the subscript k is used. The set of rater-situations
on measurement occasion l is assumed to include all the situations any of the raters could potentially
encounter.
The variables pti j1l can as well be represented as a composition of the mappings (pT , pT Sl ) : W !
WT ⇥WT Sl and jti j1l : WT ⇥WT Sl ! R, that is pti j1l : jti j1l(pT , pT Sl ) is a (pT , pT Sl )-measurable func-
tion (Steyer & Nagel, 2017, pp. 57-58). Analogously, the variable prti j2l can be represented as the
composite mapping of (pT , pT Sl , pR, pR2Sl ) : W ! WT ⇥ WT Sl ⇥ WR ⇥ WR2Sl and jrti j2l : WT ⇥ WT Sl ⇥
WR ⇥WR2Sl ! R, that is prti j2l : jrti j2l(pT , pT Sl , pR, pR2Sl ) is a (pT , pT Sl , pR, pR2Sl )- measurable func-
tion. In the same manner, for k > 2, pti jkl : jti jkl(pT , pT Sl , pRkSl ) is a (pT , pT Sl , pRkSl )- measurable
function, with (pT , pT Sl , pRkSl ) : W ! WT ⇥WT Sl ⇥WRkSl and jti jkl : WT ⇥WT Sl ⇥WRkSl ! R.
Equations (2.4.16) - (2.4.18) define the assumptions that all latent method variables CMti j2l , UMrti j2l ,
and Mti jkl belonging to the same construct, method, and measurement occasion are similarity transfor-
mations of each other, respectively. This assumption implies that the variables are perfectly correlated
and can therefore be represented by common method factors (Koch, 2013). The existence of these
common method factors is stated in the following theorem (cf. Koch, 2013).
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Note that assumptions (2.4.17) and (2.4.18) are necessary for identifiability reasons, as a model with
indicator-specific factors UMrti j2l or Mti jkl would not be identified. This is not the case for the CMti j2l
variables, hence it is not necessary to impose assumption (2.4.16) to identify the model. Note that
the variables CMti j2l , UMrti j2l , and Mti jkl are defined as latent residual variables and therefore have
expectations of zero by definition. Hence, no additive constants are included in Equations (2.4.16) -
(2.4.18). Note that, in contrast, the latent state variables Sti jkl do not have zero expectations by def-
inition, and the latent regression in Equation (2.4.15) does include an intercept parameter ai jkl . The
coefficients ai jkl and all of the coefficients ksi jkl for the same i, j,k, and l are, however, not separately
identifiable (see Section 2.6 for theorems on the uniqueness of the latent state and latent response
variables, as well as Section 2.13 on identifiability conditions).

Theorem 2.1. (Existence)

The random variables {Yrt1111, . . . ,Yrti jkl, . . . ,Yrtcdde f } and {Yt1111, . . . ,Yti jkl, . . . ,Ytcdde f } are
(CMti j2l , UMrti j2l , Mti jkl)-congeneric variables of an LS-Com GRM if and only if conditions (a)
to (j) of Definition 2.1 hold. Then, for each i 2 I j, j 2 J, k 2 K, and l 2 L, there are real-valued
random variables CMti j2l , UMrti j2l , and Mti jkl on a probability space (W,A,P) and (lCMi j2l ,
lUMi j2l , lMi jkl) 2 R+ such that:

CMti j2l = lCMi j2lCMt j2l, (2.4.19)
UMrti j2l = lUMi j2lUMrt j2l, (2.4.20)

Mti jkl = lMi jklMt jkl 8 k > 2. (2.4.21)

Remarks. The existence of the common factors CMti jkl , UMrti jkl , and Mti jkl follows directly from
Equations (2.4.16) - (2.4.18) (i.e., Assumptions (h) - (j) ) of Definition 2.1. Proofs of the existence of
these latent variables were given by Koch (2013) and shall not be repeated here. The term common
refers to the fact that each factor is assumed to be common to all indicators that belong to the same
construct, the same method, and the same occasion of measurement.

2.5 Uniqueness, admissible transformations and meaning-
ful statements

It is apparent that the latent method variables CMti jkl , UMrti jkl , and Mti jkl are not uniquely defined.
If an LS-Com GRM is defined with (CMti j2l , UMrti j2l , Mti jkl)-congeneric variables, these variables
and their respective coefficients lCMi j2l , lUMi j2l , and lMi jkl are uniquely defined only up to similarity
transformations, that is, up to the multiplication with a positive real number. A detailed theorem and
proofs on admissible transformations and uniqueness of the common method variables are given by
Koch (2013) for the LS-Com model with continuous indicator variables. These apply in the same
manner to the LS-Com GRM. However, in the LS-Com GRM also the common latent response vari-
ables prti jkl and pti jkl and their coefficients ksi jkl as well as ai jkl are not uniquely defined. A compre-
hensive theorem on the uniqueness of the latent variables is therefore given in the following theorem
(cf., Eid, 1995; Koch, 2013).



26 CHAPTER 2. LS-COM GRM

Theorem 2.2. (Admissible transformations and uniqueness)

1. Admissible Transformations
Let M = h(W,A,P), p

p

prt, p

p

p t, k

k

k , l

l

l S, a

a

a , UMrt, CMt, Mt, l

l

l UM, l

l

l CM, l

l

l Mi be an LS-Com GRM
with:

p

p

prt = (prt1121, . . . ,prti j2l, . . . ,prtcdd2 f )
T (2.5.1)

p

p

p t = (pt1111, . . . ,pti jkl, . . . ,ptcdde f )
T k 6= 2 (2.5.2)

k

k

k = (k11111, . . . ,ksi jkl, . . . ,k(qcd d�1)cdde f )
T (2.5.3)

l

l

l S = (lS1111, . . . ,lSi jkl, . . . ,lScdde f )
T (2.5.4)

a

a

a = (a1121, . . . ,ai jkl, . . . ,acdde f )
T k 6= 1 (2.5.5)

UMrt = (UMrt121, . . . ,UMrt j2l, . . . ,UMrtd2 f )
T (2.5.6)

CMt = (CMt121, . . . ,CMt j2l, . . . ,CMtd2 f )
T (2.5.7)

Mt = (Mt131, . . . ,Mt jkl, . . . ,Mtde f )
T k > 2 (2.5.8)

l

l

l UM = (lUM1121, . . . ,lUMi j2l, . . . ,lUMcdd2 f )
T (2.5.9)

l

l

l CM = (lCM1121, . . . ,lCMi j2l, . . . ,lCMcdd2 f )
T (2.5.10)

l

l

l M = (lM1131, . . . ,lMi jkl, . . . ,lMcdde f )
T k > 2 (2.5.11)

If for all i 2 I j, j 2 J, k 2 K, and l 2 L:

p

0
ti j1l = pti j1l + gi j1l (2.5.12)

k

0
si jkl = ksi jkl + gi jkl (2.5.13)

a

0
i jkl = ai jkl + gi jkl �lSi jklgi j1l k 6= 1 (2.5.14)

l

0
UMi j2l = lUMi j2l/bUM j2l (2.5.15)

l

0
CMi j2l = lCMi j2l/bCM j2l (2.5.16)

l

0
Mi jkl = lMi jkl/bM jkl (2.5.17)

UM0
rt j2l = bUM j2lUMrt j2l (2.5.18)

CM0
t j2l = bCM j2lCMt j2l (2.5.19)

M0
t jkl = bM jklCMt jkl (2.5.20)

where bUM j2l , bCM j2l , bM jkl , gi jkl 2 R, and bUM j2l , bCM j2l and bM jkl > 0, and

p

0
rti j2l = a

0
i j2l +lSi j2lp

0
ti j1l +l

0
CMi j2lCM0

t j2l +l

0
UMi j2lUM0

rt j2l (2.5.21)

p

0
ti jkl = a

0
i jkl +lSi jklp

0
ti j1l +l

0
Mi jklM

0
t jkl k > 2 (2.5.22)

Then M0 = h(W,A,P), p

p

p

0
rt, p

p

p

0
t, k

k

k

0, l

l

l S, a

a

a

0, UM0
rt, CM0

t, M0
t, l

l

l

0
UM, l

l

l

0
CM, l

l

l

0
Mi is an LS-Com

GRM, too, with
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p

p

p

0
rt = (p 0

rt1121, . . . ,p
0
rti j2l, . . . ,p

0
rtcdd2 f )

T (2.5.23)

p

p

p

0
t = (p 0

t1111, . . . ,p
0
ti jkl, . . . ,p

0
tcdde f )

T k 6= 2 (2.5.24)

k

k

k

0 = (k 0
11111, . . . ,k

0
si jkl, . . . ,k

0
(qcd�1)cdde f )

T (2.5.25)

l

l

l S = (lS1111, . . . ,lSi jkl, . . . ,lScdde f )
T (2.5.26)

a

a

a

0 = (a 0
1121, . . . ,a

0
i jkl, . . . ,a

0
cdde f )

T k 6= 1 (2.5.27)

UM0
rt = (UM0

rt121, . . . ,UM0
rt j2l, . . . ,UM0

rtd2 f )
T (2.5.28)

CM0
t = (CM0

t121, . . . ,CM0
t j2l, . . . ,CM0

td2 f )
T (2.5.29)

M0
t = (M0

t131, . . . ,M
0
t jkl, . . . ,M

0
tde f )

T k > 2 (2.5.30)

l

l

l

0
UM = (l 0

UM1121, . . . ,l
0
UMi j2l, . . . ,l

0
UMcdd2 f )

T (2.5.31)

l

l

l

0
CM = (l 0

CM1121, . . . ,l
0
CMi j2l, . . . ,l

0
CMcdd2 f )

T (2.5.32)

l

l

l

0
M = (l 0

M1131, . . . ,l
0
Mi jkl, . . . ,l

0
Mcdde f )

T k > 2 (2.5.33)

2. Uniqueness
If both M = h(W,A,P), p

p

prt, p

p

p t, k

k

k , l

l

l S, a

a

a , UMrt, CMt, Mt, l

l

l UM, l

l

l CM, l

l

l Mi and M0 =

h(W,A,P), p

p

p

0
rt, p

p

p

0
t, k

k

k

0, l

l

l S, a

a

a

0, UM0
rt, CM0

t, M0
t, l

l

l

0
UM, l

l

l

0
CM, l

l

l

0
Mi are LS-Com GRMs, then

for each i 2 I j, j 2 J, k 2 K, and l 2 L there are gi jkl 2 R, and bUM j2l , bCM j2l , bM jkl 2 R+, such
that Equations (2.5.12) to (2.5.22) hold.

Remarks. Equations (2.5.12) - (2.5.22) define the transformations of the latent variables and their
parameters that would yield an equivalent LS-Com GRM. Note that Equations (2.5.21) and (2.5.22)
stating the transformations for the latent response variables p

0
rti j2l and p

0
ti jkl , k > 2, are equivalent to

the measurement equations of these variables in the transformed model M0. They denote that these
variables change by a positive real constant gi jkl due to the changes in the latent response variable
pti j1l and the intercepts ai jkl given in Equations (2.5.12) and (2.5.14).
As the common method factors and their corresponding loading parameters are uniquely defined
only up to similarity transformations, admissible transformations of these factors and loadings are
the multiplications with positive real numbers. These admissible transformations determine which
meaningful statements (statements that remain invariant under admissible transformations) can be
made regarding the latent variables and their coefficients in the LS-Com GRM. As the multiplica-
tion with positive real numbers is an admissible transformation of the latent method factors CMti jkl ,
UMrti jkl , and Mti jkl and their corresponding factor loadings, statements regarding the absolute value
of the parameters are not meaningful. Meaningful statements are statements regarding the ratio of
specific values of the factor loadings or the ratio of the values of latent method factors (see Geiser,
2008; Koch, 2013). That is, they are measured on a ratio scale. Possible meaningful statements on
method factors as well as on their factor loadings shall be illustrated with the example of the unique
method loadings. Let both M =h(W,A,P), p

p

prt, p

p

p t, k

k

k , l

l

l S, a

a

a , UMrt, CMt, Mt, l

l

l UM, l

l

l CM, l

l

l Mi and
M0 = h(W,A,P), p

p

p

0
rt, p

p

p

0
t, k

k

k

0, l

l

l S, a

a

a

0, UM0
rt, CM0

t, M0
t, l

l

l

0
UM, l

l

l

0
CM, l

l

l

0
Mi be LS-Com GRMs defined

by Equations (2.5.1) to (2.5.33). Then, for w1,w2 2 W, i 2 I j, j 2 J, k 2 K, and l 2 L:

lUMi j2l

lUMi0 j2l
=

l

0
UMi j2l

l

0
UMi0 j2l

(2.5.34)
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and

UMrt j2l(w1)

UMrt j2l(w2)
=

UM0
rt j2l(w1)

UM0
rt j2l(w2)

(2.5.35)

Thus, statements regarding the ratio of specific values of the factor loadings or the ratio of values of la-
tent method factors are meaningful. Values on the method factors of different targets can therefore be
compared using their ratio. Meaningful statements with regard to CMrti j2l , Mti jkl , lCMi j2l , and lMi jkl
can be made in the same manner. Furthermore, the products l

2
CMi j2lVar(CMt j2l), l

2
UMi j2lVar(UMrt j2l),

and l

2
Mi jklVar(Mt jkl) are invariant under similarity transformations, as, e.g.,

l

2
UMi j2lVar(UMrt j2l) =

l

2
UMi j2l

b

2
UM j2l

b

2
UM j2lVar(UMrt j2l)

= l

02
UMi j2lVar(UM0

rt j2l)

(2.5.36)

Hence, any statement with respect to the ratio of variances are meaningful. This property ensures
the meaningfulness of statements concerning variance components such as consistency and method
specificity coefficients (see Section 2.11). Also, statements concerning latent correlations between
method factors are meaningful, as, for j, j0 2 J, and l, l0 2 L (Steyer & Nagel, 2017, remark 7.21, p.
243):

Corr(UMj2l,UMj02l0) = Corr(UM0
j2l,UM0

j02l0). (2.5.37)

Proofs on the uniqueness, admissible transformations and meaningful statements concerning the la-
tent method factors and their coefficients can be found in Koch (2013).
From Equations (2.5.12) and (2.5.13) it follows that the latent common response variables pti j1l and
their respective threshold parameters ksi j1l are uniquely defined only up to translations. That is, they
are measured on a difference scale. The same holds for the latent response variables pti jkl , k > 2, and
prti j2l and their threshold parameters ksi jkl by Equations (2.5.21) - (2.5.22) and (2.5.13).

Proof. Admissible transformations and uniqueness of the latent common response variables.

Let p

0
ti jkl , p

0
rti j2l , and k

0
si jkl be defined as given by Equations (2.5.12), (2.5.13), (2.5.21), and (2.5.22).

Then, it holds that:

ptsi jkl = pti jkl �ksi jkl = (pti jkl + gi jkl)� (ksi jkl + gi jkl)

= p

0
ti jkl �k

0
si jkl 8 k 6= 2

and

prtsi j2l = prti j2l �ksi j2l = (prti j2l + gi j2l)� (ksi j2l + gi j2l)

= p

0
rti j2l �k

0
si j2l.

Let both M =h(W,A,P), p

p

prt, p

p

p t, k

k

k , l

l

l S, a

a

a , UMrt, CMt, Mt, l

l

l UM, l

l

l CM, l

l

l Mi and M0 = h(W,A,P),
p

p

p

0
rt, p

p

p

0
t, k

k

k

0, l

l

l S, a

a

a

0, UM0
rt, CM0

t, M0
t, l

l

l

0
UM, l

l

l

0
CM, l

l

l

0
Mi be LS-Com GRMs. Then it has to hold that

pti jkl �ksi jkl = p

0
ti jkl �k

0
si jkl and prti j2l �ksi j2l = p

0
rti j2l �k

0
si j2l for all s 2 Si j, i 2 I j, j 2 J, k 2 K,k 6= 2,

and l 2 L. It follows that p

0
ti jkl = pti jkl � ksi jkl + k

0
si jkl , k 6= 2, and p

0
rti j2l = prti j2l � ksi j2l + k

0
si j2l . As

the difference k

0
si jkl �ksi jkl has to be the same over all s 2 Si j for each i 2 I j, j 2 J, k 2 K, and l 2 L,

one can define gi jkl as gi jkl = k

0
si jkl �ksi jkl .

⇤
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Therefore, meaningful statements regarding the common latent response variables pti jkl and prti j2l are
statements on their differences: for w1, w2 2 W, i 2 I j, j 2 J, k 2 K, and l 2 L, it holds that

pti jkl(w1)�pti jkl(w2) = p

0
ti jkl(w1)�p

0
ti jkl(w2) (2.5.38)

and

prti j2l(w1)�prti j2l(w2) = p

0
rti j2l(w1)�p

0
rti j2l(w2) (2.5.39)

as, e.g., for pti jkl:

p

0
ti jkl(w1)�p

0
ti jkl(w2) =

�
pti jkl(w1)+ gi jkl

�
�
�
pti jkl(w2)+ gi jkl

�

= pti jkl(w1)�pti jkl(w2)
(2.5.40)

From Equations (2.5.38) and (2.5.39) it follows that statements about the change in the latent response
variables pti jkl and prti jkl between different occasions are only meaningful for the differences between
persons, that is, for w1,w2 2 W, i 2 I j, j 2 J, k 2 K, and l, l0 2 L, it holds that

⇥
pti jkl(w1)�pti jkl0(w1)

⇤
�
⇥
pti jkl(w2)�pti jkl0(w2)

⇤

=
⇥
p

0
ti jkl(w1)�p

0
ti jkl0(w1)

⇤
�
⇥
p

0
ti jkl(w2)�p

0
ti jkl0(w2)

⇤ (2.5.41)

Note that every result on the uniqueness, admissible transformations and meaningful statements re-
garding the latent response variables pti jkl and prti jkl also apply to the latent state variables Sti j1l =

pti j1l , Sti jkl = pti jkl 8 k > 2, and Sti j2l = E[prti j2l | pT , pT Sl ], by definition. Thus, meaningful state-
ments about the change of a person’s value on the latent state variable Sti jkl between two measurement
occasions l and l0 can be made only compared to another person’s change on these latent state vari-
ables.
Statements concerning latent covariances and correlations between the latent state factors Sti j1l are
meaningful, as the addition of constants does not influence the covariance structure. That is, for all
i, i0 2 I j, j, j0 2 J, and l, l0 2 L, it holds that

Corr(S0
ti j1l,S

0
ti0 j01l0) = Corr(Sti j1l + gi j1l,Sti0 j01l0 + gi0 j01l0) = Corr(Sti j1l,Sti0 j01l0) (2.5.42)

as gi j1l and gi0 j01l0 are constants. For the threshold parameters ksi jkl , meaningful statements refer to
differences between the thresholds of one item i, i.e., for all s,s0 2 Si j, i 2 I j, j 2 J, k 2 K, and l 2 L,
it holds that:

ksi jkl �ks0i jkl = k

0
si jkl �k

0
s0i jkl (2.5.43)

and for i, i0 2 I j, j, j0 2 J, k,k0 2 K, and l, l0 2 L with (i, j,k, l) 6= (i, j,k, l)0

(ksi jkl �ks0i jkl)� (ks(i jkl)0 �ks0(i jkl)0) = (k 0
si jkl �k

0
s0i jkl)� (k 0

s(i jkl)0 �k

0
s0(i jkl)0) (2.5.44)

2.6 Common latent state factors and uniqueness of the la-
tent response variables

In an analogous manner to the common method factors, common latent state factors St j1l can be
construed. That is, the LS-Com GRM can be defined with common latent state factors St j1l or with
indicator-specific latent state factors Sti j1l . The specification of common latent state factors is based
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on the assumption that the indicator-specific latent state factors Sti j1l of the reference method, per-
taining to the same construct j and same occasion of measurement l, are perfectly correlated (Sti j1l-
congenerity) and can therefore be expressed as:

Sti j1l = lSi j1l
�
St j1l +di j1l

�
. (2.6.1)

with di j1l 2 R and lSi j1l 2 R+, lSi j1l > 0. Note that the expectations of the latent state variables
Sti j1l and St j1l are, in contrast to those of the common method factors, not zero by definition and the
variables Sti j1l are hence positive linear functions of each other. It can be seen that the common latent
state variables St j1l as well as the coefficients di j1l are only uniquely defined up to linear transfor-
mations, while the coefficients lSi j1l are uniquely defined up to similarity transformations. That is,
transforming the common latent state variable St j1l by S0

t j1l = bS j1lSt j1l + gS j1l and the coefficients
lSi j1l and di j1l by l

0
Si j1l = lSi j1l/bS j1l and d

0
i j1l = bS j1ldi j1l � gS j1l yields

Sti j1l = lSi j1l
�
St j1l +di j1l

�

=
lSi j1l

bS j1l

⇥�
bS j1lSt j1l + gS j1l

�
+
�
bS j1ldi j1l � gS j1l

�⇤

= l

0
Si j1l
�
S0

t j1l +d

0
i j1l
�

(2.6.2)

Meaningful statements regarding the common latent state factors are therefore statements about the
ratio of differences between different values of Sti j1l , that is, for w1, w2, w3, w4 2 W, t 2 T , j 2 J and
l 2 L, it holds that

St j1l(w1)�St j1l(w2)

St j1l(w3)�St j1l(w4)
=

S0
t j1l(w1)�S0

t j1l(w2)

S0
t j1l(w3)�S0

t j1l(w4)
(2.6.3)

However, as Sti j1l = pti j1l and ksi j1l are only uniquely defined up to translations, the coefficients
di j1l and all of the coefficients ksi j1l for the same i, j, and l are not separately identifiable. For fur-
ther restrictions imposed on the mean structure, as well as on the coefficients ai jkl and ksi jkl due to
identifiability considerations refer to Sections 2.12 and 2.13.

2.7 True score variables
As introduced by Eid (1995), latent true score variables can be defined for ordered categorical vari-
ables in the context of graded response models. These true score variables are defined as the expected
value of the response given the target, the rater and their respective situations. It represents a con-
tinuous latent variable that is a function of the latent response variable p and the item difficulties k .
In analogy to the dichotomous response case, the curve describing the dependency of the latent true
score variable on the latent response variable p has been termed item characteristic (Eid, 1995). The
latent true score variables are monotonically increasing non-linear functions of the latent response
variables. They are defined in the following Definition 2.2.

Definition 2.2. (True Score variables)

Let M = h(W,A,P), prt, pt, k , a , UMrt, CMt, Mt, lS, lUM, lCM, lMi be an LS-Com GRM of
(CMti j2l , UMrti j2l , Mti jkl)-congeneric variables. Then, the latent variables
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tti j1l = E(Yti j1l | pT , pT Sl ) (2.7.1)
trti j2l = E(Yrti j2l | pT , pT Sl , pR, pR2Sl ) (2.7.2)
tti jkl = E(Yti jkl | pT , pT Sl , pRkSl ) k > 2 (2.7.3)

are called latent true score variables and are given by

tti j1l =
qi j�1

Â
s=1

P
�
Yti j1l � s | pT , pT Sl

�
=

qi j�1

Â
s=1

F
�
pti j1l �ksi j1l

�
(2.7.4)

trti j2l =
qi j�1

Â
s=1

P
�
Yrti j2l � s | pT , pT Sl , pR, pR2Sl

�
=

qi j�1

Â
s=1

F
�
prti j2l �ksi j2l

�
(2.7.5)

tti jkl =
qi j�1

Â
s=1

P
�
Yti jkl � s | pT , pT Sl , pRkSl

�
=

qi j�1

Â
s=1

F
�
pti jkl �ksi jkl

�
k > 2. (2.7.6)

Remarks. According to Equations (2.7.4) - (2.7.6), the true score variables are additively composed
of the conditional probabilities that the observed variables Yti jkl or Yrti j2l take on a value � s. Equa-
tions (2.7.4) - (2.7.6) follow directly from the definition of the true score variables as conditional
expectations of the observed variables in Equations (2.7.1) - (2.7.3) and general rules for random
variables in N (Bauer, 2002, theorem 3.10, p. 17). A detailed proof analogous to the proof of Equa-
tions (2.7.4) - (2.7.6) was given by Eid (1995, pp. 207-208) for a comparable model.

2.8 Factor analytical representation
The LS-Com GRM presented above can also be represented as a factor model for ordinal data. This
approach is based on the assumption of the existence of unobservable continuous variables Y ⇤

ti jkl , k 6=
2, and Y ⇤

rti j2l underlying the observed ordered categorical variables Yti jkl and Yrti j2l , respectively. The
variables Y ⇤

ti jkl and Y ⇤
rti j2l cannot be defined on the probability space described above or expressed as

functions of measurement-theoretically well-defined measures. However, given certain assumptions
/ conditions, the approaches are formally equivalent as they imply the same multivariate distribution
of the observed variables Y . A formal proof of the equivalence of the two approaches was given by,
e.g., Takane and De Leeuw (1987).
For observed variables taking on one of qi j different values out of the set of possible categories
Si j = {0, · · · ,qi j �1}, the relation between Y ⇤

ti jkl and Yti jkl , k 6= 2, as well as Y ⇤
rti j2l and Yrti j2l is given

by the following measurement structure:

Yti jkl =

8
>><

>>:

0 for Y ⇤
ti jkl  k

⇤
1i jkl

s for k

⇤
si jkl < Y ⇤

ti jkl  k

⇤
(s+1)i jkl with 0 < s < qi j �1

qi j �1 for k

⇤
(qi j�1)i jkl < Y ⇤

ti jkl

(2.8.1)

Yrti j2l =

8
>><

>>:

0 for Y ⇤
rti j2l  k

⇤
1i j2l

s for k

⇤
si j2l < Y ⇤

rti j2l  k

⇤
(s+1)i j2l with 0 < s < qi j �1

qi j �1 for k

⇤
(qi j�1)i j2l < Y ⇤

rti j2l

(2.8.2)

According to this measurement model, the variables Yti jkl and Yrti j2l result from a categorization of
the variables Y ⇤

ti jkl and Y ⇤
rti j2l that is determined by the threshold parameters k

⇤
si jkl .

Under the condition that k

⇤
si jkl = ksi jkl , in the factor analytical representation of the LS-Com GRM,



32 CHAPTER 2. LS-COM GRM

the continuous variables Y ⇤
ti jkl and Y ⇤

rti j2l are functions of the variables pti jkl and prti j2l , respectively,
and an error term (eti jkl or erti j2l):

Y ⇤
ti jkl = pti jkl + eti jkl (2.8.3)

Y ⇤
rti j2l = prti j2l + erti j2l (2.8.4)

with E(e(r)ti jkl) = 0. The expectation and variance of Y ⇤
i jkl are

µ

⇤
i jkl = E(pi jkl) (2.8.5)

s

⇤
i jkl = Yi jkl +qi jkl (2.8.6)

where Yi jkl is the variance of pi jkl , and qi jkl is the variance of e(r)ti jkl .
The error terms eti jkl and erti j2l are assumed to be conditionally multivariate normally distributed
given pti jkl and prti j2l , as well as unconditionally multivariate normally distributed. Assuming multi-
variate normally distributed latent factors and thereby response variables pti jkl and prti j2l , this results
in multivariate normally distributed variables Y ⇤

ti jkl and Y ⇤
rti j2l . The variables Y ⇤

ti jkl and Y ⇤
rti j2l are, as a

consequence, also conditionally multivariate normally distributed given pti jkl and prti j2l , respectively,
with a mean of µ

⇤
i jkl and µ

⇤
i j2l .

As the variables Y ⇤
ti jkl and Y ⇤

rti j2l are latent variables, their metric is not determined, giving rise to
different possibilities of standardization (see, e.g., B. Muthén & Asparouhov, 2002). One common
standardization for the expectation is to set µ

⇤
i jkl = 0. Then, one possibility is to set the s

⇤
i jkl to an

arbitrary value, e.g., s

⇤
i jkl = 1. Under this parameterization the residual variances q are not free

parameters to be estimated in the model, but are given by

qi jkl = 1�Yi jkl (2.8.7)

Another possibility of standardization is to fix the residual variances, e.g., qi jkl = 1, resulting in

s

⇤
i jkl = Yi jkl +1 (2.8.8)

Using the assumption of conditionally normally distributed error terms eti jkl or erti j2l given pti jkl and
prti j2l , the conditional distribution of the variables Y ⇤

ti jkl , k 6= 2, can be expressed as

P
⇣

Y ⇤
ti jkl � k

⇤
si jkl

���pti jkl

⌘
= P

⇣
pti jkl + eti jkl � k

⇤
si jkl

���pti jkl

⌘

= P
⇣

eti jkl q

�1/2
i jkl � (k⇤

si jkl �pti jkl) q

�1/2
i jkl

���pti jkl

⌘

= F
⇣
(pti jkl �k

⇤
si jkl) q

�1/2
i jkl

⌘
(2.8.9)

and analogously for Y ⇤
rti j2l

P
⇣

Y ⇤
rti j2l � k

⇤
si j2l

���prti j2l

⌘
= F

⇣
(prti j2l �k

⇤
si j2l) q

�1/2
i j2l

⌘
, (2.8.10)

where qi jkl is the variance of ei jkl . Recall from Equations (2.2.10) and (2.2.11) that the probability
functions in the LS-Com GRM are given by

P(Yrti j2l � s | prti j2l) = F(prti j2l �ksi j2l)

and, for k 6= 2,

P(Yti jkl � s | pti jkl) = F(pti jkl �ksi jkl).
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Hence, the parameters of the factor analytical approach can be transformed to yield the parameters
of a GRM in the following way (Eid, 1995; B. Muthén & Asparouhov, 2002; Takane & De Leeuw,
1987):

ksi jkl =
k

⇤
si jklp
qi jkl

(2.8.11)

and, analogously, denoting the loading parameters in the factor analytical representation by l

⇤
i jkl , that

is, e.g., for k > 2, pti jkl = l

⇤
Si j1l

Sti j1l +l

⇤
Mi jkl

Mti jkl

li jkl =
l

⇤
i jklp
qi jkl

(2.8.12)

for all types of loading parameters lS, lUM, lCM and lM. It follows that the parameter estimates in
the two approaches are equivalent, resulting in the same values for the loading parameters as well as
thresholds ksi jkl = k

⇤
si jkl , if and only if qi jkl = 1 for all i 2 I j, j 2 J, k 2 K, and l 2 L (Eid, 1995).

The relation between the two approaches depicted above allows for the estimation of the parameters
of the GRM with programs for SEMs (Eid, 1995). Furthermore, identification rules for SEMs can
be applied to the LS-Com GRM (Eid, 1996), with some model-specific modifications. Identification
conditions can be derived from the univariate and bivariate marginal probability expressions in the
factor analytical representation. In the bivariate case, assuming uni- and bivariate normality of the
variables Y ⇤

ti jkl , these are given by (B. Muthén & Asparouhov, 2002):

P
⇣

Yti jkl � s
⌘

= P
⇣

Y ⇤
ti jkl � k

⇤
si jkl

⌘
= 1�F

✓
k

⇤
si jkl � µ

⇤
i jkl

s

⇤
i jkl

◆
= F

✓
µ

⇤
i jkl �k

⇤
si jkl

s

⇤
i jkl

◆

=
Z µ

⇤
i jkl�k

⇤
si jkl

s

⇤
i jkl

�•

1p
2p

e
�x2

2 dx

(2.8.13)

and for (i jkl) 6= (i jkl)0

P
⇣

Yti jkl � s,Yt(i jkl)0 � s0
⌘

=
Z µ

⇤
i jkl�k

⇤
si jkl

s

⇤
i jkl

�•

Z µ

⇤
(i jkl)0 �k

⇤
(si jkl)0

s

⇤
(i jkl)0

�•
f2
�
z⇤

i jkl,z
⇤
(i jkl)0

�
dz⇤

i jkldz⇤
(i jkl)0 (2.8.14)

with z⇤
i jkl = (Y ⇤

i jkl � µ

⇤
i j1l)/s

⇤
i jkl and z⇤

(i jkl)0 = (Y ⇤
(i jkl)0 � µ

⇤
(i jkl)0)/s

⇤
(i jkl)0 , and with f2 being the density

of a bivariate standard normal distribution

f2
�
x,y
�

=
1

2p

p
1�r

2
exp
⇢

�x2 + y2 �2rxy
2(1�r

2)

�
(2.8.15)

with correlation coefficient r for the variables Y ⇤
ti jkl and Y ⇤

t(i jkl)0 . r corresponds to the polychoric
correlation between Yti jkl and Yt(i jkl)0 that can be represented in terms of the model parameters as

r(z⇤
ti jkl,z

⇤
t(i jkl)0) = r(Y ⇤

ti jkl,Y
⇤

t(i jkl)0) =
1

s

⇤
i jkl

Cov(Y ⇤
ti jkl,Y

⇤
t(i jkl)0)

1
s

⇤
(i jkl)0

(2.8.16)

with

Cov(Y ⇤
ti jkl,Y

⇤
t(i jkl)0) = Cov(pti jkl,pt(i jkl)0) (2.8.17)
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2.9 Independence assumptions and testability

2.9.1 LS-Com GRM with conditional independence
In order to derive testable consequences of the LS-Com GRM, several independence assumptions
have to be introduced. These assumptions define the LS-Com GRM with conditional independence.
Note that classical assumptions of multilevel modeling are made, that is, the targets are assumed to be
independently and randomly drawn from a set of targets and the interchangeable raters are assumed
to be independently and randomly drawn from a set of interchangeable raters given a target. The
following assumptions extend these independence assumptions.

Definition 2.3. (LS-Com GRM with conditional independence)

Let M = h(W,A,P), prt, pt, k , a , UMrt, CMt, Mt, lS, lUM, lCM, lMi be an LS-Com GRM
with (CMti j2l , UMrti j2l , Mti jkl)-congeneric variables. M is called LS-Com GRM with conditional
independence if and only if for all yrti j2l , yti jkl 2 Si j the following statements hold

1. (pT , pT S1 , . . . , pT S f )-, (pT , pT S1 , . . . , pT S f ,pR, pR2S1 , . . . , pR2S f )- and (pT , pT S1 , . . . , pT S f ,
pRkS1 , . . . , pRkS f )-conditional independence of the observed random variables Yti j1l , Yrti j2l
and Yti jkl (k > 2).

P

 
f\

l=1

d\

j=1

c j\

i=1

�
Yrti j2l = yrti j2l

� f\

l=1

d\

j=1

c j\

i=1

\

ke,k 6=2

�
Yti jkl = yti jkl

� ����pT , pT S1 , . . . , pT Sl , . . . ,

pT S f , pR, pR2S1 , . . . , pRkSl , . . . , pReS f

!

=
f

’
l=1

d

’
j=1

c j

’
i=1

P
�
Yti j1l = yti j1l | pT , pT S1 , . . . , pT Sl , . . . , pT S f

�

f

’
l=1

d

’
j=1

c j

’
i=1

P
�
Yrti j2l = yrti j2l | pT , pT S1 , . . . , pT Sl , . . . , pT S f , pR, pR2S1 , . . . , pR2Sl , . . . , pR2S f

�

f

’
l=1

d

’
j=1

c j

’
i=1

e

’
k=3

P
�
Yti jkl = yti jkl | pT , pT S1 , . . . , pT Sl , . . . , pT S f , pRkS1 , . . . , pRkSl , . . . , pRkS f

�

(2.9.1)

2. Situational conditional independence. For yrti j2l , yti jkl 2 Si j:

P
�
Yti j1l = yti j1l | pT , pT S1 , . . . , pT Sl , . . . , pT S f

�

= P
�
Yti j1l = yti j1l | pT , pT Sl

� (2.9.2)

P
�
Yrti j2l = yrti j2l | pT , pT S1 , . . . , pT Sl , . . . , pT S f , pR, pR2S1 , . . . , pR2Sl , . . . , pR2S f

�

= P
�
Yrti j2l = yrti j2l | pT , pT Sl , pR, pR2Sl

� (2.9.3)
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P
�
Yti jkl = yti jkl | pT , pT S1 , . . . , pT Sl , . . . , pT S f , pRkS1 , . . . , pRkSl , . . . , pRkS f

�

= P
�
Yti jkl = yti jkl | pT , pT Sl , pRkSl

�
k > 2

(2.9.4)

3. (pT , pT Sl )-conditional regressive independence of the latent response variables prti j2l :

E
�
prti j2l | pT , pT S1 , . . . , pT Sl , . . . , pT S f , pRkS1 , . . . , pRkSl , . . . , pRkS f

�

= E
�
prti j2l | pT , pT Sl

�
k > 2

(2.9.5)

Remarks. According to Equation (2.9.1), the response of a person on an item given the values on
the variables pT , pT S1 , . . . , pT S f (k = 1; self-report), pT , pT S1 , . . . , pT S f , pR, pR2S1 , . . . , pR2S f (k = 2; in-
terchangeable informant report), or pT , pT S1 , . . . , pT S f , pRkS1 , . . . , pRkS f (k > 2; structurally different
informant report) is independent of all other item responses. The responses of all targets and raters
on item i of construct j on measurement occasion l are independent given the projections pT , pT Sl ,
pR and pRkSl . That is, every dependency between the observed variables is determined entirely by the
target, the rater, the target-situation, and the rater-situations that are given by the respective projec-
tions.
According to Equation (2.9.2), the probability that the variable Yti j1l assumes a value yti j1l 2 Si j de-
pends only on the target and its situation on the given measurement occasion l, but, given the former,
not on situations on other measurement occasions l0, l0 6= l. Analogously, according to Equation
(2.9.3), the probability that the variable Yrti jkl assumes a value yrti jkl 2 Si j, given the target, the rater,
the target- and the rater-situations on the given measurement occasion, is independent of the situa-
tions of the target or the rater on different measurement occasions l0, l0 6= l. The same holds for the
variables Yti jkl , k > 2, by Equation (2.9.4).
Equation (2.9.5) states that given a target (pT ) and a target-situation (pT Sl ), the level-1 latent response
variable prti j2l on measurement occasion l does not depend on target-situations on other measurement
occasions or on the situations of other raters rating the same target (k >2).

The conditional independence assumptions given in Definition 2.3 imply consequences regarding the
conditional and unconditional distributions of the observed variables Yti jkl and Yrti j2l as well as a spe-
cific covariance structure of the latent variables pti jkl and prti j2l in the LS-Com GRM. Whether the
restrictions imposed on the probability distributions of the response vectors and on the covariance
structure by the conditional independence assumptions hold in empirical applications can be tested.
That is, the conditional independence assumptions given in Definition 2.3 impose testable conse-
quences on the covariance structure of the LS-Com GRM. These are derived in Section 2.10 and the
following theorem.

Theorem 2.3. (LS-Com GRM with conditional independence)

Let M = h(W,A,P), prt, pt, k , a , UMrt, CMt, Mt, lS, lUM, lCM, lMi be an LS-Com GRM
of (CMti j2l , UMrti j2l , Mti jkl)-congeneric variables with conditional independence. Then, for all
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j, j0 2 J, i, i0 2 I j, k 2 K, l, l0 2 L, and yrti j2l , yti jkl 2 Si j it holds that:

P

 
f\

l=1

d\

j=1

c j\

i=1

�
Yrti j2l = yrti j2l

� f\

l=1

d\

j=1

c j\

i=1

\

ke,k 6=2

�
Yti jkl = yti jkl

� ���� pt1111, . . . ,ptcdde f ,

prt1121, . . . ,prtcdd2 f

!

=
f

’
l=1

d

’
j=1

c j

’
i=1

’
ke,k 6=2

P
�
Yti jkl = yti jkl | pti jkl

� f

’
l=1

d

’
j=1

c j

’
i=1

P
�
Yrti j2l = yrti j2l | prti j2l

�

(2.9.6)

Furthermore, it holds that:
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(2.9.7)

Remarks. Equation (2.9.6) follows from Equations (2.9.1) and (2.9.2) - (2.9.4). This is the case as
the random variables pti j1l , pti jkl , k > 2, and prti j2l are (pT , pT Sl )-, (pT , pT Sl , pRkSl )-, and (pT , pT Sl ,
pR, pR2Sl )-measurable functions, respectively. Similar arguments lead to Equation (2.9.7). A prove
was given by Eid (1995, pp. 97-98) for a comparable model and is applicable to the present case.
According to Equation (2.9.6), all observed variables Yrti j2l and Yti jkl are independent given the latent
response variables prti j2l and pti jkl . Equation (2.9.6) implies that all associations between the observed
variables are determined by the latent variables pti jkl and prti j2l and their associations. According to
Equation (2.9.7), the same holds with respect to the variables Sti j1l , Mt jkl , CMt j2l , and UMrt j2l .

2.9.2 LS-Com GRM in subpopulations
If the LS-Com GRM holds in a population, the model implies that it also holds in every subpopulation.
That is, the item parameters a , l , and k have the same value in different subpopulations and the
values on the latent variables pti jkl , prti j2l , Sti jkl , UMrti j2l , CMti j2l , and Mti jkl remain the same when
considering subpopulations, given that the parameterization and scaling of the latent variables is the
same. This fact was proven by Eid (1995, pp. 94-96, 99) for a comparable model. The prove applies
to the present model, too, and shall therefore not be repeated here.
Furthermore, if an LS-Com GRM with conditional independence holds in a population, the same
conditional independence assumptions also hold in subpopulations. That is, the covariance structure
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implied by the conditional independence assumptions has to hold in every subpopulation. For a prove
for a comparable model see Eid (1995; also see Steyer, 1989). While the covariance structure has to
be the same in every subpopulation, the values of the (non-zero) variances and covariances between
the latent variables are allowed to vary between subpopulations.

2.10 Covariance structure
The LS-Com GRM with conditional independence implies a specific covariance structure of the latent
variables pti jkl , k 6= 2, and prti j2l . The following theorem introduces the covariances that are zero as a
result of the conditional independence assumptions.

Theorem 2.4. (Testability)

If M = h(W,A,P), prt, pt, k , a , UMrt, CMt, Mt, lS, lUM, lCM, lMi is an LS-Com GRM
of (CMti j2l , UMrti j2l , Mti jkl)-congeneric variables with conditional independence, then, for all
j, j0 2 J, i, i0 2 I j, k 2 K, and l, l0 2 L, it holds that

1. The latent state variables are uncorrelated with the latent method variables:

Cov(Sti j1l,CMt j2l) = 0 (2.10.1)
Cov(Sti j1l,UMrt j02l0) = 0 (2.10.2)

Cov(Sti j1l,Mt jkl) = 0 (2.10.3)

2. The unique method variables are uncorrelated with all of the level-2 method variables

Cov(CMt j2l,UMrt j02l0) = 0 (2.10.4)
Cov(Mt jkl,UMrt j02l0) = 0 (2.10.5)

Proofs. Testability.
The following proofs are based on Definitions 2.1 and 2.3 as well as general properties of residual
variables. These properties are that residual variables are always uncorrelated with their regressors
as well as with measurable functions of their regressors (Steyer & Nagel, 2017, p. 323).

2.10.1 By Equation (2.4.19), the common method factor CMt j2l can be rewritten as CMt j2l =
CMti j2l
lCMi j2l

,
that is, it holds that: Cov(Sti j1l,CMt j2l) = 0 () Cov(Sti j1l,CMti j2l) = 0.
CMti j2l is defined as CMti j2l = Sti j2l �E[Sti j2l | Sti j1l] by Equation (2.4.13). Hence, CMti j2l is
defined as a residual with respect to Sti j1l . As residuals are uncorrelated with their regressors,
it follows that, for the same construct j and measurement occasion l, Cov(Sti j1l,CMt j2l) = 0.

2.10.2 By Equation (2.4.20), the unique method factor UMrt j02l0 can be rewritten as UMrt j02l0 =
UMrti0 j02l0
lUMi0 j02l0

, that is, it holds that: Cov(Sti j1l,UMrt j02l0) = 0 () Cov(Sti j1l,UMrti0 j02l0) = 0.
The latent state variable Sti j1l is given by Sti j1l = pti j1l , which is a (pT , pT Sl )-measurable func-
tion as it can be defined as pti j1l : jti j1l(pT , pT Sl ), with jti j1l : WT ⇥WT Sl ! R and (pT , pT Sl ) :
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W ! WT ⇥WT Sl (see remarks to Definition 2.1 in Section 2.4).
The variable UMrti0 j02l0 is defined as UMrti0 j02l0 = prti0 j02l0 �E[prti0 j02l0 | pT , pT Sl0 ] by Equation
2.4.9. By conditional independence Assumption (2.9.5) the expression E

�
prti j2l | pT , pT Sl0

�
can

be replaced by E
�
prti j2l | pT , pT S1 , . . . , pT Sl , . . . , pT S f , pRkS1 , . . . , pRkSl , . . . , pRkS f

�
. Therefore, it

follows that UMrti0 j02l0 is also a residual with respect to a (pT , pT S1 , . . . , pT Sl , . . . , pT S f , pRkS1 , . . . ,
pRkSl , . . . , pRkS f )-measurable function, and thereby uncorrelated to the (pT , pT Sl )-measurable
function Sti j1l .

2.10.3 By Equation (2.4.21), the method factor Mt jkl can be rewritten as Mt jkl =
Mti jkl
lMi jkl

, that is, it holds
that: Cov(Sti j1l,Mt jkl) = 0 () Cov(Sti j1l,Mti jkl) = 0, for all k > 2.
Mti jkl , k > 2, is defined as Mti jkl = Sti jkl �E[Sti jkl | Sti j1l] by Equation (2.4.14). Hence, Mti jkl is
defined as a residual with respect to Sti j1l . As residuals are uncorrelated with their regressors,
it follows that, for the same construct j and measurement occasion l, Cov(Sti j1l,Mt jkl) = 0.

2.10.4 By Equations (2.4.19) and (2.4.20), it holds that:
Cov(CMt j2l,UMrt j02l0) = 0 () Cov(CMti j2l,UMrti0 j02l0) = 0.
CMti j2l is defined as CMti j2l = Sti j2l �E[Sti j2l | Sti j1l] by Equation (2.4.13), with Sti j2l given
by Sti j2l = E[prti j2l | pT , pT Sl ] by Equation 2.4.11. Sti j2l and Sti j1l = pti j1l are (pT , pT Sl )-
measurable functions, therefore CMti j2l is a (pT , pT Sl )-measurable function, too. UMrti0 j02l0

on the other hand is a residual with respect to a (pT , pT Sl )-measurable function by conditional
independence Assumption (2.9.5) (see Proof 2.10.2). It follows that Cov(CMt j2l,UMrt j02l0) = 0
for all j, j0 2 J and l, l0 2 L.

2.10.5 By Equations (2.4.20) and (2.4.21), it holds that:
Cov(Mt jkl,UMrt j02l0) = 0 () Cov(Mti jkl,UMrti0 j02l0) = 0.
Mti jkl , k > 2, is defined as Mti jkl = Sti jkl �E[Sti jkl | Sti j1l] by Equation (2.4.14). For k > 2, the
variable Sti jkl = pti jkl is a (pT , pT Sl , pRkSl )- measurable function (see remarks to Definition 2.1
in Section 2.4), while Sti j1l = pti j1l is a (pT , pT Sl )- measurable function. Hence, the variable
Mti jkl is a (pT , pT Sl , pRkSl )-measurable function.
The unique method variable UMrti0 j02l0 is given by UMrti0 j02l0 = prti0 j02l0 �E[prti0 j02l0 | pT , pT Sl0 ].
From conditional independence Assumption (2.9.5) and the definition of the variable UMrti0 j02l0

it follows that UMrti0 j02l0 is a residual with respect to a (pT , pT S1 , . . . , pT Sl , . . . , pT S f , pRkS1 , . . . ,
pRkSl , . . . , pRkS f )-measurable function (k > 2) and is therefore uncorrelated with the (pT , pT Sl ,
pRkSl )-measurable function Mti jkl (k > 2).

The LS-Com GRM with conditional independence implies a specific covariance structure of the latent
variables pti jkl , k 6= 2, and prti j2l , including the zero-correlations specified in Theorem 2.4. Whether
this covariance structure holds in empirical applications can be tested based on the covariance struc-
ture of the variables Y ⇤

ti jkl and Y ⇤
rti j2l , as defined in Section 2.8, with SEMs for ordinal observed vari-

ables. Therefore, the covariance structure of the variables Y ⇤
ti jkl and Y ⇤

rti j2l will be derived in the
following.
According to Equation (2.9.6), all observed variables Yrti j2l and Yti jkl are independent given the la-
tent response variables prti j2l and pti jkl . Equation (2.9.6) implies that all associations between the
observed variables are determined by the latent variables pti jkl and prti j2l and their associations. In
the factor analytical representation, the associations between the observed variables Yrti j2l and Yti jkl
are explained by the associations between the variables Y ⇤

rti j2l and Y ⇤
ti jkl , which again are determined

by the associations between the variables prti j2l and pti jkl . If the variables Yrti j2l and Yti jkl are condi-
tionally independent given the variables prti j2l and pti jkl , the covariances between the variables Y ⇤

rti j2l
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and Y ⇤
ti jkl have to be zero given prti j2l and pti jkl . That is, for the variables Y ⇤

ti jkl = pti jkl + e

⇤
ti jkl and

Y ⇤
rti j2l = prti j2l + e

⇤
rti j2l it has to hold that, for all (i, j,k, l) 6= (i, j,k, l)0:

Cov(Y ⇤
ti jkl,Y

⇤
t(i jkl)0) = Cov(pti jkl,pt(i jkl)0) (2.10.6)

Cov(Y ⇤
rti j2l,Y

⇤
rt(i j2l)0) = Cov(prti j2l,prt(i j2l)0) (2.10.7)

and

Cov(Y ⇤
rti j2l,Y

⇤
t(i jkl)0) = Cov(prti j2l,pt(i jkl)0) (2.10.8)

This is the case as the variables Y ⇤
rti j2l and Y ⇤

ti jkl cannot be defined on the probability space given by the
random experiment and can therefore not be observed. The covariances between the Y ⇤

rti j2l and Y ⇤
ti jkl

cannot be computed but only estimated based on the associations between the variables Yrti j2l and
Yti jkl . The observable variables Yrti j2l and Yti jkl , however, are independent given the latent response
variables prti j2l and pti jkl (by Equation 2.9.6). Consequently, there cannot be any associations between
the Y ⇤

rti j2l and Y ⇤
ti jkl variables that are not determined by the associations between the variables prti j2l

and pti jkl (see Eid, 1995). As

Cov(Y ⇤
ti jkl,Y

⇤
t(i jkl)0) = Cov(pti jkl + e

⇤
ti jkl,pt(i jkl)0 + e

⇤
t(i jkl)0)

= Cov(pti jkl,pt(i jkl)0)+Cov(pti jkl,e
⇤
t(i jkl)0)

+Cov(e⇤
ti jkl,pt(i jkl)0)+Cov(e⇤

ti jkl,e
⇤
t(i jkl)0)

(2.10.9)

it has to hold that the Cov(e⇤
ti jkl,pt(i jkl)0) = 0 and Cov(e⇤

ti jkl,e
⇤
t(i jkl)0) = 0 for all i, i0 2 I j, j, j0 2 J,

k,k0 2 K, and l, l0 2 L. The same applies to the Y ⇤
rti j2l and their residuals and the combination of Y ⇤

rti j2l
and Y ⇤

ti jkl and their residuals. As the residuals e

⇤
ti jkl and e

⇤
rti j2l have to be uncorrelated with all pti jkl

and prti j2l , the residual variables are as well uncorrelated with all latent state variables Sti jkl , unique
method factors UMrt j2l , common method factors CMt j2l and method factors Mt jkl . This fact also
follows from Equation (2.9.7), which states that all associations between the observed variables Yrti j2l
and Yti jkl are determined by the corresponding latent variables Sti j1l , UMrt j2l , CMt j2l and Mt jkl .
The zero-correlations of the error variables with all other error variables and latent variables of the
LS-Com GRM combined with the covariance structure of the latent response variables pti jkl and prti j2l
define the covariance structure of the variables Y ⇤

rti j2l and Y ⇤
ti jkl . This covariance structure equals the

covariance structure of the latent variables in the LS-Com model for continuous indicator variables
derived by Koch (2013), with one exception. While the variance of the error variables is a variable
that is free to vary and is estimated in the SEM with continuous indicator variables, this variance
is fixed to one for e

⇤
ti jkl and e

⇤
rti j2l for all j 2 J, i 2 I j, k 2 K, and l 2 L in the LS-Com GRM. This

restriction guarantees the equivalence of the LS-Com GRM and the factor analytical representation
of the model derived in Section 2.8.
In a nutshell, the total covariance matrix ST of an LS-Com GRM with conditional independence can
be partitioned, just as in the continuous case, into a within and a between covariance matrix and can
be represented as

ST = LBFBL0
B +QB +LW FW L0

W +QW (2.10.10)

where LB and LW refer to the factor loading matrices of the between- and within-level factors, re-
spectively, FB and FW refer to the variance-covariance matrices of the between and within latent
variables, respectively, and QB and QW are the between- and within-level diagonal residual variance-
covariance matrices. For a detailed illustration of these covariance matrices and their elements see
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Koch (2013, pp. 40-45), where all non-zero elements Var(Erti j2l) and Var(Eti jkl) in the matrices QB
and QW have to be replaced by 1.
For a description of the interpretation of all non-zero covariances and correlations in the LS-Com
model see Section 2.3 or refer to Koch (2013, pp. 46-50).

2.11 Variance decompositions
Based on the definition of the LS-Com GRM, the latent response variables pti jkl and prti j2l can be
additively decomposed into different variance components. From Definition 2.1 and Theorem 2.1 it
follows that the general measurement equations for the latent response variables in an LS-Com GRM
of (CMti j2l , UMrti j2l , Mti jkl)-congeneric variables are given by:

pti j1l = Sti j1l (2.11.1)
prti j2l = lSi j2lSti j1l +lCMi j2lCMt j2l +lUMi j2lUMrt j2l (2.11.2)
pti jkl = lSi jklSti j1l +lMi jklMt jkl k > 2 (2.11.3)

As the latent method variables are defined as latent residual variables, they are uncorrelated with their
respective regressors. That is, due to the zero-covariances given in Equations (2.10.1) - (2.10.5), the
different variance components can be separated. The variances of the latent response variables can
therefore be additively decomposed as:

Var(pti j1l) = Var(Sti j1l) (2.11.4)

Var(prti j2l) = l

2
Si j2lVar(Sti j1l)+l

2
CMi j2lVar(CMt j2l)+l

2
UMi j2lVar(UMrt j2l) (2.11.5)

Var(pti jkl) = l

2
Si jklVar(Sti j1l)+l

2
Mi jklVar(Mt jkl) k > 2 (2.11.6)

Table 2.2: Definition of the consistency and different method specificity coefficients in the LS-Com GRM.

Consistency and method specificity coefficients
Coefficient Level Method Definition

Consistency

Target Structurally Con(pti jkl) =
l

2
Si jkl

Var(Sti j1l)

l

2
Si jkl

Var(Sti j1l)+l

2
Mi jkl

Var(Mt jkl)different

Target Interchangeable Con(pti j2l) =
l

2
Si j2l

Var(Sti j1l)

l

2
Si j2l

Var(Sti j1l)+l

2
CMi j2l

Var(CMt j2l)

Rater Interchangeable Con(prti j2l) =
l

2
Si j2l

Var(Sti j1l)

l

2
Si j2l

Var(Sti j1l)+l

2
CMi j2l

Var(CMt j2l)+l

2
UMi j2l

Var(UMrt j2l)

Method Target Structurally
MS(pti jkl) =

l

2
Mi jkl

Var(Mjkl)

Var(pti jkl)specificity different

Common method Target Interchangeable CMS(prti j2l) =
l

2
CMi j2l

Var(CMj2l)

Var(prti j2l)specificity

Unique method Rater Interchangeable UMS(prti j2l) =
l

2
UMi j2l

Var(UMj2l)

Var(prti j2l)specificity

Reliability
Target Structurally Rel(pti jkl) =

Var(pti jkl)

Var(pti jkl)+1different

Rater Interchangeable Rel(prti j2l) =
Var(prti j2l)

Var(prti j2l)+1

ICC Rater Interchangeable ICC(prti j2l) =
l

2
Si j2l

Var(Sti j1l)+l

2
CMi j2l

Var(CMj2l)

Var(prti j2l)

Note. Con: Consistency; MS: Method specificity; CMS: Common method specificity; UMS: Unique method specificity; ICC: intra-class
correlation coefficient.
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Then, analogous to the LS-Com model with continuous indicators, different variance components for
the non-reference method indicators can be defined. Definitions of the variance coefficients are given
in Table 2.2. These variance components correspond to the variance components introduced by Koch
(2013), with the only difference that they are defined based on the latent response variables pti jkl and
prti j2l . They can be meaningfully interpreted, as they are invariant under admissible transformations,
as shown in Section 2.5. For interpretations of the coefficients see Section 2.3 or Koch (2013).

2.12 Mean structure
The following theorem clarifies the mean structure of the latent variables in the LS-Com GRM. The
mean structure of the latent variables is of interest in research questions investigating mean changes
in the latent states over time. Furthermore, the mean structure is needed to derive identification con-
ditions in Section 2.13.

Theorem 2.5. (Mean Structure)

Let M = h(W,A,P), prt, pt, k , a , UMrt, CMt, Mt, lS, lUM, lCM, lMi be an LS-Com GRM of
(CMti j2l , UMrti j2l , Mti jkl)-congeneric variables with conditional independence. Without loss of
generality the first method (k=1) is chosen as reference method and the second method (k=2) as
the set of interchangeable methods. Then, for all j 2 J, i 2 I j, k 2 K, and l 2 L it holds that

E(UMrt j2l) = 0 (2.12.1)
E(CMt j2l) = 0 (2.12.2)
E(Mt jkl) = 0 k > 2 (2.12.3)

E(ptsi jkl) = E(pti jkl)�ksi jkl k 6= 2 (2.12.4)
E(prtsi j2l) = E(prti j2l)�ksi j2l (2.12.5)

E(pti j1l) = E(Sti j1l) (2.12.6)
E(pti jkl) = ai jkl +lSi jkl E(Sti j1l) k > 2 (2.12.7)
E(prti j2l) = ai j2l +lSi j2l E(Sti j1l) (2.12.8)

and in LS-Com GRMs defined with common latent state factors:

E(pti j1l) = lSi j1l
�
E(St j1l)+di j1l

�
(2.12.9)

Proofs. Mean Structure.
Equations (2.12.1) - (2.12.3) follow directly from the definition of the latent method variables as
residual variables in Definition 2.1 and the fact that residual variables have an expectation of zero
(Steyer & Nagel, 2017, p. 323). Equations (2.12.4) - (2.12.9) follow directly from the definitions of
the latent response variables ptsi jkl , prtsi j2l , pti jkl , and prti j2l given in Definition 2.1 and Equation
2.6.1 as well as from Equations (2.12.1) - (2.12.3).
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Remarks. Equations (2.12.6) - (2.12.8) show that the expected value of the common latent response
variables pti jkl , k > 2, and prti j2l equal the expectation of the latent state factors Sti j1l if and only
if ai jkl = 0 and lSi jkl = 1. For models defined with common latent state factors, the expectation of
the latent response variables pti j1l equal the expectation of the latent state factor St j1l if and only
if di j1l = 0 and lSi j1l = 1. The effect of different identification variants and parameter invariance
settings on the interpretation of latent state means and latent state mean differences is discussed in
Section 2.13.

2.13 Identifiability
The identification problem deals with the question whether a unique solution exists for each of the
model parameters that are to be estimated (Bollen, 1989). A model is identified if every parameter
in the model can be represented as a function of known quantities, that is, information contained in
the data and parameters that were constrained (e.g. for scaling the latent variables), and if there is
only one mathematical solution for each parameter. In order to assign a scale to each latent factor,
either one factor loading per factor or the variance of the latent factor has to be fixed to a value larger
than 0 (typically 1; Bollen, 1989). As in longitudinal SEMs the interest often lies in investigating
the change or stability of factor variances over time, it is preferable to choose the scaling that fixes
one of the loading parameters (Geiser, 2008; Koch, 2013). As shown in Theorem 2.2, the latent
response variables prti jkl and pti jkl , their respective threshold variables ksi jkl , and the variables ai jkl
are uniquely defined only up to translations. Consequently, the parameters ai jkl and ksi jkl are not
separately identifiable. The same holds for the parameters ksi jkl and di j1l defined in Section 2.6
for the case of models with common latent state factors. Therefore, without loss of generality, the
variables di j1l are set to zero for all i, j, and l. Furthermore, recall that all latent method factors have
an expectation of zero by definition.
In Equation (2.10.10) the total covariance matrix of an LS-Com GRM was represented as

ST = LBFBL0
B +QB +LW FW L0

W +QW

where all non-zero elements in the residual variance-covariance matrices QB and QW are equal to 1.
Theorem 2.6 then gives identification conditions for the LS-Com GRM parameters.

Theorem 2.6. (Identification of the LS-Com GRM)

Let M = h(W,A,P), prt, pt, k , UMrt, CMt, Mt, lS, lUM, lCM, lMi be an LS-Com GRM
of (CMti j2l , UMrti j2l , Mti jkl)-congeneric as well as Sti j1l -congeneric variables with conditional
independence. The parameters in the matrices LB, LW , FB, and FW as well as the threshold
parameters k and the expectations of the latent state variables St j1l are identified if all di j1l are
set to zero and

(a) i j � 3 for all j, j � 1, k � 2, l � 1, and:

1. either one factor loading lSi j1l , lCMi j2l , lUMi j2l , lMi jkl for each factor St j1l , CMrt j2l ,
UMrt j2l , and Mt jkl , or the variance of the factors is set to any real value larger than
0, and
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2. the mean of the latent state factors St j11 belonging to the first occasion of measure-
ment l = 1 is set to any real value for all j or one threshold ksi j11 of one indicator
Yti j11 per latent state factor belonging to the first occasion of measurement l = 1 is
fixed at any real value for all j, and

3. the mean of all remaining latent state factors St j1l , l > 1, is set to any real value or
one threshold of one indicator Yti j1l per latent state factor on measurement occa-
sions l > 1 is fixed to any real value or is constrained to be invariant over measure-
ment occasions for all j, that is ksi j1l is fixed or is set as ksi j1l = ksi j11 for a chosen
value of s and i, and for all j and l.

4. either ai jk1 or one ksi jk1 is set to any real value for all i, j, and k > 1 at l = 1, and
either ai jkl or one ksi jkl is set to any real value or set invariant over measurement
occasions for all i, j, k > 1, and all l > 1.

(b) i j � 2 with i j = 2 for some j, j � 1, k � 2, l � 2, and:

conditions (1) - (4) in (a) hold and FB as well as FW contain substantive (permissible)
intercorrelations among the latent variables for the respective j with i j = 2.

Condition (1) of (a) and (b) is identical to the continuous indicator case and identifies the parameters
of the LS-Com GRM covariance structure (that is, the parameters in the matrices LB, LW , FB, and
FW ), given the polychoric correlations between the variables Y ⇤

rti j2l and Y ⇤
ti jkl (or prti j2l and pti jkl).

The identification of this part of the model was shown by Geiser (2008) and Koch (2013) for the
continuous indicator model and is applicable to the LS-Com GRM, too.
In an LS-Com GRM with indicator-specific latent state variables, the model is identified under the
conditions given in (a) and (b) if FB contains substantive correlations between the indicator-specific
state variables or if k � 3. Note that in the case of indicator-specific latent state variables, the loading
parameters for the loading of the reference method (k = 1) indicators on the latent state variables Sti j1l
already correspond to 1 by definition (see Equation 2.4.10 in Definition 2.1).
The indicators for which the loadings are set to unity by Condition (1) are referred to as reference
indicators in the following.
Conditions (2) - (4) are needed for the identification of the means µi jkl of the latent response variables
and thereby the means of the latent state variables as well as the threshold variables ksi jkl .
Millsap and Yun-Tein (2004) provided minimal identification conditions for the multiple-population
case of factor analyses of ordered-categorical measures, as it applies to longitudinal ordered categor-
ical CFAs, too. The identification conditions for the LS-Com GRM given in Theorem 2.6 deviate
from the conditions given by Millsap and Yun-Tein (2004) in that only one threshold is required to
be invariant over measurement occasions for only one indicator of the factors Sti j1l (instead of two
thresholds for the reference indicators and one threshold for every remaining indicator). This is due
to the restriction that the residual variances have to equal one on all occasions in the LS-Com GRM
to ensure equivalence to a graded response model. Fixing two thresholds for the reference indicator
allows to freely estimate residual variances for l > 1 and would lead to an over-identified model when
leaving the residual variances restricted to a value of 1. Without providing a formal proof (see Millsap
& Yun-Tein, 2004), identification of the model parameters under the conditions provided in Theorem
2.6 shall be roughly delineated in the following. For the sake of clarity and due to space restrictions,
this will be restricted to a model with common latent state factors. Identification for the case of
indicator-specific latent state factors works along the same lines. The demonstration of the identifi-
cation of the model parameters is based on the factor analytical representation of the LS-Com GRM
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presented in Section 2.8. As the parameters of the factor analytical representation with a standard-
ization of qi jkl = 1 are transformations of the parameter estimates obtained with the standardization
of s

⇤
i jkl = 1, identification of the model under the first standardization implies the identification of

the model under the second standardization. For simplicity, identification is shown starting with a
standardization of s

⇤
i jkl = 1. The parameters of the LS-Com GRM under the restriction qi jkl = 1 can

be easily obtained from the former.
Identification conditions can be derived from the univariate and bivariate marginal probability expres-
sions in the factor analytical representation given in Equations (2.8.13) and (2.8.14) as well as from
the expressions for the latent correlations and covariances in Equations (2.8.16) and (2.8.17).

Let the standardized thresholds of a variable Y ⇤
ti jkl or Y ⇤

rti j2l be denoted by

zsi jkl :=
µ

⇤
i jkl �k

⇤
si jkl

s

⇤
i jkl

(2.13.1)

These standardized thresholds zsi jkl are identified for all s, i, j, k, and l as the respective z-scores of
the univariate standard normal distribution by Equation (2.8.13). Given the identification of the stan-
dardized thresholds zsi jkl , the polychoric correlation r of two variables Y ⇤

ti jkl and Y ⇤
t(i jkl)0 is identified

by Equation (2.8.14), i.e.,

P
⇣

Yti jkl � s,Yt(i jkl)0 � s0
⌘

=
Z µ

⇤
i jkl�k

⇤
si jkl

s

⇤
i jkl

�•

Z µ

⇤
(i jkl)0 �k

⇤
(si jkl)0

s

⇤
(i jkl)0

�•
f2
�
z⇤

i jkl,z
⇤
(i jkl)0

�
dz⇤

i jkldz⇤
(i jkl)0

with f2 being the density of a bivariate standard normal distribution with correlation coefficient r ,
z⇤

i jkl and z⇤
(i jkl)0 being the standardized latent response variables, i.e., z⇤

i jkl = (Y ⇤
i jkl � µ

⇤
i j1l)/s

⇤
i jkl and

z⇤
(i jkl)0 = (Y ⇤

(i jkl)0 � µ

⇤
(i jkl)0)/s

⇤
(i jkl)0 , and r(z⇤

ti jkl,z
⇤
t(i jkl)0) = r(Y ⇤

ti jkl,Y
⇤

t(i jkl)0).

Consider the standardization s

⇤
i jkl = 1. Then the correlation

r(Y ⇤
ti jkl,Y

⇤
t(i jkl)0) =

1
s

⇤
i jkl

Cov(Y ⇤
ti jkl,Y

⇤
t(i jkl)0)

1
s

⇤
(i jkl)0

corresponds to the respective covariance

Cov(Y ⇤
ti jkl,Y

⇤
t(i jkl)0) = Cov(pti jkl,pt(i jkl)0)

In the following, it is assumed that the covariance structure of the latent response variables pti j2l =

E[prti j2l | pT , pT Sl ] (i.e., the expectations of the within-level latent response variables over clusters)
is available. This is the standard assumption that cluster-level random effects are (in principal) es-
timable in multilevel models for ordinal data. The estimation of these target-level random effects in
multilevel IRT models are for instance described in Rabe-Hesketh, Skrondal, and Pickles (2005) or,
using Bayesian estimation with a Gibbs sampler, in Fox and Glas (2001). Then, consider, for instance,
the covariances for the different latent response variables for the same measurement occasion l and
construct j, with i = i0 or i 6= i0. These correspond to:
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Cov(pti jkl,pti0 jk0l) = lSi jkllSi0 jk0lVar(St j1l), k = k0 = 1, or k = 1 and k0 6= 1 (2.13.2)

Cov(pti j2l,pti0 j2l) = lSi j2llSi0 j2lVar(St j1l)+lCMi j2llCMi0 j2lVar(CMt j2l) (2.13.3)

Cov(pti jkl,pti0 jkl) = lSi jkllSi0 jklVar(St j1l)+lMi jkllMi0 jklVar(Mt jkl), k > 2 (2.13.4)

Cov(pti j2l,pti0 jkl) = lSi j2llSi0 jklVar(St j1l)

+lCMi j2llMi0 jklCov(CMt j2l,Mt jkl), k > 2 (2.13.5)

Cov(prti j2l,prti0 j2l) = lSi j2llSi0 j2lVar(St j1l)+lCMi j2llCMi0 j2lVar(CMt j2l)

+lUMi j2llUMi0 j2lVar(UMrt j2l) (2.13.6)

Hence, the covariances between the latent response variables pti jkl as well as prti j2l belonging to the
same measurement occasion l are functions of the loading parameters and variances of the latent
state and method factors. The covariances between the latent response variables pti jkl as well as
prti j2l belonging to different measurement occasions l 6= l0, on the other hand, are functions of the
loading parameters and covariances between the latent state and method factors, respectively. From
the above equations for the covariances it can be seen that Condition (1) in (a) and (b) identifies the
parameters of the LS-Com GRM covariance structure, that is, the loading parameters in the matrices
LB and LW as well as the variances and covariances in the matrices FB and FW . The identification of
these parameters by the constraints set in Condition (1) is analogous to the continuous indicator case
and is derived in detail in Geiser (2008) and complemented for the LS-Com model by Koch (2013).
Given the identification of the variances of the latent state and method factors as well as the loading
parameters, the variances Yi jkl of the latent response variables pti jkl and prti j2l are identified. The
estimated loading parameters can then be rescaled using Equation 2.8.12 and the variances s

⇤
i jkl can

be calculated to yield parameters corresponding to the parameterization qi jkl = 1.
Given the estimates of the variances s

⇤
i jkl as well as the standardized thresholds zsi jkl , the expression

zsi jkl :=
µ

⇤
i jkl�ksi jkl

s

⇤
i jkl

contains two unknowns: the thresholds ksi jkl as well as the means µ

⇤
i jkl of the latent

response variables pti jkl and prti j2l . Setting ai jkl = 0 and di j1l = 0 for all i, j, k and l, the expectation
of the latent response variables pti jkl and prti j2l are given by

µ

⇤
i jkl = E(pti jkl) = lSi jkl E(St j1l) k 6= 2 (2.13.7)

µ

⇤
i j2l = E(prti j2l) = lSi j2l E(St j1l) (2.13.8)

according to Equations (2.12.7) and (2.12.8). Using the first variant of identification constraint (2),
setting the expectation of St j1l to zero leads to µ

⇤
i jkl = E(pti jkl) = E(prti j2l) = 0. Then, the threshold

parameters ksi jkl are identified for all s, i, j, and k, for l = 1.
Now consider the variant where one threshold ksi jkl for a selected indicator is fixed to any real value
on measurement occasion l = 1, instead of standardizing to E(St j1l) = 0. That is, ksi jk1 is fixed to
any real value for a selected s, i and k for every j. Then, the means of the latent response variables at
l = 1 are identified as:

µ

⇤
i jk1 = zsi jk1s

⇤
i jk1 +ksi jk1 (2.13.9)

As the loading parameters lSi jkl are identified as described above, the expectation of the latent state
variable St j11 is then given by

E(St j11) =
µ

⇤
i jk1

lSi jk1
(2.13.10)

Given the estimate E(St j11) as well as the loading parameters, the means µ

⇤
i jk1 of all other i and k,

and thereby all other threshold parameters for all indicators loading on the same latent state variable
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Sti jk1 at the first measurement occasion l = 1 are identified by Equation (2.13.1). Then, fixing either
the expectation of the latent state variable E(St j1l) = 0, setting one threshold to any real value for a
chosen s, i, and k for every j, or constraining one threshold for a chosen s, i, and k to be invariant over
time for every j and l > 1, that is, ksi jkl = ksi jk1 for every j and a chosen value of s, i, and k, identifies
all thresholds as well as expectations of the latent state variables St j1l , l > 1. Therefore, identification
constraint (3) identifies all remaining parameters ksi jkl and E(St j1l) for all l > 1.
Although the means of the latent state variables Sti j1l (or S j1l in the case of common latent state
variables) are identifiable for all measurement occasions l, as demonstrated in Theorem 2.6, these
may vary depending on the threshold that is fixed and the value of the loading lSi jkl of the respec-
tive indicator for which a threshold was constrained. That is, mean differences between latent state
variables on different measurement occasions are not invariant under different standardization vari-
ants and therefore not necessarily comparable between measurement occasions. The interpretation
of latent state means E(Sti j1l) hence varies for different identification constraints and, for compar-
isons between different measurement occasions, the choice of identification constraints as well as
invariance settings have to be taken into account (see Section 2.14).

2.14 Measurement invariance over time
Measurement invariance (MI) deals with the question whether a measure assesses the same latent
construct in the same way in different groups or on different measurement occasions (Meredith &
Teresi, 2006). MI is a prerequisite for the interpretation of test score differences between groups
or time points as differences in the underlying constructs. The definition of MI is based on condi-
tional distributions of the manifest variables given the underlying latent factors (Meredith, 1993). For
ordered categorical observations, the concept of MI is based on the relationship between response
probabilities and the underlying latent constructs (Meredith & Teresi, 2006). That is the case as MI
refers to the observed measures, which are linked to the factor model only indirectly via the probabil-
ities of observing a response in a certain category given the underlying latent variables. In the normal
ogive GRM, MI thus holds if the probability functions for observing a response in category s or higher
given the latent variables are invariant across groups or measurement occasions. This corresponds to
the parameters determining the shape and position of the conditional probability curves being equal
across groups. In accordance with a definition by Millsap and Yun-Tein (2004), MI for the ordered
categorical measures Yti jkl and Yrti j2l with respect to Sti j1l , CMt j2l , UMrt j2l , and Mt jkl and the different
occasions of measurement l, holds if

P(Yti j1l = s | Sti j1l) = P(Yti j1l0 = s | Sti j1l0) (2.14.1)
P(Yrti j2l = s | Sti j1l,CMt j2l,UMrt j2l) = P(Yrti j2l0 = s | Sti j1l0 ,CMt j2l0 ,UMrt j2l0) (2.14.2)

P(Yti jkl = s | Sti j1l,Mt jkl) = P(Yti jkl0 = s | Sti j1l0 ,Mt jkl0), k > 2 (2.14.3)

for all l, l0 2 L, and all i, j,k and s 2 Si j. MI in the longitudinal LS-Com GRM would thereby be given
if the conditional probabilities of the outcomes for Yti jkl and Yrti j2l given the latent variables Sti j1l ,
CMt j2l , UMrt j2l and Mt jkl are independent of the measurement occasion. For Conditions (2.14.1) -
(2.14.3) to hold, not only the conditional distributions of Y ⇤

ti jkl and Y ⇤
rti j2l given Sti j1l , CMt j2l , UMrt j2l ,

and Mt jkl have to be invariant over measurement occasions, but also the relationship between the
observed categories and the underlying Y ⇤

ti jkl and Y ⇤
rti j2l have to be the same. The former corresponds

to strict factorial invariance for the latent variables Y ⇤
ti jkl and Y ⇤

rti j2l as defined by Meredith (1993),
while the latter corresponds to invariant threshold parameters over measurement occasions. Note that
in the factor-analytical representation of the LS-Com GRM, the residual variances are fixed to 1 on
all measurement occasions and are therefore invariant by definition.
As stated by Meredith and Teresi (2006), in the case of IRT models, no form of factorial invariance
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other than strict factorial invariance will be sufficient to establish MI. Definition 2.4 defines specific
conditions for MI for the LS-Com GRM.

Definition 2.4. (LS-Com GRM with MI)

M = h(W,A,P), prt, pt, k , a , UMrt, CMt, Mt, lS, lUM, lCM, lMi is called LS-Com GRM of
(CMti j2l , UMrti j2l , Mti jkl)-congeneric variables with conditional independence and measurement
invariance if and only if Definition 2.1 and 2.3 and Theorem 2.1 apply, and for all i 2 I j, j 2 J,
k 2 K, s 2 Si j and for l, l0 2 L the following statements hold:

ksi jkl = ksi jkl0 (2.14.4)
lSi jkl = lSi jkl0 , k > 1 (2.14.5)

lCMi j2l = lCMi j2l0 (2.14.6)
lUMi j2l = lUMi j2l0 (2.14.7)

lMi jkl = lMi jkl0 , k > 2 (2.14.8)
ai jkl = ai jkl0 (2.14.9)

and in case of common latent state variables St jl , additionally, di j1l = 0 and

lSi j1l = lSi j1l0 (2.14.10)

The definition of MI in Definition 2.4 corresponds to strict factorial invariance in the terms of Meredith
(1993), as the residual variances of the LS-Com GRM are invariant by definition (qi jkl = 1 for all i,
j, k, and l). Definition 2.4 states that MI in the indicator-specific LS-Com GRM holds if all of the
loading parameters for the latent factors Sti j1l , CMt j2l , UMrt j2l and Mt jkl as well as the threshold pa-
rameters ksi jkl of all categories s 2 Si j are invariant over measurement occasions for every indicator i
of each construct j and method k. Note that this definition does include the loading parameters lSi jkl ,
k > 1, and the intercept parameters ai jkl , that is, those parameters that represent the regression coef-
ficients of the regression of the non-reference method indicators on the reference method indicators.
Invariance of these parameters indicates that the conditional method bias is invariant over time, which
would, strictly speaking, not be necessary to ensure that the latent variables Sti j1l , CMt j2l , UMrt j2l and
Mt jkl have the same meaning over time, is, however, needed to compare differences in observed test
scores over time.
Under strict factorial invariance, differences in observed test scores can be interpreted as differences in
the underlying attributes (Meredith & Teresi, 2006). Also, under strict factorial invariance, differences
in the means of observed test scores between measurement occasions are due to differences in the
latent state means. That is, under strict factorial invariance it is legitimate to compare observed test
scores between occasions of measurement. In contrast, observed differences in test scores might be
confounded with differences in item-specific loadings or thresholds in cases where full MI is not
given. If strict factorial invariance holds for specific items only, the above interpretations are valid for
the respective items only.
While differences in observed responses can not necessarily be interpreted as differences in the un-
derlying latent variables if MI is not given, differences in the latent state means per se might still be
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interpretable under certain conditions. For comparisons of the latent state means E(Sti j1l) between
different measurement occasions, the invariance settings as well as the choice of identification con-
straints have to be taken into account. As shown in Section 2.12, the expected value of the common
latent response variables pti jkl and prti j2l equal the expectation of the latent state factors Sti j1l if and
only if lSi jkl = 1. For instance, for an item belonging to the reference method, equality of the latent
state means E(Sti j1l) over measurement occasions only corresponds to an equality in the probability
curves P(Yti j1l � s | pT , pT Sl ) = F(ptsi j1l) = F(pti j1l � ksi j1l), for a given i and j, if the thresholds
for the respective category s, ksi jkl , as well as the loading parameters for the respective item lSi j1l
are identical. That is, if one and only one threshold ksi jkl for a chosen s is set invariant over different
measurement occasions l for the reference item (lSi jkl = 1) of construct j, the difference in latent
state means E(Sti j1l)�E(Sti j1l0) corresponds to the mean difference of the latent response variables
ptsi jkl and ptsi jkl0 for the chosen category s, item i, and method k, and should only be interpreted as
such. If, however, all threshold parameters ksi jkl of the reference item (but not any other items) of
construct j are constrained to be invariant over different measurement occasions, the difference in
latent state means E(Sti j1l) and E(Sti j1l0) corresponds to the mean difference of the latent response
variables ptsi jkl and ptsi jkl0 for all categories s of that item. That is, it can be interpreted as the mean
difference of the latent state variable for the respective item i as measured by the respective method
k.
Note that an unambiguous interpretation of other model parameters is already possible under weak
factorial invariance for the latent response variables Y ⇤

ti jkl and Y ⇤
rti j2l , as defined by Meredith (1993).

That is, constant loading parameters for a latent factor with non-invariant threshold parameters al-
low for a meaningful interpretation of, e.g., the correlations of the respective factor between different
measurement occasions. The violation of weak factorial invariance, however, would imply that the
respective factor is not measured in the same way, rendering the interpretation of correlations difficult
(Geiser, 2008). Note that for correlations between the latent state factors S j1l of one construct j at
different occasions to be meaningfully interpretable, only the loading parameters on the reference
method have to be invariant, as these define the meaning of the latent state variable.



Chapter 3

Latent Change (LC-Com) Graded
Response Model

Latent change (LC) models (McArdle & Hamagami, 2001; Steyer, Eid, & Schwenkmezger, 1997;
Steyer, Partchev, & Shanahan, 2000) incorporate latent difference variables as change factors in lon-
gitudinal SEMs. The basic idea of LC models is that a latent state variable at a measurement occasion
l > 1 can be decomposed into an initial state factor and a latent difference state factor:

Sti j1l = Sti j11 +(Sti j1l �Sti j11), l > 1 (3.1.1)

with SBC
ti j1l := (Sti j1l � Sti j11). The latent difference state factor SBC

ti j1l represents the latent change
between measurement occasions l and 1. Latent change models in which latent change is modeled
with respect to the first measurement occasion are also called baseline change (BC) models (Steyer et
al., 2000). Alternatively, latent difference variables could be defined to represent true change between
adjacent measurement occasion (so-called neighbor change models; Steyer et al., 1997, 2000). The
idea of defining latent difference factors can also be applied to the method factors of the LS-Com
GRM (Geiser et al., 2010; Koch, 2013), e.g. for the structurally different non-reference method,

Mti jkl = Mti jk1 +(Mti jkl �Mti jk1), l > 1,k > 2 (3.1.2)

with MBC
ti jkl := (Mti jkl � Mti jk1). The latent method difference variables MBC

ti jkl represent change in the
non-reference methods that is not accounted for by change in the reference method (Geiser, 2008).
In contrast to latent state (i.e., multi-state) models, which can model inter-individual differences in
intra-individal change only indirectly via the correlations of the state (and method) factors over time,
latent change models allow to directly measure differential change. The latent difference variables
indicate the variability in latent change between persons, that is, the latent change variables will
have non-zero variances only if there are differences in change between individuals (Geiser, 2008).
Multimethod latent change models, in addition, allow to study inter-individual differences in intra-
individual change simultaneously for different methods and investigate the convergent validity in the
assessment of change (Geiser et al., 2010; Koch, 2013).
LC models represent an alternative parameterization of latent state models, as can be seen from the
tautological decompositions in Equations (3.1.1) and (3.1.2). As reformulations of latent state models
they do not impose any additional assumptions. However, latent difference variables can only be
meaningfully interpreted if factor loadings of the latent state and method variables as well as threshold
parameters are time-invariant (Geiser, 2008), implying that the same construct is measured at the
different measurement occasions. That is, strong measurement invariance has to hold in the latent
state model (Koch, 2013; Steyer et al., 2000).

49
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A latent change version of the continuous-indicator LS-Com model (LC-Com model) was defined
in detail by Koch (2013). If strong measurement invariance holds, the LC-Com model is mathemat-
ically equivalent to the LS-Com model (see Koch, 2013). Consequently, this also holds for an LC
version of the LS-Com GRM (see 2.4 for a definition of strong MI in the LS-Com GRM). That is,
formal definitions of the latent change variables in the LC-Com GRM, their uniqueness, admissible
transformations and meaningful statements, as well as the covariance structure of the model and vari-
ance decomposition are identical to the LC-Com model as defined by Koch (2013), however building
on the definition of the latent state and method variables in the LS-Com GRM given in Chapter 2.
Uniqueness, admissible transformations and meaningful statements for the remaining variables (e.g.,
thresholds and latent response variables) correspond to those in the LS-Com GRM (see Section 2.5).
Furthermore, independence assumptions and identifiability conditions for the LC-Com GRM also
correspond to those of the LS-Com GRM (see Sections 2.9 and 2.13).
An LC-Com GRM with indicator-specific latent state and change variables Sti j1 and SBC

ti jk is depicted in
Figure 3.1, an LC-Com GRM with common latent state and change variables St j1 and SBC

t jk is depicted
in Figure 3.2.
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Figure 3.1: Path diagram of the Latent-Change-Com graded response model with indicator-specific latent state and change variables, Sti j1 and SBC
ti jk . The model is depicted for two structurally different

methods and one set of interchangeable methods at two measurement occasions for two constructs. Method 1 is selected as reference method. Note that for illustration purposes, the path
diagram is depicted for the observed variables Y(r)ti jkl , which are, however, not linearly linked but probabilistically linked to the latent variables by a probit link. For the sake of clarity,
correlations between latent variables and loading parameters are omitted. Note that loading parameters in the LC-Com GRM are time invariant, e.g., lSi jkl = lSi jkl0 8 l, l0, and analogously
for the method factor loadings, due to measurement invariance restrictions. Furthermore, loading parameters of the latent (method) change factors correspond to those of the respective state /
method factor for the same item i and construct j. Correlations that are not permissible in the LC-Com GRM are correlations between the latent state variables Sti j1 and the latent (common)
methods variables CMt j21 and Mt j31 of the same construct j, as well as correlations between any level-1 and any level-2 latent variable. BC: baseline change variables; CM: common method
variable; M: method variable; S: latent state variable; UM: unique method variable; Yrti jkl : observed variable for the rating of rater r for target t of the i-th item of trait j and method k on
measurement occasion l.
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Figure 3.2: Path diagram of the Latent-Change-Com graded response model with common latent state and change variables, St j1 and SBC
t jk . The model is depicted for two structurally different methods and

one set of interchangeable methods at two measurement occasions for two constructs. Method 1 is selected as reference method. Note that for illustration purposes, the path diagram is depicted
for the observed variables Y(r)ti jkl , which are, however, not linearly linked but probabilistically linked to the latent variables by a probit link. For the sake of clarity, correlations between latent
variables and loading parameters are omitted. Note that loading parameters in the LC-Com GRM are time invariant, e.g., lSi jkl = lSi jkl0 8 l, l0, and analogously for the method factor loadings,
due to measurement invariance restrictions. Furthermore, loading parameters of the latent (method) change factors correspond to those of the respective state / method factor for the same item
i and construct j. Correlations that are not permissible in the LC-Com GRM are correlations between the latent state variables St j1 and the latent (common) methods variables CMt j21 and
Mt j31 of the same construct j, as well as correlations between any level-1 and any level-2 latent variable. BC: baseline change variables; CM: common method variable; M: method variable;
S: latent state variable; UM: unique method variable; Yrti jkl : observed variable for the rating of rater r for target t of the i-th item of trait j and method k on measurement occasion l.



Chapter 4

Latent State-Trait (LST-Com)
Graded Response Model

4.1 Introduction to the LST-Com GRM
This chapter introduces a longitudinal multilevel MTMM latent state-trait graded response model
for measurement designs combining structurally different and interchangeable methods (LST-Com
GRM). The model is based on the LST-Com model for continuous indicator variables developed by
Koch et al. (2017). Furthermore, the definition of the latent response variables in the LST-Com GRM
builds on the definition of the LS-Com GRM given in section 2.4. That is, the random experiment
that characterizes the sampling procedure for longitudinal measurement designs of a graded response
model with structurally different and interchangeable methods is identical in the LS-Com GRM and
LST-Com GRM (see Sections 2.3 and 2.4). Based on the specified random experiment, the variables
in the LST-Com GRM can then be properly defined as random variables.
LST models are widely applied in psychology and the social sciences (see Geiser & Lockhart, 2012,
for an overview of LST applications). Despite many extensions of LST models proposed in the last
decades (Cole et al., 2005; Eid, 1996; Eid & Hoffmann, 1998; Eid & Langeheine, 1999, 2003; Eid,
Schneider, & Schwenkmezger, 1999; Geiser & Lockhart, 2012; Hamaker, Nesselroade, & Molenaar,
2007; Schermelleh-Engel, Keith, Moosbrugger, & Hodapp, 2004, among others) only few models
for combining LST theory and MTMM analyses were introduced (Courvoisier et al., 2008; Koch et
al., 2017; Scherpenzeel & Saris, 2007; Vautier, 2004). While the model by Scherpenzeel and Saris
(2007) is limited to single indicator measurement designs and assumes uncorrelated method factors,
the model by Courvoisier et al. (2008) is a multiple-indicator LST model based on the CTC(M-1)
modeling approach (Eid, 2000; Eid et al., 2003). However, the model by Courvoisier et al. (2008) is
limited to measurement designs including only structurally different methods. The LST-Com model
developed by Koch et al. (2017) overcomes this limitation by extending the model to measurement
designs combining structurally different and interchangeable methods. Furthermore, an extension of
LST models to polytomous item responses was introduced for single-method, single-level models
(Eid, 1995, 1996). However, an extension of LST MTMM modeling approaches to polytomous item
responses is yet missing.
The LST-Com GRM combines the modeling possibilities of the continuous indicator LST-Com model
(i.e., a model integrating LST theory and MTMM modeling of a combination of interchangeable and
structurally different methods) with the advantages of an IRT approach to analyzing longitudinal
MTMM data. The LST-Com GRM allows to

1. analyze whether a construct is more trait-like (stable) or state-like (occasion-specific),
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2. analyze whether method effects are more trait-like (stable) or state-like (occasion-specific),

3. analyze convergent validity on the trait-level as well as,

4. analyze convergent validity on the occasion-specific level,

5. investigate whether particular interchangeable raters deviate from the common view of the
interchangeable raters on the trait- or occasion-specific level,

6. investigate the generalizability of time-stable method effects across methods,

7. investigate the generalizability of occasion-specific method effects across methods,

8. do all the foregoing analyses on the item-level, and

9. compare item difficulties, item discrimination and reliability coefficients for the different items
and over methods.

That is, the LST-Com GRM overcomes some of the limitations of previous longitudinal LST MTMM
(continuous-indicator) models (Courvoisier et al., 2008; Koch et al., 2017) or single-method LST
GRMs (Eid, 1996) by combining LST-MTMM models for interchangeable and structurally different
methods with an IRT approach.
Recently, Steyer et al. (2015) proposed a revision of LST theory (LST-R) that explicitly takes into
account that persons might change over the course of time. Implications of LST-R theory for the
present model are discussed in Section 4.13. Koch et al. (2017) show which modifications have to
be made in order to make the (continuous-indicator) LST-Com model compatible with the revised
version of LST theory.
The basic concept of LST theory (Steyer, Majcen, Schwenkmezger, & Buchner, 1989; Steyer &
Schmitt, 1990; Steyer et al., 1992, 1999) consists of the decomposition of latent state variables into
latent trait and latent state residuals. While the latent trait variables represent the person-specific
expectation of the latent state variables over situations and measurement occasions, the latent state
residual variables represent situation and / or person-situation interaction effects (Steyer et al., 1992,
1999). That is, LST theory provides the methodological framework for disentangling stable person-
specific effects, time-variable effects and measurement error influences (Steyer et al., 1999).
To illustrate the concept, consider the reference-method, self-report latent response variables pti j1l .
Recall that these variables were defined as

pti j1l = ptsi j1l +ksi j1l

with

ptsi j1l := F�1[P(Yti j1l � s | pT , pT Sl )]

and

P(Yti j1l � s | pT , pT Sl ) = E[I{Yti j1l�s} | pT , pT Sl ]

(see Section 2.4). That is, the variables pti j1l are (pT , pT Sl )-measurable functions, as they can be
defined as pti j1l : jti j1l(pT , pT Sl ), i.e., a composition of the mappings (pT , pT Sl ) : W ! WT ⇥WT Sl and
jti j1l : WT ⇥WT Sl !R. It follows that the latent state variable Sti j1l = pti j1l is a (pT , pT Sl )-measurable
function. The latent variables in an LST GRM are then defined as follows (cf. Eid, 1996; Koch et al.,
2017):

xti j1l = E[Sti j1l | pT ] (4.1.1)
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zti j1l = Sti j1l �xti j1l (4.1.2)

That is, the latent state variable Sti j1l is decomposed into a latent trait variable xti j1l and a latent state
residual variable zti j1l:

Sti j1l = xti j1l +zti j1l (4.1.3)

The latent trait variables are defined as the conditional expectations of the latent state variables given
the (target) person projection pT . The latent trait variable characterizes the person itself, that is, it
represents the value of the latent state variable one would expect for a person t on measurement
occasion l, irrespective of the specific situation realized on that measurement occasion (Eid, 1996).
The latent state residual variables zti j1l are latent occasion-specific variables that are defined as latent
residuals with respect to the trait variables xti j1l . They are the occasion-specific deviations of the latent
variable Sti j1l from the (target-) person-specific expectations of that variable and thereby represent
influences of the situation and person-situation interactions.
In the LST-Com GRM, this decomposition into trait and state residual components is extended to
the non-reference method indicators, allowing for the definition of time-stable and occasion-specific
method effects. On Level 2, the latent trait variable of a non-reference method (xti jkl , k 6= 1) is
regressed on the latent trait variable of the reference method (xti j1l) of the same indicator i of construct
j at occasion l, according to the CTC(M-1) approach (Courvoisier et al., 2008; Eid, 2000; Koch,
2013). The residuals of these regressions are defined as latent trait (common) method variables:

x

CM
ti j2l = xti j2l �E[xti j2l | xti j1l] (4.1.4)

x

M
ti jkl = xti jkl �E[xti jkl | xti j1l] 8 k > 2 (4.1.5)

They reflect the stable, time-consistent view of the informant ratings that cannot be explained by the
stable components of the reference method reports (e.g., self-reports). Analogously, the latent state
residual variables of the non-reference methods (zti jkl , k 6= 1) can be regressed on the latent state
residual variable of the reference method (zti j1l) of the same indicator i of construct j at occasion l to
yield latent state residual (common) method variables:

z

CM
ti j2l = zti j2l �E[zti j2l | zti j1l] (4.1.6)

z

M
ti jkl = zti jkl �E[zti jkl | zti j1l] 8 k > 2 (4.1.7)

They represent the part of the momentary, occasion-specific view of the informant method that cannot
be explained by the occasion-specific view of the reference method on the same measurement occa-
sion (Koch et al., 2017). Note that the regressions of the non-reference method trait / state residual
variables on the reference-method trait / state residual variables are assumed to be linear.
Furthermore, the level-1 residuals UMrti j2l can be decomposed into a time-consistent expectation
given the person-projection pT and the rater-projection pR and an occasion-specific residual variable
representing situational effects and rater-situation interactions:

x

UM
rti j2l = E[UMrti j2l | pT , pR] (4.1.8)

z

UM
rti j2l = UMrti j2l �x

UM
rti j2l (4.1.9)

Formal definitions and detailed explanations of the latent variables and assumptions made in the LST-
Com GRM are presented in the following sections. An LST-Com GRM with indicator-specific latent
trait (method) and state residual factors is depicted in Figure 4.1, an LST-Com GRM with common
latent trait (method) and state residual factors in Figure 4.2.
The decomposition of the latent response variables (as defined in Section 2.4) in the LST-Com GRM,
then lead to the following measurement equations (Koch et al., 2017):
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pti j1l = a

x i j1l +l

x i j1lxti j1 +zti j1l (4.1.10)

prti j2l = a

x i j2l +l

x i j2lxti j1 +l

CM
x i j2lx

CM
ti j2 +l

z i j2lzti j1l +l

CM
z i j2lz

CM
t j2l (4.1.11)

+l

UM
x i j2lx

UM
rti j2 +l

UM
z i j2lz

UM
rt j2l

pti jkl = a

x i jkl +l

x i jklxti j1 +l

M
x i jklx

M
ti jk +l

z i jklzti j1l +l

M
z i jklz

M
t jkl k > 2 (4.1.12)

Here, the variables xti j1, x

CM
ti j2 , x

M
ti jk, and x

UM
rti j2 are assumed to be time-stable latent trait (method) vari-

ables and hence do not have a time index l any more. As shown in the following sections, the latent
state residual variables as well as all method variables are defined as latent residuals and are thereby
uncorrelated with their regressors. This allows the definition of different variance components of
the latent response variables. The time consistency and occasion-specificity coefficients are analo-
gous to the consistency and specificity coefficients specified in classical LST theory models (Steyer
& Schmitt, 1990; Steyer et al., 1992), with the exception that they are latent variance components
(i.e., defined for the latent response variable, not including measurement error). The coefficients in-
dicating the convergence between different methods (consistency and method specificity) are defined
analogously to the coefficients defined for multilevel CFA and CTC(M-1) models of MTMM data in
Eid et al. (2008), with the possibility to define method consistency and specificity on both the trait
and the occasion-specific levels in the LST-Com model. Most of these coefficients are defined in the
same way in Koch et al. (2017). The time consistency coefficients, given for the reference-method
and interchangeable method, k = 2, here,

Con(pti j1l) =
(l

x i j1l)
2Var(xti j1)

Var(pti j1l)
(4.1.13)

Con(prti j2l) =
(l

x i j2l)
2Var(xti j1)+(lCM

x i j2l)
2Var(xCM

ti j2 )+(lUM
x i j2l)

2Var(xUM
rti j2)

Var(prti j2l)
(4.1.14)

represent the proportion of variance of the latent response variable that goes back to stable (not
occasion-specific or momentary) influences. In contrast, the occasion specificity coefficient indicates
how much of the variance in the latent response variables is attributable to momentary, occasion-
specific influences:

OSpe(pti j1l) =
Var(zti j1l)

Var(pti j1l)
(4.1.15)

OSpe(prti j2l) =
(l

z i j2l)
2Var(zti j1l)+(lCM

z i j2l)
2Var(zCM

t j2l )+(lUM
z i j2l)

2Var(zUM
rt j2l)

Var(prti j2l)
(4.1.16)

The trait method consistencies are indicators of the convergent validity on the stable trait-level, that
is, they indicate how much of the stable variance in the non-reference methods can be explained by
stable inter-individual differences in the reference-method, e.g., for the interchangeable non-reference
method:

TCon(prti j2l) =
(l

x i j2l)
2Var(xti j1)

(l
x i j2l)

2Var(xti j1)+(lCM
x i j2l)

2Var(xCM
ti j2 )+(lUM

x i j2l)
2Var(xUM

rti j2)
(4.1.17)

TCon(pti j2l) =
(l

x i j2l)
2Var(xti j1)

(l
x i j2l)

2Var(xti j1)+(lCM
x i j2l)

2Var(xCM
ti j2 )

(4.1.18)

While TCon(prti j2l) is the proportion of stable variance in the individual peer reports that is at-
tributable to stable interindividual differences measured by the reference method, TCon(pti j2l) repre-
sents the proportion of stable variance in the common view of the interchangeable peer reports that
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is attributable to stable interindividual differences measured by the reference method. The square
root of the trait (method) consistency coefficients can be interpreted as the degree of true convergent
validity on the trait-level (Koch et al., 2017). The trait method specificity coefficients represent the
proportion of variance that is determined by stable method-specific influences of the non-reference
methods.

TUMS(prti j2l) =
(lUM

x i j2l)
2Var(xUM

rti j2)

(l
x i j2l)

2Var(xti j1)+(lCM
x i j2l)

2Var(xCM
ti j2 )+(lUM

x i j2l)
2Var(xUM

rti j2)
(4.1.19)

TCMS(prti j2l) =
(lCM

x i j2l)
2Var(xCM

ti j2 )

(l
x i j2l)

2Var(xti j1)+(lCM
x i j2l)

2Var(xCM
ti j2 )+(lUM

x i j2l)
2Var(xUM

rti j2)
(4.1.20)

TCMS(pti j2l) =
(lCM

x i j2l)
2Var(xCM

ti j2 )

(l
x i j2l)

2Var(xti j1)+(lCM
x i j2l)

2Var(xCM
ti j2 )

(4.1.21)

T MS(pti jkl) =
(l M

x i jkl)
2Var(x M

ti jk)

(l
x i jkl)

2Var(xti j1)+(l M
x i jkl)

2Var(x M
ti jk)

(4.1.22)

The trait unique method specificity TUMS(prti j2l) represents the stable view of a peer, which cannot
be explained by stable inter-individual differences in the reference method (e.g., self-reports) and
is not shared with the other interchangeable raters (Koch et al., 2017). The trait common method
specificity TCMS(prti j2l), in contrast, represents the proportion of stable variance in the individual
peer reports that cannot be explained by stable inter-individual difference in the reference method but
is shared with the other interchangeable raters. The trait common method specificity TCMS(pti j2l)

is the proportion of the stable common view of all interchangeable peers that is not shared with the
stable view of the reference-method raters. All of the preceding method consistency and specificity
coefficients can also be computed on the occasion-specific, momentary level. E.g.,

OCon(pti jkl) =
(l

z i jkl)
2Var(zti j1l)

(l
z i jkl)

2Var(zti j1l)+(l M
z i jkl)

2Var(z M
t jkl)

(4.1.23)

OMS(pti jkl) =
(l M

z i jkl)
2Var(z M

t jkl)

(l
z i jkl)

2Var(zti j1l)+(l M
z i jkl)

2Var(z M
t jkl)

(4.1.24)

define the occasion-specific method consistency and occasion-specific method specificity for the
structurally different non-reference method. OCon(pti jkl) represents the part of the momentary,
occasion-specific variance of a non-reference method indicator that can be explained by the mo-
mentary, occasion-specific inter-individual differences in the reference-method reports. The square
root of the occasion-specific (method) consistency coefficient can be interpreted as the degree of
true convergent validity on the occasion-specific level (Koch et al., 2017). OMS(pti jkl) represents
the occasion-specific variance that is attributable to the momentary view of the structurally different
raters but not shared with the reference-method report (e.g., self-report).
For definitions of these coefficients for the remaining methods see Section 4.9. For a more detailed
explanation of the variance coefficients’ meaning see Koch et al. (2017) or Koch (2013).
The latent variables in the LST-Com GRM and assumptions underlying the model definitions are for-
mally defined in the following sections. The uniqueness of the latent variables and their coefficients,
admissible transformations and meaningful statements regarding the former are discussed, necessary
independence assumptions are introduced and testable consequences for the covariance structure of
the model are derived. Last but not least, identification conditions for the model are presented and
conditions for testing measurement invariance in the LST-Com GRM are discussed.
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Figure 4.1: Path diagram of the LST-Com graded response model with indicator-specific latent trait variables xti j , x

UM
rti j2, x

CM
ti j2 and x

M
ti jk and latent state residual variables zti jl . The model is depicted

for two structurally different methods and one set of interchangeable methods on two measurement occasions for two constructs. Method 1 is selected as reference method. Note that for
illustration purposes, the path diagram is depicted for the observed variables Y(r)ti jkl , which are, however, not linearly linked but probabilistically linked to the latent variables by a probit link.
For convenience, the constant indicator k = 1 has been dropped from the latent trait variables (xti j=xti j1) and the latent state residual variables (zti jl=zti j1l ). For the sake of clarity, correlations
between latent variables and loading parameters are omitted. Correlations that are not permissible in the depicted LST-Com GRM are all correlations between any trait (method) variable x

and any state residual (method) variable z , correlations between the latent trait and the latent trait (common) method variables of the same construct j and indicator i, correlations between the
latent state residual and the latent state residual (common) method variables of the same construct j and measurement occasion l, as well as correlations between any level-1 and any level-2
latent variable. CM: common method; M: method; S: state variable; UM: unique method; x : latent trait variable; Yrti jkl : observed variable for the rating of rater r for target t of the i-th item of
trait j and method k on measurement occasion l; z : latent state residual variable.
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Figure 4.2: Path diagram of the LST-Com graded response model with common latent trait variables xt j , x

UM
rt j2 , x

CM
t j2 and x

M
t jk and latent state residual variables zt jl . The model is depicted for two structurally

different methods and one set of interchangeable methods on two measurement occasions for two constructs. Method 1 is selected as reference method. Note that for illustration purposes,
the path diagram is depicted for the observed variables Y(r)ti jkl , which are, however, not linearly linked but probabilistically linked to the latent variables by a probit link. For convenience,
the constant indicator k = 1 has been dropped from the latent trait variables (xt j=xt j1) and the latent state residual variables (zt jl=zt j1l ). For the sake of clarity, correlations between latent
variables are omitted and loading parameters are only shown for exemplary indicators. Correlations that are not permissible in the depicted LST-Com GRM are all correlations between any
trait (method) variable x and any state residual (method) variable z , correlations between the latent trait and the latent trait (common) method variables of the same construct j, correlations
between the latent state residual and the latent state residual (common) method variables of the same construct j and measurement occasion l, as well as correlations between any level-1 and
any level-2 latent variable. CM: common method; M: method; S: state variable; UM: unique method; x : latent trait variable; Yrti jkl : observed variable for the rating of rater r for target t of the
i-th item of trait j and method k on measurement occasion l; z : latent state residual variable.
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4.2 Formal Definition of the LST-Com GRM
In the following the LST-Com GRM is formally defined building on the definition of the LS-Com
GRM in section 2.4 and the LST-Com model for continuous indicators (Koch, 2013; Koch et al.,
2017).

Definition 4.1. (LST-Com GRM)

The random variables {Yrt1111, . . . ,Yrti jkl, . . . ,Yrtcdde f } and {Yt1111, . . . ,Yti jkl, . . . ,Ytcdde f } on a prob-
ability space (W,A,P) are variables of an LST-Com graded response model if conditions (a) to
(e) in Definition 2.1 [i.e., LS-Com GRM] and the following conditions hold:

(a) The following variables are random variables on (W,A,P) with finite first- and second-
order moments:

Rater-level (Level 1):

UMrti j2l = prti j2l �E[prti j2l | pT , pT Sl ] (4.2.1)

x

UM
rti j2l = E[UMrti j2l | pT , pR] (4.2.2)

z

UM
rti j2l = UMrti j2l �x

UM
rti j2l (4.2.3)

Target-level (Level 2):

Sti jkl = pti jkl 8 k 6= 2, (4.2.4)

Sti j2l = E[prti j2l | pT , pT Sl ] (4.2.5)

xti jkl = E[Sti jkl | pT ] (4.2.6)

zti jkl = Sti jkl �xti jkl (4.2.7)

x

CM
ti j2l = xti j2l �E[xti j2l | xti j1l] (4.2.8)

x

M
ti jkl = xti jkl �E[xti jkl | xti j1l] 8 k > 2 (4.2.9)

z

CM
ti j2l = zti j2l �E[zti j2l | zti j1l] (4.2.10)

z

M
ti jkl = zti jkl �E[zti jkl | zti j1l] 8 k > 2 (4.2.11)

(b) For each indicator i of construct j on measurement occasion l, measured by a non-reference
method (k 6= 1), there are constants ai jkl 2 R and li jkl 2 R+ such that

E[xti jkl | xti j1l] = ai jkl +li jklxti j1l (4.2.12)
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(c) For each indicator i of construct j, measured by a non-reference method (k 6= 1) on occasion
of measurement l, there is a constant l

z i jkl 2 R+ such that

E[zti jkl | zti j1l] = l

z i jklzti j1l (4.2.13)

(d) Definition of common trait variables. For each indicator i of construct j, measured by the
reference method (k = 1) and for each pair (l, l0) 2 L⇥L, l 6= l0, there are constants ai j1ll0 2
R and li j1ll0 2 R+ such that

xti j1l = ai j1ll0 +li j1ll0xti j1l0 (4.2.14)

(e) Definition of common method trait variables. For each indicator i of construct j, measured
by a non-reference method k (k 6= 1), and for each pair (l, l0) 2 L ⇥ L , (l 6= l0), there are
constants l

UM
x i j2ll0 , l

CM
x i j2ll0 and l

M
x i jkll0 2 R+ such that

x

UM
rti j2l = l

UM
x i j2ll0x

UM
rti j2l0 (4.2.15)

x

CM
ti j2l = l

CM
x i j2ll0x

CM
ti j2l0 (4.2.16)

x

M
ti jkl = l

M
x i j2ll0x

M
ti jkl0 8 k > 2 (4.2.17)

(f) Definition of common method state residual variables. For each construct j, measured by a
non-reference method k (k 6= 1), and for each pair (i, i0) 2 I j ⇥I j , (i 6= i0), there are constants
l

UM
z ii0 j2l , l

CM
z ii0 j2l and l

M
z ii0 jkl 2 R+ such that

z

UM
rti j2l = l

UM
z ii0 j2lz

UM
rti0 j2l (4.2.18)

z

CM
ti j2l = l

CM
z ii0 j2lz

CM
ti0 j2l (4.2.19)

z

M
ti jkl = l

M
z ii0 jklz

M
ti0 jkl 8 k > 2 (4.2.20)

Remarks.
Definition 4.1 defines latent trait variables xti jkl , latent state residual variables zti jkl , as well as latent
trait method variables x

UM
rti j2l , x

CM
ti j2l , x

M
ti jkl and latent state residual method variables z

UM
rti j2l , z

CM
ti j2l , z

M
ti jkl .

Latent trait variables xti jkl in the LST-Com GRM are defined as conditional expectations of the latent
state variables Sti jkl given the target, i.e., E[Sti jkl | pT ]. The latent trait variable characterizes the
person itself, that is, it represents the value of the latent state variable one would expect for a person
t on measurement occasion l, irrespective of the specific situation realized on measurement occasion
l (Eid, 1996). Although trait scores are, by definition, not dependent on the specific situation realized
on a measurement occasion, traits may nevertheless be subject to change over time (Steyer et al.,
1999). That is, they are dependent on the probability distribution of the variables Sti jkl , which again
depend on the probability distribution of the situations on measurement occasion l. The expectation
of the probability distribution of the variables Yti jkl and Sti jkl may change over time, as the probability
distribution of the situations for a target t (or rater r) may have changed over time. Hence, the
subscript l is not omitted in the definition of the latent trait and latent trait method variables xti jkl ,
x

UM
rti j2l , x

CM
ti j2l and x

M
ti jkl in Equations (4.2.2), (4.2.6), (4.2.8) and (4.2.9). Steyer et al. (2015) have

proposed a revised version of LST-theory (LST-R) that defines trait change on the basis of a different
conceptualization of the random experiment. In contrast to LST-R theory (Steyer et al., 2015), the
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current model definition assumes that it is possible to incorporate trait change into the model under
this definition of the random experiment. The incorporation of occasion-specific trait variables into
the current model definition is based on an understanding of situations and distributional assumptions
for the situations and projections pSl that differ from those in LST-R theory. LST-R theory as proposed
by Steyer et al. (2015) is discussed in section 4.13.
The latent state residual variables zti jkl are latent occasion-specific variables that are defined as latent
residuals of the latent state variables Sti jkl with respect to the trait variables xti jkl (see Equation 4.2.7).
That is, they are the occasion-specific deviations of the latent variable Sti jkl from the target-specific
(and rater-specific) expectations of that variable on occasion l.
On Level 1, latent unique method trait variables x

UM
rti j2l are defined as target- and rater-specific expec-

tations of the unique method variables, i.e., E[UMrti j2l | pT , pR], while the latent unique method state
residual variables z

UM
rti j2l are defined as residual variables of UMrti j2l with respect to this expectation.

On Level 2, latent trait (common) method variables are defined as residual variables of the regression
of the latent trait variable of a non-reference method (xti jkl , k 6= 1) on the latent trait variable of the
reference method (xti j1l) of the same indicator i of construct j on occasion l (see Equations 4.2.8
and 4.2.9). Latent state residual (common) method variables, in contrast, are defined as the residuals
of the latent regression of the latent state residual variable of the non-reference method (zti jkl , k 6=
1) on the latent state residual variable of the reference method (zti j1l) of the same indicator i of
construct j on occasion l (see Equations 4.2.10 and 4.2.11). That is, the latent trait (common) method
variables reflect the stable, time-consistent view of the informant ratings that cannot be explained by
the stable components of the reference method reports (e.g., self-reports). The latent state residual
(common) method variables, in contrast, are the part of the momentary, occasion-specific view of the
informant method that cannot be explained by the occasion-specific view of the reference method
on the same measurement occasion. Hence, it is possible to differentiate between momentary rater
bias (as deviations in the occasion-specific views of the different raters) and stable, time-consistent
method biases.
Note that the latent state residual variables zti jkl as well as all of the latent trait method variables
(xUM

rti j2l , x

CM
ti j2l , x

M
ti jkl) and latent state residual method variables ( z

UM
rti j2l , z

CM
ti j2l , z

M
ti jkl) are defined as latent

residual variables and therefore have expectations of zero by definition. Hence, no additive constants
are included in any of the equations in (c), (e) and (f) of definition 4.1 for these variables. The latent
trait variables xti jkl , in contrast, do not have zero expectations by definition, and Equations (4.2.12)
and (4.2.14) do include intercept parameters. These intercept parameters and all of the coefficients
ksi jkl for the same i, j,k, and l are, however, not separately identifiable (see Section 4.3 for theorems on
the uniqueness of the latent trait and latent response variables, as well as Section 4.11 on identifiability
conditions).
Equation (4.2.12) states the assumption that the dependence of the non-reference method trait vari-
ables xti jkl , k 6= 1, on the reference method trait variable xti j1l of the same indicator i, construct j and
occasion l can be described by linear transformations. Equation (4.2.13) states the assumption that the
dependence of the non-reference method state residual variables zti jkl , k 6= 1, on the reference method
state residual variable zti j1l of the same indicator i, construct j and occasion l can be described by
similarity transformations.
Equation (4.2.14) formalizes the assumption that the reference method latent trait variables of differ-
ent measurement occasions are linear transformations of each other. That is, they are assumed to be
perfectly correlated. Hence, trait change that can be described by this model follows the same linear
relationship for every target t (non-linear trait change or individual change trajectories for the differ-
ent targets, i.e., inter-individual differences in intra-individual change, can be incorporated, yielding
different models, such as the latent growth curve model, see chapter 5). Note that it is necessary
to make an assumption of some form of dependence (linear or non-linear) between the latent trait
(method) variables of different measurement occasions l 6= l0 (l, l0 2 L), as occasion-specific trait
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(method) variables and state residual (method) variables are not separately identifiable. That is, with-
out the assumption of this dependence (as made for instance in Equation 4.2.14) it would not be
possible to separate (occasion-specific) trait from occasion-specific state residual variance. Addition-
ally, trait change may not be separable from some forms of measurement non-invariance (see section
4.4). However, see Eid and Hoffmann (1998) for an example on how to restructure the model to yield
an unambiguous separation of trait change and measurement invariance.
Equations (4.2.15) - (4.2.17) define the assumptions that all latent trait method variables x

UM
rti j2l , x

CM
ti j2l ,

and x

M
ti jkl , k > 2, belonging to different measurement occasions l 6= l0 but the same indicator, construct

and method are similarity transformations of each other, respectively. This assumption implies that
the variables are perfectly correlated and can therefore be represented by common trait method factors
(Koch, 2013). The existence of these common trait method factors is stated in Theorem 4.1 (cf. Koch,
2013).
Equations (4.2.18) - (4.2.20) define the assumptions that all latent state residual method variables
z

UM
rti j2l , z

CM
ti j2l , and z

M
ti jkl , k > 2, belonging to different indicators i 6= i0 but the same construct, method

and measurement occasion are similarity transformations of each other, respectively. This assumption
implies that the variables are perfectly correlated and can therefore be represented by common state
residual method factors z

UM
rt j2l , z

CM
t j2l , and z

M
t jkl per construct j and measurement occasion l (Koch,

2013). The existence of these common state residual method factors is stated in Theorem 4.1 (cf.
Koch, 2013). Note that assumptions (4.2.18) and (4.2.20) are necessary for identifiability reasons, as
a model with indicator-specific factors z

UM
rti j2l or z

M
ti jkl would not be identified. This is not the case for

the z

CM
ti j2l variables, hence it is not necessary to impose assumption (4.2.19) to identify the model.

Theorem 4.1. (Existence)

The random variables {Yrt1111, . . . ,Yrti jkl, . . . ,Yrtcdde f } and {Yt1111, . . . ,Yti jkl, . . . ,Ytcdde f } are
(xti j1l , x

CM
ti j2l , x

UM
rti j2l , x

M
ti jkl , z

CM
ti j2l , z

UM
ti j2l , z

M
ti jkl)-congeneric variables of an LST-Com GRM if and

only if the conditions in Definition 4.1 hold. Then, for each i 2 I j, j 2 J, k 2 K, and l 2 L, there
are real-valued random variables xti j1, x

CM
ti j2 , x

UM
rti j2, x

M
ti jk, z

CM
t j2l , z

UM
t j2l , and z

M
t jkl on a probability

space (W,A,P) and constants a

x i jkl 2 R and (l
x i jkl , l

CM
x i j2l , l

UM
x i j2l , l

M
x i jkl , l

CM
z i j2l , l

UM
z i j2l , l

M
z i jkl)

2 R+ such that:

xti j1l = a

x i j1l +l

x i j1lxti j1 (4.2.21)
E[xti jkl | xti j1l] = a

x i jkl +l

x i jklxti j1 k > 1 (4.2.22)

x

UM
rti j2l = l

UM
x i j2lx

UM
rti j2 (4.2.23)

x

CM
ti j2l = l

CM
x i j2lx

CM
ti j2 (4.2.24)

x

M
ti jkl = l

M
x i jklx

M
ti jk 8 k > 2 (4.2.25)

z

UM
rti j2l = l

UM
z i j2lz

UM
rt j2l (4.2.26)

z

CM
ti j2l = l

CM
z i j2lz

CM
t j2l (4.2.27)

z

M
ti jkl = l

M
z i jklz

M
t jkl 8 k > 2 (4.2.28)
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Remarks. The existence of the common factors xti j1, x

UM
rti j2, x

CM
ti j2 , x

M
ti jk, z

UM
rt j2l , z

CM
t j2l , and z

M
t jkl fol-

lows directly from Equations (4.2.14) - (4.2.20) of Assumptions (d) - (f) of Definition 4.1. Equation
(4.2.22) follows from Equation (4.2.12) and (4.2.21) . Proofs of the existence of these latent vari-
ables were given by Koch (2013) and shall not be repeated here. Note that the constants a

x i jkl and
l

x i jkl , k > 1, in Equation (4.2.22) differ from those in Equation (4.2.12) (ai jkl and li jkl), as they are a
function of the parameters in Equation (4.2.12) and (4.2.21) (ai jkl,li jkl,a

x i j1l , and l

x i j1l). Again, the
parameters a

x i jkl and l

x i jkl and all of the coefficients ksi jkl for the same i, j,k, and l are not separately
identifiable (see Section 4.11 on identifiability conditions).
The term common refers to the fact that (1) the indicator-specific latent trait factors xti j1 and the
latent trait method factors x

UM
rti j2, x

CM
ti j2 and x

M
ti jk are common to all measurement occasions (occasion-

unspecific factors), and (2) the occasion-specific state-residual method factors z

UM
rt j2l , z

CM
t j2l and z

M
t jkl are

common to all indicators that belong to the same construct, the same method, and the same occasion
of measurement (indicator-unspecific factors).

4.3 Uniqueness, admissible transformations and meaning-
ful statements

From Theorem 4.1 it is apparent that the common latent trait variables xti j1, common latent trait
method variables x

CM
ti j2 , x

UM
rti j2, x

M
ti jk, as well as the common latent state residual method variables z

CM
t j2l ,

z

UM
t j2l , and z

M
t jkl are not uniquely defined.

A detailed theorem and proofs on admissible transformations and uniqueness of the common latent
(trait and state residual) method variables in the continuous-indicator LST-Com model with (xti j1l ,
x

CM
ti j2l , x

UM
rti j2l , x

M
ti jkl , z

CM
ti j2l , z

UM
ti j2l , z

M
ti jkl)-congeneric variables are given by Koch (2013). These apply

in the same manner to the LST-Com GRM. However, the uniqueness of the remaining parameters
in the LST-Com GRM slightly differs from the continuous indicator model, so that a comprehensive
theorem on the uniqueness of the latent variables in the LST-Com GRM is given in the following (cf.,
Eid, 1995; Koch, 2013).

Theorem 4.2. (Admissible transformations and uniqueness)

1. Admissible Transformations
Let M = h(W,A,P), p

p

prt , p

p

p t , k

k

k , a

a

a

x

, l

l

l

x

, x

x

x t , l

l

l

z

, z

z

z t , l

l

l

UM
x

, l

l

l

CM
x

, l

l

l

M
x

, x

x

x

UM
rt , x

x

x

CM
t , x

x

x

M
t , l

l

l

UM
z

, l

l

l

CM
z

,
l

l

l

M
z

, z

z

z

UM
rt , z

z

z

CM
t , z

z

z

M
t i be an LST-Com GRM with:

p

p

prt = (prt1121, . . . ,prti j2l, . . . ,prtcdd2 f )
T (4.3.1)

p

p

p t = (pt1111, . . . ,pti jkl, . . . ,ptcdde f )
T k 6= 2 (4.3.2)

k

k

k = (k11111, . . . ,ksi jkl, . . . ,k(qcd d�1)cdde f )
T (4.3.3)
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a

a

a

x

= (a
x 1111, . . . ,ax i jkl, . . . ,ax cdde f )

T (4.3.4)

l

l

l

x

= (l
x 1111, . . . ,lx i jkl, . . . ,lx cdde f )

T (4.3.5)

x

x

x t = (xt111, . . . ,xti j1, . . . ,xtcdd1)
T (4.3.6)

l

l

l

z

= (l
z 1121, . . . ,lz i jkl, . . . ,lz cdde f )

T k > 1 (4.3.7)

z

z

z t = (zt1111, . . . ,zti j1l, . . . ,ztcdd1 f )
T (4.3.8)

l

l

l

UM
x

= (l UM
x 1121, . . . ,l

UM
x i j2l, . . . ,l

UM
x cdd2 f )

T (4.3.9)

l

l

l

CM
x

= (l CM
x 1121, . . . ,l

CM
x i j2l, . . . ,l

CM
x cdd2 f )

T (4.3.10)

l

l

l

M
x

= (l M
x 1131, . . . ,l

M
x i jkl, . . . ,l

M
x cdde f )

T k > 2 (4.3.11)

x

x

x

UM
rt = (x UM

rt112, . . . ,x
UM
rti j2, . . . ,x

UM
rtcdd2)

T (4.3.12)

x

x

x

CM
t = (x CM

t112, . . . ,x
CM
ti j2 , . . . ,x CM

tcdd2)
T (4.3.13)

x

x

x

M
t = (x M

t113, . . . ,x
M
ti jk, . . . ,x

M
tcdde)

T k > 2 (4.3.14)

l

l

l

UM
z

= (l UM
z 1121, . . . ,l

UM
z i j2l, . . . ,l

UM
z cdd2 f )

T (4.3.15)

l

l

l

CM
z

= (l CM
z 1121, . . . ,l

CM
z i j2l, . . . ,l

CM
z cdd2 f )

T (4.3.16)

l

l

l

M
z

= (l M
z 1131, . . . ,l

M
z i jkl, . . . ,l

M
z cdde f )

T k > 2 (4.3.17)

z

z

z

UM
rt = (z UM

rt121, . . . ,z
UM
rt j2l, . . . ,z

UM
rtd2 f )

T (4.3.18)

z

z

z

CM
t = (z CM

t121, . . . ,z
CM
t j2l , . . . ,z

CM
td2 f )

T (4.3.19)

z

z

z

M
t = (z M

t131, . . . ,z
M
t jkl, . . . ,z

M
tde f )

T k > 2 (4.3.20)

If for all i 2 I j, j 2 J, k 2 K, and l 2 L:

x

0
ti j1 = b

x i j1xti j1 + gi j1 (4.3.21)

l

0
x i jkl = l

x i jkl/b

x i j1 (4.3.22)

a

0
x i jkl = a

x i jkl � (l
x i jkl/b

x i j1)gi j1 (4.3.23)

p

0
ti jkl = pti jkl +ni jkl k 6= 2 (4.3.24)

p

0
rti j2l = prti j2l +ni j2l (4.3.25)

k

0
si jkl = ksi jkl +ni jkl (4.3.26)

x

0UM
rti j2 = b

UM
x i j2x

UM
rti j2 (4.3.27)

x

0CM
ti j2 = b

CM
x i j2x

CM
ti j2 (4.3.28)

x

0M
ti jk = b

M
x i jkx

M
ti jk k > 2 (4.3.29)

l

0UM
x i j2l = l

UM
x i j2l/b

UM
x i j2 (4.3.30)

l

0CM
x i j2l = l

CM
x i j2l/b

CM
x i j2 (4.3.31)

l

0M
x i jkl = l

M
x i jkl/b

M
x i jk k > 2 (4.3.32)
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z

0UM
rt j2l = b

UM
z j2lz

UM
rt j2l (4.3.33)

z

0CM
t j2l = b

CM
z j2lz

CM
t j2l (4.3.34)

z

0M
t jkl = b

M
z jklz

M
t jkl k > 2 (4.3.35)

l

0UM
z i j2l = l

UM
z i j2l/b

UM
z j2l (4.3.36)

l

0CM
z i j2l = l

CM
z i j2l/b

CM
z j2l (4.3.37)

l

0M
z i jkl = l

M
z i jkl/b

M
z jkl k > 2 (4.3.38)

where b

x i j1, b

UM
x i j2, b

CM
x i j2, b

M
x i jk, b

UM
z j2l , b

CM
z j2l , b

M
z jkl 2 R+, and gi j1, ni jkl 2 R.

Then M0 = h(W,A,P), p

p

p

0
rt , p

p

p

0
t , k

k

k

0, a

a

a

0
x

, l

l

l

0
x

, x

x

x

0
t , l

l

l

z

, z

z

z t , l

l

l

0UM
x

, l

l

l

0CM
x

, l

l

l

0M
x

, x

x

x

0UM
rt , x

x

x

0CM
t , x

x

x

0M
t ,

l

l

l

0UM
z

, l

l

l

0CM
z

, l

l

l

0M
z

, z

z

z

0UM
rt , z

z

z

0CM
t , z

z

z

0M
t i is an LST-Com GRM, too, with

p

p

p

0
rt = (p 0

rt1121, . . . ,p
0
rti j2l, . . . ,p

0
rtcdd2 f )

T (4.3.39)

p

p

p

0
t = (p 0

t1111, . . . ,p
0
ti jkl, . . . ,p

0
tcdde f )

T k 6= 2 (4.3.40)

k

k

k

0 = (k 0
11111, . . . ,k

0
si jkl, . . . ,k

0
(qcd d�1)cdde f )

T (4.3.41)

a

a

a

0
x

= (a 0
x 1111, . . . ,a

0
x i jkl, . . . ,a

0
x cdde f )

T (4.3.42)

l

l

l

0
x

= (l 0
x 1111, . . . ,l

0
x i jkl, . . . ,l

0
x cdde f )

T (4.3.43)

x

x

x

0
t = (x 0

t111, . . . ,x
0
ti j1, . . . ,x

0
tcdd1)

T (4.3.44)

l

l

l
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2. Uniqueness
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z jkl 2 R+, such that Equations (4.3.21) to (4.3.38) hold.

Remarks. Theorem 4.2 reveals that the the latent state residual variables zti j1l as well as the load-
ing parameters l

z i jkl are uniquely defined in the LST-Com GRM with indicator-specific state resid-
ual variables zti j1l (they are the same in M and M0). This is the case as any translation of the
latent response variables pti jkl directly leads to the same translation for the latent trait variables
xti jkl = E[Sti jkl | pT ], with Sti jkl = pti jkl , k 6= 2, and Sti j2l = E[prti j2l | pT , pT Sl ], and thereby does
not affect their residuals zti jkl = Sti jkl �xti jkl . Therefore, there are no admissible transformations (ex-
cept for the identity transformation) for these variables in this variant of the model, and meaningful
statements can directly be made about the absolute values of zti j1l and l

z i jkl . Note that this is not any
longer true if the LST-Com GRM is defined with common latent state residual variables, as discussed
in section 4.4.
Theorem 4.2 also shows that the common latent trait variables xti j1 are only uniquely defined up
to linear transformations, while their loading parameters l

x i jkl are uniquely defined up to similar-
ity transformations. The common trait method and common state residual method factors and their
corresponding loading parameters are uniquely defined only up to similarity transformations. The
parameters p

0
rti j2l , p

0
ti jkl , a

x i jkl , and ksi jkl are uniquely defined up to translations by a constant. These
properties and resulting meaningful statements are elaborated in the following. As these variables
are not uniquely defined in the LST-Com GRM, a single representative of the set of possible values
for these variables has to be chosen. This can be done by imposing different restrictions, which are
described in section 4.11 on identifiability.

Common latent trait variables. To see that the common latent trait variables xti j1 are only uniquely
defined up to linear transformations, let x
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x i j1l be defined as given by Equations

(4.3.21) - (4.3.23). Then, it holds that:
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a proof on the uniqueness see Koch (2013).
As linear transformations are permissible transformations of the common latent trait variables xti j1,
meaningful statements regarding the values of these variables are statements on the ratio of differ-
ences. That is, if both M = h(W,A,P), p

p

prt , p

p

p t , k

k

k , a

a

a

x

, l

l

l

x

, x

x

x t , l

l

l

z

, z

z

z t , l

l

l

UM
x

, l

l

l

CM
x

, l

l

l

M
x

, x

x

x

UM
rt , x

x

x

CM
t ,

x

x

x

M
t , l

l

l

UM
z

, l

l

l

CM
z

, l

l

l

M
z

, z

z

z

UM
rt , z

z

z

CM
t , z

z

z

M
t i and M0 = h(W,A,P), p

p

p

0
rt , p

p

p

0
t , k

k

k

0, a

a

a

0
x

, l

l

l

0
x

, x

x

x

0
t , l

l

l

z

, z

z

z t , l

l

l

0UM
x

,

l

l

l

0CM
x

, l

l

l

0M
x

, x

x

x

0UM
rt , x

x

x

0CM
t , x

x

x

0M
t , l

l

l

0UM
z

, l

l

l

0CM
z

, l

l

l

0M
z

, z

z

z

0UM
rt , z

z

z

0CM
t , z

z

z

0M
t i are LST-Com GRMs, then, for

w1,w2, w3,w4 2 W, r 2 R, t 2 T , i 2 I j, j 2 J, k 2 K, and l 2 L, it holds that

xti j1(w1)�xti j1(w2)

xti j1(w3)�xti j1(w4)
=

x

0
ti j1(w1)�x

0
ti j1(w2)

x

0
ti j1(w3)�x

0
ti j1(w4)



68 CHAPTER 4. LST-COM GRM

Hence, statements regarding the ratios of differences of different persons’ values on the common
latent trait variables are meaningful (Koch, 2013). Statements on the absolute values of the common
latent trait variables xti j1 or on ratios of the values themselves, in contrast, are not meaningful. That
is, the common latent trait variables are measured on an interval scale. As linear transformations
of variables do not have an influence on their correlations, all statements regarding the correlations
between the common latent trait variables (of different indicators or constructs) are meaningful. So
are statements on variance components (see Koch, 2013), as l

2
x i jklVar(xti j1) = l

02
x i jklVar(x 0

ti j1).
The loading parameters l

x i jkl , in contrast, are measured on a ratio scale. That is, as they are uniquely
defined up to similarity transformations, meaningful statements are statements regarding the ratio of
l

x i jkl and l

x i jk0l0 for k,k0 2 K, k = k0 or k 6= k0 and l, l0 2 L, l = l0 or l 6= l0, as

l

x i jkl
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x i jk0l0
=

l

0
x i jkl

l

0
x i jk0l0

Latent response variables pti jkl and prti j2l . The following proof shows that the latent response vari-
ables pti jkl , k 6= 2, and prti j2l are uniquely defined only up to translations.

Proof. Admissible transformations and uniqueness of the latent response variables p
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t i be LST-Com GRMs. Then it has to hold that

pti jkl �ksi jkl = p

0
ti jkl �k

0
si jkl and prti j2l �ksi j2l = p

0
rti j2l �k

0
si j2l for all s 2 Si j, i 2 I j, j 2 J, k 2 K,k 6= 2,

and l 2 L. It follows that p

0
ti jkl = pti jkl � ksi jkl + k

0
si jkl , k 6= 2, and p

0
rti j2l = prti j2l � ksi j2l + k

0
si j2l . As

the difference k

0
si jkl �ksi jkl has to be the same over all s 2 Si j for each i 2 I j, j 2 J, k 2 K, and l 2 L,

one can define ni jkl as ni jkl = k

0
si jkl �ksi jkl .

⇤

As the definition of the common latent response variables ptsi j1l , prtsi j2l and ptsi jkl , k > 2, in the
LST-Com GRM is the same as in the LS-Com GRM, all statements concerning admissible transfor-
mations, uniqueness and meaningful statements regarding these variables are the same, too. To see
which meaningful statements can be made regarding the latent response variables pti jkl and prti j2l
and the threshold parameters ksi jkl see Equations (2.5.38) - (2.5.44) and the respective explanations
in section 2.5. Note that with pti jkl and prti j2l being uniquely defined only up to translations by
a real constant ni jkl , also the latent variables Sti jkl = pti jkl , k 6= 2, Sti j2l = E[prti j2l | pT , pT Sl ] and
xti jkl = E[Sti jkl | pT ] are uniquely defined only up to the addition of the same constant ni jkl .

Latent (trait and residual state) method variables. Theorem 4.2 also reveals that the common trait
method and common state residual method factors and their corresponding loading parameters are
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uniquely defined only up to similarity transformations. That is, admissible transformations of these
factors and loadings are the multiplications with positive real numbers. As the multiplication with
positive real numbers is an admissible transformation of the latent trait method factors x

UM
rti j2, x

CM
ti j2 ,

and x

M
ti jk, k > 2, and their corresponding factor loadings, statements regarding the absolute value

of the parameters are not meaningful. The same holds for the latent state residual method factors
z

UM
rt j2l , z

CM
t j2l , and z

M
t jkl , k > 2, and their corresponding factor loadings. Meaningful statements for these

parameters are statements regarding the ratio of specific values of the factor loadings or the ratio of
the values of the latent (trait or state residual) method factors (see Geiser, 2008; Koch, 2013). That is,
the latent trait method and latent state residual method variables in the LST-Com GRM are measured
on a ratio scale. Proofs of the uniqueness and meaningfulness for the latent (trait and residual state)
method factors in the LST-Com model (applying to the LST-Com GRM, too) can be found in Koch
(2013). Possible meaningful statements on the latent method factors as well as on their factor loadings
shall only be shortly illustrated here with the example of the common latent unique method trait and
unique method state residual factors and loadings.
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t i be LST-Com GRMs defined by Equations

(4.3.1) to (4.3.58). Then, for w1,w2 2 W, r 2 R, t 2 T , i, i0 2 I j, j 2 J, k 2 K, and l, l0 2 L, it holds that

l

UM
x i j2l
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UM
x i j2l0

=
l

0UM
x i j2l
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x i j2l0

(4.3.59)

x
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rti j2(w1)

x

UM
rti j2(w2)

=
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0UM
rti j2(w1)

x

0UM
rti j2(w2)

(4.3.60)

and

l
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z i j2l
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z i0 j2l

=
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z i0 j2l

(4.3.61)
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z

UM
rt j2l(w2)

=
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0UM
rt j2l(w1)

z

0UM
rt j2l(w2)

(4.3.62)

Thus, meaningful statements regarding the factor loadings of the common unique method trait vari-
ables are statements on the ratio of the loadings l

UM
x i j2l belonging to the same indicator i of construct

j but different measurement occasions l and l0. Meaningful statements regarding the factor loadings
of the common unique method state residual variables, in contrast, are statements on the ratio of the
loadings l

UM
z i j2l belonging to the same construct j and measurement occasion l, but different indicators

i and i0. For the common trait or residual state unique method variables, statements on the ratio of two
targets’ values on the factors are meaningful. The values on the latent (trait or state residual) method
factors of different targets can therefore be compared using their ratio. Meaningful statements with
regard to x

CM
ti j2 and x

M
ti jk, z

CM
t j2l , z

M
t jkl , and their respective loading parameters can be made in the same

manner (Koch, 2013).
Note that comparisons of targets’ values on the common latent trait method variables of different
indicators i 6= i0 or constructs j 6= j0 are, as a consequence, also only meaningful if they refer to the
ratio of the values of w1 and w2. The same holds for comparisons of the latent state residual method
variables values of different constructs j 6= j0 or measurement occasions l 6= l0. Comparisons between
the loading parameters of the latent state residual method factors of different measurement occasions
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l 6= l0 are only meaningful if they refer to the ratios of loading parameters of different indicators i 6= i0

of the same construct and measurement occasion (see Equation 4.3.61). Analogously, comparisons
between the loading parameters of the latent trait method variables of different indicators or con-
structs are only meaningful if they refer to the ratios of loading parameters of trait method variables
of different measurement occasions l 6= l0 but the same indicator and construct (see Equation 4.3.59).
Furthermore, the products (lCM

x i j2l)
2Var(xCM

ti j2 ), (lCM
z i j2l)

2Var(zCM
t j2l ), (l

UM
x i j2l)

2Var(xUM
rti j2), (l

UM
z i j2l)

2Var(zUM
rt j2l),

(l M
x i jkl)

2Var(x M
ti jk), and (l M

z i jkl)
2Var(z M

t jkl) are invariant under similarity transformations, as, e.g.,

(lUM
x i j2l)

2Var(xUM
rti j2) =

(lUM
x i j2l)

2

(b UM
x i j2)

2 (b UM
x i j2)

2Var(xUM
rti j2)

= (l 0UM
x i j2l)

2Var(x 0UM
rti j2)

(4.3.63)

(see Equation 4.3.30). Hence, any statement with respect to the ratio of variances are meaningful.
Furthermore, statements concerning latent correlations between (trait or residual state) method factors
are meaningful, as, for i, i0 2 I j and j, j0 2 J

Corr(xUM
rti j2,x

UM
rti0 j02) = Corr(x 0UM

rti j2,x
0UM
rti0 j02) (4.3.64)

and

Corr(zUM
rt j2l,z

UM
rt j02l) = Corr(z 0UM

rt j2l,z
0UM
rt j02l) (4.3.65)

hold by the general properties of correlations (Steyer & Nagel, 2017, remark 7.21, p. 243)). For
a more detailed treatment and proofs of the meaningfulness of the latent (trait and residual state)
method variables in the LST-Com models, see Koch (2013).

4.4 Common latent trait and state residual factors
The LST-Com GRM defined in section 4.2 and depicted in Figure 4.1 could also be defined with
common latent state factors zt j1l for all indicators belonging to the same construct j and measurement
occasion l, instead of the indicator-specific latent state residual variables zti j1l . The specification
of common latent state residual factors is based on the assumption that the indicator-specific latent
state factors zti j1l and zti0 j1l of two different indicators i 6= i0 pertaining to the same construct j and
same occasion of measurement l, are similarity transformations of each other and therefore perfectly
correlated, i.e., for each construct j, measured by the reference method (k = 1), and for each pair
(i, i0) 2 I j ⇥ I j , (i 6= i0), there are constants l

z ii0 j1l 2 R+ such that

zti j1l = l

z ii0 j1lzti0 j1l (4.4.1)

That is, a common latent state residual variable zt j1l and constants l

z i j1l 2 R+ exist so that the
indicator-specific variables zit j1l can be expressed by:

zti j1l = l

z i j1lzt j1l (4.4.2)

The proof of the existence of these common latent state residual variables zt j1l and their loading
parameters l

z i j1l follows the same logic as the proof for the existence of the common latent state
residual method variables z

UM
rt j2l , z

CM
t j2l , and z

M
t jkl (see Koch, 2013), and a proof of the existence of

these variables in a multistate-multitrait model that is analogous to the present case can be found in
Eid (1995). Note that the expectations of the latent state residual variables zti j1l and zt j1l are zero
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by definition and hence Equations (4.4.1) and (4.4.2) do not include intercepts. Note that with the
definition of common latent state residual variables zt j1l the regression of zti jkl on the reference-
method state residuals (given in Equation 4.2.13) changes, as they are now regressed on the common
latent state residual variables zt jkl . The resulting loading parameters l

0
z i jkl of the regression E[zti jkl |

zt j1l] = l

0
z i jklzt j1l are given by

l

0
z i jkl = l

z i jkllz i j1l k > 1 (4.4.3)

The common latent state residual variables zt j1l and their loading parameters l

z i j1l and l

0
z i jkl , k >

1, are not uniquely defined in the LST-Com GRM. Admissible transformations for these variables
are multiplications with a positive real number, that is, they are uniquely defined up to similarity
transformations. Hence, meaningful statements on the common latent state residual variables zt j1l
are statements regarding the ratio of different targets’ values, as for all t 2 T , j 2 J, l 2 L, and w1,w2
2 W it holds that

zt j1l(w1)

zt j1l(w2)
=

z

0
t j1l(w1)

z

0
t j1l(w2)

. (4.4.4)

with

z

0
t j1l = b

z j1lzt j1l (4.4.5)

and b

z j1l 2 R+. Meaningful statements on the new loading parameters l

0
z i jkl are statements regard-

ing their ratio, that is, for all i, i0 2 I j, i 6= i0, k,k0 2 K, k 6= k0, j 2 J, and l 2 L it holds that

l

0
z i jkl

l

0
z i0 jk0l

=
l

00
z i jkl

l

00
z i0 jk0l

(4.4.6)

with

l

00
z i jkl = l

0
z i jkl/b

z j1l (4.4.7)

as

l

0
z i jkl

l

0
z i0 jk0l

=
l

0
z i jkl/b

z j1l

l

0
z i0 jk0l/b

z j1l
(4.4.8)

=
l

00
z i jkl

l

00
z i0 jk0l

Additionally, it could be assumed that the latent trait variables xti j1 and xti0 j1 of different indicators
i, i0 2 I j, i 6= i0, belonging to the same construct j are linear transformations of each other (and hence
are perfectly correlated). That is, it can be assumed that for each construct j, measured by the refer-
ence method (k = 1), and for each pair (i, i0) 2 I j ⇥ I j , (i 6= i0), there are constants lii0 j1 2 R+ and
dii0 j1 2 R such that

xti j1 = dii0 j1 +lii0 j1xti0 j1. (4.4.9)

Again, this implies the existence of common latent trait variables xt j1 and constants li j1 2 R+ and
di j1 2 R such that

xti j1 = di j1 +li j1xt j1 (4.4.10)

From Equation (4.4.10) it is obvious that the common latent trait variables xt j1 are only uniquely
defined up to linear transformations, while the coefficients li j1 are uniquely defined up to similarity
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transformations and the coefficients di j1 up to translations by a real constant. Note that the coefficients
l

x i jkl and a

x i jkl in the Equation for E[xti jkl | xti j1l] (see Equation 4.2.22) change from the model with
indicator-specific latent trait variables xti j1 to the model with common latent trait variables xt j1, as
they are now the coefficients of the regression of the non-reference method variables xti jkl on xt j1
(instead of on xti j1). As the variables xti j1 as well as the coefficients l

x i jkl and a

x i jkl are measured on
the same scale as their analogues in Equation (4.4.10), all the properties derived for these variables in
section 4.3 apply to xt j1, li j1 and di j1 in an analogous manner, respectively. Meaningful statements
regarding the common latent trait factors xt j1 are therefore statements on the ratio of differences
between different values of xt j1, that is, for w1,w2, w3,w4 2 W, t 2 T , and j 2 J it holds that

xt j1(w1)�xt j1(w2)

xt j1(w3)�xt j1(w4)
=

x

0
t j1(w1)�x

0
t j1(w2)

x

0
t j1(w3)�x

0
t j1(w4)

(4.4.11)

For the new loading parameters l

x i jkl in an LST-Com GRM with common latent trait factors xt j1
meaningful statements are statements regarding the ratio of l

x i jkl and l

x i0 jk0l0 for i, i0 2 I j, i = i0 or
6= i0, k,k0 2 K, k = k0 or k 6= k0 and l, l0 2 L, l = l0 or l 6= l0, as

l

x i jkl

l

x i0 jk0l0
=

l

0
x i jkl

l

0
x i0 jk0l0

(4.4.12)

This result is a direct consequence of the definition of the variables analogous to the results in section
4.3 and the proof is left to the reader. Note that, as pti j1l and ksi jkl are only uniquely defined up to
translations, the coefficients di j1, a

x i j1l and all of the coefficients ksi j1l for the same i, j, and l are
not separately identifiable. The same holds for the coefficients a

x i jkl and ksi jkl , k > 1. For further
restrictions imposed on the mean structure, as well as the coefficients a

x i jkl , di j1 and ksi jkl due to
identifiability considerations refer to Sections 4.10 and 4.11.
Also the indicator-specific common latent trait method factors x

UM
rti j2, x

CM
ti j2 , and x

M
ti jk, k > 2 for different

indicators i, i0 2 I j, i = i0 but the same construct j could be assumed to be perfectly correlated, resulting
in common latent trait method variables x

UM
rt j2 , x

CM
t j2 , and x

M
t jk, k > 2. Again, the variables x

UM
rt j2 , x

CM
t j2 ,

and x

M
t jk, k > 2, are uniquely defined only up to similarity transformations, and all properties discussed

for the indicator-specific variables x

UM
rt j2 , x

CM
t j2 , and x

M
t jk in section 4.2 hold for the variables x

UM
rt j2 , x

CM
t j2 ,

and x

M
t jk, k > 2, too. The same is true for their loading parameters l

UM
x i j2l , l

CM
x i j2l and l

M
x i jkl , with the

only difference that in an LST-Com GRM with common (non-indicator-specific) latent trait variables
x

UM
rt j2 , x

CM
t j2 , and x

M
t jk, k > 2, meaningful statements on the loading parameters also refer to ratios of

loading parameter for different indicators i 6= i0 of the same construct j. That is, for i, i0 2 I j, j 2 J,
k 2 K, and l, l0 2 L, it holds that

l

M
x i jkl

l

M
x i0 jkl0

=
l

0M
x i jkl

l

0M
x i0 jkl0

(4.4.13)

and analogously for the coefficients l

UM
x i j2l and l

CM
x i j2l . An LST-Com GRM with common latent state

residual factors zt j1l , common latent trait factors xt j1, and common latent trait method factors x

UM
rt j2 ,

x

CM
t j2 , and x

M
t jk, k > 2, is depicted in Figure 4.2.

4.5 True score variables
The definition of latent true score variables for ordered categorical variables in the LST-Com GRM is
identical to that of the LS-Com GRM and was given in Definition 2.2 in section 2.7.
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4.6 Factor analytical representation
The LST-Com GRM presented above can also be represented as a factor model for ordinal data. As
this representation does not depend on the specific model (LS-Com or LST-Com), the factor-analytical
representation of the LST-Com GRM is identical to that of the LS-Com GRM as defined in section
2.8.

4.7 Independence assumptions and testability

4.7.1 LST-Com GRM with conditional independence
In order to derive testable consequences of the LST-Com GRM, several independence assumptions
have to be introduced. These assumptions define the LST-Com GRM with conditional independence.
Note that classical assumptions of multilevel modeling are made, that is, the targets are assumed to be
independently and randomly drawn from a set of targets and the interchangeable raters are assumed
to be independently and randomly drawn from a set of interchangeable raters given a target. The
following assumptions extend these independence assumptions.

Definition 4.2. (LST-Com GRM with conditional independence)
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M
ti jkl)-congeneric variables. M is called LST-Com GRM with conditional independence if and

only if the assumptions given in Definition 2.3 (i.e., Equations (2.9.1) - (2.9.5)), as well as the
following assumption hold:

pR ?? pT Sl | pT (4.7.1)

Remarks. Assumptions (2.9.1) - (2.9.5) given in Definition 2.3 have the same meaning in the LST-
Com GRM as in the LS-Com GRM and are explained in detail in the remarks to Definition 2.3.
Assumption 4.7.1 states that, given the target, the sampling of the raters is independent of any target-
situation realized on any of the measurement occasions. This assumption is not especially restrictive,
as the interchangeable raters are supposed to be sampled randomly given the target and only once (at
a time point different from any of the measurement occasions) and should thereby, given the target,
not depend on specific situations realized for the target on any of the measurement occasions. As-
sumption 4.7.1 allows for the interpretation of the latent unique method trait variables x

UM
rti j2l as the

difference between the conditional expectation of the latent response variables prti j2l given the target
and the rater and its conditional expectation given the target only (see section 4.7.2). Furthermore,
all of the conditional independence assumptions given in Definition 4.2 (also see Definition 2.3) im-
ply consequences regarding the conditional and unconditional distributions of the observed variables
Yti jkl and Yrti j2l as well as a specific covariance structure of the latent variables pti jkl and prti j2l in the
LST-Com GRM. Whether the restrictions imposed on the probability distributions of the response
vectors and on the covariance structure by the conditional independence assumptions hold in empiri-
cal applications can be tested. That is, the conditional independence assumptions given in Definition
4.2 impose testable consequences on the covariance structure of the LST-Com GRM. These are de-
rived in Section 4.8. The covariance structure of the variables Y ⇤

ti jkl and Y ⇤
rti j2l is derived based on the

covariance structure of the latent variables pti jkl and prti j2l using the following theorem.
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Theorem 4.3. (LST-Com GRM with conditional independence)

Let M = h(W,A,P), p
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congeneric variables with conditional independence. Then, for all i, i0 2 I j, j, j0 2 J, k 2 K,
l, l0 2 L, and yrti j2l , yti jkl 2 Si j it holds that:
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Furthermore, it holds that:
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(4.7.3)

Remarks. Equation (4.7.2) follows from Equations (2.9.1) and (2.9.2) - (2.9.4). This is the case as
the random variables pti j1l , pti jkl , k > 2, and prti j2l are (pT , pT Sl )-, (pT , pT Sl , pRkSl )-, and (pT , pT Sl ,
pR, pR2Sl )-measurable functions, respectively. Similar arguments lead to Equation (4.7.3). A proof
was given by Eid (1995, pp. 97-98) for a comparable model and is applicable to the present case.
According to Equation (4.7.2), all observed variables Yrti j2l and Yti jkl are independent given the latent
response variables prti j2l and pti jkl . Note that this assumption and its implications do not differ from
the LS-Com GRM. Equation (4.7.2) implies that all associations between the observed variables are
determined by the latent variables pti jkl and prti j2l and their associations. According to Equation
(4.7.3), the same holds with respect to the variables xti j1, zti j1l , x

UM
rti j2, z

UM
rt j2l , x

CM
ti j2 , z

CM
t j2l , x

M
ti jk, and z

M
t jkl .
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4.7.2 Conditional regressive independence of the latent state variables
As in the continuous-indicator LST-Com model, it can be shown that under conditional indepen-
dence, the latent unique method trait variables x

UM
rti j2l can be interpreted as the difference between the

conditional expectation of the latent response variables prti j2l given the target and the rater and its
conditional expectation given the target only (Koch, 2013). The following theorem is a byproduct of
the independence assumption given in Equation (4.7.1) of Definition 4.2.

Theorem 4.4. (LST-Com GRM with conditional regressive independent latent state variables)
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t i be an LST-Com GRM as defined by Definition 4.1. M is called

LST-Com GRM with conditionally regressive independent Sti j2l variables, if assumption (4.7.1)
of Definition 4.2 holds. Then, it follows that

E[Sti j2l | pT , pR] = E[Sti j2l | pT ] (4.7.4)

and the variables x

UM
rti j2l can be redefined as follows:

x

UM
rti j2l = E[prti j2l | pT , pR]�E[prti j2l | pT ] (4.7.5)

Remarks. Equation (4.7.4) states that the the expectation of the Level-2 variables Sti j2l (which are
defined as Sti j2l = E[prti j2l | pT , pT Sl ] in Equation 4.2.5) does not depend on the rater projection pR
given the target pT . That is they are conditionally independent of pR given pT . Recall that the unique
method variables UMrti j2l represent the true deviation of a particular rater’s rating from the expected
rating over all interchangeable raters for target t on measurement occasion l (see Equation 4.2.1).
The latent unique method trait variables x

UM
rti j2l are defined as the part of this deviation that does not

depend on the situation variables pT Sl and pR2Sl (see Equation 4.2.2). Theorem 4.4 states that, given
the assumption given in Equation (4.7.4), these variables can also be interpreted as the difference
between the conditional expectation of the latent response variables prti j2l given the target and the
rater and its conditional expectation given the target only. The result in Equation (4.7.5) of Theorem
4.4 is a direct consequence of assumption (4.7.4) and the definition of the latent variables given in
Definition 4.1, as (cf. Koch, 2013):

x

UM
rti j2l = E[UMrti j2l | pT , pR] by Equation (4.2.2)

= E[prti j2l �Sti j2l | pT , pR] by Equation (4.2.1) and (4.2.5)
= E[prti j2l | pT , pR]�E[Sti j2l | pT , pR]

= E[prti j2l | pT , pR]�E[Sti j2l | pT ] by Equation (4.7.4)
= E[prti j2l | pT , pR]�E[E(prti j2l | pT , pT Sl ) | pT ] by Equation (4.2.5)
= E[prti j2l | pT , pR]�E[prti j2l | pT ]

= E[prti j2l | pT , pR]�xti j2l by Equation (4.2.6)

Hence, under this assumption, the latent unique method trait variables x

UM
rti j2l represent the over- or

underestimation of a target’s trait xti j2l (as measured by all of the interchangeable raters per target)
by a particular interchangeable rater r that does not depend on the specific (target- or rater-)situations
realized on measurement occasion l.
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4.7.3 LST-Com GRM in subpopulations
If the LST-Com GRM holds in a population, the model implies that it also holds in every subpopula-
tion. That is, the item parameters a , l , and k have the same value in different subpopulations and the
values on the latent variables pti jkl , prti j2l , xti j1, zti j1l , x

UM
rti j2, z

UM
rt j2l , x

CM
ti j2 , z

CM
t j2l , x

M
ti jk, and z

M
t jkl remain

the same when considering subpopulations, given that the parameterization and scaling of the latent
variables is the same. This fact was proven by Eid (1995, pp. 94-96, 99) for a comparable model.
The prove applies to the present model, too, and shall therefore not be repeated here.
Furthermore, if an LST-Com GRM with conditional independence holds in a population, the same
conditional independence assumptions also hold in subpopulations. That is, the covariance structure
implied by the conditional independence assumptions has to hold in every subpopulation. For a prove
for a comparable model see Eid (1995). While the covariance structure has to be the same in every
subpopulation, the values of the (non-zero) variances and covariances between the latent variables are
allowed to vary between subpopulations.

4.8 Covariance structure
The LST-Com GRM with conditional independence implies a specific covariance structure of the la-
tent variables pti jkl , k 6= 2, and prti j2l . The following theorem introduces the covariances that are zero
as a result of the conditional independence assumptions.

Theorem 4.5. (Testability)
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congeneric variables and conditional independence, then, for all i, i0 2 I j, j, j0 2 J, k 2 K, and
l, l0 2 L, with i = i0 or i 6= i0, j = j0 or j 6= j0, and l = l0 or l 6= l0, it holds that

1. The latent trait variables are uncorrelated with the latent trait method variables:

Cov(xti j1,x
CM
ti j2 ) = 0 (4.8.1)

Cov(xti j1,x
UM
rti0 j02) = 0 (4.8.2)

Cov(xti j1,x
M
ti jk) = 0 k > 2 (4.8.3)

2. The latent state residual variables are uncorrelated with the latent state residual method
variables:

Cov(zti j1l,z
CM
t j2l ) = 0 (4.8.4)

Cov(zti j1l,z
UM
rt j02l0) = 0 (4.8.5)

Cov(zti j1l,z
M
t jkl) = 0 k > 2 (4.8.6)

3. The latent trait variables are uncorrelated with all latent state residual (method) vari-
ables:
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Cov(xti j1,zti0 j0kl0) = 0 (4.8.7)

Cov(xti j1,z
CM
t j02l0) = 0 (4.8.8)

Cov(xti j1,z
UM
rt j02l0) = 0 (4.8.9)

Cov(xti j1,z
M
t j0kl0) = 0 k > 2 (4.8.10)

4. The latent trait method variables are uncorrelated with all latent state residual (method)
variables:

Cov(xCM
ti j2 ,zti0 j0kl0) = 0 (4.8.11)

Cov(xCM
ti j2 ,zCM

t j02l0) = 0 (4.8.12)

Cov(xCM
ti j2 ,zUM

rt j02l0) = 0 (4.8.13)

Cov(xCM
ti j2 ,z M

t j0kl0) = 0 k > 2 (4.8.14)

Cov(xUM
rti j2,zti0 j0kl0) = 0 (4.8.15)

Cov(xUM
rti j2,z

CM
t j02l0) = 0 (4.8.16)

Cov(xUM
rti j2,z

UM
rt j02l0) = 0 (4.8.17)

Cov(xUM
rti j2,z

M
t j0kl0) = 0 k > 2 (4.8.18)

Cov(x M
ti jk,zti0 j0kl0) = 0 k > 2 (4.8.19)

Cov(x M
ti jk,z

CM
t j02l0) = 0 k > 2 (4.8.20)

Cov(x M
ti jk,z

UM
rt j02l0) = 0 k > 2 (4.8.21)

Cov(x M
ti jk,z

M
t j0kl0) = 0 k > 2 (4.8.22)

5. Uncorrelatedness of latent trait method variables:

Cov(xCM
ti j2 ,xUM

rti0 j02) = 0 (4.8.23)

Cov(x M
ti jk,x

UM
rti0 j02) = 0 k > 2 (4.8.24)

6. Uncorrelatedness of latent state residual method variables:

Cov(zCM
t j2l ,z

UM
rt j02l0) = 0 (4.8.25)

Cov(z M
t jkl,z

UM
rt j02l0) = 0 k > 2 (4.8.26)

Proofs.
The following proofs are based on Definitions 4.1 and 4.2 (and thereby Definition 2.3), as well as
on general properties of residual variables. These properties are that residual variables are always
uncorrelated with their regressors as well as with measurable functions of their regressors (Steyer
& Nagel, 2017, p. 323). Some of these proofs have already been pre-published for the continuous-
indicator model in Koch et al. (2017)1.

4.8.1 By Equation (4.2.24), the latent common method trait factor x

CM
ti j2 can be rewritten as x

CM
ti j2 =

1This concerns proofs [4.8.2], [4.8.6], [4.8.7], [4.8.9], [4.8.22], and [4.8.24].
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x

CM
ti j2l/l

CM
x i j2l . x

CM
ti j2l is defined as x

CM
ti j2l = xti j2l �E[xti j2l | xti j1l] by Equation (4.2.8). Hence,

x

CM
ti j2l is defined as a residual with respect to xti j1l . As the latent trait variable xti j1l can be

rewritten as xti j1l = a

x i j1l +l

x i j1lxti j1 (see Equation 4.2.21), x

CM
ti j2l is also defined as a residual

with respect to xti j1. As residuals are uncorrelated with their regressors, it follows that, for the
same indicator i and construct j, Cov(xti j1,xCM

ti j2 ) = 0.

4.8.2 By Equation (4.2.23), the latent unique method trait factor x

UM
rti0 j02 can be rewritten as x

UM
rti0 j02l0/l

UM
x i0 j02l0 .

x

UM
rti0 j02l0 is defined as x

UM
rti0 j02l0 =E[prti0 j02l0 | pT , pR]�E[prti0 j02l0 | pT ] by Equation (4.7.5). Hence,

x

UM
rti0 j02l0 is defined as a residual with respect to a pT -measurable function and thereby un-

correlated with any pT -measurable function. It follows that x

UM
rti0 j02l0 is uncorrelated with the

pT -measurable function xti j1 = (xti j1l �a

x i j1l)/l

x i j1l .

4.8.3 The proof of Equation (4.8.3) follows the same logic as Proof 4.8.1.

4.8.4 By equation (4.2.27) z

CM
t j2l can be rewritten as z

CM
t j2l = z

CM
ti j2l/l

CM
z i j2l . Hence Cov(zti j1l,zCM

t j2l ) =

0 () Cov(zti j1l,zCM
ti j2l) = 0. z

CM
ti j2l is defined as zti j2l �E[zti j2l | zti j1l] by Equation (4.2.10).

That is, z

CM
ti j2l is defined as a residual with respect to zti j1l . As residuals are uncorrelated

with their regressors, it follows that, for the same indicator i, construct j, and measurement
occasion l, Cov(zti j1l,zCM

ti j2l) = 0.

4.8.5 By Equation (4.2.26) z

UM
rt j02l0 can be rewritten as z

UM
rti0 j02l0/l

UM
z i0 j02l0 . Hence Cov(zti j1l,zUM

rt j02l0) = 0
() Cov(zti j1l,zUM

rti0 j02l0) = 0. z

UM
rti0 j02l0 is defined as UMrt 0i0 j2l0 �x

UM
rti0 j02l0 by Equation (4.2.3).

Hence Cov(zti j1l,zUM
rti0 j02l0) = 0 () Cov(zti j1l,UMrti0 j02l0) = 0 and Cov(zti j1l,xUM

rti0 j02l0) = 0.
Cov(zti j1l,xUM

rti0 j02l0) = 0 is shown in Proof 4.8.15.
Cov(zti j1l,UMrti0 j02l0) = 0 holds if Cov(Sti j1l,UMrti0 j02l0) = 0 and Cov(xti j1l,UMrti0 j02l0) = 0.
Cov(Sti j1l,UMrti0 j02l0) = 0 is shown in Proof 2.10.2. Cov(xti j1l,UMrti0 j02l0) = 0 holds as xti j1l is
a direct function of Sti j1l , and UMrti0 j02l0 is a residual with respect to Sti j1l (see Proof 2.10.2).

4.8.6 The proof of Equation (4.8.6) follows the same logic as Proof 4.8.4.

4.8.7 By Equation (4.2.21) xti j1 can be rewritten as xti j1 = (xti j1l �a

x i j1l)/l

x i j1l . Hence Cov(xti j1,zti0 j0kl0) =

0 () Cov(xti j1l,zti0 j0kl0) = 0. zti0 j0kl0 is defined as zti0 j0kl0 = Sti0 j0kl0 �E[Sti0 j0kl0 | pT ] by
Equations (4.2.7) and (4.2.6). That is, zti0 j0kl0 is defined as residual with respect to any pT -
measurable function, and is therefore uncorrelated with the pT -measurable function xti j1l .

4.8.8 Again, xti j1 can be rewritten as (xti j1l �a

x i j1l)/l

x i j1l . By equation (4.2.27) z

CM
t j02l0 can be rewrit-

ten as z

CM
ti0 j02l0/l

CM
z i0 j02l0 . Hence Cov(xti j1,zCM

t j02l0) = 0 () Cov(xti j1l,zCM
ti0 j02l0) = 0. By equation

(4.2.10) z

CM
ti0 j02l0 is defined as zti0 j02l0 �E[zti0 j02l0 | zti0 j01l0 ]. It follows that Cov(xti j1l,zCM

ti0 j02l0) = 0,
as Cov(xti j1l,zti0 j02l0) = 0 and Cov(xti j1l,zti0 j01l0) = 0 as shown in Proof 4.8.7.

4.8.9 Again, xti j1 can be rewritten as (xti j1l � a

x i j1l)/l

x i j1l . By equation (4.2.26) z

UM
rt j02l0 can be

rewritten as z

UM
rti0 j02l0/l

UM
z i0 j02l0 . Hence Cov(xti j1,zUM

rt j02l0) = 0 () Cov(xti j1l,zUM
rti0 j02l0) = 0. By

Equations (4.2.3) and (4.2.2) z

UM
rti0 j02l0 is defined as UMrti0 j02l0 �E[UMrti0 j02l0 | pT , pR]. That is,

z

UM
rti0 j02l0 is a residual with respect to pT -measurable functions and thereby uncorrelated with

the pT -measurable function xti j1l .

4.8.10 The proof of Equation (4.8.10) follows the same logic as Proof 4.8.8.

4.8.11 x

CM
ti j2 can be rewritten as x

CM
ti j2l/l

CM
x i j2l by Equation (4.2.24). Hence, Cov(xCM

ti j2 ,zti0 j0kl0) = 0
() Cov(xCM

ti j2l,zti0 j0kl0) = 0. x

CM
ti j2l is defined as xti j2l �E[xti j2l | xti j1l] by Equation (4.2.8).
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That is, x

CM
ti j2l is a direct function of the pT -measurable functions xti j2l and xti j1l . As zti0 j0kl0 is

defined as a residual with respect to and thereby uncorrelated with any pT -measurable function
(see Proof 4.8.7), it follows that Cov(xCM

ti j2l,zti0 j0kl0) = 0.

4.8.12 z

CM
t j02l0 can be rewritten as z

CM
ti0 j02l0/l

CM
z i0 j02l0 by Equation (4.2.27). z

CM
ti0 j02l0 is defined as zti0 j02l0 �

E[zti0 j02l0 | zti0 j01l0 ] by Equation (4.2.10) and thereby a direct function of zti0 j02l0 and zti0 j01l0 . As
shown in Proof 4.8.11, Cov(xCM

t j2l ,zti0 j0kl0) = 0 8k. It follows that Cov(xCM
ti j2 ,zCM

t j02l0) = 0.

4.8.13 As argued in Proof 4.8.11, x

CM
ti j2 is a direct function of the pT -measurable functions xti j2l and

xti j1l . As argued in Proof 4.8.9, z

UM
rti0 j02l0 is a residual with respect to pT -measurable functions

and thereby uncorrelated with the pT -measurable functions xti j1l and xti j2l . It follows that
Cov(xCM

ti j2 ,zUM
rt j02l0) = 0.

4.8.14 The proof of Equation (4.8.14) follows the same logic as Proof 4.8.12.

4.8.15 By Equation (4.2.23), the latent unique method trait factor x

UM
rti j2 can be rewritten as x

UM
rti j2l/l

UM
x i j2l .

x

UM
rti j2l is defined as E[UMrti j2l | pT , pR] by Equation (4.2.2), that is, it is a (pT , pR)-measurable

function. zti0 j0kl0 is defined as zti0 j0kl0 = Sti0 j0kl0 �E[Sti0 j0kl0 | pT ] by Equations (4.2.7) and (4.2.6).
That is, zti0 j0kl0 is a (pT , pT Sl )-measurable function, as Sti0 j0kl0 is a (pT , pT Sl )-measurable func-
tion (see Equations 4.2.4 and 4.2.5). Furthermore, zti0 j0kl0 is defined as residual with respect
to any pT -measurable function. Hence, zti0 j0kl0 is uncorrelated with the (pT , pR)-measurable
function x

UM
rti j2l , as pT Sl ?? pR | pT by conditional independence assumption (4.7.1).

4.8.16 z

CM
t j02l0 can be rewritten as z

CM
ti0 j02l0/l

CM
z i0 j02l0 by Equation (4.2.27). z

CM
ti0 j02l0 is defined as zti0 j02l0 �

E[zti0 j02l0 | zti0 j01l0 ] by Equation (4.2.10) and thereby a direct function of zti0 j02l0 and zti0 j01l0 . As
shown in Proof 4.8.15, Cov(xUM

rti0 j02l,zti0 j0kl0) = 0 8k. It follows that Cov(xUM
rti j2,z

CM
t j02l0) = 0.

4.8.17 By Equation (4.2.23), the latent unique method trait factor x

UM
rti0 j02 can be rewritten as x

UM
rti0 j02 =

x

UM
rti0 j02l/l

UM
x i0 j02l . By equation (4.2.26) z

UM
rt j02l0 can be rewritten as z

UM
rti0 j02l0/l

UM
z i0 j02l0 . Hence,

Cov(xUM
rti j2,z

UM
rt j02l0) = 0 () Cov(xUM

rti j2l,z
UM
rti0 j02l0) = 0. x

UM
rti0 j02l is defined as E[UMrti0 j02l0 |

pT , pR] by Equation (4.2.2). By Equations (4.2.3) and (4.2.2) z

UM
rti0 j02l0 is defined as UMrti0 j02l0 �

E[UMrti0 j02l0 | pT , pR]. That is, z

UM
rti0 j02l0 is a residual with respect to (pT , pR)-measurable func-

tions and thereby uncorrelated with the (pT , pR)-measurable function x

UM
rti j2l .

4.8.18 The proof of Equation (4.8.18) follows the same logic as Proof 4.8.16.

4.8.19 The proof of Equation (4.8.19) follows the same logic as Proof 4.8.11.

4.8.20 The proof of Equation (4.8.20) follows the same logic as Proof 4.8.12.

4.8.21 The proof of Equation (4.8.21) follows the same logic as Proof 4.8.13.

4.8.22 The proof of Equation (4.8.22) follows the same logic as Proof 4.8.12.

4.8.23 Cov(xCM
ti j2 ,xUM

rti0 j02) = 0 () Cov(xCM
ti j2l,x

UM
rti0 j02l0) = 0, as x

CM
ti j2 can be rewritten as x

CM
ti j2l/l

CM
x i j2l

by Equation (4.2.24) and x

UM
rti0 j02 can be rewritten as x

UM
rti0 j02l0/l

UM
x i0 j02l0 by Equation (4.2.23). x

CM
ti j2l

is defined as xti j2l �E[xti j2l | xti j1l] and thereby a direct function of the pT -measurable func-
tions xti j2l and xti j1l . As shown in Proof 4.8.2, x

UM
rti0 j02l0 is uncorrelated with xti j2l and xti j1l ,

as it is defined as a residual with respect to any pT -measurable function. It follows that
Cov(xCM

ti j2l,x
UM
rti0 j02l0) = 0.

4.8.24 The proof of Equation (4.8.24) follows the same logic as Proof 4.8.23.
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4.8.25 z

CM
t j2l can be rewritten as z

CM
ti j2l/l

CM
z i j2l by Equation (4.2.27). z

CM
ti j2l is defined as zti j2l �E[zti j2l |

zti j1l] by Equation (4.2.10) and thereby a direct function of zti j2l and zti j1l . Cov(zti j1l,zUM
rti0 j02l0) =

0 is shown in Proof 4.8.5. As zti j2l also is a (pT , pT Sl )-measurable function (as is zti j1l ; see
Equations 4.2.4 and 4.2.5), Proof 4.8.5 applies to zti j2l in an analogous manner. It follows that
Cov(zCM

t j2l ,z
UM
rt j02l0) = 0.

4.8.26 By Equation (4.2.28), z

M
t jkl can be rewritten as z

M
ti jkl/l

M
z i jkl . z

M
ti jkl is defined as zti jkl �E[zti jkl |

zti j1l], k > 2, by Equation (4.2.11) and thereby a direct function of zti jkl , k > 2, and zti j1l .
By Equation (4.2.26) z

UM
rt j02l0 can be rewritten as z

UM
rti0 j02l0/l

UM
z i0 j02l0 . Hence, for k > 2:

Cov(z M
t jkl,z

UM
rt j02l0) = 0 () Cov(zti j1l,zUM

rti0 j02l0) = 0 and Cov(zti jkl,zUM
rti0 j02l0) = 0.

Cov(zti j1l,zUM
rti0 j02l0) = 0 is shown in Proof 4.8.5.

z

UM
rti0 j02l0 is defined as UMrt 0i0 j2l0 �x

UM
rti0 j02l0 by Equation (4.2.3). Hence, for k > 2,

Cov(zti jkl,zUM
rti0 j02l0) = 0 holds if Cov(zti jkl,UMrti0 j02l0) = 0 and Cov(zti jkl,xUM

rti0 j02l0) = 0 hold.

Cov(zti jkl,xUM
rti0 j02l0) = 0, 8 k, is shown in Proof 4.8.15.

Cov(zti jkl,UMrti0 j02l0) = 0 holds if Cov(Sti jkl,UMrti0 j02l0) = 0 and Cov(xti jkl,UMrti0 j02l0) = 0, as
zti jkl = Sti jkl � xti jkl . The latent state variable Sti jkl is defined as Sti jkl = pti jkl , which is a
(pT , pT Sl , pRkSl )-measurable function as it can be defined as pti jkl : jti jkl(pT , pT Sl , pRkSl ), with
jti jkl : WT ⇥WT Sl ⇥WRkSl ! R and (pT , pT Sl , pRkSl ) : W ! WT ⇥WT Sl ⇥WRkSl (see remarks to
Definition 2.1 in Section 2.4).

UMrti0 j02l0 is defined as prti0 j02l0 �E[prti0 j02l0 | pT , pT Sl0 ] by Equation (4.2.1). By conditional in-
dependence Assumption (2.9.5) the expression E

�
prti0 j02l0 | pT , pT Sl0

�
can be replaced by

E
�
prti0 j02l0 | pT , pT S1 , . . . , pT Sl0 , . . . , pT S f , pRkS1 , . . . , pRkSl0 , . . . , pRkS f

�
. Therefore, it follows that

UMrti0 j02l0 is also a residual with respect to a (pT , pT S1 , . . . , pT Sl , . . . , pT S f , pRkS1 , . . . , pRkSl , . . . , pRkS f )-
measurable function, and thereby uncorrelated to the (pT , pT Sl , pRkSl )-measurable function
Sti jkl , k > 2. It follows that Cov(xti jkl,UMrti0 j02l0) = 0 as xti jkl is a direct function of Sti jkl , and
UMrti0 j02l0 is a residual with respect to Sti jkl .

Remarks. Note that the conditional independence assumptions given in Definition 4.2 do not imply
that the latent state residuals zti j1l or the latent state residual method factors z

CM
t j2l , z

UM
rt j2l , and z

M
t jkl

are uncorrelated over time. That is, the LST-Com GRM as defined by Definitions 4.1 and 4.2 allows
zti j1l and zti j1l0 , z

CM
t j2l and z

CM
t j2l0 , z

UM
rt j2l and z

UM
rt j2l0 , as well as z

M
t jkl and z

CM
t j2l0 to be correlated for l 6= l0,

respectively. Note that the fact that these correlations are not restricted to zero by definition of the
LST-Com GRM, does not mean that they cannot be zero in empirical applications. In fact, it is neces-
sary to set some or all of these correlations to zero for identification reasons. Nevertheless, the model
in its current form does for example allow to model autoregressive processes on the level of the state
residual (method) variables.

In the current definition of the LST-Com GRM, the following additional conditional independence
assumption would lead to uncorrelated latent state residual and latent state residual method variables
over time (Koch et al., 2017).
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Definition 4.3. (LST-Com GRM with strong conditional independence)

Let M = h(W,A,P), p

p

prt , p

p

p t , k

k

k , a

a

a

x

, l

l

l

x

, x

x

x t , l

l

l

z

, z

z

z t , l

l

l

UM
x

, l

l

l

CM
x

, l

l

l

M
x

, x

x

x

UM
rt , x

x

x

CM
t , x

x

x

M
t , l

l

l

UM
z

,
l

l

l

CM
z

, l

l

l

M
z

, z

z

z

UM
rt , z

z

z

CM
t , z

z

z

M
t i be an LST-Com GRM with (xti j1l , x

CM
ti j2l , x

UM
rti j2l , x

M
ti jkl , z

CM
ti j2l , z

UM
ti j2l ,

z

M
ti jkl)-congeneric variables. M is called LST-Com GRM with strong conditional independence

if and only if the assumptions given in Definition 4.2 (i.e., LST-Com GRM with conditional inde-
pendence) hold and the following statements hold:

E[Sti jkl | pT , pT S1 , . . . , pT Sl�1 , pT Sl+1 , . . . , pT S f , pRk0 S1 , . . . , pRk0 Sl�1 , pRk0 Sl+1 , . . . , pRk0 S f ]

= E[Sti jkl | pT ] for k = k0 or k 6= k0, k0 > 1
(4.8.27)

E[prti j2l | pT , pT S1 , . . . , pT Sl�1 , pT Sl+1 , . . . , pT S f , pR, pR2S1 , . . . , pR2Sl�1 , pR2Sl+1 , . . . , pR2S f ]

= E[prti j2l | pT , pR]
(4.8.28)

Assumption (4.8.27) states that given the target variable pT the Level-2 latent state variables Sti jkl
measured on occasion l neither depend on target situations nor on rater-situations realized on differ-
ent occasions of measurement l0. Similarly, Assumption (4.8.28) states that given the target pT and
interchangeable rater pR the level-1 latent response variables prti j2l do not depend on target situations
pT Sl0 or rater situations pR2Sl0 of different measurement occasions l0 6= l. These two assumptions imply
that occasion-specific residual (method) variables belonging to different occasions of measurement l
and l0 are uncorrelated with each other.

Theorem 4.6. (Testability of LST-Com GRM with strong conditional independence)

If M = h(W,A,P), p

p

prt , p

p

p t , k

k

k , a

a

a

x

, l

l

l

x

, x

x

x t , l

l

l

z

, z

z

z t , l

l

l

UM
x

, l

l

l

CM
x

, l

l

l

M
x

, x

x

x

UM
rt , x

x

x

CM
t , x

x

x

M
t , l

l

l

UM
z

, l

l

l

CM
z

,
l

l

l

M
z

, z

z

z

UM
rt , z

z

z

CM
t , z

z

z

M
t i is an LST-Com GRM with (xti j1l , x

CM
ti j2l , x

UM
rti j2l , x

M
ti jkl , z

CM
ti j2l , z

UM
ti j2l , z

M
ti jkl)-

congeneric variables and strong conditional independence, then Equations (4.8.1) - (4.8.26) of
Theorem 4.5 hold and, for all i 2 I j, j 2 J, k 2 K, and l, l0 2 L, it holds that the latent state
residual (method) variables are uncorrelated over measurement occasions:

Cov(zti j1l,zti j1l0) = 0 (4.8.29)

Cov(zCM
t j2l ,z

CM
t j2l0) = 0 (4.8.30)

Cov(z M
t jkl,z

M
t jkl0) = 0 k > 2 (4.8.31)

Cov(zUM
rt j2l,z

UM
rt j2l0) = 0 k > 2 (4.8.32)

Cov(zti j1l,z
CM
t j2l0) = 0 (4.8.33)

Cov(zti j1l,z
M
t jkl0) = 0 k > 2 (4.8.34)

Cov(z M
t jkl,z

CM
t j2l0) = 0 k > 2 (4.8.35)
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Proofs. Note that some of these proofs have already been pre-published for the continuous-indicator
model in Koch et al. (2017)2.

4.8.29 By Equations (4.2.6) and (4.2.7), zti jkl is defined as Sti jkl �E[Sti jkl | pT ].
According to Assumption (4.8.27), E[Sti jkl | pT ] can be replaced by
E[Sti jkl | pT , pT S1 , . . . , pT Sl�1 , pT Sl+1 , . . . , pT S f , pRk0 S1 , . . . , pRk0 Sl�1 , pRk0 Sl+1 , . . . , pRk0 S f ],
for k = k0 or k 6= k0, k0 > 1.
That is, zti jkl is also a residual with respect to (pT , pT Sl0 )- and (pT , pT Sl0 , pRk0 Sl0 )-measurable
functions, k = k0 or k 6= k0, k0 > 1. It follows that Cov(zti j1l,zti j1l0) = 0, Cov(zti jkl,zti jkl0) = 0
and Cov(zti j1l,zti jkl0) = 0 8 k.

4.8.30 By equation (4.2.27) z

CM
t j2l can be rewritten as z

CM
t j2l = z

CM
ti j2l/l

CM
z i j2l . z

CM
ti j2l is defined as zti j2l �

E[zti j2l | zti j1l] by Equation (4.2.10). That is, z

CM
t j2l is a direct function of zti j2l and zti j1l .

As shown in Proof 4.8.29, by Assumption (4.8.27) it holds that Cov(zti jkl,zti jkl0) = 0 and
Cov(zti j1l,zti jkl0) = 0 8 k. It follows that Cov(zCM

t j2l ,z
CM
t j2l0) = 0.

4.8.31 The proof of Equation (4.8.31) follows the same logic as Proof 4.8.30.

4.8.32 By equation (4.2.26) z

UM
rt j2l can be rewritten as z

UM
rti j2l/l

UM
z i j2l . By Equations (4.2.3) and (4.2.2)

z

UM
rti j2l is defined as UMrti j2l �E[UMrti j2l | pT , pR], with E[UMrti j2l | pT , pR] =E[prti j2l | pT , pR]�
E[prti j2l | pT ] by Equation (4.7.5).

According to assumption (4.8.28), E[prti j2l | pT , pR] can be replaced by
E[prti j2l | pT , pT S1 , . . . , pT Sl�1 , pT Sl+1 , . . . , pT S f , pR, pR2S1 , . . . , pR2Sl�1 , pR2Sl+1 , . . . , pR2S f ]

That is, z

UM
rti j2l is also a residual with respect to (pT , pT Sl0 , pR, pR1Sl0 )-measurable functions. It

follows that z

UM
rt j2l is uncorrelated with the (pT , pT Sl0 , pR, pR1Sl0 )-measurable function z

UM
rt j2l0 .

4.8.33 - 4.8.35 The proofs of Equation (4.8.33) - (4.8.35) follow the same logic as Proofs 4.8.29 and
4.8.30.

As shown above, Assumptions (4.8.27) and (4.8.28) imply that all of the stability over time is ac-
counted for by the latent trait and latent trait method variables. Note that these assumptions might
be violated in empirical applications and can thereby be a source of misfit (Bishop, Geiser, & Cole,
2015; Courvoisier, Eid, Lischetzke, & Schreiber, 2010; Eid, Courvoisier, & Lischetzke, 2012).
This might for example be the case if associations between measurements (in this case, the latent
response variables) of adjacent occasions are the result of an autoregressive process [first order au-
toregressive process, AR(1)]. That is, not only the expectations of the probability distributions of the
variables Sti jkl correlate over time (correlations between xti jkl and xti jkl0), but also the specific situa-
tions realized on adjacent measurement occasions are not independent. These kind of dependencies
are most likely to occur in the case of short time-intervals between adjacent measurement occasions
(e.g., several measurements during one day, as often found in ambulatory assessment data), due to
”carry-over” effects (Bishop et al., 2015; Eid et al., 2012).
From a theoretical standpoint, depending on the measurement design and the construct under inves-
tigation, it seems appropriate to incorporate autoregressive effects to model short-term stability and
account for the possibility that correlations between measurements decrease with increasing time-
intervals. Many psychological constructs show decreasing stabilities with increasing time-intervals
between measurements, while stabilities do not approach zero even over long time intervals (long-
term stability; Cole et al., 2005; Prenoveau, 2016; Roberts & DelVecchio, 2000). Including autore-
gressive (residual) components in LST or latent growth-curve models has been found to adequately

2This concerns proofs [4.8.29] and [4.8.34].
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reflect the covariance structure and increase model fit in longitudinal studies investigating different
psychological phenomena (Bollen & Curran, 2004; Cole, 2006; Courvoisier et al., 2010; Eid et al.,
2012; Lucas & Donnellan, 2007; Luhmann et al., 2011). On the other hand, underspecification
due to non-modeled auto-regressive processes present in the data was found to bias latent growth
curve model parameters (Ferron, Dailey, & Yi, 2002; Kwok, West, & Green, 2007; Sivo, Fan, &
Witta, 2005). Furthermore, many methodological approaches to modeling longitudinal psychological
data acknowledge the importance of combining autoregressive effects with long-lasting stabilities or
change (Cole et al., 2005; Eid et al., 2012; Hamaker et al., 2015; Hamaker, 2005; Kenny & Zautra,
2001).
The LST-Com GRM with conditional independence implies a specific covariance structure of the
latent variables pti jkl , k 6= 2, and prti j2l , including the zero-correlations specified in Theorem 4.5.
Whether this covariance structure holds in empirical applications can be tested based on the covari-
ance structure of the variables Y ⇤

ti jkl and Y ⇤
rti j2l , as defined in Section 2.8, with SEMs for ordinal

observed variables. As derived in section 2.10, Equation (4.7.2) implies that Cov(Y ⇤
ti jkl,Y

⇤
t(i jkl)0) =

Cov(pti jkl,pt(i jkl)0) and Cov(Y ⇤
rti j2l,Y

⇤
rt(i j2l)0) = Cov(prti j2l,prt(i j2l)0), that is, all associations between

the observed variables Yrti j2l and Yti jkl are determined by the latent variables pti jkl and prti j2l and their
associations. It follows that Cov(e⇤

ti jkl,pt(i jkl)0) = 0 and Cov(e⇤
ti jkl,e

⇤
t(i jkl)0) = 0 for all i, i0 2 I j, j, j0 2 J,

k,k0 2 K, and l, l0 2 L. The same applies to the Y ⇤
rti j2l and their residuals and the combination of Y ⇤

rti j2l
and Y ⇤

ti jkl and their residuals. As the residuals e

⇤
ti jkl and e

⇤
rti j2l have to be uncorrelated with all pti jkl and

prti j2l , the residual variables are as well uncorrelated with all latent variables xti j1, x

CM
ti j2 , x

UM
rti j2, x

M
ti jk,

zi j1l , z

CM
t j2l , z

UM
t j2l , z

M
t jkl . This fact also follows from Equation (4.7.3). For a more detailed treatment see

section 2.10.
The zero-correlations of the error variables with all other error variables and latent variables of the
LST-Com GRM combined with the covariance structure of the latent response variables pti jkl and
prti j2l define the covariance structure of the variables Y ⇤

rti j2l and Y ⇤
ti jkl in the LST-Com GRM. This

covariance structure equals the covariance structure of the latent variables in the LST-Com model for
continuous indicator variables derived by Koch (2013), with one exception. While the variance of the
error variables is a variable that is free to vary and is estimated in the SEM with continuous indicator
variables, this variance is fixed to one for e

⇤
ti jkl and e

⇤
rti j2l for all j 2 J, i 2 I j, k 2 K, and l 2 L in

the LST-Com GRM. This restriction guarantees the equivalence of the LST-Com GRM and the factor
analytical representation of the model.
The total covariance matrix ST of the variables Y ⇤

rti j2l and Y ⇤
ti jkl in an LST-Com GRM with strong con-

ditional independence can be partitioned, just as in the continuous case, into a within and a between
covariance matrix and can be represented as

ST = L
x BF

x BL0
x B +L

z BF
z BL0

z B +QB +L
xW F

xW L0
xW +L

zW F
zW L0

zW +QW (4.8.36)

where L
x B and L

xW refer to the factor loading matrices of the trait-specific variables on the between-
and within-level, respectively, L

z B and L
zW refer to the factor loading matrices of the occasion-

specific variables on the between- and within-level, respectively, F
x B and F

xW refer to the variance-
covariance matrices of the between and within trait-specific latent variables, respectively, F

z B and
F

zW refer to the variance-covariance matrices of the between and within occasion-specific latent
variables, respectively, and QB and QW are the between- and within-level residual variance-covariance
matrices, where all non-zero elements Var(Erti j2l) and Var(Eti jkl) in the matrices QB and QW have
to be replaced by 1. For a detailed illustration of the covariance matrices and their elements see the
supplementary material of Koch et al. (2017) or Koch (2013, pp. 121-127), for a detailed description
of the interpretation of all the non-zero covariances and correlations in the LST-Com model refer to
Koch (2013, pp. 127-129).
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Table 4.1: Definition of the Consistency, Occasion-Specificity and different Method Specificity coefficients in the LST-Com GRM

Consistency and Method Specificity Coefficients
Coefficient and method Level Definition
Time consistencies

Self Con(pti j1l) =
(l

x i j1l)
2Var(xti j1)

Var(pti j1l)
Target

Interchangeable Con(prti j2l) =
(l

x i j2l)
2Var(xti j1)+(lCM

x i j2l)
2Var(xCM

ti j2 )+(lUM
x i j2l)

2Var(xUM
rti j2)

Var(prti j2l)
Rater

Structurally different Con(pti jkl) =
(l

x i jkl)
2Var(xti j1)+(l M

x i jkl)
2Var(x M

ti jk)

Var(pti jkl)
Target

Occasion Specificities

Self OSpe(pti j1l) =
Var(zti j1l)

Var(pti j1l)
Target

Interchangeable OSpe(prti j2l) =
(l

z i j2l)
2Var(zti j1l)+(lCM

z i j2l)
2Var(zCM

t j2l )+(lUM
z i j2l)

2Var(zUM
rt j2l)

Var(prti j2l)
Rater

Structurally different OSpe(pti jkl) =
(l

z i jkl)
2Var(zti j1l)+(l M

z i jkl)
2Var(z M

t jkl)

Var(pti jkl)
Target

Trait method consistencies

Interchangeable TCon(prti j2l) =
(l

x i j2l)
2Var(xti j1)

(l
x i j2l)

2Var(xti j1)+(lCM
x i j2l)

2Var(xCM
ti j2 )+(lUM

x i j2l)
2Var(xUM

rti j2)
Rater

Interchangeable TCon(pti j2l) =
(l

x i j2l)
2Var(xti j1)

(l
x i j2l)

2Var(xti j1)+(lCM
x i j2l)

2Var(xCM
ti j2 )

Target

Structurally different TCon(pti jkl) =
(l

x i jkl)
2Var(xti j1)

(l
x i jkl)

2Var(xti j1)+(l M
x i jkl)

2Var(x M
ti jk)

Target

Trait method specificities

Interchangeable TUMS(prti j2l) =
(lUM

x i j2l)
2Var(xUM

rti j2)

(l
x i j2l)

2Var(xti j1)+(lCM
x i j2l)

2Var(xCM
ti j2 )+(lUM

x i j2l)
2Var(xUM

rti j2)
Rater

Interchangeable TCMS(prti j2l) =
(lCM

x i j2l)
2Var(xCM

ti j2 )

(l
x i j2l)

2Var(xti j1)+(lCM
x i j2l)

2Var(xCM
ti j2 )+(lUM

x i j2l)
2Var(xUM

rti j2)
Rater

Interchangeable TCMS(pti j2l) =
(lCM

x i j2l)
2Var(xCM

ti j2 )

(l
x i j2l)

2Var(xti j1)+(lCM
x i j2l)

2Var(xCM
ti j2 )

Target

Structurally different T MS(pti jkl) =
(l M

x i jkl)
2Var(x M

ti jk)

(l
x i jkl)

2Var(xti j1)+(l M
x i jkl)

2Var(x M
ti jk)

Target

Occasion-specific method consistencies

Interchangeable OCon(prti j2l) =
(l

z i j2l)
2Var(zti j1l)

(l
z i j2l)

2Var(zti j1l)+(lCM
z i j2l)

2Var(zCM
t j2l )+(lUM

z i j2l)
2Var(zUM

rt j2l)
Rater

Interchangeable OCon(pti j2l) =
(l

z i j2l)
2Var(zti j1l)

(l
z i j2l)

2Var(zti j1l)+(lCM
z i j2l)

2Var(zCM
t j2l )

Target

Structurally different OCon(pti jkl) =
(l

z i jkl)
2Var(zti j1l)

(l
z i jkl)

2Var(zti j1l)+(l M
z i jkl)

2Var(z M
t jkl)

Target

Occasion-specific method specificities

Interchangeable OUMS(prti j2l) =
(lUM

z i j2l)
2Var(zUM

rt j2l)

(l
z i j2l)

2Var(zti j1l)+(lCM
z i j2l)

2Var(zCM
t j2l )+(lUM

z i j2l)
2Var(zUM

rt j2l)
Rater

Interchangeable OCMS(prti j2l) =
(lCM

z i j2l)
2Var(zCM

t j2l )

(l
z i j2l)

2Var(zti j1l)+(lCM
z i j2l)

2Var(zCM
t j2l )+(lUM

z i j2l)
2Var(zUM

rt j2l)
Rater

Interchangeable OCMS(pti j2l) =
(lCM

z i j2l)
2Var(zCM

t j2l )

(l
z i j2l)

2Var(zti j1l)+(lCM
z i j2l)

2Var(zCM
t j2l )

Target

Structurally different OMS(pti jkl) =
(l M

z i jkl)
2Var(z M

t jkl)

(l
z i jkl)

2Var(zti j1l)+(l M
z i jkl)

2Var(z M
t jkl)

Target

Note. Con: Consistency; CMS: Common Method Specificity; MS: Method Specificity; Spe: Specificity; UMS: Unique Method Specificity;
O: Occasion; T: Trait.
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4.9 Variance decompositions
Based on the definition of the LST-Com GRM, the latent response variables pti jkl and prti j2l can be
additively decomposed into different variance components. From Definition 4.1 and Theorem 4.1
it follows that the general measurement equations for the latent response variables in an LST-Com
GRM of (xti j1l , x

CM
ti j2l , x

UM
rti j2l , x

M
ti jkl , z

CM
ti j2l , z

UM
ti j2l , z

M
ti jkl)-congeneric variables are given by:

pti j1l = a

x i j1l +l

x i j1lxti j1 +zti j1l (4.9.1)

prti j2l = a

x i j2l +l

x i j2lxti j1 +l

CM
x i j2lx

CM
ti j2 +l

z i j2lzti j1l +l

CM
z i j2lz

CM
t j2l (4.9.2)

+l

UM
x i j2lx

UM
rti j2 +l

UM
z i j2lz

UM
rt j2l

pti jkl = a

x i jkl +l

x i jklxti j1 +l

M
x i jklx

M
ti jk +l

z i jklzti j1l +l

M
z i jklz

M
t jkl k > 2 (4.9.3)

As the latent method variables are defined as latent residual variables, they are uncorrelated with their
respective regressors. That is, due to the zero-covariances given in Equations (4.8.1) - (4.8.26), the
different variance components can be separated. The variances of the latent response variables can
therefore be additively decomposed as:

Var(pti j1l) = (l
x i j1l)

2Var(xti j1)+Var(zti j1l) (4.9.4)

Var(prti j2l) = (l
x i j2l)

2Var(xti j1)+(lCM
x i j2l)

2Var(xCM
ti j2 )+(l

z i j2l)
2Var(zti j1l) (4.9.5)

+(lCM
z i j2l)

2Var(zCM
t j2l )+(lUM

x i j2l)
2Var(xUM

rti j2)+(lUM
z i j2l)

2Var(zUM
rt j2l)

Var(pti jkl) = (l
x i jkl)

2Var(xti j1)+(l M
x i jkl)

2Var(x M
ti jk)+(l

z i jkl)
2Var(zti j1l) (4.9.6)

+(l M
z i jkl)

2Var(z M
t jkl) k > 2

Then, analogous to the LST-Com model with continuous indicators, different variance coefficients can
be defined. Definitions of the variance coefficients are given in Table 4.1. The variance coefficients
can be meaningfully interpreted, as they are invariant under admissible transformations, as shown in
Section 4.3.
Some of these variance coefficients correspond to the variance coefficients introduced in Koch et al.
(2017), others are analogous to the coefficients introduced in Koch (2013, with the difference that
they are defined based on the latent response variables pti jkl and prti j2l). For interpretations of the
coefficients see Section 4.1 or Koch et al. (2017). Note that definitions of reliability coefficients or
the ICC are not included in Table 4.1, as they are identical to the definition of these coefficients in the
LS-Com GRM (see Section 2.11).

4.10 Mean structure
The following theorem clarifies the mean structure of the latent variables in the LST-Com GRM. The
mean structure is needed to derive the identification conditions in Section 4.11.

Theorem 4.7. (Mean Structure)

Let M = h(W,A,P), p

p

prt , p

p

p t , k

k

k , a
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, l

l
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, x
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x t , l
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UM
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UM
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CM
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M
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UM
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z

CM
t , z

z
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M
t i be an LST-Com GRM with (xti j1l , x

CM
ti j2l , x

UM
rti j2l , x

M
ti jkl , z

CM
ti j2l , z

UM
ti j2l , z

M
ti jkl)-

congeneric variables and conditional independence. Without loss of generality the first method
(k=1) is chosen as reference method and the second method (k=2) as the set of interchangeable
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methods. Then, for all i 2 I j, j 2 J, k 2 K, and l 2 L it holds that

E(xUM
rti j2) = 0 (4.10.1)

E(xCM
ti j2 ) = 0 (4.10.2)

E(x M
ti jk) = 0 k > 2 (4.10.3)

E(zUM
rt j2l) = 0 (4.10.4)

E(zCM
t j2l ) = 0 (4.10.5)

E(z M
t jkl) = 0 k > 2 (4.10.6)

E(zti j1l) = 0 (4.10.7)

E(ptsi jkl) = E(pti jkl)�ksi jkl k 6= 2 (4.10.8)
E(prtsi j2l) = E(prti j2l)�ksi j2l (4.10.9)

E(pti j1l) = a

x i j1l +l

x i j1l E(xti j1) (4.10.10)
E(pti jkl) = a

x i jkl +l

x i jkl E(xti j1) k > 2 (4.10.11)
E(prti j2l) = a

x i j2l +l

x i j2l E(xti j1) (4.10.12)

and in LST-Com GRMs defined with common latent trait factors xt j1:

E(xti j1) = di j1 +li j1 E(xt j1) (4.10.13)

Proofs. Mean Structure.
Equations (4.10.1) - (4.10.7) follow directly from the definition of the latent (trait and state residual)
method variables as well as the latent state residual variables as residual variables in Definition 4.1
and the fact that residual variables have an expectation of zero (Steyer & Nagel, 2017, p. 323). Equa-
tions (4.10.8) and (4.10.9) follow directly from the definitions of the latent response variables ptsi jkl
and prtsi j2l given in Definition 2.1. Equations (4.10.10) - (4.10.12) follow directly from Definition
4.1, Equations (4.2.21) and (4.2.22) in Theorem 4.1, as well as from Equations (4.10.1) - (4.10.7).
Equation (4.10.13) follows from Equation (4.4.10). The proofs are straightforward and therefore left
to the reader.
Remarks. Equations (4.10.10) - (4.10.12) show that the expected value of the common latent re-
sponse variables pti jkl , k 6= 2, and prti j2l equal the expectation of the latent trait factors xti j1 if and
only if a

x i jkl = 0 and l

x i jkl = 1. For models defined with common (non-indicator-specific) latent
trait factors xt j1, the expectation of the latent response variables pti jkl , k 6= 2, and prti j2l equal the
expectation of the latent trait factors xt j1 if and only if in addition di j1 = 0 and li j1 = 1. The effect of
different identification variants and parameter invariance settings on the interpretation of latent trait
means and latent trait mean differences is discussed in Sections 4.11 and 4.12.
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4.11 Identifiability
In order to assign a scale to each latent factor, either one factor loading per factor or the variance of
the latent factor has to be fixed to a value larger than 0 (typically 1; Bollen, 1989).
As shown in Theorem 4.2, the latent response variables prti jkl and pti jkl , their respective threshold
variables ksi jkl , and the variables ai jkl are uniquely defined only up to translations. Consequently, the
parameters a

x i jkl and ksi jkl are not separately identifiable. The same holds for the parameters ksi jkl
and di j1 defined in Section 4.4 for the case of models with common latent trait factors over indicators.
Theorem 4.8 defines identifiability conditions for the LST-Com GRM with indicator-specific latent
trait variables xti j1. Identification conditions for the model with common latent trait factors xt j1 can
easily be derived from the conditions given in Theorem 4.8. Furthermore, recall that all latent method
factors have an expectation of zero by definition.
In Equation (4.8.36) the total covariance matrix of the variables Y ⇤

rti j2l and Y ⇤
ti jkl in an LST-Com GRM

with strong conditional independence was represented as

ST = L
x BF

x BL0
x B +L

z BF
z BL0

z B +QB +L
xW F

xW L0
xW +L

zW F
zW L0

zW +QW

where all non-zero elements in the residual variance-covariance matrices QB and QW are equal to 1.
Theorem 4.8 then gives identification conditions for the LST-Com GRM parameters.

Theorem 4.8. (Identification of the LST-Com GRM)

Let M = h(W,A,P), p
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t i be an LST-Com GRM with (xti j1l , x

CM
ti j2l , x

UM
rti j2l , x

M
ti jkl , z

CM
ti j2l , z

UM
ti j2l ,

z

M
ti jkl)-congeneric variables and strong conditional independence as defined by Definitions 4.1,

4.2, and 4.3. The parameters of the LST-Com GRM with strong conditional independence and
indicator-specific trait and state residual variables xti j1, x

CM
ti j2 , x

UM
rti j2, x

M
ti jk, and zti j1l are identified

if

1. either one factor loading l

x i j1l , l

CM
x i j2l , l

UM
x i j2l , l

M
x i jkl , l

z i j1l , l

CM
z i j2l , l

M
z i jkl , and l

UM
z i j2l for

each factor xti j1, x

CM
ti j2 , x

UM
rti j2, x

M
ti jk, zti j1l , z

CM
t j2l , z

M
t jkl , and z

UM
rt j2l , or the variance of the

factors is set to any real value larger than 0, and

2. one of the following conditions hold:

(a) i j � 2 with i j = 2 for all or for some j, j � 2, k � 2, l � 3, and F
z B as well as F

zW
contain substantial (permissible) intercorrelations among the latent state residual
variables as well as the latent state residual method variables,

(b) i j � 3 for all j, j � 1, k � 2, l � 3, and F
z B contains substantial (permissible)

intercorrelations between the latent state residual variables zti j1l ,

(c) i j � 3 for all j, j � 1, k � 3, and l � 3,

and

3. a

x i j1l is set to any real value (e.g., zero) for one reference-method indicator Yti j1l per
latent trait factor and either one threshold of the same indicator Yti j1l or the mean of the
latent trait factor xti j1 is set to any real value (e.g., zero) for all i and j, and
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4. a

x i jkl , k 6= 1, is set to any real value (e.g., zero) for all i, j, k > 1, for one measurement
occasion l per latent trait factor, or one threshold of the same indicator Yti jkl is fixed at
any real value, and

5. one threshold per indicator is constrained to be invariant over measurement occasions for
all i, j and k, that is ksi jkl0 = ksi jkl for a chosen value of s, and for all i, j, k and l, or the
intercept a

x i jkl of the respective indicator is set to a any real value (e.g., zero).

Remarks. Theorem 4.8 states the conditions under which the parameters of the LST-Com GRM are
identified without further restrictions on loading, variance or threshold parameters than those that are
necessary to assign a scale to the latent variables.
Condition (1) and (2) identify the parameters of the LST-Com GRM covariance structure (that is,
the parameters in the matrices LB, LW , FB, and FW ), given the polychoric correlations between the
variables Y ⇤

rti j2l and Y ⇤
ti jkl (or prti j2l and pti jkl). These conditions also hold in the continuous-indicator

LST-Com model and the identification of this part of the model was shown by Courvoisier (2006) and
Koch (2013) and shall not be repeated here.
Note that Conditions 2 (a) - 2 (c) in Theorem 4.8 define the necessary numbers of indicators, con-
structs, methods and measurement occasions needed to identify the LST-Com GRM without imposing
further assumptions. However, the LST-Com GRM can, obviously, also be estimated for smaller de-
signs when a few additional assumptions are imposed. For instance, the LST-Com GRM with two
indicators per construct, one construct, two methods, and three occasions of measurement is iden-
tified with the assumptions given in Theorem 4.8 when, additionally, the loading parameters of the
method state residual variables, l

CM
z i j2l , l

UM
z i j2l , and l

M
z i jkl are set to one. Similarly, the LST-Com GRM

with three indicators per construct, two constructs, two methods, and two occasions of measurement
is identified when, in addition to assumption 2 (b) in Theorem 4.8, the loading parameters l

CM
x i j2l ,

l

UM
x i j2l , and l

M
x i jkl are set to one and the loading parameters l

x i j1l are set invariant over measurement
occasions for one reference-method indicator.
Conditions (3) - (5) are needed for the identification of the threshold variables ksi jkl , intercept pa-
rameters a

x i jkl as well as of the means of the latent response variables µi jkl and latent trait variables.
The identification of these parameters follows, with only minor differences, the same lines as in the
LS-Com GRM and is explained in detail in Section 2.13.
Note that for interpretability reasons, it is the easiest to fix all intercepts, thresholds or means that are
fixed for identification reasons to the value of zero. Furthermore, to enhance ease of interpretation, it
is advisable to choose the identification variant that sets all intercept parameters a

x i jkl to zero. One
exception might be the case, in which all threshold parameters are set invariant over measurement oc-
casions for all categories s. In this case, the interpretation of a

x i j1l is straightforward, that is, it is the
mean difference in the latent trait means of xti j1l and xti j11, while the distances between the thresholds
of adjacent categories stay invariant over time (i.e., parallel shift in easiness for all categories of an
item). For k > 1 and invariant threshold parameters ksi jkl over time, a

x i jkl would represent a shift in
the regression intercept of the conditional method bias for that item and method. See section 4.12 for
more details on MI in the LST-Com GRM.
The LST-Com GRM with common latent trait factors for all indicators (i.e., xt j1) needs similar iden-
tifiability conditions, with the addition that di j1 has to be set to any real value, preferably zero, for
the same i and j as in Condition (3) of Theorem 4.8. Again, for the ease of interpretation, it is
recommendable to set all di j1 to zero.
In the case were strong conditional independence does not hold, i.e., in the LST-Com GRM with con-
ditional independence as defined by Definition 4.2 additional identification conditions are necessary.
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As stated above, the correlations between zti j1l and zti j1l0 , z

CM
t j2l and z

CM
t j2l0 , z

UM
rt j2l and z

UM
rt j2l0 , as well as

z

M
t jkl and z

CM
t j2l0 , for l 6= l0 are theoretically possible, it is, however, necessary to set some or all of these

correlations to zero for identification reasons, depending on the respective model size. In the most
typical case of an AR(1) process (i.e., only regressions between adjacent measurement occasions are
included), the model is identifiable with at least three measurement occasions and some additional
assumptions on the loading parameters, regression parameters and state residual variances (Cole et
al., 2005). For a more detailed treatment of autoregressive processes in LST and LGC models see,
e.g., Cole et al. (2005), Eid et al. (2012), the online appendices of Bishop et al. (2015), or Hamaker
(2005), Hamaker et al. (2015). For a detailed illustration on how to apply these models in practice see
Prenoveau (2016).

4.12 Measurement invariance over time

Definition 4.4. (LST-Com GRM with MI)

M = h(W,A,P), p
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t i is called LST-Com GRM with (xti j1l , x

CM
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UM
rti j2l , x

M
ti jkl , z

CM
ti j2l , z

UM
ti j2l , z

M
ti jkl)-

congeneric variables with measurement invariance if and only if Definition 4.1 and Theorem 4.1
apply, and for all i 2 I j, j 2 J, k 2 K, s 2 Si j and for l, l0 2 L the following statements hold:

ksi jkl = ksi jkl0 (4.12.1)
a

x i jkl = a

x i jkl0 (4.12.2)
l

x i jkl = l

x i jkl0 (4.12.3)
l

z i jkl = l

z i jkl0 (4.12.4)

l

UM
x i j2l = l

UM
x i j2l0 (4.12.5)

l

CM
x i j2l = l

CM
x i j2l0 (4.12.6)

l

M
x i jkl = l

M
x i jkl0 k > 2 (4.12.7)

l

UM
z i j2l = l

UM
z i j2l0 (4.12.8)

l

CM
z i j2l = l

CM
z i j2l0 (4.12.9)

l

M
z i jkl = l

M
z i jkl0 k > 2 (4.12.10)

Remarks. To obtain a pure state-variability model, strong measurement invariance as defined above
(Definition 4.4) has to be established. In accordance with Geiser, Keller, et al. (2015) and Koch et al.
(2017) it is recommended to establish at least strong MI when applying the LST-Com GRM model to
real data. LST models with non-invariant intercepts may confound measurement non-invariance with
true trait change (Geiser, Keller, et al., 2015). Similarly, changes in the loadings can reflect either
trait change or measurement bias (changes in item discrimination), which are not distinguishable
in LST models (Geiser, Keller, et al., 2015). Furthermore, Geiser, Keller, et al. (2015) found LST
models with non-invariant trait loadings and intercepts to fit data adequately even in the presence of
inter-individual differences in trait change (i.e., slope variance > 0 in LGC models). In the case of
medium to large slope variances present in LGC models, the incorrect use of an LST model can lead
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to biased consistency and occasion-specificity coefficients (Geiser, Keller, et al., 2015). Hence, if trait
change or measurement non-invariance of the trait loadings and intercepts are found in LST models,
it is recommendable to test whether inter-individual differences in trait change exist by applying, e.g.,
a growth curve model (as presented in Section 5). In the case that inter-individual differences in
intraindividual trait change are assumed between a priori specified periods of time (including more
than one measurement occasion each), an unambiguous separation of trait change and measurement
invariance is possible by applying double-trait models, as for instance shown in Eid and Hoffmann
(1998) or Steyer et al. (2015).

4.13 The LST-Com GRM in LST-R theory
Recently, Steyer et al. (2015) proposed a revision of LST theory (LST-R) that explicitly takes into
account that persons might change over the course of time, defining trait change on the basis of a
different conceptualization of the random experiment. In their definition of the random experiment,
the probability space W explicitly includes persons’ experiences between measurement occasions and
defines occasion-specific person projections that take into account these experiences as part of a time-
specific person variable (person-at-time-l). This definition implies a temporal ordering of the elements
in the probability space. For a minimal mono-method design (e.g., including only the targets’ self-
reports) and three measurement occasions the elements w of W would have the following structure
(Steyer et al., 2015),

w = (u0,e1,s1,o1,e2,s2,o2,e3,s3,o3), (4.13.1)

where u0 is the person at time 0 (the sampling time point), e1 denotes the experiences of the person
after time 0 and before the first measurement occasion (the assessment at time 1), s1 is the situation
at the assessment on measurement occasion 1, and o1 are the observables on measurement occasion
1. Then u1, the person at time 1, is given by (u0,e1), while u2, the person at time 2, is given by
(u0,e1,s1,o1,e2). Hence, the person variable at time l > 1 is defined as Ul : W ! W0 ⇥ WE1 ⇥ WS1 ⇥
WO1 ⇥ . . . ⇥ W0 ⇥ WEl�1 ⇥ WSl�1 ⇥ WOl�1 ⇥ WEl . The situation variable at time l is defined as Sl :=
W ! WSl in LST-R theory. The trait variables are then defined as the expectations of the conditional
distribution of an observed variable Yil given the person at time l, i.e., xil := E[Yil | Ul], while the state
residuals are defined as residuals with respect to this expectation, i.e., zil := E[Yil | Ul,Sl]�E[Yil | Ul]

(Steyer et al., 2015). This definition explicitly takes into account that persons can change due to
experiences and that there is no person without a past.
Koch et al. (2017) show how LST-R theory can be combined with multi-method modeling approaches
for interchangeable and structurally different methods for the continuous-indicator LST-Com model.
They clarify which modifications have to be made in order to make the LST-Com model compatible
with the revised version of LST theory. The same modifications hold for the LST-Com GRM, too.
It is noteworthy that, although LST and LST-R theory diverge in their definition of the random ex-
periment and the probability space, the vast majority of models that can be specified on the basis of
these theories are identical. That is, most empirical applications of LST models will lead to identical
results, whether theoretically building on LST or LST-R theory.
While state residual variables defined based on LST-R theory are uncorrelated over time by definition,
Eid, Holtmann, Santangelo, and Ebner-Priemer (in press) have recently shown that LST models with
autoregressive effects can nevertheless be formulated in the framework of LST-R theory.



Chapter 5

Latent Growth Curve (LGC-Com)
Graded Response Model

5.1 Introduction to the LGC-Com GRM
This chapter introduces a longitudinal multilevel MTMM Latent Growth-Curve graded response
model for measurement designs combining structurally different and interchangeable methods (LGC-
Com GRM). The model is based on the definition of the LST-Com GRM given in Section 4.2 as well
as the definition of the random experiment and latent response variables in Section 2.4. Note that the
LGC-Com GRM as defined in the following differs from the continuous-indicator LGC-Com model
as defined by Koch (2013), as growth is not only modeled for the reference method but differential
change can also occur in the non-reference methods.
Just as latent change models (Geiser et al., 2010; McArdle & Hamagami, 2001; Steyer et al., 1997,
2000), latent growth curve (LGC) models (Bollen & Curran, 2006; McArdle & Epstein, 1987; McAr-
dle & Nesselroade, 2003) allow to model inter-individual differences in intra-individual change. How-
ever, in contrast to LC models, LGC models aim at modeling change as a (linear or non-linear) func-
tion of time.
The LGC model defined in the following builds on LST theory, that is, it combines features of LGC
models with the distinction of trait (change) and state variability processes. Different hybrid models,
combining features of both state variability processes (LST models) and growth curve models, have,
for instance, been proposed by McArdle (1988), Tisak and Tisak (2000), Eid et al. (2012), and Bishop
et al. (2015). Models that allow for this combination are models including multiple indicators per
measurement occasion (so-called second-order LGC models; Geiser, Keller, & Lockhart, 2013; Leite,
2007). Geiser et al. (2013) showed how to define the latent variables in LGC models on the basis
of LST theory, demonstrating that second-order LGC models represent a restrictive variant of LST
change models.
Besides the possibility to separate true trait change processes from occasion-specific variability and
measurement error (Sayer & Cumsille, 2001), multiple-indicator LGC models bear additional advan-
tages over single-indicator LGC models, such as yielding more accurate reliability estimates (Geiser
et al., 2013), providing a greater power to detect individual differences in change (von Oertzen, Hert-
zog, Lindenberger, & Ghisletta, 2010), a greater flexibility in modeling complex change patterns
(Mayer, Geiser, Infurna, & Fiege, 2013), and the possibility to model indicator-specific patterns of
trait change (Bishop et al., 2015).
The reference-method part of the model corresponds to the indicator-specific growth model (ISGM)
as introduced by Bishop et al. (2015), which allows for indicator-specific growth processes. In a first
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step, the latent trait variables xti jkl belonging to a measurement occasion l > 1 are decomposed into
an initial trait variable xti jk1 and a latent change variable (xti jkl �xti jk1),

xti jkl = xti jk1 +(xti jkl �xti jk1) (5.1.1)

assuming that the change between different measurement occasions follows a specific function, e.g.,
a linear function,

(xti jkl �xti jk1) = (l �1)(xti jk2 �xti jk1) (5.1.2)

with

Iti jk = xti jk1 (5.1.3)
Sti jk = (xti jk2 �xti jk1) (5.1.4)

where Iti jk is called the intercept factor and Sti jk the slope factor. The assumption of a linear growth
trajectory could be replaced and extended to model non-linear change trajectories, by additionally
adding factors for quadratic change, i.e., (l �1)2, or cubic change, i.e., (l �1)3.
Having defined intercept and slope factors for both reference and non-reference method indicators,
these can be regressed on each other, again following the CTC(M-1) approach for multimethod data
(Eid, 2000; Eid et al., 2003, 2008), with

ICM
ti j2 = Iti j2 �E[Iti j2 | Iti j1] (5.1.5)

IM
ti jk = Iti jk �E[Iti jk | Iti j1] k > 2 (5.1.6)

SCM
ti j2 = Sti j2 �E[Sti j2 | Sti j1] (5.1.7)

SM
ti jk = Sti jk �E[Sti jk | Sti j1] k > 2 (5.1.8)

where the dependence of the non-reference method intercept / slope variables Iti jk / Sti jk on the
reference method intercept / slope variable Iti j1 / Sti j1 of the same indicator i and construct j can be
described by linear transformations:

E[Iti jk | Iti j1] = aIi jk +lIi jkIti j1 (5.1.9)

and

E[Sti jk | Sti j1] = aSi jk +lSi jkSti j1 (5.1.10)

The latent intercept (common) method variables ICM
ti j2 and IM

ti jk, k > 2, represent that part of the latent
trait variables of the non-reference methods on the first measurement occasion that cannot be ex-
plained by the reference-method traits on the first measurement occasion. The latent slope (common)
method variables SCM

ti j2 and SM
ti jk, k > 2, represent that part of the latent growth in the non-reference

method traits that cannot be explained by the growth in the reference method traits. For instance, a
value on the latent slope method variable SM

ti jk indicates to which degree a structurally different rater
over- or underestimates the linear slope of the growth trajectory for the respective target with respect
to the value that is expected based on the targets’ self-reported linear growth trajectory. Hence, the
latent slope method variables SM

ti jk represent the part of the latent growth in a construct as rated by the
structurally different non-reference method rater that cannot be explained by the self-reported latent
growth.
In a similar logic as used for the latent traits xti jkl , the latent unique method trait variables x

UM
rti j2l

belonging to a measurement occasion l > 1 can be decomposed into an initial unique method trait
variable x

UM
rti j21 and a latent unique method change variable (xUM

rti j2l �x

UM
rti j21),

x

UM
rti j2l = x

UM
rti j21 +(xUM

rti j2l �x

UM
rti j21) (5.1.11)
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with

(xUM
rti j2l �x

UM
rti j21) = (l �1)(xUM

rti j22 �x

UM
rti j21) (5.1.12)

Again, intercept and slope factors are defined as:

IUM
rti j2 = x

UM
rti j21 (5.1.13)

SUM
rti j2 = (xUM

rti j22 �x

UM
rti j21) (5.1.14)

The latent unique method intercept variables IUM
rti j2 represent the unique method trait variables on the

first occasion of measurement, while the unique method slope variables SUM
rti j2 represent the growth

(linear change) in the unique method trait variables, i.e., the change in the rater-specific view between
adjacent measurement occasions, that is not shared with the other raters or the target and not influ-
enced by the specific situations. Note that, as the latent unique method trait variables are defined as
residual variables, their expectation is zero by definition. This implies that the intercept and slope
factors IUM

rti j2 and SUM
rti j2 also have a mean of zero by definition and that there can be no mean change,

that is, no linear average change or trend in the unique method trait variables. The unique method
slope variables represent change in the relative position of an individual rater’s rating to the expected
rating over all raters per target. Hence, the unique method slope variance indicates to which degree
there is a change in the individual raters’ views relative to the other interchangeable raters’ views
between adjacent measurement occasions.
As in latent change models, an important prerequisite for the application of LGC models is strong
measurement invariance across time (Ferrer, Balluerka, & Widaman, 2008). Only if strong MI holds,
the growth components can be meaningfully interpreted, as change is investigated with respect to the
same latent variables. In the present LGC model definition, intercept and slope factors are defined
separately for the reference method and the non-reference method trait factors [see Equations (5.1.1)-
(5.1.4)], before regressing non-reference method intercept / slope variables on reference method in-
tercept / slope variables. Also, intercept and slope factors are defined based on the indicator- and
occasion-specific latent trait factors xti jkl . Therefore, there are no loading parameters that need to be
invariant over time. However, MI over time of the threshold parameters is required not only for the
reference method indicators but also for the non-reference method indicators.
An LGC-Com GRM with indicator-specific latent (method) intercept and slope factors is depicted in
Figure 5.1, an LGC-Com GRM with common latent (method) intercept and slope factors is depicted
in Figure 5.2.
Formal definitions and detailed explanations of the latent variables, as well as theorems on their
uniqueness, admissible transformations and meaningful statements are presented in Sections 5.1 -
5.4. Furthermore, independence assumptions imposed on the LGC-Com GRM, a detailed variance
decomposition and the identifiability of the model are derived in Sections 5.7 - 5.8. Note that measure-
ment invariance will not be separately defined, as measurement invariance of the threshold variables
is a prerequisite for meaningful interpretations of the presented LGC model, while loading parame-
ters on the trait-level of the LGC-Com GRM are invariant by definition. For details on measurement
invariance for the occasion-specific part of the LGC-Com GRM see the respective definition for the
LST-Com GRM (Section 4.12).
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Figure 5.1: Path diagram of the Latent-Growth-Curve-Com graded response model with indicator-specific latent intercept and slope variables Iti j , Sti j , ICM
ti j2 , SCM

ti j2 , IUM
rti j2 and SUM

rti j2 and common latent
state residual variables zt jl . The model is depicted for one structurally different method and one set of interchangeable methods on three measurement occasions for two constructs. Method 1
is selected as reference method. Note that for illustration purposes, the path diagram is depicted for the observed variables Y(r)ti jkl , which are, however, not linearly linked but probabilistically
linked to the latent variables by a probit link. For the sake of clarity, correlations between latent variables and loading parameters are omitted. Note that loading parameters of the latent
intercept and slope variables are restricted in order to model a linear growth trajectory. Correlations that are not permissible in the depicted LGC-Com GRM are all correlations between any
(method) intercept variable I or (method) slope variable S and any state residual (method) variable z , correlations between the latent intercept and the latent intercept (common) method
variables of the same construct j and indicator i, correlations between the latent slope and the latent slope (common) method variables of the same construct j and indicator i, correlations
between the latent state residual and the latent state residual (common) method variables of the same construct j and measurement occasion l, as well as correlations between any level-1 and
any level-2 latent variable. CM: common method; M: method; S: latent state variable; S: latent slope variable; UM: unique method; I: latent intercept variable; Yrti jkl : observed variable for
the rating of rater r for target t of the i-th item of trait j and method k on measurement occasion l; z : latent state residual variable.
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Figure 5.2: Path diagram of the Latent-Growth-Curve-Com graded response model with common latent intercept and slope variables It j , St j , ICM
t j2 , SCM

t j2 , IUM
rt j2 and SUM

rt j2 and latent state residual variables
zt jl . The model is depicted for one structurally different method and one set of interchangeable methods on three measurement occasions for two constructs. Method 1 is selected as reference
method. Note that for illustration purposes, the path diagram is depicted for the observed variables Y(r)ti jkl , which are, however, not linearly linked but probabilistically linked to the latent
variables by a probit link. For the sake of clarity, correlations between latent variables and loading parameters are omitted. Note that loading parameters of the latent intercept and slope
variables are restricted in order to model a linear growth trajectory. Correlations that are not permissible in the depicted LGC-Com GRM are all correlations between any (method) intercept
variable I or (method) slope variable S and any state residual (method) variable z , correlations between the latent intercept and the latent intercept (common) method variables of the same
construct j, correlations between the latent slope and the latent slope (common) method variables of the same construct j, correlations between the latent state residual and the latent state
residual (common) method variables of the same construct j and measurement occasion l, as well as correlations between any level-1 and any level-2 latent variable. CM: common method;
M: method; S: latent state variable; S: latent slope variable; UM: unique method; I: latent intercept variable; Yrti jkl : observed variable for the rating of rater r for target t of the i-th item of
trait j and method k on measurement occasion l; z : latent state residual variable.
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5.2 Formal Definition of the LGC-Com GRM
In the following the LGC-Com GRM is formally defined building on the definition of the LST-Com
GRM in section 4.2. Note that the following definition of the LGC-Com GRM is not analogous to the
continuous-indicator LGC-Com model as defined by Koch (2013), but differs from it in that growth is
not only assumed for the reference method but differential change can also occur in the non-reference
methods.

Definition 5.1. (LGC-Com GRM)

The random variables {Yrt1111, . . . ,Yrti jkl, . . . ,Yrtcdde f } and {Yt1111, . . . ,Yti jkl, . . . ,Ytcdde f } on a prob-
ability space (W,A,P) are variables of an LGC-Com graded response model if Conditions (a)

to (e) in Definition 2.1, Conditions (a), (c), and (f) in Definition 4.1 and the following conditions
hold:

(a) For all i 2 I j, j 2 J, k 2 K, and l, l0 2 L, l 6= l0, it holds that

ksi jkl = ksi jkl0 (5.2.1)

(b) Then, without loss of generality, the latent trait variables xti jkl belonging to a measurement
occasion l > 1 can be decomposed into an initial trait variable xti jk1 and a latent change
variable (xti jkl �xti jk1):

xti jkl = xti jk1 +(xti jkl �xti jk1) (5.2.2)

(c) For each indicator i, construct j, method k and measurement occasion l > 1, it holds that

(xti jkl �xti jk1) = (l �1)(xti jk2 �xti jk1) (5.2.3)

Define the intercept factors Iti jk and slope factors Sti jk by:

Iti jk := xti jk1 (5.2.4)
Sti jk := (xti jk2 �xti jk1) (5.2.5)

(d) The following latent variables are random variables on (W,A,P) with finite first- and second-
order moments:

ICM
ti j2 = Iti j2 �E[Iti j2 | Iti j1] (5.2.6)

IM
ti jk = Iti jk �E[Iti jk | Iti j1] k > 2 (5.2.7)

SCM
ti j2 = Sti j2 �E[Sti j2 | Sti j1] (5.2.8)

SM
ti jk = Sti jk �E[Sti jk | Sti j1] k > 2 (5.2.9)
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(e) The latent unique method trait variables x

UM
rti j2l belonging to a measurement occasion l > 1

can be decomposed into an initial unique method trait variable x

UM
rti j21 and a latent unique

method change variable (xUM
rti j2l �x

UM
rti j21):

x

UM
rti j2l = x

UM
rti j21 +(xUM

rti j2l �x

UM
rti j21) (5.2.10)

Then, for each indicator i, construct j, and measurement occasion l > 1, it holds that,

(xUM
rti j2l �x

UM
rti j21) = (l �1)(xUM

rti j22 �x

UM
rti j21) (5.2.11)

Define the latent unique method intercept factors IUM
rti j2 and unique method slope factors

SUM
rti j2 by:

IUM
rti j2 := x

UM
rti j21 (5.2.12)

SUM
rti j2 := (xUM

rti j22 �x

UM
rti j21) (5.2.13)

(f) For each indicator i of construct j measured by a non-reference method (k 6= 1), there are
constants aIi jk 2 R and lIi jk 2 R+ such that

E[Iti jk | Iti j1] = aIi jk +lIi jkIti j1 (5.2.14)

(g) For each indicator i of construct j measured by a non-reference method (k 6= 1), there are
constants aSi jk 2 R and lSi jk 2 R+ such that

E[Sti jk | Sti j1] = aSi jk +lSi jkSti j1 (5.2.15)

Remarks. The preceding definition of the LGC-Com GRM is based on the definition of the LST-Com
GRM, replacing the assumption of perfectly correlated latent trait variables xti j1l over measurement
occasion by the assumption of linearity in presumed trait change between measurement occasions.
Note that the assumption of a linear growth trajectory made in Equation (5.2.3) of Definition 5.1 (c)
could be adapted and extended to model non-linear change trajectories, such as quadratic change (i.e.,
(l � 1)2) or cubic change (i.e., (l � 1)3). Assumption (a) of Definition 5.1 defines strong measure-
ment invariance for the latent trait variables (as given by Equations 4.2.6 and 4.2.12), necessary to
ensure that the variables xti jkl measure the same latent construct over time and the change variables
(xti jkl �xti jk1) can be meaningfully interpreted.
Assumption (d) defines the latent intercept (common) method variables ICM

ti j2 and IM
ti jk, k > 2, as well

as the latent slope (common) method variables SCM
ti j2 and SM

ti jk, k > 2. The latent intercept (com-
mon) method variables ICM

ti j2 and IM
ti jk, k > 2, represent that part of the latent trait variables of the

non-reference methods on the first measurement occasion that cannot be explained by the reference-
method traits on the first measurement occasion. The latent slope (common) method variables SCM

ti j2
and SM

ti jk, k > 2, represent that part of the latent growth in the non-reference method traits that cannot
be explained by the growth in the reference method traits.
Assumption (e) defines the latent unique method intercept and slope variables IUM

rti j2 and SUM
rti j2. The

latent unique method intercept variables IUM
rti j2 represent the unique method trait variables on the first
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measurement occasion, while the unique method slope variables SUM
rti j2 represent the growth (linear

change) in the unique method trait variables, i.e., the change in the rater-specific view between adja-
cent measurement occasions, that is not shared with the other raters or the target and not influenced
by the specific situations. Note that, as the latent unique method trait variables are defined as residual
variables, their expectation is zero by definition. This implies, that there can be no mean change, that
is, no linear average change or trend in the unique method trait variables. The unique method slope
variables represent change in the relative position of an individual rater’s rating to the expected rating
over all raters per target. Hence, the unique method slope variance indicates to which degree there
is a change in the individual raters’ views relative to the other interchangeable raters’ views between
adjacent measurement occasions.
Equations (5.2.14) and (5.2.15) state the assumptions that the dependence of the non-reference method
intercept / slope variables Iti jk / Sti jk on the reference method intercept / slope variable Iti j1 / Sti j1 of
the same indicator i and construct j can be described by linear transformations. Note that the linearity
of the dependence of the non-reference method intercept variables Iti jk on the reference method slope
variable Iti j1 of the same indicator i and construct j is only repeated here and was already stated by
Equation (4.2.12) of Definition 4.1 (b), as the latent intercept variables are defined as Iti jk = xti jk1.
As the LGC-Com GRM model is derived from the LST-Com GRM, all psychometric statements with
respect to existence, uniqueness, admissible transformations or meaningfulness of the latent state
residual (method) variables correspond to those of the LST-Com GRM. That is, (zCM

ti j2l , z

UM
ti j2l , z

M
ti jkl)-

congenerity also holds in the LGC-Com GRM, as stated in the following theorem. Psychometric
properties of the latent trait (that is, intercept and slope) variables in the LGC-Com GRM are derived
in the following sections.

Theorem 5.1. (Existence)

The random variables {Yrt1111, . . . ,Yrti jkl, . . . ,Yrtcdde f } and {Yt1111, . . . ,Yti jkl, . . . ,Ytcdde f } are
(zCM

ti j2l , z

UM
ti j2l , z

M
ti jkl)-congeneric variables of an LGC-Com GRM if and only if the conditions in

Definition 5.1 hold. Then, for each r 2 R, t 2 T , i 2 I j, j 2 J, k 2 K, and l 2 L, there are real-
valued random variables z

CM
t j2l , z

UM
t j2l , and z

M
t jkl on a probability space (W,A,P) and constants

(lCM
z i j2l , l

UM
z i j2l , l

M
z i jkl) 2 R+ such that:

z

UM
rti j2l = l

UM
z i j2lz

UM
rt j2l (5.2.16)

z

CM
ti j2l = l

CM
z i j2lz

CM
t j2l (5.2.17)

z

M
ti jkl = l

M
z i jklz

M
t jkl 8 k > 2 (5.2.18)

5.3 Uniqueness, admissible transformations and meaning-
ful statements

Uniqueness and admissible transformations of the latent state residual (method) variables correspond
to those in the LST-Com GRM, as the definition of these variables is identical in the two models.
However, as the remaining latent variables differ from those of the LST-Com GRM, for completeness,
a theorem on the uniqueness of the latent variables in the LGC-Com GRM is given in the following.
Note that measurement invariance of the threshold parameters is assumed, i.e., ksi jkl = ksi jkl0 8k.
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Theorem 5.2. (Admissible transformations and uniqueness)

1. Admissible Transformations
Let M = h(W,A,P), p

p

prt , p

p

p t , k

k

k , a

a

aI , l

l

lI , IIIt , a

a

aS , l

l

lS , SSSt , l

l

l

z

, z

z

z t , IIIUM
rt , IIICM

t , IIIM
t , SSSUM

rt , SSSCM
t ,

SSSM
t , l

l

l

UM
z

, l

l

l

CM
z

, l

l

l

M
z

, z

z

z

UM
rt , z

z

z

CM
t , z

z

z

M
t i be an LGC-Com GRM with:

p

p

prt = (prt1121, . . . ,prti j2l, . . . ,prtcdd2 f )
T (5.3.1)

p

p

p t = (pt1111, . . . ,pti jkl, . . . ,ptcdde f )
T k 6= 2 (5.3.2)

k

k

k = (k11111, . . . ,ksi jkl, . . . ,k(qcd d�1)cdde f )
T (5.3.3)

a

a

aI = (aI112, . . . ,aIi jk, . . . ,aIcdde)
T (5.3.4)

l

l

lI = (lI112, . . . ,lIi jk, . . . ,lIcdde)
T (5.3.5)

IIIt = (It111, . . . ,Iti j1, . . . ,Itcdd1)
T (5.3.6)

a

a

aS = (aS112, . . . ,aSi jk, . . . ,aScdde)
T (5.3.7)

l

l

lS = (lS112, . . . ,lSi jk, . . . ,lScdde)
T (5.3.8)

SSSt = (St111, . . . ,Sti j1, . . . ,Stcdd1)
T (5.3.9)

l

l

l

z

= (l
z 1121, . . . ,lz i jkl, . . . ,lz cdde f )

T k > 1 (5.3.10)

z

z

z t = (zt1111, . . . ,zti j1l, . . . ,ztcdd1 f )
T (5.3.11)

IIIUM
rt = (IUM

rt112, . . . ,IUM
rti j2, . . . ,IUM

rtcdd2)
T (5.3.12)

IIICM
t = (ICM

t112, . . . ,ICM
ti j2 , . . . ,ICM

tcdd2)
T (5.3.13)

IIIM
t = (IM

t113, . . . ,IM
ti jk, . . . ,IM

tcdde)
T k > 2 (5.3.14)

SSSUM
rt = (SUM

rt112, . . . ,SUM
rti j2, . . . ,SUM

rtcdd2)
T (5.3.15)

SSSCM
t = (SCM

t112, . . . ,SCM
ti j2 , . . . ,SCM

tcdd2)
T (5.3.16)

SSSM
t = (SM

t113, . . . ,SM
ti jk, . . . ,SM

tcdde)
T k > 2 (5.3.17)

l

l

l

UM
z

= (l UM
z 1121, . . . ,l

UM
z i j2l, . . . ,l

UM
z cdd2 f )

T (5.3.18)

l

l

l

CM
z

= (l CM
z 1121, . . . ,l

CM
z i j2l, . . . ,l

CM
z cdd2 f )

T (5.3.19)

l

l

l

M
z

= (l M
z 1131, . . . ,l

M
z i jkl, . . . ,l

M
z cdde f )

T k > 2 (5.3.20)

z

z

z

UM
rt = (z UM

rt121, . . . ,z
UM
rt j2l, . . . ,z

UM
rtd2 f )

T (5.3.21)

z

z

z

CM
t = (z CM

t121, . . . ,z
CM
t j2l , . . . ,z

CM
td2 f )

T (5.3.22)

z

z

z

M
t = (z M

t131, . . . ,z
M
t jkl, . . . ,z

M
tde f )

T k > 2 (5.3.23)

If for all r 2 R, t 2 T , i 2 I j, j 2 J, k 2 K, and l 2 L:

p

0
ti jkl = pti jkl +ni jk k 6= 2 (5.3.24)

p

0
rti j2l = prti j2l +ni j2 (5.3.25)

k

0
si jkl = ksi jkl +ni jk (5.3.26)
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a

0
Ii jk = aIi jk +ni jk �lIi jkni j1 k > 1 (5.3.27)

z

0UM
rt j2l = b

UM
z j2lz

UM
rt j2l (5.3.28)

z

0CM
t j2l = b

CM
z j2lz

CM
t j2l (5.3.29)

z

0M
t jkl = b

M
z jklz

M
t jkl k > 2 (5.3.30)

l

0UM
z i j2l = l

UM
z i j2l/b

UM
z j2l (5.3.31)

l

0CM
z i j2l = l

CM
z i j2l/b

CM
z j2l (5.3.32)

l

0M
z i jkl = l

M
z i jkl/b

M
z jkl k > 2 (5.3.33)

where b

UM
z j2l , b

CM
z j2l , b

M
z jkl 2 R+, and gIi j1, gSi j1, ni jkl 2 R.

Then M0 = h(W,A,P), p

p

p

0
rt , p

p

p

0
t , k

k

k

0, a

a

a

0
I , l

l

lI , III 0
t , a

a

aS , l

l

lS , SSSt , l

l

l

z

, z

z

z t , IIIUM
rt , IIICM

t , IIIM
t , SSSUM

t , SSSCM
t ,

SSSM
t , l

l

l

0UM
z

, l

l

l

0CM
z

, l

l

l

0M
z

, z

z

z

0UM
rt , z

z

z

0CM
t , z

z

z

0M
t i is an LGC-Com GRM, too, with

p

p

p

0
rt = (p 0

rt1121, . . . ,p
0
rti j2l, . . . ,p

0
rtcdd2 f )

T (5.3.34)

p

p

p

0
t = (p 0

t1111, . . . ,p
0
ti jkl, . . . ,p

0
tcdde f )

T k 6= 2 (5.3.35)

k

k

k

0 = (k 0
11111, . . . ,k

0
si jkl, . . . ,k

0
(qcd d�1)cdde f )

T (5.3.36)

a

a

a

0
I = (a 0

I112, . . . ,a
0
Ii jk, . . . ,a

0
Icdde)

T (5.3.37)

l

l

lI = (lI112, . . . ,lIi jk, . . . ,lIcdde)
T (5.3.38)

III 0
t = (I 0

t111, . . . ,I 0
ti j1, . . . ,I 0

tcdd1)
T (5.3.39)

a

a

aS = (aS112, . . . ,aSi jk, . . . ,aScdde)
T (5.3.40)

l

l

lS = (lS112, . . . ,lSi jk, . . . ,lScdde)
T (5.3.41)

SSSt = (St111, . . . ,Sti j1, . . . ,Stcdd1)
T (5.3.42)

l

l

l

z

= (l
z 1121, . . . ,lz i jkl, . . . ,lz cdde f )

T k > 1 (5.3.43)

z

z

z t = (zt1111, . . . ,zti j1l, . . . ,ztcdd1 f )
T (5.3.44)

IIIUM
t = (IUM

t112, . . . ,IUM
ti j2 , . . . ,IUM

tcdd2)
T (5.3.45)

IIICM
t = (ICM

t112, . . . ,ICM
ti j2 , . . . ,ICM

tcdd2)
T (5.3.46)

IIIM
t = (IM

t113, . . . ,IM
ti jk, . . . ,IM

tcdde)
T k > 2 (5.3.47)

SSSUM
t = (SUM

t112, . . . ,SUM
ti j2 , . . . ,SUM

tcdd2)
T k > 2 (5.3.48)

SSSCM
t = (SCM

t112, . . . ,SCM
ti j2 , . . . ,SCM

tcdd2)
T (5.3.49)

SSSM
t = (SM

t113, . . . ,SM
ti jk, . . . ,SM

tcdde)
T k > 2 (5.3.50)
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l

l

l

0UM
z

= (l 0UM
z 1121, . . . ,l

0UM
z i j2l, . . . ,l

0UM
z cdd2 f )

T (5.3.51)

l

l

l

0CM
z

= (l 0CM
z 1121, . . . ,l

0CM
z i j2l, . . . ,l

0CM
z cdd2 f )

T (5.3.52)

l

l

l

0M
z

= (l 0M
z 1131, . . . ,l

0M
z i jkl, . . . ,l

0M
z cdde f )

T k > 2 (5.3.53)

z

z

z

0UM
rt = (z 0UM

rt121, . . . ,z
0UM
rt j2l, . . . ,z

0UM
rtd2 f )

T (5.3.54)

z

z

z

0CM
t = (z 0CM

t121, . . . ,z
0CM
t j2l , . . . ,z

0CM
td2 f )

T (5.3.55)

z

z

z

0M
t = (z 0M

t131, . . . ,z
0M
t jkl, . . . ,z

0M
tde f )

T k > 2 (5.3.56)

2. Uniqueness
If both M = h(W,A,P), p

p

prt , p

p

p t , k

k

k , a

a

aI , l

l

lI , IIIt , a

a

aS , l

l

lS , SSSt , l

l

l

z

, z

z

z t , IIIUM
rt , IIICM

t , IIIM
t , SSSUM

rt , SSSCM
t ,

SSSM
t , l

l

l

UM
z

, l

l

l

CM
z

, l

l

l

M
z

, z

z

z

UM
rt , z

z

z

CM
t , z

z

z

M
t i and

M0 = h(W,A,P), p

p

p

0
rt , p

p

p

0
t , k

k

k

0, a

a

a

0
I , l

l

lI , III 0
t , a

a

aS , l

l

lS , SSSt , l

l

l

z

, z

z

z t , IIIUM
rt , IIICM

t , IIIM
t , SSSUM

t , SSSCM
t , SSSM

t ,
l

l

l

0UM
z

, l

l

l

0CM
z

, l

l

l

0M
z

, z

z

z

0UM
rt , z

z

z

0CM
t , z

z

z

0M
t i are LGC-Com GRMs, then for each i 2 I j, j 2 J, k 2 K, and

l 2 L there are gIi j1, gSi j1, ni jkl 2 R, and b

UM
z j2l , b

CM
z j2l , b

M
z jkl 2 R+, such that Equations (5.3.24)

to (5.3.33) hold.

Remarks. As stated in Theorem 5.2, the uniqueness and admissible transformations for the latent
state residual (method) variables (i.e., zti j1l , z

UM
rt j2l , z

CM
t j2l , z

M
t jkl) and their parameters (i.e., l

z i jkl , l

UM
z i j2l ,

l

CM
z i j2l , l

M
z i jkl), as well as the latent response variables pti jkl and prti j2l in the LGC-Com GRM are

identical to those in the LST-Com GRM. That is, the latent state residual variables zti j1l as well as the
loading parameters l

z i jkl are uniquely defined in the LGC-Com GRM with indicator-specific state
residual variables zti j1l . Again, this is the case as any translation of the latent response variables
pti jkl directly translates to the same translation for the latent trait variables xti jkl = E[Sti jkl | pT ],
with Sti jkl = pti jkl , k 6= 2, and Sti j2l = E[prti j2l | pT , pT Sl ], and thereby does not affect their residuals
zti jkl = Sti jkl �xti jkl .
As in the LST-Com GRM, the common state residual method variables z

CM
t j2l , z

UM
rt j2l , and z

M
t jkl and their

corresponding loading parameters are uniquely defined only up to similarity transformations. The
parameters p

0
rti j2l , p

0
ti jkl , and ksi jkl are uniquely defined up to translations by a constant.

Theorem 5.2 reveals that the intercept variables Iti j1 are uniquely defined only up to translations.
Although this translation is not explicitly stated in Theorem 5.2, it follows directly from the definition
of the latent intercept variables and the fact that the latent response variables p

0
rti j2l and p

0
ti jkl are

only uniquely defined up to translations. That is, the latent intercept variables Iti jk are defined as
Iti jk := xti jk1 with xti jk1 = E[Sti jk1 | pT ] and Sti jk1 = pti jk1, k 6= 2, and Sti j21 = E[prti j21 | pT , pT Sl ],
such that any translation of pti jk1 by nti jk directly leads to a translation of Iti jk by the same amount
nti jk.
In contrast, the latent slope variables Sti j1 are uniquely defined in the LGC-Com GRM. This is the
case as measurement invariance of the threshold parameters is a prerequisite for the LGC-Com GRM,
such that the translation of the threshold and latent response variables is time invariant, too, which is
why the parameter ni jk does not have an index l. Consequently, the latent slope variables Sti jk, which
are defined as Sti jk := xti jk2 � xti jk1 are not affected by the translations of pti jk2 and pti jk1 by ni jk as
Sti jk = xti jk2 �xti jk1 = (xti jk2 +ni jk)� (xti jk1 �ni jk).
The same holds for the parameters aIi jk and aSi jk, that is, the parameters aIi jk are uniquely defined
only up to translations while the parameters aSi jk are uniquely defined.
The loading parameters lIi jk and lSi jk are uniquely defined in the LGC-Com GRM. Furthermore, the
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intercept and slope unique method, common method and method variables IUM
rti j2, ICM

ti j2 , IM
ti jk, SUM

rti j2,
SCM

ti j2 , and SM
ti jk are uniquely defined in the LGC-Com GRM. Again, this is the case as they are defined

as zero-mean residual variables, which are not affected by the translation of regressand and regressor.
That is, there are no admissible transformations (except for the identity transformation) for the vari-
ables Sti jk, aSi jk, IUM

rti j2, ICM
ti j2 , IM

ti jk, SUM
rti j2, SCM

ti j2 , SM
ti jk, lIi jk, lSi jk, zti j1l , and l

z i jkl , and meaningful
statements can directly be made about their absolute values.
To see that the latent intercept Iti j1 are only uniquely defined up to translations, let p

0
ti jkl and k

0
si jkl be

defined as given by Equations (5.3.24) and (5.3.26). Then, it holds that, for instance for k = 1 and
l = 1,

ptsi j11 = pti j11 �kti j11

= xti j11 +zti j11 �kti j11

= Iti j1 +zti j11 �kti j11

= Iti j1 +ni j11 +zti j11 �kti j11 �ni j11

= (Iti j1 +ni j11 +zti j11)� (kti j11 +ni j11)

= p

0
ti j11 �k

0
ti j11

As the latent intercept variables Iti j1 and their parameters aIi jk are uniquely defined only up to
translations, they are measured on a difference scale. Therefore, meaningful statements regarding
the intercept variables Iti j1 are statements on their differences: for w1, w2 2 W, r 2 R, t 2 T , i 2 I j,
j 2 J, k 2 K, and l 2 L, it holds that

Iti j1(w1)�Iti j1(w2) = I 0
ti j1(w1)�I 0

ti j1(w2)

as

I 0
ti j1(w1)�I 0

ti j1(w2) =
�
Iti j1(w1)+ gIi j1

�
�
�
Iti j1(w2)+ gIi j1

�

= Ii j1(w1)�Ii j1(w2)

It follows that statements about differences in the latent intercept variables between different con-
structs are also only meaningful for the differences between persons.
For meaningful statements regarding the remaining variables and their parameters see Section 4.3,
i.e., meaningful statements in the LST-Com GRM.

5.4 Common latent intercept, slope, and residual state fac-
tors

The LGC-Com GRM defined in Section 5.2 could also be defined with common latent state residual
factors zt j1l for all indicators belonging to the same construct j and measurement occasion l, instead
of the indicator-specific latent state residual variables zti j1l . The definition of common latent state
residual factors is identical as in the LST-Com GRM and is described in detail in Section 4.4.
Additionally, it could be assumed, that the latent intercept variables Iti j1 and Iti0 j1 of different indi-
cators i, i0 2 I j, i 6= i0, belonging to the same construct j are linear transformations of each other (and
hence perfectly correlated). That is, it can be assumed that for each construct j, measured by the
reference method (k = 1), and for each pair (i, i0) 2 I j ⇥ I j , (i 6= i0), there are constants lIii0 j1 2 R+

and dIii0 j1 2 R such that

Iti j1 = dIii0 j1 +lIii0 j1Iti0 j1. (5.4.1)
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Again, this implies the existence of common latent intercept variables It j1 and constants lIi j1 2 R+

and dIi j1 2 R such that

Iti j1 = dIi j1 +lIi j1It j1. (5.4.2)

From Equation (5.4.2) it is obvious that the common latent intercept variables It j1 are only uniquely
defined up to linear transformations, while the coefficients lIi j1 are uniquely defined up to similarity
transformations and the coefficients dIi j1 up to translations by a real constant. Note that the coeffi-
cients lIi jk and aIi jk in the Equation for E[Iti jk | Iti j1] (see Equation 5.2.14) change from the model
with indicator-specific latent intercept variables Iti j1 to the model with common latent intercept vari-
ables It j1, as they are now the coefficients of the regression of the non-reference method intercept
variables Iti jk on It j1 (instead of on Iti j1).
Analogous assumptions of perfectly correlated latent slope variables Sti j1 and Sti0 j1 of different indi-
cators i, i0 2 I j, i 6= i0, belonging to the same construct j can be made, defining common latent slope
variables St j1. The same holds for the latent intercept and slope method variables ICM

ti j2, IM
ti jk, IUM

rti j2,
SCM

ti j2, SM
ti jk, and SUM

rti j2. The definitions of the common latent slope variables St j1 and conclusions of
their definition are perfectly analogous to the case of the common latent intercept variables described
above. In the case of the method intercept or slope variables, the common latent variables are uniquely
defined only up to similarity transformations, as their expectations are zero by definition (compare
definition of common latent method trait variables in the LST-Com GRM, Section 4.3 and 4.4).
As they are uniquely defined up to linear transformations, meaningful statements regarding the com-
mon latent intercept factors It j1 are statements on the ratio of differences between different values of
It j1, that is, for w1, w2, w3, w4 2 W, t 2 T , and j 2 J it holds that

It j1(w1)�It j1(w2)

It j1(w3)�It j1(w4)
=

I 0
t j1(w1)�I 0

t j1(w2)

I 0
t j1(w3)�I 0

t j1(w4)
(5.4.3)

For the new loading parameters lIi jk in an LGC-Com GRM with common latent intercept factors
It j1 meaningful statements are statements regarding the ratio of lIi jk and lIi0 jk0 for i, i0 2 I j, i = i0 or
6= i0, k,k0 2 K, k = k0 or k 6= k0, as

lIi jk

lIi0 jk0
=

l

0
Ii jk

l

0
Ii0 jk0

(5.4.4)

This result is a direct consequence of the definition of the variables analogous to the results in Section
4.3 and the proof is left to the reader. This result on admissible transformations of the common latent
intercept factors and their loading parameters applies in analogous manner to the common latent slope
variables and their respective loading parameters. Admissible transformations for the common latent
method intercept and slope parameters are the multiplications with positive real numbers, as they are
measured on a ratio scale. Meaningful statements for these parameters are statements regarding the
ratio of specific values of the factor loadings or the ratio of the values of the latent trait intercept or
slope method factors (see Section 4.3).
Note that, as pti jkl and ksi jkl are only uniquely defined up to translations, the coefficients dIi j1, dSi j1,
aIi jk, aSi jk and all of the coefficients ksi j1l for the same indicator i and construct j are not separately
identifiable. For further restrictions imposed on the mean structure, as well as the coefficients aIi jk,
aSi jk, dIi j1, dSi j1 and ksi jkl due to identifiability considerations refer to Sections 5.9 and 5.10.
An LGC-Com GRM with common latent intercept, slope, method intercept and method slope vari-
ables is depicted in Figure 5.2.
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5.5 True score variables
The definition of latent true score variables for ordered categorical variables in the LGC-Com GRM
is identical to that of the LS-Com GRM and was given in Definition 2.2 in section 2.7.

5.6 Factor analytical representation
The LGC-Com GRM presented above can also be represented as a factor model for ordinal data. As
this representation does not depend on the specific model, the factor-analytical representation of the
LGC-Com GRM is identical to that of the LS-Com GRM as defined in section 2.8.

5.7 Independence assumptions and testability

5.7.1 LGC-Com GRM with conditional independence
In order to derive testable consequences of the LGC-Com GRM, several independence assumptions
have to be introduced. As the LGC-Com GRM is defined on the basis of the LST-Com GRM, these
independence assumptions correspond to those made in the LST-Com GRM.

Definition 5.2. (LGC-Com GRM with conditional independence)

Let M = h(W,A,P), p

p

prt , p

p

p t , k

k

k , a
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aI , l

l

lI , IIIt , a
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CM
z

, l
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z

, z

z

z

UM
rt , z

z

z

CM
t , z

z

z

M
t i be an LGC-Com GRM with (zCM

ti j2l , z

UM
ti j2l , z

M
ti jkl)-congeneric

variables. M is called LGC-Com GRM with conditional independence if and only if the assump-
tions given in Definition 4.2 hold.

Remarks. The independence assumptions given in Definitions 2.3 and 4.2 have the same meaning in
the LGC-Com GRM as they have in the LST-Com GRM and are explained in detail in the remarks
to Definition 4.2. Furthermore, all of the conditional independence assumptions given in Definition
4.2 (also see Definition 2.3) imply consequences regarding the conditional and unconditional distri-
butions of the observed variables Yti jkl and Yrti j2l as well as a specific covariance structure of the latent
variables pti jkl and prti j2l in the LGC-Com GRM. The conditional independence assumptions given
in Definition 4.2 (see Definition 2.3) impose testable consequences on the covariance structure of the
LGC-Com GRM. These are, with minor differences for newly defined latent intercept and slope vari-
ables, analogous to those of the LST-Com GRM. They are stated in Section 5.7.3 and the following
theorem.

Theorem 5.3. (LGC-Com GRM with conditional independence)

M = h(W,A,P), p
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t i be an LGC-Com GRM with conditional independence. Then,
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for all i, i0 2 I j, j, j0 2 J, k 2 K, l, l0 2 L, and yrti j2l , yti jkl 2 Si j it holds that:

P
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d\

j=1
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i=1
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Yrti j2l = yrti j2l
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(5.7.1)

Furthermore, it holds that:
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(5.7.2)

Remarks. According to Equation (4.7.2), all observed variables Yrti j2l and Yti jkl are independent given
the latent response variables prti j2l and pti jkl . Note that this assumption and its implications do not
differ from the LST-Com GRM. Equation (5.7.1) implies that all associations between the observed
variables are determined by the latent variables pti jkl and prti j2l and their associations. According to
Equation (5.7.2), the same holds with respect to the variables Iti j1, Sti j1, zti j1l , IUM

rti j2, SUM
rti j2, z

UM
rt j2l ,

ICM
ti j2, SCM

ti j2, z

CM
t j2l , IM

ti jk, SM
ti jk, and z

M
t jkl .

As Equation (5.7.1) is identical to (4.7.2) in the LST-Com GRM it also follows from Equations (2.9.1)
and (2.9.2) - (2.9.4). This is the case as the random variables pti j1l , pti jkl , k > 2, and prti j2l are (pT ,
pT Sl )-, (pT , pT Sl , pRkSl )-, and (pT , pT Sl , pR, pR2Sl )-measurable functions, respectively. Similar argu-
ments lead to Equation (4.7.3). A prove was given by Eid (1995, pp. 97-98) for a comparable model
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and is applicable to the present case.

5.7.2 Conditional regressive independence of the latent state variables
Identical to the LST-Com GRM, independence assumption (4.7.1) of Definition 4.2 allows to interpret
the latent unique method trait variables x

UM
rti j2l as the difference between the conditional expectation of

the latent response variables prti j2l given the target and the rater and its conditional expectation given
the target only (Koch, 2013).

Theorem 5.4. (LGC-Com GRM with conditional regressive independent latent state variables)

M = h(W,A,P), p
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variables as defined by Definition 5.1. M is called LGC-Com GRM with conditionally regressive
independent Sti j2l variables, if assumption (4.7.1) of Definition 4.2 holds. Then, it follows that

E[Sti j2l | pT , pR] = E[Sti j2l | pT ], (5.7.3)

and the variables x

UM
rti j2l can be redefined as follows:

x

UM
rti j2l = E[prti j2l | pT , pR]�E[prti j2l | pT ]. (5.7.4)

Remarks. As in the LST-Com GRM, Theorem 5.4 states that, given the assumption given in Equation
(5.7.3), the latent unique method trait variables x

UM
rti j2l can be interpreted as the difference between the

conditional expectation of the latent response variables prti j2l given the target and the rater and its
conditional expectation given the target only (see Section 4.7.2 for further details). As the latent
unique method intercept and slope variables are direct functions of the latent unique method trait
variables, this property applies to IUM

rti j2 and SUM
rti j2 as well.

5.7.3 Zero correlations based on the model definition
The LGC-Com GRM with conditional independence implies a specific covariance structure of the
latent variables pti jkl , k 6= 2, and prti j2l . The following theorem introduces the covariances that are
zero as a result of the conditional independence assumptions.

Theorem 5.5. (Testability)

If M = h(W,A,P), p
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variables and conditional independence, then, for all i, i0 2 I j, j, j0 2 J, k 2 K, and l, l0 2 L, it
holds that

1. The latent intercept and slope variables are uncorrelated with the latent method intercept



5.7. INDEPENDENCE ASSUMPTIONS AND TESTABILITY 107

and slope variables:

Cov(Iti j1,ICM
ti j2) = 0 (5.7.5)

Cov(Iti j1,IUM
rti0 j02) = 0 (5.7.6)

Cov(Iti j1,IM
ti jk) = 0 k > 2 (5.7.7)

Cov(Sti j1,SCM
ti j2) = 0 (5.7.8)

Cov(Sti j1,SUM
rti0 j02) = 0 (5.7.9)

Cov(Sti j1,SM
ti jk) = 0 k > 2 (5.7.10)

Cov(Iti j1,SUM
rti0 j02) = 0 (5.7.11)

Cov(Sti j1,IUM
rti0 j02) = 0 (5.7.12)

2. The latent state residual variables are uncorrelated with the latent state residual method
variables:

Cov(zti j1l,z
CM
t j2l ) = 0 (5.7.13)

Cov(zti j1l,z
UM
rt j02l0) = 0 (5.7.14)

Cov(zti j1l,z
M
t jkl) = 0 k > 2 (5.7.15)

3. The latent intercept and slope variables are uncorrelated with all latent state residual
(method) variables:

Cov(Iti j1,zti0 j0kl0) = 0 (5.7.16)

Cov(Iti j1,z
CM
t j02l0) = 0 (5.7.17)

Cov(Iti j1,z
UM
rt j02l0) = 0 (5.7.18)

Cov(Iti j1,z
M
t j0kl0) = 0 k > 2 (5.7.19)

Cov(Sti j1,zti0 j0kl0) = 0 (5.7.20)

Cov(Sti j1,z
CM
t j02l0) = 0 (5.7.21)

Cov(Sti j1,z
UM
rt j02l0) = 0 (5.7.22)

Cov(Sti j1,z
M
t j0kl0) = 0 k > 2 (5.7.23)

4. The latent method intercept and slope variables are uncorrelated with all latent state
residual (method) variables:

Cov(ICM
ti j2 ,zti0 j0kl0) = 0 (5.7.24)

Cov(ICM
ti j2 ,z

CM
t j02l0) = 0 (5.7.25)

Cov(ICM
ti j2 ,z

UM
rt j02l0) = 0 (5.7.26)

Cov(ICM
ti j2 ,z

M
t j0kl0) = 0 k > 2 (5.7.27)
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Cov(SCM
ti j2 ,zti0 j0kl0) = 0 (5.7.28)

Cov(SCM
ti j2 ,z

CM
t j02l0) = 0 (5.7.29)

Cov(SCM
ti j2 ,z

UM
rt j02l0) = 0 (5.7.30)

Cov(SCM
ti j2 ,z

M
t j0kl0) = 0 k > 2 (5.7.31)

Cov(IUM
rti j2,zti0 j0kl0) = 0 (5.7.32)

Cov(IUM
rti j2,z

CM
t j02l0) = 0 (5.7.33)

Cov(IUM
rti j2,z

UM
rt j02l0) = 0 (5.7.34)

Cov(IUM
rti j2,z

M
t j0kl0) = 0 k > 2 (5.7.35)

Cov(SUM
rti j2,zti0 j0kl0) = 0 (5.7.36)

Cov(SUM
rti j2,z

CM
t j02l0) = 0 (5.7.37)

Cov(SUM
rti j2,z

UM
rt j02l0) = 0 (5.7.38)

Cov(SUM
rti j2,z

M
t j0kl0) = 0 k > 2 (5.7.39)

Cov(IM
ti jk,zti0 j0kl0) = 0 k > 2 (5.7.40)

Cov(IM
ti jk,z

CM
t j02l0) = 0 k > 2 (5.7.41)

Cov(IM
ti jk,z

UM
rt j02l0) = 0 k > 2 (5.7.42)

Cov(IM
ti jk,z

M
t j0kl0) = 0 k > 2 (5.7.43)

Cov(SM
ti jk,zti0 j0kl0) = 0 k > 2 (5.7.44)

Cov(SM
ti jk,z

CM
t j02l0) = 0 k > 2 (5.7.45)

Cov(SM
ti jk,z

UM
rt j02l0) = 0 k > 2 (5.7.46)

Cov(SM
ti jk,z

M
t j0kl0) = 0 k > 2 (5.7.47)

5. Uncorrelatedness of latent method intercept and slope variables:

Cov(ICM
ti j2 ,IUM

rti0 j02) = 0 (5.7.48)

Cov(IM
ti jk,IUM

rti0 j02) = 0 k > 2 (5.7.49)

Cov(ICM
ti j2 ,SUM

rti0 j02) = 0 (5.7.50)

Cov(IM
ti jk,SUM

rti0 j02) = 0 k > 2 (5.7.51)

Cov(SCM
ti j2 ,SUM

rti0 j02) = 0 (5.7.52)

Cov(SM
ti jk,SUM

rti0 j02) = 0 k > 2 (5.7.53)

Cov(SCM
ti j2 ,IUM

rti0 j02) = 0 (5.7.54)

Cov(SM
ti jk,IUM

rti0 j02) = 0 k > 2 (5.7.55)

6. Uncorrelatedness of latent state residual method variables:
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Cov(zCM
t j2l ,z

UM
rt j02l0) = 0 (5.7.56)

Cov(z M
t jkl,z

UM
rt j02l0) = 0 k > 2 (5.7.57)

Proofs.

5.7.5 By Equation (5.2.6) ICM
ti j2 is defined as Iti j2 �E[Iti j2 | Iti j1]. Hence, ICM

ti j2 is defined as a residual
with respect to Iti j1. As residuals are uncorrelated with their regressors, it follows that, for the
same indicator i and construct j, Cov(Iti j1,ICM

ti j2) = 0.

5.7.6 As shown in Proof 4.8.2 x

UM
rti0 j02l is defined as a residual with respect to any pT -measurable

function. As IUM
rti0 j02 is defined as x

UM
rti0 j021 by Equation (5.2.12) and Iti j1 is defined as Iti j1 =

xti j11, and thereby a pT -measurable function, it follows that Cov(Iti j1,IUM
rti0 j02) = 0.

5.7.7 The proof of Equation (5.7.7) follows the same logic as Proof 5.7.5.

5.7.8 By Equation (5.2.8) SCM
ti j2 is defined as Sti j2 �E[Sti j2 | Sti j1]. Hence, SCM

ti j2 is defined as a
residual with respect to Sti j1. As residuals are uncorrelated with their regressors, it follows
that, for the same indicator i and construct j, Cov(Sti j1,SCM

ti j2) = 0.

5.7.9 As shown in Proof 4.8.2 x

UM
rti0 j02l is defined as a residual with respect to any pT -measurable

function. As SUM
rti0 j02 is a direct function of x

UM
rti0 j021 and x

UM
rti0 j022 by Equation (5.2.13) and Sti j1 is

a direct function of xti j11 and xti j12 by Equation (5.2.5), it follows that Cov(Sti j1,SUM
rti0 j02) = 0.

5.7.10 The proof of Equation (5.7.10) follows the same logic as Proof 5.7.8.

5.7.11 The proof of Equation (5.7.11) follows the same logic as Proofs 5.7.6 and 5.7.9.

5.7.12 The proof of Equation (5.7.12) follows the same logic as Proofs 5.7.6 and 5.7.9.

The zero correlations given in Equations (5.7.13) - (5.7.15) and (5.7.56) - (5.7.57) appear identically
in the LST-Com GRM and were proven in Proofs 4.8.4 - 4.8.6 and 4.8.25 - 4.8.26.

The zero correlations given in Equations (5.7.16) - (5.7.23) follow from Proofs 4.8.7 - 4.8.10 in Sec-
tion 4.8, as Iti j1 and Sti j1 are direct functions of xti j1l .

The zero correlations given in Equations (5.7.24) - (5.7.47) follow from Proofs 4.8.11 - 4.8.22 in Sec-
tion 4.8, as the variables IUM

rti j2 and SUM
rti j2 are direct functions of the variables x

UM
rti j2l , and the variables

ICM
ti j2 , IM

ti jk, SCM
ti j2 , and SM

ti jk are, like the latent trait method variables x

CM
ti j2 and x

M
ti jk, direct functions of

xti jkl and xti j1l .

The zero correlations given in Equations (5.7.48) - (5.7.55) follow from Proofs 4.8.23 - 4.8.24 as the
variables IUM

rti j2 and SUM
rti j2 are direct functions of the variables x

UM
rti j2l , and the variables ICM

ti j2 , IM
ti jk,

SCM
ti j2 , and SM

ti jk are, like the latent trait method variables x

CM
ti j2 and x

M
ti jk, direct functions of xti jkl and

xti j1l .

Remarks. Note that, as in the LST-Com GRM, the conditional independence assumptions given in
Definition 5.2 do not imply that the latent state residuals zti j1l or the latent state residual method
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factors z

CM
t j2l , z

UM
rt j2l , and z

M
t jkl are uncorrelated over time. As in the LST-Com GRM, it is necessary

to set some or all of these correlations to zero for identification reasons. Nevertheless, the model in
its current form does for example allow to model autoregressive processes on the level of the state
residual (method) variables. For details and a discussion see Section 4.8.
The following additional conditional independence assumption would lead to uncorrelated latent state
residual and latent state residual method variables.

Definition 5.3. (LGC-Com GRM with strong conditional independence)

Let M = h(W,A,P), p

p

prt , p

p

p t , k

k

k , a

a

aI , l

l

lI , IIIt , a

a

aS , l

l

lS , SSSt , l

l

l

z

, z

z

z t , IIIUM
rt , IIICM

t , IIIM
t , SSSUM

rt , SSSCM
t ,

SSSM
t , l

l

l

UM
z

, l

l

l

CM
z

, l

l

l

M
z

, z

z

z

UM
rt , z

z

z

CM
t , z

z

z

M
t i be an LGC-Com GRM with (zCM

ti j2l , z

UM
ti j2l , z

M
ti jkl)-congeneric

variables. M is called LGC-Com GRM with strong conditional independence if and only if the
assumptions given in Definition 5.2 and Definition 4.3 hold.

The definition of strong conditional independence in the LGC-Com GRM is identical to the as-
sumptions made for strong conditional independence in the LST-Com GRM (see Definition 4.3) and
thereby has the same meaning and implications, stated in the following theorem.

Theorem 5.6. (Testability of LGC-Com GRM with strong conditional independence)

If M = h(W,A,P), p

p

prt , p

p

p t , k

k

k , a

a

aI , l

l

lI , IIIt , a

a

aS , l

l

lS , SSSt , l

l

l

z

, z

z

z t , IIIUM
rt , IIICM

t , IIIM
t , SSSUM

rt , SSSCM
t ,

SSSM
t , l

l

l

UM
z

, l

l

l

CM
z

, l

l

l

M
z

, z

z

z

UM
rt , z

z

z

CM
t , z

z

z

M
t i is an LGC-Com GRM with (zCM

ti j2l , z

UM
ti j2l , z

M
ti jkl)-congeneric

variables and strong conditional independence, then Equations (5.7.5) - (5.7.57) of Theorem 5.5
hold and Equations (4.8.29) - (4.8.35) of Theorem 4.6 hold.

Proofs and a discussion are provided in Section 4.8.

5.7.4 Covariance structure
The LGC-Com GRM with strong conditional independence implies a specific covariance structure of
the latent variables pti jkl , k 6= 2, and prti j2l , including the zero-correlations specified in Theorem 5.5
and 5.6. Whether this covariance structure holds in empirical applications can be tested based on the
covariance structure of the variables Y ⇤

ti jkl and Y ⇤
rti j2l , as defined in Section 2.8, with SEMs for ordinal

observed variables (also see Section 4.8).
The total covariance matrix ST of the variables Y ⇤

ti jkl and Y ⇤
rti j2l in an LGC-Com GRM with strong con-

ditional independence can be partitioned, just as in the LST-Com GRM, into a within and a between
covariance matrix and can be represented as

ST = L
x BF

x BL0
x B +L

z BF
z BL0

z B +QB +L
xW F

xW L0
xW +L

zW F
zW L0

zW +QW (5.7.58)

where L
x B and L

xW refer to the factor loading matrices of the trait-specific variables (intercept and
slope factors) on the between- and within-level, respectively, L

z B and L
zW refer to the factor loading

matrices of the occasion-specific variables (state residual and method state residual variables) on the
between- and within-level, respectively, F

x B and F
xW refer to the variance-covariance matrices of the

between and within trait-specific latent variables, respectively, F
z B and F

zW refer to the variance-
covariance matrices of the between and within occasion-specific latent variables, respectively, and QB
and QW are the between- and within-level residual variance-covariance matrices.
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The structure of the covariance matrices F
zW and F

z B and their factor loading matrices L
zW and

L
z B equal those of the LST-Com GRM, and thereby the LST-Com model for continuous indicator

variables given in Koch et al. (2017, supplementary material, pp. 13-20). The residual variance-
covariance matrices QB and QW equal those of the LST-Com model for continuous indicator variables
with the exception that all non-zero elements Var(Erti j2l) and Var(Eti jkl) in the matrices QB and QW
have to be replaced by 1.
The structure of the covariance matrices F

xW and F
x B and their factor loading matrices L

xW and L
x B

differ from those of the LST-Com GRM. Note that the structure of F
xW and F

x B also differs from
those of the continuous indicator LGC-Com model as defined by Koch (2013), as the LGC model
was defined in a different way. In the following, the covariance matrices F

xW and F
x B and their

factor loading matrices L
xW and L

x B for an LGC-Com GRM with strong conditional independence
as defined in Definition 5.2 and 5.3 are described for a model with three indicators (i j = 3 8 j), two
traits ( j = 2), two methods (k = 2, one structurally different reference method and one set of inter-
changeable methods), and three occasions of measurement (l = 3).

Let the vector of the latent response variables Y ⇤ be given by

Y⇤ =
�
Y ⇤

t1111,Y
⇤

t2111,Y
⇤

t3111,Y
⇤

t1121,Y
⇤

t2121,Y
⇤

t3121,Y
⇤

t1112,Y
⇤

t2112,Y
⇤

t3112,Y
⇤

t1122,Y
⇤

t2122,Y
⇤

t3122,

Y ⇤
t1113,Y

⇤
t2113,Y

⇤
t3113,Y

⇤
t1123,Y

⇤
t2123,Y

⇤
t3123,Y

⇤
t1211,Y

⇤
t2211,Y

⇤
t3211,Y

⇤
t1221,Y

⇤
t2221,Y

⇤
t3221,

Y ⇤
t1212,Y

⇤
t2212,Y

⇤
t31212,Y

⇤
t1222,Y

⇤
t2222,Y

⇤
t3222,Y

⇤
t1213,Y

⇤
t2213,Y

⇤
t3213,Y

⇤
t1223,Y

⇤
t2223,Y

⇤
t3223

�0

with

ST = E
⇥�

Y⇤ �E[Y⇤]
��

Y⇤ �E[Y⇤]
�0⇤

.

Let F
x B be given by

F
x B = E

⇥�
V

x B �E[V
x B]
��

V
x B �E[V

x B]
�0⇤

with

V
x B =

�
It111,It211,It311,St111,St211,St311,

ICM
t112,ICM

t212,ICM
t312,SCM

t112,SCM
t212,SCM

t312,

It121,It221,It321,St121,St221,St321,

ICM
t122,ICM

t222,ICM
t322,SCM

t122,SCM
t222,SCM

t322
�0

and F
xW by

F
xW = E

⇥�
V

x W �E[V
x W]
��

V
x W �E[V

x W]
�0⇤

with

V
x W =

�
IUM

t112,IUM
t212,IUM

t312,SUM
t112,SUM

t212,SUM
t312,

IUM
t122,IUM

t222,IUM
t322,SUM

t122,SUM
t222,SUM

t322
�0

Then the matrix of the between-level latent intercept and slope factor loadings L
x B is given by

L
x B =

6

Â
p=1

I p
L

x

⌦L
x Bp
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with

I1
L

x

=

0

BBBBBB@

1 0
0 0
0 0
0 0
0 0
0 0

1

CCCCCCA
I2
L

x

=

0

BBBBBB@

0 0
1 0
0 0
0 0
0 0
0 0

1

CCCCCCA
I3
L

x

=

0

BBBBBB@

0 0
0 0
1 0
0 0
0 0
0 0

1

CCCCCCA

I4
L

x

=

0

BBBBBB@

0 0
0 0
0 0
0 1
0 0
0 0

1

CCCCCCA
I5
L

x

=

0

BBBBBB@

0 0
0 0
0 0
0 0
0 1
0 0

1

CCCCCCA
I6
L

x

=

0

BBBBBB@

0 0
0 0
0 0
0 0
0 0
0 1

1

CCCCCCA

and

L
x Bp =

0

BBBBBB@

1 0 0 (l �1) 0 0 0 0 0 0 0 0
0 1 0 0 (l �1) 0 0 0 0 0 0 0
0 0 1 0 0 (l �1) 0 0 0 0 0 0

lI1 j2 0 0 (l �1)lS1 j2 0 0 1 0 0 (l �1) 0 0
0 lI2 j2 0 0 (l �1)lI2 j2 0 0 1 0 0 (l �1) 0
0 0 lI3 j2 0 0 (l �1)lI3 j2 0 0 1 0 0 (l �1)

1

CCCCCCA

where ⌦ denotes the Kronecker product and l = 1 for p 2 {1,4}, l = 2 for p 2 {2,5}, l = 3 for
p 2 {3,6}, and j = 1 for p 2 {1,2,3}, and j = 2 for p 2 {4,5,6}.

The matrix of the within-level latent intercept and slope factor loadings L
xW is given by

L
xW =

6

Â
p=1

I p
L

x

⌦L
xWp

with

L
xWp =

0

BBBBBB@

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 (l �1) 0 0
0 1 0 0 (l �1) 0
0 0 1 0 0 (l �1)

1

CCCCCCA

and l = 1 for p 2 {1,4}, l = 2 for p 2 {2,5}, l = 3 for p 2 {3,6}, and I p
L

x

as defined above.
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Figure 5.3: Within-level variance-covariance matrix F
xW of the LGC-Com GRM, where 1=IUM

t112,
2=IUM

t212, 3=IUM
t312, 4=SUM

t112, 5=SUM
t212, 6=SUM

t312, 7=IUM
t122, 8=IUM

t222, 9=IUM
t322, 10=SUM

t122, 11=SUM
t222,

12=SUM
t322. Cells colored in gray indicate permissible and interpretable correlations. Cells in

light gray indicate correlations that could be fixed to zero for parsimony.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Figure 5.4: Between variance-covariance matrix F
x B of the LGC-Com GRM, where 1=It111, 2=It211,

3=It311, 4=St111, 5=St211, 6=St311, 7=ICM
t112, 8=ICM

t212, 9=ICM
t312, 10=SCM

t112, 11=SCM
t212,

12=SCM
t312, 13=It121, 14=It221, 15=It321, 16=St121, 17=St221, 18=St321, 19=ICM

t122, 20=ICM
t222,

21=ICM
t322, 22=SCM

t122, 23=SCM
t222, 24=SCM

t322. Cells colored in white indicate zero correlations,
cells colored in gray indicate permissible and interpretable correlations. Cells in light gray
indicate correlations that could be fixed to zero for parsimony.
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Figure 5.3 illustrates the latent variance-covariance F
xW and Figure 5.4 illustrates the the latent

variance-covariance matrix F
x B of the LGC-Com GRM with strong conditional independence. Note

that all covariances between latent unique method intercept and slope variables are permissible. For
a detailed description of the occasion-specific variance-covariance matrices F

zW and F
z B and their

factor loading matrices L
zW and L

z B see Koch et al. (2017).

5.8 Variance decompositions
Based on the definition of the LGC-Com GRM, the latent response variables pti jkl and prti j2l can be
additively decomposed into different variance components. From Definition 5.1 and Theorem 5.1
it follows that the general measurement equations for the latent response variables in an LGC-Com
GRM of (zCM

ti j2l , z

UM
ti j2l , z

M
ti jkl)-congeneric variables are given by:

pti j1l = Iti j1 +(l �1)Sti j1 +zti j1l (5.8.1)
pti jkl = aIi jk +aSi jk +lIi jkIti j1 +(l �1)lSi jkSti j1 (5.8.2)

+IM
ti jk +(l �1)SM

ti jk +l

z i jklzti j1l +l

M
z i jklz

M
t jkl k > 2

prti j2l = aIi j2 +aSi j2 +lIi j2Iti j1 +(l �1)lSi j2Sti j1 (5.8.3)

+ICM
ti j2 +(l �1)SCM

ti j2 +IUM
rti j2 +(l �1)SUM

rti j2

+l

z i j2lzti j1l +l

CM
z i j2lz

CM
t j2l +l

UM
z i j2lz

UM
rt j2l

As the latent method variables are defined as latent residual variables, they are uncorrelated with their
respective regressors. That is, due to the zero-covariances given in Equations (5.7.5) - (5.7.57), the
different variance components can be separated. The variances of the latent response variables can
therefore be additively decomposed as:

Var(pti j1l) = Var(Iti j1)+(l �1)2Var(Sti j1)+(l �1)Cov(Iti j1,Sti j1)+Var(zti j1l) (5.8.4)

Var(pti jkl) = (lIi jk)
2Var(Iti j1)+(l �1)2(lSi jk)

2Var(Sti j1) (5.8.5)
+(l �1)lIi jklSi jkCov(Iti j1,Sti j1)

+Var(IM
ti jk)+(l �1)2Var(SM

ti jk)+(l �1)Cov(IM
ti jk,SM

ti jk)

+(l �1)lIi jkCov(Iti j1,SM
ti jk)+(l �1)lSi jkCov(Sti j1,IM

ti jk)

+(l
z i jkl)

2Var(zti j1l)+(l M
z i jkl)

2Var(z M
t jkl) k > 2

Var(prti j2l) = (lIi j2)
2Var(Iti j1)+(l �1)2(lSi j2)

2Var(Sti j1) (5.8.6)
+(l �1)lIi j2lSi j2Cov(Iti j1,Sti j1)

+Var(ICM
ti j2)+(l �1)2Var(SCM

ti j2)+(l �1)Cov(ICM
ti j2 ,SCM

ti j2)

+(l �1)lIi j2Cov(Iti j1,SCM
ti j2)+(l �1)lSi j2Cov(Sti j1,ICM

ti j2)

+Var(IUM
rti j2)+(l �1)2Var(SUM

rti j2)+(l �1)Cov(IUM
rti j2,(SUM

rti j2)

+(l
z i j2l)

2Var(zti j1l)+(lCM
z i j2l)

2Var(zCM
t j2l )+(lUM

z i j2l)
2Var(zUM

rt j2l)

Based on this variance decomposition, different variance components can be defined. It should be
noted that latent growth curve models implicitly assume that the variance of the latent response vari-
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ables increase in a non-linear fashion as the number of measurement occasions increases above three.
Although this is not necessarily the case with only three measurement occasions, it is also true if
intercept and slope factors are positively correlated. Therefore, it was recommended not to compare
different variance components over time points (Koch, 2013).
In general, the same variance components could be computed as in the LST-Com GRM. Definitions of
these variance coefficients are given in Table 4.1, where the variance of the latent trait variables have
to be replaced by their respective intercept and slope components. In addition, the variance compo-
nents given in Table 5.1 could be computed. The growth consistency coefficients represent the amount
of growth in the non-reference methods that can be explained by the growth in the reference-method
indicators.

Table 5.1: Definition of the Growth Consistency coefficients in the LGC-Com GRM.

Growth Consistency Coefficients
Method Level Definition

Interchangeable GCon(pti j2l) =
(lSi j2)2Var(Sti j1)

(lSi j2)2Var(Sti j1)+Var(SCM
ti j2)

Target

Interchangeable GCon(prti j2l) =
(lSi j2)2Var(Sti j1)

(lSi j2)2Var(Sti j1)+Var(SCM
ti j2)+Var(SUM

rti j2)
Rater

Structurally different GCon(pti jkl) =
(lSi jk)

2Var(Sti j1)

(lSi jk)2Var(Sti j1)+Var(SM
ti j2)

Target

5.9 Mean structure
The following theorem clarifies the mean structure of the latent variables in the LGC-Com GRM. The
mean structure is needed to derive the identification conditions in Section 5.10.

Theorem 5.7. (Mean Structure)

Let M = h(W,A,P), p

p

prt , p

p

p t , k

k

k , a

a

aI , l

l

lI , IIIt , a

a

aS , l

l

lS , SSSt , l

l

l

z

, z

z

z t , IIIUM
rt , IIICM

t , IIIM
t , SSSUM

rt , SSSCM
t ,

SSSM
t , l

l

l

UM
z

, l

l

l

CM
z

, l

l

l

M
z

, z

z

z

UM
rt , z

z

z

CM
t , z

z

z

M
t i be an LGC-Com GRM with (zCM

ti j2l , z

UM
ti j2l , z

M
ti jkl)-congeneric

variables and conditional independence. Then, for all j 2 J, i 2 I j, k 2 K, and l 2 L it holds that

E(IUM
rti j2) = 0 (5.9.1)

E(SUM
rti j2) = 0 (5.9.2)

E(ICM
ti j2) = 0 (5.9.3)

E(SCM
ti j2) = 0 (5.9.4)

E(IM
ti jk) = 0 k > 2 (5.9.5)

E(SM
ti jk) = 0 k > 2 (5.9.6)

(5.9.7)
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E(zUM
rt j2l) = 0 (5.9.8)

E(zCM
t j2l ) = 0 (5.9.9)

E(z M
t jkl) = 0 k > 2 (5.9.10)

E(zti j1l) = 0 (5.9.11)

E(ptsi jkl) = E(pti jkl)�ksi jkl k 6= 2 (5.9.12)
E(prtsi j2l) = E(prti j2l)�ksi j2l (5.9.13)

E(pti j11) = E(Iti j1) (5.9.14)
E(pti j1l) = E(Iti j1)+S(Iti j1) (5.9.15)

E(p(r)ti jk1) = aIi jk +lIi jk E(Iti j1) k > 1 (5.9.16)

E(p(r)ti jkl) = aIi jk +aSi jk +lIi jk E(Iti j1)+lSi jk E(Sti j1) k > 1 (5.9.17)

and in LGC-Com GRMs defined with common latent intercept and slope factors It j1, St j1:

E(Iti j1) = dIi j1 +lIi j1 E(It j1) (5.9.18)
E(Sti j1) = dSi j1 +lSi j1 E(St j1) (5.9.19)

Proofs. Mean Structure.
Equations (5.9.1) - (5.9.11) follow directly from the definition of the latent (trait and state residual)
method variables as well as the latent state residual variables as residual variables in Definition 4.1
and the fact that residual variables have an expectation of zero (Steyer & Nagel, 2017, p. 323). Equa-
tions (5.9.12) and (5.9.13) follow directly from the definitions of the latent response variables ptsi jkl
and prtsi j2l given in Definition 2.1. Equations (5.9.14) - (5.9.17) follow directly from Definition 5.1 as
well as from Equations (5.9.1) - (5.9.11). Equations (5.9.18) - (5.9.19) follow from Equation (5.4.2)
and their analogon for common latent slope variables. The proofs are straightforward and therefore
left to the reader.

Remarks. Equation (5.9.14) shows that the expected value of the latent intercept variable Iti j1
equals the expectation of the latent response variable pti j11 . For models defined with common (non-
indicator-specific) latent intercept factors It j1, the expectation of the latent trait factors It j1 equals the
expectation of the latent response variables pti j11 if and only if dIi j1 = 0 and lIi j1 = 1.

5.10 Identifiability
Theorem 5.8 defines identifiability conditions for the LGC-Com GRM with indicator-specific latent
intercept and slope (method) variables Iti j1, Sti j1, ICM

ti j2, SCM
ti j2, IUM

rti j2, SUM
rti j2, IM

ti jk, and SM
ti jk. Identifi-

ability conditions for the model with common (non-indicator-specific) intercept and slope (method)
factors can easily be derived from the conditions given in Theorem 5.8. Furthermore, recall that all
latent method factors have an expectation of zero by definition.

In Equation (5.7.58) the total covariance matrix of the variables Y ⇤
ti jkl and Y ⇤

rti j2l in an LGC-Com GRM
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was represented as

ST = L
x BF

x BL0
x B +L

z BF
z BL0

z B +QB +L
xW F

xW L0
xW +L

zW F
zW L0

zW +QW

where all non-zero elements in the residual variance-covariance matrices QB and QW are equal to 1.
Theorem 5.8 then gives identification conditions for the LGC-Com GRM parameters. Note that all
threshold parameters ksi jkl are set invariant over measurement occasions by definition of the LGC-
Com GRM given in Definition 5.1, that is, ksi jkl = ksi jkl0 8 l, l0 2 L.

Theorem 5.8. (Identification of the LGC-Com GRM)

Let M = h(W,A,P), p

p

prt , p

p

p t , k

k

k , a

a

aI , l

l

lI , IIIt , a

a

aS , l

l

lS , SSSt , l

l

l

z

, z

z

z t , IIIUM
rt , IIICM

t , IIIM
t , SSSUM

rt , SSSCM
t ,

SSSM
t , l

l

l

UM
z

, l

l

l

CM
z

, l

l

l

M
z

, z

z

z

UM
rt , z

z

z

CM
t , z

z

z

M
t i be an LGC-Com GRM with (zCM

ti j2l , z

UM
ti j2l , z

M
ti jkl)-congeneric

variables and strong conditional independence as defined by Definitions 5.1, 5.2 and 5.3. The
parameters of the LGC-Com GRM with strong conditional independence and indicator-specific
intercept, slope and state residual variables Iti j1, Sti j1, ICM

ti j2 , SCM
ti j2 , IM

ti jk, SM
ti jk, IUM

rti j2, SUM
rti j2, and

zti j1l are identified if

1. either one factor loading l

z i j1l , l

CM
z i j2l , l

M
z i jkl , and l

UM
z i j2l for each factor zti j1l , z

CM
t j2l , z

M
t jkl ,

and z

UM
rt j2l , or the variance of the factors is set to any real value larger than 0, and

2. one of the following conditions hold:

(a) i j = 2, j � 2, k � 2, l � 3, and F
z B as well as F

zW contain substantial permissible
intercorrelations among the latent state residual as well as the latent state residual
method variables,

(b) i j � 3 for all j, j � 1, k � 2, l � 3, and F
z B contains substantial (permissible)

intercorrelations between the latent state residuals zti j1l ,

(c) i j � 3 for all j, j � 1, k � 3, and l � 3,

and

3. either one threshold ksi j11 of the reference-method indicators on the first measurement
occasion Yti j11 or the mean of the latent intercept factor Iti j1 is set to any real value (e.g.,
zero) for all i and j, and

4. either one threshold ksi jk1 or aIi jk of the non-reference-method indicators on the first
measurement occasion, Yti jk1, is set to any real value (e.g., zero) for all i, j, and k, and

Remarks. Theorem 5.8 states the conditions under which the parameters of the LGC-Com GRM are
identified without further restrictions on loading, variance or threshold parameters than those that are
necessary to assign a scale to the latent variables (and those that are imposed due to the prerequisite
of invariant threshold parameters over time).
Condition (1) and (2) identify the parameters of the LGC-Com GRM covariance structure (that is,
the parameters in the matrices L

x B, L
xW , L

z B, L
zW , F

x B, F
xW , F

z B, F
zW ), given the polychoric

correlations between the variables Y ⇤
rti j2l and Y ⇤

ti jkl (or prti j2l and pti jkl).
Note that conditions 2.(a) - 2.(c) in Theorem 5.8 define the necessary numbers of indicators, con-
structs, methods and measurement occasions needed to identify the LGC-Com GRM without im-
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posing further assumptions. However, like the LST-Com GRM, the LGC-Com GRM can also be
estimated for smaller designs when a few additional assumptions are imposed.

Conditions 3. and 4. are needed for the identification of the threshold variables ksi jkl , intercept
parameters aIi jk, aSi jk as well as of the means of the latent response variables µi jkl and latent intercept
and slope variables. Note that these parameters are defined with conditions 3. and 4., as invariance of
the threshold parameters ksi jkl over measurement is a prerequisite and assumed by definition of the
LGC-Com GRM.

The LGC-Com GRM with common latent (method) intercept and slope factors for all indicators needs
similar identifiability conditions, with the addition that for each construct j, dIi j1 and dSi j1 have to be
set to any real value, preferably zero, for the same indicator i. The remaining dIi j1 could be estimated
if the thresholds ksi j11 were set invariant over items i, however, for the ease of interpretation, it is
recommended to set all dIi j1 to zero (and analogously for l > 1).

In the case were strong conditional independence does not hold, i.e., in the LGC-Com GRM with con-
ditional independence as defined by Definition 5.2 additional identification conditions are necessary.
For instance, in the most typical case of an AR(1) process (i.e., only regressions between adjacent
measurement occasions are included), the model is identified with at least three measurement occa-
sions and some additional assumptions on the loading parameters, regression parameters and state
residual variances (Cole et al., 2005). For a more detailed treatment of autoregressive processes in
LST and LGC models see, e.g., Cole et al. (2005), Eid et al. (2012), the online appendices of Bishop
et al. (2015), or Hamaker (2005), Hamaker et al. (2015).

The identification of the parameters ksi jkl , aIi jk, aSi jk, and the latent intercept and slope means
follows, with only minor differences, the same lines as in the LS-Com GRM and is explained in
detail in section 2.13. The identification of the parameters in the matrices L

x B, L
xW , F

x B, and F
xW

is derived in detail below. Given these parameters, the identification of the parameters in the matrices
L

z B, L
zW , F

z B, and F
zW is identical to the LST-Com GRM and described by Courvoisier (2006) and

Koch (2013).

Proofs.
The following proofs concern the identification of the parameters in the matrices L

x B, L
xW , F

x B,
and F

xW . Parameters that are identified in previous identification steps will not be replaced by
parameters of the observed variables. As a starting point for the identification, the covariances of
the latent response variables are specified. These build on Theorem 5.5, that is, the correlations
that are zero by definition are already excluded from the following equations. Furthermore, it is
assumed that the covariance structure of the latent response variables pti j2l = E[prti j2l | pT , pT Sl ]

(i.e., the expectations of the within-level latent response variables over clusters) is available. This
is a standard assumption stating that cluster-level random effects are estimable in multilevel IRT
models and is for instance described in Rabe-Hesketh et al. (2005) or, using Bayesian estimation with
a Gibbs sampler, in Fox and Glas (2001). Covariances between the latent response variables are
given by polychoric correlations of the observed ordinal variables and are estimated as described in
Section 2.13.
Identification is shown for an LGC-Com GRM with two methods, a structurally different self-report
(k = 1) and one set of interchangeable raters (k = 2). Identification of the variance, covariance and
loading parameters for the variables IM

ti jk and SM
ti jk for a structurally different method k � 3 works

exactly along the same lines as for the variables ICM
ti j2 and SCM

ti j2 as derived below.
Denote pti j2l = Sti j2l = E[prti j2l | pT , pT Sl ]. Then, for l, l0 > 1 , l 6= l0, i 6= i0, k 6= 1, the covariances
between the latent response variables on the between-level are given by
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Cov(pti j11,pti j1l) = Var(Iti j1)+(l �1)Cov(Iti j1,Sti j1) (5.10.1)
Cov(pti j1l,pti j1l0) = Var(Iti j1)+(l �1)(l0 �1)Var(Sti j1) (5.10.2)

+((l �1)+(l0 �1))Cov(It111,St111)

Cov(pti j11,pti0 j1l) = Cov(Iti j1,Iti0 j1)+(l �1)Cov(Iti j1,Sti0 j1) (5.10.3)
Cov(pti j1l,pti0 j1l0) = Cov(Iti j1,Iti0 j1)+(l0 �1)Cov(Iti j1,Sti0 j1) (5.10.4)

+(l �1)Cov(Sti j1,Iti0 j1)+(l �1)(l0 �1)Cov(Sti j1,Sti0 j1)

Cov(pti j1l,pti j21) = lIi j2Var(Iti j1)+(l �1)Cov(Iti j1,Sti j1) (5.10.5)

+(l �1)Cov(Sti j1,ICM
ti j2)

Cov(pti j11,pti j2l) = lIi j2Var(Iti j1)+(l �1)lSi j2Cov(Iti j1,Sti j1) (5.10.6)

+(l �1)Cov(Iti j1,SCM
ti j2)

Cov(pti j1l,pti j2l0) = lIi j2Var(Iti j1)+(l �1)(l0 �1)lSi j2Var(Sti j1) (5.10.7)
+(l �1)lIi j2Cov(Iti j1,Sti j1)+(l0 �1)lSi j2Cov(Iti j1,Sti j1)

+(l �1)Cov(Sti j1,ICM
ti j2)+(l0 �1)Cov(Iti j1,SCM

ti j2)

Cov(pti j21,pti j2l) = (lIi j2)
2Var(Iti j1)+Var(ICM

ti j2) (5.10.8)

+(l �1)lIi j2lSi j2Cov(Iti j1,Sti j1)+(l �1)lIi j2Cov(Iti j1,SCM
ti j2)

+(l �1)lSi j2Cov(Sti j1,ICM
ti j2)+(l �1)Cov(ICM

ti j2 ,SCM
ti j2)

Cov(pti j2l,pti j2l0) = (lIi j2)
2Var(Iti j1)+(l �1)(l0 �1)(lSi j2)

2Var(Sti j1) (5.10.9)

+Var(ICM
ti j2)+(l �1)(l0 �1)Var(SCM

ti j2)

+((l �1)+(l0 �1))lIi j2lSi j2Cov(Iti j1,Sti j1)

+((l �1)+(l0 �1))lIi j2Cov(Iti j1,SCM
ti j2)

+((l �1)+(l0 �1))lSi j2Cov(Sti j1,ICM
ti j2)

+((l �1)+(l0 �1))Cov(ICM
ti j2 ,SCM

ti j2)

Cov(pti j11,pti0 j2l) = lIi0 j2Cov(Iti j1,Iti0 j1)+Cov(Iti j1,ICM
ti0 j2) (5.10.10)

+(l �1)lSi0 j2Cov(Iti j1,Sti0 j1)+(l �1)Cov(Iti j1,SCM
ti0 j2)

Cov(pti j1l,pti0 j21) = lIi0 j2Cov(Iti j1,Iti0 j1)+Cov(Iti j1,ICM
ti0 j2) (5.10.11)

+(l �1)lIi0 j2Cov(Sti j1,Iti0 j1)+(l �1)Cov(Sti j1,ICM
ti0 j2)

Cov(pti j1l,pti0 j2l0) = lIi0 j2Cov(Iti j1,Iti0 j1)+Cov(Iti j1,ICM
ti0 j2) (5.10.12)

+(l0 �1)lSi0 j2Cov(Iti j1,Sti0 j1)+(l0 �1)Cov(Iti j1,SCM
ti0 j2)

+(l �1)lIi0 j2Cov(Sti j1,Iti0 j1)+(l �1)Cov(Sti j1,ICM
ti0 j2)

+(l �1)(l0 �1)lSi0 j2Cov(Sti j1,Sti0 j1)+(l �1)(l0 �1)Cov(Sti j1,SCM
ti0 j2)

Cov(pti j21,pti0 j2l) = lIi j2lIi0 j2Cov(Iti j1,Iti0 j1)+lIi j2Cov(Iti j1,ICM
ti0 j2) (5.10.13)

+lIi0 j2Cov(Iti0 j1,ICM
ti j2)+(l �1)lIi j2lSi0 j2Cov(Iti j1,Sti0 j1)

+(l �1)lIi j2Cov(Iti j1,SCM
ti0 j2)+(l �1)lSi0 j2Cov(Sti0 j1,ICM

ti j2)

+Cov(ICM
ti j2 ,ICM

ti0 j2)+(l �1)Cov(ICM
ti j1 ,SCM

ti0 j2)
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Cov(pti j2l,pti j02l0) = lIi j2lIi0 j2Cov(Iti j1,Iti0 j1) (5.10.14)
+(l �1)(l0 �1)lSi j2lSi0 j2Cov(Sti j1,Sti0 j1)

+lIi j2Cov(Iti j1,ICM
ti0 j2)+lIi0 j2Cov(Iti0 j1,ICM

ti j2)

+(l0 �1)lIi j2lSi0 j2Cov(Iti j1,Sti0 j1)+(l �1)lIi0 j2lSi j2Cov(Iti0 j1,Sti j1)

+(l0 �1)lIi j2Cov(Iti j1,SCM
ti0 j2)+(l �1)lIi0 j2Cov(Iti0 j1,SCM

ti j2)

+(l �1)lSi j2Cov(Sti j1,ICM
ti0 j2)+(l0 �1)lSi0 j2Cov(Sti0 j1,ICM

ti j2)

+(l �1)(l0 �1)lSi j2Cov(Sti j1,SCM
ti0 j2)+(l �1)(l0 �1)lSi0 j2Cov(Sti0 j1,SCM

ti j2)

+(l �1)Cov(ICM
ti0 j2,SCM

ti j2)+(l0 �1)Cov(ICM
ti j2 ,SCM

ti0 j2)

+Cov(ICM
ti j2 ,ICM

ti0 j2)+(l �1)(l0 �1)Cov(SCM
ti j2 ,SCM

ti0 j2)

And, for l, l0 > 1 , l 6= l0, i 6= i0, k 6= 1, the covariances between the latent response variables on the
within-level are given by

Cov(prti j21,prti j2l) = Cov(pti j21,pti j2l)+Var(IUM
rti j2)+(l �1)Cov(IUM

rti j2,SUM
rti j2) (5.10.15)

Cov(prti j2l,prti j2l0) = Cov(pti j2l,pti j2l0)+Var(IUM
rti j2)+(l �1)(l0 �1)Var(SUM

rti j2) (5.10.16)

+((l �1)+(l0 �1))Cov(IUM
rti j2,SUM

rti j2)

Cov(prti j21,prti0 j2l) = Cov(pti j21,pti0 j2l)+Cov(IUM
rti j2,IUM

rti0 j2)+(l �1)Cov(IUM
rti j2,SUM

rti0 j2) (5.10.17)

Cov(prti j2l,prti0 j2l0) = Cov(pti j2l,pti0 j2l0)+Cov(IUM
rti j2,IUM

rti0 j2)+(l0 �1)Cov(IUM
rti j2,SUM

rti0 j2) (5.10.18)

+(l �1)Cov(IUM
rti0 j1,SUM

rti j2)+(l �1)(l0 �1)Cov(SUM
rti j2,SUM

rti0 j2)

Identification of the parameters in F
x B and L

x B.

Identification of Cov(Iti j1,Sti j1)

By Equation (5.10.1) it holds that

Var(Iti j1) = Cov(pti j11,pti j1l)� (l �1)Cov(Iti j1,Sti j1) (5.10.19)
Cov(pti j11,pti j1l0) = Var(Iti j1)+(l0 �1)Cov(Iti j1,Sti j1) (5.10.20)

Inserting 5.10.19 into 5.10.20 yields

Cov(pti j11,pti j1l0) = Cov(pti j11,pti j1l)� (l �1)Cov(Iti j1,Sti j1)+(l0 �1)Cov(Iti j1,Sti j1)

= Cov(pti j11,pti j1l)+(l0 � l)Cov(Iti j1,Sti j1)

That is, Cov(Iti j1,Sti j1) is identified as:

Cov(Iti j1,Sti j1) =
1

(l0 � l)
�
Cov(pti j11,pti j1l0)�Cov(pti j11,pti j1l)

�

Identification of Var(Iti j1)

Inserting Cov(Iti j1,Sti j1) into Equation (5.10.19) identifies Var(Iti j1) as
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Var(Iti j1) = Cov(pti j11,pti j1l)� (l �1)

(l0 � l)
�
Cov(pti j11,pti j1l0)�Cov(pti j11,pti j1l)

�

Identification of Var(Sti j1)

By Equation (5.10.2) it holds that

(l �1)(l0 �1)Var(Sti j1) = Cov(pti j1l,pti j1l0)�Var(Iti j1)� ((l �1)+(l0 �1))Cov(It111,St111)

That is, Var(Sti j1) is identified as,

Var(Sti j1) =
Cov(pti j1l,pti j1l0)�Var(Iti j1)� ((l �1)+(l0 �1))Cov(It111,St111)

(l �1)(l0 �1)

Identification of Cov(Iti j1,Sti0 j1)

By Equation (5.10.3) it holds that

Cov(Iti j1,Iti0 j1) = Cov(pti j11,pti0 j1l)� (l �1)Cov(Iti j1,Sti0 j1) (5.10.21)
Cov(pti j11,pti0 j1l0) = Cov(Iti j1,Iti0 j1)+(l0 �1)Cov(Iti j1,Sti0 j1) (5.10.22)

Inserting Equation (5.10.21) into Equation (5.10.22) yields

Cov(pti j11,pti0 j1l0) = Cov(pti j11,pti0 j1l)� (l �1)Cov(Iti j1,Sti0 j1)+(l0 �1)Cov(Iti j1,Sti0 j1)

= Cov(pti j11,pti0 j1l)+(l0 � l)Cov(Iti j1,Sti0 j1)

That is, Cov(Iti j1,Sti0 j1) is identified as:

Cov(Iti j1,Sti0 j1) =
1

(l0 � l)
�
Cov(pti j11,pti0 j1l0)�Cov(pti j11,pti0 j1l)

�

Identification of Cov(Iti j1,Iti0 j1)

Inserting Cov(Iti j1,Sti0 j1) into Equation (5.10.21) identifies Cov(Iti j1,Iti0 j1) as

Cov(Iti j1,Iti0 j1) = Cov(pti j11,pti0 j1l)� (l �1)

(l0 � l)
�
Cov(pti j11,pti0 j1l0)�Cov(pti j11,pti0 j1l)

�

Identification of Cov(Sti j1,Sti0 j1)

Then, by Equation (5.10.4), Cov(Sti j1,Sti0 j1) is identified by

Cov(Sti j1,Sti0 j1) =
Cov(pti j1l,pti0 j1l0)�Cov(Iti j1,Iti0 j1)� (l0 �1)Cov(Iti j1,Sti0 j1)� (l �1)Cov(Sti j1,Iti0 j1)

(l �1)(l0 �1)
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Identification of lIi j2

By Equation (5.10.5) it holds that

Cov(Sti j1,ICM
ti j2) =

Cov(pti j1l,pti j21)�lIi j2Var(Iti j1)� (l �1)Cov(Iti j1,Sti j1)

(l �1)
(5.10.23)

Cov(pti j1l0 ,pti j21) = lIi j2Var(Iti j1)+(l0 �1)Cov(Iti j1,Sti j1)+(l0 �1)Cov(Sti j1,ICM
ti j2) (5.10.24)

Inserting 5.10.23 into 5.10.24 yields

Cov(pti j1l0 ,pti j21) = lIi j2Var(Iti j1)+(l0 �1)Cov(Iti j1,Sti j1)

+
(l0 �1)

(l �1)

�
Cov(pti j1l,pti j21)�lIi j2Var(Iti j1)� (l �1)Cov(Iti j1,Sti j1)

�

=
(l � l0)
(l �1)

lIi j2Var(Iti j1)+
(l0 �1)

(l �1)
Cov(pti j1l,pti j21)

That is, lIi j2 is identified as:

lIi j2 =
(l �1)

(l � l0)
Cov(pti j1l0 ,pti j21)

Var(Iti j1)
� (l0 �1)

(l � l0)
Cov(pti j1l,pti j21)

Var(Iti j1)

Identification of Cov(Sti j1,ICM
ti j2)

Inserting lIi j2 into Equation (5.10.5) identifies Cov(Sti j1,ICM
ti j1) by

Cov(Sti j1,ICM
ti j2) =

Cov(pti j1l,pti j21)

(l �1)
�

lIi j2Var(Iti j1)

(l �1)
�Cov(Iti j1,Sti j1)

Identification of lSi j2

By Equation (5.10.7) it holds that

Cov(pti j1l,pti j2l0) = lIi j2Var(Iti j1)+(l �1)(l0 �1)lSi j2Var(Sti j1) (5.10.25)
+(l �1)lIi j2Cov(Iti j1,Sti j1)+(l0 �1)lSi j2Cov(Iti j1,Sti j1)

+(l �1)Cov(Sti j1,ICM
ti j2)+(l0 �1)Cov(Iti j1,SCM

ti j2)

Cov(pti j1l0 ,pti j2l) = lIi j2Var(Iti j1)+(l �1)(l0 �1)lSi j2Var(Sti j1) (5.10.26)
+(l0 �1)lIi j2Cov(Iti j1,Sti j1)+(l �1)lSi j2Cov(Iti j1,Sti j1)

+(l0 �1)Cov(Sti j1,ICM
ti j2)+(l �1)Cov(Iti j1,SCM

ti j2)

Subtracting (5.10.26) from (5.10.25) yields

Cov(pti j1l,pti j2l0)�Cov(pti j1l0 ,pti j2l) = (l � l0)lIi j2Cov(Iti j1,Sti j1)+(l0 � l)lSi j2Cov(Iti j1,Sti j1)

+(l � l0)Cov(Sti j1,ICM
ti j2)+(l0 � l)Cov(Iti j1,SCM

ti j2)

and hence
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Cov(Iti j1,SCM
ti j2) =

Cov(pti j1l,pti j2l0)

(l0 � l)
�

Cov(pti j1l0 ,pti j2l)

(l0 � l)
+lIi j2Cov(Iti j1,Sti j1)�lSi j2Cov(Iti j1,Sti j1)+Cov(Sti j1,ICM

ti j2)

Inserting this into (5.10.26) yields

Cov(pti j1l0 ,pti j2l) = lIi j2Var(Iti j1)+(l �1)(l0 �1)lSi j2Var(Sti j1)

+((l0 �1)+(l �1))lIi j2Cov(Iti j1,Sti j1)

+((l0 �1)+(l �1))Cov(Sti j1,ICM
ti j2)+

(l �1)

(l0 � l)
Cov(pti j1l,pti j2l0)� (l �1)

(l0 � l)
Cov(pti j1l0 ,pti j2l)

and hence lSi j2 is identified by

lSi j2 =
1

(l �1)(l0 �1)Var(Sti j1)

✓
�lIi j2Var(Iti j1)

+
(l0 �1)

(l0 � l)
Cov(pti j1l0 ,pti j2l)� (l �1)

(l0 � l)
Cov(pti j1l,pti j2l0)

� ((l0 �1)+(l �1))lIi j2Cov(Iti j1,Sti j1)� ((l0 �1)+(l �1))Cov(Sti j1,ICM
ti j2)

◆

Identification of Cov(Iti j1,SCM
ti j2)

Then, by Equation (5.10.6), Cov(Iti j1,SCM
ti j2) is identified by

Cov(Iti j1,SCM
ti j2) =

1
(l �1)

Cov(pti j11,pti j2l)�
lIi j2

(l �1)
Var(Iti j1)�lSi j2Cov(Iti j1,Sti j1)

Identification of Var(ICM
ti j2)

By Equation (5.10.8) it holds that

Cov(ICM
ti j2 ,SCM

ti j2) =
1

(l �1)
Cov(pti j21,pti j2l)� 1

(l �1)
(lIi j2)

2Var(Iti j1) (5.10.27)

� 1
(l �1)

Var(ICM
ti j2)�lIi j2lSi j2Cov(Iti j1,Sti j1)�lIi j2Cov(Iti j1,SCM

ti j2)

�lSi j2Cov(Sti j1,ICM
ti j2)

Cov(pti j21,pti j2l0) = (lIi j2)
2Var(Iti j1)+Var(ICM

ti j2) (5.10.28)

+(l0 �1)lIi j2lSi j2Cov(Iti j1,Sti j1)+(l0 �1)lIi j2Cov(Iti j1,SCM
ti j2)

+(l0 �1)lSi j2Cov(Sti j1,ICM
ti j2)+(l0 �1)Cov(ICM

ti j2 ,SCM
ti j2)

Inserting (5.10.27) into (5.10.28) yields

Cov(pti j21,pti j2l0) =
(l � l0)
(l �1)

(lIi j2)
2Var(Iti j1)+

(l � l0)
(l �1)

Var(ICM
ti j2)+

(l0 �1)

(l �1)
Cov(pti j21,pti j2l)

Hence, Var(ICM
ti j2) is identified by

Var(ICM
ti j2) =

(l �1)

(l � l0)
Cov(pti j21,pti j2l0)� (lIi j2)

2Var(Iti j1)�Cov(pti j21,pti j2l)



124 CHAPTER 5. LGC-COM GRM

Identification of Cov(ICM
ti j2 ,SCM

ti j2)

Then, Cov(ICM
ti j2 ,SCM

ti j2) is identified by Equation (5.10.8):

Cov(ICM
ti j2 ,SCM

ti j2) =
1

(l �1)
Cov(pti j21,pti j2l)� 1

(l �1)
(lIi j2)

2Var(Iti j1)� 1
(l �1)

Var(ICM
ti j2)

�lIi j2lSi j2Cov(Iti j1,Sti j1)�lIi j2Cov(Iti j1,SCM
ti j2)�lSi j2Cov(Sti j1,ICM

ti j2)

Identification of Var(SCM
ti j2)

Then Var(SCM
ti j2) is identified by rearranging Equation (5.10.9).

Identification of Cov(Iti j1,SCM
ti0 j2)

By Equation (5.10.10) it holds that
Cov(Iti j1,ICM

ti0 j2) = Cov(pti j11,pti0 j2l)�lIi0 j2Cov(Iti j1,Iti0 j1) (5.10.29)

� (l �1)lSi0 j2Cov(Iti j1,Sti0 j1)� (l �1)Cov(Iti j1,SCM
ti0 j2)

Cov(pti j11,pti0 j2l0) = lIi0 j2Cov(Iti j1,Iti0 j1)+Cov(Iti j1,ICM
ti0 j2) (5.10.30)

+(l0 �1)lSi0 j2Cov(Iti j1,Sti0 j1)+(l0 �1)Cov(Iti j1,SCM
ti0 j2)

Inserting Equation 5.10.29 into Equation 5.10.30 yields

Cov(pti j11,pti0 j2l0) = Cov(pti j11,pti0 j2l)

+(l0 � l)lSi0 j2Cov(Iti j1,Sti0 j1)+(l0 � l)Cov(Iti j1,SCM
ti0 j2)

That is, Cov(Iti j1,SCM
ti0 j2) is identified as

Cov(Iti j1,SCM
ti0 j2) =

1
(l0 � l)

Cov(pti j11,pti0 j2l0)� 1
(l0 � l)

Cov(pti j11,pti0 j2l)

�lSi0 j2Cov(Iti j1,Sti0 j1)

Identification of Cov(Iti j1,ICM
ti0 j2)

Then, Cov(Iti j1,ICM
ti0 j2) is identified by Equation (5.10.29).

Identification of Cov(Sti j1,ICM
ti0 j2)

Then, Cov(Sti j1,ICM
ti0 j2) is identified by rearranging Equation (5.10.11):

Cov(Sti j1,ICM
ti0 j2) =

1
(l �1)

Cov(pti j1l,pti0 j21)�
lIi0 j2

(l �1)
Cov(Iti j1,Iti0 j1)

� 1
(l �1)

Cov(Iti j1,ICM
ti0 j2)�lIi0 j2Cov(Sti j1,Iti0 j1)
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Identification of Cov(Sti j1,SCM
ti0 j2)

Then, Cov(Sti j1,SCM
ti0 j2) is identified by rearranging Equation (5.10.12):

Cov(Sti j1,SCM
ti0 j2) =

1
(l �1)(l0 �1)

✓
Cov(pti j1l,pti0 j2l0)�lIi0 j2Cov(Iti j1,Iti0 j1)�Cov(Iti j1,ICM

ti0 j2)

� (l0 �1)lSi0 j2Cov(Iti j1,Sti0 j1)� (l0 �1)Cov(Iti j1,SCM
ti0 j2)

� (l �1)lIi0 j2Cov(Sti j1,Iti0 j1)� (l �1)Cov(Sti j1,ICM
ti0 j2)

� (l �1)(l0 �1)lSi0 j2Cov(Sti j1,Sti0 j1)

◆

Identification of Cov(ICM
ti j2 ,SCM

ti0 j2)

By Equation (5.10.13) it holds that

Cov(ICM
ti j2 ,ICM

ti0 j2) = Cov(pti j21,pti0 j2l)�lIi j2lIi0 j2Cov(Iti j1,Iti0 j1) (5.10.31)

�lIi j2Cov(Iti j1,ICM
ti0 j2)�lIi0 j2Cov(Iti0 j1,ICM

ti j2)

� (l �1)lIi j2lSi0 j2Cov(Iti j1,Sti0 j1)� (l �1)lIi j2Cov(Iti j1,SCM
ti0 j2)

� (l �1)lSi0 j2Cov(Sti0 j1,ICM
ti j2)� (l �1)Cov(ICM

ti j1 ,SCM
ti0 j2)

Cov(pti j21,pti0 j2l0) = lIi j2lIi0 j2Cov(Iti j1,Iti0 j1)+lIi j2Cov(Iti j1,ICM
ti0 j2) (5.10.32)

+lIi0 j2Cov(Iti0 j1,ICM
ti j2)+(l0 �1)lIi j2lSi0 j2Cov(Iti j1,Sti0 j1)

+(l0 �1)lIi j2Cov(Iti j1,SCM
ti0 j2)+(l0 �1)lSi0 j2Cov(Sti0 j1,ICM

ti j2)

+Cov(ICM
ti j2 ,ICM

ti0 j2)+(l0 �1)Cov(ICM
ti j1 ,SCM

ti0 j2)

Inserting Equation 5.10.31 into Equation 5.10.32 yields

Cov(pti j21,pti0 j2l0) = Cov(pti j21,pti0 j2l)+(l0 � l)lIi j2lSi0 j2Cov(Iti j1,Sti0 j1)

+(l0 � l)lIi j2Cov(Iti j1,SCM
ti0 j2)+(l0 � l)lSi0 j2Cov(Sti0 j1,ICM

ti j2)

+(l0 � l)Cov(ICM
ti j1 ,SCM

ti0 j2)

That is, Cov(ICM
ti j2 ,SCM

ti0 j2) is identified as

Cov(ICM
ti j1 ,SCM

ti0 j2) =
1

(l0 � l)
Cov(pti j21,pti0 j2l0)� 1

(l0 � l)
Cov(pti j21,pti0 j2l)�lIi j2lSi0 j2Cov(Iti j1,Sti0 j1)

�lIi j2Cov(Iti j1,SCM
ti0 j2)�lSi0 j2Cov(Sti0 j1,ICM

ti j2)

Identification of Cov(ICM
ti j2 ,ICM

ti0 j2)

Then Cov(ICM
ti j2 ,ICM

ti0 j2) is identified by Equation (5.10.31).

Identification of Cov(SCM
ti j2 ,SCM

ti0 j2)

Then Cov(SCM
ti j2 ,SCM

ti0 j2) is identified by rearranging Equation (5.10.14).
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Identification of the parameters in F
xW and L

xW .

Identification of Cov(IUM
ti j2 ,SUM

ti j2 )

By Equation (5.10.15) it holds that

Var(IUM
ti j2 ) = Cov(prti j21,prti j2l)�Cov(pti j21,pti j2l)� (l �1)Cov(IUM

ti j2 ,SUM
ti j2 ) (5.10.33)

Cov(prti j21,prti j2l0) = Cov(pti j21,pti j2l0)+Var(IUM
ti j2 )+(l0 �1)Cov(IUM

ti j2 ,SUM
ti j2 ) (5.10.34)

Inserting 5.10.33 into 5.10.34 yields

Cov(prti j21,prti j2l0) = Cov(pti j21,pti j2l0)+Cov(prti j21,prti j2l)�Cov(pti j21,pti j2l)

+(l0 � l)Cov(IUM
ti j2 ,SUM

ti j2 )

That is, Cov(IUM
ti j2 ,SUM

ti j2 ) is identified as:

Cov(IUM
ti j2 ,SUM

ti j2 ) =
1

(l0 � l)
�
Cov(prti j21,prti j2l0)�Cov(prti j21,prti j2l)+Cov(pti j21,pti j2l)�Cov(pti j21,pti j2l0)

�

Identification of Var(IUM
ti j2 )

Inserting Cov(IUM
ti j2 ,SUM

ti j2 ) into Equation (5.10.33) identifies Var(IUM
ti j2 ).

Identification of Var(SUM
ti j2 )

By Equation (5.10.16) it holds that

(l �1)(l0 �1)Var(SUM
rti j2) = Cov(prti j2l,prti j2l0)�Cov(pti j2l,pti j2l0)�

Var(IUM
rti j2)� ((l �1)+(l0 �1))Cov(IUM

rti j2,SUM
rti j2)

That is, Var(SUM
ti j2 ) is identified as,

Var(SUM
ti j2 ) =

Cov(prti j2l,prti j2l0)�Cov(pti j2l,pti j2l0)�Var(IUM
rti j2)� ((l �1)+(l0 �1))Cov(IUM

rti j2,SUM
rti j2)

(l �1)(l0 �1)

Identification of Cov(IUM
ti j2 ,SUM

ti0 j1)

By Equation (5.10.17) it holds that

Cov(IUM
rti j2,IUM

rti0 j2) = Cov(prti j21,prti0 j2l)�Cov(pti j21,pti0 j2l)� (l �1)Cov(IUM
rti j2,SUM

rti0 j2) (5.10.35)

Cov(prti j21,prti0 j2l0) = Cov(pti j21,pti0 j2l0)+Cov(IUM
rti j2,IUM

rti0 j2)+(l0 �1)Cov(IUM
rti j2,SUM

rti0 j2) (5.10.36)

Inserting Equation (5.10.35) into Equation (5.10.36) yields

Cov(prti j21,prti0 j2l0) = Cov(pti j21,pti0 j2l0)+Cov(prti j21,prti0 j2l)�Cov(pti j21,pti0 j2l)+(l0 � l)Cov(IUM
rti j2,SUM

rti0 j2)

That is, Cov(IUM
ti j2 ,SUM

ti0 j1) is identified as:
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Cov(IUM
ti j2 ,SUM

ti0 j1) =
1

(l0 � l)
�
Cov(prti j21,prti0 j2l0)�Cov(pti j21,pti0 j2l0)�Cov(prti j21,prti0 j2l)+Cov(pti j21,pti0 j2l)

�

Identification of Cov(IUM
ti j2 ,IUM

ti0 j1)

Inserting Cov(IUM
ti j2 ,SUM

ti0 j1) into Equation (5.10.35) identifies Cov(IUM
ti j2 ,IUM

ti0 j1).

Identification of Cov(SUM
ti j2 ,SUM

ti0 j1)

Then, Cov(SUM
ti j2 ,SUM

ti0 j1) is identified by rearranging Equation (5.10.18).

Given the identification of the parameters in L
x B, L

xW , F
x B, and F

xW , the identification of the
parameters in the matrices L

z B, L
zW , F

z B, and F
zW is identical to the LST-Com GRM and described

by Courvoisier (2006) and Koch (2013). For the identification of the mean structure and threshold
parameters see Section 2.13 and 5.9.



Chapter 6

Analyzing MTMM Data with
Bayesian Methods

6.1 Short introduction to Bayesian statistics
The simulation studies and data application discussed in the following chapters (7 and 8) make use
of Bayesian estimation techniques. As the description of the methods and results build on theoretical
terms from the field of Bayesian statistics and Markov chain Monte Carlo (MCMC) methods, the
basic ideas and concepts of these methods shall be shortly introduced.
In the Bayesian estimation approach parameters are regarded as random variables with a probability
distribution. In this framework, probability is considered to be a subjective belief rather than a long-
run frequency, the way probability is mostly conceptualized in classical statistics (de Finetti, 1974;
Jackman, 2009). Hence, while in classical statistics data are considered to be random and parameters
to be fixed, in Bayesian statistics the data are considered to be fixed (once sampled) and parameters
to be random entities, which are subject to uncertainty.
Bayesian statistics rely on using data to update prior assumptions regarding a relevant entity q (e.g.,
a parameter), by applying Bayes theorem to probability distributions (Jackman, 2009). Let q

q

q be
a parameter vector of interest, yyy a data vector, and let p(·) denote a probability density function.
Making use of Bayes theorem, prior assumptions about q

q

q , expressed in the prior probability p(qqq),
are updated using observed data, expressed in the likelihood of the data given q

q

q , p(yyy | q

q

q) = L(qqq ,yyy),
by

p(qqq | yyy) =
p(yyy | q

q

q)p(qqq)

p(yyy)
=

L(qqq ,yyy)p(qqq)R
p(yyy | q

q

q)p(qqq)dq

q

q

(6.1)

The resulting posterior probability p(qqq | yyy) represents the updated assumptions about q

q

q after taking
the data into account. Hence, the posterior distribution can be understood as a compromise between
the prior assumptions expressed in p(qqq) and the information provided by the data. In this way,
Bayesian estimation can be truly accumulative, with the possibility to explicitly integrate previous
research results into the data analysis via the prior probability p(qqq). That is, if informative priors are
based on previous studies, the posterior distribution integrates different sources of information and is
thereby more precise than the likelihood or the prior alone (Jackman, 2009).
In contrast to classical statistics, Bayesian data analysis does not rely on asymptotic arguments, mak-
ing it preferable for the analysis of small samples. Estimation techniques that rely on large-sample
properties, such as ML, tend to produce unreliable and unstable results in small samples (Asparouhov
& Muthén, 2010b; Hox & Maas, 2001; Meuleman & Billiet, 2009), while Bayesian estimation has

128
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been found to produce more reliable results than ML for small samples (Song & Lee, 2012; Lee &
Song, 2004) or in multilevel models with few observations on the between-level (Hox et al., 2012;
Asparouhov & Muthén, 2010b; Baldwin & Fellingham, 2013). Additionally, the possibility to incor-
porate informative priors in the estimation process might facilitate estimation and further increase the
applicability of complex models in small samples (Depaoli & Clifton, 2015; Holtmann et al., 2016;
Lee et al., 2010).
However, with increasing sample sizes, the impact of the prior on the posterior distribution decreases,
and asymptotically the posterior approximates the likelihood (Lynch, 2007; Song & Lee, 2012). This
is the case as the likelihood depends on the sample size, such that the weight of the likelihood in
applying Bayes theorem increases with increasing sample size. The prior, in contrast, does not depend
on the sample size. The weight of the prior information in the updating process via Bayes Theorem is
determined by the priors’ informativeness. The informativeness of the prior is controlled by the prior
variance, i.e., the variance of the prior distribution specified by the researcher.
Bayesian estimation techniques make it possible to analyze models that are computationally heavy
or impossible to estimate with classical estimation techniques such as ML or WLSMV estimation
(Asparouhov & Muthén, 2012; B. Muthén, 2010; Asparouhov & Muthén, 2010b). This concerns, for
instance, models with categorical indicators and many latent variables. ML estimation of these models
requires numerical integration with many dimensions of integration (B. Muthén, 2010), making the
estimation process computationally demanding.
Another advantage of Bayesian analysis is that results with improper solutions and inadmissible
parameter estimates can be avoided by assigning zero prior probability to these parameter spaces
(Depaoli & Clifton, 2015; Hox et al., 2012). Furthermore, Bayesian methods allow researchers to
compute credibility intervals for key quantities with unknown, potentially skewed distributions. Clas-
sical calculations of confidence intervals based on normal theory may be unreliable for these types
of parameters (e.g., correlations). This feature is especially useful in MTMM analyses, where coef-
ficients of interest are often expressed in terms of variance components, such as the consistency and
method specificity coefficients.
The use of Bayesian data analysis and the number of available statistical software packages has grown
immensely in the last decades, triggered by increasing computational power and the availability of
MCMC methods.

6.2 Markov chain Monte Carlo methods
Bayesian analysis relies on sampling from complex distributions using MCMC methods, an iterative
sampling process generating a Markov chain of draws from the posterior distribution. MCMC meth-
ods use the fact that the integral in the denominator of (6.1), which cannot be solved analytically, does
not contain information about q

q

q . That is,

p(qqq | yyy) =
L(qqq ,yyy)p(qqq)R

p(yyy | q

q

q)p(qqq)dq

q

q

= c�1L(qqq ,yyy)p(qqq) (6.2.1)

with

c =
Z

p(yyy | q

q

q)p(qqq)dq

q

q (6.2.2)

where the normalizing constant c guarantees that the posterior distribution is a probability density
distribution. As c does not contain information about q

q

q , it is not needed for MCMC sampling methods
and estimation relies on the famous proportionality

p(qqq | yyy) µ L(qqq ,yyy)p(qqq) (6.2.3)
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MCMC methods repeatedly draw samples from p(qqq | yyy), which are then used to approximate the pos-
terior distribution and compute summary statistics which can serve as point estimates. For instance,
the 2.5% and the 97.5% quantiles of the posterior distribution serve to estimate a 95% credibility
interval (CI) for the parameter estimate.
As p(qqq | yyy) is unknown, generating independent draws from it is not possible. Instead, a Markov
chain of draws is generated from p(qqq | yyy), which, in the limit, converges against the target distribution
given a number of conditions are met (see, e.g., Jackman, 2009, chapter 4, for details).
MCMC algorithms and their implementations vary across software packages for Bayesian data anal-
ysis. Mplus (L. K. Muthén & Muthén, 1998-2012) was chosen for the estimation of the models in
the following simulation studies and applications as it is one of the most widely applied programs for
structural equation modeling and due to its comparatively fast estimation.
Mplus uses an MCMC algorithm that is based on the Gibbs sampler. Gibbs sampling (Geman &
Geman, 1984) is an MCMC algorithm that allows to sample from multivariate distributions p(qqq) =

p(qqq 1, ...,qqq p) if the full conditional distributions p(qqq i | q

q

q�i), where q

q

q�i denotes q

q

q without q

q

q i, are
known. Suppose the parameter vector q

q

q is partitioned into p blocks or sub-vectors q

q

q = (qqq 1, . . . ,qqq p)
0.

For b+R iterations, the Gibbs sampler then performs the following steps (Jackman, 2009; Gelman et
al., 2014):

• For r in 1 to (b+R)

1) draw q

q

q

(r)
1 from p(qqq 1 | q

q

q

(r�1)
2 , . . . ,qqq (r�1)

p ,yyy)

2) draw q

q

q

(r)
2 from p(qqq 2 | q

q

q

(r)
1 ,qqq (r�1)

3 , . . . ,qqq (r�1)
p ,yyy)

...

p) draw q

q

q

(r)
p from p(qqq p | q

q

q

(r)
1 ,qqq (r)

2 , . . . ,qqq (r)
p�1,yyy)

• end for

• Discard first b draws as burn in

That is, the Gibbs sampler cycles through the different components of q

q

q , updating each component
conditional on the latest values of all other components. The first b draws are discarded to ensure
that only the draws taken after convergence are considered for the posterior distribution. For latent
variable models, the Gibbs sampler is extended to include a data augmentation step, which treats the
latent variables h as hypothetical missing data and samples these from their conditional distributions
(Song & Lee, 2012). That is, observations from the joint posterior p(qqq ,h | yyy) are simulated by
alternately drawing from the conditional distributions p(qqq | h ,yyy) and p(h | q

q

q ,yyy) (Song & Lee, 2012).
As the grouping of the components influences convergence, highly correlated elements of q

q

q should
be updated simultaneously, i.e., in the same block (Jackman, 2009). For detailed information on the
updating steps of the Gibbs sampler as implemented in Mplus see Asparouhov and Muthén (2010a).
Gibbs sampling in Mplus is based on using conjugate priors (Asparouhov & Muthén, 2010a), that
is, normally distributed priors for intercept, slope and loading parameters, inverse Wishart priors for
variance-covariance matrices or an inverse gamma prior in case the updating block consists of only
one parameter (see Section 7.3 for more details).

6.3 Convergence diagnostics and model fit
Model estimation via MCMC methods needs careful convergence diagnostics to ensure that the sam-
pler has converged to the target distribution, i.e., the posterior distribution under consideration. This
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renders the inspection of convergence by use of convergence statistics and / or visual diagnostic tools
such as trace plots indispensable whenever applying Bayesian MCMC estimation. The aim of conver-
gence diagnostics is thus to check a) the representativeness of the sampled observations for the target
distribution, i.e., they should be independent from the starting value and the Markov chain should not
get stuck in subregions of the parameter space, b) that the Markov chain is long enough (sample size)
to guarantee stable and reliable estimates and reduce Monte Carlo error to a minimum, and c) the
efficiency of the MCMC simulation (Kruschke, 2015).
There are several ways to check convergence of the sampler to its equilibrium distribution. Visual
inspection of the plotted simulated sequences of draws (traceplots) allow to check whether a) chains
do not remain at the exact same value for a long sequence of draws, and b) several chains, started at
different starting values, mix well together. The potential scale reduction factor (PSR, or Gelman-
Rubin statistic, shrink factor; Gelman & Rubin, 1992) compares parameter variation within each
chain to that across chains when running multiple independent Markov chains with different starting
values. Convergence is assumed if the PSR falls below a certain value close to 1, i.e., if the PSR is less
than 1 + e for all parameters in a model, where e is chosen by the researcher and is most commonly
set to a value between 0.05 and 0.1, depending on model complexity (Asparouhov & Muthén, 2010a).
Efficiency of the MCMC simulation is closely linked to the effective sample size of independent
draws generated by sampling from the posterior distribution. The draws generated by a Markov
chain are not independent, and the larger the dependency between successive draws the slower the
chain explores the parameter space. Hence, with a high dependency between the draws in a Markov
Chain, a larger number of iterations (draws) is needed to obtain a sufficient number of ”effective”
independent samples. Dependency between successive draws in the Markov chain can be estimated
via the autocorrelation function of the chain. To reduce autocorrelation between the MCMC samples,
only every k-th draw of the Markov chain can be used to generate the posterior distribution (thinning
with factor k). While thinning does not increase efficiency of the simulation (and using the whole,
unthinned chains provides more information and thereby accuracy), thinning can be useful when
computer memory capacities might reach their limits in large models with very long chains (Link &
Eaton, 2012).
Model fit in Mplus is assessed via posterior predictive p-values (PPP) using the difference between the
observed and replicated Chi-Square values (Asparouhov & Muthén, 2010a). The posterior predictive
distribution is the distribution of replicated data that can be drawn at every MCMC iteration step based
on the posterior parameter estimates at that iteration. That is, draws from the posterior predictive
distribution p(yyyrep | yyy) can be generated based on the data, the model, and the parameter estimates
at every iteration. Draws from the posterior predictive distribution are then used to evaluate model
fit via the PPP value based on some test statistic T . The PPP is defined as the probability that the
data generated under the model (the replicated data yyyrep) are more extreme than the observed data,
as measured by test statistic T . That is, the PPP is estimated as the relative frequency with which
T (yyyrep,qqq) is more extreme than T (yyy,qqq) (Asparouhov & Muthén, 2010a; Gelman et al., 2014):

PPP = P(T (yyyrep,qqq) � T (yyy,qqq) | yyy) ⇡ 1
R

R

Â
r=1

I{T (yyyrep,qqq r)�T (yyy,qqq r)|yyy} (6.3.1)

In Mplus, every 10th iteration after burn-in is used to compute the PPP (Asparouhov & Muthén,
2010a). In case of categorical data, the underlying continuous response variables yyy⇤ are used to
compute the PPP. Values close to 0 and 1 indicate a discrepancy between model and data, while a
PPP of 0.5 would indicate perfect model fit. However, there is no clear cut-off value to determine a
well or ill fitting model based on the PPP. In practice, model fit with the PPP value is often evaluated
based on a cut-off value of 5% (e.g., Asparouhov & Muthén, 2010b; Liang & Yang, 2014; van de
Schoot et al., 2013), and, building on several simulation studies, B. Muthén and Asparouhov (2012)
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conclude that using a PPP value of .10, .05 or 0.1 appears reasonable.
Several other convergence diagnostics (e.g., effective sample size) and model fit indices (e.g., De-
viance information criterion) exist, are, however, not (yet) provided by Mplus (7.3) in case of cate-
gorical indicators and are therefore not discussed here. Detailed information on the use of the tools
described above in the following simulation studies and application are given in Chapters 7 and 8.



Chapter 7

Monte Carlo Simulation Studies

7.1 Aims of the Monte Carlo Simulation Studies
To investigate the performance of the LS-Com GRM, LST-Com GRM and LGC-Com GRM as well
as their applicability in different conditions, Monte Carlo simulation studies were conducted. The
simulation studies were designed based on the results of the simulation studies on the LS-Com, LST-
Com and LGC-Com models for continuous indicators (Koch et al., 2014). The objective of the
simulation studies was to identify favorable and critical conditions for the application of the models as
well as potential limits of their applicability. Differential effects of between- and within-level sample
sizes on estimation accuracy were investigated to provide guidelines on the minimum required sample
size in order to yield reliable and accurate parameter estimates. Furthermore, model complexity was
considered by varying the number of constructs and measurement occasions. In practical applications
of MTMM analyses, the degree of convergent validity between different methods may vary greatly
depending on the research context. Possible effects of the degree of convergent validity on estimation
accuracy were examined by including two different consistency conditions.

7.2 Previous results of simulation studies on sample size re-
quirements

The simulation studies on the continuous-indicator counterparts of the models presented in this work
have shown that at least 5 within-level observations and overall at least 5, better 10 observations per
estimated parameter are required to obtain appropriate ML parameter estimates and to reduce the oc-
currence of improper solutions in the LS-Com, LST-Com and LGC-Com models (Koch, 2013; Koch
et al., 2014, 2017). Previous recommendations for the (ML) estimation of continuous-indicator two-
level SEMs comprised the use of a minimum of 100 between-level units (Hox & Maas, 2001; Julian,
2001; Maas & Hox, 2005; Meuleman & Billiet, 2009). Some simulation studies indicated a great
influence of within-level sample sizes on parameter estimates (Koch, 2013; Koch et al., 2014; Yuan
& Hayashi, 2005), while previous results with respect to continuous multilevel SEMs emphasized the
importance of between-level sample sizes (Maas & Hox, 2005).
With respect to latent growth-curve models, Bishop et al. (2015) recommended to use sample sizes of
at least 300 and at least four measurement time points to estimate indicator-specific growth models.
Using Bayesian estimation techniques, recommended sample sizes might vary from those needed for
the estimation of continuous-indicator models estimated with maximum likelihood methods. Using
Bayesian methods, estimation problems connected to improper solutions or inadmissible parameter
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estimates can be avoided by assigning zero prior probability to these parameter spaces (Depaoli &
Clifton, 2015; Hox et al., 2012). Furthermore, the applicability of complex models might be further
enhanced by the possibility to incorporate informative prior information in the estimation process,
especially in small samples (Depaoli & Clifton, 2015; Lee et al., 2010). Some studies have found
Bayesian methods to outperform classical estimation methods (e.g., maximum likelihood) with regard
to singlelevel (Lee & Song, 2004) and multilevel factor models with few clusters (Asparouhov &
Muthén, 2010b; Hox et al., 2012). For instance, Bayesian as compared to ML estimation has been
found to yield satisfactory results with only 20 instead of 50 to 100 clusters on the between level in
continuous indicator multilevel models (Hox et al., 2012).
However, results on the estimation accuracy of Bayesian estimation with diffuse priors are mixed
(Depaoli & Clifton, 2015; Holtmann et al., 2016; Hox et al., 2012). In a simulation study by Depaoli
and Clifton (2015), Bayesian estimation with informative priors outperformed other estimation tech-
niques with respect to the estimation of between-group parameters in models with dichotomous indi-
cators, while diffuse priors led to biased between-group parameter estimates in small samples (< 100)
and for low ICCs ( .1). For the less problematic within-group part, Bayesian estimation with dif-
fuse priors required at least 100 level-2 observations for accurate estimates of loading parameters
in dichotomous indicator models, while larger samples were needed for the accurate estimation of
structural effects (Depaoli & Clifton, 2015).
The simulation study by Holtmann et al. (2016) found that larger sample sizes are needed for ac-
curate estimation of the parameters in categorical-indicator multilevel SEMs when estimated with
Bayesian methods using diffuse priors as compared to WLSMV estimation. Bayesian estimation
only outperformed WLSMV estimation when applied with highly informative accurate priors. For
a cross-sectional multi-construct multilevel model with interchangeable raters, a minimum of 150
between-level and 6 within-level observations were needed to obtain proper parameter estimates with
Bayesian estimation with diffuse priors (Holtmann et al., 2016). Furthermore, larger sample sizes on
both levels and more iterations until convergence are needed in order to obtain accurate Bayesian
parameter estimates in categorical-indicator as compared to continuous-indicator SEMs (Depaoli
& Clifton, 2015; Holtmann et al., 2016; Lee et al., 2010). Hence, the comparably more complex
LS-Com, LST-Com and LGC-Com GRMs are expected to require larger sample sizes than their
continuous-indicator counterparts, as well as larger sample sizes than the cross-sectional multilevel
SEMs for interchangeable raters used in Holtmann et al. (2016).

7.3 Monte Carlo simulation designs
The simulation designs and specification of population parameters follow the simulation studies of
the continuous indicator models (Koch, 2013) to ensure comparability. The simulated models in-
clude one or two constructs, measured by two methods, one structurally different method and one
set of interchangeable methods. The models were simulated with two instead of three methods, as
the simulation studies on the continuous indicator models have shown that the influence of includ-
ing additional method factors on estimation accuracy is negligible (Koch, 2013; Koch et al., 2014).
Furthermore, the LC-Com GRM was not simulated as the LS-Com GRM with strong measurement
invariance and the baseline LC-Com GRM are mathematically equivalent (Koch, 2013) and hence
similar results can be expected.
Three indicators were used per TMU. Six aspects were manipulated: (a) the number of constructs (1
or 2), (b) the degree of convergent validity / consistency (high vs. low), (c) the number of measure-
ment occasions, (d) the number of level-1 units (i.e., raters per target), (e) the number of level-2 units
(i.e., targets), and (f) the amount of prior information used in the estimation (diffuse vs. informative
priors). Exact conditions are provided in the sections of the specific models.
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Small sample size settings were chosen in order to investigate the model under minimal, realistic
conditions. For instance, a review on applications of LST models in psychology and the social sci-
ences revealed that these models were estimated with a median sample size of 249 observations in
practice (Geiser & Lockhart, 2012). Given that the MTMM GRM models simulated in the present
studies are likely to be more complicated, the inclusion of larger sample sizes seems appropriate. The
population model parameters were chosen based on the variance decomposition they yielded in the
respective model, that is, the degree of consistencies and method specificities. Population values for
the different variance components in the two consistency conditions are provided in the sections of
the respective model.
The simulations comprised 200 replications per condition. Data was generated with three response
categories per item, using a probit link and the Theta parameterization in Mplus (Asparouhov &
Muthén, 2007). Data sets were simulated using Mplus 7.3 (L. K. Muthén & Muthén, 1998-2012),
models were estimated using Mplus 7.3 (L. K. Muthén & Muthén, 1998-2012), and results were
analyzed using the software R 3.0.2 (R Development Core Team, 2013) as well as the R package
”MplusAutomation” (Hallquist & Wiley, 2014). Posterior parameter estimates were obtained using
Bayesian estimation methods with Mplus 7.3 (L. K. Muthén & Muthén, 1998-2012). Extensive pre-
analyses were used to determine an appropriate number of iterations, burn-in samples and thinning.
Trace-plots of MCMC samples, autocorrelation plots and PSR values were used to examine conver-
gence and dependency of the MCMC draws. The exact numbers of iterations and thinning used are
given in the subsection on the respective model.
In the diffuse prior condition, prior specifications were left to the Mplus default settings. This was
done assuming that it is the approach adopted by most applied researchers. These prior settings
correspond to

l ⇠ N(0,5) (7.1.1)

k ⇠ N(0,1010) (7.1.2)

µ ⇠ N(0,1010) (7.1.3)
FW ⇠ IW (Im,m+1) (7.1.4)
FB ⇠ IW (I

n

,n +1) (7.1.5)

where FW represents the within-level variance covariance matrix, FB represents the between-level
variance covariance matrix, N denotes the density of the normal distribution, IW the Inverse Wishart
distribution, and Im and I

n

are Identity matrices of size m ⇥ m and n ⇥ n , respectively, where m and
n correspond to the size of the covariance matrices. Note that the size of the covariance matrices FW
and FB depend on the model and the number of measurement occasions and constructs included in
the model. The prior N(0,1010) approximates a constant uniform prior on the interval (�•,•).
In the informative prior condition, informative priors were set on loadings, thresholds and means.
They were given normal priors, with the prior mean corresponding to the respective parameter’s value
in the data generation and a prior variance of 0.1. A prior variance of 0.1 (prior SD = 0.32) implies a
prior distribution where the central 99% of the values lie in the interval [mean - 0.62; mean + 0.62].
Note that the simulation studies addressed the frequentist properties of the Bayesian parameter esti-
mates. In this context, the term population parameters refers to the parameter values used for data
simulation. The mean of the posterior distribution was used as a point estimate and posterior quantiles
were used for providing a 95% credibility interval for parameter estimates.
There is an ongoing debate on whether to exclude replications that show convergence problems or
suffer from the presence of improper parameter estimates (Boomsma, 2013; Chen, Bollen, Paxton,
Curran, & Kirby, 2001). Improper solutions are in general less an issue in Bayesian estimation than
in classical estimation techniques, as they can be prevented by assigning zero prior probabilities to
the respective parameter values. Hence, improper solutions such as negative variances or correlations
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greater than 1 often encountered in these kind of complex models with ML estimation (see, e.g.,
Koch, 2013, for rates of improper solutions occurring in the respective continuos indicator models),
cannot occur in the present simulation studies, as prior settings of the Bayesian estimation exclude
these kind of parameter values. Convergence problems, on the other hand, might pose a big problem
in certain conditions. PSR values alone are not considered a valid criterion for excluding replications
from further analyses, as replications with high PSR values for one parameter might show better con-
vergence for many other parameters than a replication that has a PSR value just below the chosen
cut-off. As it is difficult to decide on convergence by objective criteria or a clear cut-off value in a
simulation study using Bayesian estimation, excluding replications that are considered non-converged
by these criteria might render interpretability of the results more difficult. Furthermore, applied re-
searchers might not discard their results based on PSR values, especially in cases where convergence
problems might be restricted to single parameters. Hence, excluding these replications might threaten
external validity. Therefore, we decided to include all requested replications in the analysis of our
Monte Carlo simulations of Bayesian estimators. For conditions with large rates of replications show-
ing convergence problems, results should be interpreted with caution.

7.4 Evaluation criteria
To evaluate the performance of the models the following criteria were used: (a) the PSR value after
the requested number of iterations (as an indicator of convergence), (b) model fit as indicated by PPP
values using the difference between the observed and replicated Chi-square values, (c) the amount of
parameter estimation and standard error bias, and (d) the coverage of the parameter’s data generating
value by 95% credibility intervals (CIs).
Bias for parameter p of parameter class c was calculated as

Biaspc =
1

nrep

nrep

Â
e=1

b
qpce �qpc (7.2.1)

where bqpce is the parameter estimate of replication e of parameter p belonging to parameter type c,
qpc is the true, data generating value of the respective parameter and nrep is the number of replications
(Bandalos, 2006). The relative parameter estimation bias (peb) was calculated for each parameter and
then averaged over parameters of the same parameter type (e.g. state loadings) in the following way:

peb(c) =
1
nc

nc

Â
c=1

�����

1
nrep

Ânrep
e=1
b
qpce �qpc

qpc

����� (7.2.2)

with nc as the number of parameters in parameter class c. In line with L. K. Muthén and Muthén
(2002) and Koch et al. (2014), peb values falling below a cut-off value of 0.10 (10%) were considered
acceptable. Peb values falling between 0.10 and 0.30 (10% and 30% deviation from the population
value) were considered as medium and peb values > 0.30 as large bias.
Standard error bias per parameter was calculated by

(SE �SD)(pc) =
1

nrep

nrep

Â
e=1

bsd(bqpc)e � sd(bqpc) (7.2.3)

with bsd(bqpc)e being the posterior standard deviation (SD) of parameter bqpc at replication e, and
sd(bqpc) the empirical SD of the parameter estimates over all replications (Bandalos, 2006). The rela-
tive standard error bias (seb) was calculated for each parameter and then averaged over parameters of
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the same parameter type (e.g. state loadings) in the following way:

seb(c) =
1
nc

nc

Â
c=1

�����

1
nrep

Ânrep
e=1

bsd(bqpc)e � sd(bqpc)

sd(bqpc)

����� (7.2.4)

Again, seb values falling below a cut-off value of 0.10 (10%) were considered acceptable. Note that in
the context of the simulation study, posterior standard deviations ( bsd(bqpc)e) were used as an analogue
of a Bayesian standard error (SE).
Additionally, empirical SDs will be considered, which, in combination with the bias values, can be
used as an indicator of the mean squared error (MSE):

MSEpc = sd(bqpc)
2 +Bias2

pc (7.2.5)

95% coverage is the proportion of replications for which the 95% CI contains the true parameter
value. Coverage between 92% and 98% was considered acceptable.

7.5 Monte Carlo simulation LS-Com GRM

7.5.1 Simulation design
The model used in the simulation study is the LS-Com GRM with common state variables, depicted
in Figure 7.1. Five aspects were manipulated in the simulation1: (a) the number of constructs (1 or 2),
(b) the degree of convergent validity / consistency (high vs. low), (c) the number of measurement oc-
casions (2, 3, and 4), (d) the number of level-1 units (i.e., raters per target: nL1 = 2, 5, 10, and 20), (e)
the number of level-2 units (i.e., targets: nL2 = 250, 500, and 750), and (f) the amount of prior infor-
mation used in the estimation (diffuse vs. informative priors), resulting in a 2x2x3x4x3x2 design. In
total, the simulation study was comprised of 288 conditions and was simulated with 200 replications
per condition. The population model parameters were chosen based on the variance decomposition in
the LS-Com GRM, that is, the degree of consistency and method specificity. Population values for the
different variance components in the two consistency conditions are given in Table 7.1. Population
values for all parameters in the LS-Com GRM data generation can be found in Table A 1 in Appendix
A.1.
All models were specified and data generated with common latent state variables, assuming strict
factorial invariance (Meredith, 1993; Meredith & Teresi, 2006). For identification reasons the first
loading per factor was set to 1 and the latent state means of the first measurement occasion were set to
0. Extensive pre-analyses were used to determine an appropriate number of iterations, burn-in sam-
ples and thinning. Trace-plots of MCMC samples and PSR values were used to examine convergence.
Based on these analyses, Bayesian estimation of the LS-Com GRM was conducted running 2 MCMC
chains, with 60,000 sample iterations per chain, using a thinning factor of 3. That is, 30,000 burn-in
iterations and 30,000 iterations after burn-in were run per chain, using only every third iteration as a
sample for the posterior distribution.
Estimation times per replication lay between 3.5 minutes for the smallest model (one construct, two
measurement occasions, nL2 = 250, nL1 = 2) and 6 hours for the largest model (two constructs, four
measurement occasions, nL2 = 750, nL1 = 20). Simulating on 15 computers, this resulted in an
approximate estimation time of 5 months for the simulation study on the LS-Com GRM.

1The simulation study on the mono-construct LS-Com GRM has been pre-published in Holtmann et al.
(2017)
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Figure 7.1: Path diagram of the Latent-State-Com GRM with common state variables St jl and two constructs measured by two methods on two mea-
surement occasions, as simulated in the LS-Com GRM simulation study. Method 1 is selected as reference method. Note that for illustration
purposes, the path diagram is depicted for the observed variables Y(r)ti jkl , which are probabilistically linked to the latent variables by a
probit link. For the sake of clarity, correlations between latent variables were omitted and loading parameters are only shown for exemplary
indicators. Correlations that were set to zero are correlations between latent state and latent common methods variables, and correlations
between any level-1 and any level-2 latent variable. CM: common method variable; M: method variable; S: latent state variable; UM:
unique method variable; Yrti jkl : observed variable for the rating of rater r for target t of the i-th item of trait j and method k on occasion l.

Table 7.1: Population parameters of the consistency and method specificity coefficients and of the latent
factor correlations in the LS-Com GRM simulation study

Consistency and method specificity coefficients
Low consistency High consistency

Coefficient Mean SD Mean SD
Consistency 0.375 0.016 0.750 0.006
UM specificity 0.312 0.018 0.124 0.023
CM specificity 0.313 0.034 0.126 0.029

Latent correlations
measurement occasion

Factor Construct l = l0 l � l0 = 1 l � l0 = 2 l � l0 = 3

State same 0.6 0.5 0.4
different 0.5 0.3 0.2 0.1

UM and CM same 0.6 0.5 0.4
different 0.3 0.1 0.1 0.1

Note. Displayed are the mean consistency and method specificity coefficients over the different non-
reference method items in the high and low consistency conditions, as well as their variation in standard
deviations (SD). CM: Common method; l: occasion of measurement; UM: Unique method.

7.5.2 Results
Convergence

Figure 7.2 displays the distributions of the PSR values at the last iteration over the different repli-
cations per condition. Despite the high number of burn-in and sampling iterations used, PSR values
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higher than 1.1 still occurred, primarily in the high consistency condition with only 2 (or 5) observa-
tions on the within-level, when estimated with diffuse priors. The parameters associated with these
high PSR values were primarily loadings of the state and common method factors on the interchange-
able peer report indicators. Convergence as judged by PSR and trace plots was good in all other
conditions.
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Figure 7.2: Boxplots of Potential scale reduction (PSR) values at the last iteration over all 200 replications per condition in the LS-Com
GRM simulation study, for the mono-construct condition ( j = 1) and the multi-construct condition ( j = 2). Diffuse: diffuse
prior condition; High Con: high consistency condition; inf: informative prior condition; l: number of measurement occasions;
Low Con: low consistency condition; nL1: number of level-1 observations; nL2: number of level-2 observations; PSR:
Potential scale reduction.
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Model fit

In the mono-construct models ( j = 1) PPP values all fell below the value of .9, and PPP values smaller
than .1 were observed in 2.8% of the conditions. These were high consistency conditions with large
numbers of observations, each with 0.5% of the replications having a PPP below .1. PPP values be-
tween .1 and .2 occurred in 27.0% of the conditions, mainly in the conditions with 4 measurement
occasions, high consistency and large sample sizes. A maximum of 1% of the replications per con-
dition in the mono-construct models had a PPP between .1 and .2. In the mono-construct models, a
minimum of 88.5% up to a maximum of 100% of the PPP values per condition fell into the range
between .3 and .7.
In the multi-construct models ( j = 2) PPP values all fell into the range between .1 and .9, that is, no
PPP value smaller than .1 was observed in any replication of any condition. PPP values between .1
and .2 occurred in 24.3% of the conditions, mainly in the conditions with 2 measurement occasions,
high consistency and large sample sizes. A maximum of 2% of the replications per condition in the
multi-construct models had a PPP < .2. Over all replications and conditions of the multi-construct
models, a minimum of 87.5% up to a maximum of 100% of the PPP values per condition fell into the
range between .3 and .7.
Recall that a PPP < .1 or < .05 would indicate poor model fit, according to the recommendations
given by B. Muthén and Asparouhov (2012).

Parameter estimation bias and coverage.

Mean peb values averaged over all model parameters per condition are displayed in Figure 7.3. It is
apparent that on average bias was higher in the high consistency condition as compared to the low
consistency condition, with peb values for high consistency conditions with few observations exceed-
ing the cut-off of 10%. On average, parameters in the low consistency conditions are estimated with
acceptable accuracy in both the mono- and the multi-construct conditions. Because of considerable
variability in bias across parameter classes, accuracy of parameter estimation is described separately
for each parameter class in the following.
Biases per parameter, mean coverage, peb and mean MSE values for the parameters in the LS-Com
GRM are displayed in Figures A 1 - A 6 for the mono-construct condition in Appendix A.2, and
Figures A 12 - A 17 for the multi-construct condition in Appendix A.3.
Mean absolute bias for the state loadings was smaller than 0.105 in all conditions, that is, devia-
tions were less than 12.4% from the population parameters. State loading coverage values showed
most problems for the multi-construct model in the low consistency condition with 4 measurement
occasions. Unique and common method loadings were estimated with high accuracy in the low con-
sistency condition, with biases less than 7.9% and 11.6% of their population values, respectively.
In the high consistency condition, however, common method loadings exhibited peb values ranging
from 0.058 up to 0.599, biases being highest in the conditions with few within-level observations
and diffuse priors. Common method loading coverage did not reach 80% in most cases of the high
consistency conditions, with the lowest coverage values in conditions with 4 measurement occasions.
Unique method loading biases in the high consistency condition revealed a similar pattern, with some-
what lower peb values (up to 0.287 for j = 2 and 0.367 for j = 1) and higher coverage (> 81.6% for
j = 2 and > 66.5% for j = 1).
For the latent state variances, peb values lay between .001 and .153, with peb values > .10 occurring
almost solely in conditions with few between-level units (nL2 = 250). Coverage (81.3% < coverage
< 98.3%) was lowest for the multi-construct condition with 4 measurement occasions. While for the
state variances bias increases and coverage decreases with an increasing number of measurement oc-
casions, this effect is not observed for unique or common method variances. Variance estimates of the
method factors are estimated accurately in the low consistency condition (0.003 < peb < 0.385; and
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92.8% < coverage < 98.1%), with peb values > .10 occurring only in the nL1 = 2 or nL1 = 5 with
nL2 = 250 conditions. In the high consistency condition, however, method factor variance estimates
showed higher biases (0.089 < peb < 1.999; and 16.5% < coverage < 91.0%).
Bias in the estimation of the covariance parameters is considerably small and coverage values lay in
the desired range with few exceptions (see Figures A 5, A 6, A 16, and A 17).
Threshold parameters and latent state means were estimated accurately, with mean peb values < 3.4%
and < 10.5%, respectively.
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Figure 7.3: Mean parameter estimation bias (peb; left hand side) and standard error bias (seb; right hand side) values averaged over all parameters

per condition of the mono-construct model ( j = 1; upper panel) and the multi-construct model ( j = 2; lower panel) in the LS-Com
GRM simulation study. Error bars represent standard errors. Diffuse: diffuse prior condition; High Con: high consistency condition;
informative: informative prior condition; l: number of measurement occasions; Low Con: low consistency condition; nL1: number
of level-1 observations; nL2: number of level-2 observations.

Standard error bias.

Mean seb values averaged over all model parameters per condition are displayed in Figure 7.3. It
is apparent that on average standard error bias was higher in the informative prior conditions as
compared to the diffuse prior conditions, with seb values for the informative prior conditions with few



142 CHAPTER 7. MONTE CARLO SIMULATION STUDIES

observations mostly exceeding the cut-off of 10%. On average, standard error bias is acceptable in
the diffuse prior conditions. In the following, accuracy in the estimation of posterior SDs is described
separately for each parameter class.
Differences between empirical and posterior SDs per parameter as well as mean empirical SDs for the
parameters in the LS-Com GRM are displayed in Figures A 7 - A 9 for the mono-construct condition
in Appendix A.2, and Figures A 18 - A 20 for the multi-construct condition in Appendix A.3.
As theoretically expected, empirical SDs decrease with increasing number of observations on both the
within- and between-level for all parameter types and conditions. Informative priors lead to smaller
empirical SDs primarily for the loading parameters in conditions with few within-level observations.
Dot plots of standard error bias for the loading parameters show that bias is higher in the informative
as compared to the diffuse prior conditions, with posterior SDs mainly overestimating empirical SDs
when informative priors are used. A similar pattern can be observed for the standard error bias of
the state variances, where the tendency of overestimation subsides with an increasing number of
measurement occasions. In contrast, posterior SDs of the method variance parameters overestimate
empirical SDs with both diffuse and informative priors in the high consistency condition, especially in
combination with few observations on both the within- and between-level. Note that no informative
priors were set on variance parameters. Bias is slightly smaller in the low consistency conditions.
Patterns of deviations of average posterior SDs from empirical SDs for the covariance parameters
resemble those of the variance parameters, while deviations are smaller for the covariance estimates
as compared to the variance estimates in absolute value.

7.5.3 Summary and conclusion
The results of the simulation study show that the parameters of the LS-Com GRM can be accurately
estimated with Bayesian estimation methods for a level of convergent validity that is typically found
in practice (consistency around .375). To further reduce potential bias in parameter estimates, it seems
recommendable to sample more than 2 and more than 250 observations on the within- and between-
level, respectively. High PSR values (> 1.1) in some of the conditions with only two observations on
the within-level provide additional evidence that two raters per target might be insufficient. Due to
the large number of iterations chosen, these results may be indicative of insufficient empirical infor-
mation on the within-level with nL1 = 2.
The results corroborate the recommendation for the continuous LS-Com model to sample more than
two raters per target (Koch et al., 2014) and of categorical MTMM models to sample more than 4
raters per target for Bayesian estimation with diffuse priors (Holtmann et al., 2016). In contrast to
the continuous indicator LS-Com model, more observations (approximately 250 instead of 100) are
required on the between-level. This result supports previous findings on singlelevel CFA-MTMM
models with ordinal variables reporting a need of at least 250 observations when two to four indica-
tors are used per TMU (Nussbeck et al., 2006).
The simulation results show that the number of level-1 units has a substantial impact on estimation
accuracy of the within-level parameters and, similar to a result by Depaoli and Clifton (2015), the
number of level-1 units and the degree of convergent validity (or ICCs) had the largest impact on
convergence rates. These results correspond to the results of the simulation study by Koch et al.
(2014) on the continuous indicator LS-Com model as well as the results of Bayesian estimation of
categorical-indicator multilevel SEMs in Holtmann et al. (2016).
The estimation accuracy of state loadings and state variances decreased with increasing the number
of measurement occasions. Estimation accuracy is acceptable for models with 2 or 3 measurement
occasions when using the recommended sample sizes.
In case of high convergent validity, estimation of the method loading and method variance parameters
of the LS-Com GRM appears to be more problematic. Estimation accuracy can, however, be im-
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proved by increasing the number of observations on both levels. This corresponds to the findings for
the continuous indicator LS-Com model (Koch et al., 2014), where parameter estimates were more
accurate in cases of low as compared to high convergent validity. Low convergent validity is often
encountered in practice so that generally unbiased results are to be expected with these moderate
sample sizes.
Furthermore, the results show that if only few observations are available, (accurate) informative priors
can be effectively used to decrease bias in the LS-Com GRM. This is true not only for the parameters
that were given informative priors (e.g., the loadings), but also to smaller degrees for the remaining
parameters (e.g., the variances). The chosen degree of prior information (a prior variance of 0.1) did,
however, not affect the results in cases where sufficient information in terms of observations was pro-
vided. This is in line with theoretical considerations as well as previous results reporting a decrease
of the prior’s influence with increasing sample size (Asparouhov & Muthén, 2010b; Lee et al., 2010).
Standard error bias was highest for the method loading parameters on both levels, did, however, de-
crease with increasing sample sizes on both levels. Interestingly, standard error bias increased with
the use of informative priors, with average posterior SDs mostly overestimating empirical SDs. See
section 7.8 for a discussion on standard error bias and results on model fit as indicated by PPP-values.
Overall, the results of the simulation study are encouraging and indicate that the LS-Com GRM can
be applied in a wide range of situations with relatively few observations.

7.6 Monte Carlo simulation LST-Com GRM

7.6.1 Simulation design
The model used in the simulation study is the LST-Com GRM with indicator-specific trait as well as
method trait variables but common state residual variables, depicted in Figure 7.4. Five aspects were
manipulated in the simulation: (a) the number of constructs (1 or 2), (b) the degree of convergent
validity (high vs. low), (c) the number of measurement occasions (2, 3, and 4), (d) the number of
level-1 units (i.e., raters per target: nL1 = 2, 5, 10, and 20), (e) the number of level-2 units (i.e.,
targets: nL2 = 250, 500, and 750), and (f) the amount of prior information used in the estimation
(diffuse vs. informative priors), resulting in a 2x2x3x4x3x2 design. In total, the simulation study was
comprised of 288 conditions and was simulated with 200 replications per condition. The population
model parameters were chosen following the simulation study of the continuous indicator LST-Com
model, based on the variance decomposition in the LST-Com GRM, that is, the degree of occasion-
specificity, trait- and occasion-specific consistencies and method specificities. Population values for
the different variance components of the high and the low consistency conditions are given in Table
7.2. Population values for all parameters in the LST-Com GRM data generation can be found in Table
B 1 in Appendix B.1.
All models were specified assuming strong measurement invariance for all items over measurement
occasions (Meredith, 1993; Meredith & Teresi, 2006). For identification reasons the first loading per
factor was set to 1 and the latent trait means were set to 0. Note that, as a consequence, there are
no estimates of unique or common method trait loadings, as these were set to 1 for all measurement
occasions due to measurement invariances assumptions. Additionally, there are no covariances to be
estimated for state residual, unique method state residual or common method state residual variables
in the mono-construct model ( j = 1), as covariances for these variables would only be permissible
between different constructs (state residual correlations over time were set to zero for parsimony and
identifiability reasons).
Extensive pre-analyses were used to determine an appropriate number of iterations, burn-in samples
and thinning, using trace-plots of MCMC samples and PSR values. Based on these analyses, Bayesian
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Figure 7.4: Path diagram of the Latent-State-Trait-Com graded response model with indicator-specific latent trait variables xti j and x

M
ti jk and common latent

state residual variables zt jl , for one structurally different method and one set of interchangeable methods on two measurement occasions for
two constructs, as simulated in the LST-Com GRM simulation study. Method 1 is selected as reference method. For convenience, the constant
indicator k = 1 has been dropped from the latent trait variables (xti j=xti j1) and the latent state residual variables (zt jl=zt j1l ). For the sake of
clarity, correlations between latent variables of different constructs are omitted and loading parameters are only shown for exemplary indicators.
All correlations that were not constrained to zero between latent variables of the same construct are depicted by double-headed arrows. Other
correlations that were not constrained to zero are: correlations between the latent traits x ; between the variables x

CM ; between the variables x

UM ;
between the latent state residual (method) variable of the first construct with the same variable of the second construct of the same measurement
occasion. CM: common method; M: method; S: state variable; UM: unique method; x : latent trait variable; Yrti jkl : observed variable for the rating
of rater r for target t of the i-th item of trait j and method k on measurement occasion l; z : latent state residual variable.

Table 7.2: Population parameters of consistency, occasion specificity and method specificity coeffi-
cients and of the latent correlations in the LST-Com GRM simulation study

Variance components
Coefficient Low consistency High consistency
Trait specificity coefficients

Reference method .5765 .5765
Non-reference method .5000 .5000
Trait CM specificity .3025 .1503
Trait UM specificity .3951 .1503
Trait consistency .3025 .6994

Occasion-specificity coefficients
Reference method .4235 .4235
Non-reference method .5000 .5000
Occasion-specific CM specificity .3025 .1503
Occasion-specific UM specificity .3951 .1503
Occasion-specific consistency .3025 .6994

Latent correlations
Construct

Factor same different
Traits .8 .4
State residuals - .2
CMT .6 .3
UMT .6 / .3 .369 / .185
CMS - .150
UMS - .150 / .092

Note. Displayed are the consistency, occasion specificity and method specificity coefficients (as
defined in Table 4.1) over the different items as well as factor correlations used in the LST-Com
GRM simulation study for the high and low consistency conditions. CM: Common method; CMS:
Common method state residual; UMS: Unique method state residual; CMT : Common method trait;
UM: Unique method; UMT : Unique method trait.



7.6. MONTE CARLO SIMULATION LST-COM GRM 145

estimation of the LST-Com GRM was conducted running 2 MCMC chains and using a thinning factor
of 5. The iterations per chain were varied by condition, based on convergence behavior of the chains
in the respective condition (increasing iterations for lower sample sizes and higher model complexity)
and estimation times (not increasing iterations for conditions where not necessary). Iterations were
fixed to 100,000 in the informative prior conditions. That is, 50,000 burn-in iterations and 50,000
iterations after burn-in were run per chain, using only every fifth iteration as a sample for the posterior
distribution. Iterations used in the diffuse prior conditions are given in Table 7.3.
Estimation times per replication lay between 7.1 minutes for the smallest model (informative priors,
one construct, two measurement occasions, nL2 = 250, nL1 = 2) and 14.3 hours for the largest model
(diffuse priors, two constructs, four measurement occasions, nL2 = 750, nL1 = 20). Simulating on 15
computers, this resulted in an approximate estimation time of 7 months for the simulation study on
the LST-Com GRM.

Table 7.3: Number of iterations used in the diffuse prior con-
ditions for the LST-Com GRM simulation study.

One construct Two constructs

nL2 nL1 l = 2 l = 3 l = 4 l = 2 l = 3 l = 4

250

2 300 300 300 200 200 200
5 300 300 300 200 200 150

10 300 300 300 200 150 100
20 300 300 300 200 100 100

500

2 300 300 300 200 200 200
5 300 300 300 200 150 150

10 300 200 200 150 100 100
20 300 200 200 150 100 100

750

2 300 300 300 200 200 200
5 300 200 200 200 150 150

10 200 200 200 150 100 100
20 200 200 200 150 100 100

Note. Iteration numbers are given in thousands. For an entry
of x iterations, x/2 *1000 burn-in iterations and x/2 *1000 iter-
ations after burn-in were run per chain, using only every fifth
iteration as a sample for the posterior distribution (i.e., with 2
chains, posterior distribution samples were of size x/5*1000).
l: number of measurement occasions; nL1: number of level-1
observations; nL2: number of level-2 observations.

7.6.2 Results
Convergence

Figure 7.5 displays the distributions of the PSR values at the last iteration over the different repli-
cations per condition. In the mono-construct condition (j = 1), the estimation exhibited immense
convergence problems under high consistency with diffuse priors, with only very few exceptions in
conditions with large sample sizes on both levels. Convergence problems could be reduced by the use
of informative priors, did, however, not entirely disappear in the high consistency condition. In the
low consistency condition of the mono-construct models, convergence problems were restricted to
conditions with only 2 observations on the within-level or with 5 observations on the within-level in
combination with few observations on the between-level or few measurement occasions. Parameters
that showed most convergence problems in these conditions were state residual and trait loadings on
the interchangeable informant report items, threshold parameters of the interchangeable informant
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report items and in the high consistency condition also the variances of the unique method state resid-
uals. Results concerning the respective conditions should be interpreted with considerable caution.
In the multi-construct condition convergence was mainly an issue in the high consistency condition
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Figure 7.5: Boxplots of Potential scale reduction (PSR) values at the last iteration over all 200 replications per condition in the LST-Com
GRM simulation study, for the mono-construct condition ( j = 1) and the multi-construct condition ( j = 2). Note that y-axes
are only displayed to a maximum value of 1.75 to enhance readability of the plots in the relevant range. Diffuse: diffuse prior
condition; High Con: high consistency condition; inf: informative prior condition; l: number of measurement occasions; Low
Con: low consistency condition; nL1: number of level-1 observations; nL2: number of level-2 observations; PSR: Potential
scale reduction.
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with diffuse priors, however to much lesser degrees than in the mono-construct condition. Parameters
with highest PSR values in these conditions were state residual and trait loadings on the interchange-
able informant report items as well as the variances of the unique method state residuals. All other
conditions of the multi-construct models (low consistency, informative priors) showed good conver-
gence rates as judged by PSR and trace plots.

Model fit

PPP values were < .9 in all replications over all conditions. PPP values smaller than .1 were observed
in 4.86% of the mono-construct and 2.80% of the multi-construct conditions. These were primarily
high-consistency conditions with large within-level sample sizes. 0.5% to 1% of the replications in the
respective conditions had PPP values smaller than .1. Recall that a PPP < .1 or < .05 would indicate
poor model fit, according to the recommendations given by B. Muthén and Asparouhov (2012). PPP
values between .1 and .2 occurred in 66.0% of the mono-construct conditions, with 0.5% to 7.5%
of the replications per condition showing values in this range and higher percentages in conditions
with larger within-level sample sizes. In the multi-construct models, PPP values between .1 and .2
occurred in 45.5% of the conditions, mostly in high consistency conditions (with 0.5% - 5.0% of
the replications per condition showing values in this range). Between 0.5% and 31.0% and between
0.5% and 21.0% of the PPP values per condition lay between .2 and .3 in the mono-construct and
multi-construct models, respectively. In the mono-construct models, a minimum of 60.5% up to a
maximum of 99.5%, and in the multi-construct models, a minimum of 76.0% up to a maximum of
100% of the PPP values per condition fell into the range between .3 and .7.

Parameter estimation bias and coverage.

Mean peb values averaged over all model parameters per condition are displayed in Figure 7.6.
It is apparent that the mono-construct conditions show considerable average bias for a large number
of conditions. These bias values should be interpreted with caution, as they are most probably due to
a lack of convergence in the respective conditions (also see Figure 7.5).
On average, bias was higher in the high consistency condition as compared to the low consistency
condition, with peb values for high consistency conditions exceeding the cut-off of 10% in almost all
cases, including the multi-construct conditions that did not exhibit convergence problems. In those
low consistency conditions that did not exhibit convergence problems, parameters were, on average,
estimated with acceptable accuracy, except for the conditions with small samples on both levels.
Because of variability in bias across parameter classes, accuracy of parameter estimation is described
in greater detail below.
Threshold parameters of mono-construct and multi-construct models were estimated accurately (peb
< 10%) in all informative prior conditions and in all of the diffuse prior conditions that did not exhibit
convergence problems (see Figure B 19 in Appendix B.2 and B 38 in Appendix B.3 as well as Figure
7.5).

Mono-construct models. Biases per parameter, mean coverage, peb, mean MSE and empirical SD
values for the parameters in the mono-construct LST-Com GRM are displayed in Figures B 1 - B 19
in Appendix B.2.
As was to be expected due to mentioned convergence problems, bias values were large and coverage
low for most of the parameters in the high consistency condition with diffuse priors. The only ex-
ception were conditions with 3 or 4 measurement occasions in combination with large between-level
(nL2 � 500) and within-level samples sizes (nL1 = 20). Using informative priors, bias values could
be reduced by large amounts in conditions with small sample sizes, however not to sufficient degrees
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to reach acceptable bias levels. In conditions with large sample sizes (nL2 � 500, nL1 = 20), the use
of informative priors yielded acceptable levels for most parameters, with unique and common method
trait variances still exhibiting coverage below and bias above the cut-off values.
In the low consistency condition with diffuse priors, bias and coverage yielded acceptable values for
all parameters in conditions with a combination of nL2 � 500, nL1 � 5 and l � 3, with the exception
of the combination nL2 = 500 with nL1=5. For conditions with two measurement occasions (l = 2)
comparable bias and coverage values were observed except for some parameters that needed larger
sample sizes, e.g. the common method trait variances.
Setting informative priors on the loading parameters reduced estimation bias and increased coverage
rates of the respective parameters, the effects of prior settings on estimation accuracy being largest
in conditions with few observations (on the between- and the within-level) and minimal to zero in
conditions with large sample sizes. Setting informative priors on loading and threshold parameters
did not only decrease bias of the respective parameters, but also, albeit to lesser degrees, of variance
and covariance estimates in small sample size conditions. Estimates in large sample sizes were not
substantially affected by the prior settings, and bias values in small samples did not reach acceptable
levels with informative priors for most parameters. Hence, conditions that yielded acceptable bias
values for each parameter class are the same for the diffuse and informative prior conditions in the
low consistency models.

Multi-construct models. Biases per parameter, mean coverage, peb, mean MSE and empirical SD
values for the parameters in the multi-construct LST-Com GRM are displayed in Figures B 20 - B 38
in Appendix B.3.
In the high consistency conditions, parameters (loadings, variances and covariances) of the latent state
residual variables and latent trait variables were estimated with high accuracy except for some small
sample size conditions (nL2 = 250, nL1 = 2, l = 2) with both informative and diffuse priors. However,
unique and common method state loadings and variances exhibited considerable bias and extremely
low coverage values in almost all high consistency conditions for both informative and diffuse priors.
Biases of method trait and method state residual covariances were lower in absolute value.
In the low consistency conditions, parameters (loadings, variances and covariances) of the latent state
residual variables and latent trait variables were estimated with high accuracy for conditions with nL2
� 500 and nL1 � 5 with both informative and diffuse priors. Also common method trait and unique
method trait variances and covariances showed good estimation accuracy in the same conditions. For
conditions with only two measurement occasions (l = 2), peb values were slightly higher as compared
to the l = 3 and l = 4 conditions for these parameters, requiring nL1 > 5 for the unique method trait
variances and nL1 > 10 or nL2 > 500 for the state loadings and variances with diffuse priors, while
coverage values were still in the desired range. Unique method state residual and common method
state residual loadings and covariances were estimated with good degrees of accuracy as judged by
absolute bias values, peb, MSE and coverage in conditions with nL2 � 500 and nL1 � 5. Parameters
showing the highest levels of estimation inaccuracy in these sample sizes of the low consistency
conditions were the unique and common method state residual variances (0.047 < peb < 0.376 and
0.081 < peb < 0.289, respectively, and 89.4% < coverage < 94.8% and 88.8% < coverage < 94.8%,
respectively). Note, however, that absolute bias values were small, ranging from 0.006 to 0.076 and
0.009 to 0.039 for the unique and common method state residual variances, respectively.
As in the mono-construct models, informative priors led to better estimation accuracy primarily in
conditions with few observations, did, however, not substantially change required sample sizes.

Standard error bias.

Mean seb values averaged over all model parameters per condition are displayed in Figure 7.6.
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Figure 7.6: Mean parameter estimation bias (peb; left hand side) and standard error bias (seb; right hand side) values averaged over all parameters
per condition of the mono-construct model ( j = 1; upper panel) and the multi-construct model ( j = 2; lower panel) in the LST-Com
GRM simulation study. Error bars represent standard errors. Bars are cut-off at a value of 0.7 to enhance readability of the plots in
the relevant range. Diffuse: diffuse prior condition; High Con: high consistency condition; informative: informative prior condition;
l: number of measurement occasions; Low Con: low consistency condition; nL1: number of level-1 observations; nL2: number of
level-2 observations.

In the multi-construct condition, average standard error bias was higher in the informative prior condi-
tions as compared to the diffuse prior conditions, with seb values for the informative prior conditions
with few observations mostly exceeding the cut-off of 10%. On average, standard error bias is accept-
able in the diffuse prior conditions. In the mono-construct conditions, there is no clear pattern of seb
values over conditions, which might be explained by empirical SDs and posterior SDs being highly
affected by non-convergence of some parameters in these conditions.
Differences between empirical and posterior SDs per parameter as well as mean empirical SDs for
the parameters in the LST-Com GRM are displayed in Figures B 1 - B 19 for the mono-construct
condition in Appendix B.2, and Figures B 20 - B 38 for the multi-construct condition in Appendix
B.3.
As theoretically expected, empirical SDs tend to decrease with an increasing number of observations
on both the within- and between-level for all parameter types and conditions. Informative priors
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lead to smaller empirical SDs primarily in conditions with few within-level observations and for the
parameters they were set on (loading parameters) or parameters that did not converge in the diffuse
prior conditions. High empirical SDs in the high consistency diffuse prior conditions mirror the non-
convergence of some parameters (e.g., the UMS and CMS variances) in these conditions as reported
in section 7.6.2. Dot plots of standard error bias for the loading parameters show that posterior SDs
mainly overestimate empirical SDs for the respective parameters when informative priors are used.
A similar pattern can be observed for the standard error bias of the state residual variances, where
the tendency of overestimation subsides with an increasing number of measurement occasions. In
contrast, posterior SDs of the remaining variance and covariance parameters tend to overestimate
empirical SDs with both diffuse and informative priors, bias levels decreasing with increasing sample
sizes. When ignoring conditions with high levels of non-convergence (entailing large empirical SDs),
no systematic pattern of differences between informative and diffuse prior conditions can be observed
for these parameters.

7.6.3 Summary and conclusion
The simulation study shows that the LST-Com GRM can be accurately estimated with more than 250
between-level and at least 5 within-level observations with moderate degrees of convergent validity of
the methods often found in empirical applications (consistency around .3). Estimation accuracy in the
LST-Com GRM is better for models with more than two measurement occasions, and convergence
problems and bias are smaller in multi-construct as compared to mono-construct models. Thus, it
seems recommendable to include at least three measurement occasions and more than one construct
in the model designs. Note that in MTMM analysis, the recommendation to include at least two con-
structs is actually not an additional requirement, as multi-trait analyses should include more than one
construct by definition.
The simulation study reveals that the applicability of the LST-Com GRM reaches its limits in cases of
high convergent validity as well as in mono-construct models with low sample sizes. As discussed for
the LS-Com GRM, high convergent validity is rarely encountered in practice, as the high consistency
condition was included to investigate an upper bound of bias that is to be expected.
The use of weakly informative priors on loading and threshold parameters in the LST-Com GRM
reduced convergence problems in these conditions to considerable degrees, while sample sizes re-
quired in order to yield accurate parameter estimates could not be reduced with this degree of prior
informativeness. While bias of the loading parameters could be reduced to acceptable levels, bias
of parameters that did not receive informative priors (variances and covariances) stayed high in low
sample size conditions. Consequently, setting additional informative priors on variance and covari-
ance parameters might enhance the applicability of the models with smaller sample sizes or higher
degrees of convergent validity. Furthermore, it is probable that increasing the degree of prior informa-
tiveness (using lower prior variances) would reduce the sample sizes needed to reach acceptably low
parameter biases. However, setting priors and variance and covariance parameters in complex mod-
els is challenging and the use of highly informative priors involves the risk of detrimental effects on
parameter estimates in case the prior’s locations were not accurate (see, e.g., Holtmann et al., 2016).

7.7 Monte Carlo simulation LGC-Com GRM

7.7.1 Simulation design
The model used in the simulation study is the LGC-Com GRM with indicator-specific intercept and
slope variables and common state residual variables, depicted in Figure 7.7. The simulated model
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Figure 7.7: Path diagram of the Latent-Growth-Curve-Com graded response model with indicator-specific latent intercept (Iti j) and slope
(Sti j) as well as method intercept (ICM

t jkl ) variables, and with common latent state residual variables zt jl . The model includes
one structurally different method and one set of interchangeable methods on three measurement occasions for two constructs.
Method 1 is selected as reference method. Note that for illustration purposes, the path diagram is depicted for the observed
variables Y(r)ti jkl , which are probabilistically linked to the latent variables by a probit link. For convenience, the constant
indicator k = 1 or k = 2 has been dropped from the latent trait intercept variables (Iti j=Iti j1), latent slope variables (Sti j=Sti j1)
and the latent state residual variables (zt jl=zt j1l ). For the sake of clarity, correlations between latent variables and loading
parameters are omitted. Note that loading parameters of the latent intercept and slope variables are restricted in order to model a
linear growth trajectory. Correlations that are not permissible in the depicted LGC-Com GRM are all correlations between any
(method) intercept variable I or (method) slope variable S and any state residual (method) variable z , correlations between the
latent intercept and the latent intercept (common) method variables of the same construct j and indicator i, correlations between
the latent slope and the latent slope (common) method variables of the same construct j and indicator i, correlations between
the latent state residual and the latent state residual (common) method variables of the same construct j and measurement
occasion l, as well as correlations between any level-1 and any level-2 latent variable. CM: common method; M: method; S:
latent state variable; S: latent slope variable; UM: unique method; I: latent intercept variable; x : latent trait variable; Yrti jkl :
observed variable for the rating of rater r for target t of the i-th item of trait j and method k on measurement occasion l; z :
latent state residual variable.

assumed trait change only in the reference-method, that is, the model did not include method slope
variables (but only method intercept variables). Note that assuming no trait change in the non-
reference methods that is not explained by the reference-method trait change, means that the within-
level part of the model corresponds to the LST-Com GRM. Given that the specification of a latent
growth curve model requires at least three measurement occasions, the conditions of measurement
occasions were reduced to 3 and 4 in the simulation. Additionally, as the LGC-Com GRM is even
more complex than the LST-Com GRM, the sample sizes simulated on the between-level were in-
creased to 400, 600, and 800. Five aspects were manipulated in the simulation: (a) the number of
constructs (1 or 2), (b) the degree of convergent validity (high vs. low), (c) the number of measure-
ment occasions (3 or 4), (d) the number of level-1 units (i.e., raters per target: nL1 = 2, 5, 10, and
20), (e) the number of level-2 units (i.e., targets: nL2 = 400, 600, and 800), and (f) the amount of
prior information used in the estimation (diffuse vs. informative priors), resulting in a 2x2x2x4x3x2
design. In total, the simulation study was comprised of 192 conditions and was simulated with 200
replications per condition.
The population model parameters equal those in the LST-Com GRM simulation study, with latent



152 CHAPTER 7. MONTE CARLO SIMULATION STUDIES

trait variances being split into 92.16% of trait intercept variance and 7.84% of slope variance. Growth
trajectories were modeled to be linear. Population values for the different variance components in the
two consistency conditions on the first measurement occasion correspond to those of the LST-Com
GRM and can be found in Table 7.2. Population values of parameters differing from the LST-Com
GRM are given in Table C 1. All models were specified assuming strong measurement invariance for
all items over measurement occasions (Meredith, 1993; Meredith & Teresi, 2006).
Extensive pre-analyses were used to determine an appropriate number of iterations, burn-in sam-
ples and thinning. Trace-plots of MCMC samples and PSR values were used to examine conver-
gence. Based on these analyses, Bayesian estimation of the LGC-Com GRM was conducted running
2 MCMC chains and using a thinning factor of 5. The iterations per chain were varied by condi-
tion, based on convergence behavior of the chains in the respective condition (increasing iterations
for lower sample sizes and higher model complexity) and estimation times (not increasing iterations
for conditions where not necessary). Iterations were fixed to the following values: (a) in the infor-
mative prior conditions, 200,000 for conditions with 2 or 5 within-level observations and 150,000
for conditions with 10 or 20 within-level observations; (b) in the diffuse prior conditions, 300,000
for conditions with 2 or 5 within-level observations, 250,000 for conditions with 10 within-level ob-
servations, and 200,000 for conditions with 20 within-level observations. The number of iterations
divided by 2 were run as burn-in iterations and as iterations after burn-in per chain, using only every
fifth iteration as a sample for the posterior distribution.
At the time of analysis, the simulation was not yet completed. Estimation times per replication lay
between 1.2 hours for the smallest model (one construct, three measurement occasions, nL2 = 400,
nL1=2, informative priors) and 43.5 hours for the largest model available at the time of analysis (two
constructs, four measurement occasions, nL2 = 600, nL1 = 20, diffuse priors). Simulating on 15
computers, this resulted in an approximate estimation time of 13 months for the part of the simulation
available at the current time point. That is, simulation times were considerable and exceeded the
time that was expected based on the simulation times of the LS-Com and LST-Com GRMs. Within
the months of simulation, an electrical power outage in the whole university building interrupted the
simulations. Due to this interruption, information on PSR values and parameter coverage for the
affected conditions are only available for the replications simulated after the power outage. Also,
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Figure 7.8: Number of available replications for the mono-construct model ( j = 1; left hand side) and the multi-construct model ( j = 2; right
hand side) in the LGC-Com GRM simulation study. Diffuse: diffuse prior condition; High Con: high consistency condition;
informative: informative prior condition; l: number of measurement occasions; Low Con: low consistency condition; nL1:
number of level-1 observations; nL2: number of level-2 observations.
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Figure 7.9: Boxplots of PSR values at the last iteration over all 200 replications per condition in the LGC-Com GRM simulation study,
for the mono-construct condition ( j = 1) and the multi-construct condition ( j = 2). Numbers in red indicate the number of
replications for which PSR values were available in the respective condition. No number indicates that all 200 replications
provided PSR values in the respective condition. Note that y-axes are only displayed up to a maximum value of 4.2 and 1.65 to
enhance readability of the plots in the relevant range. Diffuse: diffuse prior condition; High Con: high consistency condition;
inf: informative prior condition; l: number of measurement occasions; Low Con: low consistency condition; nL1: number of
level-1 observations; nL2: number of level-2 observations; PSR: Potential scale reduction.

they are only yet available for conditions with a completed simulation. The number of replications for
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which PSR values are available in each condition are displayed in the respective figure showing the
distribution of the PSR values (Figure 7.9). Information on parameter and standard error estimates as
well as model fit (PPP) are available for all replications and conditions simulated up to the present
time point. Figure 7.8 gives an overview of the number of replications available at this time point and
included in the current analyses.

7.7.2 Results
Convergence

Figure 7.9 displays the distributions of the PSR values at the last iteration over the different replica-
tions per condition. In the mono-construct condition ( j = 1), the estimation exhibited convergence
problems under high consistency with diffuse priors, with few exceptions in conditions with large
sample sizes on both levels. Convergence problems seem to disappear to large degrees when using
informative priors in the high consistency condition. In the low consistency condition of the mono-
construct models, convergence problems were restricted to conditions with only 2 observations on
the within-level or with 5 observations on the within-level in combination with few observations on
the between-level. Parameters that showed by far the most convergence problems in these condi-
tions were the loading parameters of the slope factors on the non-reference method items. Note that
these parameters were specified as regression parameters of the regression of a slope factor of the
non-reference method indicators on a slope factor of the reference method indicators, the residual of
which was fixed to zero. The factor loadings of these factors were fixed by the definition of the growth
curve model. This reparameterization is mathematically equivalent to the original parameterization,
was, however, necessary due to limitations in the model specifications for Bayesian models in Mplus.
Besides the slope regression parameters, parameters frequently involved in convergence problems
comprised state residual loadings as well as intercept loadings on the interchangeable informant re-
port items. Results concerning the respective parameters and conditions should be interpreted with
caution.
In the multi-construct condition convergence was mainly an issue in the high consistency condition
with diffuse priors. Parameters with highest PSR values in the multi-construct conditions were also
primarily the slope regression coefficients. Most of the other conditions of the multi-construct models
(low consistency, informative priors) showed good convergence rates as judged by PSR and trace
plots.

Model fit

PPP values were < .9 in all replications over all conditions. PPP values smaller than .1 were observed
in 22.1% of the mono-construct and 27.1% of the multi-construct conditions. These were primarily
high-consistency conditions with large within-level sample sizes. 0.35% to 4.5% of the replications
in the respective conditions had PPP values smaller than .1. Recall that a PPP < .1 or < .05 would
indicate poor model fit, according to the recommendations given by B. Muthén and Asparouhov
(2012).
PPP values between .1 and .2 occurred in 80.0% of the mono-construct and 74.0% of the multi-
construct conditions. 0.5% to 34.3% of the replications per condition showed values in this range,
with higher percentages in the high-consistency than the low consistency condition. Between 3.0%
and 52.3% and between 3.1% and 55.6% of the PPP values per condition lay between .2 and .3 in
the mono-construct and multi-construct models, respectively, with higher percentages in the high
consistency conditions. In the mono-construct models, a minimum of 25.0% up to a maximum of
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97.0%, and in the multi-construct models, a minimum of 20.1% up to a maximum of 96.9% of the
PPP values per condition fell into the range between .3 and .7.

Parameter estimation bias and coverage.

Mean peb values averaged over all model parameters per condition are displayed in Figure 7.10.
It is apparent that the mono-construct conditions show considerable average bias for a large number
of diffuse prior conditions. These bias values should be interpreted with caution, as they are most
probably due to a lack of convergence in the respective conditions (see Figure 7.9).
On average, bias was higher in the high consistency condition as compared to the low consistency
condition, with peb values for high consistency conditions exceeding the cut-off of 10% in all cases.
Also in the low consistency condition bias values exceeded the cut-off of 10% in almost all cases,
except for conditions with four measurement occasions and large sample sizes on both levels.
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Figure 7.10: Mean parameter estimate bias (peb; left hand side) and standard error bias (seb; right hand side) values averaged over all

parameters per condition of the mono-construct model ( j = 1; upper panel) and the multi-construct model ( j = 2; lower
panel) in the LGC-Com GRM simulation study. Error bars represent standard errors. Bars are cut-off at a value of 0.7 to
enhance readability of the plots in the relevant range. Diffuse: diffuse prior condition; High Con: high consistency condition;
informative: informative prior condition; l: number of measurement occasions; Low Con: low consistency condition; nL1:
number of level-1 observations; nL2: number of level-2 observations.
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As there was a considerable variability in bias across parameter classes, accuracy of parameter esti-
mation is described in greater detail below.

Mono-construct models. Biases per parameter, mean coverage, peb, mean MSE and empirical SD
values for the parameters in the mono-construct LGC-Com GRM are displayed in Figures C 1 - C 23
in Appendix C.2.
As was to be expected due to mentioned convergence problems, bias values were large and coverage
low for most of the parameters in the high consistency condition with diffuse priors. The only ex-
ception were conditions with large between-level (nL2 � 600) in combination with large within-level
samples sizes (nL1 = 20). Using informative priors, bias values could be reduced to acceptable bias
levels for loading and threshold parameters in large sample sizes. However, peb values of variance
and covariance estimates in the high consistency conditions remained high under the estimation with
informative priors. The parameters exhibiting the largest bias problems (high peb values and low
coverage) are the slope loadings and variances as well as the unique method state variances.
In the low consistency condition with diffuse priors, bias and coverage yielded acceptable values for
most of the parameters in conditions with a combination of nL2 � 600, nL1 � 10. Parameters still
showing bias for these sample sizes are the state residual variances, the slope loadings, the slope
variances as well as the slope covariances. Note, that for instance for the slope covariances, peb
values are large even in large sample sizes, but MSE values are small and coverage is good. This
might be due to the small population values of the slope covariances in the data generation, which
was set to 0.031. Similarly, the slope variances show small absolute biases and MSEs, while peb
values are large and coverage is insufficient, which again might be due to small population values
as well as small empirical SDs. Latent slope means showed acceptable peb values and small MSE,
however low coverage values.
Setting informative priors on the loading parameters reduced estimation bias and increased coverage
rates of the respective parameters, the effects of prior settings on estimation accuracy being largest
in conditions with few observations (on the between- and the within-level) and minimal to zero in
conditions with large sample sizes. Estimates in large sample sizes were not substantially affected by
the prior settings, and bias values in small samples did not reach acceptable levels with informative
priors for most parameters.

Multi-construct models. Biases per parameter, mean coverage, peb, mean MSE and empirical SD
values for the parameters in the multi-construct LGC-Com GRM are displayed in Figures C 24 - C
46 in Appendix C.3.
In the high consistency conditions, parameters (loadings, variances and covariances) of the latent
state residual variables and latent intercept variables were estimated accurately except for some small
sample size conditions, with both informative and diffuse priors. Slope loadings showed some bias
and low coverage in all high consistency conditions and slope variances showed a similar bias pattern
as in the mono-construct models, i.e., low coverage and high peb values while absolute bias and MSE
values are small. However, also unique and common method state loadings and variances exhib-
ited considerable bias and extremely low coverage values in almost all high consistency conditions
for both informative and diffuse priors. Biases of method state residual covariances were lower in
absolute value.
In the low consistency conditions, parameters (loadings, variances and covariances) of the latent state
residual variables and latent trait variables were estimated with high accuracy with both informative
and diffuse priors. Also common method intercept and unique method trait variances and covariances
showed good estimation accuracy in conditions with nL1 � 5. Unique method state residual and
common method state residual loadings were estimated with good degrees of accuracy as judged by
absolute bias values, peb, MSE and coverage in conditions with nL1 � 5. Covariances of the same
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factors required larger sample sizes, preferably nL2 � 600 and nL1 � 10, to reduce peb values and
absolute biases, while coverage was acceptable and MSE values small under all sample sizes.
Parameters showing estimation inaccuracy in the low consistency conditions were the unique and
common method state residual variances. Note, however, that for nL1 � 5, absolute bias values were
small, ranging from 0.007 to 0.076 and 0.012 to 0.049 for the unique and common method state
residual variances, respectively.
Parameters showing the highest peb values and low coverages in the multi-construct low consistency
conditions are the slope loadings and slope variances. Note that the high peb values for the slope
variance parameters might be due to their small population values (i.e., 0.038), as absolute bias and
MSE values are quite small. However, also coverage values indicated that slope loading and variance
parameters were not estimated with sufficient accuracy in any of the conditions.
Setting informative priors on loading and threshold parameters did not substantially change any bias
or coverage results in the multi-construct low consistency models. Increasing the number of mea-
surement occasions from three to four did have a minimal positive impact on some of the parameters’
estimation accuracy, e.g., the intercept and slope loadings and variances. However, differences in
estimation bias were rather small.

Standard error bias.

Mean seb values averaged over all model parameters per condition are displayed in Figure 7.10.
On average, there was a minimal tendency of larger seb values in the informative as compared to the
diffuse prior conditions. Seb values in the high consistency conditions mostly exceeded the cut-off of
10%, while, on average, standard error bias is acceptable in the low consistency conditions with large
sample sizes (e.g., nL1 � 10).
Patterns of seb values over conditions are not systematic, which might be explained by empirical SDs
and posterior SDs being highly affected by non-convergence of some parameters in these conditions.
Differences between empirical and posterior SDs per parameter as well as mean empirical SDs for
the parameters in the LGC-Com GRM are displayed in Figures C 1 - C 23 for the mono-construct
condition in Appendix C.2, and Figures C 24 - C 46 for the multi-construct condition in Appendix
C.3.
The main pattern observable in the empirical SDs mirrors the non-convergence of some parameters
(e.g., the slope loadings) as reported in section 7.7.2. That is, high empirical SDs occur in the con-
ditions that showed convergence problems, i.e., mainly mono-construct high consistency and diffuse
prior conditions. In these conditions, the use of informative priors lead to smaller empirical SDs, in
the same way as it improved convergence. As theoretically expected, empirical SDs tend to decrease
with an increasing number of observations on both the within- and between-level for all parameter
types and conditions.
Dot plots of standard error bias show that posterior SDs of the state residual, unique method state and
common method state loading parameters mainly overestimate empirical SDs if informative priors
are set on these loadings. No systematic pattern of differences between informative and diffuse prior
conditions can be observed for the remaining parameters. In general, standard error bias is small
in those conditions that did not show convergence problems, i.e., standard error bias is < 0.04 in
absolute value.

7.7.3 Summary and conclusion
The simulation study shows that the estimation of the LGC-Com GRM encounters convergence prob-
lems in high consistency conditions or low consistency conditions with small sample sizes and diffuse
priors, primarily with respect to the slope factor loadings. Setting informative priors on the loading
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parameters effectively reduced convergence problems in small samples, does, however, not yield ac-
ceptable bias levels in these conditions.
The applicability of the LGC-Com GRM reaches its limits in cases of high convergent validity. How-
ever, as discussed previously, high convergent validity is rarely encountered in practice.
Applicability of the LGC-Com GRM seems most realistic for models with moderate degrees of con-
vergent validity and sample sizes of at least 600 between-level and 10 within-level observations. Mod-
erate degrees of convergent validity as simulated in the low consistency condition are often found in
empirical applications. However, even in cases of low consistency and sample sizes as large as nL2
= 600 and nL1 = 10, some parameters of the LGC-Com GRM show unacceptable bias and coverage
levels. These parameters are the slope loadings and slope variances. Note that these parameters show
a pattern of bias and coverage similar to the method state residual variables in the high consistency
condition. As the slope variances were simulated to be rather small, convergence problems and bias
encountered for the slope loadings and variances in the LGC-Com GRM can most probably be traced
back to the same underlying mechanism as in case of the problems for the method state variables un-
der high consistency. This is, if factor variances are very small, there is also little information in the
data in order to estimate these factors, empirical identification of the slope factors becomes difficult
and estimation runs into problems. A similar observation was made by Bishop et al. (2015) in a sim-
ulation on the ISGM, where growth factor variances were most biased when (time-) consistency was
low, i.e. when most of the true score variance was due to state variability processes. They concluded
that weakly defined growth factors (i.e., low time consistency) can be problematic, especially when
other aspects, such as the number of measurement occasions or sample size, are suboptimal as well
(Bishop et al., 2015). Similarly, the power to detect significant slope variances in LGC models has
been found to not only be a function of sample size and number of measurement occasions but also
of growth curve reliability, which corresponds to time consistency in multiple-indicator models (see
also Hertzog, von Oertzen, Ghisletta, & Lindenberger, 2008; von Oertzen et al., 2010).
Thus, it is to be expected that the LGC-Com GRM can be accurately estimated and slope variable pa-
rameters run into less convergence problems if slope factor variances are larger, i.e., if inter-individual
differences in intra-individual change are larger.
Nevertheless, it is a realistic phenomenon that slope factor variances are small and it is often found
in empirical applications that factors need to be excluded from the model as there is no remaining
variance present in the data they could capture.
In their simulation study on indicator-specific growth models (ISGM) Bishop et al. (2015) found that
the parameters most prone to estimation problems were the slope variances, the intercept correlations
and the slope correlations. Based on their findings they recommended using sample sizes of at least
300 and at least four time points for the ISGM (Bishop et al., 2015). In contrast to their simulation
study, the current simulation did not find substantial estimation advantages if four instead of three
measurement occasions were included in the model. The only model parameters showing a relevant
improvement in estimation accuracy when increasing the number of measurement occasions from
three to four were the slope factor parameters (i.e., slope loadings, variances and covariances). Note,
however, that bias was already very small and coverage good for the slope covariances in case of
three measurement occasions. The slope loadings and variances, in contrast, had poor coverage also
with four measurement occasions. Nevertheless, the observed pattern suggests that bias levels can be
expected to decrease and coverage to increase when further increasing the number of measurement
occasions. Furthermore, the effect of the number of measurement occasions might be more prominent
if there is a larger variance in slope factor values.
The fact that larger samples are required in the LGC-Com GRM as compared to the ISGM by Bishop
et al. (2015) is not surprising, as the LGC-Com GRM is comparatively more complex, including a
number of additional latent factors due to the MTMM structure as well as a multilevel structure due
to the interchangeability of the non-reference method raters.
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The use of weakly informative priors on loading and threshold parameters in the LGC-Com GRM re-
duced convergence problems to considerable degrees, did, however, not reduce sample sizes required
in order to yield accurate estimates for most of the parameters. Furthermore, they did not resolve
problems in the estimation of the slope variable parameters.
Increasing prior informativeness or setting additional informative priors on variance and covariance
parameters might enhance the applicability of the models with this degree of slope variance, smaller
sample sizes or higher degrees of convergent validity. However, setting priors and variance and
covariance parameters in complex models is challenging and the use of highly informative priors
involves the risk of setting priors with inaccurate locations.
Also, setting more informative priors might not be necessary for accurate parameter estimation in the
LGC-Com GRM if inter-individual differences in change are actually larger in the observed sample.
However, if slope variances are estimated to be very small and the estimation shows convergence
problems for the respective slope parameters, it might indicate that most of the true score variance is
due to state variability processes and / or stable (non-changing) inter-individual differences. In this
case, researchers should consider to resort to more simple models that are more appropriate for this
kind of processes, such as the LST GRM.

7.8 Discussion of the simulation studies
As the results of the simulation studies show, the LS-Com GRM and LST-Com GRM can be accu-
rately estimated if low degrees of convergent validity are present. While the LS-Com GRM requires
at least 250 observations on the between-level and more than 2 (better 5) observations on the within-
level, the LST-Com GRM requires larger sample sizes of at least 500 between- and 5 within-level
observations when more than two measurement occasions are included in the model.
Note that the degree of convergent validity chosen for the high consistency condition is rarely en-
countered, while low convergent validity is frequent in practical applications (see, e.g., the following
empirical example, or Carretero-Dios et al., 2011; Eid et al., 2003, 2008). The high consistency
condition provides an upper bound of consistency that would be desirable in multirater studies. That
is, the bias values reported for the high consistency condition can be interpreted as an upper bound
of bias that could be encountered in applications, with far smaller biases that are to be expected in
practice (e.g., those of the more realistic low consistency condition).
Hence, in general, unbiased results are to be expected with these moderate sample sizes. These results
are encouraging and indicate that even complex multilevel MTMM IRT models can be applied in a
wide range of situations when estimated with Bayesian methods.
However, with only few level-1 units (e.g., 2 observations per cluster) convergence problems be-
come more likely and bias levels increase. Also, in contrast to the continuous indicator models, more
observations (approximately 250 (LS-Com GRM) or 500 (LST-Com GRM) instead of 100) are re-
quired on the between-level. This result supports previous findings suggesting that categorical models
need larger sample sizes on both levels than continuous-indicator SEMs (Depaoli & Clifton, 2015;
Holtmann et al., 2016; Lee et al., 2010), as well as results on single-level CFA-MTMM models with
ordinal variables reporting a need of at least 250 observations when two to four indicators are used per
TMU (Nussbeck et al., 2006). However, given the complexity of the presented models, the required
sample sizes can be considered moderate.
In contrast to simulation studies indicating a greater influence of between-level as compared to within-
level sample sizes on parameter estimates (Maas & Hox, 2005), the simulation results show that the
number of level-1 units has a substantial impact on convergence rates and estimation accuracy of
the within-level parameters. This corresponds to the result of the simulation study by Koch et al.
(2014) on the continuous indicator counterparts of the GRMs simulated here, as well as the results of
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Bayesian estimation of categorical-indicator multilevel SEMs in Holtmann et al. (2016). Furthermore,
similar to a result by Depaoli and Clifton (2015) on multilevel categorical SEMs, the number of level-
1 units and the degree of convergent validity (or ICCs) had the largest impact on convergence rates.
In the unlikely situation where high degrees of convergent validity are present in the data, a larger
number of observations is needed to yield sufficiently accurate parameter estimates and ensure con-
vergence. High degrees of convergent validity are especially problematic in the LST-Com GRM (and
LGC-Com GRM) as well as in mono-construct models. The results indicate that in the LS-Com GRM,
the use of informative priors on item parameters (such as loadings and thresholds) may effectively re-
duce biases in situations where an increase of observations is not feasible. That is, the possibility to
incorporate informative prior information in the estimation process further increases the applicability
of the model in rather small samples. By using weakly informative priors, researchers may also lower
the risk of improper solutions such as negative variances and thereby increase convergence rates that
might otherwise cause problems in this kind of complex models. The use of accurate informative
priors does not only decrease bias for the parameters that were given informative priors (e.g., the
loadings), but also, albeit to smaller degrees, for the remaining parameters (e.g., the variances). The
degree of prior information chosen in the present studies, (a prior variance of 0.1) did, however, not
affect the results in cases where sufficient information in terms of observations was provided. This is
in line with theoretical considerations as well as previous results reporting a decrease of the prior’s
influence with increasing sample size (Asparouhov & Muthén, 2010b; Lee et al., 2010).
In the LST-Com GRM the use of informative priors effectively increased convergence rates and de-
creased bias, however, the degree of prior information used is not sufficient in order to estimate the
models with smaller sample sizes than those recommended for diffuse prior settings.
Interestingly, standard error bias increased with the use of informative priors, average posterior SDs
mostly overestimating empirical SDs for the respective parameters. This finding is in accordance
with previous results on Bayesian posterior SDs (Lee & Song, 2004; Lee et al., 2010). Although
posterior SDs do not play a role as important for hypothesis testing as standard errors do in classical
statistical approaches, high posterior SDs might be indicative of too large variation in the posterior
distribution. Coverage values, however, did not necessarily point into this direction (if observations
on the between- and within-level reached the recommended values).
Low rejection rates of the PPP at the 10% and also 20% level have been reported before for PPP
values in correctly specified models (Asparouhov & Muthén, 2010b). This observation might stem
from the fact that PPP values do in general not have a uniform distribution under the null hypothesis
(Gelman, 2013; Hjort, Dahl, & Steinbakk, 2006; Meng, 1994). Whether these low rejection rates
of correctly specified models represent a problem or are in fact a desirable property is an ongoing
discussion (see, e.g., Gelman, 2013; Hjort et al., 2006, and references therein).
In contrast to the LS-Com GRM and LST-Com GRM, the estimation of the LGC-Com GRM poses
more problems. That is, even in case of moderate convergent validity (low consistency condition) and
sample sizes as large as nL2 = 600 and nL1 = 10, the slope loading and variance parameters are not
estimated with sufficient accuracy, as indicated by bias and coverage levels. It is probable that the es-
timation problems encountered for the slope parameters are due to small simulated factor variances.
That is, with small slope variances there is little information in the data in order to estimate these
factors and the estimation runs into problems. It is to be expected that the LGC-Com GRM can be
accurately estimated and slope variable parameters run into less convergence problems if slope factor
variances are larger, i.e., if inter-individual differences in intra-individual change are larger. However,
small slope factor variances are often encountered in practice (see, for instance, the following appli-
cation study) and therefore a realistic phenomenon.
An improvement in estimation accuracy when increasing the number of measurement occasions from
three to four was observed for the slope factor parameters (i.e., slope loadings, variances and covari-
ances). However, the slope loadings and variances had poor coverage also with four measurement



7.8. DISCUSSION OF THE SIMULATION STUDIES 161

occasions. Nevertheless, the observed pattern suggests that bias levels can be expected to decrease
and coverage to increase when further increasing the number of measurement occasions. Further-
more, the use of weakly informative priors on loading parameters in the LGC-Com GRM did not
resolve problems in the estimation of the slope variable parameters. Increasing prior informativeness
or setting additional informative priors on variance parameters might enhance the applicability of the
models with this degree of slope variance. However, setting more informative priors might not be
necessary for accurate parameter estimation in the LGC-Com GRM if inter-individual differences in
change are actually larger in the observed sample. Furthermore, as discussed before, increasing in-
formativeness of priors increases the risk for detrimental effects in case of wrong prior locations. A
limitation of the simulation study on the LGC-Com GRM is, that the effect of the amount of slope
variance was not tested by including an additional simulation condition with larger slope variance
parameters. Including an additional slope variance condition in the present simulation study was
considered infeasible due to the large estimation times of the LGC-Com GRM simulation. The hy-
pothesis that estimation problems of the LGC-Com GRM slope parameters might vanish if the slope
factor exhibits a larger variance should be investigated in future studies within a smaller design (e.g.,
including only models with low consistency and sample sizes of 600 between-level observations).

Another limitation of the present simulation studies is the lack of an incorrect prior condition. A de-
tailed investigation of the magnitude of possible detrimental effects of incorrectly specified priors on
parameter estimation was considered unfeasible within the scope of the present work. This is due to
the estimation times required for the estimation of such complex models by MCMC methods. How-
ever, results on the influence of inaccurate priors on estimation accuracy for a multilevel MTMM
model for interchangeable raters are reported in Holtmann et al. (2016). The simulation study by
Holtmann et al. (2016) showed that when setting weakly informative (prior variance 0.2) inaccurate
priors on loading parameters, model parameters were estimated as accurately or even better than with
Bayesian estimation with diffuse priors. A similar result has also been reported for the effect of inac-
curate priors on growth parameters in Bayesian growth mixture modeling (Depaoli, 2014). However,
increasing the informativeness of the inaccurate priors (prior variance of 0.01) was observed to cause
considerable detrimental effects on estimation accuracy (Holtmann et al., 2016).
The inclusion of the correctly specified informative prior condition in the present work already pro-
vides interesting information. First, the results show that informative priors do not work equally well
in all conditions. As can be expected, the informative prior setting does not perform worse than the
diffuse one, but it does also not work better in all cases. The present results show at which sample
sizes the informative prior does not improve parameter bias as compared to the uninformative case.
Accordingly, it reveals at which sample sizes the analysis can be conducted without access to any
prior information and still yield parameter estimates as valid as if one had correct prior information
available. For example, in the LS-Com GRM, differences between diffuse and informative prior set-
tings became negligible with samples sizes � 500 on the between-level in combination with � 5 on
the witihin-level. In the LST-Com GRM multi-construct models, these numbers were comparable
in case of three or four measurement occasions and slightly larger in models with two measurement
occasions. Second, we can observe the effect the informative priors on the loading parameters exert
on the estimation of the remaining parameters in the models (e.g., the variances). The size of this
effect cannot be derived theoretically. Furthermore, the simulation results also show the effect of the
prior on the estimation of the posterior SDs.
Theoretically, it should not be too unrealistic to have information about the location (within a certain
range) in which a loading of a second or third indicator of a factor lies, given that the first indicator
of that factor was set to 1. Hence, including weakly informative prior information on the location
of the loading parameters in the presented models is a realistic option. However, the availability of
good a priori information on some model parameters might be scarce in practice. The option to in-
clude prior information in the estimation process seems especially interesting for MTMM analysis
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if researchers aim to include past findings concerning the convergent and discriminant validity of a
particular measure or instrument in future studies. However, the inclusion of prior information on
variances and covariances in the model estimation poses a challenge, as Inverse Wishart priors are
difficult to handle, especially if variance covariance matrices grow large. Inverse Wishart priors im-
pose a dependency between standard deviations and correlations (Tokuda, Goodrich, Van Mechelen,
Gelman, & Tuerlinckx, 2011) and the informativeness of one parameter in the covariance matrix de-
termines the informativeness of other parameters, thereby restricting their prior range (Gelman et al.,
2014). These disadvantages render the specification of prior information for variance and covariance
parameters extremely challenging and reduce the flexibility of prior settings needed in empirical ap-
plications. Alternative prior settings for variance and covariance parameters, such as decomposing
covariance matrices into a scale and a correlation matrix (Lewandowski, Kurowicka, & Joe, 2009;
Stan Development Team, 2014b) and their applicability to the presented models and MTMM coeffi-
cients should be explored in future studies.
Another limitation of the simulation studies is that the results can not necessarily be generalized to
categorical observed variables with a different number of categories. Three response categories were
chosen in order to present the presumably most problematic case of a polytomous response scale,
which excludes the possibility of treating the responses as continuous (using ML estimation). Simu-
lation studies on the performance of WLS estimation for polytomous data have found parameter bias
to be unaffected by the number of response categories (Beauducel & Herzberg, 2006; Li, 2016; Yang-
Wallentin, Jöreskog, & Luo, 2010) or to decrease when increasing the number of response categories
(Flora & Curran, 2004; Forero & Maydeu-Olivares, 2009; Moshagen & Musch, 2014). Similarly,
convergence rates were found to increase (Flora & Curran, 2004; Moshagen & Musch, 2014; Rhem-
tulla et al., 2012; Yang-Wallentin et al., 2010) or be unaffected (Li, 2016) when increasing the number
of categories. Although results on the effect of the number of response categories on parameter esti-
mates in Bayesian estimation are scarce, the direction of the effect is assumed to be the same. One
study investigating Bayesian methods for confirmatory factor analysis with categorical indicators has
found negligible to positive effects of an increased number of response categories on parameter bias
(Liang & Yang, 2014). The effect of the number of response categories and its potential interactions
with sample size or cell frequencies on estimation accuracy is an interesting question that should be
pursued in future research. However, given the complexity of the presented models and the resulting
simulation times (several months), an investigation of the effect of the number of categories is beyond
the scope of the present simulation studies.
Last but not least, the simulation studies reveal that the peb as a measure of relative bias might not
always be the best measure to judge estimation accuracy or compare estimation accuracy between
parameters. As the results on some of the parameters, e.g. the slope covariances in the LGC-Com
GRM, have shown, small population parameters can produce extremely large peb values even if bias
is small. That is, peb values can indicate unacceptable parameter estimation bias (e.g., peb > 1) even
if absolute bias is small (e.g., 0.02), coverage values are good and MSE values are small (e.g., 0.005).
Therefore, it is recommended to always base the evaluation of estimation results on several different
evaluation criteria, including absolute bias and the MSE.



Chapter 8

Application

8.1 Stability of Life Satisfaction and Subjective Happiness
and their dynamic interplay

In the following, an application of the LS-Com GRM, LST-Com GRM, and LGC-Com GRM is pre-
sented, illustrating the advantages of sampling the model coefficients by Bayesian MCMC methods.
This will be done using subjective well-being (SWB) data obtained by self-reports, parent reports
and friend reports for recent high-school graduates in Germany. In the last decades, with the advent
of positive psychology (Seligman & Csikszentmihalyi, 2000), an emerging body of research started
to focus on the experience of positive emotions. Within this research area, an increasing number of
studies is dedicated to the investigation of subjective well-being (Pavot & Diener, 2008), its stability
over time (e.g., Eid & Diener, 2004; Luhmann et al., 2011) and its relation to other positive or nega-
tive emotions, personality traits or life events (e.g., DeNeve & Cooper, 1998; Diener & Chan, 2011;
Jovanovic, 2011; Schimmack, Schupp, & Wagner, 2008).
SWB has been conceptualized as consisting of two broad components: an affective and a cognitive
component (Diener, 1984; Lucas, Diener, & Suh, 1996; Pavot & Diener, 1993b). The cognitive
component has also been described as life satisfaction (Pavot & Diener, 1993b), while the affective
component comprises concepts such as positive affect, negative affect or happiness. Although not
independent from each other, affective and cognitive components of SWB are considered to provide
complementary information: life-satisfaction representing a longer-lasting aspect of SWB relying on
conscious values and goals, while the affective component is considered to be of shorter duration
and rather unconscious (Eid & Diener, 2004; Luhmann et al., 2011; Pavot & Diener, 1993b). This
separation is also supported by differential correlations with potential predictors and outcomes. For
instance, major life events show more persistent effects on cognitive than affective SWB (Luhmann,
Hofmann, Eid, & Lucas, 2012), and factors such as job status and income have been found to be
stronger predictors for cognitive SWB (Diener, Ng, Harter, & Arora, 2010; Schimmack et al., 2008),
while affective SWB is more closely related to personality traits (Schimmack et al., 2008; Jovanovic,
2011).
One of the most popular scales in the measurement of life satisfaction is the Satisfaction with Life
Scale (SWLS; Diener, Emmons, Larsen, & Griffin, 1985; Pavot & Diener, 2008). The SWLS was
construed as a global measure of life satisfaction, assessing the cognitive component of subjective
well-being (Diener et al., 1985; Pavot & Diener, 1993b). Intended to measure more than momen-
tary mood states or transient situational effects, but yet be sensitive to changes in life satisfaction
over longer time periods (Pavot & Diener, 1993b), the SWLS is expected to show moderate temporal
stability and is considered to be a state variable (Glaesmer, Grande, Braehler, & Roth, 2011). This
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expectation is supported by empirical evidence showing considerable temporal stability of SWLS
measures (Diener et al., 1985; Pavot & Diener, 1993a), relatively small occasion specificity of SWLS
measures (Eid & Diener, 2004), or a greater influence of chronically accessible, stable information
than of transient, variable factors on life satisfaction judgments (Luhmann, Hawkley, Eid, & Ca-
cioppo, 2012; Schimmack & Oishi, 2005). Pavot and Diener (1993b) report test-retest stabilities of
the SWLS of six different studies ranging from .54 for a 4-years interval, over .62 for a 2-months and
.84 for a 1-month interval between measurement time points. A more recent study reported 1-month
test-retest correlations of .80 for the SWLS (Steger, Frazier, Oishi, & Kaler, 2006).
Furthermore, convergence between different raters (e.g. self-rating and peer ratings) has been taken as
evidence against significant influences of current mood and situational contexts on global well-being
measurements. Pavot and Diener (1993a) report correlations between self-report measures and mean
peer reports of life-satisfaction ranging from .42 to .49.
Mood and emotions, as aspects of the affective component of SWB, are considered and have been
found to be less stable than cognitive parts of SWB (Eid & Diener, 2004). Measures for the af-
fective component of SWB rely on reports of affective states or affective traits. One measure for
subjective happiness as a trait is the Subjective Happiness Scale (SHS; Lyubomirsky & Lepper,
1999). Subjective happiness as measured with the SHS was found to be moderately correlated with
SWLS measures, with correlation coefficients ranging from .59 to .72 (Lyubomirsky & Lepper, 1999;
Schiffrin & Nelson, 2010; Swami et al., 2009; Zhang, Howell, & Stolarski, 2013). In a meta-analysis
on longitudinal studies of happiness, Veenhoven (1994) reports happiness to be rather stable in the
short term (several months), but not in the long term (years). Lyubomirsky and Lepper (1999) report
test-retest stabilities of the SHS from different studies of r = .61 (3 weeks), r = .85 (1 month interval),
r = .71 (3 months interval), and r = .55 (1 year). Self- and friend rating correlations for the SHS have
been found to be as high as .65 (Swami et al., 2009). In a meta-analysis on self-informant agreement
in well-being ratings, L. Schneider and Schimmack (2009) found average self-informant correlations
of r = 0.42, with no difference between life satisfaction and happiness ratings. Instead, their analyses
indicated that moderators of self-informant agreement in well-being ratings might be age, with lower
self-informant correlations for younger targets (age < 24), as well as the use of single vs. multiple
indicators (multiple-item studies reporting higher correlations; L. Schneider & Schimmack, 2009).
The vast majority of studies, however, base stability and rater-consistency estimates on correlations
of observed variables. This approach is problematic as measurement error, on the one hand, and in-
stability and rater-inconsistencies, on the other hand, are confounded (Eid & Diener, 2004). The use
of correlations based on observed variables might thus lead to biased estimates of stability and consis-
tencies. One of few exceptions is the study by Eid and Diener (2004), applying a multistate-multitrait-
multiconstruct model to the SWLS and different mood and affect measures (also see Luhmann et al.,
2011). Eid and Diener (2004) found that only 12 to 16% of the variance in life satisfaction is due to
occasion-specific influences, while ocassion-specificity for mood reaches 40 to 58%. Furthermore,
they report occasion-specific associations between mood and SWLS to be relatively small (r = 0.13,
r = 0.23, and r = 0.55 for 3 measurement occasions, respectively; Eid & Diener, 2004).
However, no study so far has investigated inter-rater consistencies or stability of rater-effects for life
satisfaction or subjective happiness using latent variable models, that is, taking measurement error
into account. Furthermore, most of the approaches used do not allow for the estimation of consis-
tencies or stability coefficients on the item-level, but rely on summary statistics for the whole scale
or test-halves. That is, item comparisons or item selection based on item consistencies, stabilities,
reliabilities or item difficulties is not possible using these approaches.
The models proposed in this work offer the possibility to (1) study stability of life satisfaction and
subjective happiness controlling for measurement error; (2) do this on the item-level and for relatively
few items; (3) study rater effects and consistencies controlling for measurement error; (4) investigate
the stability of rater effects over time; and (5) study the generalizability of rater effects across the
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two components of well-being. To investigate the question whether global life satisfaction (as the
cognitive component of SWB) or global subjective happiness (as the affective part of SWB) show
greater stability over time, which of the two exhibits greater levels of rater-convergence and how sta-
ble rater-effects are over time, the LS-Com GRM, LST-Com GRM and LGC-Com GRM1 are applied
to subjective well-being data obtained by self- and friend reports for recent high-school graduates.

8.2 Methods

8.2.1 Participants and procedure
Data analyzed in this article are taken from a longitudinal study assessing change and stability of
attachment styles, well-being and loneliness in young adults after high-school graduation2. Subjects
were approached during their last month before graduation in high-schools in Berlin and Branden-
burg. Questionnaires were completed online at four measurement time points over the course of
the first year after graduation, with the first measurement occasion taking place two months after
graduation. The present analysis includes a subset of the presented scales, measured on occasion
2 (December 2014), 3 (March 2015), and 4 (June 2015), using self-ratings, parent ratings, as well
as ratings from several peers (friends) for each target. Note that peer ratings were first collected on
measurement occasion 2. The three occasions of measurement used in the subsequent analyses will
be referred to as T1, T2 and T3 in the following.
The analyzed sample contains the data of 501 targets, of which 463 participated at T1, 441 at T2
and 430 at T3. For these targets, 366, 342, and 323 parent reports are available for T1, T2, and T3,
respectively. Targets were rated by a mean number of 2.22 exchangeable peer raters per target (min =
1, max = 5, mode = 3 raters). The sample was 29.3% male. Targets ranged in age from 17 to 21 years
(mean age = 18.22) at T1.

8.2.2 Measures
The two constructs analyzed for the present purpose were life satisfaction and subjective happiness.
Overall life satisfaction was measured using the German version of the Satisfaction With Life Scale
(SWLS; Glaesmer et al., 2011; Schumacher, 2003). The SWLS is a well-established question-
naire showing good psychometric properties, with an internal consistency of .79 (Vassar, 2008), .87
(Adler & Fagley, 2005; Diener et al., 1985), .86 (Steger et al., 2006), or ranging from 0.79 to 0.89
(Pavot & Diener, 1993b), and a = .92 for the German version (Glaesmer et al., 2011). See Pavot
and Diener (1993b) and Pavot and Diener (2008) for reviews on the SWLS and Vassar (2008) for a
meta-analysis. Happiness was measured with the Subjective Happiness Scale (SHS; Lyubomirsky &
Lepper, 1999). The SHS has been shown to be acceptably reliable (with Cronbachs a ranging from
.81 to .94; Lyubomirsky & Lepper, 1999). The German version exhibits comparable characteristics
to the English version (a = 0.82; Swami et al., 2009). For the present study, 5-point rating scales
were used, ranging from 1 (does not apply at all) to 5 (applies completely) for the SWLS and from

1Note that obviously not all of these models will fit the data equally well and there will be one model that is
most appropriate for the data at hand. Nevertheless, in order to provide an illustration of the presented models,
of the questions that can be answered with each model and of how the model coefficients are interpreted, all
three models are applied to the data.

2A different subset of the data has been used in previous publications that pursued different goals using
different statistical models (Luhmann, Bohn, Holtmann, Koch, & Eid, 2016).
A subset of the data used in the present analysis, including the same measures but restricted to only two
measurement occasions and two methods (self-reports and peer reports) was analyzed with an LS-Com GRM
in Holtmann et al. (2017)
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Table 8.1: SWLS and SHS items used in the model application

Scale Item

SWLS
1 In most ways my life is close to my ideal.

2 The conditions of my life are excellent.

3 I am satisfied with my life.

SHS

1 In general, I consider myself: ... not a very happy person / ... a very happy person.

2 Compared to most of my peers, I consider myself: ... less happy / ... more happy.

3 Some people are generally very happy. They enjoy life regardless of what is going on,

getting the most out of everything. To what extent does this characterization describe you?

... Not at all / ... completely.

Note. SWLS: Satisfaction with Life Scale; SHS: Subjective Happiness Scale.

1 to 5 with the respective labelings given in table 8.1 for the SHS. Only the first three items of both
scales were included in the analyses. Item formulations are given in Table 8.1. The items excluded
from the current analysis were chosen based on substantive reasons. That is, the two SWLS items
not included, for instance, are the items ”So far I have gotten the important things I want in life”
and ”If I could live my life over, I would change almost nothing”. These items might not be very
meaningful in a sample of high-school graduates that are just about to leave their parents home and
school environment for the first time in their lives in order to pursue their own interests. Note that
item formulations were minimally adapted for the informant peer and parent ratings (replacing the
subject ”I” by ”my friend” or ”my child” and changing verb conjugations).

8.2.3 Data analysis
Data were analyzed by applying different variants of the LS-Com, LST-Com and LGC-Com GRMs
to the SWLS and SHS self- and informant report measures. The models were fit to the data assuming
different levels of factorial invariance. As the only information of model fit currently available for
multilevel SEMs with categorical indicators using Bayesian estimation in Mplus (Mplus 7.3) are PPP-
values, model comparisons can only be made descriptively in terms of relative fit, but not be tested
for signifiant differences using Bayesian estimation. Note also that PPP-values reported by Mplus
use the difference between the observed and replicated Chi-Square values, which do not take model
complexity into account. To complement the fit information provided for the categorical-indicator
models, the models were fit to the data treating the indicators as continuous using the maximum like-
lihood robust (MLR) estimator in Mplus. The use of the MLR estimator allows for an evaluation of
model fit and a comparison of the nested models by �2 (difference) tests, fit indices such as the root
mean square error of approximation (RMSEA), the comparative fit index (CFI) or the standardized
root mean square residual (SRMR). Fit was judged according to the cut-off values given for these
indices by Schermelleh-Engel, Moosbrugger, and Müller (2003)3. Furthermore, MLR estimation in
Mplus provides information criteria such as the Akaike information criterion (AIC) and Bayesian
information criterion (BIC). The results for the continuous-indicator models as estimated with MLR

3These are (Schermelleh-Engel et al., 2003): (a) 0  �2/d f  2 good fit; 2 < �2/d f  3 acceptable fit; (b)
0  RMSEA  .05 good fit; .05 < RMSEA  .08 acceptable fit; (c) 0  SRMR  .05 good fit; .05 < SRMR
 .10 acceptable fit; (d) .97  CFI  1 good fit; .95  CFI < .97 acceptable fit.
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are used as a crude indicator of model fit and supplementary information to the Bayesian results. The
specific measurement invariance levels that were tested for the different models are described for each
model in the respective model section.
Based on these preliminary analyses, the models for categorical indicators were estimated using
Bayesian estimation methods with diffuse priors. Posterior parameter estimates were obtained us-
ing Bayesian estimation methods with Mplus 7.3 (L. K. Muthén & Muthén, 1998-2012). Trace-plots
of MCMC samples were used to examine convergence and determine an appropriate burn-in period.
Three MCMC chains were run with a minimum of number of burn-in and sample iterations per chain,
using a thinning factor of 10 to reduce autocorrelation. The minimum number of iterations for the
LS-Com, LST-Com and LGC-Com GRMs were the following:

• LS-Com GRM: A minimum number of 30,000 burn-in and 30,000 sample iterations per chain,
using a thinning factor of 10. That is, at least 300,000 burn-in iterations and 300,000 iterations
after burn-in were run, using only every 10-th iteration of the post-burn-in samples for the
posterior distributions.

• LST-Com GRM and LGC-Com GRM: A minimum number of 40,000 burn-in and 40,000
sample iterations per chain, using a thinning factor of 10. That is, at least 400,000 burn-in
iterations and 400,000 iterations after burn-in were run, using only every 10-th iteration of the
post-burn-in samples for the posterior distributions.

Chains stopped running when the PSR reached a value < 1.01 after the minimum number of iterations,
or when the PSR had not dropped below 1.05 after a maximum number of 100,000 (burn-in + sample)
iterations (no convergence). The mean of the posterior distribution was used as a point estimate and
posterior quantiles were used for providing a 95% credibility interval for parameter estimates. Prior
specifications were left to the default Mplus diffuse priors (see section 7.3 for details).
As the first category of SWLS item 2 was not chosen by the peers at T3, category 1 and 2 of the
respective item were collapsed at T1 and T2 for the peer reports. Similarly, as the first category of
SWLS item 1, item 2, and item 3 were not chosen by the parents at at least one measurement occasion,
category 1 and 2 of the SWLS items were collapsed for the parent reports.

8.3 LS-Com GRM of Life Satisfaction and Subjective Hap-
piness

In this section results of the application of the LS-Com GRM to the SWLS and SHS self-, parent and
peer report measures are presented. In a first step, the LS-Com GRM with no measurement invariance
restrictions was estimated with either indicator-specific state or common state variables. These mod-
els correspond to the models depicted in Figures 2.1 and 2.2, respectively, with the only difference
that the model in this application includes three measurement occasions (instead of two, as depicted in
the Figures). Then, different levels of measurement invariance were compared for the chosen model
by a stepwise approach. The levels tested were the following three levels: (0) factorial invariance,
i.e., no invariance restrictions on the loading or threshold parameters; (1) strong measurement invari-
ance for the reference method (self-report) indicators, i.e., loadings and thresholds set invariant; and
invariant loadings of the method factors on the non-reference method indicators; (2) strong measure-
ment invariance, i.e., all factor loadings and threshold parameters are restricted to be equal across
measurement occasions for the same indicator i, construct j and method k. Note that this includes the
regression parameters of the regression of the non-reference method on the reference-method states,
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Table 8.2: Model fit results for the LS-Com GRM of life satisfaction and subjective happiness

MLR estimator (indicators treated as continuous)
ind.-spec.

States MI remarks �2 df RMSEA CFI SRMR W SRMR B AIC BIC BIC adj.
No 0a saddle point, Y 3130 .70 1398 .030 .887 .093 .115 52704 .68 54337 .96 53346 .86
Yes 0 saddle point, Y 2333 .47 1260 .025 .930 .088 .096 52267 .57 54623 .27 53193 .79
Yes 1 saddle point, Y 2376 .84b 1284 .025 .928 .078 .079 52251 .70 54481 .77 53128 .53
Yes 2 saddle point, Y 2481 .46c 1332 .025 .925 .074 .076 52212 .85 54191 .64 52990 .88

Bayesian estimation (indicators treated as categorical)
ind.-spec. �2-diff. limit

States MI Traceplots PSR PPP lower upper Iterations Thinning Chains
No 0a ok 1 .009 .000 187 .49 538 .74 60000 10 3
Yes 0 ok 1 .005 .020 6 .71 354 .29 60000 10 3
Yes 1 ok 1 .006 .015 21.02 367 .92 60000 10 3
Yes 2 ok 1 .004 .015 21.31 367 .03 60000 10 3

Note. AIC: Akaike information criterion; BIC: Bayesian information criterion; BIC adj.: sample size adjusted BIC; CFI: Comparative fit
index; Ind.-spec. States: Model with indicator-specific states; MI: Level of measurement invariance: (0) no invariance restrictions on the
loading or threshold parameters; (1) strong measurement invariance for the reference method (self-report) indicators, and invariant loadings
of the method factors on the non-reference method indicators; (2) strong measurement invariance for all indicators; MLR: Maximum
Likelihood robust estimator (Mplus); PPP: Posterior predictive p-value; Y: The latent variance-covariance matrix Y is not positive definite
due to correlations between latent variables > 1; PSR: Potential scale reduction factor; RMSEA: Root mean square error of approximation;
saddle point: the estimation algorithm has reached a saddle point; SRMR B: standardized root mean square residual on the between-level;
SRMR W: standardized root mean square residual on the within-level.
a As the model with indicator-specific state factors fit the data better than the model with common latent state variables for MI level 0,
further MI levels were not tested for the model with common latent state variables.
b �2-difference test (with MLR correction) with the less restrictive MI 0 model: �2(24) = 32.529, p = .114.
c �2-difference test (with MLR correction) with the less restrictive MI 1 model: �2(48) = 132.94, p < .001.

thereby setting the conditional method bias invariant over measurement occasions. Again, note that
the residual variables e(r)ti jkl are set to 1 by definition. The following section presents the results of
the model estimation.

8.3.1 Results
The LS-Com GRM with indicator-specific latent state variables and MI level 0 did fit the data slightly
better than the respective LS-Com GRM with common state variables, as indicated by CFI, RMSEA,
AIC, BIC and PPP, so that the model with indicator-specific states was chosen for further analyses.
The specific values of the fit indices for the two models as estimated by MLR and Bayesian methods
are provided in Table 8.2. Modification indices provided by the MLR estimation suggested that there
were indicator-specific stabilities over time that could not be captured by the LS-Com GRM
covariance structure. Model fit according to RMSEA and �2/d f ratio indicated good fit, while SRMR
values were acceptable and the CFI rather poor (as judged by the criteria given in Schermelleh-Engel
et al. (2003), see section 8.2.3). PPP-values for the categorical-indicator model also indicated rather
poor fit (PPP = 0.020), with the 95% confidence interval for the difference between the observed and
replicated �2-values not including zero.
Despite the rather poor fit of the models, the results shall be shortly presented in the following in order
to provide an illustration for how the coefficients in the LS-Com GRM could be interpreted. AIC and
BIC values favored the more restrictive MI 2 model over the MI 0 and MI 1 models (see Table 8.2).
Hence, the following results stem from the model with indicator-specific states and strong MI.



Table 8.3: Latent correlations between the latent state variables for the SWLS and SHS items in the LS-Com GRM

Scale SWLS SHS
S11 S21 S31 S12 S22 S32 S13 S23 S33 H11 H21 H31 H12 H22 H32 H13 H23 H33

SWLS

S11 3.167 [.546, .725] [.921, .973] [.730, .857] [.442, .652] [.695, .831] [.650, .802] [.383, .608] [.601, .761] [.623, .795] [.614, .772] [.624, .777] [.532, .721] [.507, .690] [.444, .641] [.426, .632] [.446, .642] [.416, .618]

S21 .640 2.472 [.642, .793] [.431, .638] [.838, .937] [.472, .666] [.386, .607] [.708, .859] [.444, .645] [.411, .639] [.343, .564] [.326, .547] [.346, .579] [.313, .538] [.242, .475] [.296, .529] [.294, .520] [.208, .445]

S31 .951 .722 4.558 [.752, .871] [.564, .740] [.773, .878] [.650, .800] [.473, .674] [.663, .801] [.742, .872] [.713, .839] [.714, .840] [.655, .808] [.633, .784] [.565, .732] [.542, .718] [.552, .721] [.528, .702]

S12 .798 .539 .816 3.685 [.569, .745] [.933, .979] [.739, .864] [.458, .664] [.738, .860] [.526, .724] [.485, .674] [.546, .720] [.758, .880] [.651, .797] [.629, .780] [.540, .722] [.525, .703] [.567, .734]

S22 .552 .893 .657 .662 2.538 [.628, .782] [.406, .621] [.701, .856] [.478, .673] [.348, .584] [.250, .484] [.258, .492] [.459, .665] [.375, .588] [.307, .532] [.299, .533] [.262, .496] [.231, .466]

S32 .768 .574 .830 .960 .710 5.195 [.691, .828] [.469, .667] [.735, .852] [.597, .774] [.567, .731] [.593, .754] [.832, .924] [.747, .861] [.693, .825] [.600, .762] [.587, .747] [.617, .770]

S13 .731 .501 .730 .807 .518 .764 3.774 [.673, .826] [.926, .975] [.531, .728] [.493, .681] [.462, .657] [.609, .780] [.529, .708] [.501, .689] [.694, .833] [.645, .794] [.585, .750]

S23 .500 .790 .579 .566 .785 .573 .756 2.484 [.730, .857] [.367, .605] [.257, .497] [.231, .473] [.391, .616] [.300, .531] [.270, .506] [.502, .697] [.422, .632] [.334, .558]

S33 .685 .549 .737 .804 .581 .798 .953 .798 5.469 [.633, .799] [.578, .741] [.571, .735] [.728, .858] [.647, .793] [.642, .789] [.813, .909] [.748, .865] [.720, .842]

SHS

H11 .715 .530 .813 .630 .471 .691 .635 .492 .721 2.382 [.867, .962] [.843, .949] [.748, .889] [.783, .914] [.735, .884] [.771, .898] [.733, .896] [.742, .888]

H21 .698 .457 .780 .584 .370 .653 .591 .381 .664 .922 3.155 [.839, .937] [.724, .864] [.837, .927] [.741, .872] [.756, .882] [.818, .918] [.753, .881]

H31 .705 .441 .781 .637 .379 .678 .564 .356 .658 .902 .892 3.191 [.752, .883] [.782, .903] [.846, .932] [.712, .852] [.723, .862] [.818, .916]

H12 .632 .467 .737 .824 .568 .883 .700 .509 .798 .825 .799 .823 2.569 [.908, .969] [.880, .959] [.809, .915] [.785, .907] [.844, .937]

H22 .603 .430 .713 .729 .486 .808 .623 .420 .724 .855 .886 .847 .943 3.590 [.884, .959] [.817, .918] [.852, .937] [.845, .940]

H32 .547 .362 .653 .709 .424 .764 .599 .392 .720 .817 .811 .893 .925 .926 3.492 [.794, .909] [.799, .910] [.915, .971]

H13 .533 .416 .634 .636 .420 .685 .768 .605 .865 .840 .825 .787 .867 .872 .857 3.397 [.916, .976] [.887, .959]

H23 .549 .411 .641 .619 .383 .671 .725 .532 .811 .822 .873 .797 .851 .899 .860 .952 3.789 [.879, .956]

H33 .521 .330 .619 .655 .351 .698 .673 .451 .785 .821 .822 .872 .895 .897 .947 .928 .922 3.695
Note. The lower diagonal contains posterior means, the upper diagonal posterior credibility intervals for the latent correlations. Latent factor variances are given in italics on the diagonal. Hil : Happiness (SHS) latent state variable for
indicator i on measurement occasion l; Sil : SWLS latent state variable for indicator i on measurement occasion l; SHS: Subjective Happiness Scale; SWLS: Satisfaction with Life Scale.
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Table 8.4: Latent correlations between the latent method variables for the SWLS and SHS items in the LS-Com GRM

Common Method Variables Method Variables
Scale SWLS SHS SWLS SHS

CMS1 CMS2 CMS3 CMH1 CMH2 CMH3 MS1 MS2 MS3 MH1 MH2 MH3

SWLS
CMS1 0.463 [.598, .881] [.520, .850] [.595, .874] [.488, .857] [.433, .829] [.013, .437] [.044, .462] [-.005, .431] [-.062, .347] [-.145, .274] [-.138, .283]

CMS2 .765 0.409 [.586, .883] [.488, .847] [.513, .869] [.516, .868] [-.038, .427] [.081, .559] [-.048, .461] [-.043, .424] [-.031, .454] [-.111, .386]

CMS3 .710 .764 0.477 [.468, .842] [.364, .819] [.511, .875] [-.111, .358] [-.039, .447] [-.195, .291] [-.007, .441] [-.009, .457] [-.126 .343]

SHS
CMH1 .760 .700 .685 0.378 [.578, .875] [.529, .860] [-.108, .319] [-.052, .388] [-.114, .341] [-.001, .396] [-.077 .349] [-.075 .350]

CMH2 .707 .731 .631 .757 0.343 [.578, .888] [-.112, .369] [-.028, .469] [-.105, .409] [-.144, .335] [-.192, .310] [-.233, .265]

CMH3 .662 .730 .733 .727 .773 0.345 [-.146, .356] [-.059, .463] [-.248, .288] [-.064, .411] [-.093, .407] [-.232, .277]

SWLS
MS1 .232 .200 .126 .107 .132 .108 1.078 [.555, .766] [.558, .772] [.667, .833] [.381, .632] [.429, .675]

MS2 .259 .330 .209 .172 .228 .211 .668 0.883 [.716, .876] [.482, .708] [.587, .779] [.505, .734]

MS3 .220 .214 .048 .116 .156 .019 .672 .803 1.112 [.403, .647] [.392, .642] [.609, .791]

SHS
MH1 .146 .198 .221 .202 .101 .180 .762 .602 .531 1.259 [.728, .881] [.708, .868]

MH2 .065 .220 .231 .139 .063 .162 .513 .690 .524 .812 1.214 [.744, .896]

MH3 .073 .142 .112 .140 .017 .022 .559 .626 .707 .796 .872 1.358

Note. The lower diagonal contains posterior means, the upper diagonal posterior credibility intervals for the latent correlations. Latent factor variances are given in italics on the
diagonal. CMHl : Common Method factor of SHS on measurement occasion l; CMSl : Common Method factor of SWLS on measurement occasion l; MHl : Method factor of SHS on
measurement occasion l; MSl : Method factor of SWLS on measurement occasion l; SHS: Subjective Happiness Scale; SWLS: Satisfaction with Life Scale.
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Table 8.5: Latent correlations between the unique method variables for the SWLS and SHS items in the LS-Com GRM

Scale SWLS SHS
UMS1 UMS2 UMS3 UMH1 UMH2 UMH3

SWLS
UMS1 1.046 [.715, .852] [.651, .817] [.514, .691] [.350, .570] [.326, .557]

UMS2 .788 1.317 [.746, .878] [.432, .639] [.517, .696] [.431, .642]

UMS3 .739 .817 1.353 [.337, .572] [.311, .545] [.473, .668]

SHS
UMH1 .607 .540 .459 0.676 [.731, .876] [.715, .873]

UMH2 .464 .611 .432 .810 0.796 [.754, .892]

UMH3 .446 .542 .576 .800 .830 0.860
Note. The lower diagonal contains posterior means, the upper diagonal posterior credibility intervals for the latent
correlations. Latent factor variances are given in italics on the diagonal. SHS: Subjective Happiness Scale; SWLS:
Satisfaction with Life Scale; UMHl : Unique method factor of SHS on measurement occasion l; UMSl : Unique
method factor of SWLS on measurement occasion l.

Posterior means and CIs for the correlations between the latent state variables of different measure-
ment occasions as well as constructs are given in Table 8.3. The items of the SHS were observed to
be rather homogeneous, with high correlations between the item-specific latent state variables on the
same measurement occasion (.892 to .952). The items of the SWLS showed less homogeneity, with
the latent states of Item 1 and Item 3 being highly correlated within measurement occasions (r = .951
- .960), while Item 2 showed less associations with the other two items (r = .640 - .798).
The indicator-specific latent state variables of the SWLS exhibited stabilities of .731 to .893, the
stabilities of the indicator-specific SHS state variables ranged from .825 to .947. Construct stability
corrected for indicator-specific effects, as indicated by correlations between the latent state variables
of different indicators of the same construct over time, were slightly lower, albeit still high, ranging
from .500 to .816 for the SWLS, and .787 to .897 for the SHS. Mean differences in satisfaction with
life and happiness over time were found for SWLS item 1 (latent state mean of 0.307, CI: [0.125;
0.490], at T2 and 0.497, CI: [0.300; 0.698], at T3) and SWLS item 2 at T3 (latent state mean of
0.229, CI: [0.049;0.413]).
Correlations between SWLS and SHS item-specific latent states on the same measurement occasion
ranged between .424 and .865. Correlations of SWLS and SHS latent states of different measurement
occasions, indicating discriminant validity corrected for occasion-specific influences, were somewhat
lower, ranging from .330 to .798.
Posterior means and CIs for the correlations between the latent common method factors and method
factors of different measurement occasions as well as constructs are given in Table 8.4, and those for
the unique method factors are given in Table 8.5. Stability of rater effects for the peer ratings were
comparable for life satisfaction and subjective happiness: unique method factors exhibited stabili-
ties of .788 and .817 between adjacent occasions for the SWLS and of .810 and .830 for the SHS;
common method factor stabilities were .764 and .765 between adjacent occasions for the SWLS and
.757 as well as .773 for the SHS. Method factor stabilities for the rater effects of the parents showed
stabilities of .668 and .803 between adjacent measurement occasions for the SWLS and of .812 and
.872 for the SHS. Rater effects also showed comparable stabilities between T1 and T3 (see Tables 8.4
and 8.5).
Generalizability of method effects across the two well-being aspects on the same measurement occa-
sion was high for the unique method variables (.576 - .611), as well as the common method variables
(.731 - .760) and method variables (.690 - .762). Generalizability of method effects across the two
well-being aspects over measurement occasions, i.e., corrected for common occasion-specific effects,
were still high, with correlations between .432 and .542 for the unique method, .631 and .730 for the
common method, and .513 and .626 for the method factors.



Table 8.6: Consistency coefficients and method specificty coefficients for the SWLS and SHS items

SWLS SHS

item 1 item 2 item 3 item 1 item 2 item 3
Coefficient T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3
Peer report

CON
.191 .194 .189 .192 .163 .156 .199 .195 .195 .151 .151 .182 .136 .138 .136 .169 .168 .167

[.133, .255] [.134, .259] [.128, .255] [.128, .264] [.107, .228] [.101, .222] [.143, .260] [.139, .258] [.138, .260] [.093, .216] [.094, .216] [.116, .254] [.087, .191] [.088, .195] [.088, .192] [.111, .235] [.111, .232] [.110, .232]

CMS
.248 .191 .212 .003 .002 .001 .198 .153 .168 .304 .255 .234 .183 .149 .141 .235 .195 .186

[.144, .365] [.107, .294] [.122, .319] [-.070, .091] [-.053, .066] [-.065, .071] [.101, .308] [.070, .256] [.083, .271] [.191, .429] [.140, .389] [.127, .358] [.106, .274] [.072, .245] [.066, .235] [.122, .357] [.084, .324] [.076, .320]

UMS
.561 .615 .600 .805 .836 .843 .603 .652 .637 .545 .594 .584 .681 .714 .723 .596 .636 .646

[.449, .672] [.513, .712] [.496, .698] [.694, .909] [.747, .918] [.750, .931] [.493, .712] [.550, .749] [.535, .733] [.430, .660] [.465, .715] [.463, .700] [.584, .771] [.610, .805] [.620, .812] [.484, .708] [.512, .751] [.516, .763]

Parent report

CON
.352 .434 .385 .301 .351 .296 .314 .389 .348 .266 .288 .323 .278 .312 .300 .318 .345 .333

[.257, .452] [.328, .542] [.284, .490] [.208, .401] [.244, .462] [.202, .399] [.235, .398] [.299, .482] [.262, .438] [.171, .372] [.189, .397] [.215, .437] [.188, .378] [.217, .415] [.208, .401] [.222, .420] [.246, .450] [.235, .438]

MS
.648 .566 .491 .587 .545 .473 .686 .611 .521 .734 .712 .677 .646 .616 .564 .682 .655 .600

[.548, .743] [.458, .672] [.370, .639] [.463, .726] [.423, .685] [.340, .638] [.602, .765] [.518, .701] [.399, .666] [.628, .829] [.603, .811] [.563, .785] [.517, .793] [.491, .758] [.413, .751] [.580, .778] [.550, .754] [.457, .771]

Latent State Means

0 a .161 .257 0 a .046 .146 0 a .042 .077 0 a -.104 -.004 0 a .012 -.012 0 a .086 .084
- [.066, .256] [.154, .362] - [-.057, .148] [.032, .259] - [-.046, .129] [-.019, .172] - [-.215, .004] [-.102, .093] - [-.075, .100] [-.101, .075] - [-.001, .174] [-.005, .172]

Note. Credibility intervals are given in parentheses below the posterior mean values. CMS: Common Method Specificity Coefficient; CON: Consistency Coefficient; MS: Method Specificity Coefficient; SHS:
Subjective Happiness Scale; SWLS: Satisfaction with Life Scale; T1: measurement occasion 1; T2: measurement occasion 2; T3: measurement occasion 3; UMS: Unique Method Specificity Coefficient.
a Latent State means at T1 were fixed to zero for identification reasons.
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Correlations between common method factors and (parent) method factors were close to zero (with
CIs including zero) for both the SWLS and SHS on most measurement occasions, with the exception
of correlations for the SWLS at T1 and T2 of .232 and .330, respectively.
Estimates of consistency and method specificity coefficients along with their 95% CI for the items
of the SWLS and SHS are presented in Table 8.6. Consistency coefficients for the SWLS peer re-
port indicators range from .156 to .199. That is, depending on the item and measurement occasion,
between 15.6% and 19.9% of the reliable variance of the peer reports can be explained by the self-
reports on the SWLS. Consistency coefficients of the SHS peer report items are minimally smaller,
where 13.6% to 18.2% of the variance of the latent response variable is shared with the self-report
latent state variables. The square root of the consistency coefficient can be interpreted as the latent
correlation between the self- and the peer report. That is, in the present sample and model, SWLS
self- and peer reports correlate to .39 - .45, SHS self- and peer reports correlate to .37 - .43. The
largest amount of the variance in the peer reports is variance that goes back to the individual views
of the peers, not shared with either the self-report or the other peers. This is the case for the SWLS
and the SHS, as indicated by unique method specificity coefficients of .561 - .843 (SWLS) and .545 -
.723 (SHS). In contrast, a common view of the peers that is not shared with the self-report accounts
for only 0.1% - 24.8% of the interindividual differences in the SWLS peer reports and for 14.1% -
30.4% of the variance in the SHS peer reports.
In contrast to the peer reports, the parent reports show higher correlations with the self-reports for
both SWLS and SHS. For the SWLS parent report indicators between 29.6% and 43.4% of the latent
response variable’s variance is shared with the self-report latent state variables, for the SHS between
26.6% and 34.5%.

8.3.2 Discussion

As the LS-Com GRM did not fit the data well, the results presented above should be interpreted
with caution. Nevertheless, they give some hints with respect to the amount and generalizability of
different rater effects. Consistency and method specificity coefficients of the SWLS and SHS items
indicate that it is not enough to collect only self-, parent or peer reports, but that several different
methods should be considered. Observed rater effects seem to generalize over the two components,
that is, peers or parents (under-) overestimating the life satisfaction of a target tend to also (under-)
overestimate the happiness of the respective target. This is not only the case for individual raters
(unique method factor) but also for the common view of the peers on the target (common method
factor). Furthermore, these rater tendencies of over- or underestimation appear to be quite stable over
a time period of three to six months. Also, both life satisfaction and subjective happiness themselves
were found to be quite stable, however, still indicating variability in both components over time.
However, modification indices indicated the existence of indicator-specific stabilities that are not well
recovered by the LS-Com GRM covariance structure. These might be better captured by the LST-
Com GRM.
Furthermore, the LS-Com GRM does not allow for the differentiation between state variability and
trait change. In order to make this distinction, other models such as latent state-trait-models are
needed (Eid & Kutscher, 2014). A latent state-trait version of the model, the LST-Com GRM, will be
applied to the data in the following section.
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8.4 LST-Com GRM of Life Satisfaction and Subjective Hap-
piness

In this section the LST-Com GRM is applied to the SWLS and SHS self-, parent and peer report
measures. The specific LST-Com GRM used corresponds to the model depicted in Figure 8.1, with
the only difference that the model in this application includes three measurement occasions (instead
of two, as depicted in the Figure). Due to the results of the application of the LS-Com GRM to these
data (i.e., indicator-specific effects and stabilities), the LST-Com GRM was specified with indicator-
specific latent trait variables xti j1 and x

UM
rti j2, x

CM
ti j2 , and x

M
ti j3.

Different levels of measurement invariance were compared for the chosen model by a stepwise ap-
proach. The levels tested were the following three levels: (0) factorial invariance, i.e., no invariance
restrictions on the loading or threshold parameters; (1) invariance of the loading parameters of the la-
tent state residual (method) factors on the non-reference method indicators, i.e., invariant l

z i jkl , l

CM
z i jkl ,

l

M
z i jkl , and l

UM
z i jkl over time; (2) strong measurement invariance, i.e., all factor loadings and threshold

parameters restricted to be equal across measurement occasions for the same indicator i, construct j
and method k. This includes the regression parameters of the regression of the non-reference method
on the reference-method trait variables, thereby setting the conditional method bias invariant over
measurement occasions. Again, note that the residual variables e(r)ti jkl are set to 1 by definition. The
following section presents the results of the model estimation.

8.4.1 Results
Model fit for the LST-Com GRM with MI levels 0, 1 and 2 as estimated by MLR and Bayesian
methods are given in Table 8.7. The model with MI 0 (no measurement invariance restrictions) did
either not converge (MLR) or showed problematic traceplots indicating poor convergence for some
parameters (Bayesian estimation). So did the traceplots of the model with MI 1. Traceplots for the
MI 0 and MI 1 model did not show patterns suggesting that further increasing the number of iterations
would improve convergence. AIC and BIC values favored the more restrictive model with MI 2 (see
Table 8.7). The LST-Com GRM with MI 2 converged well, as indicated by the inspection of traceplots
and a PSR of 1.008. Hence, the following results stem from the Bayesian estimation of the model with
strong MI (MI level 2). The model fits the data reasonably well, with a PPP-value of .137 and a 95%
confidence interval for the difference between the observed and replicated �2-values including zero, [-
74.08, 265.87]. Estimates of reliability, ICCs, and trait- as well as occasion-specificities for the items
of the SWLS and SHS are presented in Table 8.8. Reliabilities of the items are satisfactory, ranging
from .721 to .889 for the SWLS and .695 to .817 for the SHS items, with no marked differences
between the self-, parent or peer reports. True (i.e., latent) ICC estimates show that the need for
modeling the multilevel structure is clearly given.
Time consistency coefficients are high, ranging from .687 to .877 for the SWLS and from .767 to
.927 for the SHS. That is, between 68.7% and 92.7% of the reliable variance of the items goes back
to stable influences over time, with slightly lower occasion-specificity of the SHS than the SWLS
items. No systematic differences in the time consistencies between self-, parent and peer reports can
be observed. Figures 8.2 and 8.4 display category characteristic curves for the SWLS and SHS self-
report, parent report and peer report items. Operation characteristic curves are displayed in Figures
8.3 and 8.5 for the SWLS and SHS, respectively.
For the SWLS items, the probability distributions of the different categories in dependency of the
latent response variable are very similar for the self-reports and peer reports. That is, given a value
on the latent response variable prti jkl or pti jkl , the answer scale is not used in different ways by the
targets and the peers. Parents, in contrast, show a general tendency to answering in higher categories
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Table 8.7: Model fit results for the LST-Com GRM of life satisfaction and subjective happiness

MLR estimator (indicators treated as continuous)
MI remarks �2 df RMSEA CFI SRMR W SRMR B AIC BIC BIC adj.
0 no convergence - - - - - - - - -
1 - 1786.883 1347 .015 .971 .033 .061 51621.50 53521.77 52368.66
2 - 1968.256a 1455 .016 .966 .040 .061 51601.21 52936.11 52126.07

Bayesian estimation (indicators treated as categorical)
�2-diff. limit

MI Traceplots PSR PPP lower upper Iterations Thinning Chains
0 problematic 1.042 .265 -115.95 222.28 100000 10 3
1 problematic 1.023 .240 - 106.50 232.35 100000 10 3
2 good 1.008 .137 -74.08 265.87 80000 10 3

Note. AIC: Akaike information criterion; BIC: Bayesian information criterion; BIC adj.: sample size adjusted BIC; CFI: Comparative fit
index; MI: Level of measurement invariance: (0) no measurement invariance restrictions on loading or threshold parameters; (1) invariance
of the loading parameters of the latent state residual (method) factors on the non-reference method indicators, i.e., invariant l

z i jkl , l

CM
z i jkl ,

l

M
z i jkl , and l

UM
z i jkl over time; (2) strong measurement invariance, i.e., all factor loadings and threshold parameters restricted to be equal

across measurement occasions; MLR: Maximum Likelihood robust estimator (Mplus); PPP: Posterior predictive p-value; PSR: Potential
scale reduction factor; RMSEA: Root mean square error of approximation; SRMR B: standardized root mean square residual on the
between-level; SRMR W: standardized root mean square residual on the within-level.
a �2-difference test (with MLR correction) with the less restrictive MI 1 model: �2(108) = 174.02, p < .001.

as compared to the targets (self-reports) or peers on the SWLS. SWLS item 2 appears to be slightly
easier than Items 1 and 3, at least for Category 5.
For the SHS items, the probability distributions of the different categories in dependency of the latent
response variable are similar for the self-reports, parent reports and peer reports. Only SHS item 2
appears to be minimally easier for the parents than for the peers or the targets (self-report). Category
characteristic curves for SHS items 2 and 3 are comparable, while item 1 shows a different pattern.
Item 1 seems to be the easiest of the SHS items, showing higher probabilities for categories 4 and 5,
while category 2 is avoided.
Posterior means and CIs for the correlations between the latent trait variables, the latent state residual
variables and the latent trait and state residual method variables in the LST-Com GRM are given in
Tables 8.9, 8.10 and 8.11. In accordance with the correlations found for the latent state factors in the
LS-Com GRM, the items of the SHS were observed to be rather homogeneous, with high correlations
between the item-specific latent trait variables (.916 - .935; see Table 8.9). Again, the items of the
SWLS showed less homogeneity, with the latent traits of Item 1 and Item 3 being highly correlated
(.945), while Item 2 showed less associations with the other two items (r = .654 and .709).
Correlations between SWLS and SHS item-specific latent traits ranged between .439 and .860, with
the lowest correlations found for SWLS item 2. That is, satisfaction with life as a trait shows strong
associations with self-reported trait happiness. Note that, in contrast to the LS-Com GRM, these
correlations refer to the stable part of the constructs and are free of measurement-occasion specific
influences. However, also on the occasion-specific level self-reported satisfaction with life and sub-
jective happiness are positively associated, as indicated by state residual correlations of .599 to .739
(see Table 8.10).
Correlations between the method trait variables of the SWLS and SHS items reported in Table 8.11
show that parents who consistently overestimate their child’s satisfaction with life tend to also consis-
tently overestimate their happiness, with slightly greater associations between the SHS with SWLS
items 1 and 3 (.578 - .817) than with item 2 (.350 - .496). Similarly, if the stable common view of
the peers on the targets’ satisfaction with life is higher than is to be expected by the self-reports, they
also tend to have a too positive common view on the targets’ happiness (correlations between CMT
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Figure 8.1: Path diagram of the Latent-State-Trait-Com graded response model with indicator-specific latent trait (xti j) and latent method
trait variables (xUM

rti j2, x

CM
ti j2 , x

M
ti jk), and common latent state residual variables zt jl , two structurally different methods and one

set of interchangeable methods on two measurement occasions for two constructs. Note that the model applied to the SWLS
and SHS data included three measurement occasions (instead of two, as depicted here). Method 1 is selected as reference
method. For the sake of clarity, correlations between latent variables and loading parameters are not displayed. Correlations
that are not permissible in the depicted LST-Com GRM are all correlations between any trait (method) variable x and any
state residual (method) variable z , correlations between the latent trait and the latent trait (common) method variables of the
same construct j and indicator i, correlations between the latent state residual and the latent state residual (common) method
variables of the same construct j and measurement occasion l, as well as correlations between any level-1 and any level-2 latent
variable. Additionally restricted to zero were: any correlations of latent state residual (method) variables across measurement
occasions; correlations between latent state residual variables and latent state residual method variables of different constructs;
any correlations between latent trait variables and latent trait (common) method variables (across constructs). CM: common
method; M: method; S: state variable; UM: unique method; x : latent trait variable; Yrti jkl : rating of rater r for target t of the
i-th item of trait j and method k on measurement occasion l; z : latent state residual variable.

variables of .511 - .784).
On the occasion-specific level, method correlations deviating from zero are found only for the par-
ents’ ratings of life satisfaction and happiness. Parents that have a momentary positively biased view
on their child’s satisfaction with life tend to also overestimate their happiness at that moment in time.
Hence, generalizability of stable method effects across the two well-being aspects is high for the
peers as well as the targets, while generalizability of transient method effects across life satisfaction
and happiness is only possible for the parent ratings. However, generalizability of method effects for
the peers is high on the individual rater level (see Table 8.10). That is, the specific view of a peer
rater, not shared with the other peers, is highly generalizable over items within (.663 - .864) as well
as between the two well-being aspects (.321 - .668) on a stable level, as well as between the two
well-being aspects on a momentary level (.488 - .571).
The peers’ stable common view on the target’s satisfaction with life shares some similarities with
the parents’ stable view (correlations between .324 and .515), corrected for the self-reports. That
is, targets whose satisfaction of life is overestimated (underestimated) by their parents, tend to be
also overestimated (underestimated) in their satisfaction with life by their peers (common view of the
peers). In contrast, this kind of association is not present for most of the happiness items (MT and



Table 8.8: Latent variance coefficients for the SWLS and SHS items in the LST-Com GRM: Reliabilities, ICCs, time consistency and occasion-specificity coefficients

SWLS SHS
item 1 item 2 item 3 item 1 item 2 item 3

Report T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3
Reliabilities

Self .784 .781 .802 .724 .721 .742 .868 .866 .880 .750 .739 .759 .798 .792 .804 .779 .773 .783
[.737, .827] [.735, .823] [.757, .843] [.671, .774] [.667, .771] [.688, .790] [.827, .907] [.825, .906] [.842, .916] [.701, .797] [.691, .785] [.712, .804] [.756, .838] [.749, .832] [.762, .843] [.736, .818] [.731, .813] [.742, .821]

Parent .775 .748 .764 .844 .824 .835 .889 .869 .881 .749 .745 .752 .789 .784 .792 .729 .725 .731
[.719, .825] [.688, .802] [.707, .815] [.790, .891] [.765, .876] [.780, .884] [.843, .930] [.820, .915] [.834, .925] [.691, .803] [.685, .799] [.694, .806] [.725, .848] [.716, .848] [.728, .851] [.671, .783] [.669, .778] [.674, .784]

Peer .779 .763 .779 .774 .772 .781 .793 .791 .804 .698 .695 .705 .815 .815 .817 .700 .700 .703
[.729, .829] [.714, .813] [.730, .829] [.729, .817] [.725, .817] [.735, .824] [.740, .853] [.740, .851] [.753, .861] [.647, .748] [.643, .746] [.653, .757] [.751, .884] [.753, .882] [.757, .883] [.653, .747] [.652, .748] [.655, .752]

ICC

Peer .423 .357 .362 .323 .303 .299 .379 .359 .344 .407 .395 .416 .323 .321 .319 .354 .351 .352
[.320, .525] [.259, .462] [.260, .470] [.224, .427] [.208, .407] [.205, .402] [.272, .482] [.258, .462] [.245, .445] [.299, .512] [.287, .503] [.307, .523] [.204, .433] [.202, .432] [.202, .428] [.248, .460] [.245, .458] [.246, .460]

Time consistencies

Self .766 .781 .687 .812 .824 .743 .766 .781 .687 .805 .853 .767 .863 .899 .834 .901 .927 .879
[.686, .837] [.707, .847] [.602, .767] [.737, .875] [.751, .886] [.656, .821] [.691, .833] [.700, .852] [.611, .758] [.723, .875] [.780, .914] [.678, .847] [.802, .915] [.843, .943] [.762, .896] [.848, .843] [.881, .962] [.822, .926]

Parent .747 .867 .795 .759 .877 .809 .689 .827 .739 .821 .842 .808 .788 .812 .773 .884 .900 .875
[.653, .831] [.790, .927] [.710, .867] [.668, .842] [.800, .936] [.724, .881] [.598, .775] [.743, .898] [.644, .826] [735., .892] [.752, .915] [.708, .888] [.692, .872] [704., .905] [.672, .862] [.806, .944] [.833, .951] [.797, .935]

Peer .719 .786 .718 .852 .864 .822 .776 .782 .724 .795 .806 .767 .795 .794 .782 .869 .869 .857
[.639, .795] [.710, .851] [.632, .797] [.791, .904] [.795, .919] [.746, .886] [.683, .855] [.693, .859] [.634, .808] [.735, .892] [.730, .868] [.683, .840] [.696, .879] [.704, .873] [.693, .861] [.803, .929] [.797, .925] [.780, .919]

Occasion specificities

Self .234 .219 .313 .188 .176 .257 .234 .219 .313 .195 .147 .233 .137 .101 .166 .099 .073 .121
[.163, .314] [.153, .293] [.233, .398] [.125, .263] [.114, .249] [.179, .344] [.167, .309] [.148, .300] [.242, .389] [.125, .277] [.086, .220] [.153, .322] [.085, .198] [.057, .157] [.104, .238] [.057, .152] [.038, .119] [.074, .178]

Parent .253 .133 .205 .241 .123 .191 .311 .173 .261 .179 .158 .192 .212 .188 .227 .116 .100 .125
[.169, .247] [.073, .210] [.133, .290] [.158, .332] [.064, .200] [.119, .276] [.225, .402] [.102, .257] [.174, .356] [.108, .265] [.085, .248] [.112, .292] [.128, .308] [.095, .296] [.138, .328] [.056, .193] [.049, .167] [.065, .203]

Peer .281 .214 .282 .148 .136 .178 .224 .218 .276 .205 .194 .233 .205 .206 .218 .131 .131 .143
[.205, .364] [.149, .290] [.203, .368] [.096, .209] [.081, .205] [.114, .254] [.145, .317] [.141, .307] [.192, .366] [.142, .278] [.132, .270] [.160, .317] [.121, .304] [.127, .296] [.139, .306] [.077, .197] [.075, .203] [.081, .265]

Note. Credibility Intervals are given in parentheses below the posterior mean values. ICC: Intra-class-correlation coefficient; Report: Method, i.e., self-, parent or peer report; SHS: Subjective Happiness Scale; SWLS:
Satisfaction with Life Scale; Tl: measurement occasion l. Time consistency and occasion-specificity coefficients were calculated by the formulas given in Table 4.1, reliabilities and ICCs as given by the formulas in Table 2.2.
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Figure 8.2: Category characteristic curves for the SWLS self-report, parent report and peer report items in the LST-COM GRM. Lines below the curves indicate the variability of the latent
response variable p and of the trait components of p: Upper line with triangles: mean variability of p , averaged over measurement occasions; Lower line with circles: mean
variability of the trait component of p (i.e., variability of p that goes back to trait components); middle triangle / circle: mean; lower / upper triangle / circle: mean +- 1 SD; Parent:
parent report items; Peer; peer report items; Self: self-report items; SWLS: Satisfaction with Life Scale. Note that the lowest category of SWLS item 2 was not used by the peers at
T3 and the lowest category of all SWLS items was not used by the parents on at least one occasion of measurement.
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Figure 8.3: Operation characteristic curves for the SWLS self-report, parent report and peer report items in the LST-COM GRM. Lines below the curves indicate the variability of the latent
response variable p and of the trait components of p: Upper line with triangles: mean variability of p , averaged over measurement occasions; Lower line with circles: mean
variability of the trait component of p (i.e., variability of p that goes back to trait components); middle triangle / circle: mean; lower / upper triangle / circle: mean +- 1 SD; Parent:
parent report items; Peer; peer report items; Self: self-report items; SWLS: Satisfaction with Life Scale. Note that the lowest category of SWLS item 2 was not used by the peers at
T3 and the lowest category of all SWLS items was not used by the parents on at least one occasion of measurement.
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Figure 8.4: Category characteristic curves for the SHS self-report, parent report and peer report items in the LST-COM GRM. Lines below the curves indicate the variability of the latent
response variable p and of the trait components of p: Upper line with triangles: mean variability of p , averaged over measurement occasions; Lower line with circles: mean
variability of the trait component of p (i.e., variability of p that goes back to trait components); middle triangle / circle: mean; lower / upper triangle / circle: mean +- 1 SD; Parent:
parent report items; Peer: peer report items; Self: self-report item;. SHS: Subjective Happiness Scale.
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Figure 8.5: Operation characteristic curves for the SHS self-report, parent report and peer report items in the LST-COM GRM. Lines below the curves indicate the variability of the latent
response variable p and of the trait components of p: Upper line with triangles: mean variability of p , averaged over measurement occasions; Lower line with circles: mean
variability of the trait component of p (i.e., variability of p that goes back to trait components); middle triangle / circle: mean; lower / upper triangle / circle: mean +- 1 SD; Parent:
parent report items; Peer: peer report items; Self: self-report items; SHS: Subjective Happiness Scale.
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Table 8.9: Latent correlations between the SWLS and SHS trait variables in the LST-Com GRM

Scale SWLS SHS
TS1 TS2 TS3 TH1 TH2 TH3

SWLS
TS1 2.819 [.574, .725] [.920, .966] [.706, .827] [.654, .779] [.632, .764]
TS2 .654 2.185 [.640, .769] [.450, .629] [.376, .560] [.341, .530]
TS3 .945 .709 5.170 [.814, .900] [.751, .849] [.737, .839]

SHS
TH1 .711 .544 .860 2.441 [.903, .961] [.884, .944]
TH2 .720 .472 .803 .935 3.457 [.884, .944]
TH3 .702 .439 .791 .927 . 916 3.200

Note. The lower diagonal contains posterior means, the upper diagonal posterior credibility intervals for the
latent correlations. Latent factor variances are given in italics on the diagonal. SHS: Subjective Happiness
Scale; SWLS: Satisfaction with Life Scale; THi: Latent trait variable for SHS item i; TSi: Latent trait variable
for SWLS item i.

Table 8.10: Latent correlations for the SWLS and SHS state residual, unique method state residual and unique
method trait variables in the LST-Com GRM

Latent state residual variables
Scale SWLS SHS

SS1 SS2 SS3 SH1 SH2 SH3

SWLS
SS1 0.867 - - [.403, .768] - -
SS2 - 0.791 - - [.560, .872] -
SS3 - - 1.295 - - [.522, .814]

SHS
SH1 .599 - - 0.598 - -
SH2 - .739 - - 0.422 -
SH3 - - .678 - - 0.750

Unique method state residual variables
Scale SWLS SHS

UMSS1 UMSS2 UMSS3 UMSH1 UMSH2 UMSH3

SWLS
UMSS1 0.487 - - [.346, .762] - -
UMSS2 - 0.530 - - [.271, .708] -
UMSS3 - - 0.715 - - [.248, .701]

SHS
UMSH1 .571 - - 0.298 - -
UMSH2 - .503 - - 0.307 -
UMSH3 - - .488 - - 0.328

Latent trait variables
Scale SWLS SHS

UMTS1 UMTS2 UMTS3 UMTH1 UMTH2 UMTH3

SWLS
UMTS1 1.578 [.550, .767] [.787, .925] [.303, .594] [.384, .645] [.448, .692]
UMTS2 .663 1.978 [.642, .826] [.171, .468] [.179, .466] [.178, .458]
UMTS3 .864 .740 1.697 [.482, .729] [.485, .723] [.554, .768]

SHS
UMTH1 .454 .323 .613 1.088 [.688, .883] [.695, .883]
UMTH2 .521 .326 .613 .793 2.180 [.771, .918]
UMTH3 .576 .321 .668 .796 .851 1.241

Note. The lower diagonals contain posterior means, the upper diagonals posterior credibility intervals for the
latent correlations. Latent factor variances are given in italics on the diagonals. SHS: Subjective Happiness Scale;
SWLS: Satisfaction with Life Scale; SHl : SHS latent state residual variable on measurement occasion l; SSl :
SWLS latent state residual variable on measurement occasion l; UMSHl : SHS unique method state residual vari-
able on measurement occasion l; UMSSl : SWLS unique method state residual variable on measurement occasion
l; UMTHi: SHS unique method trait variable of item i; UMTSi: SWLS unique method trait variable of item i.
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Table 8.11: Latent correlations between the SWLS and SHS common method and method state residual and trait variables in the LST-Com GRM

Method trait variables
Scale SWLS SHS SWLS SHS

CMTS1 CMTS2 CMTS3 CMTH1 CMTH2 CMTH3 MTS1 MTS2 MTS3 MTH1 MTH2 MTH3

SWLS
CMTS1 0.449 [.207, .838] [.558, .914] [.305, .855] [.242, .859] [.120, .804] [.169, .763] [.123, .725] [.168, .754] [.043, .642] [.094, .657] [.014, .604]
CMTS2 .603 0.555 [.370, .867] [.265, .844] [.231, .846] [.077, .781] [.036, .607] [.178, .727] [.055, .614] [-.033, .516] [.080, .596] [-.095, .453]
CMTS3 .795 .687 0.609 [.554, .905] [.494, .905] [.323, .850] [.245, .778] [.130, .691] [.196, .750] [.042, .601] [.239, .734] [.120, .657]

SHS
CMTH1 .660 .629 .784 0.427 [.488, .893] [.324, .840] [.106, .638] [.115, .657] [.058, .594] [-.125, .413] [.137, .619] [-.051, .465]
CMTH2 .648 .624 .771 .757 0.819 [.535, .907] [.087, .654] [-.025, .546] [-.105, .460] [-.176, .372] [-.016, .502] [-.029, .501]
CMTH3 .553 .511 .663 .657 .788 0.395 [.085, .662] [-.147, .445] [-.121, .472] [-.077, .504] [.035, .578] [.019, .573]

SWLS
MTS1 .480 .324 .515 .375 .360 .377 1.635 [.492, .737] [.680, .861] [.480, .738] [.444, .699] [.460, .715]
MTS2 .428 .457 .402 .381 .243 .141 .621 2.970 [.674, .853] [.354, .625] [.278, .553] [.200, .489]
MTS3 .465 .333 .464 .322 .161 .164 .779 .772 3.245 [.726, .893] [.645, .838] [.568, .791]

SHS
MTH1 .345 .243 .315 .140 .094 .212 .616 .496 .817 1.672 [.684, .868] [.713, .886]
MTH2 .379 .343 .490 .382 .237 .307 .578 .422 .749 .783 2.090 [.745, .902]
MTH3 .309 .174 .383 .205 .230 .296 .594 .350 .686 .807 .830 1.602

Method state residual variables
Scale SWLS SHS SWLS SHS

CMSS1 CMSS2 CMSS3 CMSH1 CMSH2 CMSH3 MSS1 MSS2 MSS3 MSH1 MSH2 MSH3

SWLS
CMSS1 0.505 - - [-.377, .645] - - [-.056, .621] - - [-.321, .480] - -
CMSS2 - 0.153 - - [-.432, .506] - - [-.530, .493] - - [-.468, .564] -
CMSS3 - - 0.267 - - [-.309, .656] - - [-.647, .315] - - [-.613, .374]

SHS
CMSH1 .178 - - 0.173 - - [-.234, .594] - - [-.248, .605] - -
CMSH2 - .046 - - 0.136 - - [-.566, .411] - - [-.547, .438] -
CMSH3 - - .221 - - 0.229 - - [-.810, -.155] - - [-.788, -.105]

SWLS
MSS1 .296 - - .206 - - 0.865 - - [.548, .873] - -
MSS2 - -.026 - - -.101 - - 0.379 - - [.258, .779] -
MSS3 - - -.201 - - -.549 - - 0.636 - - [.477, .848]

SHS
MSH1 .073 - - .206 - - .735 - - 0.539 - -
MSH2 - .060 - - -.069 - - .552 - - 0.467 -
MSH3 - - -.141 - - -.511 - - .687 - - 0.588

Note. The lower diagonals contain posterior means, the upper diagonals posterior credibility intervals for the latent correlations. Latent factor variances are given in italics on the diagonals. CMSHl : SHS common
method state residual variables for measurement occasion l; CMSSl : SWLS common method state residual variables for measurement occasion l; CMTHi: SHS common method trait variable for indicator i; CMTSi:
SWLS common method trait variable for indicator i; MSHl : SHS method state residual variables for measurement occasion l; MSSl : SWLS method state residual variables for measurement occasion l; MTHi: SHS
method trait variable for indicator i; MTSi: SWLS method trait variable for indicator i; SHS: Subjective Happiness Scale; SWLS: Satisfaction with Life Scale.



Table 8.12: Latent variance coefficients for the SWLS and SHS items in the LST-Com GRM: Consistency and method specificity coefficients on the trait and occasion-specific levels

SWLS SHS
item 1 item 2 item 3 item 1 item 2 item 3

Coeff. T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3
Parents

TMS .624 .624 .624 .702 .702 .702 .567 .567 .567 .671 .671 .671 .691 .691 .691 .665 .665 .665
[.504, .739] [.504, .739] [.504, .739] [.587, .808] [.587, .808] [.587, .808] [.463, .671] [.463, .671] [.463, .671] [.555, .781] [.555, .781] [.555, .781] [.584, .793] [.584, .793] [.584, .793] [.557, .770] [.557, .770] [.557, .770]

TCon .376 .376 .376 .298 .298 .298 .433 .433 .433 .329 .329 .329 .309 .309 .309 .335 .335 .335
[.261, .496] [.261, .496] [.261, .496] [.192, .413] [.192, .413] [.192, .413] [.329, .537] [.329, .537] [.329, .537] [.219, .445] [.219, .445] [.219, .445] [.207, .416] [.207, .416] [.207, .416] [.230, .443] [.230, .443] [.230, .443]

Peers

TCMS .175 .175 .175 .188 .188 .188 .202 .202 .202 .230 .230 .230 .227 .227 .227 .193 .193 .193
[.047, .301] [.047, .301] [.047, .301] [.086, .305] [.086, .305] [.086, .305] [.089, .323] [.089, .323] [.089, .323] [.110, .358] [.110, .358] [.110, .358] [.086, .359] [.086, .359] [.086, .359] [.086, .312] [.086, .312] [.086, .312]

TUMS .614 .614 .614 .668 .668 .668 .561 .561 .561 .586 .586 .586 .602 .602 .602 .607 .607 .607
[.490, .731] [.490, .731] [.490, .731] [.550, .777] [.550, .777] [.550, .777] [.441, .683] [.441, .683] [.441, .683] [.461, .716] [.461, .716] [.461, .716] [.473, .746] [.473, .746] [.473, .746] [.489, .725] [.489, .725] [.489, .725]

TCon .210 .210 .210 .144 .144 .144 .238 .238 .238 .184 .184 .184 .171 .171 .171 .200 .200 .200
[.139, .289] [.139, .289] [.139, .289] [.085, .214] [.085, .214] [.085, .214] [.168, .314] [.168, .314] [.168, .314] [.116, .259] [.116, .259] [.116, .259] [.109, .238] [.109, .238] [.109, .238] [.133, .272] [.133, .272] [.133, .272]

TCon .554 .554 .554 .443 .443 .443 .549 .549 .549 .451 .451 .451 .440 .440 .440 .516 .516 .516
(level 2) [.354, .759] [.354, .759] [.354, .759] [.253, .664] [.253, .664] [.253, .664] [.377, .743] [.377, .743] [.377, .743] [.277, .656] [.277, .656] [.277, .656] [.266, .685] [.266, .685] [.266, .685] [.337, .720] [.337, .720] [.337, .720]
Parents

OMS .968 .935 .938 .993 .986 .986 .949 .898 .901 .984 .987 .982 .939 .946 .930 .917 .930 .906
[.897, 1.000] [.790,.999 ] [.806, .999] [.965, 1.000] [.925, 1.000] [.930, 1.000] [.879, .991] [.759, .983] [.767, .984] [.921, 1.00] [.930, 1.00] [.909, 1.00] [.817, .999] [.808, .999] [.791, .999] [.715, 1.00] [.755, 1.00] [.690, .999]

OCon .032 .065 .062 .007 .014 .014 .051 .102 .099 .016 .013 .018 .061 .054 .070 .083 .070 .094
[.000, .103] [.001, .210] [.001, .194] [.000, .035] [.000, .075] [.000, .070] [.009, .121] [.017, .241] [.016, .233] [.000, .079] [.000, .007] [.000, .091] [.001, .183] [.001, .182] [.001, .209] [.000, .285] [.000, .245] [.001, .031]

Peers

OCMS .489 .222 .267 .229 .090 .109 .149 .051 .066 .360 .307 .405 .028 .022 .032 .076 .064 .089
[.257, .699] [.096, .409] [.098, .504] [.010, .517] [.003, .293] [.001, .031] [.003, .345] [.004, .168] [.004, .217] [.180, .575] [.145, .513] [.202, .622] [.000, .144] [.000, .108 [.000, .149] [.000, .324] [.000, .281] [.000, .354]

OUMS .485 .744 .695 .734 .873 .847 .826 .924 .905 .621 .679 .576 .966 .974 .961 .907 .924 .892
[.280, .714] [.551, .881] [.458, .874] [.450, .959] [.660, .980] [.604, .974] [.593, .966] [.798, .985] [.747, .981] [.408, .804] [.472, .844] [.359, .782] [.847, .999] [.887, .999] [.841, .999] [.657, .998] [.704, .998] [.622, .997]

OCon .026 .034 .039 .037 .038 .044 .026 .025 .029 .019 .014 .020 .006 .004 .007 .017 .012 .019
[.001, .075] [.001, .097] [.001, .109] [.001, .113] [.001, .115] [.001, .132] [.001, .078] [.001, .076] [.001, .084] [.000, .080] [.000, .061] [.000, .081] [.000, .030] [.000, .022] [.000, .035] [.000, .080] [.000, .059] [.000, .091]

Note. Credibility intervals are given in parentheses below the posterior mean values. Coeff.: Coefficient; OCMS: Occasion-specific common method state specificity; OCon: Occasion-specific state consistency; OMS: Occasion-specific
method state specificity; OUMS: Occasion-specific unique method state specificity; SHS: Subjective Happiness Scale; SWLS: Satisfaction with Life Scale; Tl: measurement occasion l; TCMS: Common method trait specificity; TCon:
Trait consistency; TCon (level 2): Trait Consistency on the between-level for the interchangeable peer reports; TMS: Method trait specificity (structurally different parent reports); TUMS: Unique method trait specificity. Coefficients
were calculated using the formulas given in Table 4.1.
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CMT correlations for the SHS items having CIs that include zero). Occasion-specific, transient over-
or underestimation of the target’s happiness or life satisfaction is not shared by the peers (as a group)
and the parents (see Table 8.11).
Estimates of trait- as well as occasion-specific consistency and method specificity coefficients along
with their 95% CI for the items of the SWLS and SHS are presented in Table 8.12.
Consistency coefficients on the level of stable interindividual differences in the parent reports range
from .298 to .433. That is, depending on the item, between 29.8% and 43.4% of the reliable and
stable variance in the SWLS parent reports can be explained by stable differences in the SWLS self-
reports. Trait consistency coefficients of the SHS parent report items are minimally smaller, where
30.9% to 33.5% of the stable variance of the latent response variable is shared with the stable self-
report latent state variables. The largest amount of the stable variance in the peer reports is variance
that goes back to the stable individual views of the peers, not shared with either the self-report or the
other peers. This is the case for both the SWLS and the SHS, as indicated by unique method trait
specificity coefficients of .561 - .668 (SWLS) and .586 - .607 (SHS). In contrast, a stable common
view of the peers that is not shared with the stable self-report accounts for 17.5% - 20.2% of the stable
interindividual differences in the SWLS peer reports and for 19.3% - 23.0% of the stable variance in
the SHS peer reports. Trait consistency coefficients for the peer reports (.144 - .238) are smaller
than those for the parent reports. However, if only the common view of the peers is considered, i.e.,
disregarding interindividual differences between the different peers and taking the expected value
over interchangeable peer ratings per target, trait consistency rises to .440 - .554.
Regarding occasion-specific, transient rater effects, convergence between parent or peer ratings and
self-ratings drop off to almost zero. That is, occasion-specific consistencies for SWLS and SHS parent
as well as peer reports range between .004 and .102. Hence, occasion-specific views are highly rater-
dependent. Also on the occasion-specific level, the largest amount of variance in the peer reports is
variance explained by the transient individual views of the specific peer raters, that is not shared with
the other peers.

8.4.2 Discussion
The good model fit of the LST-Com GRM shows that the observed indicator-specific stabilities in the
SWLS and SHS measures are well recovered by the LST-Com GRM covariance structure.
Both SWLS and SHS self-report measures as well as informant report measures were observed to be
highly stable, with stable indicator-specific effects, however still indicating some variability in both
components over time.
The application of the LST-Com GRM to the SWB data allows to answer several research questions:

• Does global life satisfaction (as the cognitive component of SWB) or global subjective happi-
ness (as the affective part of SWB) show a greater stability over time?

• How stable are rater-effects over time?

• Is the association between life satisfaction and subjective happiness larger on a stable (trait-)
level or on a transient, time-specific level?

• Does the degree of rater-convergence differ for cognitive and affective parts of SWB?

• Can rater-effects be generalized over the two SWB components?

• Does the degree of rater-convergence differ between stable and transient components of SWB?

• Are there item-specific effects in the measurement, stability and rater-bias for the SWLS and
SHS items?
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The results for the LST-Com GRM presented above give some valuable insights into the stability of
SWLS and SHS measures, different rater effects and the stability and generalizability of these rater
effects.
Both life satisfaction and subjective happiness themselves were found to be quite stable, neither of
the two components being clearly more or less stable than the other.
Associations between life satisfaction and subjective happiness are high on both the stable (trait-)level
as well as on the momentary, occasion-specific level. Hence, targets that show a higher stable level
of life satisfaction also tend to have a higher stable level of happiness and vice versa. Furthermore,
targets that deviate from their habitual level of life satisfaction into a positive (negative) direction tend
to also show higher (lower) levels of subjective happiness than habitually at a respective measurement
time point (and vice versa).
Self-informant correlations were comparable for life satisfaction and subjective happiness as well as
the different items of the scales, consistent with the results of the meta-analysis by L. Schneider and
Schimmack (2009). Therefore, peer ratings or parent ratings do not seem to be less or more biased
(with reference to the self-report) for one of the two well-being components.
Self-informant correlations on a time-stable level observed in the current analysis ranged between
.546 and .658 for the parents and between .663 and .744 for the peers. That is, trait-level, measure-
ment error-free self-informant correlations are larger than the typically found average self-informant
correlation of .42 reported by L. Schneider and Schimmack (2009).
Observed rater effects seem to be partly generalizable over the two components on the trait-level. For
the peers, this is not only the case for individual raters but also for the common view of the peers on
the target. Rater-effects on the occasion-specific level, however, are only observed to be associated
between the two well-being components for the parent ratings. In none of the cases, generalizability
across the two well-being components was high enough to argue for a common method effect. That
is, the need for construct-specific method effects is clearly given.
Peers and parents share a common view, not shared with the targets’ self-reports, regarding the stable,
enduring life-satisfaction, however not with regard to happiness or occasion-specific life-satisfaction
or happiness. In general, occasion-specific views are highly rater-dependent, meaning that the targets’
perceived transient fluctuations around their habitual trait-level for both life satisfaction and happiness
are not ”correctly” perceived by the peers or the parents.
On the stable trait-level, convergent validity is higher for the target and the parent ratings as compared
to the convergent validity between the target- and an individual-peer rating. That is, if the interest
lies in approximating the targets’ self-perceived happiness or life satisfaction as close as possible
by an informant rating and only one rater was available for an informant report rating, it would be
preferable to choose a parent instead of a peer. However, if the ratings of several interchangeable
peers are available for a target, the common view of the peers shows higher convergent validity with
the self-report than the parent reports do for both life satisfaction and happiness.
With respect to the item-analyses, the better fit of the model with indicator-specific state variables
(tested for the LS-Com GRM) as compared to common latent state variables is not surprising, as
items (or even test-halfs) of a scale are rarely perfectly homogeneous. The analysis on the item-level
revealed that Item 2 of the SWLS seems to reflect an aspect of life satisfaction that is in parts distinct
to the aspects measured by Item 1 and Item 3 and also shows less associations with subjective happi-
ness. This is consistent with theoretical considerations on item formulation, in that Item 2 covers the
part of life satisfaction that refers to comparatively more objective criteria, explicitly referring to the
conditions of one’s life instead of, e.g., satisfaction with the former. Furthermore, the results indicate
that in general the answer scale is not used in different ways by the different rater-groups, but that
parents tend to answer slightly more positive to the SWLS items than targets and peers do.
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8.5 LGC-Com GRM of Life Satisfaction and Subjective Hap-
piness

In this section the LGC-Com GRM is applied to the SWLS and SHS self-, parent and peer report mea-
sures. The specific LGC-Com GRM used is the latent growth curve variant of the LST-Com GRM
simulated in Section 7.7 and corresponds to the model depicted in Figure 7.7, with the difference that
the model in this application includes three methods instead of two (as depicted in the Figure), that
is, an additional structurally different method (the parent reports). That is, the LGC model applied
to the data assumed trait change only in the reference-method indicators. Due to the results of the
application of the LS-Com GRM and LST-Com GRM to these data (i.e., indicator-specific effects
and stabilities), the LGC-Com GRM was specified with indicator-specific latent intercept and slope
variables. As MI was tested for the LS-Com GRM and LST-Com GRM in Sections 8.3 and 8.4 and
the LGC-Com GRM represents a restrictive variant of the LST-Com change GRM, MI testing was
not repeated here. As reported in aforementioned sections, the requirement of strong MI for the la-
tent growth curve model is fulfilled. The LGC-Com GRM was estimated assuming a linear growth
trajectory, with freely estimated latent slope means.

8.5.1 Results
Model fit results for the LGC-Com GRM are given in Table 8.13. The model fits the data reason-
ably well, with a PPP-value of .225 and a 95% confidence interval for the difference between the
observed and replicated Chi-Square values including zero, [-102.20, 233.73]. However, traceplots
indicated non-convergence of the loadings of the slope factors on the non-reference method (parent
and peer report) items. Furthermore, also PSR values indicated suboptimal convergence despite the
large number of iterations. Estimated latent means of the SWLS and SHS slope factors range from
0.115 to 0.233 and from 0.022 to 0.087, respectively. That is, a small uniform trait change for all
targets / raters, i.e., a change in the latent trait means, can be observed for the SWLS items but is
close to zero for the SHS items. The variance estimates of the slope factors are small, ranging from
0.066 to 0.112 for the SWLS slope factors and from 0.084 to 0.098 for the SHS slope factors. These
small growth factor variances indicate that there are little to no inter-individual differences in intra-
individual growth over time.
Due to the lack of convergence and of substantial variance in intra-individual growth over time, no
variance coefficients will be reported for the LGC-Com GRM. All other parameter estimates are sim-
ilar to those obtained in the LST-Com GRM application. Consequently, the LST-Com GRM seems to
be more appropriate for the current data. For results and interpretations refer to Section 8.4.
Considering the results of the simulation study on the LGC-Com GRM (see Section 7.7), it is not
surprising to encounter convergence problems for the slope factor loadings in the current application.
That is, empirical identification of the slope factors can become difficult and estimation can run
into problems if growth factor variances are small. This effect can be observed especially in cases
where the number of measurement occasions or sample size are suboptimal as well (Bishop et al.,
2015). As the present study includes only three measurement occasions and less observations than
recommended for the application of the LGC-Com GRM by results of the simulation study (i.e., at
least 600 between-level and 10 within-level observations), conditions for estimating the LGC-Com
GRM are suboptimal.
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Table 8.13: Model fit results for the LGC-Com GRM of life satisfaction and subjective happiness

MLR estimator (indicators treated as continuous)
Remarks �2 df RMSEA CFI SRMR W SRMR B AIC BIC BIC adj.

Y a 1799.74 1380 0.015 0.973 0.040 0.063 51551.48 53279.00 52230.72
Bayesian estimation (indicators treated as categorical)

�2-diff. limit
Traceplots PSR PPP lower upper Iterations Thinning Chains

problematicb 1.053 .225 -102.20 233.73 200,000 10 3
Note. Growth is restricted to be linear, reference-method indicator slope loadings are set to 1 for T2 and 2 for T3; AIC: Akaike
information criterion; BIC: Bayesian information criterion; BIC adj.: sample size adjusted BIC; CFI: Comparative fit index;
MLR: Maximum likelihood robust estimator (Mplus); PPP: Posterior predictive p-value; Y: The latent variance-covariance
matrix Y is not positive definite due to negative variance estimates; PSR: Potential scale reduction factor; RMSEA: Root mean
square error of approximation; SRMR B: standardized root mean square residual on the between-level; SRMR W: standardized
root mean square residual on the within-level.
a Negative variance estimates for one SWLS and two SHS Slope factors.
b Traceplots look good for all parameters except for the loadings of the slope factors on the non-reference method items, which
indicate a lack of convergence.

8.6 Discussion of the model applications
This chapter presented an application of the LS-Com GRM, LST-Com GRM, and LGC-Com GRM to
self-report, parent report and friend-report data of SWB for recent high-school graduates in Germany.
On the basis of these life satisfaction and subjective happiness ratings, it was illustrated how the
models can be used to analyze convergent and discriminant validity over time, analyze change and
stability of construct and method effects over time, investigate the generalizability of method effects
across methods or time, and use item-specific effects (e.g., correlations or method-specific difficulties)
for item-selection or rater-selection.
Furthermore, it was illustrated that Bayesian methods can provide credibility intervals for key quanti-
ties of the models such as method specificities or construct and method stabilities. Classical ”frequen-
tist” confidence intervals wich are based on normal theory may not be trustworthy for these types of
parameters that are likely to have skewed distributions.
The vast majority of previous studies on SWB based stability and rater-consistency estimates on cor-
relations of observed variables. This approach is problematic as measurement error, on the one hand,
and instability and rater-inconsistencies, on the other hand, are confounded and might thus produce
biased estimates of stabilities and consistencies (Eid & Diener, 2004). The present application investi-
gated inter-rater consistencies and stability of rater-effects for life satisfaction or subjective happiness
while explicitly taking measurement error into account.
Time-stable self-informant correlations observed in the LST-Com GRM were larger than the typically
found average self-informant correlation of .42 reported by L. Schneider and Schimmack (2009). That
is, convergent validity was observed to be higher than in previous studies. This might not only be due
to the fact that correlations were based on measurement-error free latent variables, but primarily to
the observation that self-informant correlation on the occasion-specific level are close to zero while
being large on the stable trait-level. Models that do not separate time-stable and occasion-specific,
momentary components of SWB measures might find reduced correlations due to the negligibly small
rater-convergences on the occasion-specific level. In general, occasion-specific views were observed
to be highly rater-dependent, meaning that the targets’ perceived transient fluctuations around their
habitual trait-level for both life satisfaction and happiness are not shared with the peers’ or the parents’
perception. These results stress the importance of separating long-term differences in SWB from
occasion-specific effects. Furthermore, as noted by Eid and Diener (2004), not short-term fluctuations
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of mood and emotions but rather more stable aspects of life are of primary interest in quality of life
research.
Observed rater effects seem to be partly generalizable over the two components on the trait-level.
However, in none of the cases generalizability across the two well-being components was high enough
to argue for a common method factor. That is, the need for construct-specific method effects is clearly
given.
Additionally, the results underline that it is important to consider multiple methods when assessing
subjective well-being, as the findings suggest that each rater group had a specific perspective on the
targets’ life satisfaction and happiness. Nevertheless, the model results can give hints with regard to
rater selection for informant ratings on SWB measures. On the stable trait-level, convergent validity
was higher for the target- and the parent ratings as compared to the convergent validity between the
target and an individual peer rating. That is, if only one rater was available for an informant report
rating, it seems advisable to choose a parent instead of a peer in order to yield a rating closer to
the target’s own perception. If the ratings of several peers per target are merged, these compound
measures show higher convergent validity with the self-reports than the parent reports do. However,
this conclusion is only justified if the targets’ perspective is of primary interest. As ratings are always
rater-specific there is not one ”correct” rating, but only a perspective that might be considered most
relevant or most appropriate for the (research) question at hand.
Life satisfaction and subjective happiness were both found to be highly stable. The results of apply-
ing the LGC-Com GRM to the present SWB data suggest that inter-individual differences in intra-
individual change are, if present, small. As the estimation of the model exhibited convergence prob-
lems, the possibility that such differences exist cannot be precluded. However, the good fit of the
LST-Com GRM with strong MI is an additional indication that growth variances might be negligible.
Note that by establishing strong MI, the specified LST-Com GRM is a pure state-variability model.
That is, this model does not include any form of trait change, but assumes that state scores fluctuate
around an invariant, stable set-point.
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Final Discussion

9.1 Summary and Conclusions
In the present work, different longitudinal MTMM graded response model for the combination of
structurally different and interchangeable methods were introduced. The models combine the ad-
vantages of multilevel MTMM measurement designs and longitudinal CFA models for categorical
indicators. Thus far, only few models have been presented allowing researchers to analyze MTMM
data with ordered response variables (Crayen et al., 2011; Eid, 1996; Jeon & Rijmen, 2014; Nuss-
beck et al., 2006). However, none of these models can be used for longitudinal MTMM measurement
designs combining structurally different and interchangeable methods. The presented models fill this
gap in the current literature on longitudinal MTMM modeling.
While previous studies had to focus on models including only structurally different methods or use
aggregated scores for the interchangeable methods in order to analyze different types of methods in
one model, the presented GRMs overcome these limitations. Furthermore, the models allow to disen-
tangle different sources of variance and thereby separate trait and method components. Additionally,
the impact of method effects can be analyzed on both levels of measurement. Stability and change
of inter-individual differences in an attribute as well as of method factors can be computed and the
generalizability of method effects can be analyzed. Furthermore, the models avoid an undesirable
loss of information at the item-level caused by the aggregation of items in order to obtain continuous
outcomes. In the models presented here, convergent and discriminant validity can be computed on
the item-level. This information might be useful, for instance, for test construction. Furthermore, it
allows to estimate CFA-MTMM models even if only relatively few items per construct are available.
Until now, only Bayesian data analysis renders the estimation of these complex models possible. Ad-
ditionally, Bayesian sampling offers a range of further possibilities and advantages. First, it allows
researchers to estimate credibility intervals for parameters with unknown and potentially skewed dis-
tributions. This is especially relevant for CFA-MTMM analyses where variance components and
correlations are used as indicators for convergent and discriminant validity, method specificities or
stabilities. Second, Bayesian estimation methods have been found to exhibit better small-sample per-
formances for factor analyses (Depaoli & Clifton, 2015; Lee & Song, 2004) or when there are only
few clusters in multilevel models (Asparouhov & Muthén, 2010b; Hox et al., 2012).
As the results of our simulation study show, the LS-Com GRM and LST-Com GRM can be accurately
estimated under realistic sample sizes if low degrees of convergent validity are present. These results
are encouraging and suggest that even complex multilevel longitudinal CFA-MTMM models can be
applied in a wide range of situations using Bayesian methods.
However, with only few level-1 units (e.g., 2 observations per cluster) convergence problems become
more likely and bias levels increase. The same holds for parameters associated with factors with low
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variances, e.g., the method factors under high consistency or the slope factors in the LGC-Com GRM.
The possibility to incorporate informative prior information in the estimation process increases the
applicability of the LS-Com GRM in small samples, does, however, not significantly benefit estima-
tion accuracy in the LST-Com and LGC-Com GRMs.
An application of the models to multi-rater data on life satisfaction and subjective happiness illustrated
the applicability and advantages of the models in applied research. The results underline the impor-
tance of considering several different methods in research on subjective well-being. Furthermore,
the results stress the importance of separating long-term differences in SWB from occasion-specific
effects and investigate rater-effects and rater-convergence on both the stable and the occasion-specific
level.

9.2 Recommendations for Applied researchers
Model choice. The longitudinal models presented in this work differ in their assumptions

made about the underlying change process and thereby also in the research questions they are suitable
to answer. While in the LS-Com GRM, the degree of stability in constructs and method effects can be
investigated by means of latent correlations, intraindividual change is not directly modeled or repre-
sented by a latent variable. If the interest lies in investigating change more explicitly, the LC-Com or
LGC-Com GRM would be a more appropriate choice. The LS-Com and LC-Com GRMs, on the other
hand, do not differentiate between state variability and trait change. If a researcher is interested in
separating stable inter-individual differences from occasion-specific variability, the LST-Com GRM
or the LGC-Com GRM as defined in the previous chapters are the models of choice. These models
allow to analyze true discriminant and convergent validity on the level of occasion-specific as well as
on the level of stable variables.
Another decision that depends on the research question at hand is the choice of a reference method.
The reference method should be selected based on theoretical considerations and the contrast between
methods that is most meaningful with respect the research question. The choice of a reference method
is not restricted to either structurally different or the set of interchangeable methods. For guidelines
as to the choice of the reference method see Geiser et al. (2008), for an example on how to use the set
of interchangeable methods as reference method see Pham et al. (2012).
Applied researchers should bear in mind that including additional constructs may increase the com-
plexity of the model and thereby also its estimation. For researchers wishing to include a larger
number of constructs in their analysis (e.g., more than two), it might be an option to split the model
into several submodels and analyze all possible combinations of two constructs per model separately
(Koch, 2013). This approach is a valid option in the application of either of the models, as it does
not change the meaning of the latent variables or of the coefficients of convergent and discriminant
validity, stabilities or method generalizabilities.
Furthermore, model complexity should be reduced where possible and indicated. For instance, many
of the permissible covariances between latent factors in the presented models can be set to zero for
parsimony reasons, as they can be expected to be non-significant in many empirical applications.

Sample size. Based on the results of the simulation study, researchers are recommended to
sample a minimum number of 250 targets and 5 raters per target in order to obtain reliable parameter
estimates in the LS-Com GRM. If informative prior information is incorporated in the analysis, fewer
numbers of level-1 units may be sufficient (> 2). In contrast, it is recommended to sample at least
500 targets with a minimum of 5 raters per target when applying the LST-Com GRM. Additionally, it
is recommendable to include at least three measurement occasions (and more than one construct) in
applications of the LST-Com GRM.
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For the estimation of the LGC-Com GRM sample sizes of at least 600 between-level and 10 within-
level observations should be included in the analyses. However, whenever slope variances are es-
timated to be very small and the estimation shows convergence problems for the respective slope
parameters in applications of the LGC-Com GRM, it is advisable to resort to the comparably less
complex LST-Com GRM, as the underlying process might be one of state variability around stable
inter-individual differences.

Use of prior information. The use of informative priors did not reduce the number of re-
quired observations on the between- or the within-level in the LST-Com GRM and LGC-Com GRM.
Increasing the degree of prior informativeness could potentially reduce the sample sizes needed for
accurate parameter estimation. This approach does, however, involve the risk of detrimental effects
caused by setting incorrect prior locations (see, e.g., Holtmann et al., 2016). Consequently, highly
informative priors should be employed with caution. Whenever researchers wish to use informative
priors, it is recommend to conduct sensitivity analyses to scrutinize the impact of prior assumptions
on parameter estimates. In addition, in applied Bayesian analyses, the inspection of convergence by
use of visual diagnostic tools such as trace plots (Gelman et al., 2014; Lynch, 2007) is indispensable.

Measurement invariance. Researchers interested in mean change of a construct over time
in the LS-Com or LC-Com GRM should ensure that strong measurement invariance holds (Meredith
& Teresi, 2006). Also when researchers wish to model autoregressive effects on the state residual
variables in the LST-Com or LGC-Com GRM it is recommended to establish MI of the state residual
factor loading parameters to ensure that the autoregressive effects can be meaningfully interpreted.
However, partial measurement invariance (Byrne, Shavelson, & Muthén, 1989) might be sufficient
under certain circumstances. Steenkamp and Baumgartner (1998) suggested that equality of at least
two factor loadings and intercepts (in the case of continuous indicators) is sufficient to interpret la-
tent mean differences. However, as discussed in the respective sections on measurement invariance,
researchers should keep in mind their measurement invariance settings when interpreting latent mean
differences.
Measurement invariance could also be tested across methods (Geiser, Burns, & Servera, 2014), in
order to investigate latent mean differences in ratings across different rater groups. For instance, the
question whether the answer scale of the SWLS and SHS items is used in different ways by the tar-
gets, the parents, and the peers and whether there are mean differences in their ratings, could have
been investigated by testing MI of the threshold parameters across the rater groups. However, testing
nested models against each other using Bayesian data analysis is still challenging due to the lack of
an adequate difference test and the limitation of the PPP that less restrictive models will always show
a better PPP value. This issue might be resolved by using Bayesian estimation programs that provide
the deviance information criterion (DIC) in their output or by comparing parameters via credibility
intervals. The latter approach gets cumbersome, however, if many items with a large number of cat-
egories are to be estimated. As in the case of a large number of constructs it might be an option to
split the model into sub-models in order to test for MI using WLSMV estimation where possible,
or to use classical model fit results of MLR estimation (e.g., RMSEA, CFI) as rough indicators of
model fit. Furthermore, it has been argued that, for instance, the magnitude of intercept differences
is of greater importance than the statistical significance of a difference (B. Muthén & Asparouhov,
2012; Steinmetz, 2013). An approach explicitly tackling this criticism is the concept of approximate
MI (B. Muthén & Asparouhov, 2013; van de Schoot et al., 2013), which builds on Bayesian estima-
tion and replaces exact zero by approximate zero constraints by setting informative, small-variance
priors on parameter differences. The option to set priors on parameter differences in Mplus is cur-
rently allowed for intercept, slope and loading parameters, however, has not yet been implemented
for thresholds of polytomous items in Mplus 7.3 (L. K. Muthén & Muthén, 1998-2012).
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Explaining method effects. Often researchers are interested in identifying predictors or
consequences of trait and method effects. When relating external variables to these factors in the
presented CFA-MTMM models several caveats have to be considered. In a recent article, Koch, Holt-
mann, Bohn, and Eid (in press) have shown that external variables cannot be directly related to the
latent factors in g-factor type of models using a classical multiple-indicator multiple-cause (MIMIC)
approach, as this would violate some of the basic psychometric properties of the latent variables and
thereby lead to model misspecification and parameter bias. More specifically, using one or more ex-
ternal variables as regression predictors for the general (e.g., state) or specific (e.g., method) factors
leads to a violation of the basic property that general and specific factors are uncorrelated by defini-
tion if the external variables are also correlated with the respective other factor. Additionally, when
explaining method factors, the psychometric property that residual factors always have a mean of zero
has to be considered. To overcome these methodological problems, researchers need to transform the
explanatory variables before using them as predictors for the latent factors in g-factor models. Koch,
Holtmann, et al. (in press) proposed two possible modeling strategies to circumvent these problems
and give detailed guidelines with respect to their application.
In contrast, using external variables as outcome variables or merely using external variables as corre-
lates (no directional regression approach) is unproblematic in terms of a violation of the psychome-
tric properties. However, researchers have to keep in mind that when correlating external variables
with factors in CTC(M-1) type of models the associations will depend on the choice of the refer-
ence method. That is, correlations of external variables with the common method variables (on the
between-level) represent semi-partial correlations, in which the non-reference method is corrected for
influences of the reference method (Geiser et al., 2008, 2012).

9.3 Limitations and Future Directions
As discussed previously, it would have been interesting to investigate the impact of incorrectly speci-
fied informative priors on estimation accuracy. The impact of priors is especially important as the
choice of an appropriate prior mean can be challenging in practice and setting inaccurate priors
might have detrimental effects on parameter estimates especially in categorical indicator models, due
to a phenomenon termed prior assumption dependence (Asparouhov & Muthén, 2010b; Depaoli &
Clifton, 2015). So far, only little is known about the effect of setting priors with inaccurate locations
and further research is needed. The inclusion of several different correctly and incorrectly specified
informative prior conditions in the simulation design had to be discarded in the present work given
the complexity of the models and the resulting simulation time. The precise investigation of the influ-
ence of inaccurate priors is a task that might be better investigated using a simpler model and that has
for instance been addressed for a cross-sectional multilevel MTMM model including interchangeable
raters only (Holtmann et al., 2016). In general, due to the growing use of measurement designs re-
quiring longitudinal multilevel MTMM GRMs and their estimation by Bayesian methods, additional
research is needed on the effect informative priors have on estimation accuracy in multilevel GRMs.
Similarly, the effect of the number of response categories on estimation accuracy and its potential in-
teractions with sample size or cell frequencies is an interesting question that should be pursued in fu-
ture research. As the effects of increasing the number of response categories on parameter estimation
has been found to be negligible to positive (e.g., Flora & Curran, 2004; Forero & Maydeu-Olivares,
2009; Liang & Yang, 2014; Li, 2016; Moshagen & Musch, 2014), the recommended sample sizes
should be sufficient to estimate the corresponding model for observed variables with more than three
response categories, too.
Furthermore, the hypothesis that estimation problems of the LGC-Com GRM slope parameters might
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vanish in models with more substantial slope variances should be investigated in future studies within
a smaller design.
In the context of MTMM analysis, the possibility to include prior information in the estimation pro-
cess seems especially interesting with respect to the parameters of convergent and discriminant valid-
ity. This is not only the case as they belong to the parameters of primary interest in MTMM studies,
but also as they might be parameters that are most widely reported in the previous literature. However,
variance components and correlation coefficients are defined as functions of primary model parame-
ters estimated in the presented CFA-MTMM models. To the best of my knowledge, Mplus 7.3 does
not allow researchers to set priors on secondary, newly defined model parameters, such as parameter
ratios. Instead, priors have to be set on the respective variance and covariance parameters in order
to indirectly influence estimates of variance components. This approach is not only less than ideal,
but defining priors for variance and covariance parameters is also challenging, especially if variance
covariance matrices grow large and Inverse Wishart priors get difficult to handle. This is due to the
property of the Inverse Wishart distribution that the informativeness of one parameter in the matrix
determines the informativeness of other parameters (Asparouhov & Muthén, 2010b; Tokuda et al.,
2011). Inverse Wishart priors may therefore not be sufficiently flexible for some applications. Alter-
native prior settings for variance and covariance parameters, such as, e.g., decomposing covariance
matrices into a scale and a correlation matrix (Lewandowski et al., 2009; Stan Development Team,
2014b) and their applicability to the CFA-MTMM coefficients should be explored in future studies.
The possibility of this decomposition and the resulting option to set priors on correlation matrices
might render this approach especially interesting in the context of the presented models.
In this context, the use of the software Mplus might be mentioned as another limitation. In com-
parison to other software programs for MCMC estimation, such as Jags (Plummer, 2003) or Stan
(Stan Development Team, 2014a), Mplus offers less flexibility in prior settings and parameterizations
in the model specification. However, Mplus is one of the most widely applied programs for struc-
tural equation modeling and has the advantage that it is comparably fast in its MCMC estimation and
specifically designed to estimate SEMs. In contrast, Stan, for instance, is an open-source software
coded in C++, offering the possibilities of more flexible modeling. Additionally Stan is not restricted
to the use of conjugate priors (Stan Development Team, 2014b) and has a wider variety of possible
prior distributions that can be assigned to the parameters. Hence, it is worth investigating the possi-
bilities other software programs offer for the estimation of longitudinal CFA-MTMM models. On the
other hand, it has to be kept in mind that the complexity of the presented models renders the specifi-
cation of these models in programs such as Jags or Stan rather complicated and error-prone, such that
Mplus remains the recommended option for applied researchers.
Regarding the simulation study, Mplus was chosen as the preferred program as the long simula-
tion times excluded the use of programs with potentially even longer estimation times. As imple-
mentations of MCMC methods and algorithms vary widely across software packages, estimation
results might differ between software packages. It can therefore not be precluded that estimation
results would look slightly different if the stimulation studies were conducted with a different soft-
ware program. However, for the estimation of a cross-sectional multilevel CFA-MTMM model for
interchangeable raters the same number of observations were needed to obtain accurate parameter
estimates in both Mplus and Stan (Holtmann et al., 2016). Potential differences in estimation results
are therefore expected to be minimal.
In general, further extensions of the models presented in this work are not directly considered for
future research, as estimation as well as applicability already reach their limits due to model com-
plexity and large required sample sizes. However, one interesting extension would be to incorporate
the possibility of modeling individually varying times of observations, allowing for variable lags be-
tween observations over time and across individuals. A clear advantage of this extension is that it
would reduce the importance of choosing an appropriate lag for investigating stability and thereby
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ease the comparison of effects across studies. Individually varying time lags could be incorporated
into the models by specifying autoregressive or growth curve loading parameters as a function of the
lag length (Eid et al., 2012) or by combining the presented modeling approaches with recently devel-
oped continuous time models (Oud, 2002; Oud & Delsing, 2010; Voelkle, Oud, Davidov, & Schmidt,
2012).
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Table A 1: Population values in the LS-Com GRM Monte Carlo simulation study

Population parameters in the LS-Com GRM simulation
Low Con High Con

Parameter l = 2 l = 3 l = 4 l = 2 l = 3 l = 4
Within-level
UM

Loadings 0.929 (± 0.026) 0.929 (±0.026) 0.929 (±0.025) 0.835 (±0.064) 0.835 (±0.063) 0.835 (±0.062)
Variances 0.275 (±0) 0.275 (±0) 0.275 (±0) 0.125 (±0) 0.125 (±0) 0.125 (±0)
Covariances 0.092 (±0.062) 0.090 (±0.060) 0.086 (±0.058) 0.042 (±0.028) 0.0408 (±0.027) 0.039 (±0.026)

Between-level
State
Loadings 0.752 (±0.189) 0.752 (±0.187) 0.752 (±0.186) 0.902 (±0.064) 0.902 (±0.063) 0.902 (±0.063)
Variances 0.825 (±0) 0.825 (±0) 0.825 (±0) 0.825 (±0) 0.825 (±0) 0.825 (±0)
Covariances 0.385 (±0.113) 0.358 (±0.123) 0.330 (±0.135) 0.385 (±0.113) 0.358 (±0.123) 0.330 (±0.135)

CM
Loadings 1.080 (±0.028) 1.080 (±0.0269) 1.080 (±0.027) 1.223 (±0.073) 1.223 (±0.071) 1.223 (±0.070)
Variances 0.225 (±0) 0.225 (±0) 0.225 (±0) 0.075 (±0) 0.075 (±0) 0.075 (±0)
Covariances 0.075 (±0.051) 0.074 (±0.049) 0.071 (±0.047) 0.025 (±0.017) 0.025 (±0.016) 0.033 (±0.013)

Note. Mean values of the population parameters over all parameters of the same parameter type in the respective condition. Standard deviations of the different population
values of the parameters of the respective parameter type are given in parentheses. A zero in the column SD indicates that the population value did not vary over the
parameters of the respective parameter type. CM: common method factors; High Con; high consistency condition; l: number of measurement occasions; Low Con: Low
consistency condition; UM: unique method factors.
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A.2 Simulation results LS-Com GRM. Case of one construct ( j = 1)
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Figure A 1: Bias and 95% coverage for loading parameters in the LS-Com GRM with one construct. In the plots in the left column, each point represents
the bias of a single parameter in the respective condition, as calculated by Equation (7.2.1). Coverage values were averaged over parameters
belonging to one parameter class. Note that the limits of the y-axes may differ across plots. Green lines at zero indicate the point of no bias.
Coverage should fall within the region between the two red lines. Diffuse: diffuse prior condition; High Con: high consistency condition; inf:
informative prior condition; l: number of measurement occasions; Low Con: low consistency condition; nL1: number of level-1 observations;
nL2: number of level-2 observations.
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Figure A 2: Parameter estimation bias (peb) and mean squared error (MSE) for loading parameters in the LS-Com GRM with one construct. Peb, as
calculated by Equation (7.2.2), and MSE values are averaged values over parameters belonging to one parameter class. Note that the limits of
the y-axes may differ across plots. The red line indicates the cut-off value of 0.1 for acceptable peb-values. Diffuse: diffuse prior condition;
High Con: high consistency condition; inf: informative prior condition; l: number of measurement occasions; Low Con: low consistency
condition; nL1: number of level-1 observations; nL2: number of level-2 observations.
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Figure A 3: Bias and 95% coverage for variance parameters in the LS-Com GRM with one construct. In the plots in the left column, each point represents
the bias of a single parameter in the respective condition, as calculated by Equation (7.2.1). Coverage values were averaged over parameters
belonging to one parameter class. Note that the limits of the y-axes may differ across plots. Green lines at zero indicate the point of no bias.
Coverage should fall within the region between the two red lines. Diffuse: diffuse prior condition; High Con: high consistency condition; inf:
informative prior condition; l: number of measurement occasions; Low Con: low consistency condition; nL1: number of level-1 observations;
nL2: number of level-2 observations.
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Figure A 4: Parameter estimation bias (peb) and mean squared error (MSE) for variance parameters in the LS-Com GRM with one construct. Peb, as
calculated by Equation (7.2.2), and MSE values are averaged values over parameters belonging to one parameter class. Note that the limits of
the y-axes may differ across plots. The red line indicates the cut-off value of 0.1 for acceptable peb-values. Diffuse: diffuse prior condition;
High Con: high consistency condition; inf: informative prior condition; l: number of measurement occasions; Low Con: low consistency
condition; nL1: number of level-1 observations; nL2: number of level-2 observations..
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Figure A 5: Bias and 95% coverage for covariance parameters in the LS-Com GRM with one construct. In the plots in the left column, each point represents
the bias of a single parameter in the respective condition, as calculated by Equation (7.2.1). Coverage values were averaged over parameters
belonging to one parameter class. Note that the limits of the y-axes may differ across plots. Green lines at zero indicate the point of no bias.
Coverage should fall within the region between the two red lines. Diffuse: diffuse prior condition; High Con: high consistency condition; inf:
informative prior condition; l: number of measurement occasions; Low Con: low consistency condition; nL1: number of level-1 observations;
nL2: number of level-2 observations.
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Figure A 6: Parameter estimation bias (peb) and mean squared error (MSE) for covariance parameters in the LS-Com GRM with one construct. Peb, as
calculated by Equation (7.2.2), and MSE values are averaged values over parameters belonging to one parameter class. Note that the limits of the
y-axes may differ across plots. The red line indicates the cut-off value of 0.1 for acceptable peb-values. Diffuse: diffuse prior condition; High
Con: high consistency condition; inf: informative prior condition; l: number of measurement occasions; Low Con: low consistency condition;
nL1: number of level-1 observations; nL2: number of level-2 observations.
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Figure A 7: Empirical SDs and standard error bias (SE - SD) for loading parameters in the LS-Com GRM with one construct. In the plots in the right
column, each point represents the difference between empirical SDs and posterior SDs of a single parameter in the respective condition, as
calculated by Equation (7.2.3). Empirical SDs were averaged over parameters of one parameter class. Note that the limits of the y-axes may
differ across plots. Green lines at zero indicate the point of no bias. Diffuse: diffuse prior condition; High Con: high consistency condition; inf:
informative prior condition; l: number of measurement occasions; Low Con: low consistency condition; nL1: number of level-1 observations;
nL2: number of level-2 observations.



224 Appendix A

High Con
diffuse

High Con
inf

Low Con
diffuse

Low Con
inf

0.00

0.05

0.10

0.15

0.00

0.05

0.10

0.15

0.00

0.05

0.10

0.15

l=2

l=3

l=4

250 500 750 250 500 750 250 500 750 250 500 750
nL2

Em
pi

ric
al

 S
D

nL1
2

5

10

20

State variances (Level 2)

High Con
diffuse

High Con
inf

Low Con
diffuse

Low Con
inf

0.00

0.05

0.10

0.15

0.00

0.05

0.10

0.15

0.00

0.05

0.10

0.15

l=2

l=3

l=4

250 500 750 250 500 750 250 500 750 250 500 750
nL2

Em
pi

ric
al

 S
D

nL1
2

5

10

20

Common Method variances (Level 2)

High Con
diffuse

High Con
inf

Low Con
diffuse

Low Con
inf

0.00

0.05

0.10

0.15

0.00

0.05

0.10

0.15

0.00

0.05

0.10

0.15

l=2

l=3

l=4

250 500 750 250 500 750 250 500 750 250 500 750
nL2

Em
pi

ric
al

 S
D

nL1
2

5

10

20

Unique Method variances (Level 1)

High Con
diffuse

High Con
inf

Low Con
diffuse

Low Con
inf

−0.01

0.00

0.01

0.02

0.03

−0.01

0.00

0.01

0.02

0.03

−0.01

0.00

0.01

0.02

0.03

l=2

l=3

l=4

250 500 750 250 500 750 250 500 750 250 500 750
nL2

SE
−S

D

nL1
2

5

10

20

State variances (Level 2)

High Con
diffuse

High Con
inf

Low Con
diffuse

Low Con
inf

0.00

0.01

0.02

0.03

0.04

0.00

0.01

0.02

0.03

0.04

0.00

0.01

0.02

0.03

0.04

l=2

l=3

l=4

250 500 750 250 500 750 250 500 750 250 500 750
nL2

SE
−S

D

nL1
2

5

10

20

Common Method variances (Level 2)

High Con
diffuse

High Con
inf

Low Con
diffuse

Low Con
inf

−0.025

0.000

0.025

0.050

0.075

−0.025

0.000

0.025

0.050

0.075

−0.025

0.000

0.025

0.050

0.075

l=2

l=3

l=4

250 500 750 250 500 750 250 500 750 250 500 750
nL2

SE
−S

D

nL1
2

5

10

20

Unique Method variances (Level 1)

Figure A 8: Empirical SDs and standard error bias (SE - SD) for variance parameters in the LS-Com GRM with one construct. In the plots in the right
column, each point represents the difference between empirical SDs and posterior SDs of a single parameter in the respective condition, as
calculated by Equation (7.2.3). Empirical SDs were averaged over parameters of one parameter class. Note that the limits of the y-axes may
differ across plots. Green lines at zero indicate the point of no bias. Diffuse: diffuse prior condition; High Con: high consistency condition; inf:
informative prior condition; l: number of measurement occasions; Low Con: low consistency condition; nL1: number of level-1 observations;
nL2: number of level-2 observations.
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Figure A 9: Empirical SDs and standard error bias (SE - SD) for covariance parameters in the LS-Com GRM with one construct. In the plots in the right
column, each point represents the difference between empirical SDs and posterior SDs of a single parameter in the respective condition, as
calculated by Equation (7.2.3). Empirical SDs were averaged over parameters of one parameter class. Note that the limits of the y-axes may
differ across plots. Green lines at zero indicate the point of no bias. Diffuse: diffuse prior condition; High Con: high consistency condition; inf:
informative prior condition; l: number of measurement occasions; Low Con: low consistency condition; nL1: number of level-1 observations;
nL2: number of level-2 observations.
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Figure A 10: Bias, 95% coverage, parameter estimation bias (peb), mean squared error (MSE), empirical SDs and standard error bias (SE - SD) for the threshold
parameters in the LS-Com GRM with one construct. Points in the dot plots represent the bias or the difference between empirical SDs and posterior SDs
of a single parameter in the respective condition, as calculated by Equations (7.2.1) and (7.2.3). Peb, as calculated by Equation (7.2.2), MSE values and
empirical SDs are averaged values over parameters belonging to one parameter class. Note that the limits of the y-axes may differ across plots. The red
line indicates the cut-off value for acceptable coverage or peb values. Green lines at zero indicate the point of no bias. Diffuse: diffuse prior condition;
High Con: high consistency condition; inf: informative prior condition; l: number of measurement occasions; Low Con: low consistency condition;
nL1: number of level-1 observations; nL2: number of level-2 observations.
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Figure A 11: Bias, 95% coverage, parameter estimation bias (peb), mean squared error (MSE), empirical SDs and standard error bias (SE - SD) for the latent state
means in the LS-Com GRM with one construct. Points in the dot plots represent the bias or the difference between empirical SDs and posterior SDs of
a single parameter in the respective condition, as calculated by Equations (7.2.1) and (7.2.3). Peb, as calculated by Equation (7.2.2), MSE values and
empirical SDs are averaged values over parameters belonging to one parameter class. Note that the limits of the y-axes may differ across plots. The red
line indicates the cut-off value for acceptable coverage or peb values. Green lines at zero indicate the point of no bias. Diffuse: diffuse prior condition;
High Con: high consistency condition; inf: informative prior condition; l: number of measurement occasions; Low Con: low consistency condition;
nL1: number of level-1 observations; nL2: number of level-2 observations.
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A.3 Simulation results LS-Com GRM. Case of two constructs ( j = 2)
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Figure A 12: Bias and 95% coverage for loading parameters in the LS-Com GRM with two constructs. In the plots in the left column, each point represents
the bias of a single parameter in the respective condition, as calculated by Equation (7.2.1). Coverage values were averaged over parameters
belonging to one parameter class. Note that the limits of the y-axes may differ across plots. Green lines at zero indicate the point of no bias.
Coverage should fall within the region between the two red lines. Diffuse: diffuse prior condition; High Con: high consistency condition; inf:
informative prior condition; l: number of measurement occasions; Low Con: low consistency condition; nL1: number of level-1 observations;
nL2: number of level-2 observations.
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Figure A 13: Parameter estimation bias (peb) and mean squared error (MSE) for loading parameters in the LS-Com GRM with two constructs. Peb, as
calculated by Equation (7.2.2), and MSE values are averaged values over parameters belonging to one parameter class. Note that the limits of
the y-axes may differ across plots. The red line indicates the cut-off value of 0.1 for acceptable peb-values. Diffuse: diffuse prior condition;
High Con: high consistency condition; inf: informative prior condition; l: number of measurement occasions; Low Con: low consistency
condition; nL1: number of level-1 observations; nL2: number of level-2 observations.
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Figure A 14: Bias and 95% coverage for variance parameters in the LS-Com GRM with two constructs. In the plots in the left column, each point represents
the bias of a single parameter in the respective condition, as calculated by Equation (7.2.1). Coverage values were averaged over parameters
belonging to one parameter class. Note that the limits of the y-axes may differ across plots. Green lines at zero indicate the point of no bias.
Coverage should fall within the region between the two red lines. Diffuse: diffuse prior condition; High Con: high consistency condition; inf:
informative prior condition; l: number of measurement occasions; Low Con: low consistency condition; nL1: number of level-1 observations;
nL2: number of level-2 observations.
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Figure A 15: Parameter estimation bias (peb) and mean squared error (MSE) for variance parameters in the LS-Com GRM with two constructs. Peb, as
calculated by Equation (7.2.2), and MSE values are averaged values over parameters belonging to one parameter class. Note that the limits of
the y-axes may differ across plots. The red line indicates the cut-off value of 0.1 for acceptable peb-values. Diffuse: diffuse prior condition;
High Con: high consistency condition; inf: informative prior condition; l: number of measurement occasions; Low Con: low consistency
condition; nL1: number of level-1 observations; nL2: number of level-2 observations.
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Figure A 16: Bias and 95% coverage for covariance parameters in the LS-Com GRM with two constructs. In the plots in the left column, each point
represents the bias of a single parameter in the respective condition, as calculated by Equation (7.2.1). Coverage values were averaged over
parameters belonging to one parameter class. Note that the limits of the y-axes may differ across plots. Green lines at zero indicate the point
of no bias. Coverage should fall within the region between the two red lines. Diffuse: diffuse prior condition; High Con: high consistency
condition; inf: informative prior condition; l: number of measurement occasions; Low Con: low consistency condition; nL1: number of level-1
observations; nL2: number of level-2 observations.
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Figure A 17: Parameter estimation bias (peb) and mean squared error (MSE) for covariance parameters in the LS-Com GRM with two constructs. Peb, as
calculated by Equation (7.2.2), and MSE values are averaged values over parameters belonging to one parameter class. Note that the limits of
the y-axes may differ across plots. The red line indicates the cut-off value of 0.1 for acceptable peb-values. Diffuse: diffuse prior condition;
High Con: high consistency condition; inf: informative prior condition; l: number of measurement occasions; Low Con: low consistency
condition; nL1: number of level-1 observations; nL2: number of level-2 observations.
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Figure A 18: Empirical SDs and standard error bias (SE - SD) for loading parameters in the LS-Com GRM with two constructs. In the plots in the right
column, each point represents the difference between empirical SDs and posterior SDs of a single parameter in the respective condition, as
calculated by Equation (7.2.3). Empirical SDs were averaged over parameters of one parameter class. Note that the limits of the y-axes may
differ across plots. Green lines at zero indicate the point of no bias. Diffuse: diffuse prior condition; High Con: high consistency condition; inf:
informative prior condition; l: number of measurement occasions; Low Con: low consistency condition; nL1: number of level-1 observations;
nL2: number of level-2 observations.



236 Appendix A

High Con
diffuse

High Con
inf

Low Con
diffuse

Low Con
inf

0.00

0.05

0.10

0.15

0.00

0.05

0.10

0.15

0.00

0.05

0.10

0.15

l=2

l=3

l=4

250 500 750 250 500 750 250 500 750 250 500 750
nL2

Em
pi

ric
al

 S
D

nL1
2

5

10

20

State variances (Level 2)

High Con
diffuse

High Con
inf

Low Con
diffuse

Low Con
inf

0.00

0.05

0.10

0.15

0.00

0.05

0.10

0.15

0.00

0.05

0.10

0.15

l=2

l=3

l=4

250 500 750 250 500 750 250 500 750 250 500 750
nL2

Em
pi

ric
al

 S
D

nL1
2

5

10

20

Common Method variances (Level 2)

High Con
diffuse

High Con
inf

Low Con
diffuse

Low Con
inf

0.00

0.05

0.10

0.15

0.00

0.05

0.10

0.15

0.00

0.05

0.10

0.15

l=2

l=3

l=4

250 500 750 250 500 750 250 500 750 250 500 750
nL2

Em
pi

ric
al

 S
D

nL1
2

5

10

20

Unique Method variances (Level 1)

High Con
diffuse

High Con
inf

Low Con
diffuse

Low Con
inf

−0.01

0.00

0.01

0.02

0.03

−0.01

0.00

0.01

0.02

0.03

−0.01

0.00

0.01

0.02

0.03

l=2

l=3

l=4

250 500 750 250 500 750 250 500 750 250 500 750
nL2

SE
−S

D

nL1
2

5

10

20

State variances (Level 2)

High Con
diffuse

High Con
inf

Low Con
diffuse

Low Con
inf

0.00

0.01

0.02

0.03

0.00

0.01

0.02

0.03

0.00

0.01

0.02

0.03

l=2

l=3

l=4

250 500 750 250 500 750 250 500 750 250 500 750
nL2

SE
−S

D

nL1
2

5

10

20

Common Method variances (Level 2)

High Con
diffuse

High Con
inf

Low Con
diffuse

Low Con
inf

0.00

0.02

0.04

0.06

0.00

0.02

0.04

0.06

0.00

0.02

0.04

0.06

l=2

l=3

l=4

250 500 750 250 500 750 250 500 750 250 500 750
nL2

SE
−S

D

nL1
2

5

10

20

Unique Method variances (Level 1)

Figure A 19: Empirical SDs and standard error bias (SE - SD) for variance parameters in the LS-Com GRM with two constructs. In the plots in the right
column, each point represents the difference between empirical SDs and posterior SDs of a single parameter in the respective condition, as
calculated by Equation (7.2.3). Empirical SDs were averaged over parameters of one parameter class. Note that the limits of the y-axes may
differ across plots. Green lines at zero indicate the point of no bias. Diffuse: diffuse prior condition; High Con: high consistency condition; inf:
informative prior condition; l: number of measurement occasions; Low Con: low consistency condition; nL1: number of level-1 observations;
nL2: number of level-2 observations.
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Figure A 20: Empirical SDs and standard error bias (SE - SD) for covariance parameters in the LS-Com GRM with two constructs. In the plots in the right
column, each point represents the difference between empirical SDs and posterior SDs of a single parameter in the respective condition, as
calculated by Equation (7.2.3). Empirical SDs were averaged over parameters of one parameter class. Note that the limits of the y-axes may
differ across plots. Green lines at zero indicate the point of no bias. Diffuse: diffuse prior condition; High Con: high consistency condition; inf:
informative prior condition; l: number of measurement occasions; Low Con: low consistency condition; nL1: number of level-1 observations;
nL2: number of level-2 observations.
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Figure A 21: Bias, 95% coverage, parameter estimation bias (peb), mean squared error (MSE), empirical SDs and standard error bias (SE - SD) for the threshold
parameters in the LS-Com GRM with two constructs. Points in the dot plots represent the bias or the difference between empirical SDs and posterior
SDs of a single parameter in the respective condition, as calculated by Equations (7.2.1) and (7.2.3). Peb, as calculated by Equation (7.2.2), MSE values
and empirical SDs are averaged values over parameters belonging to one parameter class. Note that the limits of the y-axes may differ across plots.
The red line indicates the cut-off value for acceptable coverage or peb values. Green lines at zero indicate the point of no bias. Diffuse: diffuse prior
condition; High Con: high consistency condition; inf: informative prior condition; l: number of measurement occasions; Low Con: low consistency
condition; nL1: number of level-1 observations; nL2: number of level-2 observations.
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Figure A 22: Bias, 95% coverage, parameter estimation bias (peb), mean squared error (MSE), empirical SDs and standard error bias (SE - SD) for the latent state
means in the LS-Com GRM with two constructs. Points in the dot plots represent the bias or the difference between empirical SDs and posterior SDs
of a single parameter in the respective condition, as calculated by Equations (7.2.1) and (7.2.3). Peb, as calculated by Equation (7.2.2), MSE values and
empirical SDs are averaged values over parameters belonging to one parameter class. Note that the limits of the y-axes may differ across plots. The red
line indicates the cut-off value for acceptable coverage or peb values. Green lines at zero indicate the point of no bias. Diffuse: diffuse prior condition;
High Con: high consistency condition; inf: informative prior condition; l: number of measurement occasions; Low Con: low consistency condition;
nL1: number of level-1 observations; nL2: number of level-2 observations.
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B Monte Carlo simulation study LST-Com GRM

B.1 Population parameters in the LST-Com GRM simulation

Table B 1: Population values in the LST-Com GRM Monte Carlo simulation study

Population parameters in the LST-Com GRM simulation
Low Con High Con

Parameter j = 1 j = 2 j = 1 j = 2
Within-level
UMS

Loadings 1 1 1 1
Variances 0.16 0.16 0.065 0.065
Covariances - 0.024 - 0.006

UMT
Variances 0.16 0.16 0.065 0.065
Covariances 0.096 0.048 0.024 0.012

Between-level
Traits

Loadings 0.5 0.5 0.7857 0.7857
Variances 0.49 0.49 0.49 0.49
Covariances 0.392 0.196 0.392 0.196

State Residuals
Loadings 1 / 0.5833 1 / 0.5833 1 / 0.9167 1 / 0.9167
Variances 0.36 0.36 0.36 0.36
Covariances - 0.072 - 0.072

CMS
Loadings 1 1 1 1
Variances 0.1225 0.1225 0.065 0.065
Covariances - 0.0184 - 0.0098

CMT
Variances 0.1225 0.1225 0.065 0.065
Covariances 0.0735 0.0368 0.039 0.0195

Note. Values of the population parameters for all parameters of the same parameter type in the
respective condition. Population values did not vary between the parameters of one parameter class.
Note that covariance parameters reported for the multi-construct conditions ( j = 2) correspond to
the covariances of the respective factors between constructs. Covariances within one construct are
identical in the mono-construct and multi-construct conditions and reported under j = 1. CMS:
common method state residual variables; CMT : common method trait variables; High Con; high
consistency condition; j: number of constructs; Low Con: Low consistency condition; UMS: unique
method state residual variables; UMT : unique method trait variables.
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B.2 Simulation results LST-Com GRM. Case of one construct ( j = 1)
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Figure B 1: Bias and 95% coverage for latent state residual factors in the LST-Com GRM with one construct. In the plots in the left column, each point represents the

bias of a single parameter in the respective condition, as calculated by Equation (7.2.1). Bias values > 0.3 and < -0.3 were set to 0.3 and -0.3, respectively,
to enhance readability of the plot. Note that these values solely occurred in conditions suffering from high rates of non-convergence. Coverage values
were averaged over parameters belonging to one parameter class. Note that the limits of the y-axes may differ across plots. Green lines at zero indicate the
point of no bias. Coverage should fall within the region between the two red lines. Diffuse: diffuse prior condition; High Con: high consistency condition;
inf: informative prior condition; l: number of measurement occasions; Low Con: low consistency condition; nL1: number of level-1 observations; nL2:
number of level-2 observations.
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Figure B 2: Parameter estimation bias (peb) and mean squared error (MSE) for latent state residual factors in the LST-Com GRM with one construct. Peb, as calculated

by Equation (7.2.2), and MSE values are averaged values over parameters belonging to one parameter class. Peb values > 1 were set to 1 and MSE values
> 0.2 were set to 0.2 to enhance readability of the plot. Note that this only concerned conditions suffering from high rates of non-convergence. Note that
the limits of the y-axes may differ across plots. The red line indicates the cut-off value of 0.1 for acceptable peb-values. Diffuse: diffuse prior condition;
High Con: high consistency condition; inf: informative prior condition; l: number of measurement occasions; Low Con: low consistency condition; nL1:
number of level-1 observations; nL2: number of level-2 observations.
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Figure B 3: Empirical SDs and standard error bias (SE - SD) for latent state residual factors in the LST-Com GRM with one construct. In the plots in the right

column, each point represents the difference between empirical SDs and posterior SDs of a single parameter in the respective condition, as calculated by
Equation (7.2.3). Empirical SDs were averaged over parameters of one parameter class. Empirical SDs > 0.6 were set to 0.6, and SE - SD differences
> 0.1 or < -0.1 were set to 0.1 and -0.1, respectively, to enhance readability of the plot. Note that this only concerned conditions suffering from high
rates of non-convergence. Note that the limits of the y-axes may differ across plots. Green lines at zero indicate the point of no bias. Diffuse: diffuse
prior condition; High Con: high consistency condition; inf: informative prior condition; l: number of measurement occasions; Low Con: low consistency
condition; nL1: number of level-1 observations; nL2: number of level-2 observations.
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Figure B 4: Bias and 95% coverage for latent trait factors in the LST-Com GRM with one construct. In the plots in the left column, each point represents the bias of
a single parameter in the respective condition, as calculated by Equation (7.2.1). Bias values> 0.3 and < -0.3 were set to 0.3 and -0.3, respectively, to
enhance readability of the plot. Note that these values solely occurred in conditions suffering from high rates of non-convergence. Coverage values were
averaged over parameters belonging to one parameter class. Note that the limits of the y-axes may differ across plots. Green lines at zero indicate the
point of no bias. Coverage should fall within the region between the two red lines. Diffuse: diffuse prior condition; High Con: high consistency condition;
inf: informative prior condition; l: number of measurement occasions; Low Con: low consistency condition; nL1: number of level-1 observations; nL2:
number of level-2 observations.
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Figure B 5: Parameter estimation bias (peb) and mean squared error (MSE) for latent trait factors in the LST-Com GRM with one construct. Peb, as calculated by
Equation (7.2.2), and MSE values are averaged values over parameters belonging to one parameter class. Peb values > 1 were set to 1 and MSE values
> 0.2 were set to 0.2 to enhance readability of the plot. Note that this only concerned conditions suffering from high rates of non-convergence. Note that
the limits of the y-axes may differ across plots. The red line indicates the cut-off value of 0.1 for acceptable peb-values. Diffuse: diffuse prior condition;
High Con: high consistency condition; inf: informative prior condition; l: number of measurement occasions; Low Con: low consistency condition; nL1:
number of level-1 observations; nL2: number of level-2 observations.
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Figure B 6: Empirical SDs and standard error bias (SE - SD) for latent trait factors in the LST-Com GRM with one construct. In the plots in the right column, each
point represents the difference between empirical SDs and posterior SDs of a single parameter in the respective condition, as calculated by Equation
(7.2.3). Empirical SDs were averaged over parameters of one parameter class. Empirical SDs > 0.6 were set to 0.6, and SE - SD differences > 0.1
or < -0.1 were set to 0.1 and -0.1, respectively, to enhance readability of the plot. Note that this only concerned conditions suffering from high rates
of non-convergence. Note that the limits of the y-axes may differ across plots. Green lines at zero indicate the point of no bias. Diffuse: diffuse prior
condition; High Con: high consistency condition; inf: informative prior condition; l: number of measurement occasions; Low Con: low consistency
condition; nL1: number of level-1 observations; nL2: number of level-2 observations.
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Figure B 7: Bias and 95% coverage for unique method state residual factors in the LST-Com GRM with one construct. In the plots in the left column, each point

represents the bias of a single parameter in the respective condition, as calculated by Equation (7.2.1). Bias values > 0.3 and < -0.3 were set to 0.3 and
-0.3, respectively, to enhance readability of the plot. Note that these values solely occurred in conditions suffering from high rates of non-convergence.
Coverage values were averaged over parameters belonging to one parameter class. Note that the limits of the y-axes may differ across plots. Green lines
at zero indicate the point of no bias. Coverage should fall within the region between the two red lines. Diffuse: diffuse prior condition; High Con: high
consistency condition; inf: informative prior condition; l: number of measurement occasions; Low Con: low consistency condition; nL1: number of
level-1 observations; nL2: number of level-2 observations.
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Figure B 8: Parameter estimation bias (peb) and mean squared error (MSE) for unique method state residual factors in the LST-Com GRM with one construct. Peb,

as calculated by Equation (7.2.2), and MSE values are averaged values over parameters belonging to one parameter class. Peb values > 1 were set to
1 and MSE values > 0.2 were set to 0.2 to enhance readability of the plot. Note that this only concerned conditions suffering from high rates of non-
convergence. Note that the limits of the y-axes may differ across plots. The red line indicates the cut-off value of 0.1 for acceptable peb-values. Diffuse:
diffuse prior condition; High Con: high consistency condition; inf: informative prior condition; l: number of measurement occasions; Low Con: low
consistency condition; nL1: number of level-1 observations; nL2: number of level-2 observations.
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Figure B 9: Empirical SDs and standard error bias (SE - SD) for unique method state residual factors in the LST-Com GRM with one construct. In the plots in the

right column, each point represents the difference between empirical SDs and posterior SDs of a single parameter in the respective condition, as calculated
by Equation (7.2.3). Empirical SDs were averaged over parameters of one parameter class. Empirical SDs > 0.6 were set to 0.6, and SE - SD differences
> 0.1 or < -0.1 were set to 0.1 and -0.1, respectively, to enhance readability of the plot. Note that this only concerned conditions suffering from high
rates of non-convergence. Note that the limits of the y-axes may differ across plots. Green lines at zero indicate the point of no bias. Diffuse: diffuse
prior condition; High Con: high consistency condition; inf: informative prior condition; l: number of measurement occasions; Low Con: low consistency
condition; nL1: number of level-1 observations; nL2: number of level-2 observations.
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Figure B 10: Bias and 95% coverage for common method state residual factors in the LST-Com GRM with one construct. In the plots in the left column, each point

represents the bias of a single parameter in the respective condition, as calculated by Equation (7.2.1). Bias values > 0.3 and < -0.3 were set to 0.3 and
-0.3, respectively, to enhance readability of the plot. Note that these values solely occurred in conditions suffering from high rates of non-convergence.
Coverage values were averaged over parameters belonging to one parameter class. Note that the limits of the y-axes may differ across plots. Green lines
at zero indicate the point of no bias. Coverage should fall within the region between the two red lines. Diffuse: diffuse prior condition; High Con: high
consistency condition; inf: informative prior condition; l: number of measurement occasions; Low Con: low consistency condition; nL1: number of
level-1 observations; nL2: number of level-2 observations.
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Figure B 11: Parameter estimation bias (peb) and mean squared error (MSE) for common method state residual factors in the LST-Com GRM with one construct.

Peb, as calculated by Equation (7.2.2), and MSE values are averaged values over parameters belonging to one parameter class. Peb values > 1 were
set to 1 and MSE values > 0.2 were set to 0.2 to enhance readability of the plot. Note that this only concerned conditions suffering from high rates of
non-convergence. Note that the limits of the y-axes may differ across plots. The red line indicates the cut-off value of 0.1 for acceptable peb-values.
Diffuse: diffuse prior condition; High Con: high consistency condition; inf: informative prior condition; l: number of measurement occasions; Low
Con: low consistency condition; nL1: number of level-1 observations; nL2: number of level-2 observations.



LST-COM GRM RESULTS. ONE CONSTRUCT (j=1) 253

High Con
diffuse

High Con
inf

Low Con
diffuse

Low Con
inf

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

l=2

l=3

l=4

250 500 750 250 500 750 250 500 750 250 500 750
nL2

Em
pi

ric
al

 S
D

nL1
2

5

10

20

Common Method State loadings (Level 2)

High Con
diffuse

High Con
inf

Low Con
diffuse

Low Con
inf

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

l=2

l=3

l=4

250 500 750 250 500 750 250 500 750 250 500 750
nL2

Em
pi

ric
al

 S
D

nL1
2

5

10

20

Common Method State variances (Level 2)

High Con
diffuse

High Con
inf

Low Con
diffuse

Low Con
inf

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

l=2

l=3

l=4

250 500 750 250 500 750 250 500 750 250 500 750
nL2

Em
pi

ric
al

 S
D

nL1
2

5

10

20

Trait covariances (Level 2)

High Con
diffuse

High Con
inf

Low Con
diffuse

Low Con
inf

−0.10

−0.05

0.00

0.05

0.10

−0.10

−0.05

0.00

0.05

0.10

−0.10

−0.05

0.00

0.05

0.10

l=2

l=3

l=4

250 500 750 250 500 750 250 500 750 250 500 750
nL2

SE
 −

 S
D

nL1
2

5

10

20

Common Method State loadings (Level 2)

High Con
diffuse

High Con
inf

Low Con
diffuse

Low Con
inf

−0.10

−0.05

0.00

0.05

0.10

−0.10

−0.05

0.00

0.05

0.10

−0.10

−0.05

0.00

0.05

0.10

l=2

l=3

l=4

250 500 750 250 500 750 250 500 750 250 500 750
nL2

SE
 −

 S
D

nL1
2

5

10

20

Common Method State variances (Level 2)

High Con
diffuse

High Con
inf

Low Con
diffuse

Low Con
inf

−0.100

−0.075

−0.050

−0.025

0.000

−0.100

−0.075

−0.050

−0.025

0.000

−0.100

−0.075

−0.050

−0.025

0.000

l=2

l=3

l=4

250 500 750 250 500 750 250 500 750 250 500 750
nL2

SE
 −

 S
D

nL1
2

5

10

20

Trait covariances (Level 2)
Figure B 12: Empirical SDs and standard error bias (SE - SD) for common method state residual factors in the LST-Com GRM with one construct. In the plots in

the right column, each point represents the difference between empirical SDs and posterior SDs of a single parameter in the respective condition, as
calculated by Equation (7.2.3). Empirical SDs were averaged over parameters of one parameter class. Empirical SDs > 0.6 were set to 0.6, and SE - SD
differences > 0.1 or < -0.1 were set to 0.1 and -0.1, respectively, to enhance readability of the plot. Note that this only concerned conditions suffering
from high rates of non-convergence. Note that the limits of the y-axes may differ across plots. Green lines at zero indicate the point of no bias. Diffuse:
diffuse prior condition; High Con: high consistency condition; inf: informative prior condition; l: number of measurement occasions; Low Con: low
consistency condition; nL1: number of level-1 observations; nL2: number of level-2 observations.
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Figure B 13: Bias and 95% coverage for unique method trait factors in the LST-Com GRM with one construct. In the plots in the left column, each point represents
the bias of a single parameter in the respective condition, as calculated by Equation (7.2.1). Bias values > 0.3 and < -0.3 were set to 0.3 and -0.3,
respectively, to enhance readability of the plot. Note that these values solely occurred in conditions suffering from high rates of non-convergence.
Coverage values were averaged over parameters belonging to one parameter class. Note that the limits of the y-axes may differ across plots. Green lines
at zero indicate the point of no bias. Coverage should fall within the region between the two red lines. Diffuse: diffuse prior condition; High Con: high
consistency condition; inf: informative prior condition; l: number of measurement occasions; Low Con: low consistency condition; nL1: number of
level-1 observations; nL2: number of level-2 observations.
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Figure B 14: Parameter estimation bias (peb) and mean squared error (MSE) for unique method trait factors in the LST-Com GRM with one construct. Peb, as
calculated by Equation (7.2.2), and MSE values are averaged values over parameters belonging to one parameter class. Peb values > 1 were set to 1
and MSE values > 0.2 were set to 0.2 to enhance readability of the plot. Note that this only concerned conditions suffering from high rates of non-
convergence. Note that the limits of the y-axes may differ across plots. The red line indicates the cut-off value of 0.1 for acceptable peb-values. Diffuse:
diffuse prior condition; High Con: high consistency condition; inf: informative prior condition; l: number of measurement occasions; Low Con: low
consistency condition; nL1: number of level-1 observations; nL2: number of level-2 observations.
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Figure B 15: Empirical SDs and standard error bias (SE - SD) for unique method trait factors in the LST-Com GRM with one construct. In the plots in the right
column, each point represents the difference between empirical SDs and posterior SDs of a single parameter in the respective condition, as calculated by
Equation (7.2.3). Empirical SDs were averaged over parameters of one parameter class. Empirical SDs > 0.6 were set to 0.6, and SE - SD differences >
0.1 or < -0.1 were set to 0.1 and -0.1, respectively, to enhance readability of the plot. Note that this only concerned conditions suffering from high rates
of non-convergence. Note that the limits of the y-axes may differ across plots. Green lines at zero indicate the point of no bias. Diffuse: diffuse prior
condition; High Con: high consistency condition; inf: informative prior condition; l: number of measurement occasions; Low Con: low consistency
condition; nL1: number of level-1 observations; nL2: number of level-2 observations.
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Figure B 16: Bias and 95% coverage for common method trait factors in the LST-Com GRM with one construct. In the plots in the left column, each point represents
the bias of a single parameter in the respective condition, as calculated by Equation (7.2.1). Bias values > 0.3 and < -0.3 were set to 0.3 and -0.3,
respectively, to enhance readability of the plot. Note that these values solely occurred in conditions suffering from high rates of non-convergence.
Coverage values were averaged over parameters belonging to one parameter class. Note that the limits of the y-axes may differ across plots. Green lines
at zero indicate the point of no bias. Coverage should fall within the region between the two red lines. Diffuse: diffuse prior condition; High Con: high
consistency condition; inf: informative prior condition; l: number of measurement occasions; Low Con: low consistency condition; nL1: number of
level-1 observations; nL2: number of level-2 observations.
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Figure B 17: Parameter estimation bias (peb) and mean squared error (MSE) for common method trait factors in the LST-Com GRM with one construct. Peb, as
calculated by Equation (7.2.2), and MSE values are averaged values over parameters belonging to one parameter class. Peb values > 1 were set to 1
and MSE values > 0.2 were set to 0.2 to enhance readability of the plot. Note that this only concerned conditions suffering from high rates of non-
convergence. Note that the limits of the y-axes may differ across plots. The red line indicates the cut-off value of 0.1 for acceptable peb-values. Diffuse:
diffuse prior condition; High Con: high consistency condition; inf: informative prior condition; l: number of measurement occasions; Low Con: low
consistency condition; nL1: number of level-1 observations; nL2: number of level-2 observations.



LST-COM GRM RESULTS. ONE CONSTRUCT (j=1) 259

High Con
diffuse

High Con
inf

Low Con
diffuse

Low Con
inf

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

l=2

l=3

l=4

250 500 750 250 500 750 250 500 750 250 500 750
nL2

Em
pi

ric
al

 S
D

nL1
2

5

10

20

Common Method State loadings (Level 2)

High Con
diffuse

High Con
inf

Low Con
diffuse

Low Con
inf

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

l=2

l=3

l=4

250 500 750 250 500 750 250 500 750 250 500 750
nL2

Em
pi

ric
al

 S
D

nL1
2

5

10

20

Common Method Trait variances (Level 2)

High Con
diffuse

High Con
inf

Low Con
diffuse

Low Con
inf

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

l=2

l=3

l=4

250 500 750 250 500 750 250 500 750 250 500 750
nL2

Em
pi

ric
al

 S
D

nL1
2

5

10

20

Common Method Trait covariances (Level 2)

High Con
diffuse

High Con
inf

Low Con
diffuse

Low Con
inf

−0.10

−0.05

0.00

0.05

0.10

−0.10

−0.05

0.00

0.05

0.10

−0.10

−0.05

0.00

0.05

0.10

l=2

l=3

l=4

250 500 750 250 500 750 250 500 750 250 500 750
nL2

SE
 −

 S
D

nL1
2

5

10

20

Common Method State loadings (Level 2)

High Con
diffuse

High Con
inf

Low Con
diffuse

Low Con
inf

−0.10

−0.05

0.00

0.05

0.10

−0.10

−0.05

0.00

0.05

0.10

−0.10

−0.05

0.00

0.05

0.10

l=2

l=3

l=4

250 500 750 250 500 750 250 500 750 250 500 750
nL2

SE
 −

 S
D

nL1
2

5

10

20

Common Method Trait variances (Level 2)

High Con
diffuse

High Con
inf

Low Con
diffuse

Low Con
inf

−0.10

−0.05

0.00

0.05

−0.10

−0.05

0.00

0.05

−0.10

−0.05

0.00

0.05

l=2

l=3

l=4

250 500 750 250 500 750 250 500 750 250 500 750
nL2

SE
 −

 S
D

nL1
2

5

10

20

Common Method Trait covariances (Level 2)

Figure B 18: Empirical SDs and standard error bias (SE - SD) for common method trait factors in the LST-Com GRM with one construct. In the plots in the right
column, each point represents the difference between empirical SDs and posterior SDs of a single parameter in the respective condition, as calculated by
Equation (7.2.3). Empirical SDs were averaged over parameters of one parameter class. Empirical SDs > 0.6 were set to 0.6, and SE - SD differences >
0.1 or < -0.1 were set to 0.1 and -0.1, respectively, to enhance readability of the plot. Note that this only concerned conditions suffering from high rates
of non-convergence. Note that the limits of the y-axes may differ across plots. Green lines at zero indicate the point of no bias. Diffuse: diffuse prior
condition; High Con: high consistency condition; inf: informative prior condition; l: number of measurement occasions; Low Con: low consistency
condition; nL1: number of level-1 observations; nL2: number of level-2 observations.
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Figure B 19: Bias, 95% coverage, parameter estimation bias (peb), mean squared error (MSE), empirical SDs and standard error bias (SE - SD) for the threshold
parameters in the LST-Com GRM with one construct. Points in the dot plots represent the bias or the difference between empirical SDs and posterior
SDs of a single parameter in the respective condition, as calculated by Equations (7.2.1) and (7.2.3). Peb, as calculated by Equation (7.2.2), MSE values
and empirical SDs are averaged values over parameters belonging to one parameter class. Peb values > 1 were set to 1 and MSE values > 0.2 were
set to 0.2, Bias values > 0.3 and < -0.3 were set to 0.3 and -0.3, respectively, empirical SDs > 0.6 were set to 0.6, and SE - SD differences > 0.1
or < -0.1 were set to 0.1 and -0.1, respectively, to enhance readability of the plot. Note that this only concerned conditions suffering from high rates
of non-convergence. Note that the limits of the y-axes may differ across plots. The red line indicates the cut-off value for acceptable coverage or peb
values. Green lines at zero indicate the point of no bias. Diffuse: diffuse prior condition; High Con: high consistency condition; inf: informative prior
condition; l: number of measurement occasions; Low Con: low consistency condition; nL1: number of level-1 observations; nL2: number of level-2
observations.
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B.3 Simulation results LST-Com GRM. Case of two constructs ( j = 2)
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Figure B 20: Bias and 95% coverage for latent state residual factors in the LST-Com GRM with two constructs. In the plots in the left column, each point represents
the bias of a single parameter in the respective condition, as calculated by Equation (7.2.1). Coverage values were averaged over parameters belonging
to one parameter class. Note that the limits of the y-axes may differ across plots. Green lines at zero indicate the point of no bias. Coverage should fall
within the region between the two red lines. Diffuse: diffuse prior condition; High Con: high consistency condition; inf: informative prior condition; l:
number of measurement occasions; Low Con: low consistency condition; nL1: number of level-1 observations; nL2: number of level-2 observations.
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Figure B 21: Parameter estimation bias (peb) and mean squared error (MSE) for latent state residual factors in the LST-Com GRM with two constructs. Peb, as
calculated by Equation (7.2.2), and MSE values are averaged values over parameters belonging to one parameter class. Note that the limits of the y-axes
may differ across plots. The red line indicates the cut-off value of 0.1 for acceptable peb-values. Diffuse: diffuse prior condition; High Con: high
consistency condition; inf: informative prior condition; l: number of measurement occasions; Low Con: low consistency condition; nL1: number of
level-1 observations; nL2: number of level-2 observations.
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Figure B 22: Empirical SDs and standard error bias (SE - SD) for latent state residual factors in the LST-Com GRM with two constructs. In the plots in the right
column, each point represents the difference between empirical SDs and posterior SDs of a single parameter in the respective condition, as calculated by
Equation (7.2.3). Empirical SDs were averaged over parameters of one parameter class. Note that the limits of the y-axes may differ across plots. Green
lines at zero indicate the point of no bias. Diffuse: diffuse prior condition; High Con: high consistency condition; inf: informative prior condition; l:
number of measurement occasions; Low Con: low consistency condition; nL1: number of level-1 observations; nL2: number of level-2 observations.
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Figure B 23: Bias and 95% coverage for latent trait factors in the LST-Com GRM with two constructs. In the plots in the left column, each point represents the bias
of a single parameter in the respective condition, as calculated by Equation (7.2.1). Coverage values were averaged over parameters belonging to one
parameter class. Note that the limits of the y-axes may differ across plots. Green lines at zero indicate the point of no bias. Coverage should fall within
the region between the two red lines. Diffuse: diffuse prior condition; High Con: high consistency condition; inf: informative prior condition; l: number
of measurement occasions; Low Con: low consistency condition; nL1: number of level-1 observations; nL2: number of level-2 observations.
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Figure B 24: Parameter estimation bias (peb) and mean squared error (MSE) for latent trait factors in the LST-Com GRM with two constructs. Peb, as calculated by
Equation (7.2.2), and MSE values are averaged values over parameters belonging to one parameter class. Note that the limits of the y-axes may differ
across plots. The red line indicates the cut-off value of 0.1 for acceptable peb-values. Diffuse: diffuse prior condition; High Con: high consistency
condition; inf: informative prior condition; l: number of measurement occasions; Low Con: low consistency condition; nL1: number of level-1
observations; nL2: number of level-2 observations.
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Figure B 25: Empirical SDs and standard error bias (SE - SD) for latent trait factors in the LST-Com GRM with two constructs. In the plots in the right column, each
point represents the difference between empirical SDs and posterior SDs of a single parameter in the respective condition, as calculated by Equation
(7.2.3). Empirical SDs were averaged over parameters of one parameter class. Note that the limits of the y-axes may differ across plots. Green lines at
zero indicate the point of no bias. Diffuse: diffuse prior condition; High Con: high consistency condition; inf: informative prior condition; l: number of
measurement occasions; Low Con: low consistency condition; nL1: number of level-1 observations; nL2: number of level-2 observations.
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Figure B 26: Bias and 95% coverage for unique method state residual factors in the LST-Com GRM with two constructs. In the plots in the left column, each point
represents the bias of a single parameter in the respective condition, as calculated by Equation (7.2.1). Coverage values were averaged over parameters
belonging to one parameter class. Note that the limits of the y-axes may differ across plots. Green lines at zero indicate the point of no bias. Coverage
should fall within the region between the two red lines. Diffuse: diffuse prior condition; High Con: high consistency condition; inf: informative prior
condition; l: number of measurement occasions; Low Con: low consistency condition; nL1: number of level-1 observations; nL2: number of level-2
observations.
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Figure B 27: Parameter estimation bias (peb) and mean squared error (MSE) for unique method state residual factors in the LST-Com GRM with two constructs.
Peb, as calculated by Equation (7.2.2), and MSE values are averaged values over parameters belonging to one parameter class. Note that the limits of
the y-axes may differ across plots. The red line indicates the cut-off value of 0.1 for acceptable peb-values. Diffuse: diffuse prior condition; High Con:
high consistency condition; inf: informative prior condition; l: number of measurement occasions; Low Con: low consistency condition; nL1: number
of level-1 observations; nL2: number of level-2 observations.
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Figure B 28: Empirical SDs and standard error bias (SE - SD) for unique method state residual factors in the LST-Com GRM with two constructs. In the plots in
the right column, each point represents the difference between empirical SDs and posterior SDs of a single parameter in the respective condition, as
calculated by Equation (7.2.3). Empirical SDs were averaged over parameters of one parameter class. Note that the limits of the y-axes may differ across
plots. Green lines at zero indicate the point of no bias. Diffuse: diffuse prior condition; High Con: high consistency condition; inf: informative prior
condition; l: number of measurement occasions; Low Con: low consistency condition; nL1: number of level-1 observations; nL2: number of level-2
observations.
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Figure B 29: Bias and 95% coverage for common method state residual factors in the LST-Com GRM with two constructs. In the plots in the left column, each point
represents the bias of a single parameter in the respective condition, as calculated by Equation (7.2.1). Coverage values were averaged over parameters
belonging to one parameter class. Note that the limits of the y-axes may differ across plots. Green lines at zero indicate the point of no bias. Coverage
should fall within the region between the two red lines. Diffuse: diffuse prior condition; High Con: high consistency condition; inf: informative prior
condition; l: number of measurement occasions; Low Con: low consistency condition; nL1: number of level-1 observations; nL2: number of level-2
observations.
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Figure B 30: Parameter estimation bias (peb) and mean squared error (MSE) for common method state residual factors in the LST-Com GRM with two constructs.
Peb, as calculated by Equation (7.2.2), and MSE values are averaged values over parameters belonging to one parameter class. Note that the limits of
the y-axes may differ across plots. The red line indicates the cut-off value of 0.1 for acceptable peb-values. Diffuse: diffuse prior condition; High Con:
high consistency condition; inf: informative prior condition; l: number of measurement occasions; Low Con: low consistency condition; nL1: number
of level-1 observations; nL2: number of level-2 observations.
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Figure B 31: Empirical SDs and standard error bias (SE - SD) for common method state residual factors in the LST-Com GRM with two constructs. In the plots in
the right column, each point represents the difference between empirical SDs and posterior SDs of a single parameter in the respective condition, as
calculated by Equation (7.2.3). Empirical SDs were averaged over parameters of one parameter class. Note that the limits of the y-axes may differ across
plots. Green lines at zero indicate the point of no bias. Diffuse: diffuse prior condition; High Con: high consistency condition; inf: informative prior
condition; l: number of measurement occasions; Low Con: low consistency condition; nL1: number of level-1 observations; nL2: number of level-2
observations.
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Figure B 32: Bias and 95% coverage for unique method trait factors in the LST-Com GRM with two constructs. In the plots in the left column, each point represents
the bias of a single parameter in the respective condition, as calculated by Equation (7.2.1). Coverage values were averaged over parameters belonging
to one parameter class. Note that the limits of the y-axes may differ across plots. Green lines at zero indicate the point of no bias. Coverage should fall
within the region between the two red lines. Diffuse: diffuse prior condition; High Con: high consistency condition; inf: informative prior condition; l:
number of measurement occasions; Low Con: low consistency condition; nL1: number of level-1 observations; nL2: number of level-2 observations.
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Figure B 33: Parameter estimation bias (peb) and mean squared error (MSE) for unique method trait factors in the LST-Com GRM with two constructs. Peb, as
calculated by Equation (7.2.2), and MSE values are averaged values over parameters belonging to one parameter class. Note that the limits of the y-axes
may differ across plots. The red line indicates the cut-off value of 0.1 for acceptable peb-values. Diffuse: diffuse prior condition; High Con: high
consistency condition; inf: informative prior condition; l: number of measurement occasions; Low Con: low consistency condition; nL1: number of
level-1 observations; nL2: number of level-2 observations.
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Figure B 34: Empirical SDs and standard error bias (SE - SD) for unique method trait factors in the LST-Com GRM with two constructs. In the plots in the right
column, each point represents the difference between empirical SDs and posterior SDs of a single parameter in the respective condition, as calculated by
Equation (7.2.3). Empirical SDs were averaged over parameters of one parameter class. Note that the limits of the y-axes may differ across plots. Green
lines at zero indicate the point of no bias. Diffuse: diffuse prior condition; High Con: high consistency condition; inf: informative prior condition; l:
number of measurement occasions; Low Con: low consistency condition; nL1: number of level-1 observations; nL2: number of level-2 observations.
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Figure B 35: Bias and 95% coverage for common method trait factors in the LST-Com GRM with two constructs. In the plots in the left column, each point represents
the bias of a single parameter in the respective condition, as calculated by Equation (7.2.1). Coverage values were averaged over parameters belonging
to one parameter class. Note that the limits of the y-axes may differ across plots. Green lines at zero indicate the point of no bias. Coverage should fall
within the region between the two red lines. Diffuse: diffuse prior condition; High Con: high consistency condition; inf: informative prior condition; l:
number of measurement occasions; Low Con: low consistency condition; nL1: number of level-1 observations; nL2: number of level-2 observations.
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Figure B 36: Parameter estimation bias (peb) and mean squared error (MSE) for common method trait factors in the LST-Com GRM with two constructs. Peb, as
calculated by Equation (7.2.2), and MSE values are averaged values over parameters belonging to one parameter class. Note that the limits of the y-axes
may differ across plots. The red line indicates the cut-off value of 0.1 for acceptable peb-values. Diffuse: diffuse prior condition; High Con: high
consistency condition; inf: informative prior condition; l: number of measurement occasions; Low Con: low consistency condition; nL1: number of
level-1 observations; nL2: number of level-2 observations.
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Figure B 37: Empirical SDs and standard error bias (SE - SD) for common method trait factors in the LST-Com GRM with two constructs. In the plots in the right
column, each point represents the difference between empirical SDs and posterior SDs of a single parameter in the respective condition, as calculated by
Equation (7.2.3). Empirical SDs were averaged over parameters of one parameter class. Note that the limits of the y-axes may differ across plots. Green
lines at zero indicate the point of no bias. Diffuse: diffuse prior condition; High Con: high consistency condition; inf: informative prior condition; l:
number of measurement occasions; Low Con: low consistency condition; nL1: number of level-1 observations; nL2: number of level-2 observations.
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Figure B 38: Bias, 95% coverage, parameter estimation bias (peb), mean squared error (MSE), empirical SDs and standard error bias (SE - SD) for the threshold
parameters in the LST-Com GRM with two constructs. Points in the dot plots represent the bias or the difference between empirical SDs and posterior
SDs of a single parameter in the respective condition, as calculated by Equations (7.2.1) and (7.2.3). Peb, as calculated by Equation (7.2.2), MSE values
and empirical SDs are averaged values over parameters belonging to one parameter class. Peb values > 1 were set to 1 and MSE values > 0.2 were
set to 0.2, Bias values > 0.3 and < -0.3 were set to 0.3 and -0.3, respectively, empirical SDs > 0.6 were set to 0.6, and SE - SD differences > 0.1
or < -0.1 were set to 0.1 and -0.1, respectively, to enhance readability of the plot. Note that this only concerned conditions suffering from high rates
of non-convergence. Note that the limits of the y-axes may differ across plots. The red line indicates the cut-off value for acceptable coverage or peb
values. Green lines at zero indicate the point of no bias. Diffuse: diffuse prior condition; High Con: high consistency condition; inf: informative prior
condition; l: number of measurement occasions; Low Con: low consistency condition; nL1: number of level-1 observations; nL2: number of level-2
observations.
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C Monte Carlo simulation study LGC-Com GRM

C.1 Population parameters in the LGC-Com GRM simulation

Table C 1: Population values in the LGC-Com GRM Monte Carlo simulation study

Population parameters in the LGC-Com GRM simulation
Low Con High Con

Parameter j = 1 j = 2 j = 1 j = 2
Between-level
Intercepts

Loadings 0.5 0.5 0.786 0.786
Variances 0.452 0.452 0.452 0.452
Covariances 0.361 0.181 0.361 0.181

Slopes
Loadings 0.5 0.5 0.786 0.786
Variances 0.038 0.038 0.038 0.038
Covariances 0.031 0.015 0.031 0.015
Means 0.4 0.4 0.4 0.4

Common Method Intercepts
Variances 0.123 0.123 0.065 0.065
Covariances 0.074 0.037 0.039 0.020

Note. Values of the population parameters that differ from those in the LST-Com GRM simulation.
Note that population values for within-level parameters (i.e., unique method trait and state residual
loadings, variances, and covariances) as well as those of state residual and common method state
residual variables are identical to those in the LST-Com GRM simulation study (see Table B 1) and
are not reported here. Population values did not vary between the parameters of one parameter class.
Note that covariance parameters reported for the multi-construct conditions ( j = 2) correspond to
the covariances of the respective factors between constructs. Covariance within one construct are
identical in the mono-construct and multi-construct conditions and reported under j = 1. High Con;
high consistency condition; j: number of constructs; Low Con: Low consistency condition.
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C.2 Simulation results LGC-Com GRM. Case of one construct ( j = 1).
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Figure C 1: Bias and 95% coverage for latent state residual factors in the LGC-Com GRM with one construct. In the plots in the left column, each point represents the

bias of a single parameter in the respective condition, as calculated by Equation (7.2.1). Bias values > 0.3 and < -0.3 were set to 0.3 and -0.3, respectively,
to enhance readability of the plot. Note that these values solely occurred in conditions suffering from high rates of non-convergence. Coverage values
were averaged over parameters belonging to one parameter class. Coverage values could be calculated based on a reduced number of replications only.
These numbers correspond to the number of available PSR values per condition and are displayed in Figure 7.9 (red numbers in the figure). Note that
the limits of the y-axes may differ across plots. Green lines at zero indicate the point of no bias. Coverage should fall within the region between the two
red lines. Diffuse: diffuse prior condition; High Con: high consistency condition; inf: informative prior condition; l: number of measurement occasions;
Low Con: low consistency condition; nL1: number of level-1 observations; nL2: number of level-2 observations.



LGC-COM GRM RESULTS. ONE CONSTRUCT (j=1) 283

High Con
diffuse

High Con
inf

Low Con
diffuse

Low Con
inf

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

l=3

l=4

400 600 800 400 600 800 400 600 800 400 600 800
nL2

Pe
b

nL1
2

5

10

20

State loadings (Level 2)

High Con
diffuse

High Con
inf

Low Con
diffuse

Low Con
inf

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

l=3

l=4

400 600 800 400 600 800 400 600 800 400 600 800
nL2

pe
b

nL1
2

5

10

20

State variances (Level 2)

High Con
diffuse

High Con
inf

Low Con
diffuse

Low Con
inf

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

l=3

l=4

400 600 800 400 600 800 400 600 800 400 600 800
nL2

Pe
b

nL1
2

5

10

20

State loadings (Level 2)

High Con
diffuse

High Con
inf

Low Con
diffuse

Low Con
inf

0.00

0.05

0.10

0.15

0.20

0.00

0.05

0.10

0.15

0.20

l=3

l=4

400 600 800 400 600 800 400 600 800 400 600 800
nL2

M
SE

nL1
2

5

10

20

State loadings (Level 2)

High Con
diffuse

High Con
inf

Low Con
diffuse

Low Con
inf

0.00

0.05

0.10

0.15

0.20

0.00

0.05

0.10

0.15

0.20

l=3

l=4

400 600 800 400 600 800 400 600 800 400 600 800
nL2

M
SE

nL1
2

5

10

20

State variances (Level 2)

High Con
diffuse

High Con
inf

Low Con
diffuse

Low Con
inf

0.00

0.05

0.10

0.15

0.20

0.00

0.05

0.10

0.15

0.20

l=3

l=4

400 600 800 400 600 800 400 600 800 400 600 800
nL2

M
SE

nL1
2

5

10

20

State loadings (Level 2)
Figure C 2: Parameter estimation bias (peb) and mean squared error (MSE) for latent state residual factors in the LGC-Com GRM with one construct. Peb, as

calculated by Equation (7.2.2), and MSE values are averaged values over parameters belonging to one parameter class. Peb values > 1 were set to 1
and MSE values > 0.2 were set to 0.2 to enhance readability of the plot. Note that this only concerned conditions suffering from high rates of non-
convergence. Note that the limits of the y-axes may differ across plots. The red line indicates the cut-off value of 0.1 for acceptable peb values. Diffuse:
diffuse prior condition; High Con: high consistency condition; inf: informative prior condition; l: number of measurement occasions; Low Con: low
consistency condition; nL1: number of level-1 observations; nL2: number of level-2 observations.
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Figure C 3: Empirical SDs and standard error bias (SE - SD) for latent state residual factors in the LGC-Com GRM with one construct. In the plots in the right

column, each point represents the difference between empirical SDs and posterior SDs of a single parameter in the respective condition, as calculated by
Equation (7.2.3). Empirical SDs were averaged over parameters of one parameter class. Empirical SDs > 0.6 were set to 0.6, and SE - SD differences
> 0.1 or < -0.1 were set to 0.1 and -0.1, respectively, to enhance readability of the plot. Note that this only concerned conditions suffering from high
rates of non-convergence. Note that the limits of the y-axes may differ across plots. Green lines at zero indicate the point of no bias. Diffuse: diffuse
prior condition; High Con: high consistency condition; inf: informative prior condition; l: number of measurement occasions; Low Con: low consistency
condition; nL1: number of level-1 observations; nL2: number of level-2 observations.
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Figure C 4: Bias and 95% coverage for latent intercept factors in the LGC-Com GRM with one construct. In the plots in the left column, each point represents the bias
of a single parameter in the respective condition, as calculated by Equation (7.2.1). Bias values> 0.3 and < -0.3 were set to 0.3 and -0.3, respectively, to
enhance readability of the plot. Note that these values solely occurred in conditions suffering from high rates of non-convergence. Coverage values were
averaged over parameters belonging to one parameter class. Coverage values could be calculated based on a reduced number of replications only. These
numbers correspond to the number of available PSR values per condition and are displayed in Figure 7.9 (red numbers in the figure). Note that the limits
of the y-axes may differ across plots. Green lines at zero indicate the point of no bias. Coverage should fall within the region between the two red lines.
Diffuse: diffuse prior condition; High Con: high consistency condition; inf: informative prior condition; l: number of measurement occasions; Low Con:
low consistency condition; nL1: number of level-1 observations; nL2: number of level-2 observations.
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Figure C 5: Parameter estimation bias (peb) and mean squared error (MSE) for latent intercept factors in the LGC-Com GRM with one construct. Peb, as calculated
by Equation (7.2.2), and MSE values are averaged values over parameters belonging to one parameter class. Peb values > 1 were set to 1 and MSE values
> 0.2 were set to 0.2 to enhance readability of the plot. Note that this only concerned conditions suffering from high rates of non-convergence. Note that
the limits of the y-axes may differ across plots. The red line indicates the cut-off value of 0.1 for acceptable peb-values. Diffuse: diffuse prior condition;
High Con: high consistency condition; inf: informative prior condition; l: number of measurement occasions; Low Con: low consistency condition; nL1:
number of level-1 observations; nL2: number of level-2 observations.
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Figure C 6: Empirical SDs and standard error bias (SE - SD) for latent intercept factors in the LGC-Com GRM with one construct. In the plots in the right column,
each point represents the difference between empirical SDs and posterior SDs of a single parameter in the respective condition, as calculated by Equation
(7.2.3). Empirical SDs were averaged over parameters of one parameter class. Empirical SDs > 0.6 were set to 0.6, and SE - SD differences > 0.1
or < -0.1 were set to 0.1 and -0.1, respectively, to enhance readability of the plot. Note that this only concerned conditions suffering from high rates
of non-convergence. Note that the limits of the y-axes may differ across plots. Green lines at zero indicate the point of no bias. Diffuse: diffuse prior
condition; High Con: high consistency condition; inf: informative prior condition; l: number of measurement occasions; Low Con: low consistency
condition; nL1: number of level-1 observations; nL2: number of level-2 observations.
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Figure C 7: Bias and 95% coverage for latent slope factors in the LGC-Com GRM with one construct. In the plots in the left column, each point represents the bias
of a single parameter in the respective condition, as calculated by Equation (7.2.1). Bias values> 0.3 and < -0.3 were set to 0.3 and -0.3, respectively, to
enhance readability of the plot. Note that these values solely occurred in conditions suffering from high rates of non-convergence. Coverage values were
averaged over parameters belonging to one parameter class. Coverage values could be calculated based on a reduced number of replications only. These
numbers correspond to the number of available PSR values per condition and are displayed in Figure 7.9 (red numbers in the figure). Note that the limits
of the y-axes may differ across plots. Green lines at zero indicate the point of no bias. Coverage should fall within the region between the two red lines.
Diffuse: diffuse prior condition; High Con: high consistency condition; inf: informative prior condition; l: number of measurement occasions; Low Con:
low consistency condition; nL1: number of level-1 observations; nL2: number of level-2 observations.
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Figure C 8: Parameter estimation bias (peb) and mean squared error (MSE) for latent slope factors in the LGC-Com GRM with one construct. Peb, as calculated by
Equation (7.2.2), and MSE values are averaged values over parameters belonging to one parameter class. Peb values > 1 were set to 1 and MSE values
> 0.2 were set to 0.2 to enhance readability of the plot. Note that this only concerned conditions suffering from high rates of non-convergence. Note that
the limits of the y-axes may differ across plots. The red line indicates the cut-off value of 0.1 for acceptable peb-values. Diffuse: diffuse prior condition;
High Con: high consistency condition; inf: informative prior condition; l: number of measurement occasions; Low Con: low consistency condition; nL1:
number of level-1 observations; nL2: number of level-2 observations.
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Figure C 9: Empirical SDs and standard error bias (SE - SD) for latent slope factors in the LGC-Com GRM with one construct. In the plots in the right column,
each point represents the difference between empirical SDs and posterior SDs of a single parameter in the respective condition, as calculated by Equation
(7.2.3). Empirical SDs were averaged over parameters of one parameter class. Empirical SDs > 0.6 were set to 0.6, and SE - SD differences > 0.1
or < -0.1 were set to 0.1 and -0.1, respectively, to enhance readability of the plot. Note that this only concerned conditions suffering from high rates
of non-convergence. Note that the limits of the y-axes may differ across plots. Green lines at zero indicate the point of no bias. Diffuse: diffuse prior
condition; High Con: high consistency condition; inf: informative prior condition; l: number of measurement occasions; Low Con: low consistency
condition; nL1: number of level-1 observations; nL2: number of level-2 observations.
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Figure C 10: Bias and 95% coverage for unique method state residual factors in the LGC-Com GRM with one construct. In the plots in the left column, each point

represents the bias of a single parameter in the respective condition, as calculated by Equation (7.2.1). Bias values > 0.3 and < -0.3 were set to 0.3 and
-0.3, respectively, to enhance readability of the plot. Note that these values solely occurred in conditions suffering from high rates of non-convergence.
Coverage values were averaged over parameters belonging to one parameter class. Coverage values could be calculated based on a reduced number of
replications only. These numbers correspond to the number of available PSR values per condition and are displayed in Figure 7.9 (red numbers in the
figure). Note that the limits of the y-axes may differ across plots. Green lines at zero indicate the point of no bias. Coverage should fall within the
region between the two red lines. Diffuse: diffuse prior condition; High Con: high consistency condition; inf: informative prior condition; l: number of
measurement occasions; Low Con: low consistency condition; nL1: number of level-1 observations; nL2: number of level-2 observations.
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Figure C 11: Parameter estimation bias (peb) and mean squared error (MSE) for unique method state residual factors in the LGC-Com GRM with one construct.

Peb, as calculated by Equation (7.2.2), and MSE values are averaged values over parameters belonging to one parameter class. Peb values > 1 were
set to 1 and MSE values > 0.2 were set to 0.2 to enhance readability of the plot. Note that this only concerned conditions suffering from high rates of
non-convergence. Note that the limits of the y-axes may differ across plots. The red line indicates the cut-off value of 0.1 for acceptable peb-values.
Diffuse: diffuse prior condition; High Con: high consistency condition; inf: informative prior condition; l: number of measurement occasions; Low
Con: low consistency condition; nL1: number of level-1 observations; nL2: number of level-2 observations.
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Figure C 12: Empirical SDs and standard error bias (SE - SD) for unique method state residual factors in the LGC-Com GRM with one construct. In the plots in

the right column, each point represents the difference between empirical SDs and posterior SDs of a single parameter in the respective condition, as
calculated by Equation (7.2.3). Empirical SDs were averaged over parameters of one parameter class. Empirical SDs > 0.6 were set to 0.6, and SE - SD
differences > 0.1 or < -0.1 were set to 0.1 and -0.1, respectively, to enhance readability of the plot. Note that this only concerned conditions suffering
from high rates of non-convergence. Note that the limits of the y-axes may differ across plots. Green lines at zero indicate the point of no bias. Diffuse:
diffuse prior condition; High Con: high consistency condition; inf: informative prior condition; l: number of measurement occasions; Low Con: low
consistency condition; nL1: number of level-1 observations; nL2: number of level-2 observations.



294 Appendix C

High Con
diffuse

High Con
inf

Low Con
diffuse

Low Con
inf

−0.3

−0.2

−0.1

0.0

−0.3

−0.2

−0.1

0.0

l=3

l=4

400 600 800 400 600 800 400 600 800 400 600 800
nL2

B
ia

s

nL1
2

5

10

20

Common Method State loadings (Level 2)

High Con
diffuse

High Con
inf

Low Con
diffuse

Low Con
inf

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

l=3

l=4

400 600 800 400 600 800 400 600 800 400 600 800
nL2

B
ia

s

nL1
2

5

10

20

Commom Method State variances (Level 2)

High Con
diffuse

High Con
inf

Low Con
diffuse

Low Con
inf

0.01

0.02

0.03

0.01

0.02

0.03

l=3

l=4

400 600 800 400 600 800 400 600 800 400 600 800
nL2

B
ia

s

nL1
2

5

10

20

Slope covariances (Level 2)

High Con
diffuse

High Con
inf

Low Con
diffuse

Low Con
inf

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

l=3

l=4

400 600 800 400 600 800 400 600 800 400 600 800
nL2

C
ov

er
ag

e

nL1
2

5

10

20

Common Method State loadings (Level 2)

High Con
diffuse

High Con
inf

Low Con
diffuse

Low Con
inf

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

l=3

l=4

400 600 800 400 600 800 400 600 800 400 600 800
nL2

C
ov

er
ag

e

nL1
2

5

10

20

Common Method State variances (Level 2)

High Con
diffuse

High Con
inf

Low Con
diffuse

Low Con
inf

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

l=3

l=4

400 600 800 400 600 800 400 600 800 400 600 800
nL2

C
ov

er
ag

e

nL1
2

5

10

20

Slope covariances (Level 2)

Figure C 13: Bias and 95% coverage for common method state residual factors in the LGC-Com GRM with one construct. In the plots in the left column, each point
represents the bias of a single parameter in the respective condition, as calculated by Equation (7.2.1). Bias values > 0.3 and < -0.3 were set to 0.3 and
-0.3, respectively, to enhance readability of the plot. Note that these values solely occurred in conditions suffering from high rates of non-convergence.
Coverage values were averaged over parameters belonging to one parameter class. Coverage values could be calculated based on a reduced number of
replications only. These numbers correspond to the number of available PSR values per condition and are displayed in Figure 7.9 (red numbers in the
figure). Note that the limits of the y-axes may differ across plots. Green lines at zero indicate the point of no bias. Coverage should fall within the
region between the two red lines. Diffuse: diffuse prior condition; High Con: high consistency condition; inf: informative prior condition; l: number of
measurement occasions; Low Con: low consistency condition; nL1: number of level-1 observations; nL2: number of level-2 observations.
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Figure C 14: Parameter estimation bias (peb) and mean squared error (MSE) for common method state residual factors in the LGC-Com GRM with one construct.

Peb, as calculated by Equation (7.2.2), and MSE values are averaged values over parameters belonging to one parameter class. Peb values > 1 were
set to 1 and MSE values > 0.2 were set to 0.2 to enhance readability of the plot. Note that this only concerned conditions suffering from high rates of
non-convergence. Note that the limits of the y-axes may differ across plots. The red line indicates the cut-off value of 0.1 for acceptable peb-values.
Diffuse: diffuse prior condition; High Con: high consistency condition; inf: informative prior condition; l: number of measurement occasions; Low
Con: low consistency condition; nL1: number of level-1 observations; nL2: number of level-2 observations.
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Figure C 15: Empirical SDs and standard error bias (SE - SD) for common method state residual factors in the LGC-Com GRM with one construct. In the plots in

the right column, each point represents the difference between empirical SDs and posterior SDs of a single parameter in the respective condition, as
calculated by Equation (7.2.3). Empirical SDs were averaged over parameters of one parameter class. Empirical SDs > 0.6 were set to 0.6, and SE - SD
differences > 0.1 or < -0.1 were set to 0.1 and -0.1, respectively, to enhance readability of the plot. Note that this only concerned conditions suffering
from high rates of non-convergence. Note that the limits of the y-axes may differ across plots. Green lines at zero indicate the point of no bias. Diffuse:
diffuse prior condition; High Con: high consistency condition; inf: informative prior condition; l: number of measurement occasions; Low Con: low
consistency condition; nL1: number of level-1 observations; nL2: number of level-2 observations.
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Figure C 16: Bias and 95% coverage for unique method trait factors in the LGC-Com GRM with one construct. In the plots in the left column, each point represents

the bias of a single parameter in the respective condition, as calculated by Equation (7.2.1). Bias values > 0.3 and < -0.3 were set to 0.3 and -0.3,
respectively, to enhance readability of the plot. Note that these values solely occurred in conditions suffering from high rates of non-convergence.
Coverage values were averaged over parameters belonging to one parameter class. Coverage values could be calculated based on a reduced number of
replications only. These numbers correspond to the number of available PSR values per condition and are displayed in Figure 7.9 (red numbers in the
figure). Note that the limits of the y-axes may differ across plots. Green lines at zero indicate the point of no bias. Coverage should fall within the
region between the two red lines. Diffuse: diffuse prior condition; High Con: high consistency condition; inf: informative prior condition; l: number of
measurement occasions; Low Con: low consistency condition; nL1: number of level-1 observations; nL2: number of level-2 observations.
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Figure C 17: Parameter estimation bias (peb) and mean squared error (MSE) for unique method trait factors in the LGC-Com GRM with one construct. Peb, as

calculated by Equation (7.2.2), and MSE values are averaged values over parameters belonging to one parameter class. Peb values > 1 were set to 1
and MSE values > 0.2 were set to 0.2 to enhance readability of the plot. Note that this only concerned conditions suffering from high rates of non-
convergence. Note that the limits of the y-axes may differ across plots. The red line indicates the cut-off value of 0.1 for acceptable peb-values. Diffuse:
diffuse prior condition; High Con: high consistency condition; inf: informative prior condition; l: number of measurement occasions; Low Con: low
consistency condition; nL1: number of level-1 observations; nL2: number of level-2 observations.
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Figure C 18: Empirical SDs and standard error bias (SE - SD) for unique method trait factors in the LGC-Com GRM with one construct. In the plots in the right

column, each point represents the difference between empirical SDs and posterior SDs of a single parameter in the respective condition, as calculated by
Equation (7.2.3). Empirical SDs were averaged over parameters of one parameter class. Empirical SDs > 0.6 were set to 0.6, and SE - SD differences >
0.1 or < -0.1 were set to 0.1 and -0.1, respectively, to enhance readability of the plot. Note that this only concerned conditions suffering from high rates
of non-convergence. Note that the limits of the y-axes may differ across plots. Green lines at zero indicate the point of no bias. Diffuse: diffuse prior
condition; High Con: high consistency condition; inf: informative prior condition; l: number of measurement occasions; Low Con: low consistency
condition; nL1: number of level-1 observations; nL2: number of level-2 observations.
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Figure C 19: Bias and 95% coverage for common method intercept factors in the LGC-Com GRM with one construct. In the plots in the left column, each point

represents the bias of a single parameter in the respective condition, as calculated by Equation (7.2.1). Bias values > 0.3 and < -0.3 were set to 0.3 and
-0.3, respectively, to enhance readability of the plot. Note that these values solely occurred in conditions suffering from high rates of non-convergence.
Coverage values were averaged over parameters belonging to one parameter class. Coverage values could be calculated based on a reduced number of
replications only. These numbers correspond to the number of available PSR values per condition and are displayed in Figure 7.9 (red numbers in the
figure). Note that the limits of the y-axes may differ across plots. Green lines at zero indicate the point of no bias. Coverage should fall within the
region between the two red lines. Diffuse: diffuse prior condition; High Con: high consistency condition; inf: informative prior condition; l: number of
measurement occasions; Low Con: low consistency condition; nL1: number of level-1 observations; nL2: number of level-2 observations.
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Figure C 20: Parameter estimation bias (peb) and mean squared error (MSE) for common method intercept factors in the LGC-Com GRM with one construct. Peb,

as calculated by Equation (7.2.2), and MSE values are averaged values over parameters belonging to one parameter class. Peb values > 1 were set
to 1 and MSE values > 0.2 were set to 0.2 to enhance readability of the plot. Note that this only concerned conditions suffering from high rates of
non-convergence. Note that the limits of the y-axes may differ across plots. The red line indicates the cut-off value of 0.1 for acceptable peb-values.
Diffuse: diffuse prior condition; High Con: high consistency condition; inf: informative prior condition; l: number of measurement occasions; Low
Con: low consistency condition; nL1: number of level-1 observations; nL2: number of level-2 observations.
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Figure C 21: Empirical SDs and standard error bias (SE - SD) for common method intercept factors in the LGC-Com GRM with one construct. In the plots in the right

column, each point represents the difference between empirical SDs and posterior SDs of a single parameter in the respective condition, as calculated by
Equation (7.2.3). Empirical SDs were averaged over parameters of one parameter class. Empirical SDs > 0.6 were set to 0.6, and SE - SD differences >
0.1 or < -0.1 were set to 0.1 and -0.1, respectively, to enhance readability of the plot. Note that this only concerned conditions suffering from high rates
of non-convergence. Note that the limits of the y-axes may differ across plots. Green lines at zero indicate the point of no bias. Diffuse: diffuse prior
condition; High Con: high consistency condition; inf: informative prior condition; l: number of measurement occasions; Low Con: low consistency
condition; nL1: number of level-1 observations; nL2: number of level-2 observations.
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Figure C 22: Bias, 95% coverage, parameter estimation bias (peb), mean squared error (MSE), empirical SDs and standard error bias (SE - SD) for the threshold
parameters in the LGC-Com GRM with one construct. Points in the dot plots represent the bias or the difference between empirical SDs and posterior
SDs of a single parameter in the respective condition, as calculated by Equations (7.2.1) and (7.2.3). Peb, as calculated by Equation (7.2.2), MSE values
and empirical SDs are averaged values over parameters belonging to one parameter class. Peb values > 1 were set to 1 and MSE values > 0.2 were
set to 0.2, Bias values > 0.3 and < -0.3 were set to 0.3 and -0.3, respectively, empirical SDs > 0.6 were set to 0.6, and SE - SD differences > 0.1
or < -0.1 were set to 0.1 and -0.1, respectively, to enhance readability of the plot. Note that this only concerned conditions suffering from high rates
of non-convergence. Note that the limits of the y-axes may differ across plots. The red line indicates the cut-off value for acceptable coverage or peb
values. Green lines at zero indicate the point of no bias. Diffuse: diffuse prior condition; High Con: high consistency condition; inf: informative prior
condition; l: number of measurement occasions; Low Con: low consistency condition; nL1: number of level-1 observations; nL2: number of level-2
observations.
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Figure C 23: Bias, 95% coverage, parameter estimation bias (peb), mean squared error (MSE), empirical SDs and Standard error bias (SE - SD) for the latent slope
means in the LGC-Com GRM with one construct. Points in the dot plots represent the bias or the difference between empirical SDs and posterior SDs
of a single parameter in the respective condition, as calculated by Equations (7.2.1) and (7.2.3). Peb, as calculated by Equation (7.2.2), MSE values and
empirical SDs are averaged values over parameters belonging to one parameter class. Note that the limits of the y-axes may differ across plots. The red
line indicates the cut-off value for acceptable coverage or peb values. Green lines at zero indicate the point of no bias. Diffuse: diffuse prior condition;
High Con: high consistency condition; inf: informative prior condition; l: number of measurement occasions; Low Con: low consistency condition;
nL1: number of level-1 observations; nL2: number of level-2 observations.
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C.3 Simulation results LGC-Com GRM. Case of two constructs ( j = 2).
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Figure C 24: Bias and 95% coverage for latent state residual factors in the LGC-Com GRM with two constructs. In the plots in the left column, each point represents
the bias of a single parameter in the respective condition, as calculated by Equation (7.2.1). Bias values > 0.3 and < -0.3 were set to 0.3 and -0.3,
respectively, to enhance readability of the plot. Note that these values solely occurred in conditions suffering from high rates of non-convergence.
Coverage values were averaged over parameters belonging to one parameter class. Coverage values could be calculated based on a reduced number of
replications only. These numbers correspond to the number of available PSR values per condition and are displayed in Figure 7.9 (red numbers in the
figure). Note that the limits of the y-axes may differ across plots. Green lines at zero indicate the point of no bias. Coverage should fall within the
region between the two red lines. Diffuse: diffuse prior condition; High Con: high consistency condition; inf: informative prior condition; l: number of
measurement occasions; Low Con: low consistency condition; nL1: number of level-1 observations; nL2: number of level-2 observations.
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Figure C 25: Parameter estimation bias (peb) and mean squared error (MSE) for latent state residual factors in the LGC-Com GRM with two constructs. Peb, as
calculated by Equation (7.2.2), and MSE values are averaged values over parameters belonging to one parameter class. Peb values > 1 were set to 1
and MSE values > 0.2 were set to 0.2 to enhance readability of the plot. Note that this only concerned conditions suffering from high rates of non-
convergence. Note that the limits of the y-axes may differ across plots. The red line indicates the cut-off value of 0.1 for acceptable peb values. Diffuse:
diffuse prior condition; High Con: high consistency condition; inf: informative prior condition; l: number of measurement occasions; Low Con: low
consistency condition; nL1: number of level-1 observations; nL2: number of level-2 observations.
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Figure C 26: Empirical SDs and standard error bias (SE - SD) for latent state residual factors in the LGC-Com GRM with two constructs. In the plots in the right
column, each point represents the difference between empirical SDs and posterior SDs of a single parameter in the respective condition, as calculated by
Equation (7.2.3). Empirical SDs were averaged over parameters of one parameter class. Empirical SDs > 0.6 were set to 0.6, and SE - SD differences >
0.1 or < -0.1 were set to 0.1 and -0.1, respectively, to enhance readability of the plot. Note that this only concerned conditions suffering from high rates
of non-convergence. Note that the limits of the y-axes may differ across plots. Green lines at zero indicate the point of no bias. Diffuse: diffuse prior
condition; High Con: high consistency condition; inf: informative prior condition; l: number of measurement occasions; Low Con: low consistency
condition; nL1: number of level-1 observations; nL2: number of level-2 observations.
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Figure C 27: Bias and 95% coverage for latent intercept factors in the LGC-Com GRM with two constructs. In the plots in the left column, each point represents
the bias of a single parameter in the respective condition, as calculated by Equation (7.2.1). Bias values> 0.3 and < -0.3 were set to 0.3 and -0.3,
respectively, to enhance readability of the plot. Note that these values solely occurred in conditions suffering from high rates of non-convergence.
Coverage values were averaged over parameters belonging to one parameter class. Coverage values could be calculated based on a reduced number of
replications only. These numbers correspond to the number of available PSR values per condition and are displayed in Figure 7.9 (red numbers in the
figure). Note that the limits of the y-axes may differ across plots. Green lines at zero indicate the point of no bias. Coverage should fall within the
region between the two red lines. Diffuse: diffuse prior condition; High Con: high consistency condition; inf: informative prior condition; l: number of
measurement occasions; Low Con: low consistency condition; nL1: number of level-1 observations; nL2: number of level-2 observations.
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Figure C 28: Parameter estimation bias (peb) and mean squared error (MSE) for latent intercept factors in the LGC-Com GRM with two constructs. Peb, as calculated
by Equation (7.2.2), and MSE values are averaged values over parameters belonging to one parameter class. Peb values > 1 were set to 1 and MSE
values > 0.2 were set to 0.2 to enhance readability of the plot. Note that this only concerned conditions suffering from high rates of non-convergence.
Note that the limits of the y-axes may differ across plots. The red line indicates the cut-off value of 0.1 for acceptable peb-values. Diffuse: diffuse prior
condition; High Con: high consistency condition; inf: informative prior condition; l: number of measurement occasions; Low Con: low consistency
condition; nL1: number of level-1 observations; nL2: number of level-2 observations.
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Figure C 29: Empirical SDs and standard error bias (SE - SD) for latent intercept factors in the LGC-Com GRM with two constructs. In the plots in the right column,
each point represents the difference between empirical SDs and posterior SDs of a single parameter in the respective condition, as calculated by Equation
(7.2.3). Empirical SDs were averaged over parameters of one parameter class. Empirical SDs > 0.6 were set to 0.6, and SE - SD differences > 0.1
or < -0.1 were set to 0.1 and -0.1, respectively, to enhance readability of the plot. Note that this only concerned conditions suffering from high rates
of non-convergence. Note that the limits of the y-axes may differ across plots. Green lines at zero indicate the point of no bias. Diffuse: diffuse prior
condition; High Con: high consistency condition; inf: informative prior condition; l: number of measurement occasions; Low Con: low consistency
condition; nL1: number of level-1 observations; nL2: number of level-2 observations.
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Figure C 30: Bias and 95% coverage for latent slope factors in the LGC-Com GRM with two constructs. In the plots in the left column, each point represents the bias
of a single parameter in the respective condition, as calculated by Equation (7.2.1). Bias values> 0.3 and < -0.3 were set to 0.3 and -0.3, respectively,
to enhance readability of the plot. Note that these values solely occurred in conditions suffering from high rates of non-convergence. Coverage values
were averaged over parameters belonging to one parameter class. Coverage values could be calculated based on a reduced number of replications only.
These numbers correspond to the number of available PSR values per condition and are displayed in Figure 7.9 (red numbers in the figure). Note that
the limits of the y-axes may differ across plots. Green lines at zero indicate the point of no bias. Coverage should fall within the region between the two
red lines. Diffuse: diffuse prior condition; High Con: high consistency condition; inf: informative prior condition; l: number of measurement occasions;
Low Con: low consistency condition; nL1: number of level-1 observations; nL2: number of level-2 observations.
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Figure C 31: Parameter estimation bias (peb) and mean squared error (MSE) for latent slope factors in the LGC-Com GRM with two constructs. Peb, as calculated
by Equation (7.2.2), and MSE values are averaged values over parameters belonging to one parameter class. Peb values > 1 were set to 1 and MSE
values > 0.2 were set to 0.2 to enhance readability of the plot. Note that this only concerned conditions suffering from high rates of non-convergence.
Note that the limits of the y-axes may differ across plots. The red line indicates the cut-off value of 0.1 for acceptable peb-values. Diffuse: diffuse prior
condition; High Con: high consistency condition; inf: informative prior condition; l: number of measurement occasions; Low Con: low consistency
condition; nL1: number of level-1 observations; nL2: number of level-2 observations.
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Figure C 32: Empirical SDs and standard error bias (SE - SD) for latent slope factors in the LGC-Com GRM with two constructs. In the plots in the right column,
each point represents the difference between empirical SDs and posterior SDs of a single parameter in the respective condition, as calculated by Equation
(7.2.3). Empirical SDs were averaged over parameters of one parameter class. Empirical SDs > 0.6 were set to 0.6, and SE - SD differences > 0.1
or < -0.1 were set to 0.1 and -0.1, respectively, to enhance readability of the plot. Note that this only concerned conditions suffering from high rates
of non-convergence. Note that the limits of the y-axes may differ across plots. Green lines at zero indicate the point of no bias. Diffuse: diffuse prior
condition; High Con: high consistency condition; inf: informative prior condition; l: number of measurement occasions; Low Con: low consistency
condition; nL1: number of level-1 observations; nL2: number of level-2 observations.
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Figure C 33: Bias and 95% coverage for unique method state residual factors in the LGC-Com GRM with two constructs. In the plots in the left column, each point
represents the bias of a single parameter in the respective condition, as calculated by Equation (7.2.1). Bias values > 0.3 and < -0.3 were set to 0.3 and
-0.3, respectively, to enhance readability of the plot. Note that these values solely occurred in conditions suffering from high rates of non-convergence.
Coverage values were averaged over parameters belonging to one parameter class. Coverage values could be calculated based on a reduced number of
replications only. These numbers correspond to the number of available PSR values per condition and are displayed in Figure 7.9 (red numbers in the
figure). Note that the limits of the y-axes may differ across plots. Green lines at zero indicate the point of no bias. Coverage should fall within the
region between the two red lines. Diffuse: diffuse prior condition; High Con: high consistency condition; inf: informative prior condition; l: number of
measurement occasions; Low Con: low consistency condition; nL1: number of level-1 observations; nL2: number of level-2 observations.
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Figure C 34: Parameter estimation bias (peb) and mean squared error (MSE) for unique method state residual factors in the LGC-Com GRM with two constructs.
Peb, as calculated by Equation (7.2.2), and MSE values are averaged values over parameters belonging to one parameter class. Peb values > 1 were
set to 1 and MSE values > 0.2 were set to 0.2 to enhance readability of the plot. Note that this only concerned conditions suffering from high rates of
non-convergence. Note that the limits of the y-axes may differ across plots. The red line indicates the cut-off value of 0.1 for acceptable peb-values.
Diffuse: diffuse prior condition; High Con: high consistency condition; inf: informative prior condition; l: number of measurement occasions; Low
Con: low consistency condition; nL1: number of level-1 observations; nL2: number of level-2 observations.
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Figure C 35: Empirical SDs and standard error bias (SE - SD) for unique method state residual factors in the LGC-Com GRM with two constructs. In the plots in
the right column, each point represents the difference between empirical SDs and posterior SDs of a single parameter in the respective condition, as
calculated by Equation (7.2.3). Empirical SDs were averaged over parameters of one parameter class. Empirical SDs > 0.6 were set to 0.6, and SE - SD
differences > 0.1 or < -0.1 were set to 0.1 and -0.1, respectively, to enhance readability of the plot. Note that this only concerned conditions suffering
from high rates of non-convergence. Note that the limits of the y-axes may differ across plots. Green lines at zero indicate the point of no bias. Diffuse:
diffuse prior condition; High Con: high consistency condition; inf: informative prior condition; l: number of measurement occasions; Low Con: low
consistency condition; nL1: number of level-1 observations; nL2: number of level-2 observations.
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Figure C 36: Bias and 95% coverage for common method state residual factors in the LGC-Com GRM with two constructs. In the plots in the left column, each point
represents the bias of a single parameter in the respective condition, as calculated by Equation (7.2.1). Bias values > 0.3 and < -0.3 were set to 0.3 and
-0.3, respectively, to enhance readability of the plot. Note that these values solely occurred in conditions suffering from high rates of non-convergence.
Coverage values were averaged over parameters belonging to one parameter class. Coverage values could be calculated based on a reduced number of
replications only. These numbers correspond to the number of available PSR values per condition and are displayed in Figure 7.9 (red numbers in the
figure). Note that the limits of the y-axes may differ across plots. Green lines at zero indicate the point of no bias. Coverage should fall within the
region between the two red lines. Diffuse: diffuse prior condition; High Con: high consistency condition; inf: informative prior condition; l: number of
measurement occasions; Low Con: low consistency condition; nL1: number of level-1 observations; nL2: number of level-2 observations.
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Figure C 37: Parameter estimation bias (peb) and mean squared error (MSE) for common method state residual factors in the LGC-Com GRM with two constructs.
Peb, as calculated by Equation (7.2.2), and MSE values are averaged values over parameters belonging to one parameter class. Peb values > 1 were
set to 1 and MSE values > 0.2 were set to 0.2 to enhance readability of the plot. Note that this only concerned conditions suffering from high rates of
non-convergence. Note that the limits of the y-axes may differ across plots. The red line indicates the cut-off value of 0.1 for acceptable peb-values.
Diffuse: diffuse prior condition; High Con: high consistency condition; inf: informative prior condition; l: number of measurement occasions; Low
Con: low consistency condition; nL1: number of level-1 observations; nL2: number of level-2 observations.
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Figure C 38: Empirical SDs and standard error bias (SE - SD) for common method state residual factors in the LGC-Com GRM with two constructs. In the plots
in the right column, each point represents the difference between empirical SDs and posterior SDs of a single parameter in the respective condition, as
calculated by Equation (7.2.3). Empirical SDs were averaged over parameters of one parameter class. Empirical SDs > 0.6 were set to 0.6, and SE - SD
differences > 0.1 or < -0.1 were set to 0.1 and -0.1, respectively, to enhance readability of the plot. Note that this only concerned conditions suffering
from high rates of non-convergence. Note that the limits of the y-axes may differ across plots. Green lines at zero indicate the point of no bias. Diffuse:
diffuse prior condition; High Con: high consistency condition; inf: informative prior condition; l: number of measurement occasions; Low Con: low
consistency condition; nL1: number of level-1 observations; nL2: number of level-2 observations.
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Figure C 39: Bias and 95% coverage for unique method trait factors in the LGC-Com GRM with two constructs. In the plots in the left column, each point represents

the bias of a single parameter in the respective condition, as calculated by Equation (7.2.1). Bias values > 0.3 and < -0.3 were set to 0.3 and -0.3,
respectively, to enhance readability of the plot. Note that these values solely occurred in conditions suffering from high rates of non-convergence.
Coverage values were averaged over parameters belonging to one parameter class. Coverage values could be calculated based on a reduced number of
replications only. These numbers correspond to the number of available PSR values per condition and are displayed in Figure 7.9 (red numbers in the
figure). Note that the limits of the y-axes may differ across plots. Green lines at zero indicate the point of no bias. Coverage should fall within the
region between the two red lines. Diffuse: diffuse prior condition; High Con: high consistency condition; inf: informative prior condition; l: number of
measurement occasions; Low Con: low consistency condition; nL1: number of level-1 observations; nL2: number of level-2 observations.



322 Appendix C

High Con
diffuse

High Con
inf

Low Con
diffuse

Low Con
inf

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

l=3

l=4

400 600 800 400 600 800 400 600 800 400 600 800
nL2

Pe
b

nL1
2

5

10

20

Unique Method Trait variances (Level 1)

High Con
diffuse

High Con
inf

Low Con
diffuse

Low Con
inf

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

l=3

l=4

400 600 800 400 600 800 400 600 800 400 600 800
nL2

Pe
b

nL1
2

5

10

20

Unique Method Trait covariances (Level 1)

High Con
diffuse

High Con
inf

Low Con
diffuse

Low Con
inf

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

l=3

l=4

400 600 800 400 600 800 400 600 800 400 600 800
nL2

Pe
b

nL1
2

5

10

20

Unique Method State covariances (Level 1)

High Con
diffuse

High Con
inf

Low Con
diffuse

Low Con
inf

0.00

0.05

0.10

0.15

0.20

0.00

0.05

0.10

0.15

0.20

l=3

l=4

400 600 800 400 600 800 400 600 800 400 600 800
nL2

M
SE

nL1
2

5

10

20

Unique Method Trait variances (Level 1)

High Con
diffuse

High Con
inf

Low Con
diffuse

Low Con
inf

0.00

0.05

0.10

0.15

0.20

0.00

0.05

0.10

0.15

0.20

l=3

l=4

400 600 800 400 600 800 400 600 800 400 600 800
nL2

M
SE

nL1
2

5

10

20

Unique Method Trait covariances (Level 1)

High Con
diffuse

High Con
inf

Low Con
diffuse

Low Con
inf

0.00

0.05

0.10

0.15

0.20

0.00

0.05

0.10

0.15

0.20

l=3

l=4

400 600 800 400 600 800 400 600 800 400 600 800
nL2

M
SE

nL1
2

5

10

20

Unique Method State covariances (Level 1)
Figure C 40: Parameter estimation bias (peb) and mean squared error (MSE) for unique method trait factors in the LGC-Com GRM with two constructs. Peb, as

calculated by Equation (7.2.2), and MSE values are averaged values over parameters belonging to one parameter class. Peb values > 1 were set to 1
and MSE values > 0.2 were set to 0.2 to enhance readability of the plot. Note that this only concerned conditions suffering from high rates of non-
convergence. Note that the limits of the y-axes may differ across plots. The red line indicates the cut-off value of 0.1 for acceptable peb-values. Diffuse:
diffuse prior condition; High Con: high consistency condition; inf: informative prior condition; l: number of measurement occasions; Low Con: low
consistency condition; nL1: number of level-1 observations; nL2: number of level-2 observations.
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Figure C 41: Empirical SDs and standard error bias (SE - SD) for unique method trait factors in the LGC-Com GRM with two constructs. In the plots in the right

column, each point represents the difference between empirical SDs and posterior SDs of a single parameter in the respective condition, as calculated by
Equation (7.2.3). Empirical SDs were averaged over parameters of one parameter class. Empirical SDs > 0.6 were set to 0.6, and SE - SD differences >
0.1 or < -0.1 were set to 0.1 and -0.1, respectively, to enhance readability of the plot. Note that this only concerned conditions suffering from high rates
of non-convergence. Note that the limits of the y-axes may differ across plots. Green lines at zero indicate the point of no bias. Diffuse: diffuse prior
condition; High Con: high consistency condition; inf: informative prior condition; l: number of measurement occasions; Low Con: low consistency
condition; nL1: number of level-1 observations; nL2: number of level-2 observations.
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Figure C 42: Bias and 95% coverage for common method intercept factors in the LGC-Com GRM with two constructs. In the plots in the left column, each point

represents the bias of a single parameter in the respective condition, as calculated by Equation (7.2.1). Bias values > 0.3 and < -0.3 were set to 0.3 and
-0.3, respectively, to enhance readability of the plot. Note that these values solely occurred in conditions suffering from high rates of non-convergence.
Coverage values were averaged over parameters belonging to one parameter class. Coverage values could be calculated based on a reduced number of
replications only. These numbers correspond to the number of available PSR values per condition and are displayed in Figure 7.9 (red numbers in the
figure). Note that the limits of the y-axes may differ across plots. Green lines at zero indicate the point of no bias. Coverage should fall within the
region between the two red lines. Diffuse: diffuse prior condition; High Con: high consistency condition; inf: informative prior condition; l: number of
measurement occasions; Low Con: low consistency condition; nL1: number of level-1 observations; nL2: number of level-2 observations.
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Figure C 43: Parameter estimation bias (peb) and mean squared error (MSE) for common method intercept factors in the LGC-Com GRM with two constructs. Peb,

as calculated by Equation (7.2.2), and MSE values are averaged values over parameters belonging to one parameter class. Peb values > 1 were set
to 1 and MSE values > 0.2 were set to 0.2 to enhance readability of the plot. Note that this only concerned conditions suffering from high rates of
non-convergence. Note that the limits of the y-axes may differ across plots. The red line indicates the cut-off value of 0.1 for acceptable peb-values.
Diffuse: diffuse prior condition; High Con: high consistency condition; inf: informative prior condition; l: number of measurement occasions; Low
Con: low consistency condition; nL1: number of level-1 observations; nL2: number of level-2 observations.
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Figure C 44: Empirical SDs and standard error bias (SE - SD) for common method intercept factors in the LGC-Com GRM with two constructs. In the plots in

the right column, each point represents the difference between empirical SDs and posterior SDs of a single parameter in the respective condition, as
calculated by Equation (7.2.3). Empirical SDs were averaged over parameters of one parameter class. Empirical SDs > 0.6 were set to 0.6, and SE - SD
differences > 0.1 or < -0.1 were set to 0.1 and -0.1, respectively, to enhance readability of the plot. Note that this only concerned conditions suffering
from high rates of non-convergence. Note that the limits of the y-axes may differ across plots. Green lines at zero indicate the point of no bias. Diffuse:
diffuse prior condition; High Con: high consistency condition; inf: informative prior condition; l: number of measurement occasions; Low Con: low
consistency condition; nL1: number of level-1 observations; nL2: number of level-2 observations.
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Figure C 45: Bias, 95% coverage, parameter estimation bias (peb), mean squared error (MSE), empirical SDs and standard error bias (SE - SD) for the threshold
parameters in the LGC-Com GRM with two constructs. Points in the dot plots represent the bias or the difference between empirical SDs and posterior
SDs of a single parameter in the respective condition, as calculated by Equations (7.2.1) and (7.2.3). Peb, as calculated by Equation (7.2.2), MSE values
and empirical SDs are averaged values over parameters belonging to one parameter class. Peb values > 1 were set to 1 and MSE values > 0.2 were
set to 0.2, Bias values > 0.3 and < -0.3 were set to 0.3 and -0.3, respectively, empirical SDs > 0.6 were set to 0.6, and SE - SD differences > 0.1
or < -0.1 were set to 0.1 and -0.1, respectively, to enhance readability of the plot. Note that this only concerned conditions suffering from high rates
of non-convergence. Note that the limits of the y-axes may differ across plots. The red line indicates the cut-off value for acceptable coverage or peb
values. Green lines at zero indicate the point of no bias. Diffuse: diffuse prior condition; High Con: high consistency condition; inf: informative prior
condition; l: number of measurement occasions; Low Con: low consistency condition; nL1: number of level-1 observations; nL2: number of level-2
observations.
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Figure C 46: Bias, 95% coverage, parameter estimation bias (peb), mean squared error (MSE), empirical SDs and standard error bias (SE - SD) for the latent slope
means in the LGC-Com GRM with two constructs. Points in the dot plots represent the bias or the difference between empirical SDs and posterior SDs
of a single parameter in the respective condition, as calculated by Equations (7.2.1) and (7.2.3). Peb, as calculated by Equation (7.2.2), MSE values and
empirical SDs are averaged values over parameters belonging to one parameter class. Note that the limits of the y-axes may differ across plots. The red
line indicates the cut-off value for acceptable coverage or peb values. Green lines at zero indicate the point of no bias. Diffuse: diffuse prior condition;
High Con: high consistency condition; inf: informative prior condition; l: number of measurement occasions; Low Con: low consistency condition;
nL1: number of level-1 observations; nL2: number of level-2 observations.
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