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Part I

I N T R O D U C T I O N





1
I N T R O D U C T I O N

There are many interesting objects in mathematics. But the one that charmed me the
most is lattice polytopes. The following three chapters are all based on, or grew out of
interesting questions on lattice polytopes. But before we dive into these let’s give the
objects of our love the introduction they deserve. (If you are not already in love, this
will hopefully help to get you excited.) Unless stated otherwise, unproved statements
made in this introduction can be found in the introductory book by Ziegler [Zie95] and
the upcoming book by Haase, Nill and Paffenholz. [HNP2x] (A preliminary version
can be found online.)

But why should you be interested in lattice polytopes? If their inherent beauty is
not enough for you, there are plenty more reasons for that. As far as applications go,
let me mention two examples. One are reflexive polytopes and their generalisations,
Gorenstein polytopes, which correspond to Calabi-Yau varieties in toric geometry, that
are used by physicists working on string theory and mirror symmetry. One of the
advantages that polytopes bring into the picture, is that they help us classify certain
interesting classes; see e.g. [LN15].

Of course a prominent example is linear optimization, where polytopes and, if the
problem is unbounded, polyhedra, are the key underlying objects that are studied.
If you are interested in integral solutions for your optimization problem, what you
are looking at are lattice polytopes and polyhedra. It is worth mentioning that in this
case the problem becomes much harder, as the integer linear programming problem is
NP-complete [Sch86, Theorem 18.1]. Polytopes also provide a geometric view on the
optimization problem, for example if your problem is bounded, the optimal solution
is always attained at a vertex and one of the most used algorithms to solve linear
optimization problems, the simplex algorithm, works via walking along edges of the
respective polytope. It is still an open problem, whether there are rules on how to
pick the next edge so that its running time will be polynomial in the input, like in the
ellipsoid method and in the interior point method. Polytopes and their properties are
used in attempts to solve this question.

Apart from those applications, polytopes have a connection to many other fields
inside mathematics, like combinatorics, algebraic geometry, symplectic geometry, statis-
tics and many more.

So without further ado, lets start to get to know them better.
A polytope P ⊂ Rd can be defined in two equivalent ways, called the V-description

and the H-description of P. The equivalence of both descriptions is known as the
Minkowski-Weyl theorem or main theorem for polytopes [Zie95]. As we will use both, here
they are.

Definition 1.0.1. A polytope P ⊂ Rd is the convex hull of finitely many points, i.e. given
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introduction

a set V = {v1, . . . , vs} ⊂ Rd, then

P := conv(V) :=

{
s

∑
i=1

λivi :
s

∑
i=1

λi = 1 and λi ≥ 0

}
.

Equivalently, a polytope P ⊂ Rd is a bounded polyhedron, where a polyhedron is defined
as the intersection of finitely many halfspaces H+

1 , . . . , H+
m ⊂ Rd:

P :=
m⋂

i=1

H+
i

Example 1.0.2. Looking for example at Figure 1.1. We depict the two constructions for
the same polytope P ⊆ R2, which is given as

P = conv

(
1 3 3 1
1 1 2 2

)
and P =


(

x
y

)
∈ R2 :


1 0
−1 0
0 1
0 −1


(

x
y

)
≤


3
−1
2
−1




(a) V-description (b) H-description

Figure 1.1: Two different ways to define a polytope

The dimension of a polytope P, dim(P), is the dimension of its affine span, aff(P). We
often abbreviate P being a d-dimensional polytope to P being a d-polytope. If P is a d-
polytope and the convex hull of d + 1 points, it is called a simplex and a special example
for one is the standard simplex ∆d := conv(0, e1, . . . , ed). A linear inequality ax ≤ b is
valid for P, if it is satisfied for all x ∈ P. A face F of a polytope P, denoted by F ≺ P is
any subset of P, of the form F = P ∩ {x : ax = b}, where ax ≤ b is a valid inequaliy
for P. If P is a d-polytope, then 0-dimensional faces are called vertices, 1-dimensional
faces are called edges, (d− 2)-dimensional ones ridges and (d− 1)-dimensional ones
facets. By P[k] we denote the set of k-dimensional faces of P. Looking back at the
two descriptions for polytopes, the first one is called V-description, because the set of
vertices of P, vert(P), is the unique minimal set of which P is the convex hull of. I.e.
for every set W, with P = conv(W) we have vert(P) ⊆ W and P = conv(vert(P)). In
the second one H stands for hyperplane and similar to the other description we have
a unique minimal set, which in this case is coming from hyperplanes that cut out the
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introduction

facets of P. One interesting piece of combinatorial data is the number of faces we have
in the respective dimensions. Given a d-polytope P, this is recorded in the f -vector
of P, f (P) = ( f−1(P), . . . , fd(P)), with fi(P) := |P[i]| and setting dim(∅) = −1. Using
the empty set might be surprising at first, but it is a face of every polytope, because
0x ≤ 1 is a valid inequality and as a bonus its inclusion also makes certain formulas
look nicer. Our focus in this work will be lattice polytopes, where a polytope is called
lattice polytope if all its vertices lie in a common lattice Λ. In our case we have Λ ∼= Zd

and for us this is not really a restriction, as using a linear map that maps a lattice basis
of Zd to a basis of an arbitrary lattice Λ, we can see that properties we study basically
remain intact, so that similar statements are also true if we replace Zd by any rank d
lattice Λ.

In a lot of cases we do not want to distinguish between polytopes and their translates
and also not if we transform them unimodularly. Because of that we call two lattice
polytopes P and Q unimodular equivalent or just equivalent if there is an affine transfor-
mation f mapping P to Q, that preserves the lattice. Sometimes this is also called Λ- or
Z-equivalence. For our favorite lattice Zd, this boils down to the existence of an invert-
ible integer matrix A ∈ Zdxd and an integer vector b ∈ Zd, such that Q = AP + b. For
example in Figure 1.2 we see some polytopes that are equivalent to the 2-dimensional
standard simplex ∆2 and one that is not.

(a) ∆2 (b) A (c) B (d) C

Figure 1.2: Polytopes A and B are equivalent to ∆2, C is not.

The simplex ∆2 is a peculiar example, as it is equivalent to every lattice simplex S
such that

∣∣S ∩Z2
∣∣ = 3. This stops being the case from dimension 3 onwards.

A lot of interesting properties of a polytope P are preserved by this equivalence,
like volume, number of lattice points and the entries of the f -vector, in particular
all properties that we will investigate further in the coming sections are preserved.
Properties that are not preserved are for example angles or the euclidean length of
segments or edges. For the latter of the two, there is the notion of lattice length of a
segment e, denoted by `(e), which is preserved and which we will use later on. To
define it properly let e be the segment connecting two rational points v, w ∈ Qd and let
u be the shortest integer vector on the line spanned by w− v. Then e = ku for some
k ∈ Q and `(e) := |k|. We also consider degenerate segments with v = w; in this case
we set `(e) = 0. If on the other hand e is a lattice segment, i.e. v, w ∈ Zd, then we can
compute `(e) by just counting the number of lattice points on e and substracting 1, i.e.
`(e) =

∣∣e ∩Zd
∣∣− 1.
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Another useful object used to study polytopes are fans. To define them we need to
look at cones first. A cone C ⊆ Rd of a set T ⊆ Rd is given by

C := cone(T) :=

{
n

∑
i=1

λiti : λi ≥ 0, n ∈N, ti ∈ T

}
.

If there is a finite set V, such that C = cone(V), then we call C polyhedral, as in this case
C is also a polyhedron, i.e. the intersection of finitely many halfspaces. The definitions
made above for polytopes for the dimension and faces carry over to cones, here the one
dimensional faces of a d-cone are called rays and the (d− 1)-dimensional ones facets.
If a d-cone C is spanned by d rays it is called simplicial. A polyhedral cone C is called
rational, if there is a finite set S ⊂ Qd, spanning C. In this case all rays of C are rational
cones and given one of these rays ρ ≺ C, there this a shortest integer vector v contained
in ρ, which we call primitive ray generator. Now given a d-cone C, if the primitive ray
generators of C form a lattice basis of Zd, then we call C unimodular. Note that in this
case C has to be simplicial.

A fan Σ in Rd is a collection Σ = {C1, . . . , Cs} of nonempty polyhedral cones Ci ⊆ Rd,
with the following two properties:

1. Every nonempty face of a cone in Σ is also a cone in Σ.

2. The intersection of any two cones in Σ is a face of both.

The fan Σ is called complete, if the so called support of Σ, |Σ| = C1 ∪ . . . ∪ Cs covers the
entire underlying space, i.e. |Σ| = Rd. If all cones in Σ are unimodular, we call Σ itself
unimodular. Similar to the polytopal case, Σ[k] denotes the set of k-dimensional cones in
Σ and the f -vector f (Σ) records the numbers of the cones in the respective dimensions.

Coming back to polytopes, there are two important fans we can associate with our
polytope P, the face fan F (P) and the normal fan N (P). Where the face fan of a polytope
P with 0 ∈ relint(P) is given by

F (P) := {cone(F) : F ≺ P}.

It is also possible to define the face fan, for polytopes without 0 in the relative interior,
if you just use any point x ∈ relint(P) and the cones cone(F − x) to make up F (P).
In this case the face fan is not unique, but there are still many properties that remain
unchanged, no matter which point in the relative interior you choose. But as we will
only use it in connection with polytopes containing 0 and use lattice properties of the
rays, we stick with the first definition. As for the normal fan N (P), for every nonempty
face F of P there exists a linear functional cF, such that ct

Fx is maximal over P if and
only if x ∈ F, i.e. F = P ∩ {x : cFx = m}, where m is the maximal value cF achieves
on P. In this case we also say that cF defines the face F. The set

CF =

{
c :

{
z : max

x∈P
ctx = ctz

}
⊇ F

}

8



1.1 classifying lattice polytopes

is a polyhedral cone. Then the normal fan N (P) of P is the collection of these cones
over all nonempty faces of P. The correspondence F ←→ CF is an inclusion reversing
bijection, i.e. given two faces F, F′ ≺ P, then F ⊆ F′ if and only if CF′ ⊆ CF. Both
F (P) and N (P) are examples for complete fans, but in most cases they will not be
unimodular.

(a) F (P) (b) P (c) N (P)

Figure 1.3: Example of a polytope P with its associated face and normal fan

While there is a unique normal fan and a unique face fan associated to a polytope, it
is not a 1 to 1 corresponce between fan and polytope, as for example both the face fan
and the normal fan stay the same if we dilate the polytope.

Now that we have covered some of the basic properties of polytopes, in the following
three sections we will give three short introductions to the questions and classes of
polytopes that will be discussed in more detail in chapters 2,3 and 4, respectively.

1 .1 classifying lattice polytopes

When working with lattice polytopes, it is a natural question to ask what kind of lattice
polytopes are there and considerable effort has gone into several classification projects
for several classes of them, with motivation stemming from different sources. For
example:

• A monumental task and now a shining example is the classification of reflexive
polytopes up to dimension 4 by Kreuzer and Skarke [KS00], the data for these
and other Calabi-Yau manifolds can be found online under http://hep.itp.
tuwien.ac.at/~kreuzer/CY.html.

• Smooth reflexive polytopes were classified up to dimension 8 by Øbro [Øbr07] and
in dimension 9 by Lorenz and Paffenholz [LP08] (see also https://polymake.
org/polytopes/paffenholz/www/fano.html). This classification led to
new discoveries about smooth reflexive polytopes in arbitrary dimension and
hereby helped solving long-open problems [AJP14; LN15; NP11; OSY12].

• Lattice polytopes with a single lattice point in their interior (assumed to be the
origin) are important in algebraic geometry. They correspond to projective toric
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varieties with at most canonical singularities, which is why they are called canonical
polytopes. Canonical polytopes all of whose boundary lattice points are vertices are
called terminal. Canonical 3-dimensional lattice polytopes were fully enumerated
by Kasprzyk [Kas10]. The data for this and a lot more can be found in the graded
ring database (http://www.grdb.co.uk).

• Empty simplices, that is, lattice simplices with no lattice points apart from their
vertices, are the building blocks into which every lattice polytope can be de-
composed, and they correspond to terminal quotient singularities in algebraic
geometry. Their classification in dimension three (the so-called “terminal lemma”)
is by now classical [Whi64]. But in dimension four it is yet not complete, despite
efforts coming both from algebraic geometry [Bar+11; Bob09; MMM88; San90]
and discrete geometry [HZ00].

• Last but not least, a classification specially useful for us is that of hollow lattice
polytopes, by which we mean lattice polytopes without interior lattice points.
(These include empty simplices, but also other things). In dimension two they
consist of the polygons of width one and the second dilation of a unimodular
triangle. In dimension three the full classification has recently been completed by
Averkov et al. [AWW11] and [AKW17]. See Section 2.5 for details.

All these classifications are modulo unimodular equivalence.

From the point of view of discrete geometry alone, it seems natural to classify, or
enumerate, all lattice polytopes of a given dimension and with a certain number of
lattice points. We call the latter the size of a lattice polytope. In dimension 1 this is
trivial, since the unique lattice segment of size n is that of length n− 1. In dimension
2 it is also an easy exercise, since Pick’s Theorem implies that there are finitely many
different lattice polygons for each size and an enumeration algorithm is straightforward.
However in dimension 3 and higher the task is a-priori undoable, since the number
is infinite already for the smallest possible case, that of empty tetrahedra, i.e. lattice
3-polytopes of size 4. Indeed, the following infinite family of so-called Reeve tetrahedra
was described 60 years ago by Reeve [Ree57]:

Tr := conv


0

0
0

 ,

1
0
0

 ,

0
1
0

 ,

1
1
r


 .
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1.1 classifying lattice polytopes

Figure 1.4: The Reeve tetrahedron T3

Still, Blanco and Santos [BS16a] found a way of making sense of the question in
dimension 3. They proved that for each size n, all but finitely many lattice 3-polytopes
have width one and they classified lattice polytopes of width larger than one and of
sizes up to eleven [BS16a; BS16b; BS16c].

# vertices 4 5 6 7 8 9 10 total

size 5 9 0 − − − − − 9
size 6 36 40 0 − − − − 76
size 7 103 296 97 0 − − − 496
size 8 193 1195 1140 147 0 − − 2675
size 9 282 2853 5920 2491 152 0 − 11698

size 10 478 5985 18505 16384 3575 108 0 45035
size 11 619 11432 48103 64256 28570 3425 59 156464

Table 1.1: Lattice 3-polytopes of width larger than one and size ≤ 11, classified according to their size
and number of vertices.

As a by-product, their result includes a full classification of 3-dimensional distinct
pair sum polytopes, or dps-polytopes [CLR02; Rez08], since these are known to have size
at most 2d in dimension d.

Here, the width of a lattice polytope P with respect to a linear functional ` ∈ (Rd)∗ is
defined as

width`(P) := max
p,q∈P

|` · p− ` · q| .

The lattice width, or simply width, of P is the minimum such width`(P), where ` ranges
over non-zero integer functionals:

width(P) := min
`∈(Zd)∗\{0}

width`(P).

For example, P has width one if and only if it lies between two consecutive lattice
hyperplanes, as the Reeve tetrahedra mentioned above.

11
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The starting point for our work in chapter 2 is the observation that the finiteness
result of Blanco and Santos generalizes as follows:

Theorem 1.1.1. For each dimension d there is a constant w ∈N such that for every
n ∈ N the number of lattice d-polytopes of size n and width larger than w is finite.
Moreover, the minimal such constant satisfies

d− 2 ≤ w ≤ O
(

d3/2
)

. (1.1)

To prove this, we need the following lemma.

Lemma 1.1.2. There are only finitely many non-hollow lattice d-polytopes of size n.

Proof. The lemma follows directly from the combination of the following two results:
Hensley [Hen83, Thm. 3.6] showed that there is a bound on the volume of non-hollow
lattice d-polytopes with a given number k of interior points. Taking the maximum
of these for k ∈ {1, . . . , n− d− 1} provides a bound for the volume of non-hollow d-
polytopes of size n. Finally, Lagarias and Ziegler [LZ91, Thm. 2] proved finiteness of the
number of equivalence classes of lattice d-polytopes with a bound on their volume.

Proof of Theorem 1.1.1. The inequality d− 2 ≤ w will be proved later in chapter 2 (see
part (5) of Theorem 2.1.2 and the comment after it).

For the rest of the statement, observe that hollow polytopes of dimension d have a
global bound of O(d3/2) for their width [Ban+99, Theorem. 2.4]. With this, the only
thing left to prove is that once d and n are fixed there are only finitely many non-hollow
lattice d-polytopes of size n, but that is the exact statement of Lemma 1.1.2.

Theorem 1.1.1 gives rise to the following defintion, which will introduce the main
object of chapter 2.

Definition 1.1.3. For each d ∈N we call finiteness threshold width in dimension d, and
denote it w∞(d), the minimum constant w such that for every n ∈ N the number of
lattice d-polytopes of size n and width larger than w is finite.

For instance, w∞(1) = w∞(2) = 0 since, as mentioned above, there are only finitely
many one or two dimensional lattice polytopes of each size. Blanco and Santos’ afore-
mentioned result states that w∞(3) = 1. In chapter 2 we prove several relations and
properties of w∞(d) and then use those to prove our main result of chapter 2, the exact
value of w∞(4):

Theorem 1.1.4 (Corollary 2.5.5). For each n ≥ 5 there are only finitely many lattice
4-polytopes of size n and width greater than 2, that is, w∞(4) = 2.

This result in particular implies the following result:

Corollary 1.1.5. There are infinitely many empty 4-simplices of width two but
only finitely many of larger width.

12



1.2 idp and long-edged polytopes

Proof. Haase and Ziegler [HZ00, Proposition 6] found infinitely many empty 4-simplices
of width 2. w∞(4) = 2 implies there are only finitely many of larger width.

Remark 1.1.6. Corollary 1.1.5 is the main result in Barile et al. [Bar+11], but we have
found out that the proof given in that paper is incomplete. More precisely, the authors
use a classification of infinite families of empty 4-simplices of width > 1, that had been
conjectured by Mori et al. [MMM88] and proved by Sankaran [San90] and Bover [Bob09],
for simplices whose determinant (i.e., their normalized volume) is a prime number.
But when the determinant is not prime other infinite families do arise, such as the
following explicit example: the empty 4-simplices with vertices e1, e2, e3, e4 and
(2, N/2− 1, a, N/2− a), where the determinant N is a multiple of 4 and coprime with
a. As a conclusion, the proof of Corollary 1.1.5 given in [Bar+11] is valid only for
simplices of prime determinant.

After this work was completed a new proof of Corollary 1.1.5 has been obtained which
gives the following more explicit information: there are exactly 179 empty 4-simplices
of width larger than two, all of width three except for one of width four [ISep].

We thank O. Iglesias for the computations leading to finding this (and other) families
and the authors of [Bar+11] for acknowledging (private communication) their mistake
and for helpful discussions about the extent of it.

Chapters 1.1 and 2 are based on a joint paper with Mónica Blanco, Christian Haase
and Franscisco Santos [Bla+1x].

We thank Benjamin Nill and Gennadiy Averkov for helpful discussions in the de-
velopment of our paper [Bla+1x], in particular for pointing us to references [AWW11]
and [AKW17].

1 .2 idp and long-edged polytopes

A polytope P has the integer decompostion property, or short IDP, if for every k ∈ N

the k-th dilation kP = P + . . . + P of P decomposes at the level of lattice points:
kP ∩Zd = (P ∩Zd) + . . . + (P ∩Zd). Note that sometimes polytopes with the IDP
are also called normal, but in most of the literature there is a distinction between the
two and normal is defined as follows. Let Λ be the lattice generated by P ∩Zd. Then
P is called normal, if for every k ∈ N the dilation kP = P + . . . + P of P decomposes
on the level of lattice points: kP ∩ Λ = (P ∩ Λ) + . . . + (P ∩ Λ). So the difference is
in the underlying lattice and in the case when Λ = Zd, they are the same. Examples
of polytopes that are normal, but do not have the integer decomposition property are
empty lattice simplices of large volume. Polytopes with the IDP turn up in many fields
of mathematics. The name IDP comes from integer programming. In algebraic geometry
these polytopes correspond to projectively normal embeddings of toric varieties. In
commutative algebra they are called integrally closed.
So it is natural to ask which polytopes have the IDP. There has been a lot of research
concerning this question in recent years. One way to prove a given polytope satisfies
the IDP is to cover it with simpler polytopes known to have the IDP. The first approach
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would be to use the easiest IDP polytopes, namely unimodular simplicies, and try to
show that every polytope with the IDP can be triangulated into unimodular simplices.
Although this works in dimension 2, it does not work in general, in fact it already fails
in dimension 3 [KS03]. Relaxing triangulations to coverings with unimodular simplices,
there is a famous 5-dimensional polytope with the IDP which does not have such a
covering [BG99]. On the other hand, one very nice positive result is that given a lattice
polytope P, if all edge lenghts of P (with respect to the lattice) have a common factor
c ≥ d− 1, then P has the IDP [EW91; LTJZ93; BGT97].
The following conjecture proposed during a workshop [HHM07], suggests that this is
also true (maybe with a higher bound) in a more generalized setting, where the edge
lengths can be independent.

Conjecture 1.2.1. Simple lattice polytopes with long edges have the integer de-
compostion property, where long means some invariant, uniform in the dimension.

This conjecture was then proved by Gubeladze in the following precise form.

Theorem ([Gub12]). Let P be a lattice polytope of dimension d. If every edge of P
has lattice length at least 4d(d + 1), then P has the integer decompostion property.

He proves this theorem by first introducing the notion of k-convex-normality and prov-
ing that a polytope P is k-convex-normal, if for all edges e ≺ P we have `(e) ≥ kd(d+ 1).
Then he shows, that 4-convex-normal lattice polytopes have the IDP.

In chapter 3.1 we further examine k-convex-normal polytopes and show that if P is a
lattice polytope and k-convex-normal for some k ≥ 3, then P is also m-convex-normal
for all m ≥ 2 (Theorem 3.1.5). The lemma used to prove this theorem, also allows us to
improve Gubeladze’s bound to 2d(d + 1) (Corollary 3.1.10).

In chapter 3.2 we extend the notion of convex-normal polytopes to pairs of poly-
topes. We show that given two polytopes P and Q, the map (Q ∩Zd)× (P ∩Zd) →
(Q + P)∩Zd given by (q, p) 7→ q + p is surjective, if the normal fan of P is a refinement
of the normal fan of Q and every edge of P is at least d times as long as its correspond-
ing face (edge or vertex) in Q. (Theorem 3.2.9)

Chapter 3 is based on a joint paper with Christian Haase [HH17].
We would like to thank Petra Meyer as the first part of said paper grew out of her

master’s thesis, that we supervised.

1 .3 reflexive polytopes and the number 12

Coming to the final part of our introduction, let’s meet the class of reflexive polytopes.

Definition 1.3.1 (polar dual & reflexive). Let P ⊂ Rd be a d-dimensional polytope with
0 ∈ P. The polar dual of P is

P∗ =
{

α ∈
(

Rd
)∗

: α · x ≤ 1 for all x ∈ P
}

.
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1.3 reflexive polytopes and the number 12

Given a lattice polytope P, if P∗ is also a lattice polytope, we call P reflexive.

Let us first collect some basic facts about reflexive polytopes. [Zie95, Thm 2.11-2.14]

Lemma 1.3.2. Let P be a reflexive d-polytope, then

1. P has exactly one interior point.

2. There is a correspondence between k-faces of P and (d− 1− k)-faces of P∗.

3. If N = {n1, . . . , ns} are the primitive normal vectors of the facets of P, then
P∗ = conv(N).

In light of this lemma, given a face F ≺ P, we denote by F∗ its corresponding dual face.
Even though the defintion of relexive looks very restrictive at first, the following

suprising result of Haase and Melnikov [HM06], shows that it is a rich class neverthe-
less.

Lemma 1.3.3. Every lattice polytope is equivalent to a face of some (possibly high-
dimensional) reflexive polytope.

Following this result, a natural question is, given a d-polytope P, what is the lowest
dimension m sucht that P is a face of a reflexive m-polytope. For more on this so called
reflexive dimension of P see [HM06]. Our main interest though stems from the following
curious result.

Theorem 1.3.4. Let P be a reflexive 2-polytope and P? its polar dual, then the sum
of the number of lattice points on the boundary of P and of P? is 12, or equivalently
expressed in terms of the lattice length of the edges we get

∑
e∈P[1]

`(e) + ∑
e′∈P?[1]

`(e′) = 12.

One way to see that this result is true, is to check the equation for all reflexive lattice
polygons by counting the boundary lattice points of the respective pairs. There are 16
of them and they are pictured in Figure 1.5. Those connected with an arrow are dual to
each other, those without are self-dual (meaning, they are equivalent to their dual).

There are several more insightful ways to prove this equation than by exhaustion,
we will present one at the end of chapter 4. But you should also consider reading
the nice paper of Poonen and Rodriguez-Villegas [PRV00] for four different proofs
of the equation (using stepping in the space of polygons, toric varieties and modular
forms respectively). Their paper also includes a generalization to a class of possibly
non-convex lattice polygons, called legal loops, then also taking the winding number
into account. Futher interesting applications and generalisations can be found in the
interesting papers [HS02],[HS09] and [KN12].

Moving on to dimension three there is a similarly intriguing result.
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Figure 1.5: All 16 reflexive 2-dimensional polytopes

Theorem 1.3.5. Let P be a reflexive 3-polytope and P? its polar dual, then

∑
e∈P[1]

`(e)`(e?) = 24.

Dimitrios Dais [Bec+08] was first to prove this Theorem by discovering that it actually
is a Corollary of a more general result on Hodge-Deligne numbers [DK86].

Using the classification of reflexive 3- and 4-polytopes of Kreuzer and Skarke [KS00],
we know all the 4319 reflexive 3-polytopes so a proof by exhaustion would again be
possible, but even less favorable than before. When thinking about higher dimensional
generalisations of these equations, a quick look table 1.6 shows us that with 473800776
reflexive polytopes already in dimension 4, a proof by exhaustion is not the way to go.
For dimensions higher than 4, not even the number of reflexive polytopes is known,
even though using that reflexive polytopes contain exactly one interior lattice point,
we can apply Lemma 1.1.2 to see that there are only finitely many of them. To get an
actual bound, we can use the volume bounds from [LZ91] and get that there are less

than 2
(

dd!14d2d+1
+1
)d

d-polytopes with exactly 1 interior lattice point.
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1.3 reflexive polytopes and the number 12

d # of reflexive polytopes

1 1

2 16

3 4319

4 473.800.776

5 ???

Figure 1.6: Table showing the # of reflexive polytopes

The question on how to generalise the equations to dimensions higher than 3 was
open for quite some years until Godinho, Heymann and Sabatini [GHS16] came along
and by restricting themselves to smooth reflexive polytopes, i.e. those having a uni-
modular normal fan, they were able to generalise it to arbitrary dimension.

Theorem 1.3.6. [GHS16, Theorem 1.2] Let P be a smooth reflexive polytope of
dimension d ≥ 2, with f -vector f = ( f0, . . . , fd). Then

∑
e∈P[1]

`(e) = 12 f2 + (5− 3d) f1.

In chapter 4 we generalize this result to complete unimodular fans (Theorem 4.1.8)
and show that this new equation and the well-known Dehn-Sommerville-equations are
all the independent equations there are on ( f0, . . . , fd, ∑ `(e)) (Theorem 4.2.3).

Chapter 4 is based on an ongoing project joint with Christian Haase.
We like to thank Frederik von Heymann for giving an interesting talk about their

paper [GHS16] and for the stimulating discussions thereafter, which started this project.
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T H R E E I N T E R E S T I N G L AT T I C E
P O LY T O P E P R O B L E M S





2
T H R E S H O L D W I D T H O F L AT T I C E P O LY T O P E S

2 .1 introduction

The main goal of this chapter is to show that w∞(4) = 2, but on the way there, we will
learn more about finiteness threshold width w∞(d) in general.

We sometimes stratify the threshold width in terms of size, and denote w∞(d, n) ∈
N ∪ {∞} the minimal width W ≥ 0 such that there exist only finitely many lattice
d-polytopes of size n and width > W. Clearly, w∞(d) = maxn∈N w∞(d, n) and in
particular, each w∞(d, n) is finite.

In order to get bounds on w∞(d) we relate it to the maximum widths of hollow
and/or empty d-polytopes. As already mentioned, a lattice polytope is hollow if there
is no lattice point in its interior and empty if its vertices are the only lattice points it
contains.

Definition 2.1.1. We denote wH(d) and wE(d) the maximum widths of hollow and
empty d-polytopes, respectively.

Finiteness of wH(d) (and hence of wE(d)) is usually called the “flatness theorem”,
dating back to Khinchine (1948); see, e.g., [KL88]. The current best upper bound of
wH(d) ≤ O(d3/2) (used in the proof of Theorem 1.1.1) is by Banaszczyk et. al [Ban+99,
Theorem. 2.4]. As for lower bounds, wH(d) ≥ d follows from hollowness of the
d-th dilation of a unimodular d-simplex, while wE(d) ≥ 2bd/2c − 1 was proved by
Sebő [Seb99] by slightly modifying this same dilated d-simplex to make it empty.

Throughout this chapter, we prove the following properties and bounds of w∞(d, n)
and w∞(d):

Theorem 2.1.2.

1. w∞(d, n) ≤ w∞(d, n + 1) for all d, n. (Proposition 2.2.1)

2. w∞(d) ≤ w∞(d + 1) for all d. (Proposition 2.2.2)

3. w∞(d) ≤ wH(d− 1). (Lemma 2.2.3)

4. wE(d− 1) ≤ w∞(d) for d ≥ 3. (Corollary 2.3.5)

5. wH(d− 2) ≤ w∞(d). (Corollary 2.3.7)
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Remark 2.1.3. None of the inequalities wH(d − 2) ≤ w∞(d) ≤ wH(d − 1) or wE(d −
1) ≤ w∞(d) (for d ≥ 3) is sharp, as the following table of known values shows.

d wE(d− 1) wH(d− 2) w∞(d) wH(d− 1)

1 − − 0 −
2 1 − 0 1
3 1 1 1 2
4 1 2 2 3
5 ≥ 4 3 ≥ 4 ≥ 4

The values of w∞(d), d = 1, 2, 3, 4, have been discussed above. For the others:

• In dimension 1, the unique hollow lattice segment is equivalent to [0, 1], and then
wE(1) = wH(1) = 1.

• In dimension 2, the second dilation of a unimodular triangle is the only hollow
lattice polygon of width larger than one (see, e.g., [Tre08]). Hence wH(2) = 2 and,
since this polygon is not empty, wE(2) = 1.

• In dimension 3, Howe ([Sca85, Thm. 1.3]) proved that wE(3) = 1. For wH(3),
Averkov et al. ([AWW11, Theorem 2.2] and [AKW17, Theorem 1]) have classified
all hollow 3-polytopes and their maximum width is three (see more details in
Lemma 2.5.3), so wH(3) = 3.

• In dimension 4, Haase and Ziegler [HZ00] showed wE(4) ≥ 4, which implies
w∞(5) ≥ 4 by part (4) of Theorem 2.1.2.

The structure of this chapter is as follows. The monotonicity properties stated in
parts (1) and (2) of Theorem 2.1.2 are proved at the beginning of Section 2.2. We
then prove the upper bound w∞(d) ≤ wH(d− 1) (Lemma 2.2.3) from the following
statement, which combines results of Hensley [Hen83], Lagarias–Ziegler [LZ91] and
Nill–Ziegler [NZ11]: all but finitely many lattice d-polytopes of bounded size are hollow
and project to hollow (d− 1)-polytopes. This fact implies that to search for an infinite
family of lattice d-polytopes of bounded size we can focus on lifts (see Definition 2.2.4)
of hollow polytopes of one dimension less. The remainder of Section 2.2 is devoted to
prove several lemmas on the width of polytopes and the width of lifts of a polytope
that we will use later in the chapter. Most importantly, we prove that it is enough to
look at tight lifts (see Definition 2.2.11), which are inclusion-minimal lifts of a polytope
(Corollary 2.2.13).

In Section 2.3 we prove sufficient properties for hollow (d− 1)-polytopes to have
infinitely many lifts of bounded size. In particular, we prove the existence of certain such
hollow (d− 1)-polytopes of widths wE(d− 1) and wH(d− 2), which provides the lower
bounds wE(d− 1) ≤ w∞(d) (Corollary 2.3.5) and wH(d− 2) ≤ w∞(d) (Corollary 2.3.7).
Moreover, we get the following characterization of the finiteness threshold width:
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2.1 introduction

Theorem 2.1.4 (Theorem 2.3.8 and Corollary 2.2.13). For all d ≥ 3, w∞(d) equals the
maximum width of a hollow lattice (d− 1)-polytope Q for which there are infinitely
many (equivalence classes of) lattice d-polytopes P of bounded size and projecting to
Q.

One direction of the theorem is easy, since a Q as in the statement has all but finitely
many of its lifts of the same width as Q (Theorem 2.2.10). The other is less obvious
since w∞(d) might a priori be achieved by the existence of infinitely many hollow
(d− 1)-polytopes Q, each with finitely many lifts of size n.

Example 2.1.5. In dimension 3, the infinite family of Reeve tetrahedra are lifts of size
4 of a unit square, which is a hollow polygon of width one. On the other hand, the
unique hollow polygon of width larger than one is the second dilation of the unimodular
triangle, which has only finitely many lifts of bounded size (see the proof of Corollary
22 in [BS16a]). Hence w∞(3) = 1.

In dimension 4, observe that w∞(4) ≥ 2 follows from the fact that the following
hollow 3-polytope of width two can be lifted to infinitely many empty 4-simplices
(Haase and Ziegler [HZ00, Proposition 6]):

Q = conv


0

0
0

 ,

1
0
0

 ,

0
1
0

 ,

0
0
1

 ,

2
2
3


 .

Sections 2.4 and 2.5 are aimed at proving our main result Theorem 1.1.4. By Theo-
rem 2.1.4 and Example 2.1.5, to prove w∞(4) = 2 it suffices to show that each hollow
3-polytope of width larger than two has finitely many 4-dimensional lifts of bounded
size. For this we first prove sufficient conditions for lattice polytopes (in arbitrary
dimension) to have only finitely many lifts of bounded size (Section 2.4). Subsequently
we apply them to the full list of hollow 3-polytopes of width larger than two. This
list, containing only 5 polytopes, is derived from the classification of maximal hollow
3-polytopes by Averkov et al. ([AWW11, Theorem 2.2] and [AKW17, Theorem 1]) in
Section 2.5.

In light of these results, we ask the following questions.

Question 2.1.6. Besides the monotonicity in parts (1) and (2) of Theorem 2.1.2, does
w∞(d, n) ≤ w∞(d + 1, n + 1) always hold? The case w∞(d, d + 1) ≤ w∞(d + 1, d + 2)
follows from [HZ00, Proposition 1]: every empty d-simplex is a facet of infinitely many
empty (d + 1)-simplices of at least the same width.

Question 2.1.7. For all known values (d ≤ 4) we have w∞(d) = w∞(d, d + 1). That
is, the finiteness threshold width for all lattice d-polytopes is determined by empty
d-simplices. Does this hold for arbitrary d?
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2 .2 finiteness threshold width and lifts of hollow polytopes

2.2.1 Monotonicity of the finiteness threshold widths

Parts (1) and (2) of Theorem 2.1.2 have the following proofs:

Proposition 2.2.1. w∞(d, n) ≤ w∞(d, n + 1) for all n ≥ d + 1.

Proof. Let W ∈ N be such that there exists an infinite family {Pi}i∈N of lattice d-
polytopes of size n and width W. We are going to show that for each Pi there is a P′i
of size n + 1 and width W containing Pi. To prove this, let `i be an integer functional
giving width W to Pi, and assume without loss of generality that `i(Pi) = [0, W]. Taking
any point qi ∈ Zd ∩ `−1

i [0, W] \ Pi we easily get a Qi = conv(Pi ∪ {qi}) of width W
and properly containing Pi (see Figure 2.1). If Qi \ Pi has more than one lattice point,
remove them one by one until only one remains (which can always be done; simply
choose a vertex v of Qi not in Pi and replace Qi to the convex hull of (Qi ∩Zd) \ {v};
then iterate).

Pi

`−1
i (W )

`−1
i (0)

qi
Qi

Figure 2.1: The setting of the proof of Proposition 2.2.1.

That implies the lemma except for the fact that different polytopes Pi and Pj may
produce isomorphic P′i and P′j , so it is not obvious that {P′i }i∈N is an infinite family. But
each element of {P′i }i∈N can only correspond to at most n + 1 elements from {Pi}i∈N

(because Pi is recovered from P′i by removing one of its n + 1 lattice points), so the
proof is complete.

Proposition 2.2.2. w∞(d) ≤ w∞(d + 1), for all d.

Proof. Let W ∈N be such that, for some n ∈N, there is an infinite family {Pi}i∈N of
lattice d-polytopes of size n and width W. Then, P = {Pi × [0, W]}i∈N is a sequence of
(d + 1)-polytopes of size n(W + 1) and width W. A priori two different Pi’s can give
isomorphic polytopes in P , but each polytope in P can correspond to only finitely
many Pi’s since Pi is the projection of Pi × [0, W] along the direction of an edge. Hence
P is infinite and w∞(d + 1) ≥W.

The following lemma proves part (3) of Theorem 2.1.2:
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Lemma 2.2.3. Let d < n ∈ N. All but finitely many lattice d-polytopes of size
bounded by n are hollow and admit a projection to some hollow lattice (d − 1)-
polytope. In particular, w∞(d) ≤ wH(d− 1) for all d.

Proof. As argued in the proof of Theorem 1.1.1, the number of non-hollow lattice d-
polytopes of size bounded by n is finite. Hence, all but finitely many lattice d-polytopes
of size bounded by n are hollow.

On the other hand, Nill and Ziegler [NZ11, Corollary 1.7] proved that all but finitely
many hollow d-polytopes admit a projection to a hollow (d− 1)-polytope. And these
have width at most that of their projection, which is ≤ wH(d− 1).

2.2.2 Finiteness threshold width via polytopes with infinitely many lifts of bounded size

Definition 2.2.4. We say that a lattice polytope P ⊂ Rd is a lift of a lattice (d − 1)-
polytope Q if there is a lattice projection π with π(P) = Q. Without loss of generality,
we will typically assume π : Rd → Rd−1 to be the map that forgets the last coordinate.

Two lifts P1 and P2, with projections π1 : P1 → Q and π2 : P2 → Q are equivalent if
there is a unimodular equivalence f : P1 → P2 with π2 ◦ f = π1. That is, if for each
p ∈ Zd, f (p) ∈ π−1

2 (π1(p)) (the equivalence maps a point in the fiber of p under π1,
to a point in the fiber of p under π2). See Figure 2.2 for examples of equivalent and
non-equivalent lifts.

We say that “Q has finitely many lifts of bounded size” if for every n ∈N there are
finitely many equivalence classes of lifts of Q of size n. Accordingly, “Q has infinitely
many lifts of bounded size” means that there is an n ∈N for which there are infinitely
many equivalence classes of lifts of Q.

y y y

A B C

x x x

y

D

x

Figure 2.2: Polytopes A, B, C, D ⊂ R2 are lifts of [0, 3] ⊂ R under projection π(x, y) = x. Only A
and B are equivalent lifts. D is equivalent to A and B as a lattice polytope, but not as a lift
of [0, 3] under π.

Remark 2.2.5. Saying that “Q ⊂ Rd−1 has infinitely many lifts of bounded size” is
equivalent to saying that “there are infinitely many (equivalence classes of) lattice
polytopes P ⊂ Rd of bounded size that have a lattice projection to Q”. The implication
from right to left is trivial, and the implication from left to right follows from the
fact that once P is fixed there is a finite number of integer affine projections P → Q
(an overestimate is qp, where p and q are the numbers of lattice points in P and Q,
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respectively; qd+1 is also an upper bound, since an affine map is determined by the
image of an affine basis).

Our interest in these concepts comes from the following fact, that follows from
Theorem 2.2.10 below. Less obvious is the converse, that we prove in Theorem 2.3.8.

Proposition 2.2.6. For all d ≥ 3, w∞(d) is at least the maximum width of a lattice
(d− 1)-polytope Q that admits infinitely many lifts of bounded size.

For the proof of Theorem 2.2.10 we need a couple of technical lemmas. In the first
one, Q does not need to be a lattice polytope, or even a polytope, but only a convex
body (compact, convex subset of Rn).

Lemma 2.2.7. Let Q ⊂ Rd be a full-dimensional convex body, and W ∈ N. Then,
there is only a finite number of functionals ` ∈ (Zd)∗ such that width`(Q) ≤W.

Proof. Observe that width`(Q) equals the maximum value of ` in the centrally sym-
metric body Q− Q. This, in turn, equals the smallest λ with ` ∈ λ(Q− Q)∗, where
(Q− Q)∗ is the polar of Q− Q. Equivalently, the integral functionals giving width
≤W to Q are the lattice points in W(Q−Q)∗. Since Q−Q is full-dimensional its polar
is bounded, so there are finitely many such lattice points.

Remark 2.2.8. The proof of Lemma 2.2.7 is based on the following interpretation of the
lattice width: width(Q) is the minimum λ such that λ(Q− Q)∗ contains a non-zero
lattice point ` ∈ (Zd)∗. This λ is usually called the first successive minimum of (Q−Q)∗

and is defined for every centrally symmetric convex body [Gru07, p.376].

A lift of Q may have the same dimension as Q and still not be unimodularly equivalent
to it. For example, the segment [0, k] in R1 can be lifted to the primitive segment
conv{(0, 0), (k, 1)}. However, the number of different such lifts of Q is finite, modulo
the equivalence relation in Definition 2.2.4:

Lemma 2.2.9. A (d − 1)-dimensional polytope Q has only finitely many (d − 1)-
dimensional lifts.

Proof. Every (d− 1)-dimensional lift P of Q can be described as follows: there is an
affine map f : Rd−1 → R with

P = conv{(v, f (v)) : v is a vertex of Q},

and such that f is integer in all vertices of Q. Assuming, without loss of generality, that
f is linear and the origin is a vertex of Q, this implies f ∈ Λ(Q)∗, where Λ(Q) is the
lattice spanned by the vertices of Q. Two such functionals give equivalent lifts if, and
only if, they are in the same class modulo (Zd−1)∗. Thus, the number of different lifts
equals the index of (Zd−1)∗ in Λ(Q)∗.
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Theorem 2.2.10. Let Q ⊂ Rd−1 be a lattice (d− 1)-polytope of width W. Then all
lifts P ⊂ Rd of Q have width ≤W. All but finitely many of them have width = W.

Proof. As a convenient notation, for a given vector v = (v1, . . . , vd), we set ṽ =
(v1, . . . , vd−1). As projections do not decrease the width, we only need to prove that all
but finitely many lifts of Q have width ≥W. For this, let ` ∈ (Zd)∗ \ {0} be a functional
and P be some lift of Q.

If `d = 0, then width`(P) = width ˜̀(Q) ≥W, so for the rest of the proof we assume
that `d 6= 0 for all our functionals.

Let T ⊆ Q be a (d− 1)-simplex with vert(T) ⊆ vert(Q) and S be one of the finitely
many (d− 1)-dimensional lifts of T (see Lemma 2.2.9). Every lift P of Q has to contain
one of these S, so it suffices to show that there are finitely many such P having width
< W. Furthermore we can assume that both P and S are contained in Q×R≥0. Let
H be the hyperplane containing S, and L1 := max{xd : x ∈ H ∩ (Q×R)}+ 1. Then
R :=

⋂
x∈Q×{L1} conv(S ∪ {x}) is a full-dimensional polytope (in fact, R is a simplex,

because S is), which following Lemma 2.2.7 implies that there are only finitely many
integer functionals such that width`(R) ≤W. Let `1, . . . , `s be those functionals and set
D := maxx∈Q, i∈{1,...,s} | ˜̀ i · x| and L := max{L1, 2D + W}.

Q T

R
H

L1Q× {L1}

R
H

L1Q× {L1}

p

Figure 2.3: Constructing R̂ and seeing that R̂ ⊆ P (setting of the proof of Theorem 2.2.10).

Now assume that there exists a point p ∈ P with pd ≥ 2L and let R̂ := R∪ {p}. Then
thanks to pd ≥ L1, we have R̂ ⊆ P, as R ⊆ conv(S, p) (see Figure 2.3). Suppose ` is
such that width`(P) ≤ W, then width`(R) ≤ width`(R̂) ≤ width`(P) ≤ W and hence
` = `i has to be one of the finitely many integer functionals giving width ≤ W to R.
But if ` is one of those functionals, given some r ∈ R we get:

width`(P) ≥ width`(R̂) ≥ |` · (p− r)| ≥ |`d(pd − rd)| − | ˜̀ · ( p̃− r̃)| ≥ |`dL| − 2D ≥W.

That is, P has width exactly W.
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Hence all lifts P that extend S and contain a point p with pd ≥ 2L have width W. That
leaves us with those P that are contained in Q× [0, 2L], but there are only finitely many
lattice subpolytopes of Q× [0, 2L] and hence only finitely many of width < W.

2.2.3 Tight lifts

We finish this section showing that in order to decide whether a given Q has infinitely
many lifts of bounded size it is enough to look at tight lifts. This will simplify the work
in the rest of the chapter:

Definition 2.2.11. Let Q ⊂ Rd−1 be a (d− 1)-dimensional lattice polytope. We say that
a lift P ⊂ Rd of Q is tight if the projection sending P to Q bijects their sets of vertices.
That is, if P = conv{(v, hv) : v ∈ vert(Q)} for some h ∈ Zvert(Q).

See Figure 2.4 for examples of tight and not tight lifts.

y y y

B C D

x x x

y

A

x

Figure 2.4: Polytopes A, B, C, D ⊂ R2 are lifts of [0, 3] ⊂ R under the projection π(x, y) = x. A and
B are tight lifts; C and D are not.

Notice that a tight lift is not necessarily full-dimensional and that every lift of Q
contains a tight lift.

Lemma 2.2.12. Let P ⊂ Rd be a (not necessarily full-dimensional) lift of a lattice
(d− 1)-polytope Q. Then, there are only finitely many lifts of Q of bounded size that
contain P.

Proof. For each q ∈ Q ∩Zd−1, pick hq ∈ R such that pq = (q, hq) ∈ P (these exist as P
projects to Q).

Let P′ ⊂ Rd be any lift of Q that contains P. Given p′ ∈ P′ ∩Zd, then p′ = (q, h′) for
some q ∈ Q∩Zd−1 and h′ ∈ Z. Without loss of generality assume that h′ ≥ hq (the other
case is symmetric). Then P′ contains the segment conv{pq, p′} = {q} × [hq, h′] ⊂ P′,
which already contains h′ − dhqe+ 1 lattice points (see Figure 2.5). Since the size of P′

is bounded, there are finitely many possibilities for h′ and hence for all points of P′.

The results of this section lead to the following:
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2.3 hollow polytopes with infinitely many lifts of bounded size

P

P ′

Q
q

p′

pq

π

Figure 2.5: The segment π−1(q) ∩ P has to be bounded for all q ∈ Q ∩ Zd in the proof of
Lemma 2.2.12.

Corollary 2.2.13. Let Q ⊂ Rd−1 be a lattice (d− 1)-polytope. The following are
equivalent:

(1) There are infinitely many (isomorphism classes of) lattice d-polytopes of bounded
size projecting to Q.

(2) Q has infinitely many lifts of bounded size.

(3) Q has infinitely many lifts of bounded size and of the same width as Q.

(4) Q has infinitely many tight lifts of bounded size.

In any of those cases, the width of Q is a lower bound for w∞(d).

Proof. (1) =⇒ (2), (3) =⇒ (2), and (4) =⇒ (2) are obvious. For the converses:
(2) =⇒ (1) is Remark 2.2.5 together with Lemma 2.2.9, (2) =⇒ (3) follows from
Theorem 2.2.10, and (2) =⇒ (4) comes from Lemma 2.2.12 and the fact that any lift of a
polytope contains a tight lift. The fact that w∞(d) ≥ width(Q) is Proposition 2.2.6.

2 .3 hollow polytopes with infinitely many lifts of bounded size

Lemma 2.3.1. Let Q ⊂ Rd−1 be a hollow (d− 1)-polytope and let v ∈ vert(Q) be
such that Q′ := conv(vert(Q) \ {v}) is (d − 1)-dimensional. (That is, Q is not a
pyramid with apex at v). Suppose that every proper face F with v ∈ F is either hollow
or a pyramid with apex v. Then, for every h ∈ Z \ {0} the d-dimensional tight lift
P(h) := conv ((Q′ × {0}) ∪ {(v, h)}) of Q has the following properties:

1. size(P(h)) ≤ size(Q), with equality for infinitely many values of h.

2. width(P(h)) = width(Q) for every sufficiently large h.

See Figure 2.6 for an example of this layout.
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Q′ × {0}

(v, 0)

(v, 3)

Q× {0}

(v, 2)P (3) P (2)

(b, 0) (b, 0)

Q′ × {0}Q× {0}
(v, 0)

Figure 2.6: The setting of Lemma 2.3.1. The figure shows the hollow polygon Q and two of its tight lifts
P(h). One of the proper faces of Q containing v is empty, and the other is a 1-dimensional
lattice pyramid over a point b, with the distance from v to b being 3. This implies that h = 3
yields P(3) with as many lattice points as Q, and h = 2 yields P(2) with strictly fewer
lattice points.

Proof. Fix h ∈ Z \ {0} and let P = P(h) be as in the statement.
For the first statement, let q ∈ Q ∩Zd−1. We claim that the fiber π−1(q) has at most

one lattice point in P, with equality in many cases. For this, let F be the carrier face of
q in Q (that is, the unique face with q ∈ relint(F)). Since Q is hollow, F is a proper face.
By assumption, there are three possibilities for F:

• F does not contain v. Then π−1(F) ∩ P = F× {0}. In particular, (q, 0) is the only
lattice point of P in the fiber π−1(q).

• v ∈ F and F is hollow. Since q ∈ relint(F), we must have F = {q} = {v}. In
particular, (v, h) is the only lattice point of P in the fiber π−1(q).

• F is a pyramid with apex at v. Let F′ be the base of the pyramid. Remember
that v is lifted to (v, h) and every other vertex w of F′ is lifted to (w, 0). In
particular, the face π−1(F) ∩ P of P equals the affine image of F under the map
x 7→ (x, h · dist(F′, x)/ dist(F′, v)), where dist(F′, x) denotes the lattice distance
from x to (the hyperplane spanned by) F′. Thus, (q, h · dist(F′, q)/ dist(F′, v)) is
the only point of P in the fiber π−1(q). That point will be a lattice point if (but
perhaps not only if) h is an integer multiple of dist(F′, v).

In particular, we have size(P(h)) = size(Q) for any h that is an integer multiple of
lcm{dist(F′, v) : F face of Q that is a pyramid with base F′ and apex v}.

The second statement follows directly from Theorem 2.2.10. Indeed, the polytopes
P(h) are unimodularly non-isomorphic for different values of |h|, since their volume is
proportional to |h|.

Corollary 2.3.2. Let Q be a hollow polytope and not a simplex. If Q is either
empty or simplicial then it has infinitely many lifts of the same size and width of Q.
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2.3 hollow polytopes with infinitely many lifts of bounded size

Proof. Since Q is not a simplex, there is a vertex v such that Q is not a pyramid with
apex at v. Being empty or simplicial guarantees the conditions of Lemma 2.3.1 for v are
met.

These results give us a way to lower-bound w∞(d); if a lattice (d− 1)-polytope Q is
in the conditions of Lemma 2.3.1 or the Corollary 2.3.2, then w∞(d) ≥ width(Q).

Definition 2.3.3. A hollow lattice d-polytope is called hollow-maximal if it is maximal
under inclusion of hollow lattice d-polytopes.

An empty lattice d-polytope is called empty-maximal if it is maximal under inclusion
of empty lattice d-polytopes.

Lemma 2.3.4. Let Q be a hollow-maximal or empty-maximal d-polytope, for d ≥ 2.
Then, for every vertex v of Q there is a lattice point u ∈ Q that is not contained in any
facet containing v.

Proof. Let v be a vertex of Q and suppose that every lattice point of Q is in a facet
containing v. We claim that this contradicts Q being hollow-maximal or empty-maximal.
For this, let Cv = v + R≥0(Q− v) be the cone of Q at v, then all the lattice points of Q
lie in the boundary of the cone. Let u ∈ int(Cv) ∩Zd be such that u is the only lattice
point of Q′ := conv(Q, u) in the interior of Cv. (Such a u can be found, for example,
minimizing in int(Cv) ∩Zd any supporting linear functional of Cv). Then Q′ strictly
contains Q and it is still empty or hollow if Q was empty or hollow, respectively (see
Figure 2.7).

v

Q

u

Q′

Cv

Figure 2.7: Finding vertices u and v not contained in a common facet in the proof of Lemma 2.3.4.

With this we can now prove that w∞(d) is at least max{wE(d− 1), wH(d− 2)}.

Corollary 2.3.5. For every d ≥ 3 there exists an empty (d− 1)-polytope of width
wE(d− 1) with infinitely many lifts of bounded size. In particular, w∞(d) ≥ wE(d− 1).

Proof. Lemma 2.3.4 implies that wE(d− 1) is achieved by a non-simplex Q, and then
Corollary 2.3.2 shows Q has infinitely many lifts of bounded size. Proposition 2.2.6
implies then that w∞(d) ≥ width(Q) = wE(d− 1).

We call a polytope bipyramid, if there are two vertices u and v such that every facet
is a pyramid with apex either u or v, and there is no facet containing both. Hollow
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bipyramids clearly satisfy the conditions of Lemma 2.3.1, hence they have infinitely
many lifts of bounded size.

Lemma 2.3.6. For every d ≥ 2 there exists a hollow bipyramid of dimension d and
width wH(d− 1).

Proof. By induction on d. For d = 2, the unit square is a hollow bipyramid of width
1 = wH(1). For higher d, let us first see that there exists a hollow (d− 1)-polytope Q of
width wH(d− 1) and having two lattice points u and v not sharing any facet.

• If wH(d− 1) = wH(d− 2) then let Q be a hollow bipyramid of dimension d− 1
and width wH(d− 2), which exists by induction hypothesis.

• If wH(d − 1) > wH(d − 2) then there are only finitely many hollow (d − 1)-
polytopes of width wH(d− 1) [NZ11]. Hence, there is one such Q that is maximal.
By Lemma 2.3.4, there are lattice points u and v in Q not contained in the same
facet.

Now consider the convex hull of (Q× {0}) ∪ {(u, h), (v,−h)}. This is a hollow bipyra-
mid of dimension d and, for sufficiently large h, it has the same width as Q (by
Theorem 2.2.10).

Corollary 2.3.7. For every d ≥ 3 there exists a hollow (d− 1)-polytope of width
wH(d− 2) with infinitely many lifts of bounded size. In particular, w∞(d) ≥ wH(d−
2).

Proof. Let Q be a hollow (d− 1)-dimensional bipyramid of width wH(d− 2), which
exists by Lemma 2.3.6. Lemma 2.3.1 shows Q has infinitely many lifts of bounded size.
Proposition 2.2.6 implies then that w∞(d) ≥ width(Q) = wH(d− 2).

This finally allows us to prove that:

Theorem 2.3.8. For all d ≥ 3, w∞(d) equals the maximum width of a lattice (d− 1)-
polytope Q that admits infinitely many lifts of bounded size. Moreover, Q is hollow.

Proof. In Proposition 2.2.6 we saw that w∞(d) is at least the width of any lattice (d− 1)-
polytope with infinitely many lifts of bounded size.

For the other inequality, Corollary 2.3.7 proves the statement in the case when
w∞(d) = wH(d− 2) (it proves as well that w∞(d) ≥ wH(d− 2)).

The only remaining case is then when w∞(d) > wH(d − 2). First of all, since
w∞(3) = 1 and by Proposition 2.2.2, we have that w∞(d) > 0 for all d ≥ 3 (this
guarantees the existence of infinitely many lattice d-polytopes of some fixed size). Let
n be such that W := w∞(d) = w∞(d, n). That is, there is an infinite family {Pi}i∈N of
lattice d-polytopes of size n and width W. Without loss of generality (Lemma 2.2.3)
assume all Pi’s are hollow and have a hollow lattice (d− 1)-dimensional projection Qi.
Since projecting does not decrease the width, every Qi has width at least W, and since
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2.4 polytopes with finitely many lifts of bounded size

W = w∞(d) > wH(d− 2) no Qi admits a hollow projection to dimension d− 2. This
implies the family {Qi}i∈N to be finite as all but finitely many hollow (d− 1)-polytopes
project onto hollow (d− 2)-polytopes [NZ11], so one of them, call it Q, lifts to infinitely
many members of the family {Pi}i∈N. Theorem 2.2.10 implies then that Q has width
exactly W.

Any Q with infinitely many lifts of bounded size is hollow, by Lemma 2.2.3 and
Corollary 2.2.13.

2 .4 polytopes with finitely many lifts of bounded size

Lemma 2.4.1. Let Q be a lattice pyramid with basis F and apex v. If F has finitely
many lifts of bounded size, then so does Q.

Proof. Let Q ⊂ Rd−1 be (d− 1)-dimensional lattice pyramid. Any tight lift of Q is of
the form P(F̃, h) := conv(F̃ ∪ {ṽ}), where F̃ is a tight lift of F and ṽ = (v, h) is a point
in the fiber of v. Since F̃ is contained in some hyperplane H orthogonal to {xd = 0}
and containing F× {0}, P(F̃, h) is a pyramid with basis F̃ and apex ṽ (see Figure 2.8).

Let m be the distance from v to F. Then P(F̃, h) is equivalent to P(F̃, h + m) for all
h ∈ Z (we leave it to the reader to derive the unimodular transformation). That is, there
are at most m values of h that give non-equivalent tight lifts P(F̃, h), for any fixed F̃. By
hypothesis, there are only finitely many such F̃ of bounded size, hence finitely many
tight lifts of bounded size of Q. Corollary 2.2.13 implies the statement.

F̃ = F × {0}

(v, 0)

(v, 1)

(v, 2)

(v, 3)

H

Figure 2.8: The setting of the proof of Lemma 2.4.1. In the figure, the case when F̃ is the tight lift
F× {0} is represented. The apex v is at distance 3, hence (v, 3) yields equivalent lift as
(v, 0), while (v, 1) and (v, 2) do not.

Corollary 2.4.2. Lattice simplices have only finitely many lifts of bounded size.

Proof. Using induction on the dimension and Lemma 2.4.1, this follows from the fact
that a single lattice point has only finitely many lifts of bounded size.
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threshold width of lattice polytopes

We now want to show that non-hollow lattice polytopes have only finitely many lifts
of bounded size. The following geometric lemma (in which Q need not be a lattice
polytope) will be helpful.

Lemma 2.4.3. Let π : Rd → Rd−1 be the standard projection that forgets the last
coordinate. Let q be a point in the interior of a (d− 1)-polytope Q. Then, there is a
c ∈ R such that for every d-polytope P ⊂ Rd with π(P) = Q we have

vol(P) ≤ c · length(P ∩ π−1(q)).

Proof. Assume without loss of generality that q is the origin and that the vertical
segment P ∩ π−1(q) goes from (q, 0) to (q, 1). This is no loss of generality since the
parameter vol(P)/ length(P ∩ π−1(q)) does not change by vertical translation or vertical
dilation/contraction of P. Notice that the polytope P may be rational. Under these
assumptions what we want to show that there is a global upper bound c for the volume
of P.

By considering respective supporting hyperplanes of P at (q, 0) and (q, 1) we see
that P is contained in the region f1(x1, . . . , xd−1) ≤ xd ≤ f2(x1, . . . , xd−1) + 1, for some
linear functionals f1, f2 ∈ (Rd−1)∗, and as it only makes P bigger and the argument
easier we assume that P actually equals the intersection of π−1(Q) with that region (see
Figure 2.9). Now, for π(P) to equal Q we need f1 − f2 ≤ 1 on Q, which is equivalent to
saying that f1 − f2 is in the polar Q∗ of Q. The volume of P is a continuous function of
the functional f1 − f2. (In fact, it equals the integral in Q of the function 1 + f2 − f1).
Since the origin is in the interior of Q, Q∗ is compact, and there is a global bound on
the volume of P.

0Q

f2(x1, . . . , xd−1) + 1 = xd

f1(x1, . . . , xd−1) = xd

Figure 2.9: The setting of the proof of Lemma 2.4.3. The figure shows the rational d-polytope
π−1(Q) ∩ { f1(x1, . . . , xd−1) ≤ xd ≤ f2(x1, . . . , xd−1) + 1}.
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2.5 the finiteness threshold width in dimension 4

Corollary 2.4.4. A non-hollow lattice polytope has only finitely many lifts of
bounded size.

Proof. Let Q ⊂ Rd−1 be a lattice (d− 1)-polytope and let q ∈ Zd−1 be an interior lattice
point of Q. A bound n for the size of a lift P of Q implies a bound n + 1 for the length
of π−1(q) ∩ P. By Lemma 2.4.3, this gives a bound for the volume of P. Since there are
only finitely many lattice d-polytopes with bounded volume ([Hen83, Thm. 3.6]), the
result follows.

2 .5 the finiteness threshold width in dimension 4

According to Theorem 2.3.8, w∞(4) equals the largest width of a hollow lattice 3-
polytope with infinitely many lifts of bounded size. Since w∞(4) ≥ 2 is known (Haase
and Ziegler [HZ00, Proposition 6] showed infinitely many empty 4-simplices of width
two), we only need to look at hollow 3-polytopes of width at least 3. Let us show that
there are only five of them, all of width three (see Lemma 2.5.3 and Figure 2.10).

We start with the following classification of hollow lattice 3-polytopes:

Theorem 2.5.1 ( [Tre08, Theorem 1.3]). Any hollow lattice 3-polytope falls exactly
under one of the following categories:

1. It has width 1. All polytopes of width 1 are hollow and there are infinitely many
of them for each size.

2. It has width 2 and admits a projection onto the polygon 2∆2. There are infinitely
of them, although finitely many for each fixed size.

3. It has width ≥ 2, and does not admit a projection to 2∆2. There are finitely
many of them, regardless the size. They are all contained in hollow-maximal
3-polytopes.

The hollow-maximal 3-polytopes referred to in part (3) have been enumerated
in [AWW11; AKW17]. More precisely, Averkov, Wagner and Weismantel [AWW11]
classified the hollow lattice 3-polytopes that are not properly contained in any other
hollow convex body. Then Averkov, Krümpelmann and Weltge [AKW17] showed that
the maximal lattice 3-polytopes in this sense (which they call R-maximal) coincide with
the hollow-maximal lattice 3-polytopes in our sense (which they call Z-maximal). It is
known that these two notions of maximality for hollow polytopes do not coincide in
dimensions four and higher [NZ11].
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threshold width of lattice polytopes

Theorem 2.5.2 ( [AWW11, Theorem 2.2] and [AKW17, Theorem 1]). There are 12
hollow-maximal lattice 3-polytopes. Here given by their vertices as column vectors of
the following matrices:

M1

 0 2 0 0
0 0 3 0
0 0 0 6

 M2

 0 2 0 0
0 0 4 0
0 0 0 4

 M3

 0 3 0 0
0 0 3 0
0 0 0 3



M4

 0 1 2 3
0 0 4 0
0 0 0 4

 M5

 0 1 2 3
0 0 5 0
0 0 0 5

 M6

 0 3 1 2
0 0 3 0
0 0 0 3



M7

 0 4 1 2
0 0 2 0
0 0 0 4

 M8

 2 −2 0 0 1
0 0 2 −2 1
0 0 0 0 2

 M9

 −1 2 0 0 1
0 0 −1 2 1
0 0 0 0 3



M10

 1 0 −1 2 1 0
0 1 −1 2 3 1
0 0 0 3 3 3

 M11

 1 −1 0 2 0 1
0 0 2 0 0 2
0 0 0 2 2 2



M12

 0 −1 1 0 1 0 2 1
0 1 1 2 1 2 2 3
0 0 0 0 2 2 2 2


They all have width two exceptM3,M5,M6,M9 andM10, which have width three.

In particular, every hollow 3-polytope has width ≤ 3 and those of width three are
contained in one ofM3,M5,M6,M9 andM10. These five polytopes are pictured in
Figure 2.10, taken from [AKW17]. (The coordinate system in the figure is not the same
as in the definition.)

A priori there could be proper subpolytopes of one of these five that still have width
three, but it is not difficult to prove that this is not the case:

Lemma 2.5.3. The only lattice hollow 3-polytopes of width > 2 areM3,M5,M6,
M9 andM10, and they have width three.

Proof. It suffices to check that all the subpolytopes of M3, M5, M6, M9 and M10
obtained by removing a single vertex have width two (or lower). For this, in turn, it
suffices to find for each of the five polytopes and each vertex of it, an integer affine
functional having value 3 on that vertex and values 0, 1 or 2 in all the others. Such
functionals are specified in the following matrices F3, F5, F6, F9, and F10, where
the i-th row of matrix Fj is the functional corresponding to the vertex that is the i-th
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M4,6 M4,4 M4,2

M ′
4,4 M5,4 M5,2 M6,2

Figure 1: The Z3-maximal integral lattice-free polytopes with lattice width two. For
further reference, the polytopes are labeled by a pair of indices (i, j), where i is the
number of facets and j the lattice diameter (defined at the end of the introduction).

Figure 2: The Z3-maximal integral lattice-free polytopes with lattice width three.

Proof strategy

In the proof of Theorem 1, we use a classification of all Z2-maximal polytopes in P(1
2Zd).

This is provided in Section 2. Every such polytope is contained in an R2-maximal lattice-
free convex set L in the plane and its vertices then have to be contained in L ∩ 1

2Z2. We
give a slightly extended version of the well-known classification of R2-maximal lattice-free
convex sets L which allows us to enumerate all Z2-maximal lattice-free 1

2Z2-polyhedra.
We then turn to integral Z3-maximal lattice-free polyhedra in dimension three. We

4

M3 M5 M6 M9 M10

Figure 2.10: The five hollow 3-polytopes of width three. This picture has been taken from Averkov et
al [AKW17].

column of the matrixMj from Theorem 2.5.2. A row (a b c | d) represents the functional
(x, y, z) 7→ ax + by + cz + d:

F3


−1 −1 −1 3
1 0 0 0
0 1 0 0
0 0 1 0

 F5


−1 0 0 3
2 −1 −1 1
−2 1 1 2
1 0 0 0

 F6


−1 0 0 3
1 0 0 0
0 1 0 0
0 0 1 0



F9


−1 0 0 2
1 0 0 1
0 −1 0 2
0 1 0 1
0 0 1 0

 F10



1 −1 0 2
0 1 −1 2
−1 0 0 2
1 0 0 1
−1 1 0 1
0 −1 1 1


In the two that are perhaps less obvious, M5 and M10, the (linear parts of) the

functionals come in pairs of opposite ones. Figure 2.11 shows projections along which
these functionals are coordinates (one picture, with two coordinate functionals, forM5,
three pictures with the horizontal coordinate in each picture as one of the functionals,
forM10).

Remark 2.5.4. To double-check we have enumerated, using Polymake [GJ00], all sub-
polytopes ofM1, . . . ,M12 of width ≥ 2, ordered by size. There are a total of 3992 such
polytopes and Table 2.12 shows how many there are of each size. Our width algorithm
is included in releases of Polymake starting with version 3.0 as a property of a polytope
with command LATTICE_WIDTH. The lists of the subpolytopes and the algorithms
we used to compute them can be found at http://ehrhart.math.fu-berlin.de/
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(1,0,0)

5

z

(1,3,3) (2,2,3) (0,1,3)

(0,1,0) (1,0,0) (−1,−1,0)

z−y

M 10

(−1,−1,0)

y−xx

2x−y−z

x

(0,0,0)
(2,5,0)

(3,0,5)

M

z

(1,3,3)(0,1,3)(2,2,3)

(−1,−1,0)(1,0,0) (0,1,0)(1,0,0)(0,1,0)

(0,1,3) (1,3,3) (2,2,3)

z

M5 M10

Figure 2.11: Projections showing that all proper subpolytopes ofM5 andM10 have width < 3.

Research/Data/. The source code of the algorithms can also be found in chapter A.1
of the appendix.

# Lattice Points # Polytopes

23 1 (1)
22 3 (1)
21 7

20 22 (1)
19 49

18 109 (12)
17 192

16 316

15 452

14 600 (5)

# Lattice Points # Polytopes

14 600 (5)
13 654

12 625 (1)
11 456

10 292 (1)
9 134

8 58

7 17

6 4

5 1

Figure 2.12: Number of lattice polytopes of width ≥ 2 contained in the maximal ones. The number in
the brackets indicate where the 12 maximal polytopes come into play.

Corollary 2.5.5 (Finiteness Threshold Width in dimension 4). w∞(4) = 2. That is,
for each n ≥ 5, there exist only finitely many lattice 4-polytopes of size n and width
larger than two.

Proof. Example 2.1.5 shows that w∞(4) ≥ 2.
In the light of Theorem 2.3.8, in order to prove w∞(4) ≤ 2 we only need to check that

no hollow 3-polytope of width larger than two has infinitely many lifts of bounded size.
Lemma 2.5.3 tells us that there are only five polytopes to check, depicted in Figure 2.10.
M3,M5 andM6 are simplices and hence have only finitely many lifts of bounded size
by Corollary 2.4.2. ThatM9 andM10 have only finitely many lifts of bounded size is
proved in Propositions 2.5.6 and 2.5.7 below.
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Proposition 2.5.6. The pyramid M9 has a finite number of lifts with bounded
size.

Proof. The basis of the pyramid is a quadrilateral with three (relative) interior points.
This quadrilateral has a finite number of lifts of bounded size by Corollary 2.4.4, and
the whole pyramid by Lemma 2.4.1.

Proposition 2.5.7. The prismM10 has finitely many lifts of bounded size.

Proof. Let u, v, w, u′, v′ and w′ be the vertices of the prism, where uu′, vv′, ww′ are edges.
Let Q := conv{u, v, w, u′, v′} ⊂ M10. It is a quadrangular pyramid over a polygon with
interior points.

Any tight lift of M10 will be of the form P(Q̃, w̃′) (as defined in Lemma 2.4.1),
where Q̃ is a tight lift of Q and w̃′ is a point in the fiber of w′. By Lemma 2.4.1 and
Corollary 2.4.4, there are only finitely many such Q̃ of bounded size. Fix one, and let
us see that there are only finitely many possibilities for w̃′.

Each lift w̃′ (together with the fixed tight lift Q̃) induces a lift of the quadrilateral R :=
conv{u, w, u′, w′}. We claim that at most two choices of w̃′ correspond to equivalent
lifts of R.

By fixing Q̃ we already have fixed a lift of the three vertices u, w, u′. These three
lifts are contained in a plane Π. On the other hand, the possible lifts of the point w′

are in the line π−1(w′). This line is not contained in Π, so these tight lifts of R are
all 3-dimensional (except for at most one lift of w̃′), and their volume is proportional
to the distance between w̃′ and Π. That is, each of the possibilities for w̃′ induces
non-equivalent tight lifts of the quadrilateral R, up to (perhaps) reflection with respect
to the plane Π.

Now, as the quadrilateral R contains interior points, Corollary 2.4.4 implies that it
has only finitely many lifts of bounded size. Infinitely many choices of w̃′ would then
have unbounded size, and so would P(Q̃, w̃′). That is,M10 has only finitely many tight
lifts of bounded size, and Corollary 2.2.13 implies the statement.
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3
C O N V E X - N O R M A L ( PA I R S O F ) P O LY T O P E S

As mentioned in the introduction the aim of this chapter is on the one hand to get to
know k-convex-normal polytopes and improve Gubeladzes bound and on the other
hand to generalise his result to pairs of polytopes.

3 .1 convex-normality revisited

Let P ⊆ Rd be a lattice polytope. Then P has the integer decompostion property (IDP), if
for all k ∈N and all z ∈ kP ∩Zd, there exist x1, . . . , xk ∈ P ∩Zd such that

z = x1 + · · ·+ xk .

Every one or two dimensional lattice polytope has the integer decompostion property.
In dimension 3, however, already simplices do not need to possess the IDP.

For example P = conv{(0, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1)} does not have the IDP as
(1, 1, 1) ∈ 2P is not the sum of two lattice points in P.

Given a rational polytope Q with vertex set vert(Q) we set

G(Q) :=
⋃

v∈vert(Q)

(v + Zd) ∩Q ,

that is, we base the lattice in one vertex after the other and take the union of those
shifted lattices inside Q. Note that if Q is a lattice polytope, then G(Q) = Q ∩Zd.

Following Gubeladze [Gub12], we call a rational polytope P ⊆ Rd k-convex-normal
for some k ∈ Q, if for all rational c ∈ [2, k]:

cP = G((c− 1)P) + P . (3.1)

Observe that the inclusion ⊇ is always true.

Example 3.1.1. In Figure 3.1, where the polytope Q is conv{(0, 0), ( 3
2 , 0), (0, 3

2 )} we get

G(Q) =
{
(0, 0), (1, 0), (0, 1), ( 3

2 , 0), ( 1
2 , 0), ( 1

2 , 1), (0, 3
2 ), (0, 1

2 ), (1, 1
2 )
}

.

The shapes in the figures encode which vertex produced the base point for the
corresponding copy of Q and we can see that Q is 2-convex-normal.
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(a) Q (b) Q with G(Q) (c) G(Q) + Q = 2Q

Figure 3.1: A 2-convex-normal polytope.

Example 3.1.2. An easy example of a polytope which is not even 2-convex-normal is the
2-dimensional standard simplex ∆2 = conv{(0, 0), (1, 0), (0, 1)} as shown in Figure 3.2

(a) P with G(P) (b) G(P) + P 6= 2P

Figure 3.2: A polytope that is not 2-convex-normal.

Our first lemma highlights a special behavior of G(rP), when P is a lattice polytope.

Lemma 3.1.3. Let P be a lattice polytope and r ∈ Q>0, then

G(rP) + G(P) ⊆ G((r + 1)P).

Proof. Let x = rv + u ∈ G(rP) and y = w + u′ ∈ G(P) with v, w ∈ vert(P) and
u, u′, v, w ∈ Zd. As x ∈ rP and y ∈ P it follows that z = x + y ∈ (r + 1)P and also

z = x + y = rv + u + w + u′ = (r + 1)v + (w− v + u + u′) ∈ vert((r + 1)P) + Zd

so z ∈ G((r + 1)P).

The other inclusion "⊇" does not hold in general. In fact, G(rP) + G(P) ⊇ G((r + 1)P)
holds for all integral r if and only if P has the integer decomposition property. Now we
can prove the main lemma of this section. Providing insight concerning equation (3.1)
that P has to satisfy to be k-convex-normal.
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3.1 convex-normality revisited

Lemma 3.1.4. Let P be a 2-convex-normal lattice polytope and c > 2, then

G((c− 2)P) + P = (c− 1)P implies G((c− 1)P) + P = cP.

Proof. G((c − 1)P) + P ⊆ cP is always true, hence we only have to show the other
direction cP ⊆ G((c− 1)P) + P:

cP = (c− 1)P + P = (G((c− 2)P) + P) + P = G((c− 2)P) + 2P

but P is 2-convex-normal so that 2P = G(P) + P and hence:

cP = G((c− 2)P) + 2P = G((c− 2)P) + G(P) + P ⊆ G((c− 1)P) + P

where the inclusion follows from Lemma 3.1.3.

Now, given a lattice polytope P, if P satisfies equation (3.1) for c = s− 1, it will also
satisfy the equation for s. In particular, if P satisfies the equation for all rational c in
the interval [2, 3], then P satisfies it for all rational c ≥ 2. This proves the following
theorem.

Theorem 3.1.5. Let P be a lattice polytope. If P is 3-convex-normal, then P is also
k-convex-normal, for all k ≥ 2.

Remark 3.1.6. Note that the implication in Lemma 3.1.4 heavily depends on P being a
lattice polytope, as we can see in Figure 3.3. Our polytope from Example 3.1.1, where
Q = 1, 5 · ∆2, satisfies 2Q = G(Q) + Q (as seen in Example 3.1.1) but on the other hand
G(2Q) + Q 6= 3Q.

(a) Q (b) G(2Q) (c) G(2Q) + Q 6= 3Q

Figure 3.3: 2Q = G(Q) + Q does not imply 3Q = G(2Q) + Q for rational polytopes.

The reason why this might not be too surprising is that when we think about G(kQ),
in the case when kQ is a lattice polytope (or to be more precise, if every vertex of
kQ contributes the same points to G(kQ)), G(kQ) contains the least amount of points.
Meaning that we have to cover (k + 1)Q with fewer copies of Q, compared to a polytope
where the vertices lie in different translated copies of Zd.
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For lattice polytopes, combining this chain of thought with Lemma 3.1.4 we conjecture
the following:

Conjecture 3.1.7. Let P be a lattice polytope. If P is 2-convex-normal it is also
k-convex-normal for all k ≥ 2.

In the discussion and open problems section (3.3.1), we show that the conjecture is
true in dimension 2.

Now we want to use Theorem 3.1.5, to improve Gubeladze’s bound. To this end, let e
be the edge of a rational polytope P connecting vertices v and w. By `(e) we denote the
lattice length of e, i.e., let u be the smallest integer vector on the line spanned by w− v
then e = ku for some k ∈ Q and `(e) := |k|. We also consider degenerate edges with
v = w; in this case we set `(e) = 0. With this notation we can phrase two of Gubeladzes
results in the following way

Theorem 3.1.8. [Gub12, Theorem 1.2 and Lemma 6.2] Let P be a rational d-polytope.
If `(e) ≥ kd(d + 1) for all edges of P, then P is k-convex-normal.
If P is a 4-convex-normal lattice polytope, then P has the IDP.

Combining these results with Theorem 3.1.5, implies that a lower bound of `(e) ≥
3d(d + 1) for every edge e of P would be enough. But using Lemma 3.1.4 directly, we
can do even better.

Corollary 3.1.9. Let P be a lattice polytope. If P is 2-convex-normal, then P has
the integer decompositions property.

Proof. As P is 2-convex-normal, using Lemma 3.1.4 repeatedly we know that kP =
G((k− 1)P) + P for all k ∈N. Now given z ∈ kP ∩ Zd for some k ∈N, we know that
z = x + y with y ∈ P, x ∈ G((k− 1)P) = (k− 1)P ∩Zd and therefore y ∈ P ∩Zd. By
induction we can find x1, . . . , xk−1 ∈ P ∩Zd such that x = x1 + . . . + xk−1.

Now combining this Corollary with the previously mentioned result of Gubeladze
(Theorem 3.1.8) we get the bound we promised in the introduction.

Corollary 3.1.10. Let P be a lattice polytope. If for every edge e of P the lattice
length `(e) ≥ 2d(d + 1), then P has the integer decompostion property.

3 .2 convex-normality for pairs of polytopes

In this chapter we extend the above definitions and results to pairs of polytopes.

Definition 3.2.1. A pair of rational polytopes (Q, P) is called convex - normal, if

Q + P = G(Q) + P

Note, that we only have to show Q + P ⊆ G(Q) + P as the other inclusion is
always true since G(Q) ⊂ Q. Furthermore, this notion is invariant under independent
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3.2 convex-normality for pairs of polytopes

translations of P and Q by rational vectors: A small calculation shows that G(Q−w) =
G(Q)− w. Hence we can set two vertices v ∈ vert(P) and w ∈ vert(Q) to 0. In these
terms a single polytope P is k-convex-normal, if for all rational c ∈ [2, k] the pairs
((c− 1)P, P) are convex-normal.

Example 3.2.2. As seen in Example 3.1.1 the pair (1.5 · ∆2, 1.5 · ∆2) is convex-normal
and the pair (∆2, ∆2) is not. More generally, P is 2-convex-normal if and only if (P, P)
is convex-normal.

Example 3.2.3. Convex-normality is not symmetric. When we set

P = conv

(
0 1 0 1
0 0 1 1

)
and Q = conv

(
0 1 0 1
0 0 0.7 0.7

)
.

Figure 3.4 illustrates that G(Q) + P = Q + P but G(P) + Q 6= P + Q:

(a) P (b) Q (c) P + Q

(d) G(P) + Q 6= P + Q (e) G(Q) + P = Q + P

Figure 3.4: Convex-normality of pairs is not symmetric

The second definition we need is an extension of the integer decomposition property
to pairs of polytopes:

Definition 3.2.4. A pair of polytopes (Q, P) has the integer decomposition property (IDP),
if the map

(Q ∩Zd) × (P ∩Zd) → (Q + P) ∩Zd

(q , p) 7→ q + p
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convex-normal (pairs of) polytopes

is surjective, that is, if (P + Q) ∩Zd = (P ∩Zd) + (Q ∩Zd).

If the pairs (P, nP) have the integer decomposition property for all n ∈N, then P is
a lattice polytope and has the IDP.
The pair (∆2, ∆2) from the example above has the integer decomposition property, so
we see that pairs of polytopes with the IDP are not always convex-normal. But the
converse implication is true:

Lemma 3.2.5. Let P be a polytope and let Q be a lattice polytope such that (Q, P) is
convex-normal. Then (Q, P) has the integer decomposition property.

Proof. As (Q, P) is convex-normal, we know that Q + P = G(Q) + P.
As Q is a lattice polytope, we have G(Q) = Q ∩Zd and hence

(Q + P) ∩Zd = (G(Q) + P) ∩Zd = ((Q ∩Zd) + P) ∩Zd = (Q ∩Zd) + (P ∩Zd) .

In the remainder of this chapter we will prove a sufficient condition, based on edge
lengths, for a pair (Q, P) to be convex-normal.
In the above examples P and Q had the same normal fan. If we drop this condition, there
are pairs of polytopes with arbitrarily long edges lacking the integer decomposition
property and not being convex-normal.

Example 3.2.6. Set

Q = conv

(
0 1 0
0 k 1

)
and P = conv

(
0 −l −(l − 1)
0 1 1

)
.

See Figure 3.5.
If we look at (nQ, nP), then both polytopes have edge length n and there are O(n4)

lattice points in (nP∩Z2) + (nQ∩Z2), but k · l ·O(n2) lattice points in nP+ nQ. Hence
for k, l � n, the pair (nQ, nP) neither has the integer decomposition property nor is it
convex-normal.

Figure 3.5: Q + P and G(Q) + P for n = 1, k = 2 and l = 3.
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3.2 convex-normality for pairs of polytopes

For a pair (Q, P) of polytopes to be convex-normal, it is not enough if both polytopes
have the integer decomposition property, be k-convex-normal or have long edges and
the examples suggest that we need a condition on the normal fans of P and Q.

Given two d-polytopes Q and P, the normal fan N (P) is a refinement of N (Q),
if for every cone C ∈ N (P) there exists a cone D ∈ N (Q) s.t. C ⊆ D. In this
case we can define a map Φ′ : N (P) → N (Q) s.t. Φ′(C) is defined as the smallest
cone in N (Q) containing C. This map preserves inclusions and has a corresponding
map Φ : L(P) → L(Q) on the face lattices of P and Q, taking a face F ≺ P with
corresponding cone CF to the face G ≺ Q with corresponding cone CG = Φ′(CF).

Example 3.2.7. In Figure 3.6 we illustrate the map with

P = conv

(
0 3 3 2 −1 −1
0 0 −2 −3 −3 −1

)
and Q = conv

(
0 2 2 0
0 0 −2 −2

)
.

e

(a) P &N (P) (b) Q &N (Q)

Figure 3.6: Each face of P corresponds to a face of Q

For example the edge e from (−1,−1) to (0, 0) in P corresponds to the vertex (0, 0)

in Q, i.e. Φ(e) = (0, 0) because e corresponds to cone

(
−1
1

)
∈ N (P) and the smallest

cone of N (Q) containing it is cone

(
−1 0
0 1

)
, which is the normal cone belonging to

(0, 0) in Q.
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convex-normal (pairs of) polytopes

3.2.1 A sufficient condition for convex-normality of (Q,P)

Now that we got all the tools lined up, we can start the proof of our main result with
the following lemma, which is the base case for our induction:

Lemma 3.2.8. Let P = [0, p] and Q = [0, m] be intervals with p ≥ min{1, m}, then
(Q, P) is convex-normal.

Proof. Set l := bmc. If l ≥ 1, then p ≥ 1 and

Q + P = [0, p + m] =

(
l⋃

i=0

i + [0, p]

)
∪ (m + [0, p]) ⊆ G(Q) + P.

If l < 1, then p ≥ l and:

Q + P = (0 + P) ∪ (m + P).

Now we can prove the main result.

Theorem 3.2.9. Let P and Q be rational d-polytopes such that N (P) is a refinement
of N (Q) and such that `(eP) ≥ d · `(eQ) for every edge eP ≺ P and corresponding
face (edge or vertex) eQ = Φ(eP) ≺ Q. Then (Q, P) is convex-normal.

Proof. Lemma 3.2.8 took care of the base case. Hence let P and Q be d-polytopes with
d ≥ 2.
STEP 1 - SUBDIVIDING Q + P:

Without loss of generality we assume 0 ∈ vert(P) and 0 = Φ(0) ∈ vert(Q) and start
by subdividing Q + P by assigning weights/heights to the vertices of P and Q. Vertices
of Q and the vertex 0 of P get height 0 and all the other vertices of P get height 1. We
use those heights to define new polytopes P′ and Q′ in Rd+1 as follows.

Q′ := conv{(w, 0) : w ∈ vert(Q)} and
P′ := conv ((0, 0) ∪ {(u, 1) : u ∈ vert(P)\{0}}) .

Then the projection of P′ + Q′ onto the first d coordinates is P + Q and the lower
boundary of P′ + Q′ induces a subdivision of P + Q into the following pieces.

0 + Q and FQ + (conv(0, FP))

for faces FQ ≺ Q and faces FP ≺ P, with 0 6∈ FP and Φ(FP) = FQ. Compare Figure 3.7.
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3.2 convex-normality for pairs of polytopes

(a) P (b) Q

Figure 3.7: Q + P subdivided into 0 + Q and FQ + (conv(0, FP)).

Another decomposition of P + Q we will be using, is the following:

I :=
(

d− 1
d

)
P + Q and B := (P + Q) \ I

Where I stands for the “inner” part of P + Q and B stands for the “boundary” part of
P + Q; see Figure 3.8
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convex-normal (pairs of) polytopes

(a)
(

d−1
d

)
P (b) Q

Figure 3.8: Q + P divided into I and B.

In the next step we will be using our first sudivision to cover the boundary part. We
will then show that covering I is easy because it lies in 0 + P.

STEP 2.1 - COVERING B:
Let x ∈ B, then x 6∈ Q and hence we can find facets FP ≺ P and FQ ≺ Q such

that x ∈ FQ + (conv(0, FP)) coming from our subdivision in STEP 1. Hence x can be
written as x = q + µp, with q ∈ FQ ≺ Q, p ∈ FP ≺ P and 0 ≤ d−1

d ≤ µ ≤ 1. Then
z := q + d−1

d p is contained in d−1
d FP + FQ. Furthermore (FQ, d−1

d FP) is convex-normal
by induction, as N ( d−1

d FP) is a refinement of N (FQ) and given edges eFQ ≺ FQ and
d−1

d eFP ≺ d−1
d FP (⇔ eFP ≺ FP) we have

`

(
d− 1

d
eFP

)
=

(
d− 1

d

)
` (eFP) ≥

(
d− 1

d

)
· d`(eFQ) = (d− 1)`(eFQ).

Hence we can find a point g ∈ G(FQ) such that z ∈ g + d−1
d FP, and since p ∈ FP ⊆

conv(0, FP) we get x ∈ g + conv(0, FP) ⊆ g + P, as illustrated in Figure 3.9.
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3.2 convex-normality for pairs of polytopes

p + q
z

x

q
g + d−1

d FPg

Figure 3.9: Covering B using induction.

STEP 2.2 - COVERING I:
Now we are left with covering the points in the inner part I of P + Q. We claim that

I ⊆ P, which implies I ⊆ 0 + P ⊆ G(Q) + P. First we reformulate the problem by
using that I =

(
d−1

d

)
P + Q ⊆ P is equivalent to Q ⊆ 1

d P.

To show the latter, suppose Q 6⊆ 1
d P, then there exists a vertex u of Q that does not lie

in 1
d P. This implies that there exists a functional c such that ctu = b and ctx < b for

all x ∈ 1
d P. When we use the simplex method to maximize c over 1

d P starting in 0, we
get a monotone edge path from 0 to an optimal vertex u′. As N ( 1

d P) is a refinement
of N (Q) we have an inclusion-preserving map L( 1

d P)→ L(Q) between the two face
lattices. Using this map, we get a corresponding edge path in Q, which also ends in an
optimal vertex u′′, as c ∈ Cu′ ⊆ Cu′′ . But as every edge in 1

d P is at least as long as the
corresponding face (edge or vertex) in Q, we have

ctu′ ≥ ctu′′ = ctu  

Hence no vertex of Q is lying outside of 1
d P, so that Q ⊆ 1

d P which finishes our
proof.

Theorem 3.2.9 requires Q to be a lot smaller than P. But in conjunction with the
following Lemma, it can be used in certain cases where Q is allowed to be big.

Lemma 3.2.10. Let P be a rational polytope and Q be a lattice polytope, with

Q = Q1 + . . . + Qs

where the Qi are lattice polytopes such that the pairs (Qi, P) are convex-normal for
all i. (For example, they could satisfy the conditions of the previous Theorem.)
Then (Q, P) is convex-normal.
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Proof. As (Qi, P) are convex-normal we get:

Q + P = (Q1 + . . . + Qs) + P
= G(Q1) + . . . + G(Qs) + P
⊆ G(Q1 + . . . + Qs) + P
= G(Q) + P

where the second equality is true because the Minkowski sum is commutative and
associative and the inclusion is true because the Qi are lattice polytopes.

In particular, if Q is a lattice polytope and (Q, P) is convex-normal, then (kQ, P) is
convex-normal for all k ∈N. Putting together Lemma 3.2.5, Theorem 3.2.9 and Lemma
3.2.10 we get the following corollary.

Corollary 3.2.11. Let P and Q be rational polytopes, where N (P) is a refinement
of N (Q). If Q has a decomposition into lattice polytopes Q = Q1 + . . . + Qs and
every edge of P is at least d times as long as the corresponding edge in Qi for all i,
then (Q, P) has the integer decomposition property.
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3.3 discussion of questions and open problems

3 .3 discussion of questions and open problems

In this section we state and discuss some questions and open problems, some of which
we already mentioned in the two previous sections. For some we also state partial
results, but in particular this section is meant to point the interested reader to some
question, where we would love to know the answer.

3.3.1 Does being 2-convex-normal imply being k-convex-normal for lattice polytopes?

We already know from Lemma 3.1.4 that it is enough to show that the equation is true
for all c ∈ [2, 3), because

cP = G((c− 1)P) + P =⇒ (c + 1)P = G(cP) + P ∀c ≥ 2

This Lemma also implies, that if P is 2-convex-normal in addition to 2P = G(P) + P
we get that nP = G((n− 1)P) + P ∀n ∈N.

So given a 2-convex-normal lattice polytope P and some c ∈ [2, 3). Suppose without
loss of generality that 0 ∈ P, that way 2P is automatically covered as G(P) ⊂ G((c−
1)P). ( In fact here G(P) = P ∩Zd ).
Hence the strip that is left to cover is cP \ 2P.

Lemma 3.3.1. For a point z ∈ cP \ 2P, if a vertex of z− (c− 2)P lies in 2P, we can
cover z.

Proof. Let (c − 2)v be a vertex of (c − 2)P, s.t. x − (c − 2)v ∈ 2P. As we can cover
2P, there exists a g ∈ G(P) s.t. z − (c − 2)v ∈ g + P, here g = w′ + z′ with w′ ∈
vert(P)(∩Zd) and z′ ∈ Zd.
We claim: g + (c− 2)v ∈ G((c− 1)P)
Clearly g + (c− 2)v ∈ (c− 1)P as g ∈ P and (c− 2)v ∈ (c− 2)P. So we have to show
that g + (c− 2)v = w + z with w ∈ vert((c− 1)P) and z ∈ Zd. Set v′ := (c−1)

(c−2) (c− 2)v.
This is a vertex of (c− 1)P and v′ − (c− 2)v = v is the corresponding vertex on P and
as P is a lattice polytope also v ∈ Zd. But then

g + (c− 2)v = g + (c− 1)v− v = v′ + (g− v)︸ ︷︷ ︸
∈Zd

The following lemma gives us a condition on c, that guarantees that we will find
such a vertex.

Lemma 3.3.2. If c ≤ 2
d + 2 and x ∈ cP \ 2P, then a vertex of x− (c− 2)P is contained

in 2P.

Proof. Suppose all vertices of Q := x− (c− 2)P are outside of 2P. And without loss
of generality suppose that P is a simplex with vert P = {0, v1, . . . , vd}, then vert Q =
{x, x− (c− 2)v1, . . . , x− (c− 2)vd} and 2P = conv(0, 2v1, . . . , 2vd).
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convex-normal (pairs of) polytopes

So given x ∈ cP \ 2P =⇒ x = ∑d
i=1 λicvi with ∑d

i=1 λi ≤ 1 and λi ≥ 0. x − (c−
2)vk = λ1cv1 + . . . + λk−1cvk−1 + (λkc− (c− 2))vk + . . . + λdcvd and the question is,
when is this equal to ∑d

i=1 µj2vj with ∑d
i=1 µj ≤ 1 and µj ≥ 0.

For x − (c − 2)vk not to be in 2P we know that λkc − (c − 2) < 0, which implies
that λk < c−2

c . As we assumed that all vertices of Q are outside of 2P, this has to be
true for all k. But if we now rewrite x as a conic combination of 2v1, . . . , 2vd we get
x = ∑d

i=1 λi
c
2 (2vi) and for the sum of coefficients we get

d

∑
i=1

c
2

λi <
c
2
(d · c− 2

c
) =

d
2
(c− 2) which is ≤ 1 if and only if c ≤ 2

d
+ 2

But if the sum is less or equal to 1, this implies that x ∈ 2P, which contradicts our
assumption.

Now combining the two previous lemmata we get that a 2-convex-normal polytope is
never just 2-convex-normal but always a tad more, albeit the extra is decreasing with
dimension.

Corollary 1. Let P be a 2-convex-normal lattice polytope. Then P is also k-convex-normal for
k ≤ 2

d + 2.

But if we look at dimension 2, then this corollary implies that a 2-convex-normal
polytope, is also 3-convex-normal. Combining this with Lemma3.1.4, we get a positive
answer to Conjecture 3.1.7 at least for dimension 2

Corollary 2. Let P be a 2-dimensional 2-convex-normal polytope, then P is k-convex-normal
for all k.

3.3.2 Classes of convex-normal polytopes

In the section about convex-normal pairs we already saw that we can translate both
polytopes without losing the convex-normal property. The same holds true for a
k-convex-normal polytope.

Lemma 3.3.3. Let P be a k-convex-normal polytope and v ∈ Qd, then v + P is
k-convex-normal.

Proof. If P is k-convex-normal, then for all r ∈ [2, k], rP is covered by certain copies of P.
If we now translate P by v, then rP is translated by rv, which translates the vertices of

v + G(Q) = G(v + Q)

r(v + P) = rv + rP = rv + G((r− 1)P) + P
= (r− 1)v + G((r− 1)P) + (v + P) = G((r− 1)(v + P)) + (v + P)
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In Lemma 3.2.8 we saw, that a pair of two not to short intervals ( 1-dimensional
parallelepipeds ) is convex-normal, a similar result holds in the general case. The
following lemma shows, that also in the non-pair case we can show that parallelepipeds
with side length at least 1 are k-convex-normal.

Lemma 3.3.4. Let P be an orthogonal parallelepiped, assume without loss of gen-
erality P = ∏d

i=1[0, ri]. If all edges have length at least 1, i.e. if ri ≥ 1 ∀i, then P is
k-convex-normal for all k.

Proof. Let c ∈ [2, k] ∩Q, then cP = ∏d
i=1[0, cri] and let z ∈ cP. We then find the base

point g ∈ G((c− 1)P) in the following way. We can write z = (a1r1, . . . , adrd) with
0 ≤ ai ≤ c and set

g := (g1, . . . , gd), where gi :=

(c− 1)ri, if ai ≥ c− 1

bairic, otherwise

This implies that g ∈ G((c− 1)P) as without loss of generality we assume that the first
l entries fall under the second category and the last d− l under the first and then

g = (ba1r1c, . . . , balrlc, (c− 1)rl+1 . . . , (c− 1)rd)

= (0, . . . , 0, (c− 1)rl+1 . . . , (c− 1)rd) + (ba1r1c, . . . , balrlc, 0, . . . , 0)
∈ vert((c− 1)P) + Zd

and g ∈ (c− 1)P is clear as 0 ≤ gi ≤ (c− 1)ri. But with that we are finished as now
z ∈ g + P.

For polytopes with the integer decomposition property it is known, that if you can
cover a polytope P with polytopes that have the IDP, then P will also have the integer
decomposition property. For k-convex-normal polytopes this is not so clear, but in the
case of 2-convex-normal polytopes, we get a weaker version of the aforementioned
statement.

Lemma 3.3.5. If P is covered by 2-convex-normal polytopes Q1, . . . , Qr, such that
vert(Qi) ⊂ G(P) , then P is 2-convex-normal itself.

Proof. Given P with P =
⋃r

i=1 Qi, then vert(Qi) ⊂ G(P), implies G(Qi) ⊆ G(P) and
hence

2P =
r⋃

i=1

2Qi =
r⋃

i=1

(G(Qi) + Qi) ⊆ G(P) +
r⋃

i=1

Qi = G(P) + P,

which implies that P is 2-convex-normal.
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3.3.3 Finding polytopes with long edges that are not k-convex-normal

Theorem 3.1.8 by Gubeladze tells us, that if l(e) ≥ kd(d + 1) for all edges e of P, then
P is k-convex-normal. In the case of lattice polytopes this bound can be improved to
3d(d + 1) using Lemma 3.1.4 (see Theorem 3.1.5) and so a natural question is how low
this bound could get and for this we need examples of polytopes with long edges that
are not k-convex-normal.

One family of examples we already used a lot were simplices and they indeed provide
us with a first lower bound.

Lemma 3.3.6. Let ∆d = conv(0, e1, . . . , ed) be the standard simplex. Then

• (d− 1)∆d is not 2-convex-normal.

• r∆d is k-convex-normal for all r ≥ d (and all k).

Proof. Starting with the first part, take z = (1− 1
d+1 , . . . , 1− 1

d+1 ), a point in 2(d− 1)∆d

that is not covered by a copy of (d− 1)∆d, as in this case G(∆d) = ∆d ∩Zd and the only
possible base point for z is 0, because all other points in G(∆d) have at least one entry
≥ 1. But ∑ zi = d(1− 1

d+1 ) = d− d
d+1 > d− 1 and hence z 6∈ 0 + (d− 1)∆d.

We show the second part by constructing a suitable base point for an arbitrary point.
So given z ∈ c(r∆d) with c ∈ [2, k] ∩Q, we have to find a g ∈ G((c − 1)r∆d) with
z ∈ g + r∆d. Set e = (c − 1)r − b(c − 1)rc. If bzc ∈ (c − 1)r∆d we are finished, as
∑ zi − bzic ≤ d ≤ r and hence z ∈ bzc+ r∆d. So suppose that this is not a case and
further we assume that z1 is the maximal entry of z. Now set

g0 = (bz1c − 1 + e, bz2c, . . . , bzdc)

As bzc 6∈ (c− 1)r∆d, g0 is our first candidate and we iterate from gi to gi+1 by subtracting
1 at some non-zero entry. Let g = gj the the iteration, s.t. ∑ gi = (c − 1)r. Then
g ∈ G((c− 1)r∆d and z ∈ g + r∆d.

There is still a lot of room between d− 1 and kd(d + 1), so it would be interesting to
find more examples like this. One big problem in finding nice examples is that testing if
something is k-convex-normal is a non-trivial task, at least for everything of dimension
bigger than 2. Having a good algorithm to decide convex-normality would be great
which is our next open problem.

3.3.4 Finding a (better) algorithm to decide, if a polytope is 2-convex-normal or a pair is
convex-normal

The following is an algorithm for deciding, if a polytope P is 2-convex-normal. We re-
strict ourselves to 2-convex-normality because from (2 + ε)-convex-normality onwards
we have infinitely many cases to check and so a good algorithm to decide 2-convex-
normality and convex-normality of pairs is a good place to start. The polymake source
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3.3 discussion of questions and open problems

code for this algorithm can be found in the appendix, in chapter A.2.

Algorithm 1: Checking if a polytope P is 2-convex-normal
Input : Lattice polytope P
Output : Yes - if P is 2-convex-normal; No - otherwise.

1 Compute G(P)
2 Compute PI :=

⋂
i∈I gi + P for all subsets of I ⊂ G(P)

3 Compute V = ∑I⊂G(P)(−1)|I|+1 vol(PI)

4 Check if vol(2P) = V, if positive, then P is 2-convex-normal

As for why this algorithm works, suppose we count some part n times, i.e. n copies of
P contain this part. Then we add it’s volume (n

1) times by adding the volumes of copies
of P containing it. We then remove it (n

2) times by subtracting the pairwise intersections
of said copies containing it. Continuing like this we count it exactly ∑n

i=1(−1)i+1(n
i ) = 1

times. ( The equation follows from the binomial theorem (x + y)n = ∑n
k=0 (

n
k)xkyn−k )

The same algorithm of course works for pairs (Q, P), we just have to substitute G(Q)
for G(P) and compare the volume to vol(Q + P) in the end.

We wrote a script using the above algorithm in polymake and looking at table 3.10

we see that the computations take very long even in the case of very small and easy
polytopes, like the dilated standard simplex. The fields with "–" indicate times when
we canceled the computations before completion after already running it for more than
three days.

k k∆2 k∆3

1 0.23 0.35

2 0.71 1.96

3 3.75 29.27

4 31.26 1390

5 362 –
6 – –

Figure 3.10: Computation times in seconds for checking if k∆2 and k∆3 are 2-convex-normal

One better idea for an algorithm might be to use the fact that we are only looking at
shifted copies of P, so that the inequalities are all basically the same, so we could create
sort of a "subdivision" of Q + P (might not cover all of it) and keep track of the single
parts, so we do not have to compute all the intersections and all the volumes, but only
the ones actually appearing.
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4
1 2 , 2 4 A N D B E Y O N D FA N I F I E D

In the introduction we have seen an exhaustive proof for the following Theorem.

Theorem 4.0.1. Let P be a reflexive 2-polytope and P? its polar dual, then

∑
e∈P[1]

`(e) + ∑
e′∈P?[1]

`(e′) = 12.

As promised, we will provide a nicer proof for this result and its 3-dimensional
counterpart later in section 4.3. But first we want to generalise Theorem 1.3.6 of
Godinho, Heymann and Sabatini [GHS16] to complete unimodular fans.

4 .1 generalizing it to fans

Consider a (d − 1)-cone τ in a complete unimodular fan Σ in Rd and a primitive
generator v of a ray ρ that together with τ is forming a d-cone σ ∈ Σ[d]. Because Σ is
unimodular, v has to lie in a hyperplane H that is parallel to that generated by τ, which
has lattice distance 1 to it, i.e. there is no lattice point between the two hyperplanes.
This leads to the following key observation.

Lemma 4.1.1. Let Σ be a complete unimodular fan in Rd. Every (d− 1)-cone τ ∈
Σ[d− 1] with primitive generators v1, . . . , vd−1 is contained in precisely two d-cones
σ = cone(τ, vd) and σ′ = cone(τ, v′d) in Σ.
In this situation, there are unique integers a(τ, vi) such that

vd + v′d =
d−1

∑
i=1

a(τ, vi)vi.

In dimension 2 we sometimes abbreviate a(τ, vi) to a(τ) or ai, because in this case the
sum has only one summand.

Example 4.1.2. As an example take the fan Σ pictured in Figure 4.1. There are three
(d− 1 = 1)-dimensional cones τ1 = cone(e1), τ2 = cone(e2) and τ3 = cone(−e1 − e2)
and three 2-dimensional cones cone(e1, e2), cone(e1,−e1 − e2) and cone(e2,−e1 − e2).

• For τ1 we get e2 + (−e1 − e2) = a(τ1, e1)e1 and hence a(τ1, e1) = −1,

• for τ2 we get e1 + (−e1 − e2) = a(τ2, e2)e2 and hence a(τ2, e2) = −1 and finally

• for τ3 we get e1 + e2 = a(τ3,−e1 − e2)(−e1 − e2) and hence a(τ3,−e1 − e2) = −1
as well.
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12 , 24 and beyond fanified

Figure 4.1: Fan used in Example 4.1.2

The base to our endeavours is the 2-dimensional case.

Theorem 4.1.3. Let Σ be a complete unimodular fan in R2. Then

∑
τ∈Σ[1]

(3− a(τ)) = 12. (4.1)

We are going to prove it by showing that the set of complete unimodular 2-dimensional
fans is connected by the operation of barycentric subdivisions and their inverses. That
the same theorem is true in dimension d is much harder to prove and now known as
the toric case of the weak factorization theorem [AMR99, Corollary 7.11]. Having the
connectedness and using that the equation holds for the fan in example 4.1.2, we only
need to show, that the equation holds for a fan Σ if and only if it holds for a barycentric
stellar subdivisions Σ′ of Σ.

Definition 4.1.4 (compare [Hud69]). Let Σ be a complete unimodular fan and σ :=
cone(v1, . . . , vk) ∈ Σ[k] a cone, with primitive ray generators v1, . . . , vk and set v :=
∑k

i=1 vi. Then we define

• star(σ, Σ) = {τ ∈ Σ : ∃F ∈ Σ with τ ≺ F where σ ≺ F} the (closed) star of σ in
Σ, where we also just write star(σ) if it is clear which fan we are talking about.

• lk(σ, Σ) = {τ ∈ star(σ, Σ) : σ ∩ τ = ∅} the link of σ in Σ.

• stσ(Σ) = {Σ \ star(σ)} ∪ {cone(w, F, G) : w ∈ {0, v}, F � σ and G ∈ lk(σ)} the
barycentric stellar subdivision of Σ in σ.

• An inverse barycentric stellar subdivision is the process of going from stσ(Σ) to Σ.

As all our subdivisions in this chapter will be barycentric stellar subdivisions, we
sometimes abbreviate it to just subdivision. In Figure 4.2, we see (a 2-dimensional
picture) of a stellar subdivision of a 2-cone σ in 3-dimensional fan.
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4.1 generalizing it to fans

(a) star(σ, Σ) (b) {cone(w, F, G) : w ∈ {0, v},
F � σ and G ∈ lk(σ)}

Figure 4.2: Example for a subdivision of a 2-cone in a 3-dimensional fan

Lemma 4.1.5. Given a complete unimodular fan Σ in R2, there is a complete unimod-
ular fan Σ′ containing (1, 0), (0, 1), (−1, 0) and (0,−1) as primitive ray generators,
which refines Σ and that we can reach from Σ by a series of barycentric stellar
subdivisions.

Proof. We show it for (0, 1), the other ones work the same. Given Σ and suppose
cone(0, 1) is not a ray of Σ, then there are to rays ρ1, ρ2 ∈ Σ[1] with ray generators v1, v2
such that (0, 1) ∈ σ = cone(v1, v2) and say v1 = (a, b) and v2 = (c, d) with a < 0 and
c > 0. Then subdividing the fan in this cone and setting v3 = (a + c, b + d) we get a
new ray ρ3 = cone(v3). Then (0, 1) is either in σ1 = cone(v1, v3) or σ2 = cone(v2, v3).
Iterating this process we see that the absolute value of the sum in the first coordinate
decreases monotonically. Reaching 0 we get (0, 1).

Lemma 4.1.6. Given a complete unimodular fan Σ, that contains (1, 0), (0, 1), (−1, 0)
and (0,−1) as primitive ray generators, then using a series of inverse subdivisions we
can transform it into the fan Σ′ only containing the aforementioned rays, the suitable
2-cones and the 0-cone, i.e. Σ′ = {cone(0), cone(e1), cone(e2), cone(−e1), cone(−e2),
cone(e1, e2), cone(e2,−e1), cone(−e1,−e2), cone(−e2, e1)}

Proof. We show that we can drop all rays in cone((0, 1), (1, 0)). The other quadrants
work similarly. Given three adjacent rays ρ1, ρ2, ρ3 ∈ Σ[1], with primitive generators
v1, v2, v3. We can drop ρ2, if v1 + v3 = v2 (i.e. a2 = 1 in this case), as the resulting fan will
still be complete and unimodular. So suppose ρ0 = cone((0, 1)), ρ1, . . . , ρk, ρk+1 ∈ Σ[1]
are in order the rays of Σ contained in cone((0, 1), (1, 0)) and v1, . . . , vk+1 are their
primitive generators respectively. Suppose there is no combination of rays ρi−1, ρi, ρi+1
with ai = 1. ai < 1 is impossible here, as vi > 0 componentwise for all 1 ≤ i ≤ k.
So say ai ≥ 2 for all i. Looking at all equations we get in this quadrant: v0 + v2 =
a1v1, v1 + v3 = a2v2, . . . , vk−1 + vk+1 = akvk. If we sum the equations up we get
v0 + v1 + 2v2 + . . . + 2vk−1 + vk + vk+1 = ∑k

i=1 aivi. But this is a contradiction, as it
implies

(1, 1) = v0 + vk+1 = (a1 − 1)v1 + (ak − 1)vk +
k−1

∑
i=2

(ai − 2)vi > (1, 1) ,
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12 , 24 and beyond fanified

where > is componentwise here. So there always has to be a triple with ai = 1 and
hence we can drop one ray after the other until only the ones generated by (0, 1) and
(1, 0) remain.

Lemma 4.1.7. Equation 4.1 holds for a complete unimodular fan Σ in R2 if and only
if it holds for a barycentric stellar subdivision Σ′ of Σ.

Proof. Let σ = cone(v1, v2) be the cone we want to subdivide, where v1 and v2 are
primitive ray generators and set v := v1 + v2. Then subdividing means replacing the
cone σ by two 2-cones σ1 = cone(v1, v), σ2 = cone(v, v2) and a new ray ρ = cone(v).

Figure 4.3: Example of a 2-dimensional complete unimodular fan and a subdivision of it

To compute the changes in the a′s, we need to compare their values at the two
consecutive rays of Σ generated by the primitive ray generators v1, v2 to the rays in
Σ′ generated by the primitive ray generators v1, v1 + v2, v2. The subdivision changes
v0 + v2 = a1v1 to v0 + v = a′1v1 which implies a′1 = a1 + 1 and similarly a′2 = a2 + 1.
Additionally we get v1 + v2 = avv, where av = 1. The other a’s do not change.
Altogether we get ∑ a′i = ∑ ai + 3, but we also got one more ray, so that the increase in
the sum of the a’s gets canceled and hence

∑
τ∈Σ[1]

(3− a(τ)) = ∑
τ∈Σ′[1]

(3− a(τ)).

With these foundations we can now prove a the complete unimodular fan-version of
the result of Godinho, Heymann and Sabatini [GHS16].

Theorem 4.1.8. Let Σ be a complete unimodular fan in Rd, with f -vector f =
( f0, . . . , fd). Then

∑
τ∈Σ[d−1]

d−1

∑
i=1
−a(τ, vi) = 12 fd−2 − 3(d− 1) fd−1 . (4.2)

We want to use the 2-dimensional result to prove this theorem. Therefore we need a
Lemma that is a d-dimensional equivalent of Lemma 6.1.22 in [HNP2x].
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4.2 there are no more relations

Lemma 4.1.9. Let Σ be a complete unimodular fan in Rd, and let θ ∈ Σ[d− 2] be a
(d− 2)-cone with generators v1, . . . , vd−2. Then the projection π : Rd → Rd/Rθ maps
star(θ, Σ) to a complete unimodular fan Σ/θ. If τ ∈ star(θ; Σ) is a (d− 1)-cone with
primitive generators v1, . . . , vd−2, vd−1, then the corresponding ray π(τ) of Σ/θ has
parameter a(π(τ)) = a(τ, vd−1).

Proof. Let vd and v′d be the additional primitive generators of the d-cones containing τ.
Then vd + v′d = ∑d−1

i=1 a(τ, vi)vi. Applying π yields π(vd) + π(v′d) = a(τ, vd−1)π(vd−1)
as all the other vi’s are sent to 0.

Now we can prove Theorem 4.1.8.

Proof of Theorem 4.1.8. Given a complete unimodular fan Σ, we have

∑
τ∈Σ[d−1]

d−1

∑
i=1
−a(τ, vi) = ∑

θ∈Σ[d−2]
∑

w∈Σ[1]
τ=cone(θ,w)∈Σ[d−1]

−a(τ, w)

= ∑
θ∈Σ[d−2]

12− 3 deg(θ)

= 12 fd−2 − 3 ∑
θ∈Σ[d−2]

deg(θ)

= 12 fd−2 − 3(d− 1) fd−1

Where the degree of θ is defined by deg(θ) := |{τ ∈ Σ[d− 1] : θ ⊆ τ}| and the first
equality is true, because given any a(τ, vi), with τ = cone(v1, . . . , vd) on the left side,
then θ = cone(v1, . . . , vi−1, vi+1, . . . , vd−1) ∈ Σ[d− 2] and w = vi ∈ Σ[1] and every a
only appears once. We get the second equality by looking at Σ/θ and using Lemma 4.1.9
and Theorem 4.1.3.

4 .2 there are no more relations

One can ask the question if there are more equations relating the f -vector and the
sum of the a(τ, vi). One family of such equations on the f -vector are the well-known
Dehn-Sommerville equations. To prove these for complete unimodular fans, we will
first introduce the h-vector of a complete unimodular fan. For that we need a to know
half-open decompositions first. Let Σ be a complete unimodular fan in Rd and x ∈ Rd

a generic vector, where in our case generic means that for every τ ∈ Σ[d− 1], x does not
lie in the hyperplane generated by τ. Then x induces a half-open decomposition Πx of
Σ in the following way: Given a (d− 1)-cone τ ∈ Σ[d− 1], then there are two d-cones
σ, σ′ ∈ Σ[d] with τ = σ ∩ σ′. Furthermore let n be a normal vector of the hyperplane
generated by τ that is non-negative on σ. Then in our half-open decompostion Πx,
τ lies in σ, if nTx > 0. This way every face lies in exactly one d-cone. Note, that
sometimes faces lying in σ in Πx are also called visible faces of σ.
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12 , 24 and beyond fanified

Definition 4.2.1. Let Σ be a complete unimodular fan and Π a half-open decomposition
of Σ. Then the h-vector of Σ is given by h(Σ) = (h0(Σ), . . . , hd(Σ)), where hi(Σ) counts
the number of d-cones σ in Π that contain i many (d− 1)-cones.

For this notion to be well-defined, the h-vector has to stay the same whatever half-
open decomposition we choose for Σ. We get this from the following connection of
the h-vector with the f -vector. Given any d-cone σ in a complete unimodular fan, then
σ is simplicial and if we remove k many (d− 1)-cones from σ, it still contains (d+1−k

j−k )

many j-cones. But with that we can compute the f -vector from the h-vector as for all
0 ≤ j ≤ d, we have

f j =
d

∑
k=0

hk

(
d− k
j− k

)
. (4.3)

As this is in fact an invertible linear map, we can also express the h-vector in terms
of the f -vector and as the f -vector does not change, we see that the h-vector is well-
defined. Another neat way to express this connection is in terms of polynomials.
We call hΣ(t) := hd(Σ) + hd−1(Σ)t + . . . + h0(Σ)td the h-polynomial of Σ and similarly
fΣ(t) := fd(Σ) + fd−1(Σ)t+ . . .+ f0(Σ)td the f -polynomial of Σ. The connection between
the two then turns into

fΣ(t) = hΣ(t + 1).

With these preparations it is now easy to show the following theorem.

Theorem 4.2.2 (Dehn-Sommerville equations for complete unimodular fans). Let
(h0, h1, . . . , hd) be the h-vector of complete unimodular fan Σ. Then

hk = hd−k ∀k = 0, . . . , d

where the first
⌈

d
2

⌉
are linearly independent. Converted to the f -vector we get

d−1

∑
j=k

(−1)j

(
j + 1
k + 1

)
f j = (−1)d−1 fk ∀k = −1, . . . , d− 2

where for d even the equations for k = 0, 2, 4, . . . , d− 2 and k = −1, 1, . . . , d− 3 and
for d odd the equations for k = −1, 1, 3, . . . , d − 2 and k = −1, 0, 2, 4, . . . , d − 3 are
independent sets.

Proof. Let (h0(Σ), . . . , hd(Σ)) be the h-vector of Σ coming from a half-open decomposi-
tion induced by a generic vector x. Then −x is also generic, and looking at the half-open
decomposition it induces every (d− 1)-cone now changes sides to the other d-cone it is
contained in. That means every d-cone that before contained k many (d− 1)-cones now
contains d− k many and hence hk = hd−k.

We now want to show that apart from the 12&24-equation (4.2) and the Dehn-
Sommerville equations there are no more equations. To make this more precise, we
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call
(

h0(Σ), . . . , hd(Σ), ∑τ∈Σ[d−1] ∑d−1
i=1 −a(τ, vi)

)
the extended h-vector of Σ and denote

with H and He the space of all possible h-vectors of complete unimodular fans and
all possible extended h-vectors of complete unimodular fans, respectively. With these
definitions, the 12&24-equation (4.2), with the fi’s on the right-hand side replaced by
the appropriate sum of hi’s using equation (4.3), and the Dehn-Sommerville equations
hold for all elements of He and the rest of this section is devoted to prove the following
theorem.

Theorem 4.2.3. Every equation that holds for all points in He is a linear combination
of the 12&24-equation (4.2) and the Dehn-Sommerville equations.

To show that, we will prove that the dimension of H is big enough by finding a large
enough set of independent h-vectors. A similar theorem is true in the polytopal case,
where the h-vectors of cyclic polytopes do the job. Unfortunately their fans cannot to
be unimodular, so we have to find another family of fans.

But before we can describe that family, we have to define the product of two fans.
For that let Σ1 be a fan with support in Rm and Σ2 a fan with support in Rn, then we
define their product in the following way:

Σ = Σ1 × Σ2 :=
{

A× B ⊆ Rm+n : A ∈ Σ1, B ∈ Σ2
}

.

Theorem 4.2.4. Given the two complete unimodular fans from Figure 4.4:

• Σ := {cone(0), cone(e1), cone(−e1)} and

• Σ̂ := {cone(0), cone(e1), cone(e2), cone(−e1 − e2), cone(e1, e2),
cone(e1,−e1 − e2), cone(e2,−e1 − e2)}.

Setting Σk = Σd−2k × Σ̂k, the
⌊ d

2 + 1
⌋

h-vectors given by h(Σk) for 0 ≤ k ≤
⌊ d

2

⌋
are

affinely independent and hence the space of h-vectors of complete unimodular fans
has at least dimension

⌊ d
2 + 1

⌋
.

(a) Σ (b) Σ̂

Figure 4.4: The two fans Σ and Σ̂

To prove this theorem it is very helpful to use the polynomial description of the
h-vector.
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Lemma 4.2.5. Given two fans Σ1 and Σ2 and let Σ = Σ1 × Σ2, then the h-polynomial
of Σ is given by the product of the h-polynomials of Σ1 and Σ2: hΣ(t) = hΣ1(t)hΣ2(t).

Proof. Let x1 be a generic point for Σ1 and x2 a generic point for Σ2, then x = (x1, x2) is
a generic point for Σ and we claim that hi(Σ) = ∑i

j=0 hj(Σ1)hi−j(Σ2). A d-cone C ∈ Σ is
by definition a combination of an m-cone A of Σ1 and an n-cone B of Σ2, with d = n+m.
Therefore, a facet F of C comes from a facet in one of the two cones and the full other
cone combined. (i.e. F = G × B or F = A× H with G, H facets of A resp. B). This
implies that a visible facet in C comes from a visible facet in A and the full cone B
combined or the full cone A combined with a visible facet of B. So the number of
visible facets in C is exactly the number of visible facets in A plus the number of visible
facets in B. Hence the number of full-dimensional cones with i visible facets is given
by hi(Σ) = ∑i

j=0 hj(Σ1)hi−j(Σ2), as we combine any two d-cones in the product of fans.
This implies hΣ(t) = hΣ1(t)hΣ2(t).

With that lemma we can now prove the theorem.

Proof of Theorem 4.2.4. We have hΣ(t) = 1 + t and hΣ̂(t) = 1 + t + t2, then hΣk(t) = (1 +
t + t2)k(1+ t)d−2k. So to show that the

⌊ d
2

⌋
+ 1 h-vectors h(Σk) are affinely independent,

we can show the same for the polytopes as their coefficient vectors are those h-vectors.
To see that, look at the linear map,

hΣk(t) 7→
(

hΣk(t), h(1)Σk
(t), . . . , h

(⌊
d
2

⌋)
Σk

(t)

)
,

where h(i)Σk
is the i-th derivative of hΣk . Evaluating the polynomials in these vectors

does not increase the dimension of the space they are spanning. Evaluating them
at a third root of unity ξ, which in particular implies hΣ̂(ξ) = 0, we get an upper-
triangular

(⌊ d
2

⌋
+ 1
)
×
(⌊ d

2

⌋
+ 1
)
-matrix and hence the polynomials and vectors are

independent.

With these preparations we can now prove Theorem 4.2.3

Proof of Theorem 4.2.3. Combining the previous results we have b d
2c+ 1 independent

vectors, d d
2e Dehn-Sommerville equations and one 12&24-equation. As He ⊆ Rd+2 it

has at most dimension

d + 2−
⌈

d
2

⌉
− 1 =

⌊
d
2

⌋
+ 1.

We see that the dimension of He is
⌊

d
2

⌋
+ 1 and that every other equation that is valid

on He, has to be a linear combination of the Dehn-Sommerville equations and the
12&24-equation.
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4 .3 proving 12 & 24 using the fan equation

Now that we have proven the equation for fans and shown that we now know all
equations on the extended h-vector, let us take a step back and show that it actually
generalizes the equations for 12 and 24 for reflexive polytopes. For both cases we have
to relate the length of the edges of P and P∗ to information we have on our fan, namely
the a′s and for that we use the following lemma.

Lemma 4.3.1. Given a reflexive polytope P, whose boundary δP has a unimodular
triangulation T. Then the complete fan Σ = {C : C = cone(F) , F face of T} is
also unimodular and given a (d− 2)-face F in P, the edge e′ dual to F has length
`(e′) = 2−∑d−1

i=1 a(τ, vi), where τ is any (d− 1)-cone in cone(F).

Proof. Let τ = cone(v1, . . . , vd−1) be any (d− 1)-cone inside cone(F). Then τ is con-
tained in two d-cones σ1 = cone(τ, vd) and σ2 = cone(τ, v′d) and there are a(τ, v1), . . . ,
a(τ, vd−1) such that vd + v′d = ∑d−1

i=1 a(τ, vi)vi. As P is reflexive, Σ is a unimodular
fan, so that v1, . . . , vd form a basis of Zd and from now on we will look at our poly-
tope in this basis. Furthermore, let v∗1 , . . . , v∗d be its dual basis. Then the dual face
of the facet conv(v1, . . . , vd−1, vd) is the vertex w := v∗1 + . . . + v∗d. The dual face of

conv(v1, . . . , vd−1, v′d) is the vertex w′ := v∗1 + . . . + v∗d−1 +
(

∑d−1
i=1 a(τ, vi)− 1

)
v∗d, be-

cause w′ · vi = 1 for 1 ≤ i ≤ d− 1 and also w′ · v′d = w′ ·
(
−vd + ∑d−1

i=1 a(τ, vi)vi

)
= 1.

Written in our new basis we have w = (1, . . . , 1) and w′ =
(

1, . . . , 1,−1 + ∑d−1
i=1 a(τ, vi)

)
.

Then the edge e′ dual to τ, connects w and w′. Hence its length is

`(e′) =
∣∣∣(1, . . . , 1)−

(
1, . . . , 1,−1 + ∑d−1

i=1 a(τ, vi)
)∣∣∣ = ∣∣∣2−∑d−1

i=1 a(τ, vi)
∣∣∣.

Theorem 4.3.2. Let P be a reflexive 2-polytope and P? its polar dual, then the sum
of the number of lattice points on the boundary of P and of P? is 12, or equivalently
expressed in terms of the lattice lengths of the edges we have

∑
e∈P[1]

`(e) + ∑
e′∈P?[1]

`(e′) = 12.

Proof. Let T and Σ be as in Lemma 4.3.1, i.e. in Σ we have a ray through every lattice
point on the boundary of P and hence ∑e∈P[1] `(e) = |Σ[1]| and using Lemma 4.3.1
we get ∑e′∈P?[1] `(e′) = ∑τ∈Σ[1](2− a(τ)). Combining those two identities and using
Theorem 4.1.3 we get

∑
e∈P[1]

`(e) + ∑
e′∈P?[1]

`(e′) = |Σ[1]|+ ∑
τ∈Σ[1]

(2− a(τ)) = ∑
τ∈Σ[1]

(3− a(τ)) = 12.
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Theorem 4.3.3. Let P be a reflexive 3-polytope and P? its polar dual, then

∑
e∈P[1]

`(e)`(e?) = 24.

Proof. As P is a 3-dimensional polytope, the boundary is 2-dimensional and hence
we can find a unimodular triangulation T of it. Because P is also reflexive, the com-
plete fan Σ generated by T, i.e. Σ = {C : C = cone(F) , F face of T}, is also uni-
modular. And hence our fan equation (4.1.8) is valid on Σ, i.e., in this case we get
∑τ∈Σ[2] ∑2

i=1−a(τ, vi) = 12 f1 − 6 f2. Now that we have the right unimodular cone, we
have to relate the lengths of the edges of P and P∗, to the a(τ, vi) of Σ.

∑
e∈P[1]

`(e)`(e?) = ∑
τ∈Σ[2]

2− (a(τ, v1) + a(τ, v2))

= 12 f1 − 4 f2 = 12( f1 − f2 + f3)

= 24

For the first equation we first use Lemma 4.3.1 to get `(e∗) = 2− (a(τ, v1) + a(τ, v2)).
Then instead of going through all edges of P, we look at all the edges of the unimodular
triangulation T or rather the 2-cones τ ∈ Σ[2] corresponding to those edges. Because of
that `(e) disappears, as it is replaced by `(e) many edges of T of length 1. A priori we
now have too many summands, because of cones that corresponds to an edge of the
triangulation that is not part of an original edge of P. But as we will see now, these
will contribute 0 to the sum. Suppose that e is an edge of T between points v1 and v2
and is not part of an edge of P. Looking at the fan Σ and the cone τ = cone(v1, v2)
corresponding to e, both v3 and v′3 s.t. v3 + v′3 = a(τ, v1)v1 + a(τ, v2)v2 lie in the same
facet of P as e. As P is reflexive, this facet has lattice distance 1 from the origin. If we
now add v3 and v′3, their sum will lie in a hyperplane parallel to that facet at lattice
distance 2 from the origin and hence a(τ, v1) + a(τ, v2) = 2. Therefore, in this case we
get `(e∗) = 0. The third equation holds because in a unimodular triangulation we have
3 f3 = 2 f2 by double counting, as every 3-cone sees three 2-cones and every 2-cone sees
two 3-cones and the last equation is using the Euler characteristic f1 − f2 + f3 = 2.
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A P P E N D I X





A
A L G O R I T H M S

All algorithms listed here are written for the excellent software, polymake [GJ00], which
is a great tool for studying polytopes. Documentations and introductions into polymake
can be found at www.polymake.org.

A.1 algorithms for the finiteness threshold chapter

In this section you will find the algorithms that were used in chapter 2. As mentioned
before the algorithm computing the lattice width is now part of polymake and can be
called as a property of P with the command P->LATTICE_WIDTH. We also list the
algorithms used to compute the subpolytopes of the 14 maximal hollow 3-polytopes,
that have width ≥ 2.

A.1.1 Algorithm computing the lattice width of a Polytope P

use application ’polytope’;
use Benchmark qw(:all);

#Bounded and full_dimensional
sub width {
my ($P) = @_;

my $direction = unit_vector($P->CONE_DIM,1);
my $lp=new Polytope(VERTICES=>$P->VERTICES, LP=>(new

LinearProgram(LINEAR_OBJECTIVE=>$direction)));
my $width=$lp->LP->MAXIMAL_VALUE - $lp->LP->MINIMAL_VALUE;

my $S=scale(polarize(minkowski_sum(1,$P, -1,$P)),$width);
my $B=$S->LATTICE_POINTS;

for(my $i=0; $i<$B->rows(); ++$i){
my $current_direction = 0|$B->row($i)->slice(1);
next if($current_direction->[1] < 0); #because of symmetry
next if($current_direction ==

zero_vector($current_direction->dim)); #because 0 is a
stupid direction

#TODO multiple lps
$lp=new Polytope(VERTICES=>$P->VERTICES, LP=>(new

LinearProgram(LINEAR_OBJECTIVE=>$current_direction)));
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my $current_width=$lp->LP->MAXIMAL_VALUE
-$lp->LP->MINIMAL_VALUE;

if ($current_width<$width){
$width=$current_width;
$direction=$current_direction;

}
}

print "width: $width vector: ". dense($direction);

return $width;
}

A.1.2 Algorithm computing all subpolytopes of width ≥ 2 of a given list of polytopes

use application ’polytope’;
use Benchmark qw(:all);

# prints a progressbar
# @param Int got : the amount of stuff you have already got
# @param Int total : the total amount of stuff
# @param String text : additional text behind the bar.
sub progress_bar {

my ( $got, $total, $text) = @_;
my $width = 10;
my $char = ’=’;
local $| = 1;
printf "|%-${width}s| $got/$total | %-80s \r",
$char x (($width)*$got/$total). ’>’, $text;

}

# Creates a list of polytopes by removing one vertex and taking
# the convex hull over all the remaining lattice points.
# @param Set<Matrix<Rational>> input_polys a set containing

all the vertices of the input polytopes
# @return Set<Matrix<Rational>> ouput_polys a set containing

all the vertices of the ouput polytopes,
# but with one vertex removed
sub subpolylist_step($) {
my ($input_polys) = @_;

# variables for progress bar and timing
my $numPolys = $input_polys->size;
my $date=localtime(time);
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print "subpolylist: started $date\n";
my $t0=Benchmark->new;

# Initializing the output set
my $output_polys = new Set<Matrix<Rational>>();

# For every polytope do:
#for (my $l=0; $l<scalar(@input_polys); ++$l){
my $l=0;
foreach my $vertices (@{$input_polys}){

++$l;
# calc the lattice points
my $tmpPoly = new Polytope(POINTS=>$vertices);
prefer_now "projection"; my $latticePoints= new

Set<Vector>(rows($tmpPoly->LATTICE_POINTS));
progress_bar($l,$numPolys, "start removing vertices --

$date");

# For every vertex do:
my $num_verts = $vertices->rows();
my $vert_i = 0;
foreach my $v (@{rows($vertices)}){
# progress bar printing
++$vert_i;
$date=localtime(time);
progress_bar($l,$numPolys, "removing vertex $vert_i from

$num_verts -- $date");

# create the convex hull over all lattice points
# but without this vertex and check if [[LATTICE_WIDTH]] is

1
my $tmpPoly = new

LatticePolytope(POINTS=>($latticePoints-$v), BOUNDED=>1);
next if (!$tmpPoly->FEASIBLE || $tmpPoly->LATTICE_WIDTH <=

1);

# calc the affine lattice normal form and add the polytope
# to our list (if it is not already there)
my $outVertNorm = new

Matrix(affine_lattice_normal_form($tmpPoly));
# here we add $vertTnorm to the set

# but since we deal with sets, we do not take care of
douplicates

$output_polys += $outVertNorm;
}

}

# timing stops
my $t1=Benchmark->new;
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my $t=timediff($t1,$t0);
printf "subpolylist: stopped %-80s\n", "$date";
print " time: ".timestr($t)."\n";

# making the hash to a perl array
return $output_polys;
}

# Creates all lists of polytopes by successive removing one
vertex and taking

# the convex hull over all the remaining lattice points.
# @param Set<Matrix<Rational>> input_polys a set containing

all the vertices of the input polytopes.
# They need to have the same

number of lattice points
# @param Set<Matrix<Rational>> additional a set containing

some polytopes which should be added at
# the right time
# @param String path the path where all the lists should be

saved
# @return void
sub subpolylist($$$){

my ($list, $add_list, $path) = @_;

# prepare a hash, with the polytopes associated to the
number of lattice points

my %hash = ();
foreach my $verts (@{$add_list}){
my $p = new LatticePolytope(POINTS=>$verts, BOUNDED=>1);
my $n_lattice = $p->N_LATTICE_POINTS;
if(exists($hash{"$n_lattice"})){

$hash{"$n_lattice"} += $verts;
}else{

$hash{"$n_lattice"} = new Set<Matrix<Rational>>($verts);
}
}

# check with how many lattice points we start
my $n_lattice = new Polytope(POINTS=>$list->[0],

BOUNDED=>1);
$n_lattice = new Integer($n_lattice->N_LATTICE_POINTS);

# iterate till the end
while($list->size != 0){
print "\n=== $n_lattice -> ".($n_lattice-1)." ===\n";

# check if there are some polytopes to add
$list += $hash{"$n_lattice"}

if(exists($hash{"$n_lattice"}));
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$list = subpolylist_step($list);
--$n_lattice;

save_data($list, $path."/".$n_lattice."_polys.data");
print "found ".$list->size." polytopes.\n";
}

}

A.2 algorithms for the convex-normal chapter

In this section you will find the algorithms that were used in chapter 3. First an
algorithm that computes the volume of a union of polytopes. This was written by
Constantin Fischer and is as of now not included in polymake. We are most grateful
to him for letting us use it. Next is the algorithm that checks if a polytope P is
2-convex-normal.

A.2.1 Algorithm computing the volume of a union of polytopes

## VOLUME via inclusion exclusion
sub vol_union(@) {

my @plist = @_;
my @queue;
my $Vol = 0;
my %data = (); #stores the polytopes constructed in the

calculation which are full-dimensional
my @tmp = ();
my $indices;
my $candidate;
my $flag;
my $plistlength = scalar @plist-1;

# Initialisation of the queue
@queue = map{$data{"$_"}=$plist[$_];

[$_];}(0..$plistlength);

while (@queue) {
$indices = shift(@queue);

# adding or substracting according to intersection size
$Vol += (-1)**((scalar

@{$indices}+1)%2)*$data{join(",",@{$indices})}->VOLUME;

# generate the new intersection-polytope candidates for
a given index set
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for (my $i= @{$indices}[scalar @{$indices}-1]+1; $i <=
$plistlength; $i++) {
$flag = 1;
if (scalar @{$indices} > 1) {
for(my $j=0; $j < scalar @{$indices}; ++$j){

# make sure to only care about full dimensional
intersections

if (exists($data{join(",",@{$indices}[(0..$j-1,
$j+1..scalar @{$indices}-1)]).",$i"}) == 0){

$flag = 0;
last;
}

}
}

# all subintersections are contained in the hashtable
if ($flag) {
$candidate =

intersection($data{join(",",@{$indices})},$plist[$i]);
if ($candidate->VOLUME != 0) {

@tmp = (@{$indices},$i);
push(@queue,[@tmp]);
$data{join(",",@tmp)} = $candidate;

}
}

}
}
return $Vol;

}

A.2.2 Algorithm checking if P is 2-convex-normal

sub conv_norm {
my ($p) = @_;
my $G = new Set<Vector<Rational>>();

foreach my $v (@{rows($p->VERTICES->minor(All,~[0]))}){
my $tmp = new Matrix(translate($p,

-$v)->LATTICE_POINTS->minor(All,~[0]));
my $translate = repeat_row($v,$tmp->rows());
$tmp += $translate;
$G += new Set<Vector<Rational>>(@$tmp);
}

my @polys =();
foreach my $g (@$G){
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push(@polys, translate($p, $g));
}

return scale($p,2)->VOLUME == vol_union(@polys);
}
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Z U S A M M E N FA S S U N G

Den Kern der vorliegenden Arbeit bilden, wie der Titel deutlich macht, drei interessante
Gitterpolytopprobleme, in den Kapiteln 2-4 behandelt werden.

Kapitel 2 dreht sich um das Problem der Klassifizierung von Gitterpolytopen. Wir
zeigen hier, dass in jeder Dimension d eine Zahl w∞(d), die Endlichkeitsgrenzweite,
existiert, so dass es nur endlich viele d-Gitterpolytope mit einer gegebenen Anzahl an
Gitterpunkten gibt, deren Gitterweite größer als w∞(d) ist. Insbesondere zeigen wir,
dass d− 1 ≤ w∞(d) ≤ O

(
d

3
2

)
. In Dimension 3 war schon bekannt, dass w∞(3) = 1.

Im Laufe des Kapitels erarbeiten wir dann Voraussetzungen, unter denen ein hohles
d-dimensionales Gitterpolytop endlich bzw. unendlich viele Rückziehungen hat. Diese
ermöglichen uns dann die Frage auch für Dimension 4 zu beantworten. In diesem Fall
ist die Endlichkeitsgrenzweite 2.

Hinter Kapitel 3 steht die Frage, ob d-dimensionale Gitterpolytope mit langen Kanten
immer ganz abgeschlossen sind. Diese Frage hat Gubeladze mit ja beantwortet, indem
er gezeigt hat, dass wenn in einem Polytop jede Kante mindestens Gitterlänge 4d(d + 1)
hat, das Polytop zwangsläufig ganz abgeschlossen ist. Hierzu führte er den Begriff
der Konvex-Normalität ein. Dieser wird hier näher beleuchtet und wir können einige
grundlegende Aussagen dazu treffen. Daraus folgt mit dem Hauptresultat des ersten
Teils von Kapitel 3 eine Verbesserung der Schranke auf 2d(d+ 1). Danach betrachten wir
Paare von Polytopen und verallgemeinern hierfür den Begriff der Konvex-Normalität
und können damit das folgende Resultat zeigen. Gegeben seien zwei d-dimensionale
Gitterpolytope P und Q. Wenn der Normalenfächer von P eine Verfeinerung des
Normalenfächers von Q ist, und zusätzlich jede Kante in P mindestens d-mal so
lang ist, wie die dazu korrespondierende Seite (Kante oder Ecke) von Q, dann gilt
(Q + P) ∩Zd = (Q ∩Zd) + (P ∩Zd).

Im Kapitel 4 greifen wir zwei verblüffende Sätze auf, die erst vor Kurzem eine
Verallgemeinerung erfahren haben. Der Erste besagt, dass für ein reflexives Polytop P
in Dimension 2, die Summe aus der Anzahl der Gitterpunkte auf dem Rand von P und
der Anzahl der Gitterpunkte auf dem Rand von P∗ stets 12 ergibt. Für den Zweiten,
bezeichne `(e) die Gitterlänge eines Gittersegments e. Dann gilt für ein reflexives
Polytop P in Dimension 3, dass ∑e∈P[1] `(e)`(e?) = 24. Für diese beiden Gleichungen
für reflexive 2- bzw. 3-Polytope wurde vor Kurzem eine Verallgemeinerung für glatte
reflexive d-dimensionale Polytope gefunden. In Kapitel 4 zeigen wir zweierlei. Erstens,
dass diese neue Gleichung auch für vollständige unimodulare Fächer gilt. Und zweitens,
dass es abgesehen von dieser neu gefundenen Gleichung und den wohlbekannten Dehn-
Sommerville Gleichungen keine weiteren unabhängigen Gleichungen gibt, die für alle
erweiterten h-Vektoren von vollständigen unimodularen Fächern gelten.
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