
Chapter 6

Clustering with Constraints for
Integration of Heterogeneous Biological
Data

The transcriptome of cells measured with microarrays gives an important and informa-
tive snapshot of the genetic information flow. However, it only reflects one particular
aspect of the cell control dynamics: the number of specific RNA molecules present in a
cell. Recently, several other large-scale technologies, which explore distinct aspects of the
cell information flow, became available. For example, protein-protein interaction screens
reveal the composition of proteins complexes [83, 108]; chromatin immunoprecipitation
experiments detect where a particular protein binds in DNA genomic regions [128]; and
in-situ hybridization techniques elucidate the spatial patterns of gene expression within an
organism [214]. Other useful sources of large-scale data are biological databases. For
example, Gene Ontology is a controlled vocabulary of biological concepts and gene an-
notations [9]; the Kyoto Encyclopedia of Genes (KEGG) catalogs manually annotated bi-
ological pathways [114]; and PubMed indexes titles and abstracts of most biological and
medical journals [167]. Combining one (or more) biological sources of information with
gene expression data is a natural next step to achieve better functional hypotheses. Indeed,
several methods have been proposed for this problem (see [217] for a general review).
Among others, probabilistic methods have been widely applied in this context, since they
are flexible, can be easily extended to accommodate new data sources, and allow a statisti-
cal evaluation of the results [15, 192–194, 209, 218, 231].

We propose in this chapter the use of a simple, intuitive and mostly assumption-free frame-
work of semi-supervised learning for the joint analysis of data from heterogeneous biolog-
ical sources [39]. Semi-supervised learning is appropriate if there is a number of labels
available for some of the observations, while the majority of data points carry no label.
The main idea is to take advantage of both the labeled (supervised) and unlabeled data
(unsupervised) in order to obtain better estimates than when analyzing each data source
separately. For example, in [187] it was shown that few high quality labeled genes were
able to improve the clustering of gene expression time courses, in comparison to a purely
unsupervised method. One particular type of semi-supervised learning is called clustering
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with constraints, or constrained clustering. It only makes weak assumptions about the la-
bels by encoding secondary information as pairwise constraints. These methods search for
clustering solutions, which violate the fewest number of constraints. We can, for example,
derive constraints from Gene Ontology annotation (GO) [9] by constraining pairs of genes
with similar GO annotation to be in the same cluster. Likewise, we can also constrain pairs
of genes with distinct GO annotations to be in different clusters (negative constraints). The
use of clustering with constraints for integration of heterogeneous data is based on two as-
sumptions not explored by previous approaches [15, 192, 209, 218, 231]: (1) the secondary
information is usually not available for all genes from expression experiments; and (2) gene
expression data sets provide one view of the biological process under investigation, which
is very unlikely to provide the same level of detail as in the secondary information. Us-
ing additional data as secondary information, we simply limit the gene expression based
clustering results to biologically more plausible solutions.

In this chapter, we investigate the use of clustering with constraints for finding groups of
co-expressed genes with the aid of secondary information. First, we describe related work
in Section 6.1. A general formulation of the clustering with constraints problem will be
introduced in Section 6.2. In Section 6.2.1 we describe the method previously proposed
in [123], which we adopt in our biological applications. One contribution of this chapter is
an experimental analysis of data sets commonly used in studies integrating heterogeneous
biological data. The main purpose of this analysis is to evaluate the feasibility of clustering
with constraints in this problem scenario [52]. We apply the clustering with constraints to
yeast cell cycle data [42], using either Gene Ontology [9] or transcription factor location
analysis [128] as secondary information (see Section 6.2.2 for constraints definitions). As
the yeast cell cycle data set has full class labels, we can evaluate the improvements re-
sulting from the addition of the secondary information in the analysis (see Section 6.3.1
for results). The second contribution of this chapter is a novel bioinformatics application
for finding syn-expressed genes [48]. More precisely, we analyze gene expression time
courses of Drosophila development using in-situ RNA hybridization images as secondary
data. The constraints derived from the in-situ data are described in Section 6.2.2 and the
results are presented in Section 6.3.2. Finally, we present a discussion and future work in
Chapter 7.

6.1 Related Work

Semi-supervised learning (SSL) is a topic of great interest in the machine learning com-
munity [39]. SSL methods try to combine characteristics of supervised and unsupervised
learning methods in problem scenarios where only part of the observations are labeled.
Such data arises in many practical applications. For example, in text categorization pro-
blems, it is easy to retrieve thousands of texts from the web, but manually labeling texts is
expensive [45]. Similarly, for gene expression derived from microarrays, we have the mea-
surements of the transcription of whole genomes, but only a small fraction of genes have a
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functional characterization [187]. One can implement semi-supervised learning with dif-
ferent machine learning paradigms [39]: transductive learning, such as transductive support
vector machines [112]; graph-based approaches, such as spectral methods [207]; methods
based on change of representations, which use labeled data to recompute distance matri-
ces [118, 228]; and generative models, such as probabilistic clustering methods [19]. We
are mainly interested in the latter category, as they can be used together with the mixture
model framework used in other chapters of this thesis.

Semi-supervised clustering methods consider SSL from an unsupervised learning point of
view. In particular, one assumes that the total number of classes and the coverage of labels
in these classes are both unknown [19]. With generative models, we view the clustering
problem in a probabilistic setting, and include the constraints in the model prior, in order
to restrict the solution space to clustering solutions respecting the constraints derived from
class labels. The semi-supervised clustering problem can be described in a complete like-
lihood formulation and be solved with extensions of the EM algorithm (see Section 6.2).
One alternative is to use the labels as hard constraints [45, 161, 185]. A more flexible,
simple and assumption free approach is to consider only constraints between pairs of ob-
jects. Most methods of clustering with constraints are based on defining a hidden random
Markov field (HRMF) in the constraints [153]. They employ distinct approximation meth-
ods for estimating the posterior assignment of the EM algorithms. Among other proposals,
there are: chuncklet model [196], iterated conditional modes [19], Gibbs sampling, [137],
mean field approximation [123], and re-sampling chunklet model [153]. The work in [153]
performed a comparative analysis of the previous methods [19, 123, 137, 153, 196] with
benchmarking data sets, and with the inclusion of noise in the constraints. In general,
methods like [19, 123, 153] performed well after the addition of noise, while the exact
method based on hard constraints [196] had poor results. This is explained by the fact that
particular sets of “hard” constraints will have no feasible solutions for a specific number
K of clusters [57]. For example, the constraints in Figure 6.1 (c) cannot be satisfied for
K = 2. Thus, exact methods should be avoided, such the one in [196], when one expects
errors in the constraints. On the other hand, [153] shows that approximate methods, such
as [19, 123, 137], which are based on local update rules of the posterior assignments, can
get easily trapped in local maximum solutions, in particular when large constraint weights
are used. The use of distinct Bayesian classifiers in a semi-supervised clustering with hard
labels was proposed in [45]. The authors investigated the effects of the size of labeled and
unlabeled data on UCI benchmark data sets. Their results showed that unlabeled data can
deteriorate the overall results, if the assumptions of the model do not match the distribu-
tion of the data. They suggest that cross-validation on labels (or constraints) is a relevant
approach for performing model selection.

Analysis of heterogeneous biological data has been tackled with several distinct method-
ologies. See [218] for a broad review of the area. We describe below only those studies
based on semi-supervised methods. In [185, 187], it was shown how a few number of high
quality labels (< 2% of observations), which were used as hard labels in a mixture model,
could improve clustering of gene expression time courses. In [193], a gene expression data
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set was analyzed in conjunction with protein-protein interaction data. The author also pro-
posed a model-based clustering method with a HRMF over the protein-protein interaction
graph. A belief network propagation method was used for estimation of the posteriors.
In [198], pathway information from KEGG was modeled also as a HRMF, which was esti-
mated with the interactive conditional modes method. In [194], gene expression data was
analyzed together with transcription factor binding site (TFBS) data with an EM based
method. Also, a model-based approach similar to [187] was proposed in [161] for cluster-
ing gene expression data with labels derived from functional annotation data. That work,
however, makes an ad hoc selection of few functional classes used as labels, and ignores the
fact that genes can be assigned to multiple functions. The same authors also investigated
the use of a semi-supervised method based on the modification of the distance function
according to the labeled data on similar data sets [102]. Furthermore, [189] performed a
case study using the mean-field approximation for clustering with constraints [123]. They
used a fully labeled yeast cell cycle data set (as in the study described in Section 6.3.1)
and TFBS data for deriving the constraints. They could show that with a more conserva-
tive choice of constraints the TFBS data yielded improvements in the recovery of Gene
Ontology terms.

The work presented in this chapter differs from [102, 161, 185, 187], as they are all based
on hard constraints and ignore the existence of noise in the constraints. In relation to [189,
193, 198], all share a similar computational method with the one used in this thesis, but
they differ in the data used as secondary information.

In the context of syn-expression, [214, 215] performed a large-scale study of gene ex-
pression in the Drosophila embryos by in-situ RNA hybridizations. The images were
manually curated and annotated using a controlled vocabulary—ImaGO—following the
example of the Gene Ontology [9]. The final result was a hierarchical clustering of genes
based on the manual annotations; the gene expression time-courses were not included in
the analysis. Recently, a similar study was performed in Drosophila embryogenesis using
high-resolution fluorescent in-situ hybridization technique [127]. This technique allows
the sub-cellular location of expression. They also extended the vocabulary from ImaGO
to include sub-cellular location terms. Recently, studies investigated pattern formation in
Drosophila based on 3D in-situ images [96, 117] for a small number of genes. Further work
concentrated on mining the image database for genes with a spatial expression pattern sim-
ilar to a query [160, 163] and on the extraction of relevant features in the images [160], for
example by clustering images on an eigenvector based representation [162]. All these syn-
expression studies restricted themselves to the analysis of the images with gene expression
location. In contrast, the application proposed in this chapter is the first one combining
gene expression from microarrays with gene expression location for deriving groups of
syn-expressed genes.

Recently, [181] proposed the use of gene expression time courses of Drosophila develop-
ment as an input for a classifier distinguishing modules of gene expression location. The
modules of expression location were derived from the manual annotation of in-situ patterns
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from [214] and no image processing was performed.

6.2 Mixture Model Estimation with Constraints

The main idea of clustering with constraints is to include additional data in the form of
pairwise constraints in order to restrict or penalize particular cluster solutions. These con-
straints can be of two types: positive constraints, which indicate that two objects should
be in the same cluster, and negative constraints, which indicate that two objects should be
in separate clusters. Moreover, the constraints can be interpreted in two ways: “hard con-
straints”, which have to be fulfilled in the solutions, and “soft constraints”, which might be
violated. For the latter, a penalty violation value can be defined for each pairs of objects.
See Figure 6.1 for an example of how the “hard” and “soft” pairwise constraints can be
used to restrict clustering solutions.

In this chapter, we are interested in probabilistic methods using “soft constraints” [123,
137]. One way to achieve this is to extend the basic EM approach (Section 2.3.1) to include
the constraints. In the following, we describe the basic formalism of this extension. In
Section 6.2.1, we describe one particular method for performing mixture model estimation
with soft constraints.

Formally, for a data set X with N observations, we specify the positive constraints as a
matrix W+, where w+

ij ∈ [0,∞] is the positive constraint penalty for the pair of observa-
tions i and j (1 ≤ i ≤ N and 1 ≤ j ≤ N ). Likewise, we specify a negative constraints
matrix W−, where w−ij ∈ [0,∞]. We use W to denote the pair (W+,W−). Recalling
Section 2.3.1, the EM algorithm is based on maximizing the complete data likelihood
(Eq. 2.7),

P(X,Y|Θ) = P(X|Y,Θ)P(Y|Θ),

where Y indicates the cluster assignments of observations in X.

The constraints can be added into the previous equation making the prior of the cluster
assignments Y to be dependent on W ,

P(X,Y|Θ) = P(X|Y,Θ)P(Y|Θ,W ),

= P(X|Y,Θ)P(Y|Θ)P(W |Y,Θ).

The only term depending on the constraints is P(W |Y,Θ). This can be interpreted as
a weighting function penalizing cluster assignments Y, which violate the constraints W .
As it is common in probabilistic clustering with constraints methods [39], we assume that
the constraints impose a hidden Markov random field (HMRF) on the (hidden) variable Y
representing the unknown cluster assignments. In short, a hidden Markov random field is a
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graphical representation of the joint distribution of a hidden variable. The HMRF assumes
that the conditional distribution of the variables obeys the Markov property, i.e., the prob-
ability of a variable is only dependent on neighboring variables (see [131] for a complete
description of HMRF). In our context, the HMRF graph is represented by a set of nodes,
where node i represents the observation yi, and the neighborhood graph is represented by
the constraints, where wij indicates the weight of the edge between nodes i and j. Hence,
it follows from [92] that the prior probability of a particular cluster assignment Y follows
a Gibbs distributions,

P(W |Θ,Y) =
1

Z
exp

(
N∑
i

N∑
j 6=i

−w+
ij1(yj 6= yi)− w−ij1(yj = yi)

)
, (6.1)

where 1 is the indicator function and Z =
∑

Y∈Y P(W |Θ,Y) is the normalizing func-
tion.

In this formulation, however, we cannot assume independence between cluster assignments
Y in the E-step, as it is required by EM algorithm (Section 2.3.1). Exact inference of the
posterior would now require the complete evaluation of the following equation

P(yi = k|X,Θ,W ) =
∑

Y∈Yyi=k

P(X|Y,Θ)P(Y|Θ,W ), (6.2)

where Yyi=k is the space of all cluster assignments Y and yi is fixed to the value k. Sev-
eral approximations have been proposed for estimating the posterior, such as the chunck-
let model [196], iterated conditional modes [19], Gibbs sampling, [137], and mean field
approximation [123]. We adopt the approach in [123], as it allows for modeling soft-
constraints, does not require sparsity of the matrices W+ and W−, and performs well on
benchmarking [153].

Note also that in this formulation, as P(X|Y,Θ) is independent of W , no modification is
required in the M-Step of the EM algorithm. As a result, the component models proposed
in Chapter 4 and 5 can be used in this clustering with constraints setting.

6.2.1 Mean Field Approximation

It was shown in [123] that the distribution in Eq. 6.1. follows the Maxent principle,

P(W |Θ,Y) =
1

Z
exp

(
N∑
i

N∑
j 6=i

−λ+w+
ij1{yj 6= yi} − λ−w−ij1{yj = yi}

)

where λ+ and λ− are Lagrange parameters defining the penalty weights of positive and
negative constraint violations.

A mean field approximation is used in the inference of the posterior distributions from
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Figure 6.1: The effectiveness of the use of pairwise constraints, cases (b) and (c), is
shown by contrasting them with the unsupervised case (a). Assuming a two-
dimensional space, it is hard to distinguish the two clusters from the data
points alone, and the boundary between them (a). The addition of positive
pairwise constraints, depicted as red edges, and negative constraints, de-
picted as blue edges (b), indicate the existence of two or more clusters and
possible cluster boundaries, depicted as green dotted lines. In (c), there is no
boundary, which respects all constraints, and methods based on “hard” con-
straints would fail in this scenario. With the use of “soft” constraints, where
the penalty of constraint violation is proportional to the edge widths, there is
an optimal solution (green dotted line), which violates one positive constraint,
in the cost of respecting a negative constraint with higher penalty value (or
edge width).

the given HMRF. Formally, the posterior distribution is approximated with a factorial dis-
tribution q(Y) =

∏N
i=1 qi(yi), by minimizing the relative entropy of the real posterior

distribution P(Y|X,Θ,W ) (Eq. 6.2),

q∗ = argmin
q

∑
Y∈Y

q(Y) log

(
q(Y)

P(Y|X,Θ,W )

)
where

∑K
k=1 qi(yi = k) = 1.

As demonstrated in [123], the posterior assignments is approximated as follows

qi(yi = k) =
αkp(xi|yi = k, θk)∑K

k′=1 qi(yi = k′)
exp

(∑
j 6=i

−λ+w+
ij(1− qj(yj = k))− λ−w−ijqj(yj = k)

)
.

where αk is defined as in Eq. 2.22 and p(xi|yi = k, θk) is the pdf of the component model
(see Eq. 2.24 for the multivariate Gaussian case).

Note that this formulation allows several alternatives regarding the use of constraints.
When there is no overlap in the annotations, or more precisely w+

ij ∈ {0, 1}, w−ij ∈ {0, 1},
w+
ijw
−
ij = 0, and λ+ = λ− ∼ ∞, we obtain hard constraints. Alternatively, by fixing

λ+ = 0 (or λ− = 0), we make use of only positive (or negative) constraints.
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6.2.2 Deriving Constraints

We describe in this section how we can derive constraints from biological information.

Gene Ontology

The Gene Ontology (GO) project is a collaborative effort to address the need for consis-
tent descriptions of gene products in different databases [9]. Three structured controlled
vocabularies (ontologies) describe gene products in terms of their associated biological
processes, cellular components and molecular functions in a species-independent manner.
Cellular component describes biological compartments in which genes are active (e.g.,
rough endoplasmic reticulum); molecular function contains concepts related to gene func-
tion (e.g., catalytic activity); and biological process describes the processes that a gene can
take part of (e.g., cellular physiological process).

Formally, a given Gene Ontology (GO) is represented by a directed acyclic graph (DAG),
in which each node ti in a set T = {t1, ..., tM} represents a biological term (controlled
vocabulary or GO term) and the edges stand for relationships among these terms. A re-
lationship R(ti, tj) ∈ R indicates that term ti is a parent of term tj . Such a relation is
interpreted as tj being a subclass of ti, i.e., ti is a more general concept than tj . For in-
stance, the biological term “cell cycle” is related to the more specific terms “mitotic cell
cycle” and “meiotic cell cycle”.

A set of genesG = {g1, ..., gN} is related to a given GO term by an annotation setA, where
A(ti, gn) ∈ A indicates that gene gn is annotated with term ti. Genes often have multiple
biological roles, hence they are usually annotated with several GO terms. Furthermore,
the parent-child relation of GO implies that genes annotated with a term are also annotated
with all parents of this term. That is, for all R(ti, tj) ∈ R, given a gene gn, A(tj, gn)

implies that A(ti, gn).

The intuition for the use of Gene Ontology as a secondary data is that genes participating
in the same biological process should be co-expressed [71]. Hence, we positively constrain
genes annotated with the same GO terms, and negatively constrain pairs of genes annotated
with distinct GO terms.

More formally, let D(gi) = {t|A(t, gi) ∈ A, t ∈ T} be the set of GO terms annotating
gi. We can define constraints by calculating the number of GO terms common to a pair of
genes. That is, for all pairs of genes gi and gj (corresponding to the observations xi and xj
in X), we define the following constraints

w+
ij =

#D(gi) ∩D(gj)

#D(gi) ∪D(gj)
, (6.3)

and

w−ij =
#D(gi) ]D(gj)

#D(gi) ∪D(gj)
. (6.4)
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where w+
ij will take values in [0, 1] with w+

ij = 1 indicating perfect agreement for positive
constraints and w−ij = 1 perfect disagreement for negative constraints. Non-annotated
genes have constraints equal to zero.

Location Analysis

Location analysis allows the detection of the binding sites of transcription factors (TF) in a
genomic scale [128]. The binding of a TF to an upstream region of a gene is a pre-requisite
and indicator that regulation occurs. Similarly as in the case of Gene Ontology, pairs of
genes being bound by the same transcription factor are likely to be co-regulated [212].

For a set of transcription factors F = {f1, ..., fM}, location analysis will return relations
A′(fl, gi) ∈ A′, which indicates that factor fl binds to gi. Let D(gi) = {fm|A′(fm, gi) ∈
A, fm ∈ F} be the set of TFs bound to gi. Then, we can use Eq. 6.3 and Eq. 6.4 to obtain
constraints.

In-Situ Images

An important aspect of gene expression, which has been studied in great detail in em-
bryonic development of Drosophila melanogaster [214], is its precise localization. While
the initial motivation for these sensitive experiments is to understand the role of individ-
ual genes in organ development, we can incorporate spatial expression patterns with gene
expression time courses from microarrays for improving the generation of functional hy-
potheses.

In fact, genes that share the same temporal-spatial expression pattern are more likely to
form a functional module [157]. If they are synchronously co-expressed in one tissue, or in
multiple tissues, this is refereed to as syn-expression [157]. The spatial expression patterns
can be determined with in-situ experiments where a mRNA-specific stain is produced by
mRNA-binding oligonucleotides and a suitable dye [211]. Then, image analysis produces
either 2D or 3D images of spatial patterns of gene expression. Drosophila embryos are
morphologically rather simple, however the image analysis task is not trivial as in-situ
images are taken of many subjects with large fluctuations in shape. In addition, the staining
intensity has higher, gene-specific error rates compared to DNA microarrays [214].

To compare in-situ hybridization patterns of a pair of registered embryo images [159], we
compute the Pearson correlation as a co-location index, as proposed in [159]. This index
takes both the spatial distribution and the strength of hybridization into account. Despite its
simplicity, this index had comparable performance to a more complex method previously
described in [163].

More formally, let Z be an L-dimensional continuous random variable defining the pixel
intensities of an image with L pixels. For a data set of images Z, where zi and zj describe
the pixel intensities of two registered embryo images; and zi is an L-dimensional vector
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(zi1, ...zil, ..., ziL), the Pearson correlation coefficient is calculated as follows

PC(zi, zj) =
Cov(zi, zj)√

V ar(zi)
√
V ar(zj)

, (6.5)

where V ar(zi) =
∑L

l=1(zil − µi)2/L, Cov(zi, zj) =
∑L

l=1(zil − µi)(zjl − µj)/L, and
µi =

∑L
l=1 zil/L.

Note that there is no annotation of the orientation of the embryo. Furthermore, automatic
registration of the image is a difficult task. Hence, for each pair of images, we estimate the
correlation between all possible orientations and take the maximum correlation value.

For a given gene, we have in-situ images for several developmental periods, and for each
period and gene we have zero or more in-situ images. Formally, let Ii = {I1

i , ..., I
t
i , ..., I

T
i }

indicate the sets of in-situ images related to gene i and time periods 1 to T , and let I ti =

{z1, ..., zm, ..., zM} be the set of images related to gene i at period t. For a pair of genes
and a developmental period, we compute the Pearson correlation (Eq. 6.5) for all pairs of
images in sets I ti and I tj ; and keep the maximum value. This yields the co-location index
(CL)

CL(I ti , I
t
j) = maxzm∈Iti ,zn∈ItjPC(zm, zn). (6.6)

By an inspection of the distribution of the co-location index, we select a value s of gene
pairs to constrain. In other words, for all pairs of genes (i, j) at period t, the sth highest
CL(I ti , I

t
j) values are positively constrained (wt+ij = 1). Similarly, the pairs (I ti , I

t
j) with

sth lowest CL values are negatively constrained (wt−ij = 1). Using this criterion, we obtain
a constraint matrix W t+ (or W t−) for a particular developmental period t.

As a last step, we need to combine the constraints from the distinct developmental periods.
See Figure 6.2 for an example. We require that a pair of genes is only constrained if it is
constrained in at least p developmental periods

w+
ij =

{
1,

∑T
t=1w

t+
ij ≥ p

0, otherwise
, and (6.7)

w−ij =

{
1,

∑T
t=1w

t−
ij ≥ p

0, otherwise
. (6.8)

6.3 Experiments

In this section, we describe the application of clustering with constraints in two different
data sets. In the first case, for a proof of concept evaluation, we use a simple benchmarking
data set—yeast during cell cycle—, which is also analyzed in Chapter 4. We use either
Gene Ontology or location analysis information as secondary data. For the case of the
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Figure 6.2: Time course expression (top) and registered in-situ images (middle) of 4 genes
twi, CG12177, Ef2 and RhoGAP71E indicate the gene expression patterns.
From left to right, the embryo images are categorized into the time periods
0-3, 3-6, 6-9, 9-12, 12-15 and 15-18h. The time-courses display similar ex-
pression patterns with maximal expression after 3 hours for all genes, but
weakly diverging pattern at later time points. The in-situ images indicate that
twi and CG12177 have syn-expression at time periods 3-6, 6-9 and 9-12h;
while Ef2 and RhoGAP71E have syn-expression at time periods 0-3, 3-6, 6-9,
9-12 and 15-18h. At the bottom, we display how positive constraints are de-
rived from in-situ hybridization patterns. Heat-maps display the correlation
coefficients between all pairs of in-situ images of the corresponding time pe-
riod (red values indicate positive correlations). A constraint matrix for each
time period is obtained by thresholding the corresponding correlation ma-
trix. For example, constraint matrices from periods 3-6 and 6-9h indicate
syn-expression of pairs (twi, CG1217) and (Ef2, RhoGAP71E), whereas the
constraint matrix from period 9-12h indicates that (CG1217, RhoGAP71E)
are syn-expressed. Matrices are combined into one, which constrains genes
that display syn-expression in at least 3 periods, as indicated in the matrix at
the bottom.
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second data set, we present a more detailed and exploratory analysis of Drosophila devel-
opment. In this context, we use gene expression time courses as the main data set and
information from in-situ images as secondary data.

6.3.1 Yeast Cell Cycle with Gene Ontology and Location Analysis

We use the expression profiles of 384 genes during Yeast mitotic cell division assigned to
one of the five cell cycle phases classes [42], which we refer to as YCC. See section 4.5.1
for a detailed data description. Although this data set is biased towards profiles showing
periodic behavior, and some of the class assignments are ambiguous, it is one of the few
data sets with a complete expert labeling of genes.

The relation between regulators and target genes are obtained from large-scale location
analysis, comprising data from 142 candidate TFs [128]. Relations A′(fl, gi) ∈ A′ are ob-
tained after thresholding the confidence that the TF binds to a particular gene as performed
in the source literature [128]. We will refer to this data as TR.

In relation to GO, the SGD Saccharomyces cerevisiae annotation [195] is used, and for
simplicity, we only included the DAG molecular process in our analysis.

Results

Multivariate normal distributions with diagonal covariance matrix are used as component
models of the mixture model (see Section 2.3.3). We initialize the EM algorithm with
random models, as described in Section 2.3.2. For all experiments, we vary values of λ+

and λ−. We use the class labels to compute sensitivity (Eq. 3.13), specificity (Eq. 3.14) and
corrected Rand (Eq. 3.12).

As a proof of concept, we use the class labels from YCC to generate pairwise constraints
for 5% of all pairs of genes—positive if the genes belong to the same class, negative
otherwise—and observe the performance of the method with distinct constraints settings
(Figure 6.3 top). In all cases, CR, Spec and Sens tend to one for λ near ten, with the
exception of the experiments with positive constraints. In this case, one of the five clusters
always remains empty, and two classes are joined in one single cluster. Furthermore, the
use of positive constraints only has a stronger effect on the sensitivity, while the negative
constraints affect the specificity. This is expected since positive (negative) constraints only
penalize false negatives (false positives). It also explains the merged classes in the experi-
ments with positive constraints, since the secondary data gives no penalty for merging two
classes.

We observe similar results with GO and TR as secondary data. There is a slight but signif-
icant increase of CR and Sens for the methods with positive constraints (t-test indicates an
increase at λ+ = 0.5 with p-value = 2.38e − 10). However, for high λ+ values (> 0.7),
CR and Sens values decrease. No improvements are obtained with the use of positive and

100



6.3 Experiments

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1
Real Labels − Positive Constraints

lambda+

c. Rand
Spe
Sen

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1
Real Labels − Negative Constraints

lambda−

c. Rand
Spe
Sen

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1
Real Labels − Pos. and Neg. Constraints

lambda+ = lambda−

c. Rand
Spe
Sen

0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

GO − Positive Constraints

lambda+

c. Rand
Spe
Sen

0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

GO − Negative Constraints

lambda−

c. Rand
Spe
Sen

0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

GO − Pos. and Neg. Constraints

lambda+ = lambda−

c. Rand
Spe
Sen

0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

TR − Positive Constraints

lambda+

c. Rand
Spe
Sen

0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

TR − Negative Constraints

lambda−

c. Rand
Spe
Sen

0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

TR − Pos. and Neg. Constraints

lambda+ = lambda−

c. Rand
Spe
Sen

Figure 6.3: We depict the CR, Sens and Spec after clustering YCC with positive (left),
negative (middle) and positive and negative (right) constraints. We used either
real class labels (top), GO (middle) or TR (bottom) as secondary information.

negative constraints, and the negative constraints alone only deteriorate the results.

In order to understand these results, we repeat the experiments with real labels, but this
time including also random labels. In total, we generate constraints for 5% of gene pairs.
As seen in Figure 6.4, the addition of random labels have a great impact on the recovery
of the clusters. The inclusion of 20% of random labels deteriorate the results considerably.
For λ = 5, we have a CR near 0.45 for the data with 20% of noise and a CR near 0.75 for
the data with no noise in the constraints. For 60% of random labels, the corrected Rand
displays a behavior similar to TR and GO, obtaining low CR values (< 0.2) for high λ
(> 5.0). This indicates that (1) the method is not robust with respect to noise in the data,
and (2) indicates the presence of noise or non-relevant information in TR and GO.

This is not too surprising, therefore we attempt to estimate the maximal positive effect one
can obtain from this secondary data. We perform the computation of enrichment analy-
sis [24] for GO term and TR enrichment, a procedure commonly used in cluster validation,
to obtain informative terms from the true classes. We repeat the experiments described
before with the most informative TF (or GO terms) only. However, we observe only a
slight improvement for the negative constraints and a relevant improvement with the use
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Figure 6.4: We depict the CR obtained by clustering YCC with positive constraints from
5% of real labels with the inclusion of 0%, 20%, 40%, 60% and 100% random
labels.
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Figure 6.5: We depict CR, Sens and Spec after clustering YCC with positive (left), negative
(middle) and positive and negative (right) constraints after filtering of relevant
TR.

both positive and negative constraints in the TR data set (a CR from 0.454 to 0.472). On
the other hand, no improvement is obtained after filtering terms in GO (data not shown).

These results indicate that secondary data has little power for clustering, unless it is of
very high quality, free of errors and have no ambiguities. Furthermore, only as few as
20% of error in labels deteriorate the CR by more than 40%. The results for GO and
TR indicate that this is the case for both biological data, and unless the procedures for
obtaining constraints for GO and TR can be improved, we are more likely to deteriorate
results by integrating these data. Note also that we can only obtain the best choice of λ,
because the data sets are fully annotated, which is not the case of most biological data sets.
Furthermore, high values of λ deteriorate results.

6.3.2 Drosophila Syn-Expression

Data

Time Courses of Drosophila Development. For twelve consecutive one-hour time win-
dows of embryogenesis mRNA levels are measured using the Affymetrix GeneChip Dro-
sophila Genome array. This array targets about 14,000 genes. Results were processed
with the standard Affymetrix tool suite [214]. We use the median from three biological
replicates. Expression values are transformed to log-ratios by using time point 1 hour as
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reference. We remove genes not exhibiting at least a two-fold change, which leaves us with
2,684 genes.

In-situ Image Processing. Embryos of Drosophila Melanogaster were collected and
aged to produce embryos 0-3, 3-6, 6-9, 9-12, 12-15 and 15-18 hours old [214]. The in-situ
reactions were based on a cDNA library of 2,721 clones; in the end images were collected
for 1,388 genes. The difference is caused either by a failure of in-situ reactions or by a lack
of tissue-specific expression. Images were taken with a dissecting microscope in different
focal planes and different orientations.

We use the procedure proposed in [159] for pre-processing the in-situ images. We sum-
marize below the main steps of this image processing pipeline. The majority of in-situ
hybridization images in the BDGP database contain the projection of exactly one centered
embryo [22]. However, there is a noticeable portion of images with multiple touching em-
bryos. To exploit as many data as possible, the goal of image pre-processing is to locate
and extract exactly one complete embryo from each image, even for touching embryos.

To distinguish between embryo and non-embryo pixels we estimate the local variance of
gray level intensities for each pixel in a 3 × 3 neighborhood, following [163]. It suffices
to apply a fixed predefined threshold for segmentation using variance estimates because
of a homogeneous background in contrast to the embryo. To eliminate erroneous embryo
regions, a sequence of morphological closing and opening using a circular mask of radius
four is applied [87]. Next, the largest connected component is extracted. The resulting
region may be the projection of a single complete or partial embryo or the projection of
a set of multiple touching embryos. To distinguish these different cases we apply a series
of simple filters based on ellipticity, compactness and area of the extracted region. For
regions of multiple touching embryos we introduce a procedure to separate the individuals
and to extract a single complete high quality embryo. Further details are given in [159].

The final step of image processing is to register the embryos extracted to a standardized
orientation and size to allow for comparison of different expression patterns. The embryo
is rotated to align horizontally to the principal axis. Then, the bounding box is scaled to a
standard size. Figure 6.6 shows the steps of the image processing pipeline for one example
image.

We obtain constraints as described in Section 6.2.2. The 18 developmental stages of the
embryo are divided into six developmental periods (0-3, 3-6, 6-9, 9-12, 12-15 and 15-
18). Given the results obtained in Section 6.3.1, we would like to have only high qual-
ity constraints. Hence, we use conservative thresholds in the procedure for deriving the
constraints. More specifically, we select the value s (Section 6.2.2) so that only a small
percentage of gene pairs should be constrained (less than 2% of genes with in-situ images).
We observe a correlation coefficient exceeding our threshold in at least three or four devel-
opmental periods, i.e., we set p = 3 or p = 4 in Eq 6.7. See Figure 6.2 for an example of
how the constraints are obtained. With support of at least three periods, there are 1,756 pos-
itive constraints within 170 genes and 2,544 negative constraints within 360 genes. With
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original in-situ image extracted embryo registered embryo

Figure 6.6: The image pipeline combines registration, morphological operations and fur-
ther processing steps to automatically process raw images, even if they in-
clude multiple touching embryos. Shown here is the image in-situ8784
from gene CG5353. Image reproduced from [159]

support of at least four stages, there are 270 positive constraints within 66 genes and 640
negative constraints within 151 genes.

ImaGO Term Enrichment. A controlled vocabulary, which follows the Gene Ontol-
ogy standard [9], is used to annotate spatial gene expression patterns [214]. All images
deposited in BDGP are annotated with at least one of these terms. Like with Gene On-
tology enrichment analysis described in Appendix A, we can use a statistical test to list
ImaGO terms that are over-represented in a cluster. Lower p-values indicate an enrichment
in ImaGO terms and, consequently, better results.

This strategy is useful for evaluating the biological quality of a single cluster, but it gives
no global assessment for comparing the results obtained by two clustering solutions. A
heuristic to perform such an analysis is to compare the p-values obtained for two solu-
tions [73]. A method is said to be better than another method if it has a larger number of
ImaGO terms with lower p-values.

Results

We use multivariate Gaussians with diagonal covariance matrices [145] as our components
in all mixture estimations. We refer to the results of the unsupervised method as MoG and
to the clustering with constraints method as cMoG. We initialize the EM algorithm with
random models, as described in Section 2.3.2. In the unsupervised setting, we estimate the
optimal number of clusters with the BIC (Section 2.3.5), which indicates 28 clusters. We
use this number for all other runs described below.

Clustering of Gene Expression Data using Mixture of Multivariate Gaussians (MoG).
The gene expression time-courses cover the period from 1 to 12 hours of the embryo devel-
opment and expression values are given as log-ratios. Overall, our clustering results reflect
two typical classes (see Figure 6.7): the maternal and zygotic genes [68]. Maternal genes
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appear strongly expressed in the first three hours, usually followed by a decline. Clusters
18 to 28 clearly follow this pattern. These transcripts are deposited in the oocyte; typically
the embryo does not transcribe these genes in early development. They are responsible for
the determination of body axes and the first phases of the cell cycle and other functions.
The period from 2 to 3 hours coincides with the cellularization and the formation of three
germ layers following gastrulation, when primary tissues start to develop [130].

On the other hand, genes actively transcribed in the embryo are not expressed in the early
time points and expression rises to significant levels only in later stages (3 hours and later).
Many of these genes are important to organogenesis. Transcripts in clusters 1 to 4, and
8 to 11 follow the pattern of embryonic activation unambiguously. The functional associ-
ation can be observed in the over-represented GO terms For other clusters shapes cannot
be matched to the maternal or the zygotic expression patterns. Several cluster have max-
imal expression in the midst of embryonic development. Note that those clusters are less
populated than the ones in the maternal and in the zygotic classes.

Using in-situ Images as Secondary Information. We use semi-supervised learning to
obtain better solutions for the maximum-likelihood estimation. In order to do so, we restrict
the mixture estimation with constraints between pairs of genes. The principle underlying
this is shown in Figure 6.1. These constraints will, ideally, differentiate between genes
showing co-expression only by chance from those temporal co-expression supported by
spatial co-expression (syn-expression).

We use the ImaGO enrichment analysis (Section 6.3.2) to select the best parameterization
for cMoG. More precisely, we evaluate the use of constraints shared by either three or
four developmental periods, the use of positive constraints and both positive and negative
constraints, and four choices of the parameter λ+ (and λ−) (0.5, 1.0, 1.5 and 2.0) with
λ+ = λ− . There is no theory guiding the choices of λ+ and λ−, neither is there a definitive
“gold standard” or class labels to optimize them. Hence, we made the simple choice to
give positive and negative constraints equal weights.

As shown in Table 6.1, all constraint combinations lead to an increase in ImaGO term
enrichment, except the use of positive and negative constraints from three stages. Further-
more, values of λ around 1 lead to an improvement, while higher values tend to deteriorate
the results. Thus, we choose to use the cMoG results with only positive constraints derived
from three developmental periods and a constraint weight of λ+ = 1.0.

Changes in the Biological Annotations with cMoG. To investigate the effects of the
constraints in the clustering, we compare the results of MoG with cMoG (see Figure 6.8 for
cMoG clusters). As explained in the previous section, we choose to use positive constraints,
which are supported in at least three developmental stages, as they yield a good recall of
in-situ image annotations.

As a sanity check, we inspect the number of constraints satisfied in the final solutions.
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Figure 3: Clustering result: Mixture of Gaussians.Figure 6.7: We display the 28 clusters from MoG.
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Figure 4: Clustering result: Constrained solution.
Figure 6.8: The 28 clusters from cMoG show tightly co-regulated pattern and a refinement

of the clustering solution of MoG.
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Table 6.1: We compare the performance of distinct constraints and parameter choices
with the ImaGO enrichment analysis. More specifically, we show the propor-
tion of ImaGO terms with lower p-values in cMoG compared to MoG for con-
straints derived from a 3 or 4 stages, and distinct weights λ+ and λ−. Values
exceeding 50% indicate an advantage of cMoG

Proportion of terms with lower p-values
λ+ λ− # stages ≥ 3 ≥ 4

0.5 0.0 51% 48%
1.0 0.0 60% 56%
1.5 0.0 57% 49%
2.0 0.0 43% 46%

0.5 0.5 49% 44%
1.0 1.0 49% 52%
1.5 1.5 40% 59%
2.0 2.0 43% 47%

With MoG, a sizable proportion of the constraints are already satisfied (656 out of 1,756
pairwise positive constraints), as part of the expression data agrees with the constraints.
With cMoG, 1,127 out of 1,756 pairwise positive constraints are satisfied. This value is
nearly twice the number found with MoG. This demonstrates that cMoG benefits from the
constraints in deriving the clusters of genes exhibiting syn-expression.

Another helpful analysis is the comparison of enrichment of in-situ image annotations
(ImaGO), as described in Section 6.3.2. We display in Figure 6.9 a scatter plot of all
ImaGO terms, which has an enrichment with a p-value lower than 0.01 in at least one
cluster from cMoG or MoG. Based on Figure 6.9, we observe that cMoG has a higher en-
richment than MoG in 67 out of 112 relevant ImaGO terms. A binomial test for testing
the event of having 67 successes in 112 trials is rejected with a p-value of 0.0232, which
indicates that the counts of ImaGO terms with higher enrichment for cMoG is significantly
higher than expected by chance. Furthermore, if we take only ImaGO terms with a higher
enrichment gain for one of the methods into account (points distant from the diagonal line
in Figure 6.9), the advantage of cMoG is even greater (see Figure 6.10 and Figure 6.11).
This indicates that even without direct use of the annotation information from ImaGO,
cMoG has a greater sensitivity in grouping syn-expressed genes.

Overall, the individual clusters of MoG and cMoG differ only partially. Mainly, cMoG
has fewer clusters a smaller amount of genes. One way to quantify the distinctions is to
calculate the sensitivity and specificity of cMoG taking the results from MoG as the ground
truth. These values are respectively 0.53 and 0.97, which indicate that cMoG has a tendency
to subdivide clusters from MoG.
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Figure 6.9: We compare ImaGO term enrichment of MoG (x-axis) and cMoG (y-axis) in
a scatter plot. We use −log(p)-values, thus larger values indicate a larger
degree of enrichment. Points above the red line indicate a higher enrichment
in cMoG clusters, and points below in MoG clusters. The distance from the
diagonal is proportional to the increase in enrichment. For 67 out of 112
ImaGO terms we observe a higher degree of enrichment in cMoG clusters.
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Figure 6.10: For each threshold τ (x-axis), we depict the proportion of ImaGO terms for
which we observe a smaller p-value in cMoG than in MoG (y-axis). The
threshold τ discards ImaGO terms, where the difference in the log of the
p-value of cMoG and MoG in smaller than τ . As can be observed, the pro-
portions are higher than 0.5 for all τ values, which indicate an advantage of
cMoG. Furthermore, the proportions have an increasing tendency for higher
τ values.
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Figure 6.11: We compare ImaGO term enrichment of MoG (x-axis) and cMoG (y-axis)
in a scatter plot for τ = 0.3. We use −log(p)-values, thus larger values
indicate a larger degree of enrichment. Points above the red line indicate
a higher enrichment in cMoG clusters, and values below in MoG clusters.
Green points between the dotted lines represent ImaGO terms not satisfying
the threshold τ = 0.3, where τ indicates the distance from the diagonal line
to the dotted lines. We clearly observe a higher proportion of non-filtered
ImaGO terms (points in blue) above the diagonal line (32 ImaGO terms)
against (12 ImaGO terms) below the diagonal. A binomial test is rejected
with a p-value of 0.0018, which indicates an significant advantage of cMoG.
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(a) C2 dorsal

(b) C2 lateral

(c) C3 dorsal

(d) C3 lateral

(e) C10 dorsal

(f) C10 lateral

Figure 8: Averaged in-situ images of clusters C2, C3 and C10 from lateral and dorsal views.Figure 6.12: Averaged in-situ images of clusters C2, C3 and C10 from lateral and dorsal
views.

Functional Annotations in cMoG. Even for a well characterized genome like Drosophila,
the high dimensionality in the annotation data provides only limited information for any
single gene. For evaluating the results, we need to identify the corresponding functional
modules in the unconstrained and the constrained sets. It is also necessary to show im-
provements rather than simple correct functional assignments in either solution. In the
following, we will refer to the ith cluster from cMoG and MoG as Ci and Ui respectively.

For some cases, the mapping from clusters of cMoG to MoG is simply one to one (e.g.,
C1 to U1, C5 to U5, C11 to U11 and C12 to U10). However, the majority of clusters
show larger differences. For simplicity, we focus the functional analysis on clusters with
zygoticly expressed genes (i.e., C1 to C4 and C9 to C12 in Figure 6.8).

Cluster C2 represents a good example of the changes resulting from the introduction of
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constraints. It contains most of the genes from U2 (135 genes) and 16 genes from U3.
Out of the seven genes, which show similar expression patterns and have co-location con-
straints (CG6930, E2f, Iswi, neur, Set, RhoGAP771e, trx), only four (G6930, E2f, Iswi, trx)
are found in U2. All these genes have ImaGO annotations related to ventral nerve cord
primordium and related terms (see Figure 6.12 (a) and (b) for mean in-situ images of these
genes). Related genes that have no constraints but are annotated as part of the embryonic
central nervous system are included in C2 (CG7372, CG14722, fzy). The analysis of GO
term enrichment returns terms such as nervous system development (p-value of 3.38e-23)
and system development (p-value of 9.54e-21) (similar term enrichment is found for cluster
U2). It should be noted that clusters U2 and U3 have a similar mean expression pattern.
They mainly differ in the time when genes reach the plateau of maximal expression.

An example for larger changes is cluster C3, which is mainly composed of genes origi-
nally found in U3 (101 genes) and U8 (63 genes). C3 has constraints between three genes
(rhea, Rsf1 and vig) of which rhea and vig come from cluster U8 and Rsf1 from U3 (see
Figures 6.12 (c) and (d) for mean in-situ images of C3). This cluster presents higher enrich-
ment for ImaGO terms related to muscle primordium (genes CG5522, CG9253, Dg, Mef2,
betaTub60D, htl, mbc, vig) than U3 and U8. Furthermore, GO term analysis reveals that
this cluster shows enrichment for nervous system development (p-value of 1.33e-11) and
axis specification (p-value of 9.31e-05). For the latter term, seven genes are originally from
U3 (Dfd, Lis-1, sti, Syx1A, sqd, Ras85Dm, tup) and five from U8 (baz, Dg, pnt, Rac2, tok),
demonstrating that the changes introduced increase the number of syn-expressed genes
within C3.

The cluster C9 represents only a subset of U8 (59 out of the 126 genes) but has no genes
with constraints. It consists of genes from U8 that are not constrained to genes from C3
(see previous paragraph). Still, it is enriched in the ImaGO term embryonic central ner-
vous system and related terms (genes HLHmbeta, NetB, Oli, lin-28, scrt, sd, tap, uzip and
zfh2). The cluster is also enriched in the terms organ (p-value 2.66e-05) and ectoderm
development (p-values 8.54e-05), which are significantly enriched in U8. In other words,
this cluster is a specialization of U8, whose genes are specific to organ development.

C10 is formed by the addition of most genes in the U4 cluster (39 genes) to U10 (118
genes). There are seven genes constraining this cluster (CG6751, CG18446, CG13912,
CG10924, CG8745, dm, Klp61F) (see Figures 6.12 (e) and (f) ). ImaGO term enrichment
relates this cluster to yolk nuclei and amnioserosa. It is also enriched in the GO term
nervous system development (p-value 1.06e-08), all of which are insignificantly enriched
in the U10 cluster.

It is also worthwhile to look at those few cases where MoG performs better. From Fig-
ure 6.9, two ImaGO terms with higher enrichment increase in MoG are maternal and pro-
cephalic ectoderm anlage in statu nascendi. The former term is enriched in cluster C22
and U21, where MoG has some more genes related to the term maternal (34 genes in MoG
compared to 31 genes in cMoG). For the latter term, clusters U2 and C2 are both enriched,
and there was only one annotated gene in U2 not in C2. As none of these annotated groups
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of genes has pairwise constraints, we cannot detect any direct effect of the clustering with
constraints on these results.

In summary, the refined clusters improve the generation of testable hypotheses for the role
of uncharacterized genes. Overall, we observe improvement in annotation of genes related
to development of the Drosophila, in particular with respect to the ImaGO annotations,
which increases our confidence in the delineation of syn-expressed functional modules.
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