
Chapter 5

Analysis of Gene Expression in
Lymphoid Development

The study of gene regulatory mechanisms controlling cell proliferation and differentiation
is central in developmental biology. In particular, the development of lymphoid cells is
well studied, as individual cell populations are easy to obtain and due to clinical inter-
est [140, 177]. In Lymphoid development [25], all starts with the Hematopoietic stem cell
(HSC), which differentiates into the Lymphoid progenitor, and later into B-cell, T-cell or
Natural Killer cell lineages (see Figure 5.1 for a developmental tree). Recently, several
studies have analyzed expression profiling of lymphoid cells in their distinguishable de-
velopmental stages [3, 34, 98, 100, 105, 156, 165, 220, 229]. Our main focus is on the
analysis of patterns of gene expression in the distinct stages of the developmental tree, the
developmental profiles of genes. In particular, we are interested in finding groups of genes
displaying a particular pattern of expression, e.g., over-expression in T cells but under-
expression in B cells.

As one of the major contribution of this thesis, we propose here a method for analyzing
patterns of gene expressions in the course of development. Ideally, such method should
exploit inherent dependencies arising from the data, as in methods for analyzing gene ex-
pression time-courses (see Chapter 4). We assume that, in development, the sequence of
changes from a stem cell to a particular mature cell, as described by a developmental tree,
are the most important in modeling gene expression from developmental processes. Moti-
vated by this, we propose dependence trees (DTree) to model expression during the course
of development [50]. We investigate here two approaches for obtaining the structure of de-
pendence trees. In the first approach, we assume that the structure of the dependence tree
is equal to the developmental tree as known by the biologists [50]. In a second approach,
we additionally estimate the dependence tree structure from the data [49].

To find groups of co-expressed developmental profiles we use dependence trees in a mix-
ture model [143]. Also, to minimize problems related to over-fitting, we propose Maximum-
a-posteriori (MAP) estimates of parameters [80]. By doing so, we obtain a robust and flex-
ible statistical model for clustering genome-wide mRNA expression data sets, which takes
the intrinsic dependencies between developmental stages explicitly into account.
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Figure 5.1: Schematic view of lymphocyte cell development. Developmental stages are
depicted as nodes and arrows indicate transition from one stage to another,
i.e., specialization. Self-renewing hematopoietic stem cells give rise to T cells
in the thymus (green), B cells in the bone marrow (blue) and natural killer
cells (NK) via intermediate stages. DN stands for CD4-/CD8- double neg-
ative cells, DPL for CD4+/CD8+ double positive large cells, and DPS for
CD4+/CD8+ double positive small cells. Cell surface antigens and rear-
rangement events are partially annotated. Some expression data sets inves-
tigated in this Chapter are denoted as follows: green ovals for T Cell and
blue ovals for B Cell.

This chapter is organized as follows. In Section 5.1, we give an overview of related work.
Then, we present the dependence tree and the estimation of its parameters in Section 5.2.
In Section 5.3, we describe mixtures of dependence trees, and derive the parameters of the
MAP estimates (Section 5.3.2). Next, in Section 5.4, we show the results of the analysis
of gene expression from lymphoid development. For the mixture of dependence trees with
fixed tree structures (Section 5.4.1), we analyze two detailed data sets from B cells [100]
and T cells [99]. Furthermore, we explore plausible regulatory roles of microRNAs known
to be involved in hematopoiesis. For mixture of dependence trees with estimated structures
(Section 5.4.2), we analyze a gene expression compendia with data from hematopoietic
stem cells, T cells, B cells and Natural Killer cells. We perform a comparison of several
clustering methods on a score based on enrichment analysis of biological pathways. For
both methods, results on simulated data show the conditions under which our method has
advantages. In Chapter 7, we present final remarks and future work.

5.1 Related Work

Dependence trees were first introduced for discrete variables by Chow and Liu [43], which
showed that efficient computation using a maximum weight spanning tree algorithm is
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possible. They applied the method for pattern recognition of handwritten digits. Mixtures
of dependence trees were first proposed in [148]. The authors also proposed extensions
to the basic structure estimation algorithm from [43] for sparse data and the use of priors
in the tree structure. This also allowed forests (or disconnected trees) to be estimated. It
was also shown that the estimated structures of the dependence trees were a good indicator
of relevant dependencies between variables. Both studies [43, 148], however, were only
concerned with discrete variables, in contrast to our approach, which regards continuous
variables.

Another closely related method is the mixture of directed acyclic graphs (DAG) [213].
Indeed, the mixture of DAGs is a more general graphical model than the mixture of depen-
dence trees. The use of DAGs as component models allows to model high order dependen-
cies. However, there is no exact solution for the structure estimation of DAGs. Thus, its
estimation is based on heuristics and requires larger computational effort than mixture of
dependence trees. Another related research field is the estimation of covariance matrices
with zero entries. In [40], an iterative conditional fitting method was applied for computing
sparse covariance matrices from arbitrary undirected graphs. While the method obtained
better estimates than classical statistical approaches, such as [7], it does not offer a solu-
tion for inferring the graph structure. In [182], a similar problem in the context of gene
dependence (or association) networks was investigated. The authors applied a shrinkage
factor in an efficient way for defining zero entries in the covariance matrix, while keeping
it well-conditioned. Both methods have a high computational cost. They are also not able
to find association networks, which are specific for particular gene modules, as performed
by mixtures of dependence trees.

In the context of mixtures, our method represents an alternative to the parameterization of
the covariance matrix of a mixture of multivariate Gaussians (MoG) not previously char-
acterized [37, 79] (see Section 5.2.4 for a discussion). When computing MLE estimates,
the dependence tree model essentially imposes zeros in the inverse of the covariance ma-
trix reducing the number of free parameters to O(L). If we considered all the covariances
between observations for L developmental stages, it would be straightforward to represent
the data distribution by an L-variate Gaussian model with full covariance matrix. However,
this parameterization has O(L2) parameters, which are often unreliable even for small val-
ues of L. Moreover, the parameter estimation is prone to over-fit to outliers often found
in noisy and scarce data [143]. This was also indicated in our results with simulated data
(Section 5.4.1 and Section 5.4.2), where mixtures of Gaussians with full covariance ma-
trix were outperformed by most of the methods. Additionally, in a study in the context of
gene expression time courses [232], MoG with full covariance matrix was outperformed by
simpler parameterizations of the covariance matrices.

The estimation of the structure of mutagenic trees is a related problem in bioinformat-
ics [62, 63, 223]. In this application, one is interested in inferring the mutation events
occurring in cells, such as cancer, which follow a tree-like event structure. For this par-
ticular problem, the root is known a priori (a wild type cell without mutations) and only
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variables with observed mutation events are included as nodes in the tree [63]. The tree
structure is estimated with a maximum weight branching algorithm (Edmonds’ branching
algorithm [46]). Recently, mixture of mutagenic trees, which combined the individual tree
estimation from [63] with the EM algorithm, was applied to infer mutation events in HIV
strains [23].

The problem approached in this chapter is closely related to the gene expression time-
course analysis discussed in Chapter 4. Dependence trees can also be used for analyzing
short time courses. We can define the dependence tree structure to be a linear chain con-
necting consecutive time points. In this scenario, DTrees will model only first-order tem-
poral dependencies, but ignore higher order dependencies often present in gene expression
time-courses (see Section 4.2.1). On the other hand, models employed in time course ana-
lysis [14, 185] cannot be extended to modeling tree like dependency structures arising in
developmental processes.

Mixture of dependence trees with estimated structure has some relation to bi-clustering.
Bi-clustering methods find not only co-expressed genes but also similarity of expression
in the biological conditions. However, bi-clustering methods do not make explicit use of
any dependencies (developmental or temporal) in these data sets (see [139] for a survey
on bi-clustering algorithms). One of such method, Samba [210], is graph-based and finds
strongly connected subgraphs in a bi-partite graph. The bi-partite graph has genes and
biological conditions as nodes. The edges between nodes representing genes and biological
conditions are weighted proportional to the gene expression value of the given gene in that
particular biological condition. Another relevant approach is the use of a non-negative
matrix factorization (NMF) [31]. This method decomposes the gene expression matrix in
two matrices: one representing the K most significant “meta-conditions” and the other the
K most significant “meta-genes”. The authors proposed a consensus clustering method for
choosing K (or the number of clusters) automatically and minimizing problems related to
the random initialization of the method.

Regarding lymphoid development, lymphocyte cell populations can be purified by fluo-
rescence activated cell sorting (FACS) exploiting the large variety of cell surface anti-
gens, which appear in specific order during differentiation as the result of a linear se-
quence of genomic rearrangements at the T and B cell receptor loci [98, 100]. Based on
this, lineage-specific expression and roles of transcription factors have been studied exten-
sively [140, 177, 224]. Recently, a new class of regulatory RNAs, microRNAs, have been
identified as being involved in lymphocyte cell development [41, 151, 171].

Several studies [3, 34, 98, 100, 105, 156, 165, 220, 229] have combined FACS mediated
cell sorting and mRNA expression profiling to derive a more comprehensive picture of the
lymphocytes in distinguishable developmental stages. Nevertheless, prior work on the ana-
lysis of gene expression from lymphoid development relies mostly on classical clustering
methods, such as self-organizing maps [98, 100], hierarchical clustering [156, 220], k-
means [3], principal component analysis (PCA) [229] or on performing tests of differential
expression between cell types of interest [165]. One particular interesting study was pro-
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Figure 5.2: Example of a simple developmental tree and a group of developmental pro-
files. On the left, we depict a simple developmental tree, where arrows rep-
resent dependencies between variables. Above each tree variable, we depict
a pdf related to it. On the right, we display the gene expression values (y-
axis) in the distinct development stages (x-axis). Each line corresponds to the
developmental profile of a given gene of a particular path of the tree on the
left, as in a time-course plot. Distinct paths have different colors, according
to the tree on the left. In this particular example, we have the path A, B and
C in green and B and D in red. By superimposing the lines corresponding to
paths B to C and B to D, we can contrast the differences in expression values
of genes in these two alternative differentiation lineages.

posed in [105], where several publicly available data from lymphoid cells were combined
and made available for further analyses through an interactive web tool. The authors ap-
plied PCA analysis to explore similarities of lymphoid cells based on their gene expression
signatures. Furthermore, a simple method based on the correlation measure was used for
inferring “networks” of genes. However, that work did not address any developmental as-
pect of lymphoid cells, as it was restricted to gene expression profiles from lymphoid cells
at mature or immature cell stages (later developmental stages). Other studies concentrated
on small-scale data, where selected genes are used to infer regulatory networks. One of
these studies applied a state-space model to infer networks of T cell activation [173]. Tron-
cale and colleagues adopted Petri Nets to model and infer regulatory networks of early
pHSC development [216], while Basso and colleagues proposed a novel algorithm for a
similar task [18].

5.2 Dependence Trees

The main assumption underlying dependence trees (DTree) is that expression levels of a
particular developmental stage depend primarily on expression levels of the immediately
preceding stage. For example, given the tree structure depicted in Figure 5.2, we assume the
following approximation of the joint probability density function (pdf) of the observation
vector from four random variables (xA, xB, xC , xD)

p(xA, xB, xC , xD) ≈ pT (xA, xB, xC , xD) = p(xA)p(xB|xA)p(xC |xB)p(xD|xB). (5.1)
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Chapter 5 Analysis of Gene Expression in Lymphoid Development

In other words, we condition the probability of a given variable on its immediate prede-
cessor in accordance with the tree structure shown in Figure 5.2. In Figure 5.2 right, a
group of hypothetical genes with similar developmental profiles is illustrated. The genes
display average expression in stage A, up-regulation in stage B, down-regulation in stage
C and up-regulation in stage D. Furthermore, the genes have distinct expression intensities,
but similar relative expression changes. Genes strongly up-regulated in B are also strongly
down-regulated in C and strongly up-regulated in D. These dependencies are reflected in
the correlation between these stages. For example, A and B (or B and D) are positively
correlated, and stages B and C are negatively correlated. A statistical model for such de-
velopmental profiles should include these dependencies between subsequent stages, as it is
provided by DTrees.

Formally, let X = (X1, ..., Xu, ..., XL) be an L-dimensional continuous random vector
where the variable Xu denotes the expression values of the developmental stage u and
x = (x1, ..., xL) denotes an observation of X representing a developmental profile of a
gene. Consider a directed graph (V,E), where each vertex in V represents a variable in
X , |V | = L , and a directed edge (v, u) ∈ E indicates that variable Xu is dependent on
variable Xv. The structure of a DTree is represented by a directed tree. A directed tree is
a connected directed graph, whose vertices except the root have in-degree equal to 1, and
there are no cycles in the graph. For simplicity, we represent the DTree structure by the
parent map, pa : {1, ..., L} 7→ {1, ..., L}, where pa(u) = v indicates that (v, u) ∈ E. The
root of the DTree, which has no incoming edges is represented by pa(u) = u. We define
the pdf of a DTree as

pT (x|θ) =
L∏
u=1

p(xu|xpa(u), τu). (5.2)

We denote the model parameters by θ = (pa, τ1, ..., τu, ...τL). Note, that a DTree can be
also regarded as an approximation of the joint pdf of a L-dimensional continuous random
vector by a product of L− 1 second order pdfs [43].

5.2.1 Equivalence of Dependence Trees

We can use the formalism of graphical models and Bayesian networks, which DTrees are
a particular case, for analyzing characteristics of the model [125]. One interesting aspect
is the existence of several DTrees with equivalent pdfs. Intuitively, the main information
contained in the DTree structure are the connected pair of variables, but not the directions
of the edges. For example, we can obtain an equivalent DTree pdf using an undirected
tree representation. Formally, we can apply a graph factorization [125] to the undirected
representation of the DTree structure, which yields the following pdf [148]

pT (x|θ) =

∏
(u,v)∈E p(xu, xv)∏
v∈V p(xv)deg(v)−1

, (5.3)
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Figure 5.3: We depict the undirected tree structure of the graph from Figure 5.2 (top), and
the four possible directed versions obtained by choosing respectively edges A,
B, C and D as a root (bottom).

where deg(v) is the number of edges of v.

It can be shown with the application of the Bayes rule that the pdfs from Eq. 5.2 and Eq. 5.3
are equivalent,

pT (xA, xB, xC , xD) =
p(xA, xB)p(xB, xC)p(xB, xD)

p(xB)p(xB)

=
p(xA)p(xB|xA)p(xB, xC)p(xB, xD)

p(xB)p(xB)

= p(xA)p(xB|xA)p(xC |xB)p(xD|xB).

For any undirected tree structure, we can also obtain a directed tree by choosing a vertex as
a root, and directing the edges away from the root. Any arbitrary choice of root will lead
to equivalent decompositions of the tree pdfs. For instance, in Figure 5.3 left-middle, we
have XB as a root, which leads to the following pdf

pT (xA, xB, xC , xD) = p(xB)p(xA|xB)p(xC |xB)p(xD|xB). (5.4)

By Bayes rule we can show that Eq. 5.4 can be easily transformed into Eq. 5.1

pT (xA, xB, xC , xD) = p(xB)p(xA|xB)p(xC |xB)p(xD|xB)

= p(xA, xB)p(xC |xB)p(xD|xB)

= p(xA)p(xB|xA)p(xC |xB)p(xD|xB).

In summary, any directed representation of an underlying undirected tree will lead to equiv-
alent tree pdfs [148]. See [125] for a formal treatment based on the equivalence of pdfs
(or distributions) in chain graphs. Given the simplicity and the intuitive representation, this
chapter will mostly use directed versions of the tree structures. The choices of the direction
of edges are based on the prior knowledge of the data, i.e., the underlying developmental
tree.
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5.2.2 Parameterization of Dependence Trees

We use conditional Gaussian density functions [126] as conditional densities, denoted by
p(xu|xpa(u), τu) in Eq. 5.2. Hence, for a given developmental profile x and a non-root
developmental stage u with pa(u) = v, the pdf takes the following form

p(xu|xv, τu) = (
√

2πσu|v)
−1 exp

(
−(xu − µu − wu|v(xv − µv))2

2σ2
u|v

)
, (5.5)

where τu = (µu, wu|v, σ
2
u|v) are the parameters for one conditional density in the model.

For a given expression data set X consisting of N gene observations at L developmental
stages, let xi = (xi1, . . . , xiu, . . . , xiL) be the developmental profile of gene i, and xiu be
the expression value of the gene i in development stage u for 1 ≤ i ≤ N and 1 ≤ u ≤ L.
The maximum likelihood estimates (MLE) for the parameters of the conditional Gaussian
are [125],

µ̂u =

∑N
i=1 xiu
N

, (5.6)

ŵu|v =
σ̂uv
σ̂2
v

, and (5.7)

σ̂2
u|v = σ̂2

u − ŵ2
u|vσ̂

2
v . (5.8)

These terms can be computed from the sufficient statistics as follows

σ̂2
u =

∑N
i=1(xiu − µ̂u)2

N
, andσ̂uv =

∑N
i=1(xiu − µ̂u)(xiv − µ̂v)

N
. (5.9)

The conditional normal pdf can be seen as estimating a linear fit betweenXu andXv, where
wu|v > 0 indicates a positive linear correlation and wu|v < 0 a negative linear correlation
between variables; wu|v = 0 if the variables are independent. Furthermore, wu|v and σ2

u|v
are related because the better the linear fit the smaller the variance. For the special case
of the root (recall that pa(u) = u), wu|u is set to zero, and the conditional density is
effectively an univariate normal. The model has 3L− 1 free parameters. See Section 5.3.2
for the complete derivation of MAP estimates of the conditional Gaussians.

Returning to our example, the model estimates given the developmental tree and expression
profiles from Figure 5.2 are the following

τA = (µ̂A, ŵA|A, σ̂
2
A|A) = (−0.01, 0, 0.02),

τB = (µ̂B, ŵB|A, σ̂
2
B|A) = (0.97, 2.2, 0.02),

τC = (µ̂C , ŵC|B, σ̂
2
C|B) = (−0.99,−0.3, 0.01), and

τD = (µ̂D, ŵD|B, σ̂
2
D|B) = (0.45, 0.53, 0.01).

As expected, ŵB|A and ŵD|B are positive, indicating a linear dependence between these
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5.2 Dependence Trees

variables. On the other hand, ŵC|B is negative, which indicates a negative correlation
between XB and XC .

5.2.3 Estimation of the Structure of Dependence Trees

As described in the previous section, in developmental processes the developmental tree
structure is already known a priori. Although the developmental tree is an interesting
candidate for modeling dependencies, we are also interested in the case of estimating the
tree structure from the data. We summarize here our extension to continuous variables of
the solution proposed in [43], which considers trees on discrete distributions. The solution
is based on finding the DTree structure that minimizes the relative entropy between p(x)

and the approximation pT (x)

pT∗ = argminpTD(p||pT ). (5.10)

The relative entropy between p and pT is defined as [54],

D(p||pT ) =

∫
X

p(x) log
p(x)

pT (x)
.

Replacing pT (x) by Eq. 5.2, we obtain,

D(p||pT ) =

∫
X

p(x) log p(x)−
∫
X

p(x)
L∑
u=1

log p(xu|xpa(u)),

= H(X)−
∫
X

p(x)
L∑
u=1

log p(xu)−
∫
X

p(x)
L∑
u=1

log
p(xu|xpa(u), )

p(xu)

We can simplify the previous equation by applying the Bayes rule and the definition of
entropy (H) and mutual information (I) [54],

D(p||pT ) = H(X)−
L∑
u=1

H(Xu)−
∫
X

L∑
u=1

p(xu, xpa(u)) log
p(xu, xpa(u))

p(xu)p(xpa(u))
,

= H(X)−
L∑
u=1

H(Xu)−
L∑
u=1

I(Xu, Xpa(u)). (5.11)

Since H(X) and H(Xu) are independent of pT , then Eq. 5.10 can be reduced as follows,

pa∗ = argmaxpa

L∑
u=1

I(Xu, Xpa(u)). (5.12)

The solution to this problem can be efficiently computed by applying a maximum weight
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spanning tree algorithm on a fully connected undirected graph, where vertices represent
the variables and the weights of edges are equal to the mutual information between vari-
ables [43]. The computational complexity of this algorithm is O(L2 logL).

Finally, we need to compute I(Xu, Xpa(u)) for multivariate Gaussian. Given that pa(u) = v,
the mutual information is defined as [54]

I(Xu, Xv) =

∫
Xu

∫
Xv

p(xu, xv) log
p(xu, xv)

p(xu)p(xv)
dxudxv. (5.13)

Expanding the terms, we obtain

I(Xu, Xv) =
∫
Xu

∫
Xv

p(xu, xv) log p(xu, xv)dxudxv −
∫
Xu

∫
Xv

p(xu, xv) log p(xu)dxudxv

−
∫
Xu

∫
Xv

p(xu, xv) log p(xv)dxudxv,

and by definition of H(X), it follows that

I(Xu, Xv) = H(Xu) + H(Xv)− H(Xu, Xv). (5.14)

The entropy of an L dimensional multivariate Gaussian pdf is defined as [54],

H(X) =
1

2
log(2πe)L|ΣX |, (5.15)

where ΣX is the covariance matrix ofX . By substituting Eq.5.15 into Eq.5.14, we obtain

I(Xu, Xv) =
1

2
log(2πeσ2

Xu) +
1

2
log(2πeσ2

Xv)−
1

2
log((2πe)2|ΣXu,Xv |),

and, as |ΣXu,Xv | = σ2
uσ

2
v − (σu,v)

2, it follows that

I(Xu, Xv) =
1

2
log

(
(2πe)2

(2πe)2

)
− 1

2
log

(
σ2
uσ

2
v − σ2

u,v

σ2
uσ

2
v

)
,

and hence,

I(Xu, Xv) = −1

2
log

(
1−

σ2
u,v

σ2
uσ

2
v

)
. (5.16)

Note that the mutual information is proportional to the correlation coefficient ρu,v =
σ2
u,v

σ2
uσ

2
v
.

That is, it measures the dependence between the two variables; I(Xu, Xv) = 0 if both
variables are independent. Moreover, the mutual information is symmetric (I(Xu, Xv) =

I(Xv, Xu)). Therefore, the estimation method does not determine direction of edges. To
obtain a directed tree, we select one particular edge as root and direct all edges away from
it (as discussed in Section 5.2.1, any direction choice would lead to equivalent DTree
pdfs).

We propose a “treeness” index for evaluating how well a DTree performs in capturing
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dependence in the data. Intuitively, we measure the proportion of the mutual information
represented in the tree edges, in comparison to the total mutual information on all pairs of
variables. That is, for a tree structure pa the treeness index is defined as follows

T (pa) =

∑L
u=1 I(Xu, Xpa(u))∑L

u=1

∑L
v=u+1 I(Xu, Xv)

. (5.17)

A value of zero indicates that no dependence is captured by the DTree and 1 indicates that
all dependence is captured by the DTree.

5.2.4 Dependence Trees and Multivariate Gaussians

There is a close correspondence between the pdfs of multivariate Gaussians and DTrees.
Given that pa(u) = v, a DTree pdf is equivalent to a multivariate Gaussian with mean
vector µ = (µ1, ..., µL), and entries of the covariance matrix (ΣT ) of the form [179]

σTu,v =
∑

t=pa(v)

wv|tσ
T
u,t + 1(u = v)σv (5.18)

For the example, for the DTree shown in Figure 5.2, the corresponding covariance matrix
ΣT is as follows{

σ2
A wB|A ∗ σ

2
A wC|B ∗ wB|A ∗ σ

2
A wD|B ∗ wB|A ∗ σ

2
A

wB|A ∗ σ
2
A σ2

B|A − w
2
B|Aσ

2
A wC|B ∗ (σ2

B|A − w
2
B|Aσ

2
A) wD|B ∗ (σ2

B|A − w
2
B|Aσ

2
A)

wC|B ∗ wB|A ∗ σ
2
A wC|B ∗ (σ2

B|A − w
2
B|Aσ

2
A) σ2

C|B − w
2
C|Bσ

2
B wC|B ∗ wD|B ∗ (σ2

B|A − w
2
B|Aσ

2
A)

wD|B ∗ wB|A ∗ σ
2
A wD|B ∗ (σ2

B|A − w
2
B|Aσ

2
A) wD|B ∗ wC|B ∗ (σ2

B|A − w
2
B|Aσ

2
A) σ2

D|B − w
2
D|Bσ

2
B

}
.

This represents a type of covariance matrix parameterization not yet characterized before
(see Section 2.3.3 for a discussion and [10, 37] for others covariance matrix parameteriza-
tions).

5.3 Mixture of Dependence Trees

In order to find clusters of co-expressed genes, we combine several DTrees in a mixture
model. Each DTree is a representation of a cluster or group of genes with co-expressed
developmental profiles, i.e., each DTree models distinct patterns of gene expression in the
course of development (see Figure 5.4 for an example). Throughout this chapter we refer
to the proposed method as MixDTrees.

Formally, we combine a set of K DTrees in a mixture model

p(x|Θ) =
K∑
k=1

αkp
T
k (x|θk), (5.19)

67



Chapter 5 Analysis of Gene Expression in Lymphoid Development

( | )f x Θ =

1α ⋅ 2α+ ⋅ 3 α+ ⋅ 4 α+ ⋅

A               B            C/D

1

0

-1

A               B            C/D

1

0

-1

A               B            C/D

1

0

-1

A               B            C/D

1

0

-1

-1.0

1.0

0.0

A

-1.0

1.0

0.0

B
-1.0

1.0

0.0

D

-1.0

1.0

0.0

C
-1.0

1.0

0.0

A

-1.0

1.0

0.0

B
-1.0

1.0

0.0

D

-1.0

1.0

0.0

C
-1.0

1.0

0.0

A

-1.0

1.0

0.0

B
-1.0

1.0

0.0

D

-1.0

1.0

0.0

C
-1.0

1.0

0.0

A

-1.0

1.0

0.0

B
-1.0

1.0

0.0

D

-1.0

1.0

0.0

C

Figure 5.4: Example of a mixture of four DTrees with the structure defined in Figure 5.2.
Each of these DTrees models distinct developmental profiles found in the
data set employed as example. Furthermore, clusters can have distinct sizes
proportional to their αi’s. Note also that it is not necessary that clusters have
distinct expression values in branching stages. For example, stages C and D
have similar expression values for cluster 3 and 4. This can be interpreted as
the genes being equally expressed in the two alternative lineages.

where αk is the mixture coefficient (see Section 2.2), pTk (x|θk) is the density corresponding
to the kth DTree as defined in Eq. 5.2, and Θ = (α1, ..., αK , θ1, ..., θK).

5.3.1 MixDTrees with Developmental Tree as Structure

The differentiation of cells in the course of development is conveniently represented as a
developmental tree. The structures of these trees are well-known for most data sets under
investigation. Thus, one approach explored in this work is the use of the developmental tree
as prior knowledge, that is to define all DTrees structures in the mixture to be the same
as in the developmental tree. We will call this method MixDTrees-Dev. For estimating
MixDTrees-Dev, we apply the EM algorithm described in Section 2.3.1. In order to do so,
we need to define the DTree estimates of the M-Step of the EM algorithm. We choose to
use maximum-a-posteriori (MAP) estimates, as these minimize problems related to over-
fitting [80].

5.3.2 Maximum-a-posteriori Estimates

To prevent over-fitting of the DTree, we propose the use of a maximum-a-posteriori point
estimate (MAP) approach, which regularizes the estimates from Eq. 5.7 and Eq. 5.8. In
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practice, we define prior distributions for these parameters, penalizing parameters with un-
desirable values. For example, a low σ2

u|v,k is an indication of over-fitting and should be
avoided, unless there is enough data (or evidence) for that particular component. Maximum-
a-posteriori estimates can be used in the EM algorithm. This can achieved by changing
Eq. 2.8 to maximize the expected a posteriori distribution, instead of the complete likeli-
hood function.

More precisely, our aim is to find estimates maximizing the posterior distribution

p(Θ|X,Y) =
p(X,Y|Θ)p(Θ)

p(X,Y)
(5.20)

where X is the observed data, Y indicates which mixture component generated a given
observation and Θ are the model parameters. The pdf p(X,Y|Θ) is the complete data
likelihood (Eq. 2.7), p(Θ) is the prior distribution on the parameters Θ and p(X,Y) is the
prior of the data. We can ignore the last term (p(X,Y)) in our problem, as it is independent
of Θ, and will be constant for a fixed data set.

Since MixDTrees are based on first-order dependencies, it is sufficient to find the param-
eters in a simple bivariate scenario (Xu, Xpa(u)), where pa(u) = v and Xu corresponds to
the observed data from variable Xu. This simplifies Eq. 5.20 to

p(Θ|Xu,Xv,Y) ≈ p(Xu,Xv,Y|Θ)p(Θ). (5.21)

where

p(Xu,Xv,Y|Θ) =
K∏
k=1

N∏
i=1

(αk· pTk (Xu,Xv|Θk))
rik ,

as shown in Section 2.3.1 and

p(Θ) =
K∏
k=1

p(Θk) =
K∏
k=1

p(wu|v|σ2
u|v,k, αk)p(σ2

u|v,k|αk)p(αk),

where αk =
∑N

i=1 rik/N , and rik = p(yi = k|xi) is the posterior probability (Eq. 2.16)
that observation i belongs to DTree k.

Priors on Parameters. We use conjugate priors to regularize the parameters wu|v,k and
σ2
u|v,k and to avoid over-fitting, when there is low evidence for a given component model

(or low αk).

For simplicity of computation, we work with a precision parameter λu|v,k = (σ2
u|v,k)

−1. We
define the prior of λu|v,k to be proportional to
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p(λu|v,k|νu|v,k, αk) ∼ Exponential
(
λu|v,k
αk

)
=

∑N
i=1 rik
λu|v,k

exp

(
−
∑N

i=1 rik
λu|v,k

)
(5.22)

where νu|v,k is a hyper-parameter. Intuitively, this prior penalizes variables with low vari-
ances and low evidence, enforcing higher σ2

u|v,k.

The prior of wu|v,k is defined as follows

p(wu|v,k|λu|v,k, σ2
v|k, αk, βu|v,k) = N(0, βu|v,k(λu|v,kαkσ

2
v|k)
−1), (5.23)

which is invariant to the scale of the variables Xu and Xv, and has βu|v,k as a hyper-
parameter. Intuitively, this prior penalizes variables with high covariance and low evidence,
enforcing smaller wu|v,k values.

Derivation of MAP Estimates. By replacing Eq. 5.5, 5.23 and 5.22 into Eq. 5.21 and
taking the logarithm, we obtain

log p(Θ|Xu,Xv, Y ) = −1

2

K∑
k=1

N∑
i=1

rik log(λu|v,k)

−
K∑
k=1

N∑
i=1

rik
(
(xiu − µu|k − wu|v,k(xiv − µv|k))2λu|v,k/2

)
−1

2

K∑
k=1

log(
βu|v,k

λu|v,kσ
2
v|k
∑N

i=1 rik
)−

K∑
k=1

w2
u|v,kσ

2
v|k
∑N

i=1 rikλu|v,k

βu|v,k

−1

2

K∑
k=1

log(
νu|v,k∑N
i=1 rik

)−
K∑
k=1

λu|v,k
∑N

i=1 rik
νu|v,k

.

We can take the derivate of the MAP with respect to wu|v,k as follows

∂ log p(Θ|Xu,Xv, Y )

∂wu|v,k
=

N∑
i=1

rik
(
(xiu − µu|k − wu|v,k(xiv − µv|k))xivλu|v,k

)
−
wu|v,k

∑N
i=1 rikσ

2
v|kλu|v,k

βu|v,k
,
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and setting this equation to zero

0 = σu,v|k − wu|v,kσ2
v|k −

wu|v,kσ̂
2
v|k

βu|v,k
,

yields the MAP estimate,

ŵu|v,k =
σ̂u,v|k

σ̂2
v|k(1 + β−1

u|v,k)
. (5.24)

The MAP estimate of λu|v,k can be derived in the following way,

∂ log p(Θ|Xu,Xv, Y )

∂λu|v,k
= −1

2

N∑
i=1

rik(λu|v,k)
−1

−1

2

N∑
i=1

rik(xiu − µu|k − wu|v,k(xiv − µv|k))2

−
w2
u|v,k

∑N
i=1 rikσ

2
v|k

βu|v,k
+

∑N
i=1 rik
νu|v,k

.

Setting it to zero yields

0 = −(λu|v,k)
−1 + σ̂2

u|k − w2
u|v,kσ̂

2
v|k −

w2
u|v,kσ̂

2
v|k

βu|v,k
− 1

νu|v,k
,

(λu|v,k)
−1 = σ̂2

u|v,k = σ̂2
u|k − w2

u|v,kσ̂
2
v|k(1 + β−1

u|v,k)− ν
−1
u|v,k. (5.25)

When βu|v,k →∞ and νu|v,k →∞, the prior becomes non-informative, and MAP and ML
estimates are equal. All the estimates make use of the following sufficient statistics

µ̂u|k =

∑N
i=1 rikxiu∑N
i=1 rik

, (5.26)

σ̂2
u|k =

∑N
i=1 rik(xiu − µ̂u|k)2∑N

i=1 rik
, (5.27)

σ̂u,v|k =

∑N
i=1 rik(xiv − µ̂v|k)(xiu − µ̂u|k)2∑N

i=1 rik
. (5.28)

Hyper-parameters Estimates via Empirical Bayes. In an empirical Bayes approach [36],
by derivating Eq. 5.21 in relation to the hyper-parameters, we can estimate the maximum
a posteriori values of βu|v,k and νu|v,k from the data as follows
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∂ log p(Θ|Xu,Xv, Y )

∂βu|v,k
=

1

2βu|v,k
−
w2
u|v,k

∑N
i=1 rikσ

2
v|k

2β2
kσ

2
u|v,k

,

setting it to zero

0 = −βu|v,k −
σ2
v|k
∑N

i=1 rikw
2
u|v,k

2σ2
u|v,k

and by definition of σ2
u|v,k and wu|v,k, this yields

β̂u|v,k =

∑N
i=1 rik

2σ2
u|kσ

2
v|k

σ2
u,v|k

− 2
. (5.29)

For νu|v,k, we have

∂ log p(Θ|Xu,Xv, Y )

∂νu|v,k
= − 1

2νu|v,k
−
∑N

i=1 rikλu|v,k
2ν2

u|v,k
,

setting this equation to zero, we obtain

ν̂u|v,k = −
∑N

i=1 rik
2σ2

u|v,k
(5.30)

Both empirical priors penalize variables with large variances or with low evidence enforc-
ing respectively lower wu|v,k and higher σ2

u|v,k.

5.3.3 MixDTrees with Estimated Structure

We do not expect that all genes in a particular developmental process will share the same
dependence structure, nor that the most likely DTree will exactly match the developmental
tree per se. Indeed, we expect that some genes will be particularly correlated in particular
developmental lineages, but not in others. For example, group 1 from Figure 5.5 has genes
tightly over-expressed in the blue lineage ({XD, XE, XF}), as does group 2 in the orange
lineage ({XB, XC}). We also expect that some genes, which are important for earlier
developmental stages, to have similar expression profiles in stages near the root, but not
in mature cell types (leaf vertices of a developmental tree). See for example group 3 in
Figure 5.5, which exhibits over-expression in all earlier stages ({XA, XB, XD}).
To infer these group-specific dependencies, we estimate a mixture of K DTrees, where
each component have its tree structure estimated from the data. We will call this ap-
proach mixture of dependence trees with estimated structure (MixDTrees-Str). Note
that the mixture of dependence trees with estimated structure corresponds to a relaxation of
MixDTrees-Dev (Section 5.3.1), when a single dependence tree structure is assumed.
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5.3 Mixture of Dependence Trees

Figure 5.5: Illustrative example of a developmental tree and its gene expression data (left).
The developmental tree is constituted of a stem cell (stage A), an “orange”
lineage (stages B and C) and a “blue” lineage (stages D, E and F). The red-
green plot depicts the relative expression, where lines corresponds to gene
profiles and columns to developmental stages ordered as in the above tree. In
the right, we depict three groups of genes and their corresponding estimated
tree structure as found by MixDTrees in the gene expression data in the left
(see Section 5.3.3 for complete plot description).

For estimation of MixDTrees-Str, we need to perform the method described in Sec-
tion 5.2.3 for each DTree prior to the M-Step [148]. Once the structure is chosen, DTree
parameters are set with the MAP estimates (see Section 5.3.2).

Visualization of DTree with Estimated Structure. The branches in the estimated tree
structure reflect similarity in expression of developmental stages (stages in a same branch
will share a similar expression profiles). To highlight these similarities, we propose the
following plots. Gene clusters are depicted as a heat-map with red values indicating over-
expression and green values indicating under-expression [71]. In this plot, the lines (gene
profiles) are ordered as proposed in [16]. For the columns (developmental stage profiles),
we compute all possible columns orderings and select the one that has a minimal differ-
ence in the mutual information of adjacent columns. To further help the interpretation of
individual clusters, we compute strongly connected components [46] (SCC) in the graph
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Chapter 5 Analysis of Gene Expression in Lymphoid Development

returned after thresholding the mutual information matrix. An optimal threshold parameter
is obtained by evaluating the resulting SCC with the silhouette index [115]. SCC indicate
within a DTree, which developmental stages in a particular branch have similar expression
profiles.

5.4 Experiments

We describe in the Section 5.4.1 our analyses performed in [50], where MixDTrees with
the developmental tree as structure(MixDTrees-Dev) is evaluated with two detailed stud-
ies covering several stages of the B and T cell development [99, 100]. Also, putative roles
of microRNAs related to lymphoid development are investigated. In Section 5.4.2, we
evaluate the use of MixDTrees with estimated structure (MixDTrees-Str) in a gene ex-
pression compendia containing early hematopoietic development cells and three lineages
of lymphoid cells: B-cells, T-cells and Natural killer cells [3, 156, 165, 220, 229]. The
method performance is compared with other methods via a score based on the enrichment
of biological pathways. In both cases, in order to evaluate general characteristics of the
methods, we use also simulated data sets.

5.4.1 MixDTrees with Developmental Tree Structure

Data

T Cell Development (TCell). This data set contains measurements of gene expression
during the development of T cells in mouse [98]. Based on cell surface markers seven
stages have been distinguished: CD4 and CD8 double negatives (DN2, DN3, DN4), large
double positives (DPL), small double positives (DPS), single positive CD4 (SP4) and single
positive CD8 (SP8) (see Figure 5.1 for the corresponding tree, and the original publication
for details [98]). Affymetrix MU11k chips with four or five replicates are used to measure
the expression levels of 13,104 mouse genes. We perform variance stabilization [104] on
all chips, and compute the median values of replicates. To facilitate comparisons, we use
the same list of 1,318 differentially expressed genes that was used by Hoffmann and col-
leagues [98]. Furthermore, we normalize the expression levels separately for each gene to
mean zero and standard deviation one, as is routine in gene expression analysis. Finally, we
map each probe set to a gene symbol if it exists in the respective chip platform annotation
provided by the GEO database [69].

B Cell Development (BCell). This data set contains expression levels of five consecu-
tive stages of the B cell lineage: Pre-BI, large Pre-BII, small Pre-BII, immature, and mature
B cells [100]. This study was also conducted on Affymetrix MU11k chips. We pre-process
the data exactly as it is described for TCell.
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Lymphoid Development Related microRNAs (LympMIR). We collect 17 microRNAs
that have been found to be involved in Lymphoid development or, at least, differentially
expressed between distinguishable lymphocyte cell types [41, 44, 76, 151, 171]: mmu-
miR-24, mmu-miR-26a, mmu-miR-142-3p, mmu-miR-146, mmu-miR-150, mmu-miR-
155, mmu-miR-181a, mmu-miR-181b, mmu-miR-181c, mmu-miR-191, mmu-miR-221,
mmu-miR-222, mmu-miR-223 and mmu-miR-342. Additionally, we include mmu-miR-
15a, mmu-miR-15b, and mmu-miR-16, as they participate in the regulation of cell prolif-
eration and apoptosis [35, 55]. Since in this work we refer exclusively to microRNAs of
the mouse, the species prefix mmu is omitted throughout the text. The lists of candidate tar-
gets of these microRNAs are obtained in the miRBase Targets database [91] (Version 2.0),
which uses the Miranda algorithm [72] to search for possible microRNA binding sites in
the gene sequences.

Simulated Data (SIM). To generate this data set, we use MixDTrees-Dev with random
parameterizations. All DTrees have theirs structure fixed to the tree represented in Fig-
ure 5.2. Then, we randomly chose µu|v,k from the range [−1.5, 1.5] and σ2

u|v,k from [0, 1].
We create five experimental settings to inspect the performance of the method in the pres-
ence of distinct levels of dependence. For these five settings, we sample wu|v,k from [−ε, ε]
(independent data), [−0.5, 0.5], [−1, 1], [−1.0,−0.5]∪ [0.5, 1] and [−1,−1 + ε]∪ [1− ε, 1]

(tree dependent data), respectively, where ε = 0.001. We set K to five and mixture coeffi-
cients α equal to (0.1, 0.15, 0.2, 0.2, 0.35). For each experimental setting, we generate ten
such mixtures, and sample 500 development profiles from each.

Results

We apply MixDTrees-Dev to two biological data sets: TCell and BCell. We com-
pare our results with the ones obtained in [98, 100], which use Self-organizing maps
(SOM) [120] as clustering method. For estimating MixDTrees-Dev, we perform the
following. The mixture estimation method is initialized with K random DTrees (see
Section 2.3.2). We, then, estimate then the mixture model using the EM-algorithm with
MAP estimates. For both TCell and BCell, we use the same number of clusters (20)
as [98, 100]. For evaluating the results, our analysis is complemented with information
from OMIM [158], the Gene Ontology database [9] and from the literature. Furthermore,
we perform a microRNA enrichment analysis in the clusters founds in both data sets to
investigate putative roles of microRNAs related to lymphoid development.

We resort to simulated data to compare our method with established clustering methods,
such as SOM, k-means and mixture of Gaussians, when inferring tree components in com-
plex mixtures for varying levels of dependence between the individual variates. As we
have class labels in the simulated data, we can evaluate the clusters with the use of external
indices.
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Figure 5.6: Selected clusters from MixDTrees-Dev for TCell. We depict the clusters
5, 8 and 18 found in TCell, expression values on the y-axis, and cell types
on the x-axis. Lines corresponding to developmental profile values between
stages DN2, DN3, DN4, DPL, DPS and SP4 are in green and between DPS
and SP8 in red.

T Cell Development (TCell). TCell is a gene expression data set from seven differen-
tiation stages of the T cell development (see Figure 5.1 for the developmental tree). The
only branch in this tree is the final differentiation of DPS precursors into CD4 single posi-
tive SP4 cells and CD8 single positive SP8 cells. Most clusters found by MixDTrees-Dev
from TCell show a distinctive pattern of differential expression along the developmental
path, but they do not differ between SP4 and SP8 cells (clusters 4, 7, 11, 13, 14, 15, 16,
19, and 20). The most noticeable changes occur at the DPL stage in which the cells are
proliferating and, subsequently, start to rearrange the TCRα-locus. This is also reflected in
the overall correlation matrix1. Although the expression values of all neighboring stages
are positively correlated, the correlation between the DPL stage and the DPS stage is much
smaller in comparison to the double negative stages, all of which show high correlation.
The correlation matrix suggests that SP4 and SP8 cells are more similar to each other than
to their precursor DPS cells, which is expected since the two types of mature T cells share
many cellular functions [98]. The largest differences with respect to SP4 and SP8 are found
in clusters 5 and 18 (Figure 5.6). GO enrichment analysis shows that cell-cycle genes are
clearly enriched in cluster 5. In contrast, cluster 18 mainly contains regulatory proteins
involved in transcription and signaling (see Figure 5.6).

In order to demonstrate that our method is able to extract additional biological informa-
tion, we concentrate our discussion on clusters showing distinct developmental profiles
that could not be detected by the use of SOM [98]. For such a cluster, we assign functions
to genes using the GO term annotation and complementary literature. In our analysis, we
find that genes of cluster 8 are over-expressed in DN3 and DN4 cells 5.6), a developmen-
tal profile that had not been identified by SOM. With SOM, the genes of this cluster are
dispersed over the two clusters (see Table B.1). Out of the 30 genes of cluster 8, seven are
related to vesicle transport or to the Golgi/ER system. Additionally, we find five cell-cycle
related genes, three involved in mitochondrial function, and seven genes of other functions,

1A simple way to check for similarities in the expression between developmental stages is to compute
the correlation matrix of the data set at hand. As discussed in Section 5.2.3, the correlation matrix is
proportional to the mutual information matrix.
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Figure 5.7: Selected clusters from MixDTrees-Dev for BCell. We depict clusters 3,
5, 6 and 20 found in BCell, expression values on the y-axis, and cell types
on the x-axis. Lines corresponding to developmental profile values between
all stages are in red.

which are mainly involved in signaling. These findings agree with the functions of DN3
and DN4 cells, which is the transport of precursor receptor molecules to the cell surface
membrane and the initiation of proliferation. All these facts supports our claims that our
method is able to identify functionally relevant groups of genes.

B Cell Development (BCell). Like in the TCell study, we investigated gene expression
for five consecutive stages during B cell development (Figure 5.1). The correlation matrix
of BCell suggests dependencies between gene expression values of successive stages, with
the largest correlation between pre-BI and large pre-BII cells and between immature and
mature B cells. When we compare, our clustering results to those obtained by SOM [98],
we observe similar average developmental profiles, although the contingency table indi-
cates differences in the cluster compositions (Table B.2). Clusters 3, 5 and 6, for example,
contain genes that are up-regulated in pre-BI and large pre-BII cells and down-regulated
in later developmental stages (Figure 5.7). Consistent with the phenotype of these cells,
the function assigned to the genes of this cluster are mainly related to proliferation. GO
categories that are associated with mitosis, cell-cycle and chromatin remodeling are clearly
over-represented in these clusters.

Cluster 20 shows an average developmental profile that was not detected with SOM [98,
100]. The genes of this cluster are down-regulated in pre-BI cells, in which the first re-
arrangement of the DH and JH segments on the H chain loci has taken place, and up-
regulated in all the following developmental stages (Figure 5.7). With SOM [98], these 23
genes are found distributed over the four clusters 11, 13, 14 and 17 (Table B.2). The most
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Figure 5.8: Strategy to identify microRNAs and their target genes over-represented in clus-
ters of co-expressed genes (indicated left) as part of a post-transcriptional reg-
ulatory mechanism. In the middle mRNAs clustered according to our mixture
results are depicted and potential microRNA binding sites in their 3’UTRs are
illustrated.

plausible common function of some genes from cluster 20 is the regulation of survival and
apoptosis during B cell development. The gene products Nfkbia, Traf5 and the Src-family
protein tyrosine kinases Lyn and Syk are known regulators of NF-kappa B activity, which
in turn has been found to be involved in B cell fate decision and survival [2, 97, 152]. Sim-
ilarly, Krupel-like factor 2 (Klf2) protects cells against TNF-alpha induced apoptosis [86].
Furthermore, Icam-2 and Rhoh, whose encoding genes are two other members of cluster
20, regulate the adhesiveness of primary B cells depending on their activation state and
protect them from apoptosis [158, 164].

MicroRNA Target Discovery. LympMIR contains a set of 17 microRNAs that are po-
tentially involved in lymphocyte cell development. It has been proposed that microRNAs
bind target mRNAs specifically via base pairing. This, subsequently, leads to interference
of the translational machinery or mRNA degradation, and thus can control whole groups
of genes simultaneously [17]. Recent microarray studies have demonstrated that the mi-
croRNA expression negatively correlates with mRNA target expression in a tissue specific
manner [129, 133, 200].

Having identified clusters of co-expressed genes with MixDTrees-Dev for the B cell and
T cell data sets, we ask whether a certain microRNA could be a potential regulator of one of
these clusters (see Figure 5.8). For this task, we first obtain lists of potential target genes for
each microRNA from the miRBase Targets database [91], which contains predictions made
by sequence based methods. Given our clustering results, we use an enrichment analysis
to obtain a list of microRNAs, whose potential targets are over-represented in a cluster.
This is an approach similar to finding Gene Ontology terms over-represented in a cluster of
genes, as described in Appendix A. A lower p-value indicates a high count of microRNA
targets in a particular cluster, i.e., higher “microRNA enrichment”. By choosing a p-value
cut-off, we can construct a list of enriched microRNAs for each cluster as well as a list of
target genes related to the enriched microRNAs.
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Chapter 5 Analysis of Gene Expression in Lymphoid Development

For TCell, our target prediction scheme identified, in four out of the 20 clusters, significant
enrichment for eleven out of the 17 initial microRNAs (Table 5.1). In these four clusters,
we detect 35 candidate target genes in total, which is a considerable reduction of the set
of 229 targets that had been previously predicted by sequence based methods alone [91].
For BCell these numbers are respectively, eleven out of the 17 microRNAs, four out of
the 20 clusters, and 29 out of the 273 predicted targets (Table 5.1). In particular, we find
the five microRNA families miR-15, miR-181, miR-221, miR-26, and miR-142-3p to be
enriched in both TCell and BCell. See Table B.3 and Table B.4 for p-values of microRNA
enrichment of all data sets.

As mentioned earlier, the BCell clusters 3, 5, and 6 show a similar expression profile. We
find that cluster 5 from TCell overlaps substantially with clusters 3 and 5 from BCell

(Table 5.1). In TCell cluster 5, we find miR-15a, miR-181a, miR-26a, miR-24, and miR-
221 as potential regulators and 20 potential target genes, seven of which are also present
among the 18 BCell candidate genes of clusters 3 and 5. The developmental profiles of
the clusters of both lineages show similar phenotypical features, namely up-regulation in
the proliferating large cell populations (DN4, DPL, large pre-BII) and from then on strict
down-regulation. In TCell cluster 5 there are eight genes and in the BCell clusters 3
and 5 there are nine target genes that are known to be involved in DNA metabolism, cell-
cycle and mitosis (Table 5.1). This suggests a regulatory role for the identified microRNAs
in reducing the transcript levels of genes that are important for cell proliferation. This is
supported by the fact that a similar role for microRNA was found in Drosophila germline
stem cells [94].

At the individual gene level, we identify some candidate microRNA targets for further
detailed analysis: the three known genes (H2-Eb1, Ltb, Tap2) of BCell cluster 19 are all
involved in the antigen presentation by MHC class II molecules [158, 166]. In the context
of the cell cycle, Chek1 (clusters TCell 5 and BCell 5) and Cdc25a (cluster TCell 5)
are important for the transition between G1/S and G2/M phases [32]. Furthermore, both
genes are candidate targets of the same microRNA, miR-15a, which is related to apoptosis
in chronic lymphoid leukemia cells [44]. Another interesting gene codes for the nuclear
factor Y (Nfyb; cluster BCell 5), which regulates Hoxb4 [85], Cdc34 [170] and the major
histocompatibility complex in mice [237]. These are all important genes for lymphoid
development. The mRNA of the growth factor independence-1 transcription factor (Gfi1;
cluster TCell 10) is a potential target of miR-142-3p. Gfi1 has as function the restriction
of cell proliferation and maintenance of the functional integrity of lymphocyte cells [116].
Moreover, Gfi1 is implicated in the transition from CD4/CD8 double negative to double
positive T cells [188].

Simulated Data (SIM). We used MixDTrees-Dev with MAP and MLE estimates, mix-
ture of Gaussians (MoG), k-means and SOM to compute clusters. We can compare to the
classes used in data generation with cluster results to compute specificity (Eq. 3.14) and
sensitivity (Eq. 3.13) of the clustering solutions. To compare the significance of differ-
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Figure 5.9: We display the mean sensitivity (left plots) and mean specificity (right plots)
against five experimental settings: (1) wu|v,k ∈ [−ε, ε] (independent data), (2)
wu|v,k ∈ [−0.5, 0.5], (3) wu|v,k ∈ [−1, 1], (4) wu|v,k ∈ [−1.0,−0.5]∪ [0.5, 1]
and (5) wu|v,k ∈ [−1,−1 + ε] ∪ [1 − ε, 1]. The dependence increases with
experiment number.

ences, we apply an one tailed paired t-test to evaluate the null hypothesis that two methods
have the same mean specificity (or sensitivity) in a given experimental setting. Hereafter,
for short, we simply state—method M1 has a higher sensitivity than method M2 (p-value
below 0.05)—when the null hypothesis is rejected.

We observe that the MixDTrees-Dev with MAP estimates (MixDTrees-Dev MAP) have
a higher specificity and sensitivity than k-means and SOM in all experimental settings
(Figure 5.9 top) (p-value < 0.005). In the independent case (wu|v,k ∈ [−ε, ε]), this is not
expected, since the data agrees well with the assumptions of k-means and SOM. This also
explains the large standard deviations of MixDTrees-Dev MAP in that case. As expected,
the MixDTrees-Dev MAP clearly improves the cluster recovery in settings with noticeable
dependence structure, while the performance of k-means and SOM deteriorates slightly.

In comparison to others mixture model methods (Figure 5.9 bottom), MixDTrees-Dev
MAP also obtains a significantly higher specificity and sensitivity in almost all experimental
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Chapter 5 Analysis of Gene Expression in Lymphoid Development

settings. The mixture of Gaussians with diagonal covariance matrices performs well in the
independent case (experimental setting 1), which meets the model assumptions, but it has
poor results in experiments with higher dependence (p-values < 0.05 for settings 3, 4 and
5). The mixture of Gaussians with full covariance matrix (MoG-Full) has a reasonable
sensitivity in all settings, but very poor specificity (p-value < 0.05 in settings 3, 4 and 5 for
sensitivity and in all settings for specificity). The reason for these results is that MoG-Full
tends to have some clusters with few data points, as a reflection of over-fitting [143]. Note
that we use a MAP estimate for MoG-Full to minimize this problem. MixDTrees-Dev
with MLE estimates (MixDTrees-Dev MLE) has good overall performance, but it is out-
performed by MixDTrees-Dev MAP in all cases, except for experimental settings 1 and 5
(p-value < 0.05 for settings 2, 3 and 4). In experimental setting 5, where data are highly
dependent, by definition, both methods work similarly.

These results demonstrate that the MixDTrees-Dev is a better alternative than SOM and
k-means in all cases. In relation to other mixture models, MixDTrees-Dev represents a
good trade-off between a complex model class, such as multivariate Gaussian with full
covariance matrices, and the simple Gaussian with diagonal covariance matrices. Further-
more, MAP estimates of the MixDTrees-Dev represent a more robust alternative to the
MLE counterpart.

5.4.2 MixDTrees with Estimated Structure

To evaluate the application of our method in real biological data, we make use of gene
expression from lymphoid cell development. First, we compare a DTree inferred from
the whole data with the lymphoid developmental tree. Then, we apply MixDTrees-Str

to find modules of co-regulated genes, and evaluate the results with GO and KEGG en-
richment analysis (Section 5.4.2). Finally, we compare our method with other unsuper-
vised learning methods. Additionally, to investigate characteristics of MixDTrees-Str
and compare it with other methods, we use simulated data from mixture models with dif-
ferent degrees of variable dependence.

Data

Lymphoid Tree (LymphoidTree). We produce an expression compendium of mouse
lymphoid cell development by combining measurements of wild-type control cells from
several studies [3, 156, 165, 220, 229] based on the Affymetrix U74 platform. Our data
contain four stages of early development hematopoietic cells [3] (hematopoietic stem cell
(HSC), pluripotent progenitor (PPP), common lymphoid progenitor (CLP), common mye-
loid progenitor (CMP)); three B cell lineage stages [220] (pro-B cells (Bpro), pre-B cells
(Bpre) and immature B cells (Bimm)); one Natural Killer (NK) stage [165]; and four T
cell lineage stages (double negative T cells (TDN) [156], cd4 T cells (TCD4), cd8 T cells
(TCD8) and natural killer T cells (TNK) [229]). The developmental tree describing the
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Figure 5.10: We depict in the left the developmental tree with the stages contained in the
Lymphoid data set. The dashed edges represent edges “wrongly” assigned
in the DTree estimated from the Lymphoid data. Such edges connect pairs
of vertices where the path length between these vertices in the developmental
tree and estimated tree differs by one, while the dotted edge represents the
case with path length differs by three. In the right, we have the DTree
estimated from the Lymphoid data.

order of differentiation of the cells is depicted in Figure 5.10 left. We pre-process the data
as follows: we apply variance stabilization [104] on all chips, take median values of stages
with technical replicates, use HSC values as reference values and transform all expression
profiles to log-ratios. We keep genes showing at least a 2-fold change in one developmental
stage. The final data set consists of 11 developmental stages and 3697 genes.

Simulated Data. We generate data from mixtures with four types of variable dependence
ranging from: Gaussians with diagonal covariance matrix (Σdiag), DTree with low variate
dependence (ΣDTree−), DTree with high variate dependence (ΣDTree+) and Gaussians with
full covariance matrix (Σfull). These choices range from the independent case (Σdiag) to
the complete dependent case (Σfull). For each setting, we generate ten such mixtures, and
sample 500 development profiles from each. In all cases, we chose the µ from the range
[−1.5, 1.5], L = 4, K = 5 and mixture coefficients equal to α = (0.1, 0.15, 0.2, 0.2, 0.35).
For Σdiag , diagonal entries are sampled from [0.01, 1.0], and non-diagonal entries are set to
zero. For ΣDTree, we randomly generate tree structures, one for each mixture component,
and then chose σ2

u|v,k from [0.01, 1.0] and wu|v,k from [0.0, 0.5] for ΣDTree− and wu|v,k from
[0.0, 1.0] for ΣDTree+ . The generation of Σfull is based on the eigenvalue decomposition
of the covariance matrix (Σ = QΛQT ) as in [168], where Λ is drawn from [0.01, 0.5]. The
orthogonal matrixQ is obtained by sampling values from a lower triangular matrixM from
the range [20, 40], followed by the Gram-Schmidt Orthogonalization procedure.

We apply MoG with full and diagonal covariance matrices and MixDTrees-Str with
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Chapter 5 Analysis of Gene Expression in Lymphoid Development

MLE and MAP estimates to all data sets. The mixture estimation method is initialized
with K = 5 random DTrees (or Multivariate Gaussians) as described in Section 2.3.2.
Next, we train the mixture model using the EM-algorithm. We also performed clustering
with k-means [146], self-organizing maps (SOM) [221] and spectral clustering [154]. We
compare the class information from the data generation to compute the corrected Rand
index [103] and evaluate the clustering solutions.

Enrichment of Gene Ontology and KEGG Pathways. Gene group validity is assessed
by the results of Gene Ontology (GO) enrichment analysis [24], which helps the indication
of functional roles of genes in a particular group. A more reliable and smaller alternative
is the Kyoto Encyclopedia of Genes and Genomes (KEGG) [114], which has manually
annotated gene pathways. In particular, several pathways related to lymphoid development
such as signal transduction, immune system and cell cycle pathways, are described by
KEGG. For the GO (or KEGG) enrichment analysis, we use the statistic of the Fisher-
exact Test to obtain a list of GO terms (or KEGG pathways), whose participating genes are
over-represented in a group as described in Appendix A.

Results

Inferring the DTree Structure. An initial question is how well we can recover the orig-
inal developmental tree, as agreed upon by developmental biologists (Figure 5.10 left), if
we apply the structure estimation method described in Sec 5.2.3 to the complete gene ex-
pression data (see Figure 5.10 right for the estimated DTree). To quantify the difference
between these trees, we compute the path distance between all pairs of vertices, and calcu-
late the Euclidean distance between the resulting distance matrices [202], which indicates
a distance of 15.74. To assess the statistical significance of this distance, we generate 1000
random trees with the same distribution of out-degrees per vertex as the developmental
tree. For each random tree, we compute the distance with the developmental tree. This
test indicates a p-value of 0.002 of finding a distance as low as 15.74. Looking at these
differences in detail, we can observe that 5 out of the 10 edges are correctly assigned, 4
edges connects vertices pairs with a path distance equal to 1, i.e., PPP and CLP, CLP and
TDN, TDN and TCD8, and TDN and TNK, and one edge connect vertices with a path
distance of 3 (NK is connected to TCD8 instead the CLP). Furthermore, “wrong” edges
have a tendency to be connected to vertices in the same level of the developmental tree
(e.g. TCD8 and TNK both connected with the TCD4).

Another important question is how well does the DTree capture dependence in the data?
One simple way to assess this is to measure the proportion of the mutual information rep-
resented in the tree edges, in comparison to the total mutual information of all pairs of
variables with the “treeness” index (Eq. 5.17).

For example, the score for the developmental tree (Figure 5.10 left) is 0.22, whereas for
the estimated DTree (Figure 5.10 right), the “treeness” index is 0.42. For measuring the
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Figure 5.11: We depict the DTree and expression profiles of groups 1 (a), 4 (b) and 5
(c) from MixDTrees-Str MAP for the Lymphoid data. Dashed shapes
around developmental stages represent the strongly connected components.
See Section 5.3.3 for complete description of the plotting procedure.

statistical significance of this, we generate random data by shuffling values of gene expres-
sion profiles xi and estimating a DTree from this random data, which indicates a p-value
of 0.0001.

Inferring Gene Modules with MixDTrees-Str. We estimate MixDTrees-Str MAP

from the Lymphoid data following the protocol used for the simulated data. The Bayesian
information criteria [145] indicates 13 groups as optimal.

First, we measure the average treeness of the MixDTrees-Str (we calculate Eq. 5.17 and
take the sum weighted by α). For the MixDTrees-Str MAP this value is 0.54, which
indicates an increase of 28% over the treeness index for the single DTree. This supports
our claim that mixture of Dependence Trees with estimated structures is more successful
in modeling dependencies in the data.

In relation to the groups of co-expressed genes found by MixDTrees-Str, in general,
stages from the same developmental lineage are at same branches of the estimated DTree

structure. Furthermore, groups present prototypical expression patterns such as over-expres-
sion in cells from a particular lineage, but not in other lineages (e.g., groups 2 and 5 for B
cells, groups 4 and 6 for T cells and group 11 for Natural Killer cells) or groups displaying
under-expression in particular lineages (e.g., groups 7 and 12 for T cells and groups 10 and
12 for B cells).

In Figure 5.11, we display some of these groups, which we discuss in more details. Group
1 (Figure 5.11 (a)) is an interesting case, where the DTree structure differs considerably
from the developmental tree. On the right branch, we found a SCC (stages PPP, CLP,
CMP, TDN, Bpro) with only early developmental stages, and all of them display high
over-expression patterns. On the other hand, the majority of stages in the SCC on the
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Chapter 5 Analysis of Gene Expression in Lymphoid Development

left branch (Bimm, Bpre, TCD8, NK, TCD4, TNK) are immature developmental stages
(leaves in the developmental tree depicted in Figure 5.10 left). Enrichment analysis using
GO and KEGG shows that group 1 is over-represented for cell cycle and dna repair (p-
values < 0.001). This matches the biological knowledge that earlier differentiation stages
of development are cycling cells, while immature cells are resting [140, 177]. Group 4
(Figure 5.11 (b)) contains a SCC (left branch) with all T cell stages plus the closely related
NK cell. At these stages, genes display an over-expression pattern. Enrichment analysis
indicates over-representation for Gene Ontology terms as T cell activation, differentiation
and receptor signaling; and KEGG pathways such as T cell signaling and NK cell mediated
cytotoxicity (p-values < 0.001). Similarly, group 5 (Figure 5.11 (c)) has a SCC with all
B cell stages. Furthermore, for B cell stages, genes are preferentially over-expressed. GO
analysis indicates enrichment for terms such as B cell activation (p-values < 0.001), while
KEGG analysis indicates enrichment in pathways such as Hematopoietic cell lineage and
B Cell receptor signaling (p-values < 0.05). These results show how MixDTrees-Str

can be used to find groups of biologically related genes, as the associated DTree structure
adds relevant information regarding expression similarity of developmental stages.

Comparison with other Clustering Methods . For comparison purposes, we also per-
form clustering of the Lymphoid data with other methods: k-means, self-organizing maps
(SOM), MoG with full covariance matrix, MoG with diagonal matrix and the bi-clustering
methods Samba [210] and non-negative matrix factorization [31]. Additionally, we eval-
uate distinct variations of MixDTrees: MixDTrees-Str with MAP and MLE estimates,
and MixDTrees-Dev with the developmental tree from Figure 5.10 (left) as structure.

To evaluate the performance of the methods, we use a heuristic of comparing p-values of
KEGG enrichment analysis in a similar way as in [73]. The results of the comparison
of MixDTrees-Str MAP and MoG diag can be see in Figure 5.12. In short, the best
method should present a higher enrichment for a higher number of KEGG pathways. As
illustrated in Figure 5.12, MixDTrees-Str MAP is superior to MoG diag in 9 out of 11
pathways. Furthermore, most of the 11 KEGG pathways enriched with a p-value < 0.05 in
one of the methods (points depicted in Figure 5.12) are directly involved in immune system
and developmental processes. We apply the same procedure for all pairs of methods and
count the events {p-value m1 < p-value m2}, where m1 and m2 are the two methods in
comparison. As can be seen in Figure 5.13 (left), MixDTrees-Str MAP outperforms all
methods, while MixDTrees-Str MLE and k-means also obtained higher enrichment than
other methods. Overall, SOM, MoG Full and Samba obtain poor enrichment results. In
fact, these methods are outperformed by all other methods. We repeat the same analysis
for GO enrichment (see Figure 5.13 right). The result are in agreement with the KEGG
enrichment analysis, that is, MixDTrees-Str MAP has higher enrichment than all other
methods, while SOM and MoG Full obtain poor results.

86



5.4 Experiments

5 10 15 20

5

10

15

20

Cell cycle

Natural killer cell mediated cytotoxicity

Cytokine−cytokine receptor interaction

Hematopoietic cell lineage

Cell adhesion molecules (CAMs)
Leukocyte transendothelial migration

T cell receptor signaling pathway

B cell receptor signaling pathway
Ribosome

Type I diabetes mellitus
Antigen processing and presentation

−
lo

g 
p−

va
lu

e 
M

ix
D

T
re

es
−

M
A

P
 

−log p−value MoG diag

KEGG Pathway enrichment

Figure 5.12: We depict the scatter plot comparing the KEGG pathway enrichment of MoG
diag (x-axis) and MixDTrees-Str-MAP (y-axis). We use −log(p)-
values, where higher values indicate a higher enrichment. The blue lines
correspond to −log(p)-value cut-off used (p-value of 0.05). Only KEGG
pathways with a −log(p)-value higher than (2.99) in one of the results are
included. MixDTrees-Str-MAP has a higher enrichment for 9 out of the
11 KEGG pathways.

1 2 3 4 5 6 7 8 9 10

MixDTrees−Str MAP

MixDTrees−Str MLE

k−means

NMF

MoG−Diag

MixDTrees−Dev MAP

Spectral

MoG−Full

SOM

Samba

Comparison of KEGG Pathway Enrichment

1 2 3 4 5 6 7 8 9 10

MixDTrees−Str MAP

MoG−Diag

MixDTrees−Str MLE

MixDTrees−Dev MAP

NMF

Spectral

Samba

k−means

SOM

MoG−Full

Comparison of GO Enrichment

Figure 5.13: Heat-maps plot displaying the comparison of KEGG (left) and GO (right)
enrichment for 10 distinct clustering methods. Red (or blue) values indicate
that the method in the y-axis has a higher (or lower) count of enriched KEGG
pathways (GO terms) than the method on the x-axis. The numbers on x-axis
correspond to the methods in the y-axis.
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Figure 5.14: We depict the mean corrected Rand (top), sensitivity (bottom left) and speci-
ficity (bottom right) of true label recovery for distinct clustering methods (y-
axis) against data generated with distinct model assumptions (x-axis) (1 for
Σdiag, 2 for ΣDTree− , 3 for ΣDTree+ and 4 for Σfull). These choices range
from the independent case Σdiag to the complete dependent case Σfull.

Simulated Data. As expected, every method performs well on the data generated with
the corresponding model assumptions (see Figure 5.14). An exception is the MoG with full
covariance matrices, which has low corrected Rand for all data sets. An analysis of the
specificity index indicates that the poor performance of MoG Full is caused by over-fitting,
since it tends to merge real groups (see Figure 5.14 bottom right). Moreover, spectral clus-
tering presents very low sensitivity values (see Figure 5.14 bottom left), which indicates a
tendency to split real groups. In both data from ΣDTree, MixDTrees-Str MAP has higher
values than MixDTrees-Str-MLE, which indicates a higher robustness of the MAP esti-
mates (a paired t-test indicated superiority of MixDTrees-Str MAP with p-value < 0.05
in both ΣDTree− and ΣDTree+). Also, MixDTrees-Str MAP obtains the highest values in
all settings (p-value < 0.05), outperforming MoG Full, MoG Diagonal, k-means, SOM and
spectral clustering, with the exception of MoG Diagonal in the Σdiag data. These results
show that MixDTrees-Str-MAP has a better performance than compared methods in data
coming from distinct dependence structures, and it is robust against over-fitting.
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