Chapter 3

Mixture Models and Clustering

In this thesis, we focus on the use of mixture models to perform clustering. By clustering
we mean finding groups (or clusters) of observations in a finite data set, such that each
group represents observations sharing characteristics, which are distinct from the overall
data set. Mixture models, being based on statistics, tackle this problem in a formal and
principled way. The applications of mixture models for clustering [79] has a number of
advantages in contrast to classical clustering methods such as k-means and hierarchical
clustering: it quantifies the uncertainty of a given cluster assignment; the estimated models
are descriptors of the groups found; and it is possible to answer questions such as the
number of clusters in a purely statistical way [145].

The characteristics of mixture models make this approach of great value in the analysis
of biological data. In particular, for gene expression analysis [11], the main interest is on
finding groups of genes that have similar expression patterns through a set of experimental
conditions, and possibly are part of a biological functional module [71, 135]. However, a
single gene (and its products) can participate simultaneously in more than one functional
module, for example by taking part in distinct protein complexes, each with its particular
function [122]. Furthermore, data arising from large-scale experiments, such as microar-
ray measurements of gene expression, contain large amount of noise [135]. In this context,
overlapping clusterings, such as the ones given by a mixture models, represent the results
of gene expression clustering analysis in a more natural way than “hard” clusterings. Also,
the uncertainty of a given cluster assignment returned by the mixture model is a valuable in-
formation in the distinction of assignments derived from relevant and noisy observations.
Furthermore, the mixture components can model particular assumptions about the data,
such as temporal dependencies, therefore producing more reliable estimates. As an evi-
dence, there is a vast list of publications that successfully applied mixture models in finding
potentially overlapping groups in gene expression analysis [14, 138, 143, 147, 155, 185—
187, 232, 234].

This chapter is organized as follows: Section 3.1 gives a definition of the use of mixture
models to perform clustering, and introduces how clusters can be obtained from mixtures.
Later, we propose a novel external index to perform validation of mixture models in Sec-
tion 3.2, which is evaluated with simulated data in Section 3.3.
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3.1 Clustering with Mixture Models

Clustering is the task of partitioning a data set of /V objects (or observations) from X into
K disjoint groups (or clusters). We represent a data set by a N x L matrix X, where entry
x;; denotes the values of the jth variable of the ¢th object. The clustering (or partition) can
be represented by Y, where y; € {1, .., K} indicates the group to which a given object z;
belongs to [142]. In mixture model based clustering, we assume that each component in
the mixture represents a group of objects. In other words, the density of the k£th component
can be interpreted as the conditional of x; on y;, i.e., pr(x;|0x) = p(x;|y; = k,0%), and the
mixing coefficient as the prior probability of the component, i.e., oy, = p(y; = k).

For a given data set X with /N observations and a variable Y defining the component
assignments, the likelihood of the complete data assuming that the x; are independently
distributed is given by

p(X,Y[0) = L(OX,Y) HH v pr(i|0) ) =) (3.1

k=11=1

Thus, the problem of clustering observations from X can be formulated as finding the
maximum likelihood estimate (MLE)

0" = argmgxﬁ(@|X,Y). (3.2)

This problem, as described in Section 2.3, can be solved by maximizing the complete
likelihood using the EM algorithm [61].

The posterior probability (Eq. 2.16) of a mixture model reveals the probability of a cluster
assignment. The simplest way of decoding a mixture, that is, to infer clusters in the data, is
to interpret the mixture components as descriptive models of non-overlapping clusters and
assign each object x; to the cluster £ of maximal posterior,

y; = arg llg}i}%(rik). (3.3)

In model-based clustering as well as k-means, these hard assignments are performed af-
ter each E-Step, while for the mixtures this is only necessary after estimation is finished.
Indeed, a mixture of Gaussians with the identity covariance described in Section 2.3.3,
where 02 — 0 and hard assignments are performed, is equivalent to the k-means algo-
rithm [88]. In the next chapters, we will refer to model-based clustering whenever such
hard assignments are performed during the EM, and to mixture estimation otherwise.

An inspection of the distribution of the posterior probability of component assignments
given an object x;, i.e., ; = (r1,...,Tix ), reveals the level of ambiguity in making the
cluster assignments. Therefore, we propose here a novel decoding method, entropy thresh-
olding, which takes the ambiguity of assignments into account. As depicted in Figure 3.1,
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Figure 3.1: Entropy of posterior assignments for the bimodal density from Figure 2.1.
Values in between the two density functions have high entropy, and would be
discarded by the entropy threshold method. If we select p = 0.9, objects in
the range [—0.2,0.2] will be assigned to the cluster K + 1.

this ambiguity can be quantified by computing the Shannon entropy [54]

K 1

H(r;) = — Z i, log —. (3.4)

r
1 ik

Choosing a threshold ¢ for the entropy yields a grouping of the data into at most K + 1
groups. If H(r;) < ¢, we assign z; to the component with maximal posterior as in Eq. 3.3.
Otherwise, z; is assigned to the (K + 1)-st group, which contains all objects which cannot
be assigned unambiguously, that is

- argmaxiqrer (i), H(ri) <o
Yi = { K+1, otherwise. )

3.2 Validation of Mixture Models

The task of obtaining a mixture model does not end with the parameter estimation. Ques-
tions on the number of components and the quality of the representation of the data often
arise after this step. In classical clustering, there are several methodologies, under the
name of cluster validation, proposed for answering these questions. These methodolo-
gies, mainly based on re-sampling techniques and fit indices, have been proposed in the
vast cluster validation literature [28, 56, 66, 124, 141, 233] and reviewed for example
in [89, 109]. Nevertheless, the mixture model framework embraces challenges and charac-
teristics not explored by “classical” cluster validation techniques.

One often over-looked aspect is the use of external indices, which are used to compare
the similarity of a cluster solution to a gold standard or to another clustering solution.
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Most external indices proposed so far are only able to measure the agreement between two
non-overlapping clusterings [109]. Mixtures, however, can be interpreted as a partition
with overlap, and encode more information than non-overlapping partitions. Therefore,
the overlap, encoded by the posterior distributions of the mixture, should be taken into
consideration when for example two mixtures are compared. Additionally, there are cases,
where even if the clustering results are non-overlapping partitions, the a priori labels are
based on overlapping partitions. This is the case, for example, of functional annotation of
genes [9].

Motivated by the previous problem, in the next Section, as one of the contribution of this
thesis, we propose a novel external index that can used for the comparison of mixture mo-
dels and overlapping partitions [51]. Such an index is an extension of a widely employed
external index for comparing hard partitions — the corrected Rand index [103].

In Section 3.2.1, we introduce the basics of external indices of non-overlapping partitions,
and we define the extension for the overlapping case. Finally, in Section 3.3, we employ
simulated data for assessing the characteristics of the external indices in data with over-
lap.

3.2.1 External Indices

External indices assess the agreement between two partitions defined over the same set of
objects, where one partition Y represents the result of a clustering method, and the other
partition Y’ represents class labels!. While a number of external indices have been in-
troduced in the literature, the use of corrected Rand (CR) is recommended [103]. CR has
its value corrected for chance agreement, it is not dependent on the cluster size distribu-
tions and can compare partitions with distinct number of clusters [149]. See [110] for a
comprehensive review of external indices.

Let Y and Y’ be discrete vectors representing the partitions yielded by a clustering method
and the class labels. Let y; € {1,..., K} and y; € {1, ..., L} be, respectively, observations
from Y and Y’, where y; = k indicates that object ¢ belongs to cluster k. Note, K and L
can be distinct. Thus, the following indicator functions can be defined

Ly =y;) = { 0, otherwise and, (3.6)

1, ify. =1
/. = ,. == ’ ¢ J
1(y; ?/g) { 0, otherwise. G

From these, we can define the following terms

'Y and Y’ can also be partitions from two distinct clustering methods applied to the same data set.

24



3.2 Validation of Mixture Models

N—-1 N
a=>"3" 1y =y)1y =), (3.8)
i=1 j=i+1
N—-1 N
b= (1-1y=y)1y =) (3.9)
i=1 j=i+1
N—-1 N
c=> > 1yi=y)(1 -1y =y}), and (3.10)
i=1 j=i+1
N—-1 N
d= > (1= 1y =)L = 1y = y))). (3.11)
=1 j=i+l

The term a measures the number of object pairs that are found in the same cluster in both Y
and Y'. Tt is the equivalent of the number of true positives commonly used in the machine
learning literature. Analogously, b, ¢ and d correspond respectively to the number of false
positives, false negatives and true negatives. The total number of object pairs p is equal to
p=a+ b+ c+ d. From these terms, the corrected Rand is defined as [103],

(a+d) = ((a+b)ate)+(c+d)(b+d)p~"

R = T + Dttt )b+ d))p

(3.12)

CR takes values from -1 to 1, where 1 represents perfect agreement while values of CR
near or below 0 represent agreements occurring by chance. The correction of Rand index,
proposed in [103], estimates the expected Rand index value by assuming that the baseline
distributions of the partitions are fixed. This is equivalent to calculating the expected Rand
index value for random permutations of the objects labels in one partition, while the other
is fixed.

Two other interesting external indices, which can be defined by the terms in Eq. 3.8, 3.9, 3.10
and 3.11, are the sensitivity and specificity [199],

a

S = 3.13

ens o (3.13)
a

S = 3.14

pec b (3.14)

They both take values from O to 1, where 1 indicates perfect agreement. The use of these
indices is complementary to CR, as they indicate for example a tendency to make more
false positives or false negative errors — CR treats both errors equally. In practice, a lower
sensitivity (more false positives) is an indicator of joining real clusters; while a lower
specificity (more false negatives) indicates a tendency to split real clusters.
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Extended Corrected Rand

The main idea of the extended corrected Rand (ECR) is to redefine the indicator functions,
as defined in Eq. 3.6 and Eq. 3.7, giving them a probabilistic interpretation [51]. The
posterior distribution defines the probability that a given object x; from X belongs to the
component k, i.e., y; = k, in a mixture model parameterized by ©, i.e. p(y; = k|x;, ©).
This is exactly the Eq. 2.16, which we refer to as r;;, for simplicity. Likewise, we have 77,
for indicating the posterior that x; belongs to component [ in Y’. We denote the event that
a pair of objects has been generated by the same component in Y, the co-occurrence event,
as r; = x; given Y. Assuming independence of the clusters from Y, the probability of the
co-occurrence of x; and z; given Y for 1 <14 < j < N can be estimated as

K
plyi = yj given Y) = > " ryrjp. (3.15)

k=1

We use the previous equation to redefine the variables a, b, ¢ and d, used in the definition
of CR

N-1 N

@ = Z Z p(yi = y; given Y)p(y; = y; given Y'),
i=1 j=i+l
N—-1 N

b = Z Z (1—p(yi =y; given Y))p(y; = y; given Y'),
i—1 j=it1

N
Z p(yi = yjgiven Y)(1 — p(y; = y; given Y'), and
N
d = Z (1—plyi=y;givenY))(1 — p(y; = y; given Y')).  (3.16)

From these, the extended corrected Rand (ECR) can be computed by the original formula
Eq. 3.12. ECR also takes values from -1 to 1, where 1 represents perfect agreement while
values of ECR near or below zero represent agreements occurred by chance. By definition,
it works exactly as the corrected Rand when “hard” partitions are given.

3.3 Experiments

To evaluate the extended corrected Rand, we make use of simulated data from mixtures of
Gaussians. In the first experiment, we define a very simple scenario with a mixture of two
Gaussians components in an univariate space. Hence, we can compare the characteristics
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Figure 3.2: We depict the mean CR and ECR for the results of the mixture estimation with
the normal bimodal density. The larger d, the lower is the overlap between
the two components.

of ECR and CR when distinct degrees of overlap between the components are present. In the
second experiment, we sample data from a mixture, where components show a large degree
of overlap. From an initial mixture, we vary the number of components and distributions
of objects in the components.

The EM algorithm is used to fit the multivariate Gaussian mixtures with full covariance
matrices as described in Section 2.3.3. The EM method is initialized as described in Sec-
tion 2.3.2. In the simulated data experiments, 50 data sets are generated for each proposed
mixture.

3.3.1 Simulated Data 1

We perform experiments with a normal mixture with two equiprobable components to
evaluate the proposed index characteristics in the presence of distinct degrees of overlap.
The components have means p; = [0,0]7, us = [d,0]7, and covariance matrices 3 =
Yo = I, as suggested in [77]. For obtaining mixtures with distinct degrees of overlap
(bimodal data), we vary d in the range [0.0, 7.5]. The lower the value d, the higher is the
overlap between the two components. For each component we draw 200 objects. The
density function given the original mixture parameterization is used to obtain the posterior
r},. We also calculate the values of CR after performing hard assignments of the solutions
(Eq. 3.3).

Additionally, we generate random data to function as a null case. This consists of data gen-
erated from a single normal component with p = [d/2,0]” and ¥ = I. A random solution
(Y’) with the same number of components and object distributions as the corresponding
bimodal data is calculated. For each particular d, we carried out a non parametric equal-
means hypothesis test based on bootstrap [70] to compare the mean ECR (or CR) obtained
with the bimodal and random data.
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Results. As displayed in Figure 3.2, for data with high overlap, ECR has higher values
than CR, while for data with low overlap both indices have similar values. With random
data, the indices take on mean values near zero and low variance (< 0.001), which indicate
that ECR is successful in the correction for randomness.

With respect to the hypothesis test, the equal means hypothesis is rejected with the use
of ECR in all d > 0.0 with p-value < 0.001. On the other hand, with the use of CR,
the null hypothesis (equal means) is only rejected (p-value < 0.001) when low overlap is
presented (d > 0.4). We can conclude that ECR is able to detect the distinction between the
agreement of the random and bimodal data in all cases, while CR fails when a high degree
of overlap is present. Furthermore, when overlap is low, both indices behave similarly.

3.3.2 Simulated Data 2

We use a more extensive set of simulated data to evaluate ECR. Based on a mixture defined
in [77], which will be called “base mixture”, we change and extend its definition to generate
data with distinct components densities and number of components. The “base mixture”
has four components, three of them with a large overlap and two of them with same mean
vectors

= [—4,-4], % = _62 _62 } ’
= [—4 4] Dy = :0%5 Oi5 ]
p3 = [—1,—6], 85 = :061.35 0.0125 }
= [2,2,5,= _21 _21 } :

An example of a data set sampled from this mixture can be seen in Figure 3.3.
As with the bimodal data, we also generate random data from the normal

10 0
u—[O,O],C—{O 10]

For each data set the EM is performed with to 2 to 10 components. As in [149] it is
expected that ECR should obtain mean values near zero for random data and low standard
error. Additionally, ECR will be maximum at the correct number of components. For
comparison, we also compute BIC and CR.

Components Distribution. We use three types of component distributions for the “base
mixture”: equal density (ED), (v; = oy = a3 = a4 = 0.25), 10% density (10%) (a; =
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Figure 3.3: We depict the points of data sampled from the base mixture in the two di-
mensional space. Objects in light blue corresponds to component 1, in red to
component 2, in dark blue to component 3, and in green to component 4. As
can be seen, components 1 and 2 have the same mean, but distinct orientations
and sizes. Furthermore, component 3 is also inside component 1.

as = ag = 0.3 and ay = 0.1) and 60% density (60%) (v; = 0.6 and as = a3 = g =
0.16).

Number of Components. In addition to the components in the base mixture, we also
included the components (5 = [—6, —1]7, ug = [-12,—12]T and &, = 35, X3 = 3g).
We generated data sets with two to six components with 700 observations. For each number
of component /i, we select the first A components from the mixture. The component
distribution used is ov; = oy = a3 = g = 0.21 and oy = a5 = 0.07.

Results As can be observed in Table 3.1, CR and ECR indicate the right number of clus-
ters (four) in all three scenarios of component distributions. Nevertheless, in the setting
10%, the equal means hypothesis test was not rejected, when comparing the mean of the
CR with 4 and 5 components. In relation to BIC, it overestimates the number of cluster as
five, in the distribution setting 1 0%, and as 8 in the distribution setting 60%.

In relation to the data with distinct number of components, ECR indicates the right number
in all data sets, as shown in Table 3.2. CR overestimates the number of components of the
data set with 5 and 6 components indicating 8 components in both cases. BIC can only
correctly predict the number of clusters in the data with 2 and 3 components. Note that the
degree of overlap varies in the models with distinct number of components, in special for
the highly overlapping ¢ = 2 and ¢ = 3. This makes the mixture estimation task harder,
as a result, lower ECR (and CR) values are obtained in those data sets. Additionally, the
estimated mixtures obtain mean ECR values near zero and low standard errors (< 0.001)
in all situations with the random data (not shown).
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Table 3.1: We depict the mean values for data with distributions ED (top), 10% (middle)
and 60%(bottom) against the number of components in the mixtures for cor-
rected Rand, extended corrected Rand and BIC. For all indices, the maximum
values (in bold) indicate the predicted number of components.

no clusters 2 3 4 5 6 7 8 9 10

EDCR 032 068 0.76 071 071 0.69 0.66 064 0.65
ECR 031 0.64 0.68 063 063 060 057 054 055
-BIC -895 -820 -8.08 -794 -8.12 -8.14 -8.00 -8.02 -8.21

10sCR 034 050 066 066 064 059 057 058 0.58
ECR 043 045 058 055 052 048 045 044 044
-BIC -9.03 -897 -877 -872 -874 -876 -878 -8.80 -8.80

60$CR 036 0.75 081 0.76 0.74 0.72 0.67 0.66 0.62
ECR 035 064 071 065 061 055 050 044 041
-BIC -8.16 -7.70 -7.45 -731 -748 -735 -692 -7.09 -7.11

We analyzed how distinct criteria measure the agreement of two mixtures when data is
generated from highly overlapping mixtures. The extended Corrected Rand displays bet-
ter results than the corrected Rand in discriminating the right solutions in all scenarios.
Furthermore, ECR behaves similarly to CR when no great overlap is present in the data,
and in the correction for randomness. It is important to stress that CR and ECR do not
substitute BIC for finding the right number of components, because they require the true
labels (or true posteriors). These labels are often not present, and despite the sub-optimal
results in this analysis, BIC works reasonably in practice. Nevertheless, if true labels and
overlapping assignments are present, ECR is more precise.

In summary, this chapter covers the basic aspects of the use of mixture models to perform
clustering. All results discussed here are based on the use of multivariate Gaussians as the
components of the mixture. Nevertheless, for specific applications, one can take advantage
of the characteristics of the data at hand, and choose the component models accordingly.
The EM algorithm offers a flexible framework for such extensions. In practice, for a given
model choice, one only needs to redefine the M-Step accordingly.

This thesis focuses on two types of components models for analyzing gene expression
profiles. The use of HMMs to analyze gene expression time-courses will be the focus of
Chapter 4. While in Chapter 5, we propose a new type of probabilistic model, dependence
trees, to model gene expression profiles during a developmental process. Furthermore,
once the M-Step for a given model is defined, one can straight-forwardly apply any other
extensions of the EM algorithm. We explore, in Chapter 6, the use of semi-supervised
extension of the EM to integrate additional data biological and improve clusterings of gene
expression time-courses.
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Table 3.2: We present the mean values for data with 2, 3, 4, 5 and 6 components (top to
bottom) against the number of components of the estimated mixture for cor-
rected Rand, extended corrected Rand and BIC . For all indices, the maximum
values (in bold) indicate the predicted number of components and the line pre-
ceding the indices values states the correct number of components.

no clusters 2 3 4 5 6 7 8 9 10
CR 037 030 024 020 0.17 0.15 0.14 0.13 0.12
ECR 021 0.15 0.12 009 007 0.06 005 004 0.04
-BIC 474 -475 -477 -479 -481 -484 -486 -488 -491
no clusters 2 3 4 5 6 7 8 9 10
CR 033 052 048 043 040 036 033 030 030
ECR 031 039 035 030 027 023 021 019 0.18
-BIC 574 549 550 -552 -554 -556 -558 -5.60 -5.63
no. clusters 2 3 4 5 6 7 8 9 10
CR 034 050 066 0066 064 059 057 058 0.58
ECR 043 045 0.58 0.55 052 048 045 044 044
-BIC 903 -897 -877 -872 -8.74 -876 -8.78 -8.80 -8.80
no. clusters 2 3 4 5 6 7 8 9 10
CR 033 046 048 0.53 054 055 056 055 0.56
ECR 033 042 044 047 0478 046 046 044 044
-BIC -1.00 -0.99 -0.98 -097 -097 -097 -096 -0.97 -0.96
no. clusters 2 3 4 5 6 7 8 9 10
CR 021 044 048 054 056 056 057 055 0.56
ECR 0.18 044 048 0.51 052 052 052 050 0.50
-BIC 734  -6.79 -6.74 -6.771 -6.71 -6.70 -6.70 -6.68 -6.58
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