
Chapter 2

Finite Mixture Models

A finite mixture model is a convex combination of two or more probability density func-
tions. By combining the properties of the individual probability density functions, mixture
models are capable of approximating any arbitrary distribution [145]. Consequently, fi-
nite mixture models are a powerful and flexible tool for modeling complex data. Mixture
models have been used in many applications in statistical analysis and machine learning
such as modeling, clustering, classification and latent class and survival analysis. In this
chapter, we will introduce the basics about mixture models. Thereby, we define the sta-
tistical and computational framework that will be further explored for specific bioinfor-
matics applications in the subsequent chapters. All the content covered in this chapter is
a review of established research in the area and can be found, for example, in the text-
books [93, 142, 145].

First, we describe the basic concepts and notations used through this thesis (Section 2.1).
Then, we introduce mixture models formally (Section 2.2), show how a mixture model can
be efficiently estimated with the expectation-maximization (EM) algorithm (Section 2.3),
give an example of mixture models with multivariate Gaussians (Section 2.3.3) and dis-
cuss some aspects of model selection and determination of the number of components
(Section 2.3.5).

2.1 Basics

A continuous L-dimensional random variable will be denoted as X = (X1, ..., Xl, ..., XL),
where Xl corresponds to the lth variable. Lower case letters will be used for a particular
observation (or realization) x = (x1, ..., xl, ..., xL) of a variable X . Bold face letters, such
as X, will denote a data of N observations of variable X or, equivalently, a N × L matrix,
where xil is the value of the ith observation for the lth variable in X. This notation is based
on the one introduced in the textbook [93].

A probability density function (pdf) p(x) is any function defining the probability density of
a variable X such that p(x) ≥ 0 and

∫∞
−∞ p(x) = 1. By integrating p(x) over an interval,
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Chapter 2 Finite Mixture Models

we obtain the probability that variable X assumes values in the interval [a, b], that is

P[a ≤ Xi ≤ b] =

∫ b

a

p(x) dx.

For a given pdf p(x), the expectation of X is defined as,

E[X] =

∫ ∞
−∞

xp(x) dx. (2.1)

In relation to the model parameters, we use the “hat” symbol to indicate an estimator. For
example θ̂ is the estimator of parameter θ.

2.2 Mixture Models

Let X = (X1, ..., Xj, ..., XL) be a L-dimensional continuous random variable and x =

(x1, ..., xL) be an observation of X . A probability density function (pdf) of a mixture
model is defined by a convex combination of K component pdfs [145],

p(x|Θ) =
K∑
k=1

αkpk(x|θk), (2.2)

where pk(x|θk) is the pdf of the kth component, αk are the mixing proportions (or compo-
nent priors) and Θ = (α1, ..., αK , θ1, ..., θK) is the set of parameters. We assume that

αk ≥ 0, for k ∈ {1, ..., K}, and (2.3)

K∑
k=1

αk = 1. (2.4)

By the property of convexity, given that each pk(x|θk) defines a probability density func-
tion, p(x|Θ) will also be a probability density function.

The most straightforward interpretation of mixture models is that the random variable X
is generated from K distinct random processes. Each of these processes is modeled by
the density pk(x|θk), and αk represents the proportion of observations from this particular
process. For example, the mixture in Figure 2.1 (a) models a bimodal density generated
by two independent processes. A mixture can also, by combining simpler densities, model
pdfs of arbitrary shapes. For example, with two Gaussian densities as components, we can
model a skewed density Figure 2.1 (b), or a heavy tail density Figure 2.1 (c).
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Figure 2.1: Examples of densities modeled by mixtures of two Gaussians pdfs. Green
lines indicate the individual component densities and red lines the mixture
densities. In Figure (a), we have a highly overlapping bimodal density, while
in Figure (b), we depict an unimodal density skewed to the left, while in Figure
(c) a density with heavy tails. These are only a few examples representing the
power of mixture models in modeling densities of arbitrary shapes.

2.3 Mixture Model Estimation

For a given data X with N observations, the likelihood of the data assuming that xi are
independently distributed is given by

p(X|Θ) = L(Θ|X) =
N∏
i=1

K∑
k=1

αk· pk(xi|θk). (2.5)

The problem of mixture estimation from data X can be formulated as to find the set of
parameters Θ that gives the maximum likelihood estimate (MLE) solution

Θ∗ = arg max
Θ
L(Θ|X). (2.6)

The summation inside the product in Eq. 2.5 prevents the possibility of analytical solutions.
One alternative is to maximize the complete likelihood in an expectation-maximization
(EM) approach [61].

2.3.1 Expectation-maximization Algorithm

The expectation-maximization (EM) algorithm is a general method for finding maximum
likelihood estimates when there are missing values or latent variables [61]. In the mixture
model context, the missing data is represented by a set of observations Y of a discrete
random variable Y , where yi ∈ {1, ..., K} indicates which mixture component generated
the observation xi. For now, we will assume that the number K is fixed and known a
priori.
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The likelihood of the complete data (X,Y) takes the following multinomial form

p(X,Y|Θ) = L(Θ|X,Y) = p(X|Y,Θ)p(Y|Θ)

=
K∏
k=1

N∏
i=1

(αk· pk(xi|θk))1(yi=k) (2.7)

where 1 is the indicator function, i.e. 1(yi = k) = 1 if yi = k holds, and 1(yi = k) = 0

otherwise.

The EM algorithm is derived as follows. Let Q be an auxiliary function, the conditional
expectation of the complete data (X,Y), given the observed data X and a parameterization
Θp−1,

Q(Θ,Θp−1) = E[log(p(X,Y|Θ))|X,Θp−1)

=
∑
Y∈Y

p(Y|X,Θp−1) log(p(X,Y|Θ)), (2.8)

whereY is the space of all possible values of Y and p(Y|X,Θp−1) =
∏N

i=1 p(yi|xi,Θp−1).

As Y is the space of all possible values of Y, it follows that∑
Y∈Y

p(Y|X,Θp−1) = 1. (2.9)

By Bayes rule we can re-write the likelihood function (Eq. 2.5) as

p(X|Θ) =
p(X,Y|Θ)

p(Y|X,Θ)
. (2.10)

Then, applying the logarithm function to Eq. 2.10 and by Eq.2.9, it follows that

log p(X|Θ) =
∑
Y∈Y

p(Y|X,Θp−1) log p(X,Y|Θ)−
∑
Y∈Y

p(Y|X,Θp−1) log p(Y|X,Θ).

(2.11)

Next, by replacing the definition of Q (Eq. 2.8) in Eq. 2.11, we can represent the ratio
log(p(X|Θ)/p(X|Θp−1)) by

log p(X|Θ)− log p(X|Θp−1) = Q(Θ,Θp−1)−Q(Θp−1,Θp−1)

+
∑
Y∈Y

p(Y|X,Θp−1) log
p(Y|X,Θp−1)

p(Y|X,Θ)
(2.12)

The last term of this equation is equal to the relative entropy between the two densities,
and by definition have always positive value [54]. Thus, it follows that
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log p(X|Θ)− log p(X|Θp−1) ≥ Q(Θ,Θp−1)−Q(Θp−1,Θp−1). (2.13)

Given a parameterization Θp such that

Θp = arg max
Θ

Q(Θ,Θp−1), (2.14)

and substituting Θp in Eq 2.13, we obtain

log p(X|Θp)− log p(X|Θp−1) ≥ Q(Θp,Θp−1)−Q(Θp−1,Θp−1)

≥ Q(Θ,Θp−1)−Q(Θp−1,Θp−1)

≥ 0

and consequently
log p(X|Θp) ≥ log p(X|Θp−1). (2.15)

Intuitively, this means that by maximizingQ (Eq. 2.8) in regard to a parameterization Θp−1,
we obtain a parameterization Θp that maximizes the log likelihood (Eq. 2.5). Based on this
result, the EM algorithm works by iterating between two steps. In the first (E-step), it finds
the expected value of the complete likelihood given the current parameterization Θp−1. In
the second step (M-step), it looks for the set of parameters Θp that maximize the expecta-
tion from the E-step. At each iteration, the EM increases the log-likelihood converging to
a local maximum [61]. These steps are repeated P times or until a convergence criterion is
fulfilled.

Before proceeding with the deduction, we need to define the posterior probability of yi = k,
given xi. By Bayes rule this can be defined as follows [145],

p(yi = k|xi,Θ) =
p(yi = k)p(xi|yi = k, θk)

p(xi|Θ)

=
αkpk(xi|θk)∑K

k′=1 αk′pk′(xi|θk′)
(2.16)

For simplicity of notation we denote p(yi = k|xi,Θ) by rik.

In the case of mixture models, Eq. 2.8 can be re-written, after some mathematical manipu-
lations [27], as follows

Q(Θ,Θp−1) =
K∑
k=1

N∑
i=1

rik log(αk· pk(xi|θp−1
k )). (2.17)

For the E-Step, we need to find the expected value of L(Θ|X,Y) given xi and the current
parameterization. As log (L(Θ|X,Y)) is linear in xi, this step reduces to calculating the
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expected value yi = k given xi and the previous parameterization Θp−1, that is

E[yi = k|xi,Θp−1] = p(yi = k|xi,Θp−1)

= rik. (2.18)

The M-Step can be formally described as

Θp = arg max
Θ

Q(Θ,Θp−1). (2.19)

To find the parameter estimates, we need to integrate Eq. 2.8 in relation to its parameters
Θ in a maximum likelihood fashion.

For the αk, the MLE estimate can be obtained as

0 =

[
K∑
k=1

N∑
i=1

rik log(αk· pk(xi|θk)) + λ(
K∑
k=1

αk − 1)

]
∂

∂αk
(2.20)

0 =
N∑
i=1

1

αk
rik + λ (2.21)

where λ is a Lagrange multiplier that guarantees stochasticity (Eq. 2.4). Setting λ = −N ,
we have

αk =

∑N
i=1 rik
N

. (2.22)

The estimates of θk will be specific to the choice of the component densities. For many
families of densities, such as exponential type densities, there are analytical solutions (see
Section 2.3.3). Even for cases where the maximum likelihood estimate cannot be found, it
is sufficient to find a parameterization Θp−1, such that

Q(Θp,Θp−1) > Q(Θ,Θp−1). (2.23)

This is the case, for example, when Hidden Markov Models (HMM) are used as the com-
ponent densities. In this scenario, we can apply the Baum-Welch algorithm [21] for each
component of the mixture at the M-Step of the EM algorithm. This procedure estimates
a local maximum likelihood estimate of a HMM, and meets Eq. 2.23. This estimation
method is known as the generalized expectation-maximization algorithm [27].
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2.3.2 Method Initialization

An important point of the EM algorithm is the selection of the initial parameterization
Θ0 of the model. A standard way to obtain Θ0 is to choose random rik values uniformly
from [0, 1] and estimating the individual models with the M-Step. In order to deal with the
effects of the random initialization, all estimations are repeated a number of times (usually
15), and the solution with highest likelihood is selected [143].

2.3.3 Mixture of Multivariate Gaussians

As an example, we show how the estimates of a mixture with multivariate Gaussians can
be computed. The probability density function of X is defined as

p(x|θ) =
1√

2π|Σ−1
x |

exp

(
−1

2
(x− µx)Σ−1

x (x− µx)T
)

(2.24)

where µx is a vector of means (µx1 , ..., µxL), Σx is the L × L covariance matrix, and
θ = (µx,Σx). By replacing 2.24 in 2.17, we obtain,

Q(Θ,Θp−1) =
K∑
k=1

N∑
i=1

rik log(αk)−
1

2

K∑
k=1

N∑
i=1

rik log(2π|Σ−1
x|k|)

−1

2

K∑
k=1

N∑
i=1

rik(x− µx|k)Σ−1
x|k(x− µx|k)

T , (2.25)

where θk = (µx|k,Σx|k) are the parameters of the pdf pk. Subscripts on parameter the
µx|k indicate that the parameter µ is an estimate of the variable X and it is conditioned
on the mixture model component k. By taking the derivative of Eq. 2.25 in respect to
θk = (µx|k,Σx|k), we obtain the following estimates,

µ̂x|k =

∑N
i=1 rikxi∑N
i=1 rik

, and, (2.26)

Σ̂x|k =

∑N
i=1 rik(xi − µx|k)(xi − µx|k)T∑N

i=1 rik
. (2.27)

Mixture of multivariate Gaussians are able to model groups of observations in ellipsoidal
regions of the Euclidean space with any orientation and size. See Figure 2.2 for an ex-
ample. In many situations, it may be desirable to use models with simpler assumptions,
and consequently fewer parameters. One alternative is to restrict the covariance matrix
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Figure 2.2: Example of solutions in a two dimensional data found by a mixture of Gaus-
sians with full covariance matrices (a), mixture of Gaussians with diagonal
covariance matrices (b), and mixture of Gaussians with identity covariance
matrices (c). The ellipsoids correspond to the region with 95% of the compo-
nent density. With the full covariance matrix, the mixture fits the two groups
shapes well. With the diagonal covariance matrix, the components also model
similar groups of observations compared to the full covariance matrix. How-
ever, for the former, the density cover regions of the space without observa-
tions. Gaussians with identity covariance matrices, which can only find spher-
ical and equal size components, cannot model the two groups of observations
well.

(Eq. 2.27) to the diagonal entries

Σd
x|k = diag(Σx|k), (2.28)

where diag(Σ) denotes a matrix, which has same values as the diagonal of the matrix Σ

and zero for all off diagonal entries. In this case, we obtain pdfs with ellipsoidal shape,
but with orientation parallel to the coordinate (see Figure 2.2). Another possibility is to
restrict all covariance matrices of the components to be the identical, which leads to all
components having the same shape and orientation. The most simplistic assumption is
the use of identity covariance matrices such that Σ∗k = σ2I and αk = 1/K. In this case,
all components cover spherical and equal size regions of the space (see Figure 2.2 for a
comparison of distinct parameterization in a toy data). See [10] and [37] for a complete
listing of possible parameterizations of the covariance matrix of a multivariate Gaussian.

2.3.4 EM and Local Maxima

Ideally, one would like to use the full covariance matrix parameterization, as it model
all covariance between variables. However, with such covariance matrices, the EM usu-
ally returns local maximizers, characterized by having a component with few observations
assigned to it [143]. In other words, the mixture fits perfectly a small part of the data,
obtaining a high likelihood, but does not achieve a good fit for other regions of the space.
This follows from the fact that the likelihood function is unbounded on boundaries of the
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parameter space (very low values of α or diagonal entries of Σ.) In particular, when the
number of observations (N) in the data is low, or in the presence of outliers, such solutions
will be often found by the EM algorithm [143].

To prevent this, there are several techniques available. One simple method [95] is to con-
strain the diagonal values of the covariance matrices to never be below a given threshold
value. Another alternative, which minimizes the effects of outliers, is to use alternative
density functions, such as the student [144], or the use of noise components [10].

A more principled approach is to define prior density functions on the mixture parameters
and perform a maximum-a-posteriori (MAP) estimation with Monte Carlo Markov Chains
(MCMC) [65, 84, 180]. This requires the specification of a proper conjugate prior on the
parameters. For example, [65] considers a Wishart density function as a prior on Σk and
Dirichlet distributions for the component responsibilities α. However, MCMC has a higher
computational cost than the EM algorithm. Recently, [80] showed that for multivariate
Gaussians, where the posterior mode solution is given with the use of conjugate priors,
EM estimation with point MAP estimates achieves comparable results to those obtained
with the computationally costly MCMC.

2.3.5 Determining the Number of Components

We cannot rely on maximal likelihood to estimate the number of components, since over-
fitted solutions, such as one component per observation would arise (see Figure 2.3). We
need to balance between fit versus generality. This is commonly done with a penalized
likelihood approach, as the Bayesian information criterion (or BIC for short) [191], and
further extensions [26, 38, 227]. The problem of finding the number of components can
also be tackled in a Full Bayesian setting using Dirichlet Process priors [75]. However, this
approach requires the use of the computationally expensive MCMC. Despite its simplicity,
BIC performs well in simulation studies [145]. Thus, it will be the methodology used
throughout this thesis for selecting the number of components.

We can tackle the selection of the number of components in a Bayesian framework by
comparing two mixture models ΘK and ΘK+1 with Bayes Factors. We calculate the ratio
of posterior,

BK,K+1 = p(X, Y |ΘK)/p(X, Y |ΘK+1), (2.29)

where ΘK and ΘK+1 are the parameters of two mixture models with K respectively K+1

components. It is possible to compare several models at once, rather than two by two
as in frequentist statistical test. When we use the EM-algorithm to estimate maximum
likelihood mixture models, approximate Bayes factors can be easily deduced from the
Bayesian information criterion (BIC) [191],

−2 log p(X, Y |ΘK) ≈ −2 logL(ΘK |X,Y) + ψK logN, (2.30)

where K is the number of components, L(ΘK |X,Y) is the maximized mixture log-likeli-
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Figure 2.3: Examples of mixture models with 1, 6 and 82 components fitting the Galaxy
Velocity data [176]. On the left plots, we have the density of individual com-
ponents and the histogram of the data, while in the right we have the mix-
ture density and the data histogram. The mixture with one component models
roughly the density in the range [15, 25], and imposes zero density to other
ranges of the density, plots (a) and (b). The mixture with 82 components, the
maximum likelihood solution for number of components equal to the number
of observations, simply over-fits the data, plots (e) and (f). The solution with
6 components offers a trade off between these two solutions, providing a good
fit of the data, modeling well all ranges of the density, plots (c) and (d) . This
mixture was presented in [145] as the optimal solution for the Galaxy data.
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hood with K components (Eq. 2.7), ψK is the number of free parameters in ΘK and N is
the number of observations in X.

The term ψK logN penalizes more complex models, since the fit of a model tends to im-
prove as the number of parameters increases. The smaller the value of BIC, the better the
model. It has been shown that BIC does not underestimate the number of true components
asymptotically and performs well in simulation studies [145]. In the case of a multivariate
Gaussians, parameterized by (µx,Σx), the number of free parameters in a model θk is equal
to L+ L(L− 1)/2. Hence,

ψK = K ∗ (L+ L(L− 1)/2). (2.31)

This chapter covered the basics aspects on mixture models and their estimation. In the
next chapter, we show how mixture models can be used in the context of clustering. Fur-
thermore, for specific applications, as the ones described in Chapter 4 or in Chapter 5, we
take advantage of the characteristics of the data at hand, and choose the component models
accordingly.
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