
Chapter 1

Introduction

We are concerned with the use of computational and statistical methods for the analysis of
gene expression data. In this chapter, we describe some basic concepts in gene expression
and biotechnological methods used to measure gene expression in large-scale experiments.
Additionally, we give a brief overview of the main tasks and challenges in the analysis of
the resulting data. Finally, we outline the main scientific contributions of this thesis and
summarize its contents.

1.1 Gene Expression: Transcription, Translation and
Control

First, we briefly review the process of gene expression. A detailed description can be
found in many textbooks, see for example [4]. The genetic information of organisms is
stored in deoxyribonucleic acid (DNA) molecules. These molecules are composed of two
polynucleotide chains (or strands) forming the double helix structure (Figure 1.1). The
nucleotides, which are the building blocks of a DNA molecule, are characterized by the
base attached to a sugar phosphate. The classical four types are: Adenine (A), Cytosine
(C), Guanine (G) and Thymine (T). One particularity of the double stranded DNA is the
complementary base pairing, i.e., a particular base on a strand only binds to a comple-
mentary base on the opposite strand. More precisely, “A” binds only to “T”, and “C” to
“G” (Figure 1.1). The reaction in which a single stranded DNA molecule binds to a com-
plementary strand is called hybridization, a reaction exploited by many molecular biology
techniques.

In eukaryotes, i.e., organisms which have cellular nucleus, several linear DNA molecules,
called chromosomes, are present in the cell nucleus. Each of these chromosomes is formed
by billions of base pairs. Genes are regions of the chromosome that code one or more
proteins1. They represent the basic units responsible for storing and passing on hereditary
characteristics.

Gene expression is the process by which the genetic information contained in the genes
1Some genes will code functional RNA structures, which are not translated into proteins.
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Figure 1.1: Example of a double stranded DNA molecule. Figure reproduced from the US
National Library of Medicine.

is translated into ribonucleic acid (RNA) molecules and, later, into protein molecules [4].
This process is divided into two main steps: transcription and translation. In the transcrip-
tion step, regions of DNA, which code genes, are transformed into RNA molecules by the
RNA polymerase (Figure 1.2, Step 1). RNA molecules are different from DNA in several
aspects: (1) they are only single stranded; (2) they have Uracil (U) instead of Thymine (T);
and (3) they have a quicker degradation time.

Next, in the translation process (Figure 1.2, Step 2), RNA molecules leave the nucleus
and are “read” by the ribosome in order to synthesize proteins. Triplets of RNA bases are
mapped via the genetic code into one of the twenty amino acids. These amino acids are
the building blocks of the proteins. Proteins, the final products of genes, are vital to the
cell functioning, since they constitute the structural components of the cells and catalyse
biochemical reactions.

While most cells of an eukaryotic organism encode the same genetic information, they ex-
press genes at distinct levels. The expression of a particular set of genes is either a response
to distinct environmental conditions or is part of the specific repertoire of a given cell type.
Understanding the mechanisms controlling gene expression is a central question in mole-
cular biology. This control can happen at several levels of the gene expression process.
The first level and the one of main concern in this work is the transcriptional control. At
this level, proteins, called transcription factors, bind the upstream (or regulatory) regions
of genes. These factors act as initiators (or repressors) of transcription by facilitating (or
blocking) the access of the RNA polymerase to initiate transcription.

2



1.2 Measuring Gene Expression with Microarrays

Figure 1.2: We depict here the main stages of gene expression. Step 1 corresponds to
the transcription of DNA to RNA molecules. Step 2 corresponds to the trans-
lation of messenger RNA (mRNA) to protein molecules. Figure reproduced
from [136].

1.2 Measuring Gene Expression with Microarrays

Microarray technology allows the simultaneous measurement of the concentrations of RNA
molecules (or transcripts). More precisely, this technology allows the measurements of
the expression patterns of genes—also known as expression profiles. For example, by
comparing the expression profiles of disease and normal cells [5], responses of cells to
environmental conditions [82], or during biological process such as cell cycle [201] and
development [214], the researchers can explore the dynamics of gene expression, to form
hypotheses about regulatory and functional roles of genes, and to obtain molecular signa-
tures of cell types and all this on a genome-wide scale.

Microarray Technology. The main idea behind DNA microarrays is to exploit the fact
that two complementary single stranded DNA molecules hybridize [111]. For each gene
of interest, a short sequence complementary to its sequence is select. These sequences are
called probes and have lengths ranging from 20 to 60 bases. The probes should be selected
in such a way that there is a low chance of hybridizing with sequence others than the target
gene sequence.

Then, with the aid of robotics or nano manufacture technologies, thousands of copies of
a particular probe are placed in a tiny area of a hard surface — the array. Thousands of
such probe spots can be placed side by side forming a grid on the array. Each spot contains
probes designed to hybridize with RNA from a specific gene. In the end, one can have as
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many as 105 spots arranged in a 2× 2 cm array.

In the next step, the RNA molecules of the cell population of interest are separated and
transcribed to single stranded complementary DNA (cDNA) molecules. This step is needed
as RNA molecules are unstable and would quickly degrade. Afterwards, the cDNA mole-
cules are marked with fluorescent or radioactive labels. The cDNA molecules are, then,
poured onto the slide. After some time, the slide is washed, removing the cDNA molecules
that did not hybridize with the probes.

Next, the slide is scanned, resulting in an image with all the spots intensities (see Figure 1.3
middle). Such an image is further processed using computational methods. The aim is to
calculate the intensity at each spot, which is proportional to the number of transcripts of a
gene that a probe is complementary to (the whole process is illustrated in Figure 1.3).

There are several distinct microarrays technologies such as cDNA microarrays [183] and
Affymetrix Gene Chips (also known as Oligonucleotide arrays) [134]. They differ mostly
by how the chips are manufactured and on methodologies for probe selection. The particu-
lar characteristics of such technologies are important for decisions concerning experimen-
tal design, experimental costs, measurements reliability and data pre-processing aspects.
See for example [119] for a complete description of microarray technologies.

One important aspect of microarrays is the use (or not) of reference RNA samples. In
double channel microarrays, such as cDNAs microarrays, two cell samples are poured in
the same microarray: cells of interest (e.g., disease cells, treated cells) and reference cells
(e.g., healthy cells, untreated cells). Each of these cell populations is dyed with a distinct
marker, for instance, a red Cy3 dye versus a green Cy5 dye. Double channel microarrays
return a relative quantification of the RNA expression in relation to the reference cell,
usually measured by taking the logarithm of the ratio between the red and green signals
(see Figure 1.3 (a) for an example of a two-channel microarray).

In single channel arrays, only one RNA sample is poured in the array, and no reference
sample is used. Single channel arrays return estimates on the number of copies of a par-
ticular transcript in a given sample. With Affymetrix microarrays, an example of single
channel array, 20 to 40 distinct probes, which are complementary to the sequence of an
unique gene, are placed in distinct spots on the array in order to obtain reliable estimates of
RNA quantities. Additionally, a mismatch spot (MM) containing a sequence, where a base
in the middle of the original probe (PM) sequence is exchanged, is placed next to each PM
spot. These reduce the effect of cross-hybridization, increase the signal to noise ratio and
improve the accuracy of the RNA quantification (see Figure 1.3 (b) for an example of an
single-channel microarray).

Pre-processing and normalization procedures are the initial computational tasks in the ana-
lysis of data from microarrays. These procedures are responsible for improving the esti-
mates of the RNA levels measured by microarrays. In the pre-processing step, one tries to
correct the probe intensities for errors introduced by experimental artifacts, such as non-
specific hybridization, dye efficiency, spatial biases, and so on. See for example [106]
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technology review
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As array technology has advanced, more sensitive and quantita-
tive methods for target preparation have had to be developed. In
cases in which the quantity of RNA is not limited, incorporation
of nucleotides coupled to �uorescent dyes during synthesis of the
�rst strand of cDNA is the method of choice, as it provides the
most linear relationship between starting material and labelled
product. However, most protocols require between 25–100µg
total RNA, which is often not readily available in studies using pri-
mary cells or tissues. Various procedures have been developed to

increase sensitivity and reduce the amount of RNA required. One
strategy is target ampli�cation by in vitro transcription, whereby up
to 50µg o� abelled cRNA can be produced from 1µg of mRNA. In
addition, several rounds ofin vitro transcription can be combined
with cDNA synthesis to enhance the ampli�cation even further4.
Using these protocols, it is even possible to pro�le the transcripts of
a single cell5. Another strategy is post-hybridization ampli�cation
using labelled antibodies or molecules carrying large numbers of
�uorophors6. Several studies have used target-ampli�cation tech-
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Figure 1 Schematic overview of probe array and target preparation for spotted
cDNA microarrays and high-density oligonucleotide microarrays. a , cDNA microar-
rays. Array preparation: inserts from cDNA collections or libraries (such as IMAGE
libraries) are ampli�ed using either vector-speci�c or gene-speci�c primers. PCR
products are printed at speci�ed sites on glass slides using high-precision arraying
robots. Through the use of chemical linkers, selective covalent attachment of the
coding strand to the glass surface can be achieved. Target preparation: RNA from
two di�erent tissues or cell populations is used to synthesize single-stranded cDNA
in the presence of nucleotides labelled with two di�erent �uorescent dyes (for exam-
ple, Cy3 and Cy5). Both samples are mixed in a small volume of hybridization bu�er
and hybridized to the array surface, usually by stationary hybridization under a cover-
slip, resulting in competitive binding of di�erentially labelled cDNAs to the correspon-
ding array elements. High-resolution confocal �uorescence scanning of the array with
two di�erent wavelengths corresponding to the dyes used provides relative signal

intensities and ratios of mRNA abundance for the genes represented on the array. 
b, High-density oligonucleotide microarrays. Array preparation: sequences of 16–20
short oligonucleotides (typically 25mers) are chosen from the mRNA reference
sequence of each gene, often representing the most unique part of the transcript in
the 5�-untranslated region. Light-directed, in situ oligonucleotide synthesis is used to
generate high-density probe arrays containing over 300,000 individual elements.
Target preparation: polyA+ RNA from di�erent tissues or cell populations is used to
generate double-stranded cDNA carrying a transcriptional start site for T7 DNA poly-
merase. During in vitro transcription, biotin-labelled nucleotides are incorporated into
the synthesized cRNA molecules. Each target sample is hybridized to a separate
probe array and target binding is detected by staining with a �uorescent dye coupled
to streptavidin. Signal intensities of probe array element sets on di�erent arrays are
used to calculate relative mRNA abundance for the genes represented on the array.
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Figure 1.3: We depict how microarray experiments are performed for cDNA (a) and
Oligonucleotide (b) microarrays. In the top, we depict how microarrays are
manufactured; and in the bottom, how RNA samples are obtained. In the
middle, we can see the images obtained after RNA samples hybridize to the
microarrays. For cDNA microarrays (a), each dot represents a probe, and the
red (or green) colors are proportional to the counts of RNA hybridized to that
probe in the reference (or control) sample. Similarly, the intensity of white
dots in Oligonucleotide arrays (b) represents the counts of RNA hybridized to
that probe. Figure reproduced from [190].
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for a review of methods on Affymetrix Gene Chips or [230] for protocols for cDNA mi-
croarrays. Next, normalization methods are applied with the aim of making expression
values obtained in distinct hybridization experiments comparable. See [203] for a review
of pre-processing and normalization methods.

Computational Challenges in the Analysis of Gene Expression data. Large-scale data
produced by microarrays experiments shows how gene expression changes in distinct bio-
logical conditions and tissue types. Manual analysis of such amount of data is not feasible.
Due to this limitation, statistical and computational methods are vital for analyzing gene
expression data. In fact, data arising from microarrays have several particularities that
should be taken into consideration by these methods: they should be able to cope with the
high dimensionality of the data, be robust to noise and take advantage of the experimental
design associated with the biological experiment.

For example, gene expression levels are often measured in few experimental conditions,
i.e., tissues types or time points (less the 100) for thousands of genes (more the 10,000).
Furthermore, despite improvements of microarrays experiments and protocols, these tech-
nologies still suffer from several sources of noise: either by manufacturing failures, pro-
blems in the reading procedure, unspecific probes, variability in biological samples, or
variations in the environment conditions in which experiments are performed. A recent
study [107] showed that at least 10% of expression measurements differ significantly in
replication experiments.

Another important aspect is the experimental design procedure used for acquiring the data.
For instance, in microarrays experiments measured over time, such as during cell cycle,
the cell populations tend to desynchronize with time. This results in deterioration of the
expression measurements of later time points [201]. The explicit use of knowledge of the
biological process makes computational and statistical methods more robust to this type of
inherent noise.

1.3 Thesis Overview

In this thesis, the main focus is on the problem of finding groups of co-expressed genes, or
genes that display the same expression behavior through particular biological conditions,
such as cell cycle, or developmental processes. The basic rational underlying this approach
is the assumption that co-expressed genes should (1) perform a similar functional task,
and (2) be regulated by the same transcription regulation program. Thus, exploiting the
guilty by association principle, one can deduce the function of an uncharacterized gene by
observing the function of co-expressed genes [71]. Also, by including additional data in
the analysis, such as regulatory regions, one can explore and uncover regulatory programs
controlling the expression of genes [212].

One traditional approach for finding co-expressed genes is the use of clustering methods,
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also known as unsupervised learning [64]. Clustering methods are usually based on a
similarity metric, which defines how close objects (or gene profiles) are in a given multidi-
mensional space, followed by a method that, for example, searches for groups (or clusters)
of objects that lie in compact regions and are far apart from other groups. While cluster
analysis is a well-developed research area [109], the characteristics of gene expression data
impose challenges not previously addressed by classical clustering methods.

This thesis uses mixture models as a statistical formalism for performing clustering of gene
expression data [145]. Mixture models are robust to noise, can model uncertainty about
cluster assignments, allow the inclusion of prior knowledge, such as intrinsic dependencies
of the experimental design, and offer a flexible framework for integration of additional
biological data.

In Chapter 2, we introduce the mixture model formalism and the method used for estima-
ting mixture models; the expectation-maximization (EM) algorithm. Then, in Chapter 3,
we describe how mixture models can be used to solve the clustering problem, and how
questions as choosing the number of clusters and cluster validation can be answered in
the context of mixture models. Additionally, in Chapter 3 we propose a novel external in-
dex for validating clustering computed by mixtures. With the exception of the proposal of
this external index, Chapters 2 and 3 basically review established research on mixture mo-
dels, and introduce the methodological framework used in the bioinformatic applications
described in later chapters.

Mixture models allow, with a proper choice of component models, to make explicit as-
sumptions about the data. This thesis proposes two novel types of components models
for analyzing gene expression profiles. The use of hidden Markov models with linear
topologies to analyze gene expression time courses will be the focus of Chapter 4. In
Chapter 5, we propose a new type of probabilistic model, dependence trees, to model
gene expression profiles during a developmental process. This approach assumes that the
sequence of changes from a stem cell to a particular mature cell, as described by a devel-
opmental tree, are the most important in modeling gene expression from developmental
processes. We also explore in Chapter 5 the benefits of using priors of model parameters
to obtain maximum-a-posteriori point estimates, and how this improves the robustness of
the method.

Once a given component model is defined, it is straightforward to apply any extension of
the expectation-maximization (EM) algorithm. We propose, in Chapter 6, the use of an
established semi-supervised learning method [123] to integrate additional biological data
and improve clusterings of gene expression time-courses. We evaluated the inclusion of
Gene Ontology annotations [9] and location analysis of transcription factor biding derived
from Chip-on-chip experiments [128]. Additionally, we propose a novel method, which
combines gene expression time-courses with location of gene expression in Drosophila
embryos [214], for finding groups of syn-expressed genes. Finally, in Chapter 7, we present
final remarks and future work with respect to the specific contribution of this thesis.
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