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1 Introduction — The Need for Valid Measures

The validity and reliability of measures is of hggh importance in many areas of
psychology. Clinical judgments, for example, cawveh#asting consequences for clients.
Invalid measurements bear risks like over— or uestenation of treatment effects, they
may lead to the wrong diagnosis, they may indieagaboptimal treatment, or, in the worst
case, they might even not detect a relevant symtoali. Burns and Haynes (2006) state
that: “The validity of clinical research findingsié clinical judgments depends on the
validity of measures used in research and cliractities” (p. 401). This is certainly true
for all areas of psychology. In educational or depmental psychology, a newly
developed schooling program may lead to disadvasté&gy children participating in this
program against others who do not participate sinfggicause an inadequate diagnostic
tool is used. Traffic psychologists help to desigad maps, crossings, and traffic lights to
reduce the number of accidents. Therefore, they nedid diagnostic instruments to
identify the best positions for them. All decisiadinspsychology should be based on the
best information available. Information is best wheis objective, reliable, valid, and
specific to a given problem (see e.g., Burns & Hayr2006; Courvoisier, Nussbeck, Eid,
Geiser, & Cole, in press).

Psychological scales, measures, or ratings carmmatohsidered valid per se but
their validity has to be proven in empirical apptions. The general term “validation”
(construct validation) subsumes many strategieshiénge been proposed to determine and
improve the validity and reliability of psychologicmeasures. Measures are unreliable
when measurement error is large and invalid wheiesyatic influences other than those
one wants to measure have a strong impact on tresur@ment scores. We need to
identify these influences to be sure that our messstiuly measure what they are supposed
to represent (e.g., Messick, 1995). If only thaduiences we wanted to capture are causes

of the observed scoreve may say that a score is valid:

Validity is an integrated evaluative judgment oé thegree to which empirical evidence
and theoretical rationales support théequacyand appropriatenessof inferencesand

actionsbased on test scores or other modes of assesgmgniBroadly speaking, then,

! The term score is used in its broadest sense.cAtggorization and observation of consistent beta\or
attributes is conceived as a score.
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validity is an inductive summary of both the exigti evidence and the potential

consequences of score interpretation and use. s{tke4995, p. 13)

Validity and validation are, thus, at the core ofestific and applied psychology.
There is an ongoing debate about the concept dityalSome researchers say that it is a
single property of scores and that these scorevadig or not in measuring an existing
construct (see e.g., Borsboom, Mellenbergh, & Vaserdden, 2003, 2004). The link
function relating the observed scores to the ugttegylconstruct is at the centre of this
conceptualization of validity. Others explicitlyfee to different types of validity that can
be present to a certain degree (see e.g., Camplbetike, 1959; Messick, 1995; Shadish,
Cook, & Campbell, 2002). In this conceptualizatidme nomological net is at the heart of
validity. Scores are considered valid if they fita a nomological net (show convergent
and discriminant validity). | will refer to the tat concept of validity in this thesis. Three
“types” of validity of a specific measure can beailmined by one or all of the three main
“types” of validation procedures (see Messick, 1995

Content validityis examined by analyzing if the content of the tsitation
matches the area about which conclusions are tirden. Testing the knowledge of the
Latin alphabet asking participants to type and naéneedifferent letters, for example, is
highly content valid, because the area (the Ldphabet) is well represented.

Criterion related validityis given when the score is highly associated witk or
more external variables (criteria) that are congideto be related to the psychological
construct. The criteria can be measured in the ssituation ¢oncurrent validity or in
future situationsgredictive validity. An intelligence test may be highly criterion idaif it
highly correlates with school achievement (for acaptualization of intelligence close to
academic skills).

Construct validityas in parts examined by the Multitrait—-Multimethdthtrix
(Campbell & Fiske, 1959) is concerned with theiladties (qualities) of a score. It is
analyzed, which qualities are measured by a gigenes—that is, which concepts account
for the performance on the test score. Some aspeetgiven score can be determined by
studying the association of the test score witlelotores that are akin to the first score
(convergent validity and with scores that are supposed to measure letatypdifferent
psychological constructsliscriminant validity. All items representing the same facet of
an intelligence test as well as the results ofeddft intelligence tests should be highly

positively associated (convergent validity) becatisy are supposed to measure the same
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trait. For instance, there should be no or onlymalk association of scales measuring
extraversion or neuroticism (high discriminant déi) because these traits are considered
to be independent from each other.

The analysis of convergent and discriminant vatidis done by the Multitrait—
Multimethod (MTMM) matrix (Campbell & Fiske, 195%)as become one of the most
important approaches for test-validation. Moderprapches of this analysis strategy offer
the possibility to determine the reliability of rtiple items representing one construct, the
convergence of different methods measuring the samstruct, the discriminant validity
of different measures of different constructs measuy the same method, the influences
due to method-specific effects, and to separatesumement error from true-scores.

So far, MTMM models have only been developed far éimalysis of models with
metric response variables or for variables witheoed response categories. To my
knowledge, no MTMM model for response variableswrbn-ordered categories has been
proposed so far. Almost all MTMM models that haveeib defined imply bivariate
relationships between variables. That is, cormeheti or factor structures linking one
manifest variable to its underlying latent variabld@he latent variables in the structural
part of the model are also associated via bivargggionships.

In principle, these MTMM models assume linear ielaships between latent
variables. If two variables are positively correthto each other, there must observational
units that have small values on these two variadhesother units that have high values on
these two variables. The relationship can be cemnstd “constant” (linear). Yet,
relationships between variables do not have tocbastant” across all categories. Imagine
the case with two distinct categorical variablesiststing of three categories each.
Principally none of the category combinations (edats of the joint distribution) is largely
overrepresented compared to the expectancies gndapendence except for the joint
categorization ofX = 2 withY = 2 (see Table 1.1.1). Therefore, the two vargmlde
associated but the association originates in thexrepresentation of one particular cell
combination (is not “constant” across all combioas). The latter piece of information is
generally represented in models for categoricah decause these models consist of
parameters reflecting over- and underrepresentatioin proportions (frequencies) of
specific categories or category combinations. Harethis piece of information is not
directly available in the MTMM models proposed so. it would be worthwhile to gather
this information to examine, for example, if higlonwergent validity is due to an

association between variables originating in syateover- and underrepresentation of a
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large number of category combinations or in an-oaad / or underrepresentation of only
one or a few category combinations. Imagine phgsgiwho rate radiographs. They may
not show over- or underrepresented ratings witheeisto the different pathologies but
only with respect to normal (non-pathological) wgtaphs. Models analyzing the
association of the two physicians’ ratings woulditate associated ratings although there
is no overrepresentation (compared to independewdd) respect to the pathological
radiographs but only with respect to the normalesadodels analyzing the category-
specific over- or underrepresentation would alloer 8 more fine graded analysis
indicating upon which cases the physicians agreefanwhich cases of pathologies they

do not agree implying that they should improvertihating skills.

Table 1.1.1
Artificial frequency table of two categorical vabikes
Y
1 2 3
15 15 15 45
X 2 15 60 15 90
15 15 15 45
45 90 45 180

Note.X andY represent two distinct observed variables.

The aim of this dissertation is to define MTMM migléor categorical outcomes.
These models may help to understand more aboutgkeciations between different
constructs because they principally allow for aareation which categories of different
constructs are under- or overrepresented and fortegration of higher order interactions.
These interactions depict the association of tlaremore constructs. The association of
two constructs may change depending on the othasteet. Highly extraverted
individuals, for example, may more frequently bengmently judged as friendly and
helpful by peer raters (high convergent validityan highly introverted individuals upon
whom the same raters do not agree or disagree freopgently than could be expected by
chance (low convergent validity). Convergent andcdminant validity may therefore

change as a function of the categories that anmieveal.
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Models will be defined that allow for this kind ahalyses. | will consider the
special case of raters as methods (see Kenny, ;19@&)ever, the results may be
generalized to other methods in a straightforwaay.wn particular, the development of
different Multitrait-Multirater (MTMR) models for on-ordered categorical data will be
done in several steps. In Section 2.1, the conadptenvergent and discriminant validity
will be defined and explained. The analysis of @ngent and discriminant validity will be
outlined with respect to the latent MTMM matrix Z2Since | will focus on raters as a
special case of methods in the context of MTMM agcle (see e.g., Kenny, 1995) existing
indices and models for the analysis of rater agezgiwill be revised in Section 2.3. This
will lead to the research questions presented atiGe3.

In Section 4.1, the log-linear model with latentigbles will be introduced. | will
show how the model is defined and how to intergtet model parameters in a
theoretically meaningful way. The model will beugtrated by an empirical application. In
Section 4.2, the model will be extended to morenttveo latent variables providing the
base for the definition of latent rater agreemeatiets.

In Section 5, the latent rater agreement modelsbeildefined on the latent level.
These models allow analyzing the convergence &érdift raters with respect to different
typologies. In Section 5.1, the latent rater agme@nmodels for structurally different
(heterogeneous) raters will be defined. The meanhghe model parameters will be
explained in detail. Empirical applications serwallustrate the models.

In Section 5.2, the previously defined latent raigreement models will be defined
for interchangeable (homogeneous) raters. Thendigin of structurally different and
interchangeable raters has severe consequendie fiorodel definition with respect to the
measurement models and the interaction terms. Thdésrences will be outlined.
Empirical applications illustrate the models.

In Section 6, the logic of rater agreement modei$ e combined with the
strength of MTMM models allowing for the analysi§ @onvergent and discriminant
validity. | will explicitly refer to the criteriadrmulated by Campbell and Fiske (1959) to
illustrate the strength of the newly developed ned&he models allow for analyzing
category-specific agreement rates (convergent it@lidhe discriminant validity between
particular latent categories as well as a detadedlysis of (category-specific) rater
specific effects. These effects reflect some of deeerminants and moderators for rater
accuracy models introduced by Funder (1995). Iri&@e6.1, these models will be defined
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for the case of structurally different raters. Ttwse of interchangeable raters will be
treated in Section 6.2. Empirical applications sdrvillustrate the models.

Finally, the models will be discussed with respectheir theoretical implications
for assessing the convergent and discriminant wli€urthermore, it will be discussed
how they can reflect complex effects of differesiieht categories across traits and across
raters on each other, which may reveal importaiotrination about sources of agreement
and disagreement. Future research directions asbm®xtensions to more than two or
three traits, for example, will be discussed, thlmreover, the newly developed models

will be related to the rater accuracy model (Fundegs).
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2 Multitrait-Multimethod Models and Rater Agreement
Models

2.1 Convergent and Discriminant Validity

In their groundbreaking work “Convergent and distgniant validation by the multitrait-
multimethod matrix” Campbell and Fiske (1959) prepd the multitrait-multimethod
(MTMM) matrix as a methodological tool for test amtion. More than 2000 citations
during the first 33 years since published (Stergpb&892) and more than 4.500 citations
until 2008 demonstrate the strong impact of Campbell andeFskvork. The initial
analysis of the MTMM matrix with respect to the gergent and discriminant validity can
be summarized in four points:

1. Convergent validitys given if different and independent measurenpeatedures
or measures of the same construct converge. Inrgemaeasures are said to
converge if they show sufficiently high correlatsowith each other. A valid score
is a score which is reliably measured and whos¢esic influences mainly
correspond to the construct one wants to measure.

2. Discriminant validity is given if observed scores aiming at measuringingis
constructs do not converge. The scores of scalesher measurement procedures
of one construct should show low correlations wsitores measuring another
construct.

3. Trait-Method-Units(TMU) are at the core of measurement. Each andyeseore
in the behavioral sciences depends on influencestauhe constructtr@it) and
properties of the measurement methoethod. Method has become a term with a
widespread meaning: A method may represent scades;s, items, parcels of a
test, measurement situations (e.g., field vs. klooy), or occasions of
measurement. Biesanz and West (2004), for exangple, an overview of the
meaning of the term “method” in modern psychomeatradels. Burns and Haynes
(2006) identify different sources of variance ahwal measures that may all be
modeled as methods in the sense of Campbell akd.Histhis contribution, | will
only consider raters as a specific method. Ratersme of the most common types
of methods applied in psychology (see Kenny, 1995).

2 information retrieved from isi web of knowledgétfh/apps.isiknowledge.com) on March 26, 2008.
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4. More than one trait and more than one meth{oater) are needed to separate
influences due to trait and method effects. Morantlone method is needed to
identify the influence of the trait (construct). gHi correlations of different
measures representing the same trait originatingjffarent methods indicate the
influence of the trait. More than one trait is negdo identify the influences due to
the different methods. Correlations of measuresrgghg to the same method but

different traits indicate method-specific influesce

Relying on these four considerations Campbell aistteF(1959) introduced the
Multitrait-Multimethod (MTMM) matrix (see Table 2.1). This matrix consists of the
correlations between all trait scores measured ditierent methods. Additionally, the
reliability can be depicted on the main diagonal.this matrix, Campbell and Fiske
identified four different key components for det@ring the convergent and discriminant
validity. The four components can be found in twffedent blocks of the MTMM matrix.

Monomethodlocks are the cells combining scores of differteaits measured by
one single method (the method remains the séipe:M;). In thesemonomethodblocks,

the reliability estimates rhonotrait-monomethod correlationdepicted withR?) and the

TleleMl)) can be found (grey shaded triangles).

heterotrait-monomethodorrelations(e.g.,r(
Heterotrait-monomethod correlations represent thBso@ation of two distinct traits
measured by one method. In general, these cometashould be rather low. However,
these correlations represent influences due tahtberetically expected association of the
two constructs but also influences due to the $ipeniethod. In the case of different raters
as methods, these correlations are influenced bya#isociation of the two traits, say
openness and extraversion, and also by the rageifgpview of this association (e.g., the
presence of a halo-effect may lead to an overestmaf the correlation of openness and
extraversion).

In the heteromethodblocks, two types of correlations can be foundeSgh
correlations indicate theonvergent validityand heterotrait-heteromethoaorrelations.
Convergent validity rhonotrait-heteromethod correlationsan be found on thealidity

diagonals between the triangles. These correlations

(r(Tle,TlMl)’r(TzMz,TzM])’r(Tst,Tle)’for examplé depict the convergence of trait measures

measured by different methods (1 and 2 in the el@mp
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Table 2.1.1
Multitrait-Multimethod matrix for three traits ¢ T, and &) measured by three methods; (Ml,, and M)
M, M2 M3
T, T, Ts T, T, Ts T, T, T3
T, R
My T2
T3
T R
M> To (T,M5,TyM,) R
T3 (TsM2,TiM,) (TsM, T,V R?
T r‘~rLTll\fl3,T1M2)\\\r(TTI\Al,TZMZ) (mMsTM) R
Ms T, E (TZM;,;;M2)‘~\\\(T2M3TZ\M\Z\)\\*~((]'2\M3,T3MZ) i M, M. TiMy) R?
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Note R* Reliability; r(TiMj’Ti‘Mjl): correlation of the varia_b_lt_e_s_ representlng them;&as of trait measured by methqgdvith the measure of trait

I' measured by methgtl Heterotrait-monomethod triangles are grey-shadestendtrait-heteromethod triangles are depicted wébkhed
lines. Convergent validities can be found in thiéisaan the main diagonals within the subtables pedonging to any triangle).
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Campbell and Fiske (1959) developed four criteola dvaluating the convergent
and discriminant validity of measures within thgifMM framework:

1. The correlations on thevalidity diagonal (e.g.,r( depict theconvergent

——
validity of particular traits measured by different methodikese correlations
should be significant and considerably high.

2. The correlations on the validity diagonal (monotraitteeomethod correlations)
should be higher than the correlations of the otlarables of the same row or
column in the particulaneterotrait-heteromethod blockhe measures of one trait
by two different methods should be more stronglyelated (converge to a greater
extent) than two different traits measured by thme two methods. Under these
conditions, there idiscriminant validity

3. The monotrait-heteromethod correlatiorshould be higher than theeterotrait-

S . :
TMaToM) r(T2M3,T1M3))' This comparison also

monomethod correlations €.9.1
concerns théiscriminant validity
4. The correlations of variables should show the spattrns in all of théeterotrait
triangles of both themonometho@nd heteromethod block$his desideratum also
concerns theliscriminant validity The associations of the different traits showdd b
the same for all methods and all method combinati@iscriminant validity shall

not depend on the set of methods used to measiteaits.

The guidelines presented by Campbell and FiskeQ)18&ll influence our modern
understanding of validation. Marsh and Grayson $)9§ive a good summary of the

intention, impact, limitations, and consequencethefproposed guidelines:

Campbell and Fiske (1959) were aware of most thdtdtions in their
approach, specifically stating their guidelines idtidbe viewed as “common
sense desideratum” (p. 83). Their intent was twigea systematidprmative
evaluationof MTMM data at the level of the individual traiethod unit,
gualified by the recognized limitations of theirpapach, not to provide a
summative evaluatioar global summaries of convergent validity, disgriant
validity, and method effects. More generally, Caerlpland Fiske had a

heuristic intention to encourage researchers tosiden the concepts of
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convergent validity, discriminant validity, and et effects; in this intention

they were remarkably successful. (Marsh & Gray4895, p. 180)

Modern statistical approaches as the Confirmatoagtdt Analysis (CFA) in
combination with structural equation modeling (SE&&pecially Joreskog, 1969, 1973)
allow analyzing MTMM data with very sophisticatecbdels (see e.g., Eid, 2000; Eid,
Lischetzke, Nussbeck, & Trierweiler, 2003; Eid, dhetzke, & Nussbeck, 2006; Kenny,
1976, 1979; Kenny & Kashy, 1992; Marsh & Grayso893; Saris & van Meurs, 1991;
Widaman, 1985). All of these models allow for aagpion of measurement error from
latent scores, thus enabling researchers to anahgdatent MTMM matrix which is
corrected for differences in the reliabilities dfet measures. Therefore, more accurate
estimations of the convergent and discriminant ditgli free from distortion by

measurement error can be obtained.

2.2 The Latent Multitrait-Multimethod Matrix

Out of the great variety of different CFA-MTMM mddethe Correlated Trait (CT) Model
with rater-specific trait-variablesTj() comes closest to the original matrix proposed by
Campbell and Fiske (1959). This model is depictedrigure 2.1. In this model, a latent
trait variable Tj) is introduced for all observed variableg) measuring the same traj} (
rated by the same rate).(In Figure 2.1, there are two observed variablg$o( every
combination of traits and raters. That is, the samm itemY>1, indicates the rating on the
2"% indicator { = 2) of the ¥ trait ( = 1) for the 2° (k = 2) rater. In order to have latent
rater-specific trait-variables each rater has tiole at least two ratings. In this model the
number of latent traits corresponds to the prodéittaits and raters (methods) (e.g., 3 x 2
= 6 latent traits). The model allows for a separatof trait-rater-specific effects from
measurement error. The correlations of the ratecifip latent traits can be analyzed in the
standard framework provided by Campbell and Fidlg59). It is the analysis of a latent
MTMM matrix.

The measurement equation of the CT model with nteHpecific trait variables is:

Vi =0y Ay T+ E, . (2.2.1)
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where a;, is the intercept and,;, is the loading coefficient of indicatdfj on TraitTy.

E;. represents the measurement error variable.

Elll

1 Y
¢ w Rater 1
Trait 1 ez Yo
Y112
° Rater 2
Y212
%
o = Rater 1
Trait 2 Yoo
° V122 Rater 2
Y222
%
¢ B Rater 1
) Yoz
Trait 3
%
° 2 Rater 2
Y232

Figure 2.1. The CT-model for three constructs withthod-specific trait variableJ:
trait variable;Yjx: observed variable; indicator;j: trait; k: rater; Ej.: error variable (only
depicted for the first indicator). Only the firsivd loading parameters are depicted

(ATlll = 1;ATZIJ.2) '

The six latent variables (presented in ovals irufég2.1) may be analyzed in the
same way as the manifest variables presented ile Pab.1 Therefore, the convergent and
discriminant validity can be determined on the natéevel according to the criteria
proposed by Campbell and Fiske (1959). A direcipéida of the statistical structure of the
CT model to the analysis of categorical data issiids (see Hagenaars, 1990, 1993).
However, no model for the analysis of latent ratgreement as well as the analysis of

convergent and discriminant validity for categorictata has been formulated yet.
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Therefore, the existing models of rater agreemaltfinst be revised in order to adopt

their structure on the latent level.

2.3 Manifest Rater Agreement Models

The analysis of rater agreemehas a long tradition in psychology as in the dasiEnces
in general. Indices and models of rater agreemane hmainly been proposed for the
analysis of multivariate cross-classifications ainrordered categorical (nominal) data.
Non-ordered categorical variables are variables sehwvalues only serve to identify
categories without any quantitative meaning. Céhidisorders, for example, are often
measured on a nominal scale. The assignment aio*ljaranoid schizophrenia disorder”
and “2” to “major depressive disorder” is equallgn@ssible as the reverse. The
assignment of numbers to the categories has nocingmathe further analysis of the data,
because nominal variables are not ordered in afgpe@nner. Nominal variables can be
obtained by a wide array of different "ratings" lswas self-ratings, peer ratings, medical,
and psychological diagnoses (for an overview sge Bakeman & Gnisci, 2006; Neyer,
2006). The assignment to categories requires #dt and every observation is classified
into one and only one category. The categories bmsixhaustive and mutually exclusive.
Although categories have to be mutually exclusthes does not imply that all
raters provide the same score for the same obJéus. may be due to an inaccurate
definition of the categories, differences in theoamt and / or quality of information
between raters, or to biased ratings by one or maiezs. To analyze the convergence of
different methods (the agreement between rateoshimal variables are usually presented
in cross-classifications (cross tables), in whitle rows and columns represent the
different categories of the manifest variables st by the different methods. The
agreement between two or more raters can be detednmelying on different indices of
rater agreement. The analysis of rater agreemembtisestricted to the case of nominal
data but all indices and models presented in tisisedation may also serve to quantify the
agreement (convergent validity) for scores of highgeasurement levels (ordinal or

interval level data).

% Large parts of this chapter have been publishelussbeck (2006).
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2.3.1 Rater Agreement Indices

The proportion agreement indgpercentage agreement index) may be seen as aivatu
and useful first measure of agreement. It is sintipdyproportion of identical assignments

of two raters. It is computed by:

>(n)
P =, (2.3.1)
> > (n)

i=1 j=1

where n; denotes the number of cases in ¢glbf the table representing the cross-

classification of the two ratings: (rating of the 1 rater;j: rating of the ¥ rater), n,

denotes the entries on the main diagonal (repriegeagreement, wheie= j). Its range is
from O to 1 with 1 indicating perfect agreementim@times the proportion agreement
index is referred to as percent agreement (HartmbB®i7), interval-by-interval agreement
(Hawkins & Dotson, 1975), exact agreement (RepptzD8oles, Deitz, & Repp, 1976),
overall reliability (Hopkins & Hermann, 1977), tbtagreement (House, House, &
Campbell, 1981), or point-by-point reliability (Kgl 1977).

Unfortunately, as Suen and Ary (1989) have showme, roportion agreement
index is inflated by chance agreement and suffens fits dependency on the marginal
distributions. Agreement on chance can simply lerdened by multiplying the marginal
proportions:

_ N

N (2.3.2)

&

with g depicting the expected proportion of dglgiven independent ratings ahds the

sample size. “+” in the subscripts indicates thiésoghich have been collapsed. That is,
the cells which have been added to yield a mardreguency. Determining the expected
cell frequencies using Eq. 2.3.2 for Table 2.3.5{mws that the observed cell frequencies

exactly correspond to the expected frequenciesruagiimption of independence. There
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is no agreement beyond chance agreement for therdteos. However, the proportion

0+ 445

agreement index is rather hiéfpo =55+ 445

= .89) implying considerable agreement.

Table 2.3.1
Two cross-classifications of two ratings (artifictata)
(a)Data Set 1

Marginal
Rater B distribution of A
1 2 ni+
1 40 15 55
Rater A
2 20 425 445
Marginal distribution of B Ny 60 440 500
(b) Data Set 2
Marginal
Rater B distribution of A
1 2 Ni+
1 0 55 55
Rater A
2 0 445 445
Marginal distribution of B Nyj 0 500 500

Note. n. represents the number of times rater A choose=gcaes 1 or 2, respectively. The
corresponding frequencies for rater B are denoted.b These marginals are obtained by adding
the cell counts of the corresponding row (or colurespectively).

Additionally, the proportion agreement index is sehsitive with respect to critical
cases (hyperactive children, for example). This loast be illustrated by the data in Table
2.3.1(b). Assume, for example, that 55 pupils dbtishould be rated 1 (e.g. hyperactive,
as does A correctfy and 445 should be rated 2 (not hyperactive). @slwe seen in Table
2.3.1(b), both raters agree 445 times diagnosimggas “2” while in the other 55 times,

4 Assume that the “true” score for the pupils is\kno
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Rater A correctly judges “1” while B assesses tame pupils as “2”. The proportion

agreement index yields a value pf = .89, which is quite similar to the value obtained

from the data presented in Table 2.3.1((p) =.93). However, both raters do not agree in

even one critical case, whereas in the upper gafable 2.3.1 both raters agree in 40
critical cases. The high agreement in Table 2.3.&fems from the low prevalence of
hyperactivity which is correctly reflected by therginal distribution of Rater A. Because
A correctly identifies hyperactive pupils, the poofion agreement index may lead to the
improper conclusion that B does so as well. Bt thgh level of agreement is completely
due to the agreement between the two raters f@sdaslonging to category 2. Hence, the
proportion agreement index severely suffers frannsensitivity to critical cases and its
dependency on the distribution of the criteriore.(i.its prevalence). As the actual
prevalence of behavior occurrence approaches oniggero, the possibility increases that
the proportion agreement index is inflated (Costell973; Hartmann, 1977; Hopkins &
Herman, 1977; Johnson & Bolstad, 1973; Mitchel, 9 7The closer the prevalence is to
.50, the less likely the proportion agreement ingexflated (Suen & Ary, 1989). Unless
one knows the marginals it is impossible to provigasonable thresholds for the
proportion agreement index.

The occurrence and nonoccurrence agreement indicas be used when the
prevalence of a critical observation is very lowvery high. The occurrence indegod)

should be used when the prevalence rate falls b&lowit is computed by:

occurrence agreements

: . (2.3.3)
occurrence agreements + dlsagreem

pOCC =

When the prevalence rate is higher than .80, theecmurrence agreement indgxof)
should be used (Kelly, 1977). The nonoccurrenceesagent index is calculated by
replacing the occurrence agreements by nonoccwragicements in Equation 2.3.3. The
occurrence (or nonoccurrence, respectively) agratsmeflect the number of times both
raters agree on the occurrence (nonoccurrence)hef ctitical category and the
disagreements reflect the times both raters disagme general (on occurrencand
nonoccurrence). Unfortunately, the occurrence (nonmence) agreement index corrects
for most of the agreement on chance, but not fetakal agreement on chance since it still

depends on the marginals (Suen & Ary, 1989). Anotlmaitation is that no prior



Multitrait-Multimethod Models and Rater Agreemenbbiels 21

knowledge about the prevalence rates exists thatdaalow for a theoretically founded
application of these indices.

The x?- (chi-squareyalueas a measure of association can also be usedljz@na

rater agreement. Comparing the observed cell frerjese against their expected
frequencies under the assumption of independencesaldetermining if some cells are

more (less) often represented than expected bycehan

X’ =|Ziw (2.3.4)

. n, andn,; represent the marginals of ravand columrj, respectively.

High values indicate high associations of the gainThe statistical significance of this
measure of association can be determined by congpdre empirical value (Eq. 2.3.4) to

the theoretically expected value given the degoédeeedom. The degrees of freedom of
the correspondingy®-distribution can be determined byif = (| —1)2 for quadratic

contingency tables. The higher tjfevalue, the less the observed cell frequencies imatc
the expected cell frequencies. One major drawbéthke’-statistic is its dependency on
the sample size. Contingency tables with identedi-proportions yield highey®-values
for those with larger samples.

They*value is not restricted to a special range of esluts values are larger than
zero but have no upper limit. To make its valuesranoomparable, the corrected
Contingency Coefficient & and Cramer's V can be computed (see for example
Liebetrau, 1983). Both coefficients transform thmpérical y*value to obtain values
ranging from zero to one. In these transformatibiesempiricaly®value is compared to a
maximaly’value Cmay). The transformed coefficient€4 or V) can be interpreted as a

measure of association:

Contingency-CoefficienC:

c= |4, (2.3.5)




Multitrait-Multimethod Models and Rater Agreemenbbiels 22

Corrected Contingency Coefficie@Gtor:

c. =< with . = [2=L and R = mini( 3. (2.3.6)
Cmax R
Cramer'sv:

B / X’ . o
V= (R=D)’ with R = min , J). (2.3.7)

Unfortunately Gorr cannot reach 1 in nonquadratic contingency tafpeerel # J),
whereasV does. Both coefficients are hard to interpret bheeathere is no standard for
judging their magnitudes (Reynolds, 1977a, 197BIshop, Fienberg, and Holland (1975)
conclude that these coefficients should only beldsecomparing several tables and may

not be interpreted per se.

Coefficient kappa(x; Cohen, 1960) is a flexible index that is, apfieato

dichotomous or polytomous variables involving twanore observersce is computed by:

K= , (2.3.8)

|
where P, represents the observed proportion of identicéhga (Ff) :Z p,ijand Pe the

i=1

|
expected proportion of agreement by arbitrary WiﬁPe :z P.. pHJ, p, denotes the

i=1

proportion of observations within each c%l i = %j wheread denotes the number of
categories.

k ranges from —1.00 to +1.00, whereby a posittvendicates that the observers
agree more frequently than expected by chance,izéicates that both raters agree on the
same level as expected by chance and a negative walicates that both raters agree less
often than expected by chance. A nega&vrovides a strong hint that raters do not use
all categories in the appropriate way. As a ruléhaimb, ax of .60 can be regarded as the
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minimal acceptable level of agreement (Gelfland &trhann, 1975) whereaska of .80 is
an indication of high agreement (Landis & Koch, 7p7

2.3.2 Advantages and Limitations of Rater Agreement Indices

In general, associations between variables or mistban be detected by tifevalue as a
measure of association. This value can also be amdpto its theoretical distribution
yielding they’test. This test is principally conducted on thsidaf the null hypothesis
that all variables are independent from each offieey>value provides information on
whether the data differ significantly from the el cell frequencies. Information about
the strength of association can be obtained byctineected Contingency Coefficient and
Cramer’sV.

The special case of rater agreement can be andbyzselveral methods. As pointed
out, many of them are afflicted by specific probsernihe most promising approach seems
to be the x -coefficient, a method that is a chance-correctedsion of proportion
agreement. Suen, Ary, and Ary (1986) demonstratesl mathematical relationship
betweenx and proportion agreement and also provided comregrocedures from one
index to the other.

Many authors suggest to be the most preferable agreement index bec#duse
corrects for chance agreement, is related to ptxgen(proportion) agreement, and is
comparable between studies (see Suen & Ary, 1988)ewothers criticize it as not
comparable between studies (Cicchetti & Feinst@#90; Feinstein & Cicchetti, 1990;
Thompson & Walter, 1988a, 1988b; Uebersax, 19870eéd,x can be used to test
whether ratings agree to a greater extent thancexgheby chance. Yet, there is still
concern about using as a measure of agreement because it is only ef@mpected for
the assumption of independent ratings, an assumptibich is implicitly made but
legitimated by no means (it is assumed that chaageeement is based on the
independence model). Uebersax (1987) demonstratedtiferences in the accuracy with
which positive and negative cases can be deteced differences in the mathematical
characteristics of the particular decision-makingcess) affect the value af. Therefore,
it is not useful to comparg across studies. Moreover, this problem increademwhere
are different base rates. In general, if the sangplesists of cases which belong to an
easily identifiable category, a higher is obtained, although the diagnostic accuracy

remained the same compared to a sample consistings® easily identifiable cases.
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Diagnosability curves representing the degree tdachvhdiagnosticians are able to
accurately judge subjects with respect to the stdjjérue status may actually differ so
much thatx -values obtained for the same symptom (criterioith wimilar base rates
cannot be compared across studies. Unless theaa explicit model of rater decision
making, it remains unclear how chance affects dmwisof actual raters and how one
might correct for it (Uebersax, 1987).

Increasing the number of categories is no problentHe different rater agreement
indices. However, when the number of methods (eess) increases, the application of
the general agreement indices becomes more corgalicén this casex should be
determined for each rater pair, and the medianevahould be taken as the overall value
(Conger, 1980; Fleiss, 1971). For example, Flei951) developed modifications af to
determine rater agreement when objects are ratédebyame number of raters to compute
agreement with regard to a particular object, andstimate agreement within a particular
category.

A high level of agreement between raters does natamtee an individually correct
diagnosis; yet, disagreement between raters oftgicdtes a lack of diagnostic accuracy
(Uebersax & Grove, 1990). The association betwesmmables and the extent to which
methods or raters agree depend on two major @itEirst, it is important that both raters
can well distinguish between any pair of categorigstinguishability between two
categories increases if the ratio of concordarihgatto discordant ratings of different
observers increases. The second criterion is thedfbias (Agresti, 1992). According to
Agresti’'s definition, the amount of bias depends tbe comparison of the marginal
distributions: If raters use the response categmigh the same frequency, their marginal
distributions are homogeneous, indicating that nohehe raters prefers a particular
category compared to the other raters. However,dgemeous marginal distributions do
not imply that all raters judge the subjects cdtyecompared to the subjects’ true status,
but they show that they use the response categaries similar way. If all raters
distinguish between categories in the same wayttagidmarginal distributions are similar,
subjects will be more congruently assigned to titegories of a variable, thus providing

hints that observers define the categories in dasinvay.
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2.3.3 Rater Agreement Models

All general agreement indices described so farttaprovide more detailed information
about various types and sources of agreement aadjréement. However, this kind of
information can be obtained by modeling associatioetween variables usithgg-linear
models. For special cases of association, effeessjas they*-value or Cramer'¥) can
be estimated representing the degree of associdieiween variables. Conditional
probabilities of receiving a particular responseabyobserver given the responses of other
observers can be computed. Finally residuals canddtermined that compare the
frequencies with which certain types of agreemert disagreement occur compared to
what would be expected with some predicted pati@&gnesti, 1990, 1992).

All log-linear models for the common distributiong two variables are restricted
models of thesaturatedog-linear model:

& =157, (2.3.9)

where the expected cell frequenos;(with i = 1,..1 andj = 1,..., J denoting the

categories) is computed by the product of the dvefiect (/7) two one-variable effects

(riA,er), and the two-variable effec(trijAB). In the saturated (population) model, the

model parameters can be determined by simply cdmpairequencies and mean
frequencies of different cells of the joint distrthon of different variables. The estimation
of the parameters for other models has to be dameguMaximum-Likelihood (ML)

procedures. Table 2.3.2 depicts the joint distrdyutof two variables (their cross-

classification). The extension to more than twaalaes is straightforward.

The overall effec{r7) represents the geometric mean of all cell fregiesnand is,

thus a mere reflection of the sample size (Hagesna&03). It can be determined by:

5= .J/D !i:lqj | (2.3.10)
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The one-variable effectsr®, and er) reflect deviations of the geometric mean of

all cells belonging to theth (respectively,jth) category of a variable. They can be

estimated by:

"= ,
7
and (2.3.11)
|
| Q
78 = D ]
i :
7
Table 2.3.2
Cross-classification of two variables
VariableB
1 e J n,
1 N11 N1y n,
VariableA e LN, ..
| N1 Ny n.
n,; n,, PN n,, N
Note ...i... and ..j... indicate specific categories of the finite numb&categories fot

In the saturated model, all cell frequencies aracty reproduced. Therefore, the
one-variable effects reflect the odds comparingréiqular marginal to the overall effect.

The one-variable effect gives first insight intaerabias (or method bidgB; with
respect to the other ratif)g Ratings are biased with respect to each othéheodegree
their marginal distributions differ from each ott{@gresti, 1992):

® | will refer to these rater-specific effects asthuel bias to be in line with the existing literati.e.,
Agresti, 1992).
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MB,

(A/B)

SIEt

: (2.3.12)

with i indicating the identical category of raters A andMB in Equation 2.3.12 is the
rater-effect of Rater A for categorycompared to Rater BA(/ B). A value greater than 1
indicates a higher proportion (a value smaller thansmaller proportion) of this category
for rater A than for rater B. This kind of rateffezft can be determined in all following
models (relying on the expected frequencies or gntagns). For the saturated model, the

rater-bias can directly be computed relying on thgo of the log-linear parameters

T,

A
MB, —=. It is the degree to which A or B overestimatesd@restimates) the

(A/B)

T,

prevalence of a particular category with respectthe other rater. It is especially
meaningful to calculate this index if one of théera provides “better” ratings than the
other. That is, if one rater can be seen as a gfalidard (like a reference method, a well
established method) it is meaningful to compareather rater against this gold-standard

rater.

Finally, the two-variable effe(I(tT”-AB) depicts the deviation of a particular cell from

its expected value given the overall and one-véialfects. It corresponds to the odds of

the actual observed cell frequency with resped¢h#oexpectation given the overall effect

and the two odds depicting the deviation of theesponding rOV\( riA) and column(er)

from the overall geometric mean:

(2.3.13)

The saturated model exactly reproduces the obsemidrequencies; it does not
iImpose any restriction on the expected frequeremeistherefore does not contain testable
consequences.

A useful first analysis of agreement can be dontebiing thendependence model

The independence model assumes that there is noia#sn between both ratérsThus,

® The log-linear models for rater agreement are rgdigeéntroduced for the case of two raters but ban
extended to more than two raters.
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AB

the two-variable effect-parameter(srij ) are set to 1. The model equation for the

independence model appears as:

g =11’ (2.3.14)

In this model, only the one-variable effects ar@lemented which means that the
marginal distributions of both variables are repwetl. If these one-variable effects are

equal to each othe(riA =17, fori = j), both variables’ marginal distributions are

homogeneous. Homogeneous marginal distributiondyirtiiat both raters choose each
category with the same frequency; accordingly, aterrprefers any category to a greater
extent than the other, which means that no rasngased (with respect to the other rater;
Agresti, 1992). This type of model only rarely figsnpirical data because, in general,
different measures of a construct are relateddertain degree representing the convergent
validity.

Useful information provided by the independence el@tems from the analysis of
its adjusted cell residuals. Adjusted cell residuadmpare observed with expected cell

frequencies (see Agresti, 1992):

r, = N § . (2.3.15)
ni+ _h
e

A useful extension of the independence model igjtiesi-independence modéh
this model, a new parameter is introduced. Thiamater is only implemented for cells on
the main diagonal which represent agreement betwexthods:
1, ifi =

2.3.16
0, ifi # j ( )

§ =n'r? (4°) , with | ={

In contrast to the independence model,dbasi-independence modeéllows for
higher cell frequencies in cells on the main diadpibut no overrepresentation in any

other cell. For cells indicating disagreement, ittdependence model holds. As a result of
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the newly introduced paramete(srij’*B)', the estimated cell frequencies on the main
diagonal indicating agreement exactly match the ieo@p cell frequencies. The
parameters(rij‘\B)I can be used to compare the probability of recgivan particular
response by one method given the rating of theratiethod (see Agresti, 1992). The
probability to find an observation in a particutail on the main diagonal l(sr”AB)I times
larger than expected by chance (represented bydepéndence model). Sometimes the
parameter(r”‘\B)I is also presented zﬁs'”’*B)' indicating that A and B both choose the same

categoryi. Bias (with respect to the other rater) can baremad as in the independence

model.
| .
If all parameters( rijAB) are equal to each other, all expected cell fregjesron the
main diagonal differ from chance agreement to #meesdegree. Hence, a simpler model

. |
holds which assume(sr”AB) to be constant:

Litie
g =77t%(r°)' , with | ={o 'if'i ¢Jj . (2.3.17)

In this quasi-independence Il modehe sum of the expected cell frequencies on
the main diagonal is exactly equal to the sum efdhserved frequencies whereas single
expected cell frequencies on the main diagonal difégr slightly. The difference between
both models is that in the latter, the degree oé@ment between both methods is the same
for all categories under consideration, whereathanfirst, agreement between methods
may differ from category to category.

Table 2.3.4 presents the cells of a cross-claasiic of two observed variables'

~ AB

proportions (ﬂ'ij :q_l\]lj for the quasi-independence | model. The cells geshe

proportions and the underlying log-linear model gpaeters. All proportions for cells
besides the main diagonal only depend on one-Jariatfects implying independence.
The cells on the main diagonal additionally dependwo-variable effects.

The fitted cell proportions in estimations of thmodel are the cells on the main

diagonal. That is, their expected proportions edhal observed proportions. All other
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expected proportions may deviate from the obsemagbortions. Schuster and Smith
(2006) showed how the quasi-independence model beamepresented as a mixture
distribution model separating ambiguous from obsicases. Their approach is to split a
population for which the quasi-independence moadtisinto two sub-populations. For
the first sub-population (the ambiguous cases)inbdependence model holds (see Table
2.3.5)—that is, all raters independently rate imtirals of the population—for the second
sub-population (obvious cases) a one variable miodiels (see Table 2.3.6)—that is, all
ratings depend perfectly from each other all rateate every individual perfectly
congruently. In the latter subpopulation, all indivals are cross-classified on the main
diagonal and hence, one variable is sufficient éscdbe the relationship. Recall, that
raters may agree upon ambiguous cases but onlytauwhance agreement. For the
subpopulation of obvious cases the one-variable etsotnplies that there is perfect
agreement.

Schuster and Smith (2006) related the quasi-indigoese Il parameter for cells on
the main diagonal ta . However, the meaning of the log-linear paramel@s not been
described yet. Tables 2.3.5 and 2.3.6 show howdiffierent log-linear effects influence
the cell proportions. Box 2.3.1 gives an overviewtbeir statistical meaning. The log-
linear parameters of the quasi-independence madelsot be easily linked to proportions,
odds, or odds ratios. Drawing a parallel to Hagen&8993): In order to understand the
implications of the model, the model should beneated and its expected proportions
should be interpreted rather than its parametersldibe inspected.

The same rationale as presented for the quasi-emiigmce | model presented in
Tables 2.3.5 to 2.3.6 and Box 2.3.1 also accoumtthe quasi-independence Il model. The
only difference is that the two-variable log-lingarameters are restricted to be constant.
In both models, the rater-bias coefficieMB) may be used to determine the influences of

rater-specific effects.
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Table 2.3.4

Parameters in the quasi-independence | model
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Table 2.3.5
Independence sub-table in the quasi-independenualkl (ambiguous cases in Schuster & Smith, 2006)
b=1 b=2 b=3
TATB TATB TATB Z.AB
a=1 T, =— 113 . T, =— 123 . 3= 133 . 7, —— . 3ll . g
Z(Ta)zrb Z(Ta)zrb Z(Ta)zrb Z(Ta)Z(Tb)-'-Tll
a=1 b=1 a=1 b=1 a=1 b=1 a=1 b=1
z.AZ.B TATB TATB AB
a=2 T, = 3 ils R m, = 3 iza R ;= 3 ZAaa R L, ——3 N 322 . s
2(m) 2w 2(m) 2w 2(m) 2w 2 () 2 (m) e
a=1 b=1 a=1 b=1 a=1l b=1 a=1 b=1
Z.AZ.B z.AZ.B z.AZ.B z.AB
a=3 T, = 213 0 == Zzs . Ty = — 233 . 7, —— A 5 . .
Z(Ta)zrb Z(Ta)zrb Z(Ta) z-b Z(Ta)Z(Tb)+T33
a=1 b=1 a=1 b=1 a=1 b=1 a=1 b=1
TlAlB AB AB
Ty~ 3 7T, - Ty 7T, - 33
A B AB +. 3 3 + 3 3
RGN S sy S )N

Note The probabilities presented in this table doaortespond directly to the probabilities in thetteixce the complete latent table is split
into two parts. For reasons of readability the ssétsAB are not depicted for the proportio(w) .
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Table 2.3.6
Agreement (Reliability) sub-table in the quasi-ipeledence | model (obvious cases in
Schuster & Smith, 2006)

b=1 b=2 b=3
AB
7, = 20 .
a=1 V3 e 75,
z T
i=L
AB
g o=_t2
a=2 2 g T,
AB 22
Z T
=
AB
7. =_las
— 33 >
a=3 3 a8 Tl
z T
i=1
7h, 7Ty Tl

Note The probabilities presented in this table do wmotrespond directly to the
probabilities in the text since the complete latabte is split into two parts. For reasons of

readability the superscripfsB are not depicted for the proportio(w) :

Box 2.3.1
For the independence model it is known (see eageHaars, 1993):

. ™
= i ,andr?:s—‘ (2.3.18)

with a indicating the categories of A in the independemabée and indicating the

categories of B in the independence table.

Therefore:
AB AB
TI;AB _ Tii T[AB _ TJ'J
" 2 A 2 B AB o 2 A 3 B AB
ZTa Tb"'Tii Zraztb-'_Tji
= azl_ bel , andt; = azl_ bel (2.3.19)

! 3 3

W V™

showing that the one-variable parameters do ndusixely relate to the marginal

proportions. Combining Tables 2.3.5 and 2.3.6 @el] + 77 =77, for the total table.
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Replacing:
3 3 3
TiATiBZ TagB + TiiABz TaAz TbB
mAR =g =—g &L=

DI iN
a=1 b=1 a=1
S A 2 B 2 AB B - AB
m[zrazrb zraaj_riAri Zraa 3 2
- a=. b3:1 a3:1 . &l = z_i;f-\BZ TaAZ T B ' (2320)
zriz sz T:aB a=l b=l
=! b=1

a a=1

3 3
A B A_-B
ﬂn(ZTaZTbj—n T
— -AB

a=1 b=1
=7

a=

identifies the statistical meaning of the two-vhl&effect. This parameter cannot easily|be
related to a category proportion.

Log-linear models of agreement can also satisfypitugerty ofquasi-symmetry
(Darroch & McCloud, 1986). Because there is no dbjely precise definition of how to
classify an observation into the different categerior most cases in the social sciences,
the discrepancies between classifications by differmethods are attributable to
measurement error and to different perceptionsnterpretations of what a category
definition means. “The correct category for an objexists partially in the eye of the
beholder” (Darroch & McCloud, 1986, p. 376). On thtker hand, there are signals sent
out by each object which partially conform to eaththe categories to a certain degree.
These signals are assumed to differ between obj€btss, the classification of an object
into a particular category depends on the signeig sut by the object and the rater-
specific category definition. If raters perceivesh signals but may confuse their meaning

(differ in their category definitions) a symmetpattern of disagreement should occur:

AL B AB

g =Nt 17y, witht*® = 1" for alli and. (2.3.21)

Hence, this model does not only address agreenentebn raters and indicates
rater bias with respect to the marginal distribogio but additionally provides some
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information about rater-specific effects (ratershiagresti, 1992). This model is called the
guasi-symmetry modékecause the expected cell frequency to receiatacplar response

by the first rater (say categoryand a particular response by the second ratgrcgtagory

j) differs by the same ratit()rij) from the expected cell frequency given only the-on

variable effects as the contrary combinatipii]{. In other words, associations between
both raters are “mirrored” around the main diagonal

Therefore, information about rater-specific effecés be obtained inspecting the
MB-coefficient. If this coefficient differs from 1, ¢hobservers have different classification
probabilities for the objects which means that tdeynot use the categories in the same
manner. Additionally, inspecting the two-variablf#eets yields information to which
degree particular category combinations are motessrfrequent. That is, if the two raters
confound categories in the same way. Assume theat Aacorrectly rates all individuals
(knowing the true category of the individuals), tweo-variable effects then indicate to

which degree B agrees with A or if B systematicalbnfounds categoriefr®;i # j).

i
Yet, it could also be the case that B correctlgsadll individuals and A systematically

confounds categorie(srij“s;

i Z )—restricting(rijAB = rjiAB)8 thus yields identical systematic
interactions and, thus, raters are interchangeuafitle respect to their confounding of
categories.

If the one-variable effects do not differ betweesters the more restrictive
assumptions of theymmetry modehold. Formally, the symmetry model appears to be

quite similar to the quasi-symmetry model:

AL B AB

g =nt 7y, witht* =" foralli and , ang*=7° fdr=j. (2.3.22)

In contrast to the quasi-symmetry model, the onélke effects are set equal to
each other. Thus, the marginal distributions ohbariables have to be identical meaning
that both raters agree on the prevalence of thegodes (allMB = 1). In this model, the
expected cell frequency of contrary combinationsatégories is the same. Thus, the raters
can be conceived interchangeable (Agresti, 1992).

"[a.... z] will be used throughout this thesis toidade observed or expected patterns of categorical
variables. That isj ] indicates that the rater A chooses categ@ghafid rater B chooses categoiy. "

8 Interchanging the indiceésand;j signifies that the numbers of the categories @ iaterchanged from the
left hand side of the equation to the right hari sif the equation.
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2.3.4 Advantages and Limitations of Manifest Rater Agreement Models

The rater agreement models differ with respecthwirtimplications for the kind of
agreement (category-specific or general) and tte¥ahangeability of raters. Compared to
the quasi-independence models the quasi-symmetweksas the symmetry model yield
the benefit that observer differencasd category distinguishability can be examined in
detail (Darroch & McCloud, 1986) because both agwet and disagreement have to be
modeled. If the quasi-symmetry model holds we a&symme that raters produce the same
amount of under- or overrepresentation for givemlomations of categories and are thus
interchangeable to their confounding of categorMsreover, if the symmetry model
holds, both raters are completely interchangealdgresti, 1992). A better fitting
symmetry model compared to the quasi-symmetry moudktates a stronger association
between ratings and interchangeability of raterserthangeable raters are also referred to
as homogenous raters (see e.g., Schuster, 2008st8ct& Smith, 2002, 2006; Zwick,
1988). These models allow for a test if the assiongb have interchangeable raters as a
result of the research design is met.

As has been shown, there are different ways to wneasgreement and

disagreement by general agreement indices. In gem@asociations can be detected by the

x>-test and, as a special case of association, emjegement may be detected by
coefficient kappa(/(). Model-based analysis of associations yields amdit and more

precise information than that provided by genesalbaiation methods. Log-linear models
allow testing of the goodness-of-fit (not only asiindependence as the -test). They

provide model-implied fitted cell probabilities aedable researchers to make predictions
of classifications under certain conditions suchrexiving a particular response by an
observer given the responses of other observarsivieg a response knowing the correct
status of an observation, or assessing the latatussof an observation given ratings by
several observers (Agresti, 1990, 1992; Bishopl.etl875; Goodman, 1978; Haberman,

1978, 1979; Hagenaars, 1990). Thus, first analgbester agreement—as a special variant
of convergence between multiple methods—can be wded by overall agreement

indices. These indices reveal if the raters tenadhoose identical response categories.

However, these indices only consider absolute ageeé between raters (identical
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categories). More detailed information about thentjalistribution of ratings is only
available by use of log-linear models.

Log-linear models allow for a more fine graded gsisl of rater agreement and
disagreement. In this framework, categories caferdifith respect to their agreement and
disagreement rates. These rates may differ frontategory to the other (see Table 1.1.1).
Each score of one variable may have high co-ocooerevith any other score of another
variable allowing for a deeper understanding ofriiations between variables. Log-linear
models, for example, may reveal that the middlegaty of one variable co-occurs more
frequently than expected based on the assumptiomd#pendence with the middle
category of another variable. All other categoresy not co-occur more or less frequently
than expected by chance (their log-linear parametemot differ significantly from 1).

All indices and models presented so far suffer fiame major limitation. They do
not allow for the analysis of more than one cordtraeasured by one indicator per rater.
Therefore, all information retrieved is specificttee combination of the trait (construct),
the raters, and the indicator. Assuming that ragreement depends on the items
administered (some items are hard to judge, eaying self-doubts), the construct (some
may be more easily detected, e.g., sociability;deun 1995), and the raters (peers may be
better raters than acquaintances), it is necegsapgxtent the existing models to more
indicators, more traits, and more raters.

Extending rater agreement models to models withiplelindicators per construct
would allow for identifying underlying latent catmies (so called classes, types, or
statuses) which cause the different response patt@bserved scores on the multiple
indicators). Many statuses of individuals caot be directly observed (e.g., psychiatric
syndromes and disorders) but have to be deducgidgedn multiple observations (which
themselves may be classifications of overt behavilby for example, a researcher is
interested in the adequacy of psychiatric diagnos$esfferent raters relying on the DSM-
IV TR (American Psychiatric Association, 2004) itayn be worthwhile not only to
examine the final classification but to inspect tagngs of the single check-list categories.
This inspection can reveal if a) all raters agréth wespect to the check-list categories, b)
if they come to the same conclusions about thestaitthe patient, c) if all categories are
weighted to the same degree across raters to prathecfinal diagnoses, and d) if the
categories of the observed variables reliably descthe latent variables. Latent (as
manifest) rater agreement models could allow fdetailed analysis on which categories

different raters agree, which categories indicatlisgigreement are only rarely chosen, and
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which categories indicating disagreement are chtsengreater extent than expected for
independent ratings. Integrating additional cortdrymultiple traits) would allow for an

analysis if there is higher or lower agreement particular constructs and how the
different categories of the different latent valésbco-occur (free from measurement error)

yielding information about discriminant validity.
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3 Research Question

Determining the reliability and validity of diffené ratings is very important in many areas
of psychology as pointed out in Section 1. LargeNWM studies yield information about
convergent and discriminant validity of differerttakes. These analyses are mostly done
for metric observed variables (for an overview Be# Lischetzke, & Nussbeck, 2006) or
in some cases also for variables with ordered oaisa response categories (see e.g.,
Nussbeck, Eid, & Lischetzke, 2006). The aim of ttiissertation is to adopt the logic of
MTMM models to the case of categorical data in gane

As pointed out in the previous sections, rater @ment models can be used to
analyze agreement (convergent validity) and disagent for observed manifest variables.
However, we lack models that allow for determinthg reliability of the manifest ratings
and that allow for an inspection of agreement aisdgteement free of influences due to
measurement error. These models shall be developedirst step. The parameters and /
or (conditional) probabilities of the models willeblinked to each other providing
additional information about category-specific @&gnent rates, rater bias, and
distinguishability of the latent categories. An engal application will illustrate the
meaning of the model parameters.

In a second step, a Multitrait-Multirater (MTMR) &l for categorical data will be
defined. This model will be based upon the latatémragreement models of the first step
enlarging their perspective to the analysis of mhsinant validity. Additionally, the
influence of particular latent statuses on agredraed / or disagreement may be analyzed.
An empirical application will serve to illustratieet model.

The development of the latent rater agreement rsaaledl the MTMR models for
categorical data is organized as follows:

* In a first step (4.1), the log-linear model witheolatent variable will be introduced.
This model serves to define the measurement steuaiti the latent variable. The
measurement structure remains the same acrossoalélsnand will therefore be
presented in detail.

* In a second step (4.2), the model will be extertded two latent variable model (see
e.g., Hagenaars, 1990, 1993; Langeheine, 1988% Miadel is well introduced and
serves as a basis for the introduction of lateter agreement models. The meaning of

the different model parameters will be explained.
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In a third step (5), the latent rater agreementetsdill be defined. Based on the first
and second step, the different manifest rater agegae models will be adopted to the
latent level. The different implications of thesedrls will be explained in detail.
These models allow for identifying very interestipigces of information with respect
to the agreement and disagreement of raters

I will show how these models reveal i) riiters agreewith each other, ii) if
raters agree in a general wgyrespectively of the category under considergtior if
rater agreement is category specific, iii)disagreementis less frequently expected
than predicted by chance and if so, if this is¢hee in a general way or if there are
some categories raters may bettestinguishthan others, iv) if somédisagreement
combinationsare more often expected than predicted by chamgdying a kind of
confusion or lack of category-specific convergealidity, and v) if raters arbiased
with respect to the other rater.

The latent rater agreement models will be defiredtiie case of structurally
different and interchangeable raters. Most emphagigid to the interpretation of the
model parameters and their theoretically meanind@duction. Empirical applications
serve to illustrate these models.

In a fourth step (6), the latent rater agreemendetsowill be extended to Multitrait-
Multirater (MTMR) models. Integrating an additiorater agreement model into the
saturated and symmetry latent rater agreement adkdcribed in the third step
enlarges the agreement and disagreement analyswirg) for the analysis of
discriminant validity.

These models allow for determining if raters care ubfferent pieces of
information in a more specific (indicative) way fargiven trait knowing the status of
the other trait. Extraverted individuals may beedatmore congruently on their
emotions than others for example.

Additionally, these models allow for the detailethbysis of overall agreement
rates. That is, they allow for determining if rat@gree on one construct with a higher
probability if they also agree on the other corwtriThis effect reflects if there are
good targets who can be congruently rated on baristoucts. In the same vain, these
models allow determining if specific disagreemewimbinations are more often
expected yielding some information about which gates may be easily confounded

by different raters.
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e Finally (7), the models will be discussed with respto their implications on
agreement and disagreement, convergent and disamtivalidity, rater-specific
effects, and their relation to the theoretical feavork of the rater accuracy model
(RAM; Funder, 1995).
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4 Latent Variable Models for Categorical Data

In this section, the framework of log-linear modeish latent variables will be introduced
(e.g., Goodman, 1974a, 1974b; Habermann, 1979; ridage, 1990, 1993; McCutcheon,
1987; Vermunt, 1997b). In section 4.1, the mosidamdel for one construct measured
by several items administered to one rater willifteoduced. An empirical application
serves to illustrate the meaning of the model patars. In section 4.2, an additional latent
variable will be introduced (see e.g., Hagenaa9011993). The model will be defined
and the meaning of the log-linear model parametdhsbe explained. An empirical

application serves to illustrate the meaning ofrttealel parameters.

4.1 Latent Variable Models for Categorical Data

Latent variable models for non-ordered categoritzh have been developed during the
last four decades. The two main approaches aréatémet class (LCA) models and log-
linear models with latent variables. LCA models éamainly been developed by
Lazarsfeld (Lazarsfeld, 1950a, 1950b; LazarsfeldH&nry, 1968) whereas log-linear
models with latent variables have been mainly ohiced by Goodman (1974a, 1974b),
Habermann (1979), McCutcheon (1987), and Hagen&h®90, 1993). Hagenaars
incorporated more than one latent variable intdalgeinear model with latent variables in
his “modified LISREL approach”. Hagenaars (1990930 based his approach on the
theory of modified path models (Goodman, 1973)sHewed how log-linear models with
latent variables can be used to analyze directioglations between latent and manifest
categorical variables (Hagenaars, 1990, 1993).

The two modeling strategies (LCA modeling and logd&r models with latent
variables) can be seen as the categorical countefpaetric or ordinal structural equation
modeling (SEM). These models are based on extensbrihe basic log-linear model
(Goodman, 1974a, 1974b; Haberman, 1979; McCutch&88y7) and the LCA model
(Lazarsfeld, 1950a, 1950b; Lazarsfeld & Henry, 1988 log-linear models with latent
variables. In fact, LCA models can be seen as aiapeariant of log-linear models with
latent variables. The parameters of both models lmnransformed into one another.

Maximum Likelihood (ML) estimation procedures exfst both models (Clogg, 1981;
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Goodman, 1974a, 1974b; Haberman, 1976, 1977, 19@§enaars, 1993; Langeheine &
Rost, 1988; McCutcheon, 1987). However, the logdinparameterization allows for a
more flexible modeling, because the (conditionegponse probabilities of the LCA model
are decomposed into effects due to underlying @m@ble effects and possible
interactions between variables. To analyze MTMM #isdt is, thus, advantageous to use
the broader frame of log-linear modeling. Definlng-linear models with latent variables
as latent rater agreement models also allows foingection of (conditional) response
probabilities and proportions. In some cases (bapndalues, see Section 4.1.2), only the
(conditional) response probabilities can be intetgut. Additionally, the special parameter
restrictions (e.g., quasi-independence restricjiaislatent rater agreement models can
better be handled in the log-linear modeling frarmew Therefore, | will define the rater

agreement models in the log-linear modeling frantéwo

4.1.1 Formal Definition of the Log-Linear Model with Latent Variables

Table 4.1.1 depicts parts of a frequency table gbiat distribution of four three-
categorical items measuring neuroticism (see Seectid.3, for more details). The total
joint distribution consists of 81 different frequsn patterns (3 cells in the joint
distribution). The log-linear model with latent iables aims at representing these 81
response patterns in a parsimonious way (with allemaumber of parameters than
possible frequency patterns). Therefore, the pdjounlas supposed to consist of several
(homogeneous) sub-groups (classes of the lateratil@y each showing the same relations
to the items (the same log-linear parameters). eSthe log-linear parameters can be
transformed into conditional response probabiljittae expected frequency / proportion of
every response pattern can be determined.

In contrast to the log-linear models presentedhe introduction, the models
presented here contain observed (manifest) asasalhobservable (latent) variables. The
latent variables are supposed to influence theag&gdescore on the manifest variables. In
the basic model, which will be presented in thistisa, all manifest and latent variables
are considered nominal variables, whereas extensbrthis approach may also contain

ordinal or metrical variables (e.g., Heinen, 198@Cutcheon, 1987). The latent variables
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of LCA are, generally, called latent class varialigological variable or latent trait

variable. All these terms will be used for lateatiables representing particular constructs.

Table 4.1.1
Four observed response patterns for self-reporadaeasuring neuroticism (extracted
from the complete table in Appendix A)

A B. | C D Frequency Relative
vulnerable Sensitive Moody self-doubtful frequency

1 1 1 1 8 .02

1 2 2 1 1 .00

3 3 2 2 15 .03

3 3 3 3 111 .23

Note.1: non-neurotic response category; 2: middle respaategory; 3: neurotic response
category.

In all modeling approaches, items measuring theesaamstruct are statistically
linked to a variable representing exactly this p&yogical construct (Bock, 1972;
Langeheine & Rost, 1988; Lazarsfeld & Henry, 1988 Cutcheon, 1987; Steyer & Eid,
2001). The items depicted in Table 4.1.1 are sugphds measure different categories of
neuroticism and should, thus, be linked to a latamiable representing different types of
neurotic personalities (e.g., neurotic individualden-neurotic individuals, and individuals
being in the "middle" of the two extremes). Theegairical trait is supposed to cause an
individual's responses to the manifest indicat@spending on her or his value on this
categorical trait (her or his latent class membpjshhere will be differences in the
expected frequencies of the different responsepett These differences depend uniquely

on the latent status of the individuals (see Figuie
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A vulnerable

B sensitive

C moody

D self-doubtful

Figure 4.1. Basic log-linear model with one lateatiable NEUS for neuroticism.

Definition 4.1.1 The log-linear model with one lateariable (see e.g., Hagenaars, 199
&, =NT.T; (4.1.1)

with e,, as expected frequency of the manifest responserpat(e.g. [1 2 1 2]) give
class membershig. 77 is the overall geometric mean of the completeetdbianifest an

latent variables).

T. represents the one-variable effects of the maniasiables and the two-variak

a

effects linking the latent variab)to its indicators:

|
1 S ) T T (4.1.2)

2.
M, =1

with T'r\:"i representing the one-variable effect for a categorof theith item (out of the

set ofl items). X represents the latent variable anthe category of the latent variah

M;.X
T

represents the two-variable log-linear effecthaf katent category on categoryn of
itemi. 7, represents the latent one-variable effect (isnfatlistribution). Throughout th

dissertation latent variables (categories) and tloemal representations will be separs
by a dot (“.”) from all other variables to discrinaite them from the manifest variab

(categories).

0)

-

[®XN

e

v

C

le.

is
ited

les




Latent Variable Models for Categorical Data 46

The log-linear model with one latent variable idimed in such a way that the manifest

variables are independent from each other if ttentavariable is controlled for. This is the

condition of local stochastic independence. Alloasstions between manifest variables are
due to the their associations with the latent \deia

For the example presented in Figure 4.1, the logali model with latent variable

— A, B_.C__D_-NEU A NEU B NE .C NE .D NE
ebcd.ns_nrar br cr dr ns Sr ?- UZ’S 95 (413)

a ans .bns .cns .dns ?

where A through D represent the manifest indicators of neuroticisnthroughd the
manifest categories of the corresponding indicat?M&US is the latent variable

representing neuroticism ants are its categories. In the model described in éguat

413 T = |—| .[Mi.[Mi.NEUS =.[.,2.[.ANEUS[ Ii. B NEU% i C NEUlS .@ .D NEL W|th e.g.'

a m “m.ns ans bns .cns .dns
M; =1

My My NEUS A ANEUS

Tml m.ns =Tl ans

4.1.1.1 The statistical meaning of the different effects in the log-linear model with

one latent variable

The log-linear parameters of Definition 4.1.1 withknown frequencies of the latent table
(the cross-classification of observed and unobsepreportions) can be calculated as in
the case of completely observed tables. Haberma@n9( p. 543) pointed out that “the
same maximum likelihood equations apply as in tlignary case, in which all frequencies
are directly observed, except that the unexpecteshts are replaced by their estimated
conditional expected values given the observed margotals”. Thus, the estimated

parameters have exactly the same meaning as ordivery model:

* 1 is the geometric mean of the unobserved compleiguéncy table (see e.g.,

Hagenaars, 1990). It is generally not of intereshodels with latent variables.
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* The latent one-variable parame(enf) describes the univariate distribution of the

latent variable. These parameters are identicalth® odds comparing the
probability (the proportion:Tt. ) of a particular categoryx( with the geometric

mean of all cells belonging to this variab}:(

x - T4

¥ = . (4.1.4)

xvlv_:lﬂis

with x andw indicating the categories of the latent variakle

x

|
* The measurement moddl, =[] Ty depicts the relation of the manifest
M, =1

indicators to their underlying latent variable (tt@nditional response probability /
conditional expected frequency). The model pararsetd the measurement

equation are based on the (unobserved) proportsmesHagenaars, 1990):

, (4.1.5)

with j indicating the number of categories for itemx and w indicating the

categories of the latent variab¥ and| indicating the number of categories for
item .

° X denotes the name of the latent variable as weHe@sumber of categories. It only refers to thenber of

categories in connection with sum- or product si@hsor ). The same is true for all other latent variables
in this dissertation.
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4.1.1.2 Conditional response probabilities in the log-linear model with latent

variables

The log-linear models with latent variable can aleo represented in two other
parameterizations. All parameterizations can basfamed into each other. Equations
4.1.6 and 4.1.7 can be used to transform the fagti parameters in proportions and
conditional response probabilities (see e.g., Farmd992; Haberman, 1979; Heinen,
1996):

= erx . (4.1.6)
2T

w=1

with w indexing the different categories Xf
The conditional response probability to receiveagipular responsey on itemMV;

given that an individual belongs to latent categocan be determined:

= —, (4.1.7)

with nj indexing the categories ;.

4.1.1.3 Effect-parameters of the log-linear model with latent variables

The second alternative parameterization is theceffarameter parameterization.
Effect-parameters can be used to examine the $trexighe indicators' link to the latent
variable in a way closely related to the inspectibthe conditional response probabilities.
One may conclude that an indicator is a good irtdicaf a latent category if it shows one

large (or very low) effect-parameter. Effect-parten® represent odds and odds ratios.

Computing the(Qf,'iECZ);) for example :
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AL B _C_ D XL A B C D X A X

Q:T-\BCD.X — nTlTchTdeTl.xbexX[ cxx[ dx — Tl%l.x —
1/2bcd.x A_B. . C_D_-X_ A B C D X A X
nTZTchTdeTZ.XXTbe[cxx[ d x TZ%Z.X

Qhx, (4.1.8)

determines if it is more probab(@f}gﬁgj.’; >1) or less probabléQf}iﬁgj.’; <1) to receive a

response in the*1category of manifest item A given latent staxusompared to the"2
category given the same latent statu¥he latent score is fixed because one is intedest
in the ratio within exactly this category of theelat variable. Parameters which do not
contain the superscript of the manifest variablentérest (e.g.A - “vulnerable”) can be
cancelled because their categories are held cdn3tiae complex multi-way (3x3x3x3x3)
contingency table can thus be represented in desebdables which only consist of the
latent variable and one manifest variable. It isqilole to collapse across all other manifest

variables because all manifest variables are intdg@ from each other given the latent

variable (see Bishop, 1971; Appendix B). The raliffic>* with the simplified notation

of Qf,'z’fx, consists of two components, representing the ®é@ct of the manifest variable

and the interaction term:

A A.X

A T T, _ &7
Q% =Lx—Le =yiyi, (4.1.9)
2 2X
— -['A
with vy, =— representing the general effect to be rather énfitlst than in the " class
T2

AX
A T . 2 :
and y;;,, ==X represents the change in the general ef“q@g) as a function of the
2.x

latent category. One may also calculate the oddbdose the irather than the"d or (D)

3" category(2013):
ABCD.X  _ Tfoxx — AAX
Qy2gped.x = FER CEFS (4.1.10)
TaT X

a=2
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4.1.1.4 Implications of the log-linear model with one latent variable

The standard log-linear model with one latent \degLCA model) serves as the smallest
sub-model of the latent rater agreement modelstlaadVultitrait-Multirater models. It is
the measurement model for the latent trait varg@bl&@he model and its three
parameterizations serve to identify the reliabibfythe indicators and the meaning of the
latent variable. Hagenaars (1993) pointed to allparaetween models for continuous
variables and the models presented here. The idineatd the strength of the link between
the latent variable and its indicators mainly selvaletermine the meaning of the latent
variable in models with unordered categorical latémalyzing the meaning of the latent
variable is nothing else than examining its vajidihd / or the validity of the measures
(e.g., Messick, 1989). The validity of a measure ha upper bound in the reliability.
There are three ways to inspect the reliabilitaindicator:

1. High two-variable log-linear parameters indicata ifanifest category is linked to a
latent category. However, these parameters canmahterpreted on their own but
have to be compared across the latent categotes.comparison is more easily done
relying on the effect-parameters (see below).

2. The reliability can also be determined by the itsipe of the conditional response
probabilities. If all conditional response probélas of different indicators point to
one specific manifest category as a function oflabent variable, there is an indication
of reliability. That is, all manifest categories aff indicators supposed to measure a
neurotic personality type, for example, have pesiteffects between the latent and
manifest categories representing this type (matcbategories).

Dillon and Mulani (1984) as well as Langeheine @P®resent how the
conditional response probabilities can be useceterthine the classification errors of
different raters rating one target on one manif@stable’. The classification errors
are the weighted (by class sizes) sum of classificeerrors (see Langeheine, 1988).
The inverse of the classification errors quantittes reliability of an indicator.

However, their approach does not apply to all caddatent rater agreement
models. It requires that all items represent threesaontent and that the categories of
these items correspond to one and only one categbry can only be adapted to the
analysis of multiple indicators if all categoriek the indicators represent the same

2 The different raters are treated as indicatorsraaged in the approaches of Dillon and Mulanisd)Sor
Langeheine (1988).
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contents. This does not necessarily have to bedbke for multiple indicators of one
construct. Consider the items “vulnerable” and “igoas indicators of neuroticism.
It may turn out that individuals being moderategurotic are highly “vulnerable” but
may be more or less “moody” without preferring &@pl response category for this
item. In the sense of Dillon and Mulani, item “vahable” is highly reliable whereas
item “moody” shows low reliability. However, itemnioody” may be needed to
differentiate between moderately and highly negrotdividuals. Moderately as well
as highly neurotic individuals are highly “vulnel&b but only highly neurotic
individuals are also highly “moody”.

3. Determining the effect-parameter for every manifegtegory reveals, if there is one
special manifest category which can be seen asrkemfar the latent category. Very
high effect-parameters indicate that it is much enprobable to choose this category
than one of the other categories.

If all two-variable effect-parameters point to teme direction for every latent
category, respectively, one may additionally examiheir absolute values. If the
manifest one-variable effect-parameters as wethaswo-variable effect-parameters
show identical values for two indicators, theseidatbrs can be considered
homogeneous. Like in models for homogeneous ré8aisuster, 2002; Zwick, 1988)
homogeneity is not only reflected in equivalent {vasiable effects, but also in
equivalent manifest one-variable effects. In thése; the model predicts the same
manifest distribution for the indicators. This a®for a test if all indicators share the
same categories representing the latent traits.

If the categories differ with respect to their eff@arameters their categories
represent different latent statuses. In the casedsred latent categories, for example,
one category (e.g., sometimes) may be the typesganse tendency for a high latent
status on a particular construct (say depressioieiitem describes a rare behavior
(e.g., “do you wish to be dead?”) but also a tyjpieaponse category of an easy item
for a low status on the same construct (e.g., ‘@ofeel helpless?”).

4. The mean assignment probabilities could also bd tsaletermine the reliability of
the latent categorization based on the items. Tohisfficient indicates the mean
probability to be assigned to the class an indi@idnost probably belongs to. That is,

if an individual has the relatively highest probepito belong to clasg, she or he will
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be assigned to this class. The mean assignmenalphtyp is the mean of all

assignment probabilities of all individuals who assigned to this claSs

4.1.2 Estimation Process and Boundary Values

The estimation of log-linear models with latentightes cannot be done using analytic
strategies. Instead Maximum Likelihood (ML) estiroatprocedures have to be used. The
most common procedures use either the Expectat@axifMzation (EM) algorithm,
particular variants of the Newton/Raphson proceduwe a combination of these
approaches (Galindo-Garre & Vermunt, 2004, 2005)620G0odman, 1974a, 1974b;
Haberman, 1979, 1988; Hagenaars, 1990). Iteratigpgptional fitting (IPF) procedures
can be used to find the expected frequeneiesf hierarchical log-linear models without
latent variables (Fienberg, 1980; Hagenaars, 1990)PF the initial estimate€ are
iteratively adapted, so that they finally fit thdoserved marginal frequencids The
algorithm, thus, aims to reproduce the observedymal distributions. Models with latent
variables are estimated in a similar way. Howewar,the latent variables cannot be
observed, the EM algorithm has to be used in cmeeproduce the observed frequency
table.

One problem with this estimation method is, thadome cases parameter estimates
may occur that are on the edges of the parametmesfboundary solutions). These
boundaries correspond to probabilities/mE 0 or 7=1 and tor =0 or to undefinedr -
parameters as values of log-linear parameters. d@oynvalues may be due to the
following reasons:

1. Empirical non-identification Large probability tables with relatively smallnsples
(Winship & Mare, 1989). This situation is also edllsparse table problem. This
problem may principally be solved increasing thegie size.

2. Intrinsic non-identification This case to produce boundary solutions can ogtur
cases where many solutions exist for the set ofaheguations. Repeated analyses of
the same model will yield different results (seg,e-ormann, 1992; Galindo-Garre &
Vermunt, 2004, 2005, 2006; Goodman, 1974b; McCuch&987; Winship & Mare,
1989).

1 These coefficients are not provided by softwarekpge LEM (Vermunt, 1997a) which will be used for
the empirical analyses.
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3. Structural zeros and true parametefs some applications it is meaningful to find
conditional response probabilities of 1 or 0 (GaddirGarre & Vermunt, 2004, 2005,
2006). There should be no male taking the birthtrobmpill and thus the response
probability for males on this item will be a strucl zero (a cell that cannot be
observed). However, it is the true parameter bexenades do not take this pill.

In all these cases, log-linear parameters cannattbgoreted because they are not
identified. Additionally, if the model design conges more parameters than observed
response patterns minus 1, the model is underfahtiwhich implies that there is an
infinite number of “best” solutions of the estinmati process (see e.g., Formann, 1992;
Galindo-Garre & Vermunt, 2004, 2005, 2006; Goodma#a74b; McCutcheon, 1987;
Winship & Mare, 1989).

Boundary values lead to numerical problems in thramutation of the parameters’
variance-covariance matrix and to meaningless dentie intervals and significance tests
(see Galindo-Garre & Vermunt, 2004, 2005, 2006)thére are boundary values, the
inverse of the information matrix cannot be deteeui and thus no standard errors can be
calculated. The standard errors of the non-boungargmeters can be calculated taking
the generalized inverse of the information matffikese standard errors are only valid, if
the boundary parameters are considered true (@)pnmdel parameters (see Galindo-
Garre & Vermunt, 2004, 2005, 2006). Model probabesi still can be interpreted if
boundary values have been found, yet, log-linead affect-parameters are not
interpretable (dividing by zero is not defined).

There have been different attempts to solve thieréifit problems of boundary
solutions. De Menezes (1999) proposed to use themmdric bootstrap to overcome the
problems of meaningless standard errors. Her meshibw that the bootstrap procedure
yields accurate estimates for the conditional resp@robabilities; yet, she could not solve
the problem that boundary solutions may occur duthre bootstrap procedure yielding
invalid bootstrap results for the effect-parametdtaris (1999) used prior information on
the model parameters and thus a Bayesian estimatethod called posterior mode or
maximum a posteriori estimation. Unfortunately,sthmethod is not available in the
software package LEM (Vermunt, 1997a), which wile lused in the empirical
applications. It is available in Latent GOLD (Vermi& Magidson, 2000, 2005), however,
Latent Gold does not allow for more than one latdass variable. Therefore, these newly
developed estimation methods will not be discusseter.
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Although the interpretative problems with respectetfect-parameters have been
well known for a long time now, there is no commgense how to deal with them in
empirical applications. The majority of researclougps seem to argue that the model
probabilities still can be interpreted. There isesgnent that the effect-parameters should
not be interpreted. Yet, there are different pooftgiews concerning the consequences for
the degrees of freedondf]. Some authors add the number of parameters obatinedary
to the number of the degrees of freedom (e.g., Madt@on, 1987). Others state, that they
see no good reason to do so (Magidson & Vermun®1R0OIn the remainder, | will
consider all parameters (including parameters @nettige of their parameter space) as
model parameters and account for them in repottiegdegrees of freedom (as is done in
LEM; Vermunt, 1997a).

4.1.3 Application of the Log-Linear Model with One Latent Variable

In order to illustrate the models to be developedhis dissertation all models will be
applied to empirical data. | will use the same damhwith changing constellations of
raters. Therefore, the complete data set is dextmiow. For every application, | will

explicitly list the raters and variables that viné analyzed.

4.1.3.1 Data description

The data used in this dissertation originate fromamge study conducted by Eid,
Lischetzke, Nussbeck, and Geiser (2004) at the dsgity of Trier (Germany) in 2001 and
2002. Out of the about 15000 students a random IsaofB000 students was sent a malil
inviting them to come to the laboratory bringingotyeers along. The student who
received the mail and who came to the laboratorg wsked to fill in a self-report
guestionnaire (target persof® and the two peers were asked to fill in the same
questionnaire but in the peer-report version (peand peeB). As originally intended,
data from 500 students could be finally collect&terding the study to the University of
Applied Sciences (FH) at Trier. The study yield$a#a set of 500 triples (1500 individuals
in total).
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All three members of the triple were asked to fill the questionnaires. The
participants were separated to prevent them froarirsdp information. Filling in the
complete questionnaire took about 30-45 minutes awery participant received a
compensation of 20 German Marks (DM). Each paricipvas allowed to participate only
once (irrespective if as target person or as peer B). Although all participants were
informed about this restriction and signed a recegnfirmation for the compensation
(including their address) 17 triples could be idfead with individuals who participated
twice. That triple was eliminated where the pergamticipated for the second time.
Another triple was eliminated containing a parti@ipwho was only 13 years old. For the
analyses presented in this dissertation only complata sets will be used. Therefore, four
more triples had to be excluded because theirsttayielded missing data. The final data

set thus contains data from 478 triples; that4841participants.

4.1.3.2 Sample description

About two third of all participants are female suats (63.7% of the target persons, 62.9%
of peers A, 62.9% of peers B). Thus, women arehsligoverrepresented in the sample
with respect to the proportion of enrolled femaledents at Trier Universities (about 55%
of the students are female; for a more detailedudision see Nussbeck, 2002). The sample
consists mainly of students studying one of thdowahg five subjects: Psychology,

Economics, Law, Architecture, and Geography / Ggplsee Table 4.1.2)
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Table 4.1.2
Sample description with respect to the most fretipstudied subjects

Proportion of all Proportion of

Proportion of Proportion of female

Subject enrolled gtudents female students in stqdents enro_IIed N students enrolled in this
at Trier this prograrfi this program in the rogram in the sample
Universitied prog sample prog P
Psychology 9,9% 69,5% 17,1% 76,1%
Economics 14,7% 42,2% 15,6% 58,9%
Law 17,3% 54,9% 15,0% 69,1%
Architecture (FH) 7,6% 56,4%

Geography/Geology 12,6% 54,0% 7,1% 66,7%

Note.? Data stem from fall 1999/2000;Unfortunately, no statistics were available for theiversity of
Applied Sciences. The percentages do not sum WpA&6 because not all subjects are listed.

The mean age of all participants (target persort @eers) is 23.4 years. The
youngest participants were 17 years old for tapgesons and peefs the youngest pe®
was 18 years old, the oldest participants wereetdsyold for target persons and pe&rs
and 52 years old for peeB About 66% of all participants are between 19 aidyears
old (corresponding to the expectations about aestdample; see Table 4.1.3). The
sample (in all three groups) was highly qualifiéce more than 98% of all participants
had at least "Fachhochsschulreife” (high schookrategvhich permits attending German
Universities of Applied Sciences: FH). More tha®®©4f the total sample was enrolled at
the University or at the University of Applied Scees.
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Table 4.1.3
Sample description with respect to age

Target Person Peer A Peer B
Mean 23,4 years 23,4 years 23,4 years
1. Percentile 0-25% 17-21 years 17-21 years 17e2tsy
2. Percentile 25-50% 21-23 years 21-23 years 2leaBs
3. Percentile 50-75% 23-25 years 23-25 years 2@eats
4. Percentile 75-100% 25-49 years 25-49 years 2peaps
Youngest 17 years 17 years 18 years
Oldest 49 years 49 years 52 years

Table 4.1.4

Time the target person S knows peers A and B

Percentile Tim& knowsA Time SknowsB

1. Percentile 0-25% up to 5 month up to 5 month
2. Percentile 25-50% 5-20 month 5-18 month
3. Percentile 50-75% 20-42 month 18-38 month
4. Percentile 75-100% 42-311 month 38-294 month

The target person and peéksand B know each other fairly well. On a 10-point
scale (10 indicating best knowledge / highest feamiy: “We have absolutely no secrets”)
the target persons have a mean value of 6.51 &fatimiliarity with A and 6.44 for the
familiarity with B. PeersA indicate a mean value of 6.64 aBaf 6.59 for the familiarity
with the target person. The intraclass correlatid@€) for these variables at€C = .82
(target person and A) an@C = .78 (target person and B). Target persons aatspthus,
rate their familiarity on a relatively high levatévery similar to each other. The time each
dyad knows each other is depicted in Table 4.1@la@rage, the target person and the
peers have known each other for three yel@€ & .96 for the target person and péer
and ICC = .99 for the target person and p&r Target persons and peers thus agree
(almost) perfectly about the time they know eachent 75% of the participants have

known each other for at least half a year, 50%atdeast more than one and a half years
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(see Table 4.1.4). With respect to familiarity tinee dyads know each other, they do
virtually not differ from each other and, therefotke two peer raters should be able to

judge the target’s traits being considered intemgleable.

4.1.3.3 Variables

In this dissertation, two sub-scales of a Germag-MBve scale (Ostendorf, 1990)
measuring neuroticism and conscientiousness arg tosdlustrate all newly developed
models. Neuroticism and conscientiousness werecteelebecause prior research result
showed that facets of conscientiousness (beingndigypde) enhanced rater agreement and
facets of neuroticism (being moody) deterioratddrragreement (see Colvin, 1993b). The
scales in the self-report version can be found ppekxdix A. The response format in its
current form is an ordered response format ranfiogp "not at all* to "very much so"
across five categories (see Appendix A). Thereftbre data could principally be analyzed
using dimensional models for ordinal response fesnjee., models of Item Response
Theory (IRT); Andrich, 1978; Jansen & Roskam, 1986skam, 1995; Roskam & Jansen,
1989; Samejima, 1969].

Since the aim is to develop MTMR models for categdrand non-ordered
categorical response variables the range of thie seas reduced to three categories in
order to reduce the complexity of the model. Analgzlog-linear models with variables
consisting of 5 categories will result it fossible manifest response patterns, wHere
indicates the number of items. In order to have ei®that do not suffer from empirical
non-identification by default (due to the large ren of possible patterns) the extreme
categories were collapsed: The first and seconelgoaks (the lowest categories) have
been collapsed, the middle category has been #epfpurth and fifth categories (highest
categories) have been collapsed. Still, the theseaming categories are ordered. The
frequency distributions of the 8 items for the gelbort (target person) can be found in
Table 4.1.5. The frequency distributions of the {e®r report®\ andB are quite similar

and can be found in Appendix A.
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Table 4.1.5
Frequency distribution of the analyzed Big-Fiverige(self-report)
Categories

German item English item little (1) middle (2) higli3) total

neuroticism
verletzbar vulnerable 43 75 360 478
empfindlich sensitive 63 77 338 478
launenhatft moody 179 130 169 478
selbstzweiflerisch self-doubtful 121 88 269 478

conscientiousness

arbeitsam industrious 93 165 220 478
fleiRig diligent 116 159 203 478
pflichtbewuRt dutiful 29 93 356 478
strebsam ambitious 122 150 206 478

Note Categories 1 and 2 as well as 3 and 4 of thenatigcale have been collapsed.

The two peer raters have been randomly assignée foeerA or B, they can be
conceived interchangeable. This assumption seerns tenable because the two peers do
not differ with respect to the distribution of theiariables presented in Tables 4.1.3 and
4.1.4 (see Schuster, 2002; Schuster & Smith, 20026; Zwick, 1988). The two peer

reports differ structurally from the self-report.

4.1.3.4 Application of the log-linear model with one latent variable

To illustrate the log-linear model with one lateatriable | will present the results of this
model in detail. In this section the four self-repibems (“vulnerable, sensitive, moody,
and self-doubtful”) will be analyzed. All modelstims dissertation are estimated using the
software package LEM (Vermunt, 1997a). The corredpa input files can be found in
Appendix F.
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A vulnerable

B sensitive

C moody

D self-doubtful

Figure 4.1 (repeated). Basic log-linear model withe latent variable NEUS for

neuroticism.

The Xx?-criterion and the information criteria AIC (Akaik&974, 1987; Bozdogan,
1987) and BIC (Schwartz, 1978) will be used to eatd the goodness-of-fit of the

different models. Additionally, 1 will run bootspaanalyses withN = 200 bootstrap

samples to check for the overall goodness-of-Bty{ng on the simulated Pearsof-

values) because the models are very likely to predempirical x*- values that do not

approximate the theoretical distribution (spardeletgproblems, see Habermann, 1988;
Hagenaars, 1990; Winship & Mare, 1999).

Figure 4.1 depicts the log-linear model with onteé variable for the empirical
application. The latent variablSEUS for neuroticism in the self-report underlies the
manifest response behavior. Latent variables agsepted with ovals, manifest variables
with boxes, arrows indicate dependencies betweeiables. In this approach, no error
components are depicted, because the dependemtblearido not correspond to the
responses themselves but expected frequenciescbfoadegory for every indicator. The
response depends uniquely on the latent varibileS This is the assumption of local

stochastic independence.
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Table 4.1.6
Goodness-of-fit coefficients of the log-linear mMaoaligh 1, 2, and 3 latent categories

NS ¥ p(¥) L2 pd df  AIC'  BIC'  Pwot  Noounds

1 56225 .00 356.09 .00 72 212.09 -88.12 —_ —
2 79.62 .08 86.45 .03 63 -39.55 -302.23 .09 1

3*  59.61 .28 65.27 .14 54 4273 -267.89 .38 7

Note. NS:number of latent categorie$(2: Pearson)(2 -value; 1% Likelihood—Ratio)(2 -value;'AIC and
BIC are based on the L—squarg(f —value;? The estimation of the three—class solution yielded fitted

zero marginal in LEMpyoot bootstrapped probability 0)(2; Nbounds NUMber of boundary values.

Table 4.1.6 shows the goodness-of-fit indices far three different models. The

one-class solution does not fit to the data. The-dlass solution fits to the data according

to the y?-value, does not fit with respect to thé \alue, and fits with respect to the

bootstrappedy?-value. The three class solution generally fitsthe data according to

these three criteria. According to the AIC, theethclass solution should be preferred.
According to the BIC the two-class solution sholoédpreferred.
The three-class solution will be presented bectheséatent rater agreement models
that will be defined in Section 5 require at |lethsee latent categories to differentiate from
one another. | will exemplarily report all threergaeterizations to illustrate their
meanings. In the remainder, | will mostly rely dre tconditional response probabilities to
illustrate the relation between the manifest arel lthtent variables since the conditional
probabilities can be interpreted even in the cddeandary solutions. However, in some

cases | will also refer to the other parameteireti
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Table 4.1.7

62

Multiplicative log-linear parameters of the log-6ar model with three latent categories
representing neuroticism (self-report)

Overall effect

q 1.15 10%®
One variable effect of the categorical trait
ns=1 ns=2 ns=3
Thews 1.59 16" 3.45 167 1.61 10%
One-—variable effects of the manifest variables
r=1 r=2 r=3 Variable names
< 2.50 10* 4.40 106° 9.08 16° «vulnerable”
te 1.22 16 1.36 10 2.96 10™ “sensitive”
£ 0.73 0.37 3.68 “moody”
0 0.47 0.91 2.36 “self—doubtful”

Two—variable effects of the latent variable andnticators

ns=1 ns=2 ns=3
FANEUS 3.52 1d° 2.86 10 9.92 10°%* “vulnerable”
FANEUS 9.83 16° 1.58 10% 6.44 10°'*
FANEUS 2.89 10% 2.21 16° 1.56 14"
§B.NEUS 6.64 10 5.95 10° 5.09 10°* “sensitive”
§o:NEUS 1.50 10° 4.83 10° 2.76 16™
e NeUs 0* 3.48 107 7.11 16"
FC:NEUS 3.63 2.21 0.12 “moody”
fC:NEUs 1.59 3.30 0.19*
FCNEUS 0.17 0.13 42.12
FDNEUS 3.37 1.11 0.27 “self—doubtful”
F0-Neus 1.83 0.59 0.93
£D.NEUS 0.16 1.52 4.04

3.ns

Note.* boundary values. 1 fitted margin is zeng latent category;: manifest category.

Log-linear parametes. The estimates of the population parameters @adavkth a hat)

depicted in Table 4.1.7 should only heuristicaleyibterpreted because they are afflicted

by boundary values. The first row presents oveyatimetric mear(ﬁ) . This parameter is
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a mere reflection of the sample size (Hagenaa@))1The log-linear parameters for the
latent variable (latent one-variable effet}:"°) show that the middle category is strongly

preferred by the raters followed by th® dategory, the "8 latent category is not preferred

according to this parameters. The log-linear patarseof the manifest distribution
(manifest one-variable parameters, eig.) depict the unconditional manifest distribution.

It can be seen that th8%nd & category are strongly preferred for the item “euible”
(A). The first two categories of item “sensitiveB)(are more frequently expected than
based on the geometric mean. The manifest logtlipaeameters for items “moodyCJ

and “self-doubtful” D) show that the'3 category is overrepresented for these items.

2 A.NEUS

The two-variable log-linear paramete(re.g.,Tlns ) show that the link between

the F' latent classris = 1) and the % manifest response category is always strongest
because the two-variable log-linear parametergbdst for this connection. However, for
three items A, C andD) also the 2 manifest response category is strongly relatetthe¢o

1* latent category. Principally, the parameter esmalecline with an increase in the
index of the manifest category. The two-variableapgeters linking the™ latent category

to the manifest response categories reveal thatcitiegory is strongly linked to th& 3
manifest response category of iténto the ' manifest response category of it@nto

the 2 manifest response category of it€@nand also linked to theland 3 manifest
response category of iteh The two-variable parameters linking tH& [atent category to
the items are always highest for tH& Banifest response category. The boundary values
strongly influence the parameter estimates as shgwhe very high values.

Effect parametersThe effect-parameters (see Table 4.1.8) give sensomprehensive
view on the relation between the latent and theifesinvariables because the manifest
one-variable effects are considered in additiotheotwo-variable effects. The values are
only depicted for item€ andD because these parameters suffer from the boundargs

to a smaller degree than the parameters for itearsdB.
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Table 4.1.8
Effect-parameters (category against the two othé&s)the two indicators “moody” and
“self-doubtful” in the log-linear model with thredatent categories representing
neuroticism

One variable effect of the manifest variables

r=1 r=2 r=3 Variable names
Ve 0.53 0.14 13.54 “moody”
v 0.22 0.83 5.57 “self-doubtful”
Two-variable effects of the latent variable andnticators
ns=1 ns=2 ns=3
§E Nevs 13.18 4.88 0.01
Yomeos 2.53 10.89 0.04 “moody”
§5 Nevs 0.03 0.02 1774.09*
Ve 11.36 1.23 0.07
JD:NEUS 3.35 0.35 0.86 “self-doubtful”
Yo NEUS 0.03 2.31 16.32

Note * boundary valuer: manifest response categons latent category. For sake of
simplicity, the effect parameters are simplified §:\°"°, for example, leaving out the

indices for the two other categories.

Table 4.1.8 shows the effect-parameters to chooseparticular category against
the two other categories. As already describedtHerlog-linear parameters, it is much

more probable to choose th manifest category\,(f, NEuS =13.18 and ¥°355° =11.36) if

2D3 y1/ 2E|3
the target belongs to the'latent class. The effect-parameters for thg |&tent class
indicate that individuals belonging to this classé the highest tendency to choose flfe 2
manifest response category for it€nand the % category for itenD. However, the 1
manifest response category is also more often ochthen predicted by the one-variable

D NEUS

effect- parameter(;yc(ggéjs >1andy, ;5> j Individuals belonging to thé“Jatent class

most probably endorse th¥ ganifest category\/g,'“EUS =1774.0¢ and {2:NEYS =16.32).

y3/ lEIZ
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Conditional response probabilitieThe analysis of the conditional response proliegsl

in Table 4.1.9 shows that the three latent categocan be interpreted as three latent
personality types. A non-neurotic type ("non-newgfotlass: 1), a class (2) preferring
neurotic response tendencies with respect to i#®rasdB (“vulnerable” and “sensitive”)
and showing no strong response tendencies for it€nad D (“moody” and “self-
doubtful”) - I will call this class "sensitive bstable class" to have a short description -,
and a “neurotic” type (“neurotic” class: 3) choasithe third category with very high

probabilities for all items.

Table 4.1.9
Conditional response probabilities in the log-limemodel with three latent categories
representing neuroticism

latent categories

manifest

variable _ 1(m=°=.24) 2 (7*°=.56) 3(7"°=.20)
categories
1 .29 .04 .00*
A (vulnerable) 2 41 10 .00*
3 .30 .86 .99
1 .50 .02 .00*
B (sensitive) 2 .50 .07 .00*
3 .00* 91 .99
1 .68 .38 .00
C (moody) 2 21 40 .00*
3 A2 23 .99
1 49 24 .01
D (self-doubtful) 2 31 A5 A3
3 .20 .61 .87

Note * boundary values.The values in parentheses represent the laterst sitzas. One fitted margin is

Zero.

The first class consists of 24% of all participafile probability of choosing the
3 response category are rather low= .30, .00, .12 and .20, respectively) and the
probabilities to choose the second response cat@gemot very pronounceg € .41, .50,

21, and .31, respectively). Slightly more pronadcare the conditional response
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probabilities to choose thé inanifest category for individuals belonging to ffieclass p

= .29, .50, .68, .49). Keeping in mind, that theegaries of the variables are ordered from
low neurotic to high neurotic response categortas, first class shows low neurotic
response tendencies.

Individuals of the second class tend to choosditsieresponse category much less
often (probabilities of .04, .02, .38 , and .2&g\t also do not choose the second response
category very often (probabilities of .10, .07, ,4@nd .15), but rather tend to choose the
third response category (probabilities of .86, .28,, and .61); the typical response pattern
for this class is to approve itemsandB (choose the ' category) to choose any category

for item C slightly preferring the categories 1 and 2

(fzféNEUS:.BS;ﬁfZNE“S: 40775 NV= .2:) and to most probably choose the highest

response category for itebn (self-doubtful) but to also choose another resparsegory
in 40% of the times. This type could best be désctias a “sensitive but (emotionally)
stable” [vulnerable and sensitive but not very mpodself-doubtful] personality type.
Members of the third latent class choose the tregponse category almost with
certainty for the first three items (“vulnerablésensitive”, and “moody”, alp = .99) and
strongly prefer the third category of itelh (“doubtful” p = .87). This class shows clear
neurotic response tendencies. The differencesrmst®f the typical response behaviour
between the second and the third class of indivéduaainly consist in the expected
responses for “moody” and “self-doubtful”. Indivials belonging to the 3 class will
mainly choose the third response category (86% hef time), whereas individuals
belonging to the ¥ class will also provide responses in tfieot 2" response category for
at least one item in 85% of the time. The empiriegiplication shows that the
interpretation of the conditional response probagd is much clearer (with respect to
possible differences between the effects of latatégories on the manifest indicators)

than the interpretation of the effect-parameters.

Reliability. The log-linear parameters and the effect-parammetan only heuristically be

analyzed because their parameters are afflictedooydary estimates. However, the log-
linear and effect parameters indicate that theransordered structure for the latent
variable. The conditional response probabilitiedidate if one latent category is strongly
related to a specific response tendency for a resinifariable. This is generally the case
for the 3° latent category, but this is not the case forater latent categories, except for
itemsA andB for the 29 latent category. Since identical named categari¢he manifest
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variables do not correspond to identical latenegaties the approach of Dillon and
Mulani (1984) to inspect reliability relying on tleenditional response probabilities may
not be used. Yet, the mean assignment probabi(dieermined by a run of this model in
Mplus, Muthén & Muthén, 20073 for the three-class solution are all above .78;(.89;
.90) indicating a reliable classification of indivals into the three classes.

4.2 Extension to More than One Latent Variable — Correlated Traits

As described in Section 1, the analyses of the @@®nt and discriminant validity can be
done using the (CFA-) Correlated-Trait (CT) modelthis model, two or more traits are
measured by multiple indicators administered to tiplgl raters. There is one latent
variable for each Trait-Method-Unit (TMU). A TMU osists of all manifest ratings of one

rater for one specific trait.

A vulnerable
@ B sensitive
C moody

D self-doubtful

E industrious

@ F diligent
G dutiful

H ambitious

Figure 4.2. The loglinear-model with two latent iehtes for neuroticism and

conscientiousnesBIEUS Neuroticism;CONS Conscientiousness (self-report data)

12 Mplus does not allow for estimations of more coexpinodels. Therefore, | will only rely on the enigz
results provided by LEM in the remainder.
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In the framework of log-linear models with latenariables, additional latent
variables can be easily incorporated (see e.g.ehtays, 1993). Figure 4.2 depicts a log-
linear model with two latent variables. In this negdhe two latent variables are measured
by four manifest variables each. The double-heaateolw indicates that the two latent
variables may be associated.

Definition 4.2.1

The log-linear model with two latent variables.

eab.x.y = r]TaTszTYT Xy (421)

y xy

is a log-linear model with two latent variables, ... is the expected frequency of| a

specific cell in the latent joint cross-classifioat of the manifest response patteris
(consisting of the two trait-specific patterasand b) with the two latent variables and

Y. n7 is the overall geometric mean of the completeetdlbilanifest and latent variable

1°2)
N

T, andT, represent the measurement models of the lateiates:

T, = Hr,“]"{r“n";_'f: represents the product of the log-linear paramaelieking the latent

variableY to its indicators and the manifest one-variabfeat$.

T, and T; represent the latent one-variable eﬁem@ represents the latent two-variable

effects.

4.2.1.1 The statistical meaning of the different effects in the CT model

The log-linear parameters of Equation 4.2.1 witknown frequencies of the latent table
can be calculated as in the case of completelyreéddables. Calculating the log-linear
parameters of the sub-models for each trait candd®e using the collapsed latent

frequency table for each TMU. Since there is neranttion between the items being



Latent Variable Models for Categorical Data 69

indicators of one trait and the items being indicatof the other trait, the collapsibility
theorem holds (Bishop, 1971; see Appendix B). Meeepthe meaning of the manifest
one-variable effects and the two-variable effeetmain the same as in Definition 4.1.1.
This is also true for all following model definitis. Therefore, | will start the explication

of this and all following definitions at the levef latent variables.

« The latent one-variable parametér%; T;) describe the univariate distributions of

the latent variables. These parameters are idértbicéhe odds comparing the
geometric mean of all probabilities belonging tpaaticular latent category to the

overall geometric mean. E.g.:

, (4.2.2)

or in proportions:

Y

) vuex_y

=D (4.2.3)

X [x v '
xwl\:ly: Q,_y

with e, representing the expected latent cell frequemmyidf'yY representing the

latent cell proportion. The index serves to count the categories Xfwhen x
already describes a particular category. If onenktiee expected frequencies, the

calculation in collapsed frequency tables wouldtraightforward.
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« The latent two-variable effec(trfj ) indicates the deviations of cell proportions

from the prediction based on the marginal propadim the latent bivariate sub-

table:

(TX.Y) — TCV

xy )= (4.2.4)

T,

4.2.1.2 Implications of the CT model

The CT model for categorical data has already hateoduced by other authors (see e.qg.,
Hagenaars, 1990, 1993). Since it will serve as lamsudel in the Multitrait-Multirater
models it will be shortly discussed.

The meaning of the parameters within a TMU rempir$ectly the same as before.
They may be used to determine the reliability amel tneaning of the latent variables.
Additionally, the association between the two lataonstructs corresponds to a
heterotrait-monomethodaorrelation sensu Campbell and Fiske (1959). Inegd, this
correlation (association) should be rather lowngdigate discriminant validity. However,
there may also be category-specific co-occurretitaisare higher than expected for the
independence model. A special type of neuroticisay lme related to a particular type of
conscientiousness, for example. Statistically ttaa be seen in significant two-variable
effects representing specific combinations of latetegories that are more likely to occur
than predicted by the underlying latent one-vadaadifects.

If all two-variable parameters are equal to 1categories of the two constructs are
perfectly distinct from each other, representingigm discriminant validity between the

two latent variables. In this case, the indepeneenadel will hold.
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4.2.1.3 Definition of the independence CT model

The assumption of independent constructs (perfisctichinant validity) can be tested in
log-linear models with latent variables. The indegence CT model fits well, if the

constructs are perfectly discriminant.

Definition 4.2.2

The independence Correlated Traits model
eab.x.y = r]TaTb-[))ET; (425)

with e

oxy S expected frequency of the manifest responserpab. ;7 is the overall

geometric mean of the complete table (manifestlateht variables)T, andT, represent

the measurement models of the latent variables:

|
T, = |_| r,“]"]ir“n";_'f: represents the log-linear parameters linking létent variableX to its
m=1
indicators and the manifest one-variable effects,
K
T, = |_| TSkkquf'yY: represents the log-linear parameters linking l#tent variableY to its
0 =1

indicators and the manifest one-variable effects.

T, andt] represent the latent one-variable effects.

The statistical meaning of the parameters remanegtly the same as for the saturated

model.

4.2.1.4 Applications of the CT and the independence CT model

The (categorical) CT model with two latent variablend multiple indicators will be
illustrated by the empirical example of neuroticisid conscientiousness measured by

four items per trait. Figure 4.2 depicts the CT-mlodThe first four indicators
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(“vulnerable”, “sensitive”, “moody”, and “self-dotfinl’) measure neuroticism; the last
four indicators (“industrious”, “diligent”, “dutifli, and “ambitious”) measure
conscientiousness.

Table 4.2.1 presents the goodness-of-fit coefficidor the CT and the
independence CT model with 3 categories per latamable.

Table 4.2.1
Goodness-of-fit coefficients of the CT and indepand CT model with two three-
categorical latent variables

2 2 2 1 1
)(2 p()() L pL?) df AIC BIC Pboot  MNbounds

CT 8009.02 .00 1141.76 1.0®504 -11866.24 —-38985.39 .08 4

ind.
7938.05 .00 1138.94 .00 6508-11877.06 -39012.89 A1 7

Note.CT: CT model; ind. CT: independence CT modglz,: Pearson)(2 -value; % Likelihood-Ratio )(2—

value *AIC and BIC are based on the L-squar,qfa -value; pyoot bootstrapped probability oy(z; MNbounds

number of boundary values.

The two models fit the data according to the boapgied y*-value. According to
the two information criteria the independence mdiglbetter. However, it suffers from a
larger number of boundary values than the CT mdét®l.illustrative reasons the saturated

CT model will be reported.
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Results of the CT modelhe one-variable effects of the manifest varigplde two-
variable effects (links) of the manifest and lateatiables, as well as the conditional

response probabilities can be found in Tables 4ldigh 4.2.5.

Table 4.2.2
Log-linear parameters of the measurement moddiefIT model; neuroticism
one variable _
effect two-variable effect
variable manlfes't ns=1 ns=2 ns=3
categorles

1 0.39 2.56 1.05 0.37
A (vulnerable) 2 0.98 1.22 1.22 0.67

3 2.61 0.32 0.78 4.00

1 1.23 10'° 1.47 10° 7.12 16 9.51 10°
B (sensitive) 2 7.68 10 1.7210°  3.10 10> 1.88 10

3 1.05 16 3.9510°  4.5310° 5.59 10°

1 33.81 0.08 554.38 0.02
C (moody) 2 20.10 0.03 749.38* 0.04

3 0.00 420.77 24110 987.53

1 0.16 16.10 0.01 4.16
D (doubtful) 2 1.95 0.29 12.52* 0.28

3 3.23 0.21 5.35 0.87

Note * boundary valuesis categories of the latent variable for neuroticism

Table 4.2.2 presents the log-linear parametersthier measurement model of
neuroticism. The log-linear parameters are lessrabethan for the model presented in
section 4.1.1—sitill, they suffer from boundary dmns.

The conditional response probabilities differ frahmose found for the model
presented in Section 4.1.3 (examining neuroticisnty)o The conditional response
probabilities for the % latent category change to a small degree only feven Tables
4.1.9 and 4.2.3). The conditional response prolbigsilfor the 2 |atent category for
neuroticism also differ with respect to the resudttsnd in Section 4.1.3. Individuals

belonging to this class tend to choose tffen@anifest category for iterA. They tend to
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choose the ¥ (moderately neurotic category) for itefBsand D. And they clearly do not
choose the "3 manifest response category for it@nTherefore, | still will call this class

sensitive but (emotionally) stabfeor middle class.

Table 4.2.3
Conditional response probabilities of the manifesgponse categories for the construct
neuroticism in the CT model

latent status

variable manife.st ns=1 ns=2 ns=3
categories
1 .33 A1 .01
A (vulnerable) 2 .39 .33 .06
3 .28 .56 .93
1 51 23 .00*
B (sensitive) 2 37 .64 .02
3 A2 13 .98
1 .68 .55 .25
C (moody) 2 16 45* .28
3 16 .00 A7
1 .67 .00* .16
D (doubtful) 2 A5 59* 13
3 .18 41 .70

Note * boundary valueis categories of the latent variable for neuroticism

Individuals belonging to the 3latent class choose thé” 3manifest response
category almost with certainty for iterdsand B. The conditional response probability to
choose the " manifest response category for iténis less pronounced than in Table 4.1.9
but still very high (.70). Members of th& 8lass indicate that they are moody in about half
of the time and tend to choose th& dr 2" manifest response category approximately
equally often.

The latent proportions differ between the two medéi the previously described

model, about one quarter of all individuals wassified as not neurotic. Approximately

3 The name is only given for illustrative reasons.
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the same amount of individuals is classified as matrotic in the current application

(72 =.21). Yet, the class proportions for th& 2nd & class differ vastly between the

models. Only 11% of the individuals are classifésdsensitive but stable (middle category)
— compared to 56% in Section 4.1.3. And 69% oinalividuals are classified as neurotic —
compared to 20% in the model of Section 4.1.3. @emsg the conditional response
probabilities again shows that the typical respguestterns for the two applications differ
in such a way that many individuals who have bdassified into the % category in the
1% application now belong to the third latent catggofhe conditional response
probabilities to choose thé*3nanifest response category for ite@andD became lower;

but, still, it is highest compared to the otheregalries.

Table 4.2.4
Log-linear parameters of the measurement moddiefIT model; conscientiousness
one variable _
effect two-variable effect
variable mamfes-t cs=1 cs=2 cs=3
categories
1 0.40 9.76 0.30 0.34
E (industrious) 2 1.55 0.62 3.83 0.42
3 1.62 0.16 0.87 6.99
1 1.79 10* 4.0116" 27216 9.16 10°%*
F (diligent) 2 8.84 16¢ 1.04 10" 4.96 10"*  1.93 16°
3 6.33 10° 2.3910" 74110  5.651¢°
1 0.22 2.95 0.57 0.59
G (dutiful) 2 1.05 1.00 1.64 0.61
3 4.32 0.34 1.07 2.76
1 0.86 3.85 0.76 0.34
H (ambitious) 2 1.19 1.04 1.68 0.57
3 0.97 0.25 0.78 5.15

Note * boundary valuess categories of the latent variable for consciargigess.

Table 4.2.4 presents the log-linear parametersther measurement model of

conscientiousness. Inspecting the log-linear egf¢lotit those for itenk) reveals that the
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two-variable effects in one row (for one manifestegory) are always strongest for those
categories with identical labels of the manifestl datent category. The conditional
response probabilities are highest for categotesirsg the same label indicating that the
1% latent class consists of not conscientious indialg, the ¥ latent class consists of
moderately conscientious individuals, and th& Btent class consists of highly
conscientious individuals.

The only item that does not perfectly match thistgga is dutiful. This finding
could be explained by the fact that the German itpfiichtbewusst” (“dutiful”) is the
only item measuring conscientiousness which is lotérnally and externally oriented.
This characteristic may stem from an internal @egir be responsible. However, it may
also occur because a person is responding to stesgynal pressures to perform
prescribed behaviors. All other adjectives descabpects of conscientiousness that are
more strongly due to attitudes (internally orientéicherefore, it may be much easier to be
dutiful or to perceive oneself as dutiful yieldipgncipally high answers on this item, but
it still fits into the latent typology. This intemgtation is supported by the fact that the log-
linear two-variable parameters are always highasthfe categories sharing the same label
(see above) and by the increase in the conditioesponse probabilities for higher
manifest response categories combined with higitent categories (see Table 4.2.5).
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Table 4.2.5
Conditional response probabilities of the manifesgponse categories for the construct
conscientiousness in the CT model

latent status

variable manife.st cs=1 cs=2 cs=3
categories
1 .76 .02 .01
E (industrious) 2 19 .80 .05
3 .05 19 .94
1 .87 .09 .00*
F (diligent) 2 A1 .82 .05
3 .02 .09 .95
1 .20 .02 .01
G (dutiful) 2 .33 27 .05
3 46 71 .94
1 .69 19 .05
H (ambitious) 2 .26 .59 A1
3 .05 22 .84

Note * boundary valuess categories of the latent variable for consciargitess.

Table 4.2.6 presents the latent joint distributioos the categorical traits
neuroticism and conscientiousness. The marginalsidaroticism differ vastly from the
previously reported model as described above. 2#% e sample are classified as not

conscientious, 36% as moderately conscientious4af@as highly conscientious.
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Table 4.2.6
Cross classification of the estimated proportiofidhe two latent variables (neuroticism
and conscientiousness) in the latent saturated ©dein

NEUS(Neuroticism)
1 2 3
CONS 1 .05 (.05) .02 (.03) 17 (.17) 24
(Conscientiousness) 2 .07 (.08) .05 (.04) 24 (.25) 36
3 .09 (.09) .04 (.05)  -28(.28) 41
21 11 69

Note.Values in parentheses present the product of théatent marginals.

Examining the joint distribution of the latent satied CT model reveals some
interesting results. The integration of the latewb-variable effect does not lead to great
differences in the latent joint distribution comgdrto the expectations given only the
latent marginals. A comparison of the estimatedpprtions (cell entries in Table 4.2.6)
with the expected proportions given the latent evarable effects only (in parentheses)
reveals that the latent association is not vergnsir This finding is supported by the
estimated two-variable effects. The parameter wahla@ge from 0.80 for the latent cell
combination [2 1] (brackets indicate latent cellmtmnations) to 1.23 for the cell
combination [2 2]. The more parsimonious and béiting independence model seems to

be the model of choice for this data situation.
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5 Latent Rater Agreement Models

The models presented in Section 4 serve as the basthe adoption of manifest rater
agreement models. The log-linear model with onenlatvariable represents a Trait-
Method-Unit (TMU) in all models that will be defide The Correlated Traits model for
categorical data statistically corresponds to enlatater agreement model if the different
trait-variables are replaced by two variables regnéng the same trait rated by two
distinct raters.

In this section, latent rater agreement models Wwél defined for structurally
different and interchangeable raters. Structurdiltierent raters are raters who differ from
each other by the research design. Consider selfpaer ratings as a typical example. The
self-raters can be randomly drawn out of the pdmraof all available self-raters. The
peers can then be drawn out of the set of pospibde raters. Self- and peer raters stem
from different populations and are, therefore, &tially different.

The opposite accounts for interchangeable rate@wviDg two peers out of the set
of possible peer raters corresponds to random sagnplt of one population. Random
samples of one population must have the same p&esndherefore, the models for

interchangeable raters are restricted versioniseofrtodels for structurally different raters.

5.1 Latent Rater Agreement Models for Structurally Different Raters

The definition of latent rater agreement modelbased on the previously described log-
linear models with latent variables. However, thwe distinct construct of the Correlated
Traits (CT) model are replaced by two variablesesenting one construct rated by a self-
and a peer rater. The structure of the model res@énfectly the same (see Figure 5.1).
The latent rater agreement models allow for aitdbe latent categories represent
the same latent constructs. If this is the case, ttho ratings must principally be

classifiable into the same number of categorieh wdiéntical labels.
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| A (vulnerable) |

| B (sensitive) | Self-Report

C (moody)

| D (self-doubtful) |

| | (vulnerable) |

J (sensitive) Peer Report A

| K (moody)

| L (self-doubtful) |

Figure 5.1. Log-linear model with two latent vated representing the latent construct
Neuroticism NEU) for the self-reportS and the peer repo’. Each latent variable is
measured by four manifest indicators.

Figure 5.1 presents a categorical monotrait-multnm& model for the analysis of
latent rater agreement of two raters. For sakeoafprehensibility the trait variables and
the items are labeled. The latent construct nesisoti is represented by two latent
variables (class variableBtEUSfor the self-report vaNEUA for the peer rating A). The
two latent variables are measured by the same fsgeras (“vulnerable”, “sensitive”,
“moody”, and “self-doubtful”) rated by a self-ratand one peer. However, administering
the same items is not a necessary condition fordefeition and application of the
models.

Out of the total of four existing manifest rateregment models (see Section 2.3)
three models can be chosen to analyze rater agneexrhéne latent level for structurally
different raters. The quasi-independence | moddl. 15, the quasi-independence Il model
(5.1.2), and the quasi-symmetry model (5.1.3) candefined for structurally different
raters. The symmetry model implies interchangegbif the raters and will be presented
in Section 5.2. The independence model and thaaatl model have been defined in
Section 4.1. The definitions apply directly to ttese of two methods measuring the same
trait. All models will be defined for the case wid raters.

In all models that will be presented, there are teaefficients that may be
determined revealing information about bias andirdisishability. Since the latent one-
variable effects do not always directly reflect threvariate latent distributions of the latent

variables, the coefficients are defined relyingtiom latent probabilities. Differences in the
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prevalence rates (differences in the latent distidms) represent method (rater) bias (see

Agresti, 1992). The method bias type | coefficignantifies this effect.

Definition 5.1.1
Method bias type |

2

MBI, y) = 7TXY ,for x=y (5.1.1)
y

is the method bias type | coefficient.

This definition of method bias is similar to the ception of method bias in
standard log-linear models for rater agreement fggesti, 1992). Note, that this bias is
not defined as a bias indicating differences / a@gwns from the true status or the true
distribution of the latent variable but as a biathwespect to the other rater. Values larger
than 1 indicate that the rater whose latent vagiablin the numerator uses this category
more frequently than the other rater. Values beloindicate the opposite. High (or low)
values onMBL1 indicate that the two raters do not perfectlyeagon the prevalence rates
and therefore also indicates a cause of a lackmfargent validity.

In all models, a second type of bias can be examifde ratio to which
proportions of specific cell-combinations besidég tmain diagonal deviate from the
expected proportions given the one-variable effectdefined aglistinguishability index
This index is a direct consequence of the conceplistinguishable categories formulated

in Section 2.3.1. To my knowledge it has not bedimdd yet.

Definition 5.1.2
Distinguishability index (Dist)
Y
y

~—, for xz y. (5.1.2)

T

Dist(xly) =

The distinguishability index indicates to which caparticular cells of the joint
distribution representing discordant ratings arerowr underrepresented. Values larger
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than 1 indicate that the proportions of the celinbmationsx.y is higher than expected
given the latent marginals, values smaller thandicate that these proportions are smaller
than expected given the latent marginals. If thimes are larger than 1, the two raters
confound the categoriesandy. That is, if categoryx is choserthe probability to observe
categoryy increases; the two raters do not appropriatelyingjsish between these two
categories. If the index is smaller than 1 the teters produce smaller latent proportions
for these cells than expected given the marginads therefore, they distinguish between
these categories—the closer this value is to Ob#teer the raters distinguish between the
two particular categories. A further analysis irdpey the moderators of agreement (see
Funder, 1995) could reveal why raters confound istiruish well between different
categories.

If raters distinguish perfectly between all categ®rthey also agree perfectly
implying that a one-variable model will hold. Thaesvariable model can be defined as
specified in Equation 4.1.1 (where all items depemiquely on one common latent

variable).

5.1.1 Definition of the Quasi-Independence | Model for Structurally Different

Raters

Definition 5.1.3
The latent quasi-independence | model for two stinadly different raters and one

construct

Let X and Y represent the same latent construct measured bydistinct raters with
identical categoriex@ndy).

| =1ifx=
- XY [+ XYY : y
eab.x.y - r]-I-a-l-b-[x-[y(-[xy) ! with { | =0 else (513)

€,nscs IS the expected frequency of a specific cell & lditent joint cross-classification pf

the manifest response patterals (consisting of the two trait-specific patterasand b)

with the two latent variableX andY. 77 is the overall geometric mean of the complete
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table (manifest and latent variable3), andT, represent the measurement models of| the

latent variables:

|
T, = Hr,“{']ir?]";.'f: represents the product of the log-linear pararselieking the laten
m=1

variableX to its indicators and the manifest one-variabfea§,

K
T, = Hr‘j:rqof'yY: represents the product of the log-linear pararaelieking the latent
o=l

variableY to its indicators and the manifest one-variabfeat$.

T, andT, represent the latent one-variable effec{S: represents the latent two-variable
effects.
5.1.1.1 The statistical meaning of the different effects in the latent quasi-
independence | model for structurally different raters
The log-linear parameters of Definition 5.1.3 h#ve following meanings:
. n is the geometric mean of the unobserved completpiéncy table, which
is a mere reflection of the sample size (Hagend&&0; 1993).
. The submodelsT, and T,: have been described in section 4.1 (e.g.,
Goodman, 1974a, 1974b; Haberman, 1979; Hagend&296, 1993; McCutcheon,
1987).
. The latent one-variable parameteén:%;ﬂ) cannot be interpreted as in the

models described before. As for the manifest quképendence models the table
of expected proportions can be decomposed into tabée showing perfect
agreement (a one-variable model holds) and one fmldwing complete
independence. For the model with manifest variallely, Schuster and Smith
(2006) showed that the cell proportions in the patth perfect agreement (that is, a

part of the cells on the main diagonal) only dependthe additional log-linear

parameters(rf'yY) and that the one-variable effects account forémeaining part.

Adapted Equation 4 from Schuster and Smith (20€6) i
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v ”[(TX-'Y)I T*XTVY} (5.1.4)

with N indicating the sample size. For cases wikeny, this simplifies to:

[ oxx\O _x._v
n|(y) )

=L
N

Xy

(5.1.5)

Z:1>< ) r;]

XY
_Nry

The log-linear effects can be determined usingdhewing equations:

Y ()X (m)+
= (5.1.6)

()2 ()+
(5.1.7)

and

L (5.1.8)
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with v andw indicating the categories &fandY, respectively. Repeating the same
index x.x instead of specifying.y means thay = x. As can be seen the log-linear
parameters can be determined knowing the latemioptions. Additionally, the
parameters always can be determined relying ordde®mposition of the latent
joint distribution as proposed by Schuster and Bif2006) for manifest variables.
They conceive the joint manifest distribution asnature of ambiguous and
obvious cases. Ambiguous cases are target pergmmswhom the two raters do
not agree or only due to chance agreement. Thaedé can directly be adopted at
the latent level. For ambiguous targets the indépeoce model holds:

X
X = T (5.1.9)

X X

xl]T[°\)/(

with ° marking that only the ambiguous cases areemed. In order to obtain the
marginals of the latent table following independencthe amount of
overrepresentation on the main diagonal has to utdracted. This is done in
Equations 5.1.6 and 5.1.7. Equation 5.1.8 may beensed to determine the latent
two-variable effect. However, these parameters rave directly related to the
proportions; therefore one typically relies on éxpected proportions reporting the

guasi-independence models.

5.1.1.2 Implications of the quasi-independence | model

The latent one-variable effects do not directlyeefthe univariate latent distributions of
the latent variables. Their interpretation is ratbdficult with respect to the complete
table, but much easier with respect to the decostptable (separating ambiguous from
obvious cases). The method bias type | can berdeted revealing differences between
the latent prevalence rates (latent distributions).

Concordant ratings (agreement) which go beyondatipeement on chance are

indicated by the two-variable effecl(srﬁ'yY)l for cells with identical indicedx= y).

Agreement for raters is a special case of convesém general. Thus, these parameters
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depict the category-specific convergence beyonaahaonvergence. An overall latent
agreement rate can be calculated usingA category-specific agreement rate can be
calculated by the ratio of the expected cell prboporto the product of the latent
marginals. Large differences in the category-speeafreement rates indicate that raters
agree more or less strongly depending on the caesgof the latent variables. Large
differences indicate that the convergent validigréement) depends on the categories and
IS not constant across categories.

By fitting the latent quasi-independence | moded #ssumption of independent
disagreement is tested. Therefore, it is not megmirto calculate the distinguishability

index in quasi-independence models.

5.1.2 Definition of the Quasi-Independence Il Model for Structurally

Different Raters

Definition 5.1.4

The latent quasi-independence Il model

Let X and Y represent the same latent construct measured bydistinct raters with

identical categoriesx@ndy).

| =1ifx=
€y = r]TaTb'[f'[;('[f'J)l , With { =0 elsey, andTX_-Y =t*", (5.1.10)

€

ab.ns.cs

Is the expected frequency of a specific cell im ldtent joint cross-classification pf

the manifest response patterals (consisting of the two trait-specific patterasand b)

with the two latent variableX andY. 7 is the overall geometric mean of the complete
table (manifest and latent variable3), andT, represent the measurement models ofj the

latent variables:

|
T, = Hr,“]"{r“n";'f: represents the product of the log-linear paramaelieking the latent
m=1

variableX to its indicators and the manifest one-variabfea$,
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K
T, = Hr‘j:rqof'yY: represents the product of the log-linear pararaelieking the latent
o=l

variableY to its indicators and the manifest one-variabfeat$.

T; and T; represent the latent one-variable eﬁem@ represents the latent two-variable

effects. It is restricted to be constant acrossedls on the main diagoné vy = TX'Y).

The statistical meaning of the parameters is abslgludentical to the meaning of the

parameters of the quasi-independence | model.

5.1.2.1 Implications of the quasi-independence Il model

Concordant ratings which go beyond the agreementhamce are mirrored by the two-

variable effects[(Tx'Y)l} for cells with identical indice{x=y). These effects show

constantagreement between raters. Agreement is a propéttyeoraters and not of the
interaction between raters and categories. Theviav@able effects in manifest models can
be transformed intax (see Schuster & Smith, 2006). The two-variableapesters depict
the convergence beyond chance convergence. An Iblaent agreement rate can be
calculated usingc. A category-specific agreement rate can be cdkedlay the ratio of
the expected cell proportion to the prediction gitiee marginals only.

By fitting the latent quasi-independence Il modeé tassumption of constant
independent disagreement is tested. Therefores ihat meaningful to calculate the
distinguishability index in quasi-independence nisde
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5.1.3 Definition of the Quasi-Symmetry Model for Structurally Different

Raters

Definition 5.1.5

The latent quasi-symmetry model

Let X andY represent the same latent construct measured bydistinct raters with

identical categoriex@ndy).

oy =NT T T Txy s with 70" =1 (5.1.11)
€155 IS the expected frequency of a specific cell i lditent joint cross-classification

the manifest response patterals (consisting of the two trait-specific patterasand b)

with the two latent variableX andY. 7 is the overall geometric mean of the complete

table (manifest and latent variable3), andT, represent the measurement models of

latent variables:

T, = |_| TV X represents the log-linear parameters linking l&tent variableX to its

indicators and the manifest one-variable effects.

T, and T; represent the latent one-variable eﬁem@ represents the latent two-varial

effects.

the

Die
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5.1.3.1 The statistical meaning of the different effects in the latent quasi-symmetry

model for structurally different raters

The meaning of the log-linear parameters of Dabnits.1.11 directly corresponds to the

log-linear parameters of the saturated model, heweome restrictions are imposed:

. n is the geometric mean of the unobserved completpiéncy table.

. The submodelsT, and T,: have been described in section 4.1 (e.g.,

Goodman, 1974a, 1974b; Haberman, 1979; Hagena296, 1993; McCutcheon,
1987).

. The latent one-variable parametery andt): describe the univariate

distributions of the latent variables. These patanseare identical to the odds
comparing the geometric mean of a particular caied® or y) against the

geometric mean of all cells. E.qg.:

: (5.1.12)

with x indicating the particular latent categoryXfindv indexing the first to the
last category oK in the denominator.

. The latent two-variable effec(trfj) indicates the deviations of joint cell

proportions from the prediction based on the maigproportions in the latent
bivariate sub-table. E.qg.:

()= (632) = e

Y Tlf:T[yT[y -
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(5.1.13)

TI.;(.Y
simplifyingto(rﬁ'yY): Y_ for x=y.

o

5.1.3.2 Implications of the quasi-symmetry model

The latent one-variable effects reflect the unaarilatent distributions of the latent
variables. Differences between the latent distrdmst originate in different (perceived)
prevalence rates; therefore, differences in thentatlistributions represent method bias
(see Agresti, 1992).

The distinguishability index can be used to analymeratio to which the expected
proportions of a disagreement cell deviate from pheduct of the marginal expected
proportions. It is the (geometric) mean of the ewar underrepresentation of specific
disagreement cells. In the quasi-symmetry moded, dlier- or underrepresentation by
definition follows a specific pattern of interchaadpility: the two-variable effects are
restricted to be equal for any pair of categoriest tconsists of the same categories

[(Tf;)z(T;f:)] However, this does not necessarily afflict thstidguishability index

except for the case of identical latent marginals:

Dist, ,) = - = —= = (%)) =(1,%) = Dist, ., (5.1.14)

only if T, =1, and 1T, =TT,

This implies that the quasi-symmetry model may beduto test if the underlying
pattern of disagreement follows a symmetric stngctout it does not test if the ratio of
over- or underrepresentation as examined by thengisshability index is the same. This
can be done applying the symmetry model (which Wwél presented for the case of
interchangeable raters).

Concordant ratings which go beyond the agreememhance are reflected by the

two-variable effects on the main diagor(af';) for x=y. These effects show agreement
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between raters. Agreement between raters is aapease of convergence in general.
Thus, these parameters depict the category-specifinvergence beyond chance
convergence. An overall latent agreement rate @amdbculated usingc. A category-
specific agreement rate can be calculated by thie @& the probability of a cell

combination representing agreement to the produtteomarginals.

5.1.4 Applications of the Latent Rater Agreement Models for Structurally

Different Raters

The latent rater agreement models for structurdifferent raters and multiple
indicators will be illustrated by the empirical exple of neuroticism measured by the self-

report and the first peer report (pdgr The data have been described in Section 4.1.3.

Table 5.1.1
Goodness-of-fit coefficients of the rater agreenmeatiels with three-categorical variables

for structurally different raters

2 2 2 1 1
Xz p(X ) L p(L") df AlIC BIC Pooot  Nbounds

sat  7935.28 .00 1464.351.00 6504-11543.65 —38662.80 .23 8
ind  7768.37 .00 1496.54 1.00 6508-11519.46 —38655.29 .18 10
QI-l  7897.34 .00 1466.62 1.00 6505-11543.38 -38666.70 .15 8
Ql-Il 8061.78 .00 1469.85 1.00 6507-11544.15 -38675.81 .15 5
QS 7897.26 .00 1466.621.00 6503-11539.38 -38654.36 .16 10

ONE 7880.61 .00 1518.761.00 6510-11501.24 -38645.40 .22 2

Note. sat: saturated model; ind: independence model;; @ubsi-independence | model; QI-ll: quasi-

independence Il model; QS: quasi-symmetry modelEObhe-variable mode}’(zz Pearson)(2 -value; [*
Likelihood-Ratio )(2 -value; 'AIC and BIC are based on the L-squargﬁ?-value; Pooot  DOOtStrapped

probability of )(2; Nwoungs NUMber of boundary values.
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Figure 5.1 depicts the saturated model. The fiosir findicators (“vulnerable”,
“sensitive”, “moody”, and “self-doubtful”) measuresuroticism NEUS in the self-report
form; and the (identically worded) last four indiza measure neuroticisSNEUA) in the
peer-report form (for peeX).

The empirical y*-values (presented in Table 5.1.1) do not approtértizeir
theoretical distributions (very different probatids associated to these values for the
Pearson and likelihood-based coefficients). Theegfone should rely on the bootstrap
analysis to identify models that fit to the datacArding to the bootstrap analyses all
models fit to the data. Inspecting the informatoiteria (AIC and BIC) reveals that the
guasi-independence Il latent rater agreement nfadddest.

The saturated latent rater agreement modéle saturated rater agreement model has not

explicitly been defined in this section. Howevés, definition is absolutely identical to the
CT model presented in Section 4.1. It fits to tladwith respect to the bootstrappgé-

value. 8 log-linear parameters suffer from boundeaiues. The one- and two-variable
effects related to the manifest variables can badan Appendix C.

Table 5.1.2 presents the conditional response pilities for neuroticism in the
self-report. These do virtually not differ from thealues presented in Table 4.1.9.

Therefore, their values will not be interpretedeher
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Table 5.1.2

Conditional response probabilities of the manifesiponse categories for the construct
neuroticism (NEUS) in the saturated latent rateresgnent model for structurally different
raters (self-report)

latent status

variable manife.st ns=1 ns=2 ns=3
categories
1 31 .03 .00
A (vulnerable) 2 43 A1 .00
3 .26 .86 1.00
1 51 .03 .00*
B (sensitive) 2 46 10 .00*
3 .03 .87 1.00*
1 .68 .38 .06
C (moody) 2 .20 40 .07
3 A2 22 .88
1 51 .25 .01
D (doubtful) 2 31 16 A2
3 18 .59 .87

Note.* boundary valuesis categories oONEUS

Table 5.1.3 provides the conditional response fitibas for peerA. The peers
may also be divided into three latent classes smpwlifferent typical response patterns.
Individuals of the first class (20%) clearly favtire first response category across all
items. The conditional response probabilities Fer £' manifest category are much higher
than for the self-report.

Individuals belonging to the"2latent class (51%) show typical response patterns

that are spread across all possible response categdhe highest conditional response

probability for this class i#nféNEUA: .57) to choose the®lcategory of rating the target to

be moody, and the lowest conditional response ibityafor this class is(izf'zNE“A= .08)

to choose the®icategory of vulnerable with respect to the targedut of 12 conditional
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response probabilities are in the range bet\(/ 3 EUA=.32) and (ﬂéf'zNEUA:AQ)

illustrating that this class of individuals uselmanifest response categories.

Table 5.1.3

Conditional response probabilities of the manifesiponse categories for the construct
neuroticism (NEUA) in the saturated latent rateregment model for structurally
different raters (peer report A)

latent status

variable manife.st na=1 na=2 na=3
categories
1 .62 .08 .00*
| (vulnerable) 2 .38 44 .00*
3 .00* 49 1.00*
1 74 18 .00*
J (sensitive) 2 .26 A7 .09
3 .00* .35 91
1 76 57 34
K (moody) 2 15 31 .25
3 .09 A1 A1
1 76 48 21
L (doubtful) 2 14 32 .26
3 10 .20 .53

Note.* boundary valuesya: categories oNEUA

Individuals belonging to theBlatent class (29%) interestingly show a typical
response pattern which is similar to the typicapomse pattern of thé®@latent class of
the self-raters. That is, these individuals cleadye the target to be vulnerable and
sensitive but they have no very pronounced viewutlize target's moodiness and self-
doubts. However, the conditional response proltasilto choose thé%3manifest response
categories are highest for this latent class.

The two raters differ with respect to their measmenat models. However, the
interpretations of their conditional response pholitees are close to each other. Both

types of raters can be classified in ordered caiegioTheir measurement models differ



Latent Rater Agreement Models 95

with respect to the difficulty of the items but niot the patterns. The assumption of
measurement equivalence could be tested restrittimdog-linear parameters linking the

latent to the manifest variables.

Table 5.1.4
Cross classification of the two latent variable€EE(D5 and NEUA) in the saturated latent
rater agreement model for structurally differentaes

NEUA
1 2 3
1 .09(05)[1.96] .12(12)[1.21] .02 (.07)[0.42] .23[0.73]
NEUS 2  .07(11)[0.68] .32(27)[1.36] .14 (.15)[1]08 .53 [1.73]
3 .04(.05)[0.75] .07(.12)[0.61] .13 (.07)[2}18 .24 [0.80]
20 [0.71] 51 [1.58] 29 [0.90]

Note NEUS neuroticism self-ratingNEUA neuroticism peer rating (A); the product of
the marginals is presented in parentheses; log#liparameters are presented in brackets.

Table 5.1.4 presents the cross-classification efidkent categories of the self- and
peer ratings with respect to neuroticism. The nmaigi present the proportions of
individuals in the sample belonging to the thressses of self- or peer-rated neuroticism.
The latent distributions do virtually not differofn each other. This can be seen by
inspecting the latent marginals and / or the cpoeding log-linear parameters (in

brackets) and this proofs true calculating methiag bype I:

23

MBl(nFl.nml) - 70 =115

MBIy ) = %g =1.06, (5.1.15)
.24 .

MBl(nFS.na:3) = 79 =0.8¢

The two latent distributions do not differ strondgtgm each other as is indicated by
MBL1 coefficients close to 1. The hypothesis thattthe raters (self and peé) produce
identical latent proportions could be tested in @det with restricted latent one-variable
parameters (see also Section 5.2 for interchangeatdrs).

Inspecting the latent joint distribution revealsittitells on the main diagonal are

much more frequently expected than cells besidesnidin diagonal (a total of 54% entries
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are on the main diagonal; all three two-variableapeeters are larger than 1). Moreover,
comparing the expected cell frequencies with tlegdencies one would expect given
independent ratings (values in parentheses; asguaflirother effects to be equal in this
model) reveals that only cells on the main diag@amalmore often observed than predicted
by their corresponding marging.=.25 indicates low agreement between the two raters.
The ratios of expected cell proportion and cellgamtion based on the marginals are 1.8
for cell [1 1], 1.19 for cell [2 2], and 1.86 foelt[3 3]. That is, agreement is much higher

for the £'and 3" class of neuroticism than for the middle category.

Table 5.1.5
Distinguishability indices for the saturated latenater agreement model for structurally
different raters

NEUA
1 2 3
1 1.00 0.29
NEUS 2 0.64 0.93
3 0.80 0.58

Note NEUS neuroticism self-ratingNEUA: neuroticism peer rating (A).

The distinguishability indices (see Table 5.1.5pwghan interesting pattern. Self-
raters and peers distinguish well between the ewreategory combinations. That is, the
combinations [1 3] and [3 1]. They also distinguvgéll between the middle category for
the self-rating and the lowest category for therpaéing [2 1] as well as between the
highest category for the self-rating and the midditegory for the peer rating [3 2]. They
do not distinguish (but also do not confound) thtegory combinations [1 2] and [2 3]. If
the self-rating is considered as a gold-standarel may conclude that the peer rarely
underestimates the latent score (respecting thereddstructure of the latent classes). The
peer rarely extremely overestimate the latent s¢oheosing category 3 when the self-
rating is lowest), but overestimates the latenteséor the lowest and middle category.

Given the interesting similarity between tH¥ 2lass of the self-raters and th@ 3
class of the peer-raters one might think that aliag problem occurred and that these two
classes consist of sensitive but stable individu@lgs is not the case. The latent joint
distribution clearly shows that there is no overespntation compared to chance effects

for the latent cells [2 3] and [3 2], which woulttlicate a shift in the labels, but there is an
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overrepresentation for the latent cells [2 2] aB®B] representing similar classifications.
One may speculate that peers are able to detackriénd is vulnerable and sensitive but
that they do not perceive the moodiness and thigleabts of their friends as their friends
do not frankly present them in their behavior. itnely, this is very reasonable because
individuals being in a bad mood or being in a phalssevere self-doubts may not search
for their friends’ company and, therefore, theiefids cannot comment on these items with
certainty. This finding also fits well to the aspet availability in the realistic accuracy
model (see Funder, 1995).

The independence mod&his model fits to the data with respect to tloetstrappedy? -

value but it fits second worst to the data accaydm the AIC and BIC indices. 10 log-
linear parameters suffer from boundary values. @drameters of the measurement models
do not change compared to those of the saturateltlmbherefore, their interpretation is
perfectly the same.

Table 5.1.6 presents the latent joint distributionthe independence model. The
latent marginals for the self-report do virtuallgtrdiffer from the saturated model. The
marginals for the peer report differ slightly frothose previously reported. Thé2
category is less frequently expected than in theraed model and the®3category is

more frequently expected.

Table 5.1.6
Cross classification of the two latent variablesE@®S and NEUA) in the independence
model for structurally different raters

NEUA
1 2 3
1 .06 10 .08 24[0.80]
NEUS 2 13 24 19 .56 [1.88]
3 .05 .09 .07 21 [0.66]
2410.72] 4371.33] 34 [1.04]

Note NEUS neuroticism self-ratingNEUA neuroticism peer rating (A); log-linear
parameters are presented in brackets.

The two raters differ more strongly from each ottiean in the saturated model.

There is no method bias type | for th& dategory (the two categories are expected with
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equal proportions), however, the expected propastior the 2 and 3 category differ to
a greater extend. Self-raters belong more oftehed® latent class whereas peer ratings

tend to belong to thé®atent class more often:

MBl(n5=l.na=1) = ? = 100
MBL e a2y = % =1.30, (5.1.16)
21

—=0.62

ns=3.na3) = 34

MBI,

A calculation of the distinguishability index istnmeaningful since the latent table

follows the assumption of independence.

The quasi-independence | latent rater agreementeinddhe quasi-independence | latent
rater agreement model fits to the data accordinthéobootstrap results. Additionally, it
fits 2" best to the data according to the informatioredet Again, 8 log-linear parameters
suffer from boundary values. The conditional regsoprobabilities are almost identical to
the conditional response probabilities reporteaizef

Table 5.1.7 presents the latent joint distributidrihe latent categories of the self-
and peer ratings. Compared to the latent propationnd for the self-report in Table 4.1.9
the 29 latent category is underrepresented and fhéaent category is overrepresented.
However, these differences are not very large. Thasy be due to the fact that the
conditional response probability to choose tflecategory for moody is somewhat lower
in this application than in the application for tkelf-ratings only (see Table 4.1.9).
Therefore, more self-raters provide response pettehich fit into this category. The log-
linear parameters (presented in brackets) cannotdibectly related to the latent
proportions. Therefore, it is much more conveniemtanalyze the latent proportions.
Virtually the two latent marginal distributions dot differ from each other. Inspecting the

method bias type | reveals a very similar picture:
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MBl(n5=1.na=1) = ? = 115

MBL s v = % =1.02, (5.1.17)
.28

MBl(n5=3.na=3) = ?2 =0.88

Table 5.1.7
Cross classification of the two latent variablesE(d5 and NEUA) in the quasi-
independence | latent rater agreement model farcstirally different raters

NEUA
1 2 3
1 .09 (.05) [3.42] 10 (.11) .04 (.07) 23 [0.69]
NEUS 2 .09 (.10) 29 (.25) [0.87] 12 (.16) 50 [2.24]
3 .02 (.06) .10 (.03) .16 (.09) [4.62] .28 [0.65]
20 [0.57] 49 [2.25] :321[0.78]

Note NEUS neuroticism self-ratingNEUA neuroticism peer rating (A); the product of
the marginals is presented in parentheses; log#liparameters are presented in brackets.

Inspecting the latent joint distribution revealsittltells on the main diagonal are
much more frequently expected than cells besidesnidin diagonal (a total of 54% entries
are on the main diagonal). Moreover, comparing ékpeected cell frequencies with the
frequencies one would expect given independemgst(values in parentheses; assuming
all other effects to be equal in this model) resaaht all cells on the main diagonal are
more often observed than predicted by their comedmg margins. Howeverk =.18
indicates very low agreement between the two rat&fse ratios of expected cell
proportion and cell proportion based on the martgiage 1.8 for cell [1 1], 1.16 for cell [2
2], and 1.78 for cell [3 3]. That is, agreementrisch higher for theSiand ¥ class of
neuroticism as could be found for the saturatedehdtis not meaningful to compute the
distinguishability index for this model because tedl proportions of the disagreement

cells follow an independence pattern.

The quasi-independence Il latent rater agreemerdehdhe quasi-independence Il latent
rater agreement model fits to the data accordintpéobootstrappedy®-value and it fits

best to the data according to the information gateFive log-linear parameters suffer
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from boundary values. The conditional response gividities are almost identical to the
conditional response probabilities reported before.

The quasi-independence Il model shows considerdbfgring latent marginal
distributions for the latent categories of the seffort compared to those of the saturated
model (see Table 5.1.4). Compared to the saturatadkl, class 2 is about 12% smaller
and class 3 is about 12% larger. A similar - ysslstrong - decline and increase can be
found for the latent classes of the peers (minusirs%e 29 class and plus 5% in th&'3
class). This is due to the fact, that the overgteament (the sum of all proportions on the
main diagonal) is fitted in this model and not tbell-specific agreement (see e.g.,
Nussbeck, 2006).

The latent joint distribution shows considerablesrogpresentation on the main
diagonal and considerably lower expected cell promas besides the main diagonal
compared to the product of the latent marginalsteNt¢hat the log-linear parameter
indicating the overrepresentation on the main ciagjs constant.

Table 5.1.8
Cross Classification of the two latent variablesE(d5 and NEUA) in the quasi-
independence Il latent rater agreement model farcstirally different raters

NEUA
1 2 3
1 11 (.06) [2.53] .08 (.12) .06 (.09) 25 [0.81]
NEUS 2 .06 (.09) 27 (.19) [2.53] .08 (.14) 41[1.12]
3 .06 (.08) 11 (.17) 19 (.12)[2.53]  .36[1.11]
231[0.74] 46 [1.37] 34 [0.98]

Note NEUS neuroticism self-ratingNEUA neuroticism peer rating (A); the product of
the marginals is presented in parentheses; log#liparameters are presented in brackets.

The method bias type | coefficients for the twceratare minimal indicating that

the quasi-independence Il model predicts almodepty the same latent marginals:

MB]'(nFl.nazl) = %5 = 109
MBL s nae2) =%é= 0.8¢. (5.1.18)
MB]'(nFS.nmS) = ii = 106
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Since the disagreement follows an independencerpait is not meaningful to
compute the distinguishability indiceg.=.32 indicates low agreement between the two
raters. The ratios of expected cell proportion egltlproportion based on the marginals are
1.83 for cell [1 1], 1.42 for cell [2 2], and 1.58 cell [3 3]. That is, agreement is much
higher for the T and & class of neuroticism. Although the rate of agreenuepicted by
the latent two-variable log-linear parameter isstant, the expected proportions on the
main diagonal do not have to be overrepresentetheéosame ratio given the latent
marginals. This is due to the fact that the logdinparameters of the quasi-independence

models do not directly relate to frequencies oppraons.

The quasi-symmetry latent rater agreement moddéle quasi-symmetry latent rater
agreement model fits to the data according to thedtrappedy?®-value, however, if fits

worse than the other models according to the AI€BIC index. This model suffers from
a problem due to too many parameters (which cam ladsseen for the saturated model).
This is in line with the increase in boundary valuehich indicate the problems during the
estimation process. Ten log-linear parameters sdiften boundary values. As for the
other models, the one- and two-variable effectsted to the manifest variables as well as
the conditional response probabilities can be foimdAppendix C. The conditional
response probabilities are almost identical to tomditional response probabilities
reported before.

Inspecting the latent joint distribution revealattthe latent proportions are close to
what has been found for the other models. Thege densiderable overrepresentation on
the main diagonal indicating agreement betweerraters. Additionally, the cells besides
the main diagonal follow quasi-symmetry. That ikgir two variable effects are the same
for cells representing a particular combinatiorcategories and its inversed (e.g., [1 2] and
[2 1]).

Unfortunately, this model cannot be specified ilM-EV/ermunt, 1997a) relying on
contrast coding but has to be specified relyingdommy-coding (for a description of
dummy coding see e.g., Hagenaars, 1993). Therdfwedpg-linear parameters cannot be

interpreted in the ways described above. The pammare depicted in Table 5.1.9, the

latent category combination [3 3] is the refereoategory( NS NEUA:1.00) . Its expected

proportion can be determined by the product ofcttreesponding one-variable parameters.

The one-variable parameters depict the (geomeatrggn deviation of the corresponding
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rows or columns from the reference category. The-wariable effects depict the
deviations from the corresponding cells from thedpict of the expected proportion of the

reference category and the one-variable parameters.

Table 5.1.9
Cross classification of the two latent variableEE(S and NEUA) in the quasi-symmetry
latent rater agreement model for structurally difiet raters

NEUA
1 2 3
1 .09 (.05)[1.04] .10 (.11)[0.97] .04 (.07)[0.26] .23 [0.96]
NEUS 2 .09 (.10)[0.97] .29 (.25)[2.70] .12 (.16)[0}82 .50 [0.97]
3 .02 (.06)[0.26] .10 (.14)[0.82] .16 (.09) [1J00 .28 [1.07]
20 [0.80] 49 [0.98] 32 [1.28]

Note NEUS neuroticism self-rating;NEUA neuroticism peer rating (A); log-linear
parameters are presented in brackets. LEM requitesmy-coded latent two-variable
parameters.

There is almost no method bias indicating thatdkent marginal distributions do

not differ from each other very strongly:

MBl(nszl.nazl) = %3 = 115

MBL e, ) = % =1.02, (5.1.19)
.28

MBl(ns:S.na:3) = ?2 =0.88

In addition to the method-bias the quasi-symmetigdeh also allows to examine the

distinguishability of the latent categories (sebl€a.2.9). E.g.:

~ NEUS NEUA
10

Disty 2) = —NEvsANEA = g 25~ 0 Ob (5.1.20)
1 2 . .
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Table 5.1.10
Distinguishability indices for the two latent vabies (NEUS and NEUA) in the quasi-
symmetry latent rater agreement model for strudtymifferent raters

NEUA
1 2 3
1 0.91 0.57
NEUS 2 0.90 0.75
3 0.33 0.71

Note NEUS neuroticism self-ratingNEUA: neuroticism peer rating (A)

The distinguishability indices show that self- apéer raters generally do not
confound the categories of neuroticism (all indicese below 1). However, the
distinguishability indices between th& and 29 class (in either combination) are not very
pronounced indicating that their joint expectedpamions are almost as large as could be
expected by chance. The distinguishability indidealing with the % class however show
that this class is not confounded with any of thieeo two classes. This finding can be
explained relying on the realistic accuracy modainder, 1995). Being traited (being
neurotic) makes it much easier to be congruentyréctly) judged (see also Baumeister &
Tice, 1988). Recall, that the latent one-varialdeameters may differ and, therefore, the
distinguishability indices also may differ.

k =.28 indicates low agreement between the two raters.r&tios of expected cell
proportions and the expected cell proportions basethe marginals are 1.8 for cell [1 1],
1.16 for cell [2 2], and 1.78 for cell [3 3]. That agreement is much higher for thiéahd

3" class of neuroticism.

The latent one-variable modeélhe latent one-variable model fits to the dateoating to
the bootstrappedy®-value. However, it fits worst with respect to tinéormation criteria.

The latent one-variable model will adequately repret the data if distinguishability and
agreement are perfect (in this case the methodtiyes| will automatically be 1). Table
5.1.11 depicts the expected (conditional) propogio
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Table 5.1.11
Conditional response probabilities in the one-vai&a model for structurally different
raters

Latent status

n=1 n=2 n=3
variable self peer A self peer A self peer A
INT 1 .30 27 .00* 27 .03 .00*
2 42 34 .10 Sl .04 .08
(vulnerable)
3 .29 .39 .90 22 .93 .92
1 A7 42 .01 .38 .01 .00
B/J
. 2 45 .30 .01 49 .10 .18
(sensitive)
3 .08 .28 .97 14 .89 .82
1 .68 .63 31 .64 24 .39
C/K
2 21 .25 31 .25 .28 .28
(moody)
3 A1 A2 .38 .10 49 .32
1 .50 .61 .25 .63 .09 21
D/L
2 .28 24 12 .24 A7 .29
(doubtful)
21 15 .63 A2 73 .50

Note.The column entitled self depicts the conditionap@nse probabilities for the self-
report; the column entitled peer A depicts the diowhl response probabilities for the
peer report.

Besides the worst information criteria, the onealsle model suffers from one
major shortcoming in this application. The condiabresponse probabilities of pedo
not correspond to a typical response pattern fassgls 1 and 2. The conditional response
probabilities for itemsC and D are virtually identical and the conditional respen
probabilities for itemsA andB differ only to a small extent. Therefore, knowiogly the
peer ratings one could not differentiate betweesddy(self- and peer raters) belonging to
the first and second class. Therefore, the onexiari model does not represent the
agreement structure in this application. This fmggdielates to the distinguishability indices
found for the saturated latent rater agreement imd¢idea one-variable model fit the data

the distinguishability indices should be very cltseero. This was by far not the case.
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5.1.5 Comparison of the Latent Rater Agreement Models for Structurally
Different Raters and Their Implications for the Analysis of Convergent

and Discriminant Validity

All different latent rater agreement models fit ttte empirical data according to the
bootstrap procedure implemented in LEM. The BIC &i€ indices can be used to
differentiate between them in terms of their pamsisnand to choose the model with the
best trade-off of absolute fit and parsimony. Hogrewesides statistical analyses one
should also take theoretical considerations intmact to choose among the models. The
latent saturated and the latent independence madalg serve as two benchmarks
representing the most flexible and most restrictivedel at the latent level. All other
models fall between these two models (except ferthe-variable model).

Figure 5.2 shows the relation between the differeatlels. All models are nested

with respect to one common saturated model; thezefine might want to apply &°-
difference test deciding which model fits best. oer, for none of the models the

empirical y*-value did follow its theoretical distribution btite values were on the edges

of the parameter spacp € .00 orp = 1.00), in these caseg’-difference test does not

work (see Dominicus, Skrondal, Gjessing, Peder&dPalmgren, 2006).

All models can be used to determine the reliabditgifferent indicators measuring
one single categorical trait (see 4.1.1) and tdyaeahe agreement (convergence) between
the two raters measuring one construct. Agreenmambe determined calculating or the
ratio of expected cell proportions to the expeateltl proportions given the marginals. The
overall agreement rates are very small for all models. The benchmarkscfwefficient x
of manifest agreement tables may serve as a hieuiestthe analysis of the latent joint

distributions.
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saturated model

restricting two-variable effects

A

quasi-symmetry

|

restricting off-diagonal effects to be 0

A

guasi-independence |

|

restricting main diagonal effects to be constant

A

quasi-independence I

|

no two-variable effects

A 4

independence

Figure 5.2. The relationship between the five latater agreement models presented in
Section 5.1. Commentaries next to the arrows ineitlae necessary constraints leading

from one model to the other.

Another possibility is to inspect the latent twaiahle log-linear parameters in
models without boundary values. If there are bowndalues the latent probability tables
may be analyzed to get insight into the degreegcdement. Namely, the category-specific
agreement ratios may be determined. The categ@uifgpagreement ratios compare the

product of the latent marginals to the model ingplproportion for a particular cell. This
corresponds conceptually to the calculationydfcomponents in frequency tables (testing

against independence). These values should be tangeicate high convergent validity.
In the current applications the category-speci§oeament rates roughly fall in the range
of 1.2 and 1.9. Considering the relatively low extpd proportions in the joint
distributions, these values do not indicate lar@psolute agreement rates above the
agreement expected by the product of the latengimals. This is in line with the general

finding that self- and peer raters do not agres lerge extent (see Funder, 1995).
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The log-linear parameters reveal if agreement rsstamt across categories or if
agreement is specifically high for some categamgsesenting rather good categories of a
trait. In the presented applications the quasijiedelence Il model fits best to the data
implying that there is stable agreement acrosdattemt categories between raters and that
there are no specific patterns of disagreement.

Additionally, the models provide information abduias (as the difference between
two presumed prevalence rates) and category dissihgbility. Method bias can be
determined calculating theB1 coefficient. In the current applications, thesevirtually
no bias. To my mind no guidelines have been prapasencerning the amount of
differences in latent prevalence rates to be censl severe. Zwick (1988) states that
agreement should not be analyzed if the prevaleates differ to a great extent. However,
she does not give guidelines as to which differemestill may analyze rater agreement.

Category distinguishability may be calculated ire thaturated and the quasi-
symmetry model. These models imply, that self- padr raters do not confound th& 1
and 3 latent categories of neuroticism. All other catggeombinations are expected to a
lower degree than based on the marginals but thimtten is not very pronounced (the
quasi-independence Il structure is reflected). disénguishability index shows if the two
raters have tendencies to confound special catgyaith respect to the other rater's score.
Distinguishability indices larger than 1 indicatéaak of convergent validity or a labeling
problem. If there is agreement and, additionaltyne categories besides the main diagonal
are overrepresented the two raters have differenteptualizations of the construct.
Special patterns of disagreement (high distinguogitya indices) may reveal that two
categories of a latent construct can be confoumde easily than other categories. This
may be due to an imperfect description of the aaieg but also be due to related yet still
distinct categories (e.g., a gambling personalyet may be confounded with a risk
seeking personality type but probably not with ausiy oriented personality type). If
these related categories are part of the latessertassification it may occur that there are
systematic patterns of disagreement. The combmatiogambling and risk-seeking may
occur more frequently than expected by chance, egdsethe two categories are rarely (less
frequently than predicted by chance) confoundedh wilie security oriented personality
type. In the quasi-symmetry model, these overrgmtasions are constant irrespective of
the ordering of the raters (the effects are idahtior the combination of "gambling and
risk-seeking” as well as 'risk-seeking and gamb)inglf there are only high
distinguishability indices but no agreement, itvexy probable that a labeling problem
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occurred and one may check if the latent categ@iesordered in the same way for the
two raters.

The quasi-independence | model imposes relatitebyng constraints on the model
parameters. The only fitted cell frequencies in eiedor observed data are those of the
main diagonal. Transferring this model to the latewel bears the difficulty to clearly
interpret the log-linear parameters. There is noy velear substantive interpretation.
However, the latent proportions can be easily preged. Comparing the expected cell
proportions to the expected values given the matgionly gives a lower boundary for the
reliability estimate of Schuster and Smith (200&jditionally, this comparison shows the
amount of agreement between raters. One may atsidss « for analyzing agreement at
the latent level. Additionally, the ratio of expedtproportions to the product of the latent
marginals reveals the degree to which these caessy@re overrepresented. If the
parameters for agreement on the main diagonalrdiffstly from each other, agreement is
category specific. That is, raters agree with e#bler also as a function of the category. It
may be that some types (e.g., not neurotic) mamnbee easily identified than others and
that, therefore, raters agree more often with r@sgethis category than with respect to
other categories.

Cells besides the main diagonal must be underrepted with respect to the
product of their latent marginals. By model defmit these cells do not show problems
related to distinguishability or confounding of egories since the quasi-independence |
model assumes disagreement to follow the assumptiordependence. If rater agreement
is not category specific but constant across dls cen the main diagonal the quasi-
independence Il model will fit to the data (thighe case in the current application). In this
model, rater agreement is a property of the pairabérs. In both quasi-independence
models rater bias (as difference in the prevaleates) can be analyzed. Comparing the
guasi-independence | and the quasi-independemoedels reveals if the moderators good
judge and good category (trait) interact (see Fynii895). They do so in the quasi-
independence | model they do not in the quasi-iaddpnce Il model.

The most restricted model is the independence mdaehis model, there is no
relationship between the two raters, that is, thlg agreement between two raters is due to
chance agreement. The raters do not have theegdig¥iew in common with respect to the
target. In general, this model will not fit to tHata but may be analyzed to provide a lower

boundary for the cross-classification of the lajemit distribution.
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All models (but the independence model) share dgatement between raters can
be modeled. Agreement is high if the log-linearvaviable effect(s) on the main diagonal
are large. In general, the two-variable effectddessthe main diagonal are expected to be
smaller than 1 (their expected proportions showddsaller than the product of their
marginal proportions). If there are large effectsides the main diagonal this may point to
two different situations:

1. The patterns of the conditional response probaslitare similar across raters
suggesting that the labels of the latent categdrée® well been chosen. In this case,
one rater perceives completely different "behaviotees" to judge the target person
than the other. An investigation of the decisiorking process (e.g., Wickens, 2002)
and determinants as well as moderators of agreefRentler, 1995) might give more
insight into these issues.

2. It turns out that the labels of the latent categmimave not well been chosen. This
may be due to relatively low reliabilities of thedicators which do not permit to
clearly label the latent categories. The interpir@taof the model must be carried out
very carefully. If the latent categories are rdiaimeasured it may be the case that
either the latent categories are related in an peeted way indicating very low
convergent validity or a simple labeling problemcuaeed. Reconsidering the

ordering of the classes might remedy the problem.

5.2 Latent Rater Agreement Models for Interchangeable Raters

Analyzing the convergence (agreement) of interchabbp raters for multiple items can
also be done adopting the existing rater-agreemsodels to the latent level. Since
interchangeable raters originate in the same didtdn, the model parameters must be
identical across raters. This implies measurementriance (see below), identical

prevalence rates, and, additionally, identical liogar parameters for interchanged
categories(rjf'yY =ry’_<'xY). The two-variable effect describing the interactiof the latent
categories not neurotic rated Bywith moody but stable rated B, for example, is
identical to the inversed interaction not neurblyd and moody but stable fér(therefore

x andy are inversed on the right hand side(njf'yY = ry’f'xY).
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Figure 5.3 presents a categorical monotrait-mulinm& model for the analysis of
latent rater agreement of two raters. For sakeoafprehensibility the trait variables and
the items are labele@NEUA andNEUB represent the latent construbtHUA for raterA
vs. NEUB for raterB); the latent traits (class variables) are measbgethe same set of
items (“vulnerable, sensitive, moody, and self-déult).

| consider a total of three different manifest raagreement models which can be
adopted and defined for the analysis of latentrratgeement: In 5.2.2, the latent quasi-
independence | rater agreement model, in 5.2.3 |dtemt quasi-independence Il rater

agreement model, and in 5.2.4, the latent symnmatey agreement model will be defined.

I (vulnerable)

@ , J (sensitive) Peer Report A

K (moody)

L (self-doubtful)

P (vulnerable)

Q (sensitive
@ ( ) Peer Report B

R (moody)

S (self-doubtful)

Figure 5.3. Log-linear model with two latent vated representing the latent construct
Neuroticism NEU) for the two peer reportd andB. Each latent variable is measured by

four manifest indicators.

5.2.1 Measurement Invariance for Interchangeable Raters

Measurement invariance ensures that the link-fanatiescribing the genesis of the latent

variables as representations of the joint obseratdgs is the same for the two methods.
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Definition 5.2.1

Measurement invariance for interchangeable raters
Let ratersA andB be interchangeable due to theoretical reasonsr Tient variables<
and Y representing the classification 8fs andB's ratings(of the same construct; e.g.,
neuroticismNEU) must fulfill the following restrictions:
i) identical number of latent categories

max(x)= maxfy = C. (5.2.1)

The maximum number of categories is the same ftvio ratings.

i) identical latent distributions

X
X

. =1, for x=y (5.2.2)

for latent categories representing the identidaintacategory.

iii) identical link functions

flo p-y’

| K
To=[]tm Tx =To =[] T3 with Ty =19 Ot ¥ =197 (5.2.3)
m=1 Q=1

for m ando representing identical categories of identicahgeandx=y.

Explanation:
)] The number of categories must be the same forvbddtent variablesX
andY) because the two originate in the same population.
i) Therefore their rating also show identical prevaterates (see also Schuster
& Smith, 2002, 2006; Zwick, 1988).
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i) Identical link-functions produce identical expectedanifest respons

patterns given identical latent statuses for the taters (see Eid, Langeheine,

e
&

Diener, 2003 for a related topic in cross-cultyygychology) which must also be

the case due to the interchangeability (the ransiampling out of one set).

Measurement invariance ensures, that the links afif@st indicators to the latent

variables are the same, and the observed respdolew the same distributions.

Measurement invariance does not imply that differaters (methods) provide the same

scores / ratings given a particular target. |dehtiatings can only be observed in the c

of perfect agreement between raters.

5.2.2 Definition of the Quasi-Independence | Latent Rater Agreement

Model for Interchangeable Raters

ase

Definition 5.2.2

The latent quasi-independence | model for intergkable raters

Let X andY represent the same latent construct measureddntarchangeable raters.

| =1ifx=
_ XY (- xv)! - y
eab.x.y - r]-I-a-l-b-[x-[y(-[xy) ! with { | =0 else (524)
with T, =T, following Equation 5.2.37; =7, for x=y, andz;;" =7, for x=y.

€

ab.ns.cs

is the expected frequency of a specific cell i ldtent joint cross-classification

the manifest response patterais (consisting of the two rater-specific pattermsand b)

with the two latent variableX andY. 7 is the overall geometric mean of the complete

table (manifest and latent variable3), andT, represent the measurement models of

latent variables:

|
T, = Hr,“]"{r“n";'f: represents the product of the log-linear paramaelieking the latent
m=1

variableX to its indicators and the manifest one-variabfea$,

the
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K
T, = Hr?:rqof'yY: represents the product of the log-linear pararaelieking the latent
o=l

variableY to its indicators and the manifest one-variabfeat$.

T, =T, implies that identically worded items have ideatimodel parameters.

r} and r; . represent the latent one-variable parametaiffg.: represent the latent two

variable parameters.

The statistical meaning of the model parameterstieid implications are identical to the

meaning of the model parameters of the latent gundspendence | model for structurally

different raters.

5.2.3 Definition of the Quasi-Independence |l Latent Rater Agreement

Model for Interchangeable Raters

Definition 5.2.3

The latent quasi-independence Il model for intengeable raters

Let X andY represent the same latent construct measureddinterchangeable raters.

| =1lifx=y
— XY [ xY) :
Soxy = nTaTbTxTy(Txy) ,  With { |20 else ’ (5.2.4 repeated)

andt,; =17

with T, =T, following Equation 5.2.37; =7, for x=y, andz;;" =7, for x=y.

€

ab.ns.cs

is the expected frequency of a specific cell i ldtent joint cross-classification

the manifest response patterais (consisting of the two rater-specific pattermsand b)

with the two latent variableX andY. 77 is the overall geometric mean of the complete

table (manifest and latent variable3), andT, represent the measurement models of

latent variables:

the
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T, =[]t t%*: represents the product of the log-linear pararaefiaking the latent

M;
m

:_

1

3
I

variableX to its indicators and the manifest one-variabfea§,

T, =[1t1%": represents the product of the log-linear pararaselieking the latent
b O "Gy

1=

o)
.u‘

variableY to its indicators and the manifest one-variabfeat$.

T, =T, implies that identically worded items have ideatimodel parameters.
r} and r; . represent the latent one-variable parametaiffg.: represent the latent twc

variable parameters.

D

The statistical meaning of the model parameterstieid implications are identical to the

meaning of the model parameters of the latent gudspendence Il model for structurally

different raters.

5.2.4 Definition of the Symmetry (Saturated) Latent Rater Agreement Model

for Interchangeable Raters

Definition 5.2.4

The latent symmetry model for interchangeable sater

Let X andY represent the same latent construct measureddinterchangeable raters.

oy =NT T T Txy s (5.2.5)
with T, =T, following Equation 5.2.37; =7, for x=y, andz;;" =7, for x=y.

€

ab.ns.cs

is the expected frequency of a specific cell i ldtent joint cross-classification

the manifest response patterals (consisting of the two rater-specific pattermsand b)

with the two latent variableX andY. 77 is the overall geometric mean of the complete

table (manifest and latent variable3), andT, represent the measurement models of

latent variables:

the
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T, =[]t t%*: represents the product of the log-linear pararaefiaking the latent

M;
m

:_

1

3
I

variableX to its indicators and the manifest one-variabfea§,

T, = r‘j;rgs-;: represents the product of the log-linear paramselieking the latent

1=

o)
.u‘

variableY to its indicators and the manifest one-variabfeat$.

T, =T, implies that identically worded items have ideatimodel parameters.
7, andr, : represent the latent one-variable parameters.

rxx.'yY: represent the latent two-variable parameters.

In the case of interchangeable raters the symmaty saturated model are
identical. Since measurement invariance must hotbaalditionally the latent one-variable
effects are restricted to be equal across raterslatent marginals must be identical.
Moreover, since the two raters are interchangeti®e disagreement must follow the

assumption of (quasi-) symmetry.

5.2.4.1 Implications of the symmetry model for interchangeable raters

The latent one-variable effects reflect the unafarilatent distributions of the latent
variables. There are no differences between thentlatlistributions by definition.
Therefore, none of the ratings is biased with respe the other rating. However, the
ratings can be biased with respect to the truegbeece rates of the construct.

In the symmetry model, the distinguishability indean be estimated as in the
quasi-symmetry model. The ratio to which proporsionf specific cell-combinations
besides the main diagonal deviate from the expegtedortions given the one-variable
effects is defined as distinguishability index.
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Definition 5.2.5
Distinguishability index (Dist) for interchangealbgers

( ) ( ) .YT[X.Y XY

Dist,, ,, = ) =(1X)) = Y YX =XV for x# Y. (5.2.6)
x.y) X. X Y XY Y?

y Y g T T

Lemma for Definition 5.2.5:

T, =TT, sincet !
T, =T, sincet; =T, , (by definition 5.2.4) (5.2.7)
Y

<

Replacing:

oy

Y X Y:
TO T T, T,

(5.2.8)

The distinguishability index for interchangeableera shows to which ratio
particular cells of the joint distribution repretieg discordant ratings are over- or
underrepresented. Due to the interchangeabilityrabérs, this coefficient must yield
identical results for cells mirrored at the maimagbnal. Values larger than one indicate
that the proportions of the cell combinationy and y.x are higher than expected by
chance, values smaller than one indicate that thesggortions are smaller than expected
by chance. If the values are larger than one woeraters confound the categorieandy.
That is, if one of them chooses catega&rthe probability to observe categoyyfor the
other rater increases. If the index is smaller thia@ the two raters produce smaller latent
proportions for these cells than expected on chande therefore, one may conclude that
they distinguish well between these categoriestirigjgishability indices larger than 1
indicate a lack of discriminant validity. The digjuishability index may be related to
moderators of agreement (accurate) ratings asibdeddor the quasi-symmetry model for
structurally different raters. Focusing on disagieet, researchers might use this

information to inspect if possible moderators ieftge the high or low disagreement rates.
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Focusing on agreement, the category-specific aggaemates may be used to show for
which categories high agreement could be obtained.

Congruent ratings which go beyond the agreemerdhlayce are reflected by the

two-variable effects on the main diagorﬁa{';) for x=y. These effects show agreement

between raters. Agreement for raters is a speeis¢ ©f convergence in general. Since
these parameters may differ between cells on the diagonal these parameters depict the
category-specific convergence beyond chance coemesy Additionally x and the

category-specific agreement ratios can be calallate

5.2.5 Applications of the Latent Rater Agreement Models for

Interchangeable Raters

The latent rater agreement models for interchargealers will be illustrated relying on
the empirical example of neuroticism measured leyttto peer-reportd andB. The data
have been described in Section 4.1. The two ratees exactly the same items
(“vulnerable”, “sensitive”, “moody”, and “self-dotflnl”) and response categories (low,
middle, high). Moreover, the peer raters have be@domly assigned to be pe&rand
peer B yielding interchangeable raters. Measurement iamae must thus hold across

raters.
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Table 5.2.1
Goodness-of-fit coefficients of the different lateer agreement models for interchangeable raters

Bootstrap
Model X2 p(,\/z) L2 p(L?) Df AlCt BIC* boundaries  Poootp
Saturated (symmetry) model 6492.45 .63 1620.18  1.006531 —11441.82 -38632.43 2 40
Independence model 6659.81 14 1650.54 1.00 6534 1417146 -38620.56 2 .36
Quasi-independence | model 6627.78 .20 1631.83 1.0®532 -11432.17 -38626.95 — 45
Quasi-independence Il model 6471.99 .70 1623.64 0 1.0 6533 -11442.36 —-38641.30 — .39
One-variable model 7677.76 .00 1805.65 1.00 6534 1262.35 —38465.45 — .10

Note: y?: Pearsony?-value; L? likelihood-basedy?-value;*AIC and BIC are based orfdvalues; boundaries: number of boundary values;

the bootstrap consisted of 200 bootstrap sampless bootstrapped Pearsgyf -value.
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Table 5.2.1 presents the goodness-of-fit coeffisidnr the different latent rater
agreement models for interchangeable raters. Thrieal y°-values do not follow their

theoretically expected distributions, thereforege thootstrappedp-values should be
examined. According to the bootstrap all modelsdfithe data. The quasi-independence I
model fits best to the data according to the Al@ &iC criteria. Moreover, this model
does not suffer from any boundary value. Sincentioglels for interchangeable raters do
not differ in their interpretation from the modéts interchangeable raters only the quasi-
independence Il model will be discussed.

Table 5.2.2
Log-linear parameters of the measurement modelhef latent quasi-independence-Ii
latent rater agreement model

one-variable _
two-variable effect
effect
. manifest
variable ) na=nb=1 na=nb=2 na=nb= 3
categories

1 0.396 8.958 0.146 0.766
/P

2 1.311 1.488 3.196 0.210
(vulnerable)

3 1.928 0.075 2.146 6.212

1 0.659 4.439 0.923 0.244
J/

Q . 2 1.232 1.272 1.477 0.532

(sensitive)

3 1.231 0.177 0.733 7.700

1 2.073 1.490 1.301 0.516
K/R

2 0.890 0.914 1.167 0.938
(moody)

3 0.542 0.735 0.659 2.068

1 1.572 2.146 0.981 0.475
L/S

2 0.871 0.833 1.225 0.980
(doubtful)

3 0.731 0.560 0.832 2.147

Note. ' na latent category ofNEUA nb: latent category oNEUB. | throughL: Items
measuringNEUA P throughS Items measurinlEUB.
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Table 5.2.2 presents the log-linear parameterbefjuasi-independence Il model.
These parameters are identical for peer reparegsd B since the two peer reports are
interchangeable. The pattern of log-linear pararsefds well to the results of the
previously reported results for models with intemcheable raters. Thé'latent class of
variableNEUA or NEUBrepresenting the target's latent neuroticism scatexl by peeA
or peerB is characterized by high two-variable log-lineargmeters for the*1manifest
response category. The log-linear parameters kinttie 29 manifest response category to
the F' latent class are also larger than 1 in two ca$es ilems “vulnerable” and
“sensible”). Raters belonging to this class thusegally prefer the first manifest response
category compared to their response tendenciesh&other latent classes. In order to
determine if they absolutely prefer th& fdesponse category the manifest one-variable
parameters must also be considered. This is doralaulating the conditional response
categories presented in Table 5.2.3.

The 2 latent class is characterized by large two-vaeiagffects linking the 2
manifest category to the latent class for itemserdble and sensitive. For item vulnerable
also very large effects can be found for tH& rBanifest response category. The two-
variable parameters for moody and self-doubtfulndb vary much across their manifest
categories.

The 39 latent class shows very large two-variable logdinparameters for thé’3
manifest category. These values are always hidhar those of the other two classes.
Moreover, the two-variable parameters for tiieahd 2¢ manifest category are always
smallest for the "8 latent category compared to th&and 29 latent category. Table 5.2.3
presents the conditional response probabilitiespdnting the conditional response

probabilities reveals the same results as in th@etsacombining self- and peer repArt
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Table 5.2.3
Conditional response probabilities of the manifiestponse categories in the latent quasi-
independence-Il latent rater agreement model

latent status

manifest
variable ) na=nb=1 na=nb=2 na=nb= 3
categories
1 .63 .01 .02
P 35 50 02
(vulnerable) ' ' '
3 .03 .49 .95
1 .62 .18 .02
J/Q
. 2 .33 .55 .06
(sensitive)
3 .05 27 .92
1 72 .66 .35
K/R
2 .19 .25 .28
(moody)
3 .09 .09 37
1 .75 A48 24
L/S
2 .16 .33 27
(doubtful)
3 .09 .19 .50

Note. na: latent category ofNEUA nb: latent category oNEUB. E throughH: Items
measuringNEUA | throughL: Items measurinblEUB.

The latent quasi-independence Il model implies thatoverrepresentation of the
agreement cells on the main diagonal is constantthis application, agreement is
(constantly) 2.17 times more frequent than expebtsdd on the product of the latent one-

variable parameters.
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Table 5.2.4
Latent joint distribution of the quasi-independeiicatent rater agreement model
nb=1 nb=2 nb=3
na=1 .10 (.06) [2.17] .07 (.10) .07 (.09) 24 [2.17]
na=2 .07 (.10) 23 (.16) [2.17] .10 (.15) 40 [1.07]
na=3 .07 (.09) 10 (.15) 20 (.14) [2.17] .37 [1.00]
.24 [0.71] .40 [1.07] .37 [1.00] 1

Note na latentcategory ofNEUA nb: latent category oNEUB. Values in parentheses
represent the expected values given the latentinasgonly. Values in brackets represent
the dummy coded log-linear parameters.

Table 5.2.4 presents the latent joint distributddrihe quasi-independence Il latent
rater agreement model. As can be seen, the laigrtdistribution is mirrored around the
main diagonal as a particular consequence of eatexit marginal distributions (this is
also true for the independence and the quasi-imdkgee | models). Although the
agreement rate is modeled using a constant pargrtagedoes not imply that ratio of the
expected proportions of cells on the main diagowaltheir expectancies given the
marginals is constant. In fact these ratios ar@ 106 [1 1], 1.44 for [2 2], and 1.43 for [3
3]. However, the ratios differ to a smaller extdrdn for the quasi-independence | model.
This is an effect of the constant two-variable psater. k =.27 indicates poor rater
agreement.

LEM does only allow for a specification of dummydeal log-linear parameters.
Therefore, the parameters cannot be interpretadd #s model definition. They can be
interpreted as deviations from the reference cayeign ambiguous cases and as indicators
of the constant latent class size for obvious cases

5.2.6 Implications of the Rater Agreement Models for Interchangeable

Raters

In this section, latent rater agreement models hmeen defined for the analysis of one

construct measured by two interchangeable ratessfoAstructurally different raters, all
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models are nested with respect to one model—tkatlaymmetry model (see Figure 5.4).

The empirical y?-values did not follow their theoretical distribanis, therefore, | do not

compute they?-difference tests (Dominicus et al., 2006).

The convergent validity of two or more methodsdrs) in measuring the same trait
can also be examined using overall agreement iadis& (in models allowing for higher
rates of agreement)x indicated rather poor agreement rates with respecthe

benchmarks for manifest agreement.

symmetry

restricting off-diagonal effects to be 0

A 4

quasi-independence |

restricting main diagonal effects to be constant

A 4

guasi-independence Il

no two-variable effects

A 4

independence

Figure 5.4. The relationship between the four latemer agreement models for
interchangeable raters (except for the one-variabtalel) presented in Section 5.2.
Commentaries next to the arrows indicate the nacgssonstraints leading from one

model to the other.

In the current applications, the category-specifjceement rates fell into the range
of 1.4 to 1.7 indicating relatively low agreement @euroticism given the low products of
the latent marginals. These values reveal if ageg¢ms constant across categories.

All models presented in this section fit to the @mpl data indicating their

applicability. However, as could be shown calcuigticoefficient kappa or by an
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inspection of the latent proportions agreementasvery pronounced and disagreement
does not differ from chance disagreement (Qquagprddence assumption).

5.3 Discussion of the Latent Rater Agreement Models for Structurally

Different and Interchangeable Raters

In this chapter, manifest rater agreement modele lhe@en adapted to the level of latent
variables. These models allow examining latent lygies, that is, agreement between
raters can be determined for more than one obsetasable per TMU. It is the response
pattern that determines the membership to a laiass, agreement is no longer bound to
the more error prone single classification on sntgms.

Moreover, the models allow for reducing complexsset rater agreement data.
Imagine, a complete data set of two raters usirgttmes four items to rate two clinical
disorders. Comparing the data at the observed \ewoeld result in a comparison of 4 x 4 =
16 agreement tables. The models presented hens a#lducing the information to be
compared to a finite (and usually small) numbeclaéses. If the model-implied typology
corresponds to the data and the mean assignmebalplibes are rather high (or the
strength of the relation between latent and mahifesiables is high) it is useful,
parsimonious, and efficient to consider agreemdnttha latent level. In empirical
applications, a cross-validation of the resultsnfibdior the latent rater agreement models
by estimations of other models is needed to gueesthat the model results are correct.

In principle, the models allow for a test or foetbxplorative analysis if raters are
interchangeable or not (restricting their measurgnmaodels). Additionally, one can
analyze if the raters confound particular categoaoieif they can well distinguish between
all categories. This analysis can be carried oatparing different models which imply
different patterns of agreement and disagreememntatso by an inspection of the
distinguishability index. The distinguishabilitydax is newly introduced. The fact that
raters confound particular categories may be dra#t in training programs for clinical
psychologists, for example, in order to achievéna-fraded distinction between clinical
symptoms (as latent classes), and this may alsd im¢erest in research programs on rater

accuracy (Funder, 1995).
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The models also principally allow for an inspectmindeterminants or moderators
of agreement and disagreement (see Funder, 198&)sifig on disagreement, researchers
might use the distinguishability index to inspecthielh disagreement cells are
overrepresented. Incorporating additional variabiés the model may help to explain this
effect (see Section 6 for an additional constrUécusing on agreement, the category-
specific agreement rates may be used to show farhwdategories high agreement could
be obtained yielding some information about the ematbr good trait or about which
category of a trait is a good category.

In order to additionally analyze the discriminaraligity of different latent
typologies and to shed some light on personalaytsrthat could enhance agreement on
other traits, the latent rater agreement models dioe construct and two methods
(Monotrait-Multimethod models) have to be extendedhe analysis of more than one
construct. The next section defines and illustrates resulting Multitrait-Multirater
models.
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6 Correlated Traits Multitrait-Multirater Model

In this chapter the previously described saturated symmetry models for two latent
variables will be extended to the simultaneousyaialof 2 traits and 2 raters yielding the
Correlated Traits Multitrait-Multirater (CT MTMR) adel. This model allows for
analyzing structurally different as well as inteangeable raters. The model will first be
defined for the case of structurally different rateThe model for interchangeable raters
emerges imposing the measurement invariance andess@y interchangeability
restrictions (see Section 5.2). The saturatediloggt model with four latent variables will
be formally defined and its parameters will be tedato the criteria of convergent and
discriminant validity presented by Campbell anck€i€1959). | will indicate and introduce
meaningful coefficients which indicate aspects afivergent and discriminant validity as

well as aspects of method bias that are usuaitaddressed in MTMM analyses.

6.1 Definition of the Correlated Traits Multitrait-Multirater Model for

Structurally Different Raters

In order to define the CT MTMR model the same pyaigites as described in Section 5.1
must be met. That is, all items belonging to tHeedent trait-method-units (TMU) must be
indicators of the constructs. Therefore, the twiersaprovide categorical ratings that can
be categorized as described in Section 4.1 (sepéogtlinear models with one latent
variable). The Monotrait-Multirater models allowrfdesting if the latent categories
represent the same latent constructs and if tleesraigree (convergent validity). The CT
MTMR models allow for an additional analysis of disinant validity. If the same
construct is represented across raters this wslilten similar latent categories across
raters (see also Section 5.1) with similar meanofgbe typical response patterns, similar
relationships to other variables, and / or sim@Hects on other variables. The Correlated
Traits Multitrait Multirater (CT MTMR) model for sticturally different raters is a flexible

model for the analysis of convergent and discriminalidity.
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Definition 6.1.1
The saturated Correlated Traits Multitrait-Multea{CT MTMR) model

Let XS XA be two latent variables representing the sametrartisand letYS YA be two
other latent variables representing another cocistilhe latent variables representing
different constructs are measured with distincs sétitemsxs xa, ys andya indicate the

latent categories of the four latent variables.
The saturated CT MTMR-model is defined as:

e =nT T TTO00% g™

abcd.xs. xa ys ya Xs® xa& ys vya

XUS XA KSR SIS KAYS aa vs A (6.1.1)

XS.Xa XS YS© XS Y xa .ys ya

XS. XAY% XS XAY[A XS YSYA . XAYS YA. XBSXAA
XS Xays - XS Xaya- XsysSyad Xa.ysya .Xs xays

XT

with abcd being a transposed vector of observed respondesT,,T., andT
representing the measurement models of the foemtlaariables (see also Equation 4.1.2):
n: is the geometric mean of the unobserved latdsle tecontaining manifest and latent

variables),

|
T, = |_| rmirxi‘_'ff: represents the log-linear parameters linkingldtent variableXSto its
m=1

J
indicators and the manifest one-variable effeds= 1, Ty -
n; =1

represents the log

J

linear parameters linking the latent varialdé to its indicators and the manifest one-

K
variable effects,T, = |_| rqo:rgff: represents the log-linear parameters linking l&tent
0 =1

L

variable YSto its indicators and the manifest one-variableas$, andT, =7 T

p =1
represents the log-linear parameters linking tientavariableYAto its indicators and the

manifest one-variable effects.

Tro TrasT e andr Ji: are the latent one-variable effects,
T Ty T soyal el says andr 2 are latent  two-variable effects,
Ty 1 T roranar:  Tayoyes andt ZAS 1 are latent three-variable effects, 225"

represents latent four-variable effects.
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6.1.1 The Statistical Meaning of the Different Effects in the Saturated CT MTMR
Model

Figure 6.1 presents the CT MTMR model for two congs measured by two structurally
different raters (Definition 6.1.1). To make theegentation more comprehensible the
latent variables are labeled representing neusotidNEU) and conscientiousnesSQN)

measured by a self-repo®)(and a peer-reporA]. The items correspond to the items of
the empirical data described in Section 4.1. Howetlee model may also be estimated

with more or fewer manifest variables.

A (vinerable)
Self-Report F (diligent) @ @ Self-Report
G (dutiful) C (moody)
D (sel-doubif)
X
M (industrious) I (vulnerable)
N diligent)
Peer Report A @ Peer Report A
O (dutiful) K (moody)
L (self-doubttu)

Figure 6.1 Categorical Multitrait-Multirater modfgr two traits measured by two raters.
The ® indicates hierarchical higher order effects (itevp-, three-, and four-variable

effects).

The log-linear parameters of Definition 6.1.1 h#tve following meanings:

* 1 is the geometric mean of the unobserved completpiéncy table.

 The submodelsT,,T,,T,, andT,: have been described in section 4.1 (e.g.,

Goodman, 1974a, 1974b; Haberman, 1979; Hagena29§, 1993; McCutcheon,
1987).
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« The latent one-variable paramete( 4TSt ;) represent the univariate

xs’ Thar ys!

distributions of the latent variables in the lattnir-dimensional table. EX:

xs xa ys ya

YS YA XA
S. XAYS YA
YSIYAIX
XS

F ya:l xa:1
XS YS YA XA
S. XAYS YA
XSYSVE 'ﬂ BT A
w=l ys=1 y&1l x&1

with xsindicating the particular latent category X% andw indexing the first to

, (6.1.2)

the last category ofSin the denominator.

« The latent two-variable effec1(srXS AT IS YT YR MR AR y:)/ indicate the

XS. Xa i T Xs ys? v xsyd xa ys xa ya

deviations of particular cell proportions from tpeediction based on the lower
order effects. E.g.:

YA XA
VAX |—| |—|T[XS.XAYSYA
L XS Xa ys ya
XS.YS _ ya=
xsys XS+ YS , (6.1.3)
I’] Tys'l'yS

T

with 7* indicating the geometric mean of the latent tgtile complete table can

be collapsed across the manifest variables).

14XS XA XB, YS YA andYBrepresent latent variables but they also reprekertiighest category of the
corresponding latent variable. However, this igydhk case in connection with Greek symbols repitéasg

sums or productéZ orfl )
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XB. XAYS
xsxa ys !

« The latent three-variable effects T S AR XS YSY and T4 ) depict the

Xs xa ya’ XS yS y&a xa.ys ya
deviations of particular cell proportions from tpeedictions based on all lower
order effects in the different latent trivariatdsables. E.qg.:

XS
X |—l T[XS. XAYS YA
w.xa. ys ya
XAYS YA W= (6 1 4)

xa.ys ya r]*.[XATYSl. Yﬁ. XAY.? XA Ys*

Xa " ys' ya  xays - xayad ysyi

T

with #* indicating the geometric mean of the latent tabid xs xa, ys andya

indicating the latent categories ¥§ XA, YS andYA The one-and two-variable
effects can be determined as described in Equaidn® and 6.1.3.

« The latent four-variable effe((‘nxs' XAYS Y’) depicts the deviation of the expected

XS. Xa ys ya
proportion of a particular cell from the predict®ohased on all lower order effects

in the complete (quadrivariate) table:

S. XAYS YA
XS. XAYS YA Xs xa ys ya

XsXxaysya 4 - XS_ XA_YS YA XS XSYS XS.YA.XAYS. XAYA \
n szszf[yj—y xsxeﬁA XS yS XS xays .xa'ya. ys

T

1

X
XS. XAY XS XA XSY A YAYA '
T T ?

XS Xays - Xsxaya - Xsysyad xa.ysya

(6.1.5)

S. XAYS YA

s.xa ys ya
S.XAY%.[ XS XAﬁ XS Y XAYS YA
sxays '"Xxsxaya - XSysya xa.ysya

the lower order effects can be determined as dextrn Equations 6.1.2, 6.1.3,
and 6.1.4.
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6.1.1.1 The impact of the different log-linear effects on the analysis of convergent

and discriminant validity

The saturated CT MTMR model is a flexible model foe analysis of convergent and
discriminant validity of multiple ratings. There&rthe inspection of convergent and
discriminant validity does not only consist of tlamalysis of zero-order bivariate
relationships but on the analysis of higher ordiéects. Additionally, the impact of
different trait constellations on agreement anégtisement could principally be analyzed
to inspect complex interactions of moderators aeament. In a restricted version of the
CT MTMR model with only two-variable effects, thessaciations between the latent
categories can be analyzed on the bivariate Ielkis analysis comes close to an
examination of the criteria developed by Campbel &iske (1959). The different log-
linear parameters at the different levels of thterarction (two-, three-, and four-variable
effects) may all have an impact on the convergadtdiscriminant validity. | will start by
inspecting the impact of the highest order inteoactpassing to the lower order
interactions. For sake of simplicity, | will exclecll higher order effects when | discuss
the lower order effects in order to avoid a migiptetation due to existing higher order
effects.
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Table 6.1.1
Extracted part of the latent joint distribution the saturated CT MTMR model for three
categorical latent variables with four-variable etts

YA
1 2 3
1 A M N
i
" P 2 0 B P
X
. 3 Q R C
)
x
1 G 1 2
AN
i X 2 3 H 4
x
3 5 6 |
1 J 7 8
i
" P 2 9 K 10
N 3 11 12 L
11
)
x
1 D S T
AN
i X 2 U E Vv
x
3 W y F

Note Only the cell combinations fofS= 1, 2XA =1, 2 are depicted. The scheme applies
to all other combinations of latent categories a.w

Table 6.1.1 depicts an extracted part of the lajemit distribution for latent

variables with at least three categories. The adlthis table fall into three parts: a) Cells
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indicating agreement on both constructs (c&lteroughF; dark grey; i.eA represents the
category-combination [1 1 1 1]), b) cells indicgtiagreement on one construct (c&ls
throughL for agreement ory Sand YA (G represents the category-combinatjar? 1 1])
and cellsM through Z* for agreement onXS and XA (M represents the category-
combination [1 1 1 2]), light grey), and c) celi"icating disagreement on both of the
constructs (numerated from 1 through 12).

All expected cell proportions are influenced by ttmmplete set of one-, two-,
three-, and four-variable effects. Saturated modelsiot impose restrictions on the log-
linear parameters and, therefore, perfectly repgedhe frequency table. The latent log-
linear parameters directly relate to the expectegqrtions of the latent table as shown in
Equations 6.1.2 through 6.1.5 (see also Sectior2)4.The four-variable log-linear effects

have the following meaning with respect to the @gent and discriminant validity:

1) Four-variable effects

Complete agreementhe four-variable log-linear parameters repraagnagreement on
both constructs A throughF) indicate the judgeability of the targets (Funded95) with
respect to the traits under consideration. If thedfects are larger than 1 the corresponding
expected cell proportions are higher than expeossed on all lower order effetts

nxs XAYS YA
Z.XS XAYS YA: XS. Xa ys ya (6 1 6)
Xs.xays ya ﬂ.XS. XA Y%T XS XAYﬁ. XSYS XAYS! e
XS. Xa ys xs xaya’® xsysy xa.ysy

for xs= xaand ys= yi. Several constellations are possible:

« All four-variable parameters for complete agreenuatis @A throughF) are larger

than 1 and of equal size rSXAYSYA-p XS XAYS

Xs. Xa ys ya (xs.xa ys y3'

for all

(xsxays yaz( xsxaysy&’ with xs= xaandys= y. This indicates that the

convergence of the two raters is stable acrossliffexent category combinations.

The odds to agree given the expected proportiosedan lower order effects (see

3| left outX andY numerating the cells to avoid confusion with theeht categories.
18| consider population parameters throughout thdgisn.

ol (XS Xays yét' indicates that at least one combinationXsf= Xaor yS= Yidiffers with respect to
(xs xays ya.
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Eq. 6.1.6) are identical on all category combinagicndicating agreement on both
constructs. This overall agreement rate may betdusvo reasons (see Funder,
1995): There is a group of individuals who are lggsidgeable (good targets) or
the traits are especially visible in some targetability). Since the agreement
rate is constant the judgeability of the targetsherpalpability does not depend on
the scores on one of the latent constructs (ibmstant across all categories).

e All four-variable parameters for complete agreenusils @A throughF) are larger
than 1 but differ from each other. In this case thters agree more often than
expected based on the lower order effects. Judggadfitargets depends partly on
their status on the latent variables. Individualsowbelong to a special easily
judgeable category of one trait can be more easiturately (congruently) judged
on a category of the other traits as well. In ttase, judgeability (as palpability) is
a property of different constellations of the ldteategories.

However, particular categories of the other traatyralso serve as indicators
of judgeability. A good example may be extraveritedividuals who spend much
time with their friends, overtly show their feelsygand comment on their thoughts.
These individuals should be easily classifiableotrer traits as agreeableness and
neuroticism as well. Therefore, raters may havedifcculties classifying these
individuals as extraverted and, additionally, oreithdifferent statuses of

neuroticism and conscientiousness, for examples Effiect may be weaker or

S. XAYS YA< T XS XAYS®

stronger depending on the different categorie&: .. (xsxaysyy TOr all

(xsxays yaz( xsxays y¢with xs= xaand ys= yi. Being extraverted may be

part of the properties characterizing good targets.

If there are only few but very large four-varialgarameters for complete
agreement cells low discriminant validity on agreatrratings is found. The latent
categories of the different construct partly overéand cannot be considered very

distinct from each other.

e All four-variable parameters for complete agreenuails @A throughF) are larger
than 1 and differ from each other as a functioncategories of one trait.

[XS XAYSYAZ o XS XAYS for all (XS xays yéli XS xé ys )/é with

Xs.Xa ys ya xs. xa( ys yd'
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XS. XAYS YA<
Xs.xaysya —

XS XAYS®

xs= xaand ys= yior r Trang yeye fOr all (xsxa ys ya# ( xs¥d. ys

with xs= xaand ys= y.. This effect is a special case of the previousgadibed

phenomenon. It may occur that for different levels the target person's
extraversion the raters have fewer problems toectyr (at least congruently)
classify these targets on the other construct wlith same accuracyfor all
categories of this other construct. In this caséragersion can be regarded as an
indicator of visibility / judgeability. Extravertemhdividuals may show visible cues

of other traits and can, therefore, be easily jddye these traits as well.

» The four-variable parameters for complete agreeroelg @ throughF) may also
be smaller than 1. For the corresponding cellseagest on both constructs is less
frequently expected than predicted on the loweeatfects. This result would be
rather awkward but could be explained in cases wthenlatent cells indicate
categories that are (partly) mutually exclusivethe raters view. This generally
also indicates a lack of discriminant validity besa these categories co-occur less
frequently than expected. For example, in the amlpf the convergent and
discriminant validity of ratings with respect toadty of one's own feelings and
expressivity of feelings (see Lischetzke & Eid, 20@r a conceptualization of
these constructs), the cell indicating agreemendoes not show feelings" and "is
clear about feelings" can logically be underrepnése® because somebody who
does not show feelings cannot be judged to knowtaber or his feelings. In this

case, this finding fits into theoretical considemas and is reasonable.

» The four-variable parameters for complete agreemels @ throughF) do not
differ from 1. In this case the quadrivariate agneat can be explained by lower

order effects of agreement (see discussion below).

Partial agreementFour-variable parameters of cells indicating agrent on one construct
but not on the other for the quadrivariate joirgtdbution (cellsJ through Z) represent a

special kind ofater bias

nxs XAYS YA
XS. XAYS YA: XS. Xa ys ya (6 1 7)
xs.xaysya ﬂ.XS. XA Y%T XS XAYﬁ. XSYS XAYS! e
XS. Xa ys xs xa ya’® xsysy xa.ysy

T
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for either (xs= xaand ys# yj or( x¢ xaand ys Y. Different constellations may

occur:

The four-variable parameters of cells indicatingeaghnent on one but not on the
other trait (cells] through Z) are larger than 1. This finding can bierpreted in
terms of rater bias. Although raters agree on oopastcuct they disagree
systematically on the other construct. This mayheecase for raters who agree on
a target person's extraversion but who have diiteveews or theories about the
relation between extraversion and intelligence efcmmple. One rater may assume
that moderately extraverted individuals also temdé more intelligent while the
other assumes moderately extraverted individuaksetoery intelligent. This effect
is a four-variable effect if they use the same badral cues to identify the target's
level of extraversion and relate this informationtheir judgment of intelligence.
This kind of effect may account for all cells indiimg partial agreement or only for

particular cells.

The four-variable parameters of (particular or edllls indicating agreement on one
but not on the other trait (cells through Z) are smaller than 1. In this case,
disagreement between the two raters with respesgeoific category combinations
is underrepresented if they agree on the othertiearts This may be the case if
agreement on one construct is very hard to achleeause the trait under
consideration is not easily judgeable, if two ratagree on judging this difficult
trait, they will most probably agree on more eagyjudge traits as well and
therefore the expected proportions of the disagesrells for the latter construct
are much smaller given agreement on the first. tFaat example, it may be much
more difficult to judge an individual's attitudeswtards specific minorities (e.qg.,
racist, neutral, positive, no opinion) than judgirtbe same individual's
extraversion. If raters agree on the presumably owartly expressed attitude
against minorities they will most probably also dde to judge the individuals
score on an openly observable trait as extraversion

This effect thus shows (if there is agreement) thate is higher agreement

on one construct (on all or on one category) iféhe agreement on the other one.



Correlated Traits Multitrait-Multirater Model 137

The opposite does not necessarily have to be bnuthis case, one construct (or
specific cells of this construct) is more difficuti judge than (categories of) the

other construct.

« All four-variable parameters of cells indicatingregment on one but not on the
other trait (cellavi through Z) do not differ from 1. In this case, agrent on one
construct is not related to disagreement on theratbnstruct.

Disagreement The latent four-variable parameters of cells desithe agreement and
partial agreement cells (1 to 12) represent infb@esnwhich may be due to bias or to

general disagreement:

nxs XAYS YA
XS XAYS YA_ XS. Xa ys ya
TXS- xaysya ﬂ.XS. XAY%T XS XAYﬁ. XSYS XAYS! (618)
XS. Xa ys xs xaya’® xsysy xa.ysy

for (xs¢ xaand yst yéi. The following different constellations are possib

» All four-variable parameters for complete disagreabcells (1 to 12) are larger
than 1. In this case the two raters disagree mitem than predicted based on the
lower order effects. In general, this indicateseklof convergent validityx for
the quadrivariate joint distribution will be negadi (x may be determined as
depicted in Section 2 considering only cells repnéisg complete agreement (e.qg.,
[1 11 1]) and their latent univariate marginalsdwever, there still might be a few
positive category-specific agreement ratios for saells. | do not expect this
constellation to appear in any application. Thisstellation may appear in cases
where raters do not follow their instructions oredto a wrong labeling of
categories. Even if raters are guessing they shioal@ four-variable parameters
that do not differ from 1.

* Some (one) four-variable parameters for completagteement cells (1 to 12) are
larger than 1. In this case particular combinatioh®ne rater's latent scores are
associated to the other rater's scores but foeréifit cell combinations. If raters

weigh some behavioral cues in different ways gieaas on the other trait they
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may be more often categorized in latent disagreémelts. If, for example, one
rater classifies an individual due to specific babial cues as highly extraverted
and, additionally, these cues may lead this rataldo classify this individual as
moderately neurotic this combination of behaviana¢és may be associated to the

moderately extraverted and highly neurotic classethe other rater.

* Some (all) four-variable parameters for completadieement cells (1 to 12) are
smaller than 1. This may in most cases be duedioehicomplete and / or partial
agreement rates because the log-linear parametereffect coded. Therefore,
higher agreement also affects the disagreemerd celhe saturated model. Yet,
this may also be due to high disagreement on a&pkat cell combination and no
effects on complete or partial agreement cells.

* None of the four-variable parameters for complesagteement cells (1 to 12)
differs from 1. In this case, there is neither aere nor an underrepresentation of

complete disagreement cells.

At the level of four-variable effects, there arengocombinations of the above mentioned
constellations that merit special attention becahsse can be related to the concepts of
convergent and discriminant validity.

Overall agreement may be high due to bivariateydriate, and quadrivariate
effects. The four-variable parameters depict thgreke to which raters agree with each
other above the expected agreement given the lovder log-linear parameters.
Therefore, the four-variable parameters represemtdiional agreement rates. The
(conditional) overall agreement will be high if tieur-variable parameters indicating
complete agreement are principally high and do ditfer from each other, the four-
variable parameters indicating disagreement shioeilidw.

If there are special combinations of congruenngaifor two constructs with very
high four-variable parameters these categoriesh@joint ratings) are associated (lack of
discriminant validity). It may be the case that fjent rating of highly extraverted
individuals is associated to the joint rating oftily intelligent individuals. In this case,
one category of one construct (that is, congrueitiged) may serve as an indicator of
judgeability for the other construct, the constsuletck of discriminant validity for these
categories since their co-occurrence is higher stayuld be for independent (perfectly
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discriminant) constructs, or the co-occurrence lmatheoretically explained and expected.
This has to be examined with respect to the cocistrunder consideration and with
respect to the decision making process. If padicahtegories of one construct enhance
the judgeability on other constructs they shouldsddor several categories of the other
construct and they should do so for several coastrirhen, it is meaningful to conceive
this category as an indicator of judgeability. ietcategory is only associated to one
category of one or few other constructs it is vgagstionable if this particular category
indicates the visibility of behavioral cues (goatgets sensu Funder, 1995) or if the
associated categories represent closely related@ags (lack of discriminant validity).

A specific kind of method bias can be examined peaelently of all other effects
examining the log-linear effects of partial agreatnéf these are large, this indicates that
although peers agree on one construct, they disagreéhe other in specific ways. A close
examination of the answer process may yield insigtd the reasons for the divergent
ratings.

i) Three-variable effects

In models with higher order effects, lower ordefeefs may be interpreted as average
effects influencing particular cell combinationeTinterpretation of these effects is only
meaningful if the higher order effects are absenhave the same qualitative impact
(increase or decline of the expected probabilit@s)he cells affected by the lower order
effect. The same qualitative impact implies thahalher order effects lead to a higher co-
occurrence of the category combinations of the tomreer effects and the lower order
effects may be interpreted as average effectss&ke of simplicity, | consider the case of
absent higher order effects.

Assume that all higher order effects are abserg. difierentthree-variable effects
influence the cells of Table 6.1.2 representinglétent three-variable joint distribution for
XA, YS and YA However, the implications apply to all possiblembinations of three
latent variables. These implications can be eakhwed reordering the latent variables to
follow the patterns presented in Table 6.1.2. Tikatfirst presenting the one variable
measuring the i (distinct) construct and then the cross-clasdificaof the two latent

variables measuring the same construct.
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Table 6.1.2
Extracted part of the latent joint distribution the saturated CT MTMR model for four
three-categorical latent variables with three-vaia interactions as highest order effects

YA
1 2 3
1 A M N
0 %
o > 2 o) B P
X
3 Q R C
1 G 1 2
N
n
& > 2 3 H 4
3 5 6 |

Note Only parts of the subtable for three construfs YS and YA are depicted. The
implications account for any other three-variahlbtable as well.

Log-linear parameters do not impose any directidimi. The effects presented
here correspond to correlations and higher orderelations; therefore, it is principally
possible to interpret all effects as the influenoésiny variable on the association of the
other two variables. In order to examine rater egrent as a special form of convergent
validity it is useful to inspect the meaning of tteent three-variable effects as the
influence of one latent construct's score on tlia joategorization of the other construct.
Therefore, these effects can be interpreted in pgviacipal ways. Three-variable effects
either represent properties of judgeable individalthroughR) or sources (correlates) of
disagreement (an additional form of bias; 1 to ®Bhese influences are especially
meaningful in models when one rater can be condeageproviding better ratings than the

other but they may also occur in other cases.
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AgreementThe three-variable parameters of cells represgm@greement on one construct

depict if agreement depends on the category obtimer construct. E.g.:

XS
x\/ TS XAYS YA
XAYS YA_ wal with ys= ya (6.1.9)

xa.ysya r]*.[XATYSl. Yﬁ. XAY.? XA Ys

Xa " ys' ya  xays - xayad ysyi

T

indicates to which ratio the geometric mean of @lls belonging to a particular

combination ofXA and identical categories onS and YA deviates from what can be

expected based on all lower order effects. Thevatg constellations are possible:

The three-variable parameters of cells represemtgrgement on one construct are
high for specific categories of one variable of dtker construct. Then the three-
variable effects indicate for which specific catege of XA agreement orY is
obtained to a higher degree than expected basdtieolower order effects. The
categories oKXA can be conceived as a kind of judgeability indicair as marker
categories for good targets. This interpretatioegpecially meaningful if ratek
can be conceived as a better rater of the indiVeltrae status than ratérIf S for
example, correctly judges a target person to beaestted,A and S agree more

often on their ratings of the target's conscierdimass.

The three-variable parameters of cells represemtgrgement on one construct are
low for specific categories of the other ones. Thbka three-variable effects
indicate for which specific categoriesXf agreement ol is obtained to a smaller
degree than expected based on the lower orderteffét this case, specific
categories of one construct indicate bad judgdgbiln the same vain as highly
extraverted individuals may be more easily congilygadged, individuals scoring
low on extraversion may not be easily judged onesdraits. The three-variable
effects, therefore, also may indicate the oppadijadgeability.

The three-variable parameters of cells represetgrgement on one construct are

1 for specific categories of the other ones. Thenthree-variable effects indicate
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that the other construct's category does not hayerdluence on raters' agreement
on the other construct.

DisagreementThe three-variable parameters of cells represgrdisagreement on one
construct depict if this special combination ofagjeeement is associated to the status on
the other construct. E.g.:

’ XS
X T[XS. XAYS YA
XAYS YA= vl with ys# ya (6.1.10)

xa.ysya r]*.[XATYSl. Yﬁ. XAY.? XA Ys*

Xa " ys' ya  xays - xayad ysyi

T

indicates to which ratio the geometric mean of @lls belonging to a particular
combination ofXA and different categories oviS and YA deviates from what can be

expected based on all lower order effects. Thevatg constellations are possible:

» The three-variable parameters of cells represertdisggreement on one construct
are high for specific categories of one latent alale of the other construct. The
expected proportions are higher for a specific adsgisagreement if a particular
category is chosen on the other construct. If drtbeoraters were a better rater and
provided ratings that came closer to the true stafuan individual this would
indicate that the other rater misinterprets behavicues (associated X5 leading
to a different rating on the other constru¢y) although Y9 is the better rating.
Therefore, this constellation represents rater. bidiss may be the case Hrates
the combination of being highly extraverted)(and highly neuroticys) and the
other raterA does simply not assume highly extraverted to lgalhineurotic and
therefore only chooses moderately neurotg).(That is, this effect depicts special
cases of higher order rater bias. If the two ragees structurally different but no
one is outstanding with respect to the other (nd-gtandard rater) this parameter
simply indicates differences with respect to thiatjoatings. An interpretation of
bias is awkward in this case. However, this effeety be interpreted in terms of
indicators or behavioral cues that may be ambigyouserpreted by different
raters, they differ in the ways they link the bebeal cues to the traits, and indicate
on which categories raters disagree enabling relsees to implement new and

specific research programs investigating thesecoatibinations or to train raters.
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» The three-variable parameters of cells represertisggreement on one construct
are small for specific categories of the other. €kpected proportions are smaller
for a specific case of disagreement if a particaktegory is chosen on the other
construct. This effect indicates if particular gaiges of one construct are less
often associated (confounded) for a given ratingh@nother construct. If rate3
judges the target person to be highly extravefi@d, may prevent raterd and S
from providing ratings of not at all neurotic and higlnlgurotic. This constellation
thus indicates to which degree special disagreegmnbinations do not occur for

given statuses on another construct.

» The three-variable parameters of cells represertdisggreement on one construct
are 1 for specific categories of the other one.nThiee three-variable effects
indicate that the other construct's category dasshave any influence on raters’

disagreement on the other construct.

At the level of three-variable parameters, there some combinations of the above
mentioned constellations that merit special attenthecause these can be related to the
concepts of convergent and discriminant validitpe@ategory (says) can be seen as an
indicator of judgeability if this category genegalbroduces higher agreement rates on
other constructs (at least on the majority of @tegories). The three-variable effect of the
same category§) with disagreement cells indicates if the increasagreement leads to a
decline in disagreement for particular cells ordtircells. That is, if the better judgeability
prevents raters from choosing specific category inations of disagreement or if it
prevents them from disagreeing in general. Thedatould also automatically lead to an
increase of convergent validity.

The three-variable effects indicate a higher ordethod bias if they are large for
cells indicating disagreement on one construct.tiis case (only for the given
constellation on one rater's ratings), the othéerrahows a biased judgment. Bias is
understood as the difference between two rateggeeral (see Agresti, 1992). It is not
understood as the difference between a ratingfamtiiie score or the true level on a given
construct. Method bias type | reflects if the latgorevalence rates differ, the
distinguishability index shows if raters distindguisetween the categories of one trait, and
the method bias introduced here is a conditionstirdjuishability index showing if one
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rater deviates from the rating of the other onetlo; same construct given a particular
status on the other construct.

In some cases, one rat§ (nay be a gold standard providing very accuraiags.
In this case, it is meaningful to mainly inspecte tmethod bias (conditional
distinguishability) starting with the category dfet gold standardx§) influencing the
agreement / disagreement of the ratings on ther abwestruct Y). The three-variable
effect of one cell for the non-reference rater (tio&-gold-standard method) on the joint
rating on the other construct of the referencer stteuld not be interpreted in this way; but
this effect should be interpreted as the influentethe effect of the gold-standards
category on the ratings of the non-reference rdteis can be interpreted as a kind of halo
effect, which depicts the influence of one trait the judgments of other traits rated by

non-reference raters.

lii) Two- and one-variable effects.
If there are no four- and no three-variable effeitts two-variable parameters can be
directly interpreted. Their interpretation comesyvelose to the criteria introduced by
Campbell and Fiske (1959).

Assume that all higher order effects (three- anat-f@riable effects) are absent.
The differenttwo-variable effectsnfluence the cells of Table 6.1.3 representirgldient
two-variable joint distributions for the differebivariate combinations ofS XA, YS and
YA The upper part [(a), containing the grey-shadgdement cells] indicates the bivariate
distribution ofYSandYA (or XSand XA, respectively, not depicted). The middle part (b)
represents the across trait latent bivariate distion for XSand YS(or XA and YA not
depicted) The lower part (c) represents the across traitsresa raters latent bivariate
distribution ofXAandY S(or XSandYA not depicted).

The latent bivariate sub-tables are completelypedeent from each other since no
three- or four-variable effects are assumed to .hdlterefore, these subtables can be
inspected as “complete tables” without any condaloassumption about scores on other

variables.
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Table 6.1.3

Extracted part of the latent joint distribution the saturated CT MTMR model with two-
variable effects as highest order effects for dififi combinations of two categorical latent
variables

(a) YA
1 2 3
1 A 1 2
P 2 4 B 3
3 5 6 C
(b) YS
1 2 3
1 1 2 3
9 2 4 5 6
3 7 8 9
(c) YS
1 2 3
1 10 11 12
N 2 13 14 15
3 16 17 18

Note Only one pair of variables has been depicte@very kind of association.

Consider the latent subtable representingpnotrait-heteromethodcategory
combinations, the case of no higher order effetiswa for testing the structure of
agreement on the level of latent bivariate inteoast as described in Section 5.1.
Therefore, | will only repeat the main implication$ the saturated model here. The
structure of agreement is reflected in part (a)alble 6.1.3.

Method bias type | reflects the degree to which ldient marginals differ from

each other. It can be determined as:
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S

Xs. xa) n_XA '

MBJ( for xs= xa. (6.1.11)

It can be analogously determined for the othet ¥aMalues close to 1 indicate no bias,
values far from one indicate over- or underrepregem of the corresponding latent
marginals with respect to the other rater's sceee Agresti, 1992). Values differing from
1 indicate that raters differ with respect to thepected marginals which in turn can be
interpreted as different presumed prevalence r@@s Zwick, 1988). This indicates that
raters judge the constructs differently. In thisss®s method bias is also related to a lack of
convergent validity in the log-linear models witdtdnt variables (biased ratings cannot

lead to perfect agreement).

Agreement can be seen in high two-variable eff(ac Aort v ya’) for categories

of the two trait variables sharing the same intﬂgx: xaor ys= yéx. In the special case

of a hierarchical model with two-variable parametas effects of highest order the log-
linear two-variable parameters correspond to thegoay-specific agreement rates. Cells
representing agreemenmA, (B, andC) are grey shaded in Table 6.1.3. An overall latent
agreement rate can be calculated using

If there is general (category-specific) agreemesond agreement on chance at
least some disagreement cells are underrepresehiesl.can be seen in two-variable
effects that are smaller than 1 for disagreemeiis ¢& to 6 in Table 6.1.3 a). The
distinguishability index shows which cells are |¢s®re) frequently expected than based

on the product of their latent marginals:

S. XA

DISt( 2xa_ for xs# xa (6.1.12)

XS. x@ S XA
s Wia

This index can be analogously defined for the aaieg ofY. If this index is the same for
all disagreement cells, raters distinguish equaiyl between the different categories of
the latent constructs and agree more often thatigbeel by chance.

However, this index can also show values largen thaindicating that this
particular category combination is more often exp@than based on the latent marginals.
This indicates that the two raters confound thedegories. Or more statistically spoken,
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the ratings are biased with respect to the othing.aReconsider the example with the
security oriented, gambling, and risk seeking peabty types. The two-variable effect
indicates to which ratio the™Irater chooses the gambling personality type ifAHeater
chooses the risk-seeking personality type. Noté tthia bias has not to be the same the
other way round. That is, the ratio of the comboratgambling and risk-seeking
personality type does not have to be the samesksseeking and gambling personality
type.

The association between two latent variables béhgngo the same rater but
different constructs [part (b) of Table 6.1.3) esponds to deterotrait-monomethod
association sensu Campbell and Fiske (1959):

TSYS gp pXAYA (6.1.13)

XS ys ! xa.ya

In general, this effect should be rather weak thcate discriminant validity. That is, the
log-linear two-variable parameters should be clkasé to indicate discriminant validity.
The association between two variables can be catespecific. That is, special categories
of neuroticism (highly neurotic) may co-occur witlparticular categories of
conscientiousness (moderately conscientious) butvitb others. This effect may be due
to several (interacting) influences: a theoretmwatrlap of the categories (a theoretically
meaningful category combination; yet, the constraee not perfectly discriminant), and /
or method bias. Method bias is a rater specifievvid how categories belonging to two
different constructs are related. These effectsndb have to be identical across the
different raters.

The associations between variables belonging terdiit constructs judged by
different raters [part (c) of Table 6.1.3] corresgoto heterotrait-heteromethod

associations sensu Campbell and Fiske (1959):

TSYA or U475, (6.1.14)

xs.ya ! xa.ys

These parameters mirror associations between tivet leonstructs that are shared between
raters. These effects can be due to a theoretiealap of the constructs but they cannot be
due to method bias. Therefore, the ratio of the@ason between traits belonging to one

rater (confounded with bias) and the mean assoniatf the corresponding bias free
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associations indicates the rater specific bias (#ter's view that is, not shared across
raters):

Definition 6.1.2
Method bias type II

.[XA.YA
MB2 =—=2%¥ __  with xs= xa andys= ya. (6.1.15)

(XAYA 1S YA XAYS
Xs.ya ' xays

This ratio has not yet been defined as method thiasy mind. The denominator
gives the expectancy for the bias free associatibthe latent categories of the two
constructs taking the geometric mean of the bies-fassociations. The association
between the same categories within one methoddoonkd with bias) is compared to this
“average association”. Values larger than 1 in@dicat association of the two categories
for one rater that goes beyond the bias-free amsmai That is, one rater implicitly or
explicitly associates the two categories to a gre@maller) extent than do different raters.
It reflects rater specific theories or beliefs abthe combined prevalences of different
statuses (e.g. halo-effect). Values smaller thamdicate that this association is less
frequently expected than based on the bias-freeced®on - which may be interpreted as
an inversed halo-effect. This coefficient is théicedly founded in the postulate of
Campbell and Fiske (1959) that the pattern of agsons should be the same for all traits
in monomethod as well as in heteromethod blocks.

The method bias type Il depends on three paraméikesheterotrait-monomethod
two-variable interaction and the two heterotraiteh@emethod two-variable interactions
representing the same latent categories. Sincelédheminator is the geometric mean of
the two heterotrait-heteromethod parameters thidexnshould not be calculated if the
heterotrait-monomethod parameter falls into theerwdl between the two heterotrait-
heteromethod parameters. In this case, the rasmifgpview is in the “middle” of the
rater-unspecific views; it can therefore not behkigor lower as the error free interaction
(if this is conceived as the “average” interactiamgd is therefore not biased. Taking the
geometric mean of the two heterotrait-heteromethardmeters will most probably lead to
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a value differing from the numerator implying over-underrepresentation as the form of
bias which is not true inspecting the two-variaddfiects.

If one of the raters is a gold standard, the metiiad type Il reduces to the ratio of
the heterotrait-monomethod parameter for the néereace rater to the heterotrait-

monomethod parameter of the reference rater (gattiard):

Definition 6.1.3
Method bias type Il with gold standard

XAYA

T
MB2 =-22¥ with xs= xa andys= vya. (6.1.16)

(XAYA — _XS.YS'’
XS. yS

if Srepresents a gold standard.

The interpretation of all parameters but the highesler parametersas presented here
can only be done if all higher order effects arsealh. However, dealing with empirical
data researchers are interested in the agreentestofitheir raters. The latent log-linear
parameters of lower order effects correspond teraye” effects. Therefore, these effects
should only be interpreted (as a directional effeat interpreting the parameter value) if
the higher order interactions do not change thectlon of the main (lower order) effect
for different categories (all parameters of thesidered cells must be larger or smaller
than 1). The same rationale accounts for the datifag-linear model.

A heuristic inspection of latent bivariate subtabdan be done to get some insight
into convergent and discriminant validity sensu @hell and Fiske (1959). However, if
higher order effects are present, the tables atecoblapsible. Therefore, | do not
recommend inspecting the log-linear parameters iwdriate subtables in cases where
higher order effects are presenrt, however may be calculated to get an estimation of

general agreement between raters.
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6.2 The Correlated Traits Multitrait-Multirater Model for

Interchangeable Raters

The saturated model for the analysis of 2 trait2 layterchangeable raters is a special case
of the saturated model for structurally differemtters described above. The detailed
definition is not repeated but the model equatiow @he necessary constraints for
interchangeable raters are presented. In printidesame logic as in Section 5.2 (latent
rater agreement models for interchangeable ratas)unts for the larger 3 x 3 x 3 x 3

model.

6.2.1 Formal Representation of the Saturated CT MTMR Model for
Interchangeable Raters

Like in the latent rater agreement models for ghangeable raters measurement
invariance has to be assumed. Extending the manlefodr measurement models
(measuring two traits) leads to the following coasits on model parameters defined in
Equation 6.1.%

— XA XB+ YA- YB
eabcd.xa. xb.ya yb n TaT bT cT dT anT xEk;[ ya yb
XA XB XAYA. XAYR XB XB YAYB
><Txa\. beT xa yaAl- xa yb? xb yﬁA xb yl ya yb ! (62 1)
XT XA XB YA[ XA XB Y% XAYA XB YAYB XAYBYB
xa.xbya * xaxbyb™ xayayb xbya xa.xb.ya y

with:

max(xa)= maxb)= C and maxya F= maxyb ¥ D, (6.2.2)

leading to an equal number of categories for tlffereéint latent variables representing the
same trait, respectively. And:

'8 The variable represented in the model change nénmesS (representing self-report in empirical
applications) and\ to A and B (representing peer reporsandB) to prevent from confounding the models.
This change does by no means affect the defindidhe meaning of the parameters.
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Ta =Ty, for xa= xbandr;s =77, for ya= yb, (6.2.3)

the latent distributions are identical for latemtriables of different raters measuring the

same trait. And:

| J
_ M, M, XA _ _ Ni_N.XB . . M, — N, M. XA _ _ N.XB
Ta_l_leTm.xa —Tb—ﬂtm’Tp{ o With T =10 OTp =T, (6.2.4)
m=1 n=1
and
< OOk S ol = Q.YA P YB
— O YA _ _ P-PYB ., . _ R YA__P
T, = HT%Tq_ya =T, = nTpT by With T =1; Ot/ =10 4, (6.2.5)
=1 H:I

indicating identical measurement models. An expianaof these restrictions is given in
Section 5.2.

In addition to the restrictions of measurement irarece the interchangeability of
the raters has to be respected. The latent morabl@arlog-linear parameters of the
saturated model for interchangeable raters haveetgonstrained (yielding a symmetry

model):

i, XAXB-pXAXE (6.2.6)

xa. xb xb xa ?

The log-linear two-variable effects of cells withirait units are identical for

inversed ordering of the categories.

o XAYA _ - XBYE
II. z-><a.ya =Ty yb (627)

for xa= xbl] ya= yl. The rater-specific two-variable effects acrosastaucts

(heterotrait-monomethogarameters) are the same across raters. The ters ra

have the same view about which latent categoriesedated.

jii, 7XAYB= XYV (6.2.8)
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6.2.1.1

for xa= xblJ ya= yk. The across traits two-variable effects are thmeséor the

inversed order of raters (tHeeterotrait-heteromethogharameters are identical
irrespective of the raters). That is,, if the newraategory of peeA co-occurs
more frequently with the conscientious categoryBdhis must also be the case
(to the same degree) for the opposite combinatioaurptic for B and

conscientious foA).

XA XB. YA XA XBYI —
Tiaxoya = Lxbxaybs 1OF Ya=yb, (6.2.9)
and

XAYAYB XBYAY —
Trayayb =D xbybyar [OF Xa= xb. (6.2.10)

The impact of one categorical trait variable on ititeraction of two categorical
trait variables representing the same construtttessame for the two raters. That
is, if the combination oKA = 2 andXB = 3 is more often observed f¥A = 1 this

must also be the case #8A = 3 andXB = 2 givenYB= 1.

XA XB.YAYB
xa. xb ya yb

=7 JAxe (6.2.11)

T xb xa yb ya?

That is, interchangeability implies that any givemerrepresentation of one
specific combination of latent ratings must be shene for the inversed order of
the raters. The combination of [2 1 3 1] dependshensame log-linear effect as
the combination [1 2 1 3].

The impact of the different log-linear effects on the analysis of convergent

and discriminant validity

The same considerations about the meaning of lowvder effects if higher order

interactions are present for the case of strudyudidferent raters account for the case of
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interchangeable raters. Therefore, the inspecti@overgent and discriminant validity is
based on the analysis of higher order effects. €gent and discriminant validity can be
analyzed inspecting the complete cross classifinaidf all latent variables.

In Table 6.2.1 36 cells of the latent joint quadriate cross-classification (with 81
cells) are depicted. These cells represent agrdemparial agreement, and disagreement
cells. The cell entries symbolize the expected petiportions. | denoted all expected
probabilities indicating agreement or partial agneat with capital Latin letters. Identical
Latin letters represent identical expected respgmebabilities. Expected proportions of
disagreement cells are denoted using Arabic numbgestical numbers identify identical
expected cell proportions. As can be easily seenehtries in Table 6.2.1 follow a
symmetric scheme. This symmetry is produced by ititerchangeability of raters
producing identical log-linear parameters. Cellpresenting agreement with respect to
neuroticismand conscientiousness are determined by “unique” coatluns of log-linear

effects (grey shaded and surrounded cells). Theaed proportiod, for example:

=TT
XA XB- XAYA- XAYR XB XB YA®
le.l B.l-l.l ﬁ- 1.1 ? 1.1 YFl.l ¥B1.1

XA XB.YAr XA XBYR XAYA XB YAYB'
><Tl.l.l A[ 1.1.1 F[,‘ 111 Y[B 1.1.1

XA XB.YAYB
><Tl.l.l.l

e++++1,1,1,1

(6.2.12)

depends on products of effects that do not reappeee in the complete table. The
symbols “+” replace the manifest categories. Thaese true for expected proportioBs
C, D, E, andF.
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Table 6.2.1
Extracted part of the latent joint distribution the saturated (symmetry) CT MTMR model
for interchangeable raters

YB
1 2 3
1 A J K
—
A N 2 J B L
~ >
. 3 K L C
4
X
1 G 1 2
(aV]
A N 2 4 H 3
~ >
3 5 6 |
1 G 4 5
—
A N 2 1 H 6
~ >
E 3 2 3 |
X
1 D M N
(aV]
A N 2 M E o)
~ >
3 N o) =

Note Only the cell combinations fotA =1, XA =2, XB =1 and )8 = 2 are depicted. The
scheme applies to all other combinations of latategories as well (see restrictions i to iv
in Section 6.2.1).

The expected proportions of cells representing eagemt for only one construct

(grey shaded folY) reappear once in the frequency table for inversategories of the
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construct upon which the two raters do not agrées€ are the frequenci&sH, andl for
partial agreement oW, as well as), K, andL andM, N, andO for partial agreement oX.
E.g.:

— XA XB. YA- YB
e++++1.2.l.l - n *1 lAT 28-[ 1A[ 1

XA XB+ XAYA. XAYR XB XB YA®
le.Z BTl.l A[1.1 ?2.1 Yﬁ2.1 ¥B1.1

XA XB.YA. XA XBY! XAYA XB YAYB
XTl.Z.l A[1.2.1 % 1.11 ﬁB 211
XA XB.YAYB
le.Z.l.l
G: e N T 3 B , (6.2.13)

AR A N

XA XB.YA. XA XBYB XAYA XB YAYB
XT2.1.1 A[ 211 ? 211 \iB 1.11

XA XB.YAYB
XT2.1.1.1
- e++++2.l.l.l

since Equations 6.2.6 through 6.2.11 must hold. oMler frequencies also appear two
times in the complete table, because they areimdmith respect to a complete category
inversion. That is, if the latent categories fore ttwo peers are simultaneously
interchanged, the model yields the same expectegiéncy.

The saturated CT MTMR model allows for determinidiferent sources of
influences on the associations between latent IMasa These coefficients have been
defined for the CT MTMR model for structurally défent raters. Their meanings with
respect to the model for interchangeable rater$ lvél sketched and differences with

respect to the model for structurally differeneratwill be pointed out:

i) Four-variable effects

Complete agreementhe four-variable log-linear parameters of celdicating agreement
on both constructs A throughF) mainly indicate thgudgeability of the targets. If these
effects are larger than 1 and significant, the esponding expected cell proportions are

higher than expected based on all lower order &ffec

7TXA XB.YAYB

XA XBYAYB_ xa. xb ya yb
Tva xn yayb ~ n.XAXBYAﬂ.XA XBY?T XAYAYR XBYAM (6-2-14)

xa. xh ya xa xb yb xa ya yl xb ya yt

for xa= xband ya= yt. Several constellations are possible:
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All four-variable parameters of complete disagreeimeells @ throughF) are

XA XB.YAYB_— XA XBYAYI

larger than 1 and of equal sizer =7

xa.xb. ya yb (xa.xb ya yB' for all

(xaxhyayh#( xaxbyayd with xa=xbandya= yt. This indicates that the

interchangeable raters agree constantly acrossmtdbories of the different traits.
The odds to agree given the expected proportioesdban lower order effects (see
Eq. 6.1.6) are identical on all category combinagiondicating agreement on both

constructs.

All four-variable parameters of complete agreenuatis A throughF) are larger

than 1 but differ from each other. In this cases thters agree more often than
expected based on the lower order effects. Theaayisup of judgeable individuals
but their judgeability depends partly on their gsaton the latent variables.
Individuals who belong to an especially easily jedgle category of one trait can
be more easily accurately (congruently) judged aatagory of the other traits as

well. This effect may be weaker or stronger depegdin the different categories.

XA XBYAYB< T XA XB YAYI
xa.xbyayb = ¢(xaxhya yd'

T for  all (xaxbyayhz( xaxbyays  with

xa= xbandya= yL. In this case, judgeability (as palpability) ispeoperty of
different constellations of the latent categories.

If there are only few but very large four-varialarameters of complete
agreement cells low discriminant validity on agreatratings is found. The latent
categories of the different constructs partly aaerand cannot be considered very

distinct from each other.

All four-variable parameters of complete agreenusils A throughF) are larger

than 1 and differ from each other as a functioncafegories of one trait.

XA XB.YAYB XA XBYAY

Traxyas S Dol yayy  Tor  all (xaxbyayhz xax) yayd  with
— — XA XB.YAYB XA XB YAYI
xa= xband ya= yt or Taxbyayp = T(xaxt). yayt for all

(xa. xh ya yt)#( xa X))'. yay with xa= xbandya= yt. This effect is a special

case of the previously described phenomenon. It mcayr that for different levels

of the target person's extraversion the raters fewer problems to correctly (at
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least congruently) classify these targets on therotonstruct (conscientiousness)

with the same accuracy for all categories.

The four-variable parameters of complete agreeroelg (A throughF) may also
be smaller than 1. For the corresponding cellseagest on both constructs is less
frequently expected than predicted on the loweeoadfects. This result would be
rather awkward but could be explained in cases wthenlatent cells indicate
categories that are (partly) mutually exclusivethe raters' view. Reconsider the
example of ratings with respect to clarity of ormn feelings and expressivity of
feelings, the cell indicating agreement on “does stow feelings” and “is clear
about feelings” can logically be underrepresentedahbse in this case the clarity

about feelings is not open for observation.

The four-variable parameters of complete agreemehs (A throughF) do not
differ from 1. In this case the quadrivariate agneat can be explained by lower

order effects of agreement (see discussion of thisets below).

Partial agreementFour-variable parameters of cells indicating agrent on one construct

but not on the other for the quadrivariate joirgtdbution (cellsG throughO) represent a

special kind ofater bias

7TXA XB.YAYB
Z.XA XBYAYB_ xa. xb ya yb
xaxbyayb A XB.YA_. XA XBYB,. XAYAYB XBYA>
ni;.xh yaA]Txa xb yb 97 xa yayl xb ya yks (6215)
— TXA XB.YAYB
~ fxb.xa yh ya

for either (xa= xbandyaz yl) or( xa& xbandya . Again, different constellations

may OCcCur:

The four-variable parameters of cells indicatingeaghnent on one but not on the
other trait (cellavi throughQ) are larger than 1. This finding can be interpiate

terms of rater bias. Although raters agree on oopastcuct they disagree
systematically on the other construct. Moreovee farticular combination of

disagreement cells is equally frequently expeabednterchangeable raters.
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This effect indicates the association of agreenmmtone construct with
disagreement on the other. Individuals who do rmdws their feelings (the
interchangeable raters agree on the status of ésgjpity of feelings”) may, for
example, send out ambiguous signals belongingeaadmstruct clarity of feelings
which might indicate a very clear or a neutral gatg. The two interchangeable
raters therefore confound these categories withetso the other rater. This kind
of effect may account for all cells indicating palragreement or only for particular

cells.

* The four-variable parameters for (particular o) aklls indicating agreement on
one but not on the other trait (ceNsthroughO) are smaller than 1. In this case,
disagreement between the two raters with respesppeoific category combinations
is underrepresented if they agree on the othertwonts This may be the case if
agreement on one construct is very hard to achlmeause the trait under
consideration is not easily judgeable, if two ratagree on judging this difficult
trait, they will most probably agree on more eagyjudge traits as well and
therefore the expected proportions of the disagesells for the latter construct
are much smaller given agreement on the first trait

This effect thus shows (if there is agreement) thate is higher agreement
on one construct (on all or on one category) iféhe agreement on the other one.
The opposite does not necessarily have to be bnuthis case, one construct (or
specific cells of this construct) is more diffictidt judge than the cells of the other

construct.

» All four-variable parameters for cells indicatingreement on one but not on the
other trait (cellavl throughO) do not differ from 1. In this case, agreementoe

construct is not related to disagreement on theratbnstruct.

Disagreement The latent four-variable parameters of cells desithe agreement and
partial agreement cells represent influences whay be due to bias or to general

disagreement:
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7TXA XB.YAYB
Z.XA XBYAYB_ xa. xb ya yb
xaxbyayb A XB.YA_. XA XBYB,. XAYAYB XBYA>
ni;.xh yaA]Txa xb yb 97 xa yayl xb ya yks (6216)
— TXA XB.YAYB
~ fxb.xa yh ya

for (xaz xbandyaz yb. The following different constellations are possib

All four-variable parameters of complete disagreenoells (1 to 6) are larger than
1. In this case, the two raters disagree more dften predicted based on the lower
order effects. In general, this indicates a lackcofivergent validity.x will be
negative. However, there still might be a few pesitategory-specific agreement
ratios for some cells. | do not expect this cotestien to appear in any application.
This constellation may appear in cases where rdtersot follow their instructions
or due to a wrong labeling of categories. Everaters are guessing they should

have four-variable parameters for disagreemens tedit do not differ from 1.

Some (one) four-variable parameters of completagideement cells (1 to 6) are
larger than 1. In this case particular combinatioh®ne rater's latent scores are
associated to the other rater's scores but foeréfft cell combinations. If raters
weigh some behavioral cues differently given cueshe other trait they may be
more often categorized in latent disagreement .cilsfor example, one rater
classifies an individual due to specific behaviaraés as highly extraverted and,
additionally, these cues may lead this rater te akssify this individual as
moderately neurotic this combination of behaviana¢és may be associated to the
moderately extraverted and highly neurotic clageeghe other rater. The same

effect has to hold for inversed categories acrasss (the opposite combination).

Some (all) four-variable parameters of completeaglisement cells (1 to 6) are
smaller than 1. This may be due to higher com@atk/ or partial agreement rates.
Higher agreement lowers the expected proportiorthefdisagreement cells in the
saturated model. Yet, this may also be due to digagreement on a particular cell

combination and no effects on complete or pargatament cells.



Correlated Traits Multitrait-Multirater Model 160

* None of the four-variable parameters of complesaglieement cells (1 to 6) differs
from 1. In this case, there is neither an over- aor underrepresentation of

complete disagreement cells

At the level of four-variable effects, there arengocombinations that can be related to the
concepts of convergent and discriminant validityptinciple, these relations do not differ
from those for structurally different raters exciptthe interchangeability of the raters.

Overall agreement may be high due to bivariateydriate, and quadrivariate
effects. The four-variable parameters depict thgreke to which raters agree with each
other above the expected agreement given the lovder log-linear parameters.
Therefore, the four-variable parameters represaemtditonal agreement rates. The
(conditional) overall agreement will be high if tieur-variable parameters indicating
complete agreement are principally high and do ditier from each other, the four-
variable parameters indicating disagreement shioeilidw.

If there are special combinations of congruenngsifor two constructs with very
high four-variable parameters these categoriegsh@fjoint ratings) co-occur more often
than expected based on the lower order effectk adiscriminant validity). It may be the
case that the joint rating of highly extravertediwiduals co-occurs with the joint rating of
highly intelligent individuals. In this case, onategory of one construct may serve as an
indicator of judgeability for the other construitte constructs lack of discriminant validity
for these categories, or this effect can be thaalbt explained and expected. This has to
be examined with respect to the constructs undesideration. If particular categories of
one construct enhance the judgeability on othestroats they should do so for several
categories of the other construct and they shoaldalfor several constructs. Then, it is
meaningful to conceive this category as an indicatqudgeability. If the category is only
associated to one category of one or few othertngats it is very questionable if this
particular category indicates if individuals aredgeable (good targets sensu Funder, 1995)
or if the categories represent closely relatedgmates (lack of discriminant validity).

A specific kind of method bias can be examined paohelently of all other effects
examining the log-linear effects of partial agreatnéf these are large, this indicates that
although peers agree on one construct, they codfoategories of the other construct in
specific (and inversely related) ways. A close exation of the answer process and the
category definition may vyield insight into the reas for this kind of method bias (which

corresponds to a kind of “category confusion”).
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Method bias is strong when the latent four-variabféects influencing cells
indicating disagreement are large and the fourabédei effects influencing (complete and
partial) agreement are small. The joint ratings associated but not with respect to

agreement.

i) Three-variable effects

In general, lower order effects may be interpretecdverage effects influencing particular
cell combinations. The interpretation of these @fas only straightforward if the higher

order effects are absent or all higher order effetfiuencing the cells of that particular

lower order effect increase (or decline) the exgeciell proportions.

Assume that all higher order effects are absertileT@.2.2 represents parts of the
latent three-variable joint distributions for coméiions of XA or XB with YA and YB.
However, the implications account for every possibbmbination of three variables and
can be easily derived reordering the latent vaemlib follow the patterns presented in
Table 6.2.2. The symmetric structure is the sam@aBable 6.2.1. Latin letters again
indicate agreement on one construct {om Table 6.2.2) and Arabic numbers indicate
disagreement (o¥ in Table 6.2.2).

In order to examine rater agreement as a speaial & convergent validity it is
useful to inspect the meaning of the latent thraeable effects as the influence of one
latent construct's score on the joint categoripatibthe other construct. Therefore, these
effects can be interpreted in two principal waybree-variable effects either represent
properties of judgeable individual& throughF) or sources of disagreement (1 to 12).

These effects have to be identical across thecimdégmgeable raters. This does imply
that the rate of expected classification on oni tom a given constellation on the other
trait increases or declines to the same degreatferchangeable raters, however, it does
not say that the raters congruently choose the sategory (this is depicted in the four-
variable effects) but that congruent ratings on ifetrait variable are only related to

chance if there is agreement on th&teait variable.
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Table 6.2.2
Extracted part of the latent joint distribution the saturated CT MTMR model with three-
variable effects as highest order effects for fibmee-categorical latent variables

YB
1 2 3
1 A 1 2
—
A N 2 4 B 3
~ >
3 5 6 C
1 D 7 8
(aV]
A N 2 10 E 9
~ >
3 11 12 =
1 A 4 5
—
I <
2 1 B 6
i >
3 2 3 C
1 D 10 11
(aV]
| <
2 7 E 12
i >
3 8 9 =

Note Only parts of the subtables for the constratds XB YA andYB are depicted. The
implications account for any other three-variahlbtable as well.

AgreementThe three-variable parameters of cells reprasgrtgreement on one construct

depict if agreement depends on the status of tier gbnstruct. E.g.:
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X |X_B|T[XA.XB.YAYB
XAYAYB _ 3*“ with ya= yb (6.2.17)

xayayb — XA_YA_YB. XAYA XAYR YAY’
r]*Tx::\Ty:[ yE[ xa ya‘% xa yl;\F ya yl

T

indicates to which ratio the geometric mean of @lls belonging to a particular

combination ofXA and identical categories oA and YB deviates from what can be

expected based on all lower order effects. Thedatg constellations are possible:

The three-variable parameters of cells represertgigement on one construct are
high for specific categories of the other one. Ttienthree-variable effects indicate
for which specific categories &fA agreement ofY is obtained to a higher degree
than expected based on the lower order effects. CHtegories ofXA can be
conceived as a kind of judgeability indicator. Weoof the raters identifies the
target individual to belong to a category indicgtjndgeability, the raters will more

often agree with each other.

The three-variable parameters of cells represemtgrgement on one construct are
low for specific categories of the other one. Th@nthree-variable effects indicate
for which specific categories &fA agreement ofY is obtained to a smaller degree
than expected based on the lower order effectisncase, specific categories of

one construct indicate bad judgeability.

The three-variable parameters of cells represetgrgement on one construct are
1 for specific categories of the other one. Then ttiree-variable effects indicate
that the other construct's category does not hayerdluence on raters' agreement

on the other construct.
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DisagreementThe three-variable parameters of cells represgmndisagreement on one
construct depict if this cell combination is assbed to the status on the other construct
(cells1to 12 in Table 6.2.2). E.g.:

X |X_B|T[XA.XB.YAYB
XAYAYB _ 3*“ with yaz yb (6.2.18)

xayayb — XA_YA_YB. XAYA XAYB YAY’
r]*Tx::\Ty:[ yE[ xa ya‘% xa yl;\F ya yl

T

indicates to which ratio the geometric mean otalls belonging a particular combination
of XA and different categories 0fA andYB deviates from what can be expected based on

all lower order effects. The following constellatgare possible:

« The three-variable parameters of cells represemtisggreement on one construct
are high for specific categories of the other. Hifect is more easily interpreted as
the association of a specific combination of orterts joint classification with the
classification of the other rater on one constrddtis effect indicates that, for
example, if A judges the target person to be highly neurotic amamberately
conscientiousB will judge the same target to be moderately neardthe same
association must hold for the inversed combina{®judgeshighly neurotic and
moderately conscientious whil&é judges moderately neurotic). This effect thus

reveals easily confounded category constellations.

e The three-variable parameters of cells represemtisggreement on one construct
are small for specific categories of the other. €Rpected proportions are smaller
for a specific case of disagreement if a particaktegory is chosen on the other
construct. This effect indicates if particular gaiges of one construct co-occur
less often than predicted based on the lower aflects for a given rating on the
other construct. If ratek judges the target person to be highly extravetted,may
prevent ratersA and B from providing ratings of not at all neurotic and highly
neurotic. This constellation thus indicates to Wwhdegree special disagreement
combinations do not occur for given statuses orthenaonstruct. That is, if some
latent categories of one trait moderate the digsgemt on the other trait (i.e.,
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prevent from misinterpreting behavioral cues or enakhavioral cues of the other

trait more salient).

« The three-variable parameters of cells represemtisggreement on one construct
are 1 for specific categories of the other one.nThee three-variable effects
indicate that the other construct's category dasshave any influence on raters’

disagreement on the other construct.

iii) Two- and one-variable effects.

If there are no four- and no three-variable effeébts two-variable effects can be directly
interpreted. Their interpretation comes very closehe criteria introduced by Campbell
and Fiske (1959).

For sake of simplicity, assume that all higher oreféects (three- and four-variable
effects) are absent. The differemio-variable effectsnfluence the cells of Table 6.2.3
representing the latent two-variable joint disttibas for the different combinations XA,

XB, YA andYB. The upper part [(a), containing the grey-shadgéement cells] indicates
the bivariate distribution o¥ A and YB (or XA and XB, respectively, not depicted). The
middle part (b) represents the across trait laberariate distribution foXAandYA (or XB
and YB, not depicted)The lower part (c) represents the across traitgsacraters latent
bivariate distribution oKAandYB (or XB andYA not depicted).

The latent bivariate sub-tables are completelypedeent from each other since no
three- or four-variable effects are assumed to .hdlerefore, these subtables can be
inspected as “complete tables” without any condaloassumption about scores on other

variables.
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Table 6.2.3

Extracted part of the latent joint distribution the saturated CT MTMR model with two-
variable effects as highest order effects for dififi combinations of two categorical latent
variables

(a) YB
1 2 3
1 A 1 2
N 2 1 B 3
3 2 3 C
(b) YA
1 2 3
1 4 5 6
< 2 5 7 8
3 6 8 9
(c) YB
1 2 3
1 10 11 12
N 2 11 13 14
3 12 14 15

Note Only one pair of variables has been depicte@very kind of association.

| will first consider the latent subtable represemt monotrait-heteromethod
category combinations. The case of no higher oceffects allows for testing the structure
of agreement on the level of latent bivariate imtéons as described in Section 5.2.
Therefore | will only repeat the main implicatioln$ the saturated model here. The

structure of agreement is reflected in part (a)alble 6.2.3.
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Method bias type | would reflect the degree to \whike latent marginals differ
from each other. Since these are restricted taléxtical across interchangeable raters this

bias does not occur in models with interchangeedibys

YAY!

Agreement can be seen in high two-variable eff(ac o OrT y[f) for categories

of the two trait variables sharing the same indga= xbor ya= y}. In the special case

of a model with two-variable effects as effectdhafhest order the log-linear two-variable
parameters correspond to the category-specific eaggat rates. Cells representing
agreementA, B, andC) are grey shaded in Table 6.2.3. An overall latggreement rate
can be calculated using.

If there is general (category-specific) agreemestond agreement on chance at
least some disagreement cells are underrepresehiesl.can be seen in two-variable
effects that are smaller than 1 for disagreemeli$ ¢& to 3 in Table 6.2.3). The two-
variable effects show which cells are less fredyemtpected than based on the product of
their latent marginals:

A XB

axh_ =0, for xaz xb (6.2.19)
anxb

This index can be analogously defined for the aaieg ofY. If this index is smaller than
one and the same for all disagreement cells, ratistsiguish equally well between the
different categories of the latent constructs agré@ more often than predicted by chance.

However, this index can also show values largen thandicating that particular
category combinations are more often expected Hamsed on the latent marginals. This
indicates that the two raters confound these categolrhe ratings are biased with respect
to the other rating. Reconsider the example withgécurity oriented, gambling, and risk
seeking personality types. The two-variable effedicates to which ratio the*lrater
chooses the gambling personality type if therater chooses the risk-seeking personality
type. Note that this bias has to be the same ther etay round for interchangeable raters.
That is, the ratio of the combination gambling aisél-seeking personality type is the same
as risk-seeking and gambling personality type.

The association between two latent variables béhgngo the same rater but
different constructs [part (b) of Table 6.2.3] esponds to deterotrait-monomethod
association sensu Campbell and Fiske (1959):
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AYA B.YB

XAYA _ a.ya XB.YB _ b.yb
Txaya - .n.:(( YA! or Txb.yb - BT[YB . (6220)

a’"ya b "‘yb

In general, these effects should be rather weakdioate discriminant validity. That is, the
log-linear two-variable parameters should be climsé to indicate discriminant validity.
This effect may be due to several (interactingjuerfices: a theoretical overlap of the
categories (theoretically meaningful overrepredentaof the joint category; yet, the
constructs are not perfectly discriminant), and /neethod bias. Method bias is a rater
specific view of associations between categoridenging to two different constructs.
These associations must be identical across tfexelit raters.

The associations between variables belonging tterdiit constructs judged by
different raters [part (c) of Table 6.1.3] corresgoto heterotrait-heteromethod

associations sensu Campbell and Fiske (1959):

AYB B.YA

XAYB a yb XB.YA _ b.ya
Txayb - A YB' or Txb.ya - BT[YA' (6221)

a " yb b 'tya

These parameters mirror interactions between ttemtlacategories across raters. These
effects can be due to a theoretical overlap ofdtestructs but they cannot be due to
method bias. Therefore, method bias type Il canebgmated in the models for
interchangeable raters: the ratio of the assoadbetween traits belonging to one rater
(confounded with bias) and the mean associationthef corresponding bias free
associations indicates the rater specific bias (#ter's view that is, not shared across

raters):

.[XAYA T XAYA T XAYA T XB YB
Xa.ya Xa ya Xa ya Xa ya
MB2 v = R -y _rn 2 = MB2

= = = = =MB .
(XAYA AYBL XBYA  TXBYA L XAYE [ xAvE XB YA (XB.YB)
xa.ya - xa ya xa.ya xaya xa ya- xaya

(6.2.22)

This ratio of the joint classification across tsaltelonging to one rater (confounded with
bias) and the mean joint classification of the esponding bias free associations indicates

the rater specific bias (the rater's view thatmist shared across raters). This bias is the
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same for the two interchangeable raters. This taasalways be determined because the
heterotrait-heteromethod associations do not diffemterchangeable raters.

The interpretation of all parameters but the highesler parametersn their pure forms
as presented here can only be done if all high#rogffects are absent. However, dealing
with empirical data researchers are interestechénagreement rates of their raters. The
latent log-linear parameters of lower order effectsrespond to “average” effects.
Therefore, these effects should only be interpréasda directional effect not interpreting
the parameter value) if the higher order interaxgtido not change the direction of the main
(lower order) effect for different categories. Aunistic inspection of latent bivariate
subtables can be done to get some insight intoesgewt and discriminant validity sensu
Campbell and Fiske (1959). However, if higher oreliéects are present, the tables are not
collapsible. Therefore, I do not recommend inspectthe log-linear parameters of
bivariate subtables in cases where higher ordecesffare presenk , however may be

calculated to get an estimation of general agreeivetween raters.

6.3 Empirical Applications of the CT MTMR Model for Structurally
Different and Interchangeable Raters

In this section, the CT MTMR models for structuyatlifferent and for interchangeable
raters will be applied to the empirical data ddsexliin Section 4.1.3. First, the models for
structurally different raters analyzing the comhio of self-report and peer repditdata
will be reported and illustrated, then the modelifderchangeable raters analyzing the two
peer report® andB will be applied

The computationally very complex CT MTMR models gmeone to several
problems during the estimation process: sparse fatadblems leading to meaninglgss
values of they?-parameters, boundary solutions due to intrinsierapirical model non-
identification, and zero fitted marginals or cekduencies (which also lead to boundary
values and undefined log-linear parameters). Thezefresearchers should absolutely
check the results obtained from one program agaiftrent start-values and cross-
validate their results using different statistipatkages. However, to date, there is no other

program than LEM allowing (at least in parts) foese complex analyses. Therefore, all
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model parameters and interpretations of these dhonily be considered as illustrative.
The model results will be discussed with respecth&r expected proportions because

almost all log-linear parameters suffer from bougdelues.

6.3.1 Empirical Applications of the CT MTMR Model for Structurally Different

Raters

The CT MTMR model for structurally different ratessll be applied to the self-report and
peer reporA data measuring neuroticism and conscientiousiggsmost complex model
allowing for all two-, three-, and four-variablefafts will be presented first. In two steps
the four- and three-variable effects will be renthve

Table 6.3.1
Goodness-of-fit coefficients of the CT MTMR mofielstructurally different raters

:;?ehcetzt X p(x?) L2 pL? df AIC* BIC!

4 7912522454 .00 6418.701.00 43046544 -86086669 -265574001
3 69473766.35 .00 6425.231.00 43046560 -86086694 65574093
2 79696342.45 .00 6479.591.00 43046592 -86086704 -265574236

Note Highest Effects: 4, 3, and 2 indicate the fotinree-, and two-variable effects as
highest order effects in the modejg?: Pearsony?-value; L? likelihood-basedy?-value;

'AIC and BIC are based orf4values; the bootstrap is not available for theselels due
to memory size restrictions in the DOS routine BM.

Table 6.3.1 presents the goodness-of-fit critavratthe different models. However,
during the estimation process the following proldeotcurred: LEM is known to have
difficulties estimating the standard errors for ralsdwith more than 150 parametérs
Therefore, no information on boundary values candtermined for the model with four-

variable effects (176 parameters) and for the maouéh three-variable effects (160

19 http://spitswww.uvt.nl/web/fsw/mto/lem/lembugs.txt
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parameters) as highest-order effects. Moreovehdaéstrap routine in LEM did not work
for any model (for structurally different or intk@ngeable raters) due to memory
restrictions of the DOS routine.

The model with two-variable interactions as higkaster interactions consists of
128 parameters. For this model 7 parameters neabdhndaries of the parameter space
were found. Inspecting the outputs for the modeth higher-order interactions (four- and
three- variable interactions) reveals that all liogar parameters representing effects of
latent variables are extremely large or very clims®. However, the measurement models
can be soundly estimated and do not differ witlpees to the applications in Sections 4
and 5. Therefore, | will exemplify the impact o&thigher-order interactions relying on the

latent expected probabilities for these models.

6.3.1.1 Results of the CT MTMR model with four-variable interactions for

structurally different raters

Table 6.3.2 depicts the quadrivariate latent jdistribution of the cross classification of
the latent variable representing neuroticism anmscientiousness rated by a self-rater and

peer rateA. The model equation for the population is:

eabcd.ns. na cs ca= nTaT bT cT d
NEUS, NEUA. CONS CONA
><Tns STna At cs % ca
>(.[NEUS NEUAl. NEUS CON.lS NEUS COJEIA NEUAC(%NS NEUA C[IISIANS. CONA’ (631)

ns.na ns cs ns ca nacs na ca .Cs ca

NEUS NEUA CON% NEUS NEUA COlil,NEUS CONS CON% NEUA CONS CONA
ns.nacs ns na ca ns cs nacs ca

NEUS NEUA CONS CONA

ns.nacs ca

X1
XT

with ns and na representing the latent categories of the latemt #ariablesNEUS and
NEUA for self-rated §) and peer rated neuroticisamd cs andca representing the latent
categories of the latent trait variable®NSand CONAfor self-rated § and peer rated

(A) conscientiousness.
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Table 6.3.2
Cross-classification of the latent categories f@uroticism and conscientiousness in the
CT MTMR Model with four-variable effects for stuclly different raters

CONA
1 2 3

CONs1[ .01 (00) .01  (00) .01 (00

NEUA=1 CONS$2| .02 (00) .03 (00) .00  (.00)
CONS3| .00 (00) .01  (00) .02 (.00)

CONS1 .00 (00) .00 (00) .01  (.00)

NEUSs1 NEUA=2 CONS2 .00 (00) .00 (00) .01  (.00)
CONS3 .00 (00) .00 (.00) .04 (.00)

CONS1 .00 (00) .01 (00) .00  (.00)

NEUA=3 CONS2 .00 (.00) .01 (00) .01  (.00)
CONS3 .00 (00) .00 (.00) .03 (.00)

CONS1 .02 (00) .02 (00) .00  (.00)
NEUA=1 CONS2 .00 (.00) .00 (.00) .00  (.00)
CONS3 .00 (00) .00 (00) .01  (.00)

CONS1| .01 (00) .00 (00) .02  (.00)

NEUS=2 NEUA=2 CONS2| .01 (00) .03 (00) .03 (.01
CONS3| .00 (00) .02 (00) .07 (.01

CONS1 .01 (00) .00 (00) .00  (.00)

NEUA=3 CONS2 .01 (00) .02 (00) .05 (.01
CONS3 .00 (00) .02 (00) .05 (.01

CONS1 .01 (00) .01  (00) .00 (.00

NEUA=1 CONS2 .01 (00) .00 (00) .01  (.00)
CONS3 .00 (00) .01  (00) .01  (.00)

CONS1 .00 (00) .01  (00) .01  (.00)

NEUS3 NEUA=2 CONS2 .00 (.00) .02 (00) .01  (.00)
CONS3 .00 (00) .00 (.00) .04 (.00)

CONS1| .01 (00) .04 (00) .01 (01

NEUA=3 CONS2| .02 (00) .02 (00) .02  (.01)
CONS3| .00 (00) .01 (00) .06 (.01

Note Entries in bold type depict expected proportitimst deviate from the predictions
based on the marginals by more than one decimatieEBnn parentheses represent the
product of the latent marginals.

The log-linear parameters cannot be soundly estdnat LEM and thus these

parameters cannot be interpreted in terms of oweunderrepresentations for particular
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latent cells of the joint distribution. Calculatitige odds and odds ratios in order to inspect
if latent quadrivariate or trivariate cells are pver underrepresented does not solve the
problem because divisions by 0 occur (this is aess@ry consequence of boundary
solutions). However, the latent joint distributioan be heuristically examined revealing
expected proportions that are more frequently ewggethan given the product of their
latent marginals. Expected proportions that differan extent of 2% or more from the
product of their marginals (depicted in parenthpsa® printed in bold type. This
inspection of the expected cell proportions cary @l heuristic compared to an inspection
of (not available) properly estimated log-lineargmaeters and their standard errors. The
log-linear parameters could be used to identifeaf and their impact on the latent joint
distribution and to test them statistically.

In total 22 bold typed entries can be found in €abl3.2. That is, in 22 out of 81
cells comparably high expected proportions candomd. In a first step, cells indicating

~NEUS NEUA CONS CONA
s.nacs ca '

overall agreemen( withns= naand cs= Cal will be considered. These

9 cells are principally expected more often thanld¢de predicted by the product of their
latent marginals. About 26% of the latent ratings @e found on the overall agreement
diagonal. 6 out of the 9 cells are printed in bbojgde. That is, there is considerable

agreement on both constructs at the same time.agneement more often occurs for cell

combinations with high conscientiOL(ss: ca= 3) individuals being either sensitive but

stable (ns= na=2)or highly neurotic(ns= na=3). 18% out of the 26% of agreement

can be found in these cells (that is, 69% of theral agreement cells fall into these
combinations).

Raters may also agree with respect to one condiuidisagree with respect to the
other one (partial agreement). Raters agree 27%heftime on their ratings for
conscientiousness when they disagree with respasturoticism. This leads to an overall
agreement on conscientiousness of 53% (for the lmaenfable). 7 cells indicating partial
agreement on conscientiousness differ to an erfe2fito or more from the product of their
latent marginals. The main proportion of the agresi:m on conscientiousness can be
found for moderately or highly conscientious indivals. Peers seem to have difficulties
judging a not conscientious individual congruentligh the self-rater on this trait. With
respect to the self-raters as reference raterpdaberating is biased for not conscientious

individuals.
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For the latent construct of neuroticism raters ad@% of the time in total. About
half of the time, they agree with respect to naaisin they also agree with respect to
conscientiousness (26%, see above). Agreement unotiegsm is higher for individuals
being sensitive but stable or highly neurotic. 78%% of 24%) of the partial agreement
fall into these cells. 6 cells indicating partigih@ement on neuroticism differ to an extent
of 2% or more from the product of their latent maads. Agreement on neuroticism can
be found to a greater extent for higher scoreshavariable (being neurotic or sensitive
but stable). This finding is in line with other diimgs that traited individuals can be more
congruently rated (see Baumeister & Tice, 1988,deun1995 for an overview).

Disagreement cells do not differ to a large extieotn what is predicted by the

product of their latent marginals. The only comhimas that are more frequently expected

are cells for the combinations of being sensitiué diable in the self-repo(ins: 2) and
highly neurotic in the peer repo(ha=3) with being moderately conscientious rated by
the self- or peer rate@cs:BD ca= 3) and / or moderately conscientious by the self- or
peer ratef(cs=20 ca=2).

Peer raters who agree with the targets that trgetsrare highly neurotic do not
agree with them if targets indicate not to be c@mmmous but judge them to be moderately
conscientious. The same is true for agreement omg sensitive but stable. In this case,

self-ratings indicating not to be conscientious @associated to a high peer-perceived level

of conscientiousne§@§f§ NEUA CONS CONA—'.OZ). Conscientiousness and neuroticism seem

to be related for moderate or high scores on n@isot at least in the peer view.

It is important to note, that these analyses amethout by inspecting the table of
expected frequencies consisting of 81 cells. Mugtheb information could be gained by an
inspection of log-linear parameters which identife underlying effects of the different
expected proportions. The high overall agreemeet imaplies that there is an association
between agreement on one construct and agreemeheasther construct, but without a
statistical test it remains unclear if the corresping overrepresentation is due to a four-
variable effect, emerges from lower order effectsgven is a random association. The
same is true for the associations concerning teagdeement cells. A comparison of the
quadrivariate latent joint distribution to the oimeplied by the model with " order
interactions as interactions of highest order nfau(istically) give more insight into the

question if 3 order interaction are present.
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6.3.1.2 Results of the CT MTMR model with three-variable interactions as highest

order interactions for structurally different raters

Table 6.3.3 depicts the quadrivariate latent jdistribution of the latent trait variables for
neuroticism and conscientiousness rated by a atf-rand peer rateh. The model
equation for the population is:

eabcd.na\.nb cacb = r] TaT bT cT d
NEUS. NEUA. CONS CONA
>(.[ns S[ na At cs % ca

NEUS NEUA. NEUS CO NEUS CONA NEUACQNS NEUA CPSIANS. CONA’
ns.na A[ ns cs N.F ns ca JEI nacs qN na ca .Csca

NEUS NEUA CON% NEUS NEUA COIiINEUS CONS CON% NEUA CONS CONA
ns.nacs ns na ca ns s nacs ca

(6.3.2)
XT

XT

with ns and na representing the latent categories of the latemt #ariablesNEUS and
NEUA for self-rated (S) and peer rated neuroticiand cs andca representing the latent
categories of the latent trait variablé®NSand CONAfor self-rated § and peer rated
(A) conscientiousness. Expected proportions thaerdifi an extent of 2% or more from
the product of their marginals (depicted in pares#s) are printed in bold type.

In total 20 bold typed entries can be found in €bI3.3. That is, in 20 out of 81

cells comparably high expected proportions candamd. The 9 cells indicating overall

2~ NEUS NEUA CONS CONA
S.na cs ca 1

agreement( with ns= naand cs= Cal are principally expected more

often than could be predicted by the product oirtlaent marginals. About 28% of the
latent ratings can be found on the overall agreérdeagonal. 6 out of the 9 cells are
printed in bold type. That is, there is considezadgdreement on both constructs at the same

time. This agreement more often occurs for cell lo@ions with high conscientious
(cs= ca=3) individuals being either sensitive but stalpfes= na=2)or highly neurotic
(ns= na=3). 25% out of the 28% of agreement can be founthése cells (that is, 89%

of the overall agreement cells fall into these corations).
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Table 6.3.3

Cross-classification of the latent categories feuroticism and conscientiousness in the
CT MTMR Model with three-variable effects as higlwder interactions for structurally
different raters

CONA
1 2 3

CONS1 [ .01  (00) .02 (.00) .00 (.00)

NEUA=1 CONS2 | .03  (00) .03  (.00) .00 (.00)

CONS3 | .00 (00) .01 (.00) 02 (.00
CONS1I .00 (00) .00 (.00) 01 (.00)

NEUSs1 NEUA=2 CONS2 .00 (.00) .00  (.00) .01 (.00)
CON$3 .00  (.00) .00 (.00) 04  (.00)

CONS1 .00 (00) .01 (.00) .00 (.00)

NEUA=3 CONS2 .00 (00) .01  (.00) .01 (.00)

CONS3 .00  (.00) .00 (.00) 03 (.00

CONS1 .02 (00) .02 (.00) .00 (.00)
NEUA=1 CONS2 .00 (00) .00  (.00) .00 (.00)

CON$3 .00  (.00) .00 (.00) 01  (.00)

CONS1 | 01  (00) .00 (.00) .02 (.00)

NEUS=2 NEUA=2 CONS2 | .01  (00) .04 (.00 .02 (.01)
CONS3 | .01  (00) .02 (.00) 07 (01

CONS1 .01  (00) .00 (.00) .00 (.01)

NEUA=3 CONS2 .01  (00) .01  (.00) .05 (.01)

CONS3 .00 (.00) .01 (.00) 05 (.01

CONS1 .01  (00) .02 (.00) .00 (.00)
NEUA=1 CONS2 .01  (00) .00  (.00) .01 (.00)

CONS3 .01  (00) .01 (.00) 01  (.00)

CONS1 .00 (00) .00 (.00) 01 (.00)

NEUS=3 NEUA=2 CONS2 .00  (.00) .02  (.00) .01 (.00)
CONS3 .00 (.00) .00 (.00) 04 (.00)

CONS1 | 01 (00) .04 (.01) 01 (.01)

NEUA=3 CONS2 | .02  (00) .03 (.01 .02 (.01)

CONS3 | .00 (00) .01 (.01) 06 (01

Note Entries in bold type depict expected proportitimst deviate from the predictions
based on the marginals by more than one decimatieEBnn parentheses represent the
product of the latent marginals.
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Raters may also agree with respect to one condiuiaisagree with respect to the
other one (partial agreement). Raters agree 26%heftime on their ratings for
conscientiousness when they disagree with respasturoticism. This leads to an overall
agreement on conscientiousness of 54% (for the lmaenfable). 6 cells indicating partial
agreement on conscientiousness differ to an erfe2fito or more from the product of their
latent marginals. The main proportion of agreenmentonscientiousness can be found for
moderately or highly conscientious individuals. Begeem to have difficulties judging a
not conscientious individual congruently with tiedfgater on this trait. With respect to the
self-raters as reference raters the peer ratib@ged for not conscientious individuals.

For the latent construct of neuroticism raters ad2% of the time in total. About
half of the time, they agree with respect to naaimn they also agree with respect to
conscientiousness (28% see above). Agreement amtiegem is higher for individuals
being sensitive but stable or highly neurotic. 78%% of 24%) of the partial agreement
fall into these cells. 5 cells indicating partigih@ement on neuroticism differ to an extent
of 2% or more from the product of their latent maads.

Disagreement cells do not differ to a large extemin what is predicted by the
product of their latent marginals. The only combima that is more frequently expected
are cells for the combinations of being not congoieis in the self-reporicé = 1) and
moderately conscientious in peer reparfca = 2) for targets that have been judged not
neurotic byA for all statuses of self-reported neuroticism. iddally, there principally is
agreement between self- and peer raters concelmwngonscientiousness. Therefore, one
may conclude that peers deviate from the self-tepgoscore on conscientiousness for low
self-rated conscientious individuals if peers pee¢he target person as not neurotic.

Peer raters who agree with the targets that trgetsrare highly neurotic do not

agree with them if targets indicate not to be cammus but judge them to be moderately

conscientious(ﬁgf_‘f2 NEUA CONS CONé.O4). The same is true for agreement on being sensitive
but stable, in this case, self-ratings indicatimg to be conscientious are associated to a

high peer perceived level of conscientiousnes fQEjZNEUACONSCONé.OZ).

Conscientiousness and neuroticism seem to be defatemoderate or high scores on
neuroticism at least in the peer view.

It is important to emphasize that these interpi@tathave been carried out relying
on expected proportions and not on the comparisbnlog-linear effects with
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corresponding standard errors. Therefore, all pmétations can only be considered

illustrative.

6.3.1.3 Results of the CT MTMR model with two-variable effects as highest order
interactions for structurally different raters

Table 6.3.4 depicts the quadrivariate latent jdiistribution of the cross classification of
the latent variables representing neuroticism amgcientiousness rated by a self-rater and
peer rateA. The model equation for the population is:

€ =NnT,T,T.T,

‘abcd.na.nb.cacb ™
NEU NEUA. CON CONA
XTpe e T T : (6.3.3)

NEUS NEUA. NEUS CO NEUS CONA NEUACQNS NEUA CFNANS. CONA
ns.na A[ ns cs N.F ns ca JEI nacs qN na ca .Csca

X1
with ns and na representing the latent categories of the latemt W#ariablesNEUS and
NEUA for self-rated § and peer ratedAj neuroticismand cs and ca representing the
latent categories of the latent trait variab@NSand CONAfor self-rated § and peer
rated @A) conscientiousness.

In contrast to the two previously described models,log-linear parameters of the
model with only two-variable interactions can b&rpreted. However, in order to make
the interpretation of the model comparable to theeio models (and to the model for
interchangeable raters, see below) the expecteubpions are presented, the log-linear
parameters are presented in Appendix E. The im&pon of these parameters
corresponds to the conclusion drawn from the exgkegroportions (and is, therefore,
redundant). Since the boundary values afflicting tbg-linear parameters cannot be
considered a priori model parameters zhalues provided by LEM cannot be interpreted
(see Galindo-Garre & Vermunt, 2004, 2005, 2006).
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Table 6.3.4

Cross-classification of the latent categories feuroticism and conscientiousness in the
CT MTMR Model with two-variable effects as highaster interactions for structurally
different raters

CONA
1 2 3

CONS1 [ .02  (00) .02 (00) .00 (.00)

NEUA=1 CONS2 | .01  (00) .02  (.00) .01 (.00)

CONS3 | .00 (00) .01 (00) .02  (.00)

CONS1 .00 (00) .01 (.00) 01 (.00)

NEUSs1 NEUA=2 CONS2 .00  (.00) .01  (.00) .02 (.00)
CONS3 .00 (.00) .00 (00) .04  (.00)

CONS1 .00 (00) .00 (.00) .00 (.00)

NEUA=3 CONS2 .00 (00) .01  (.00) .01 (.00)

CONS3 .00  (.00) .00 (00) .01  (.00)

CONS1 .01  (00) .01 (.00) .00 (.00)

NEUA=1 CONS2 .01  (00) .01  (.00) .00 (.00)

CONS3 .00 (00) .01 (00) .01  (.00)

CONS1 | .01 (00) .01 (.00) 01 (.00)

NEUS=2 NEUA=2 CONS2 | .01  (.00) .02  (.00) .04 (.01)
CONS3 | .00 (00) .01 (00) .09 (.01

CONS1 .01  (00) .01 (.00) 01 (.00)

NEUA=3 CONS2 .01  (00) .02  (.00) .02 (.00)

CONS3 .00  (.00) 01 (00) .05 (.01

CONS1 .01  (00) .02 (.00) .00 (.00)

NEUA=1 CONS2 .01  (00) .01  (.00) .00 (.00)

CONS3 .00  (.00) 01 (00) .01  (.00)

CONS1 .00 (00) .01 (.00) 01 (.00)

NEUS3 NEUA=2 CONS2 .00 (.00) .01  (.00) .02 (.00)

CONS3 .00  (.00) .01 (00) .04  (.00)
CONS1| .01  (00) .02 (.00) 01 (.00)
NEUA=3 CONS2 | .01  (00) .03  (.00) .02 (.00)
CONS3 | .00 (00) .01 (00) .05  (.00)

Note Entries in bold type depict expected proportitimst deviate from the predictions
based on the marginals by more than one decimatieEBnn parentheses represent the
product of the latent marginals.
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Table 6.3.4 depicts the expected proportions of dhedrivariate latent joint
distribution. As before, expected cell proportiahat differ for at least 2% from the
product of the latent marginals are depicted irdkigpe. In total the entries of 19 cells are
bold typed. 7 out of these 19 represent overaleament. 8 cells represent partial
agreement and 4 represent total disagreement. dchection in the number of expected
proportions that deviate from the product of threarginals can be explained by the more
restrictive form of this model. The interplay betmethe latent variables is much more
restricted than in the models presented before.

Overall agreement cells comprise about 27% of #mpde, the highest entries can
be found for the agreement combinations of higllgscientious with either sensitive but
stable or neurotic personality types (14% of atfies fall into these two joint categories).
The agreement rates are principally higher forviadials who are at least moderately
conscientious and at least sensitive but stable.

Partial agreement for conscientiousness (26%) castlynbe found for highly
conscientious individuals (16% of the joint judgrt®nFor neuroticism a similar pattern
can be found 15% out of the 20% of the partial @grent can be found for sensitive but
stable or neurotic individuals. Overall, the heticisanalyses inspecting the expected
proportions do not differ between the three mo@elth different levels of interactions).

A more thorough insight into the interplay of tloeif latent variables can be gained
inspecting the bivariate latent distributions. rsaturated hierarchical models, the joint
distributions of the variables corresponding to kinghest order interactions are exactly
reproduced.

Table 6.3.5 presents the latent rater agreementsuael for neuroticism. In order
to compare the two model implied latent marginatributions with each other, the

method bias type | can be determined:

.25
MBl(nFl.n;l) = _5 =1.00
MBLye s =1.03 . (6.3.4)
MBJ‘(nFS.na:S) = 098

This index shows that the two raters vyield ratinggh almost perfectly the same
prevalence rates. This is a prerequisite for higjie@ement (see Zwick, 1988).
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Table 6.3.5
Cross-classification of expected proportions fa thtent variables representing
neuroticism

NEUA
1 2 3
ns=1 .12 (.06) .09 (.10) .04 (.09) 25
ns= 2 .06 (.11) 22 (.17) 14 (.14) 42
ns= 3 .07 (.08) 10 (.14) 16 (11) 33
25 41 34

Note Values in parentheses represent the producedatbnt marginals.

Inspecting the cells on the main diagonal showssidemnable agreement. The
category-specific agreement rates are in the rah@e27 to 1.92 (see Table 6.3.6) with the
highest value for the latent cell combination of heing neurotic. This finding could not
be expected with respect to the quadrivariate tatestribution. However, due to the very
small expected proportions in this cell, even smbBolute agreement rates will produce
large effects. These effects are comparable tartbeotrait-heteromethod effects sensu

Campbell and Fiske (1959 =.24 indicates a relatively low agreement between the

raters.
Table 6.3.6
Distinguishability index and category-specific agmeent rates for neuroticism
NEUA
1 2 3
ns=1 1.92 0.88 0.47
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The inspection of the disagreement cells besidesrtain diagonal also shows an
interesting pattern. Table 6.3.5 depicts their elgxk proportions and the expected values
given the latent marginals. All but one cell [2 stjow lower expected proportions than
would be expected based on the latent marginals. distinguishability indices in Table

6.3.6 reflect this finding in a standardized way:

Y

Dis :i for x# y. (5.1.3, repeated)
t(X-y)

T,

It can be seen that the cell combinations [2 1][An8] are only about half as often

expected as predicted by the marginals. Self-raied neurotic individuals are rarely

judged to be neurotic by the peer raté?rist(l_g) =O.47). In the same vain, sensitive but

stable self-rated individuals are less often rared neuroti(fDist(z_]):OB?). Peers

obviously perceive if individuals are sensitivelisated). They also do not overestimate

the self-rated neuroticism score producing no ateration for the combination of

sensitive but stable for the self-report and nearfuir the peer repor( Dist,, 5 :O.99),

however, peers also do not distinguish between ethestegories. All other

distinguishability indices show that self- and peaters show lower disagreement, yet,
they do not differ vastly from the product of thatent marginals (absolutely and
relatively). Self-raters and peers discriminatelyavell between the different categories of

neuroticism.
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Table 6.3.7
Cross-classification of expected proportions fore titatent variables representing
conscientiousness

CONA
1 2 3
cs=1 .08 (.04) .10 (.07) .06 (.12) 24
cs= 2 .07 (.06) 14 (.11) 15 (.18) 35
cs= 3 .02 (.07) .07 (.13) 32 (.21) 41
17 31 52

Note Values in parentheses represent the producedatbnt marginals.

Table 6.3.7 depicts the latent bivariate distribmitiof the latent variables

representing conscientiousness. Calculating thaodebias type | coefficient:

MBl(cs=l.ca=1) = 141
MBL ey cazy = 1.13, (6.3.5)
MBl(cs=3.ca=3) = 079

reveals that self- and peer raters deviate coreddllein their latent marginals. Peers rate
the targets in more than half of the times as Kigloinscientious (1.27 times more often
than the self-raters). Self-raters choose the laaézgories more often. This finding may
be due to the fact that the targets are almosusix@ly students. In order to successfully
complete one’s studies a specific level of condmesness is required, peers may attribute
the fact that targets complete their work as sttelemtheir personality whereas the self-
raters may compare themselves to others and dpemoeive themselves as conscientious.
Moreover, they know about their own possible diffies in completing the work (e.g.,
procrastination) and therefore rate themselves lammeconscientiousness. In terms of the
rater accuracy model (Funder, 1995), one might lcolec that better (more diverse)
information is needed for the peer raters to aehtegher agreement rates.
The entries on the main diagonal also show agreemkthe two raters with

respect to conscientiousness (high convergentitsglidihe category-specific agreement
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rates (depicted on the main diagonal of Table p.iBdcate that the overrepresentation is
in the range of 1.25 to 2.03. Again the overrepregen for the lowest category is
highest.x =.28 indicates relatively low overall agreement.

Disagreement is higher for the cell combinationgnafderately conscientious and
not conscientious in both ways. That is, self- pedr raters confound these categories to
some extent. However, for the disagreement cells mghly conscientious ratings there is
no confusion at all. Being highly conscientious either rating prevents from being
classified as moderately or not conscientious.t&daindividuals (in the sense of having a
high score on a trait) can thus be rated withoutfiesion (Baumeister & Tice, 1988). For
conscientiousness, self- and peer raters discrimivall for traited individuals and poorly
for moderately and low traited individuals.

The pattern of disagreement differs from what hesnbfound for neuroticism. If
targets are not traited this leads to some confiugioconscientiousness, if they are traited
this leads to less confusion and higher agreemantdnscientiousness. Agreement is
principally higher for neuroticism but there is wonfusion for individuals being not
neurotic. This illustrates that moderators of agreet (Funder, 1995) may have

differential impacts with respect to the trait undensideration.

Table 6.3.8
Distinguishability index and category-specific agmeent rates for conscientiousness
CONA
1 2 3
cs=1 2.03 1.37 0.44
cs= 2 1.12 1.25 0.81

cs=3 0.30 0.56 1.49
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Table 6.3.9
Cross-classification of expected proportions fa thtent variables originating in the self-
report

CONS
1 2 3
ns=1 .08 (.07) .09 (.09) .09 (.11) 26
ns= 2 .08 (.11) .16 (.15) 18 (.17) 42
ns= 3 .10 (.08) 10 (.12) 13 (.14) 33
25 35 41

Note Values in parentheses represent the producedatbnt marginals.

Table 6.3.9 depicts the latent joint classificatafrthe trait variables originating in
the self-report. Obviously, there is little deviatifrom the expected proportions and the
product of the latent marginals. This indicated tha self-raters distinguish well between
the two latent traits. For self-raters, these draite not associated (see also Section 4.1.4).
This indicates almost perfect discriminant validignsu Campbell and Fiske (1959).

Table 6.3.10
Cross-classification of expected proportions fa thtent variables originating in the peer
report

CONA
1 2 3
na=1 .08 (.04) .10 (.08) .07 (.13) 25
na=2 .03 (.07) .10 (.13) 28 (.21) 41
na= 3 .05 (.06) 12 (.11) .18 (.18) 34
17 31 52

Note Values in parentheses represent the producedatbnt marginals.
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Table 6.3.10 presents the cross-classificatiomefiatent trait variables originating
in the peer report. Peers perceive the two cortstagrelated rating other individuals. To
their mind the combination of not being neurotid drnighly conscientious appears less
often than predicted based on the marginals. Ra#iier tend to choose thé& gategories
on both variables. Additionally, they perceive sews but stable individuals as highly
conscientious and less frequently as not consoigmtior moderately conscientious.
Therefore, one may conclude that there is a lac#fisdriminant validity with respect to
these two traits for peer ratings. However, thik lanly concerns particular categories and
does not generalize across all possible constaistbecause the other combinations do
not deviate to a great extent from the productefrtmarginals. It would be interesting to
examine if this peer-specific view is linked to aive theory on which categories can be
related or if this is due to a misinterpretationdetection of behavioral cues leading peers
to show associated ratings of neuroticism and dgenBousness. These are question
related to the rater accuracy model (Funder, 1995).

Table 6.3.11
Cross-classification of expected proportions foammicism originating in the self-report
and conscientiousness originating in the peer réepor

CONA
1 2 3
ns=1 .05 (.04) .07 (.08) 12 (.13) 25
ns= 2 .07 (.07) 12 (.13) 24 (.21) 42
ns= 3 .05 (.06) 12 (.11) 16 (.17) 33
17 31 52

Note Values in parentheses represent the producedatbnt marginals.

Table 6.3.11 depicts the latent cross-classificatd the self-rated neuroticism-
scores and the peer rated conscientiousness-sétia® is virtually no deviation from the
product of the latent marginals. Self- and pedngatof the different traits are completely

distinct from each other. This indicates high deanant validity across raters. If one
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considers the self-rating as a better approximadibthe truth peers do not erroneously

interpret neurotic behaviors as conscientious.

Table 6.3.12
Cross-classification of expected proportions foamicism originating in the peer and
conscientiousness originating in the self-report

CONS
1 2 3
na=1 .09 (.06) .09 (.09) .07 (.10) 25
na= 2 .08 (.10) 14 (.14) 20 (.17) 41
na=3 .07 (.09) 13 (.12) 19 (.14) 34
24 35 41

Note Values in parentheses represent the producedatbnt marginals.

Table 6.3.12 presents the latent cross-classificadf the peer rated neuroticism-
scores and the self-rated conscientiousness-scbnestwo latent trait variableNEUA
andCONS are associated to a stronger degree than theopsdy presented trait variables.
If self-raters perceive themselves as highly carg@us peers do no longer tend to judge
them not neurotic but choose the middle and highgmay of neuroticism. That is, high
conscientiousness is slightly confounded with ngcisim in the peer view if one considers

the self-rater as better raters than the peers.

Table 6.3.13
Method bias type Il for the self-report
CONS
1 2 3
ns=1 — 1.07 —
ns=3 1.62 0.84 0.75

Note — indicates tha¥1B2 is meaningless in this cell.
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Considering that no rater is outstanding with resge the other rater allows
determining the method bias type Il as in Defimt&1.2:

ﬁ.NEUS CONS
VB2 - | (6.3.6)
ns.cs \/ﬁ.NEUS CON% NEUA CONS

ns.ca na cs

Tables 6.3.13 and 6.3.14 present the method biasltyparameters. Empty cells indicate
indices that are meaningless since the monometbsatcetion is in the range of the two
heteromethod associations. The method bias type Bdually good raters is presented in
order to have the more general presentation. Ifratex is considered to be a better rater
than the other one the method bias type Il coeificof Definition 6.1.3 can be calculated.
Table 6.3.13 reveals that self-raters tend to rhénselves as highly neurotic but not
conscientious, sensitive but stable (middle catggbut not conscientious, and sensitive
but stable and moderately conscientious more dftan on average.

The self-raters conceive themselves less frequesihighly neurotic combined
with highly conscientious or moderately consciamsichan predicted by the average
ratings. The same is true for sensitive but staidéviduals who perceive themselves not
as often as highly conscientious as predicted bydimt ratings.

Table 6.3.14
Method bias type Il for the peer report
CONA
1 2 3
na=1 - 1.26 0.70
na=2 0.48 0.75 1.29

Note — indicates tha¥1B2 is meaningless in this cell.

A completely different picture is given by Table 8.8 for the bias of peer ratings.
The combinations of not neurotic and not conscieistias well as highly neurotic and
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highly conscientious are not biased with respecth® joint ratings. A positive bias
(overrepresentation) can be found for the comlonatiof not neurotic and moderately
conscientious and sensitive but stable (middlegoatg and highly neurotic. All other cells
are less frequently expected than predicted bydiné ratings. Peers do not associate low
conscientiousness to the latent statuses beingigerisut stable or neurotic as expected by
the average association. The same is true for dh#ination of not neurotic and highly
conscientious.

Self-raters and peers thus differ with respect he tells that are over- or
underrepresented in the cross-classification oir tla@ent variables. Peers perceive the
targets principally as more conscientious (see atethias type 1) than do self-raters.
Additionally, they show larger expected frequendmstwo particular cell-combinations
of the latent traits. That is, sensitive but stabtBviduals (middle category) are rated more
often as highly conscientious compared to the rsgiftgs and not neurotic individuals are
rated more often as moderately conscientious. Tbasdinations are not overrepresented
in the self-report. Therefore, these coefficiergiect a view that is specific to the peer
raters. In the same vain, the peers show undesepi@ions of the cells for not
conscientious ratings and sensitive but stable dlaidategory) and neurotic individuals.
Again, this underrepresentation is specific to viewv of peers because self-raters show
overrepresented ratings for these categories. Woedters also differ with respect of their
views concerning the association of targets beionglerately conscientious and sensitive
but stable. While self-raters choose this categmmybination more often than could be
expected relying on the bias-free associationsM@et raters) peers tend to underestimate

this association.

6.3.1.4 Summary of the findings for the CT MTMR models for structurally different

raters

The applications of the CT MTMR model showed (apeeted) that the estimation of
complex models with several latent variables i®didus task and computational very
demanding. The models with higher-order interagtigield many boundary values and
aberrant parameter estimates. A possible remedyhisr problem could emerge from
newly developed estimation algorithms shortly mamed in Section 4.1.2. However, to
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date these procedures cannot be used in conjunegtibrthe complex models | developed
for structurally different raters. Therefore, theodels with four- and three-variable
interactions as highest order effects can onlyikgcally be analyzed.

Yet, the model with two-variable interactions aghast order effects yields
(relatively) sound parameter estimates which allimv analyzing the latent bivariate
relationships. An inspection of the log-linear paeters is redundant (see Appendix E)
concerning the associations of the variables aret dhmt provide information about the
significance of model parameters because boundduyiens were encountered preventing
from inspecting the significance of the effects l{G#-Garre & Vermunt, 2004, 2005,
2006).

The analysis of the model with two-variable inteéi@ts as highest order effects
showed some interesting results with respect tactmeergent and discriminant validity,
method bias, and accuracy of the different rafEnsre is a considerable overall agreement
rate showing that in about 1 out of 4 cases self- @eer raters agree with respect to both
constructs. Inspecting the expected proportions @&y to the conclusion that agreement
is highest for cell combinations of highly constiens and sensitive but stable and
neurotic individuals. The partial agreement rates ahow that self- and peer raters agree
more often for individuals classified in one of tabove mentioned categories. These
findings are in line with the findings for the CTTWIR models with four- and three-
variable interactions.

Since the CT MTMR model with two-variable interacts is a hierarchical model
it “reproduces” the latent bivariate joint distrtmns allowing for a direct interpretation of
the expected bivariate proportions and the lateet\ariable marginals. The method bias
type | reveals if the latent marginal distributiatifer from each other. This is not the case
for neuroticism but for conscientiousness. Peeeyastimate the conscientiousness with
respect to the self-ratings.

The category-specific agreement rates can be eadboll to identify the
overrepresentation in the cells on the (agreenmeath diagonals. There is agreement for
all cells on the two bivariate main diagonals (f@uroticism and conscientiousness). In
the model with two-variable interactions as highasler interactions, these effects are the
same in all subtables given the categories of tikerovariables (no four- and three-
variable interactions). The category-specific agreet rates show that there is a much
higher agreement for the combinations of the loveaségories for both traits. However,

this does not imply that these rates are absolwly high but high with respect to what
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can be expected knowing the marginals. If thereevagpossibility to estimate the saturated
model with correct standard errors one might insgiee corresponding log-linear effects
to judge the ratio of agreement more exactly (rtbeg these effects will differ from
subtable to subtable if the higher order effectspmesent).

The distinguishability index reveals in a similaammer as the category-specific
agreement rates if disagreement cells are overnderrepresented. This index can be used
to detect sources of disagreement. For consciesntass this index revealed, for example,
that self- and peer raters confound the first tategories (lack of distinguishability). All
other categories can be relatively well distingagsirom each other for the two traits
(except for the combination of sensitive but stahlehe self-report and neurotic in the
peer report, which has an expected proportion adigted by chance). This finding (if
replicated and soundly estimated) might serve staréing point to investigate the decision
making process concerning these categories in depth.

The cross-classification of trait-variables belogi to the same method
(heterotrait-monomethod associations) showed thexetare virtually no associations for
the self-report. However, the peer ratings wer@@ated to some degree revealing that
their view about personality types (combinationsatént categories) differs from the self-
raters' view. Comparing these associations (foh loaters) to the average association of
the across raters (heterotrait-heteromethod) aasmeiyields the method bias type II. This
index shows that self- and peer raters differ wétspect to the categories of the two traits
they choose. If the self-rating is considered toabbetter approximation of the “true-
scores” on the two trait variables a comparisothefpeer reported classifications to the
self-rated classification could be used as methasl type Il index.

The two tables representing the heterotrait-hetetbod associations (Table 6.3.11
and 6.3.12) indicate the rater bias free assoadstibetween the two traits. These
associations are rather weak indicating high disic@nt validity. The only cell
combination that is constantly slightly overreprésd is the combination of sensitive but
stable (middle category) and highly neurotic.

In sum, | conclude that the CT MTMR model could used to detect category-
specific sources of convergence, category-speleifik of discriminant validity as well as
distinguishability, allows for a comparison of withraters associations across traits to
estimate the rater-specific biases, and (theotbfjd@ examine if higher agreement rates
are due to two-, three-, and / or four-variableeeff§, that is, if there are moderators of

agreement (convergent validity). These pieces foirination go far beyond the pieces of
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information researchers can retrieve of the mopedsented in Section 2 and of the latent
rater agreement models. However, since there isonod estimation procedure yet, the

interpretation of all model parameters must renhauristic.

6.3.2 Applications of the CT MTMR Models for Interchangeable Raters

The applications of the CT MTMR models for intercgaable raters suffer from some
specific problems in the estimation algorithm immpénted in LEM. LEM is known to bug
for large models with more than 150 parameters ndometimes produce incorrect
results when equality restrictions are implemeritethe model definitioff. These two
points account for the saturated models with faaniable interactions as highest order
effects. Dropping the four-variable interaction slo®t remedy the problem although in
this case the number of parameters is reduced l&to 130. Neither the log-linear
parameters nor the expected cell proportions cbelestimated according to the model
definition. This makes clear that new estimatiorthods and more advanced programs are

needed to soundly estimate the models.

6.3.2.1 Results of the CT MTMR model with two-variable effects as highest order

effects for interchangeable raters

The goodness-of-fit indices for the model with twariable interactions as highest order

interactions show divergent results for the differg®-values. The Pearsopy?®-value
indicates bad fit to the dal(ax2:133083603.94df = 4304664~ } the likelihood-
ratio based  y?-value indicates perfect fit to the data
(L1°=133083603.94df = 4304664@= 1). Unfortunately, the bootstrap DOS-routine

does not work due to memory restrictions. The AlGhd aBIC indices

(AIC:—8608664OBIC=— 26557433( may serve for model comparison but are

meaningless in themselves to assess the goodnéiss-Ofe 78 log-linear parameters

20 http://spitswww.uvt.nl/web/fsw/mto/lem/lembugs. txt
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suffer from 12 boundary solutions. Moreover, thedelcestimation did not work relying
on the effect coding scheme but had to be carngdising dummy coding (see Appendix
E). Therefore, the log-linear parameters cannointexpreted as in the model definition.
Among others Hagenaars (1990) explains how to pré¢rdummy-coded log-linear
parameters. However, the expected proportions eantérpreted as before.

Tables 6.3.15 and 6.3.16 depict the conditionalparse probabilities for
neuroticism and conscientiousness implied by theMIIMR model with two-variable
effects as highest order interactions for intercgfeatle raters. The model equation for the
population is:
€phednanncach= N Tal bl cl g

><.[rl:laEUA.l. rl]\leUBl. ((:ZaON% ééONB
wTNEUA NEUBy NEUACONA NEUACONB NEUB CONA NEUB CQMEDNA CONB

na.nb naca na cb nb ca nb cb cach ' (637)

NEUA NEUB CON% NEUA NEUB CONlBNEUA CONA CONE[. NEUB CONA CONB
na.nh ca na nb cb na ceb nh ca cb

NEUA NEUB CONA CONB
na.nh ca cbh

XT

XT

with na andnb representing the different categories of the latiit variablesNEUA and
NEUB (neuroticism rated by peek or peerB) as well asca and cb representing the
different categories of the latent trait variabl@SNAandCONB (conscientiousness rated

by peerA or peerB). T,,T,,T., andT, represent the measurement models of the four

different TMUSs.
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Table 6.3.15
Conditional response probabilities for neuroticigm the CT MTMR model with two-
variable effects as highest order interactionsifderchangeable raters

latent variable

Variable manife.st na=nb=1 na=nb=2 na=nb=3
categories
1 51 .01 .03
I/ Q (vulnerable) 2 42 45 .03
3 .07 54 .94
1 .63 .09 .04
J / R (sensitive) 2 .33 57 .06
3 .04 34 .90
1 71 .68 .33
K /S (moody) 2 .20 24 .29
3 .09 .08 .38
1 72 48 22
L /T (doubtful) 2 19 .33 27
3 .10 .19 51

The conditional response probabilities are restddio be identical across raters
within traits according to the implications for énthangeable raters. Empirically, they do
not deviate from the conditional response probisdlifound for the previously presented
models with interchangeable peer raters (see Se6tk) and for the conditional response
probabilities found for peer ratingsd)( in models with structurally different raters.
Therefore, | do not repeat the detailed analyses. lehe same implications hold with
respect to the latent variables. That is, the tleetegories of neuroticism are not neurotic
targets, sensitive but stable targets (middle cai@g and neurotic targets. The three

categories for conscientiousness range from lomdderately and highly conscientious.
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Table 6.3.16
Conditional response probabilities for consciensoass in the CT MTMR model with two-
variable effects as highest order interactionsifderchangeable raters

latent variable

manifest
Variable . ca=cb=1 ca=cb=2 ca=cb=3
categories
1 .84 .07 .00
M / U (industrious) 2 15 72 .04
3 .01 21 .96
1 .93 .08 .00
N /V (diligent) 2 .05 .79 .04
3 .02 A2 .96
1 49 .09 .01
O /' W (dutiful) 2 .34 41 .07
3 .18 51 .92
1 51 .01 .03
P/ X (ambitious) 2 42 45 .03
3 .07 .54 94

Table 6.3.17 depicts the quadrivariate latent jalrdgtribution. As before, cell
entries that deviate for at least 2% from the pobdd their latent marginals are printed in
bold type. All of the bold entries are either cekpresenting total agreement or partial

agreement.
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Table 6.3.17

Cross-classification of the latent categories feuroticism and conscientiousness in the
CT MTMR Model with two-variable effects as highestder interactions for
interchangeable raters

CONB
1 2 3
CONA=1 | .03  (.00) .02 (.00) .01 (.00)
NEUB=1 CONA=2 | .02  (00) .01  (.00) 01 (.00)
CONA=3 | .01  (00) .01 (.00) .03 (.00)

CONA1 .00 (.00) .01 (.00) 01 (.00)
NEUA=1 NEUB=2 CONA=2 .00  (.00) .01  (.00) .01 (.00)
CONA=3 .00  (.00) .01 (.00) 04 (.00)

CONA=1 .01  (.00) .00 (.00) .00 (.00)
NEUB=3 CONA2 .01  (00) .01  (.00) .01 (.00)
CONAS3 .00  (00) .00 (.00) 02 (.00)

CONA1 .00 (.00) .00 (.00) .00 (.00)
NEUB=1 CONA=2 .01  (.00) .01  (.00) 01 (.00)
CONA3 .01  (00) .01 (.00) 04 (.00

CONA=1 | .00  (.00) .00 (.00) .00 (.00)
NEUA=2 NEUB=2 CONA=2 | .00  (.00) .02  (.00) .02 (.00)
CONAS3 | .00  (00) .02 (.00) 10 (.01)
CONA=1 .00  (.00) .00 (.00) .00 (.00)

NEUB=3 CONA=2 .01  (.00) .01  (.00) .01 (.00)
CONA=3 .00  (.00) .01 (.00) 04 (.00

CONA1 .01  (.00) .01 (.00) .00 (.00)
NEUB=1 CONA2 .00  (00) .01  (.00) .00 (.00)
CONA=3 .00  (.00) .01 (.00) 02 (.00)

CONA=1 .00 (.00) .01 (.00) .00 (.00)
NEUA=3 NEUB=2 CONA=2 .00  (.00) .01  (.00) .01 (.00)
CONA3 .00  (.00) .01 (.00) .04 (.00

CONAS1 | .00 (00) .01 (.00) .00 (.00)
NEUB=3 CONA=2 | .01  (00) .04  (.01) .03 (.01)
CONA=3 | .00  (.00) .03 (.01) 08  (.01)

Note Entries in bold type depict expected proportitimst deviate from the predictions
based on the marginals by more than one decimatieBnn parentheses represent the
product of the latent marginals.
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The two peer raters agree with respect to the owstcucts (overall agreement) in
31% of the times. The total rate of agreementighgy higher than for the self- and peer
report. The overall agreement is mainly due to empent on high scores of
conscientiousness in combination with sensitivestbaible or neurotic individuals (18% out
of the 31% fall into these categories). Partialeagnent on conscientiousness (28% in
total) mainly occurs for highly conscientious indiwals (20%). A slightly different picture
can be found for neuroticism, the two peers agréh vespect to the *1category of
neuroticism if at least one of the two chooseslfheategory of conscientiousness and the
other maximally the ¥ category; or if they agree that the target indieidis highly
conscientious. Partial agreement with respect tasiBee but stable targets is only
estimated to appear in 4% of all times and onlyttiercategory combination of moderately
and highly conscientious ratings. Partial agreenghigher for neurotic individuals 8% of
the times; it is mostly expected for the same cethbinations as mentioned above. In
total, the interchangeable peers agree in 59% n@gpect to conscientiousness and in 51%
of the times for neuroticism. It seems to be harteragree on neuroticism than on
conscientiousness. The analysis of the structurdifiierent raters yielded comparable
findings.

Additionally, the two constructs seem to be relaeuate the cell entries are always
highest for combinations of2or 3° categories of one construct witff 2r 3¢ categories
of the other construct. The relatively high cellrezs for the latent cell combinations [1 1 1
1],[1112],and [1 1 2 1] also fit into this tds

As for the model for structurally different ratdisee complete quadrivariate table
can be decomposed into its bivariate sub-tablesder to explain all associations. Tables
6.3.18 to 6.3.24 present the latent bivariate ithstions as well as the category-specific
agreement rates, distinguishability indices, ardntiethod bias type Il coefficients.

Inspecting the expected proportions for neuroticidapicted in Table 6.3.18
reveals that all cells on the main diagonal areenfogquently expected than given their
latent one-variable marginals. The category-spedigreement rates in Table 6.3.19
quantify the overrepresentations on the main diajorhe combinations [1 1] and [3 3]
are about 1.6 times more frequently expected thadigted based on the marginals and
the combination [2 2] is around 1.4 times more dietgly expectedx =.27 indicates

relatively low agreement between the interchangesdikrs for neuroticism.
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Table 6.3.18
Cross-classification of expected proportions fa thtent variables representing
neuroticism

NEUB
1 2 3
na=1 13 (.08) .10 (.10) .07 (.10) 29
na= 2 .10 (.10) 17 (12) .08 (.13) 35
na=3 .07 (.10) .08 (.13) 21 (.13) 36
29 35 36

Note Values in parentheses represent the producedatbnt marginals.

The disagreement cells besides the main diagofiattren interesting pattern of
association. There is no reduction in disagreementpared to agreement on chance for
the cell combinations [1 2] and [2 1]. That is, freers do not distinguish well between the
categories not neurotic and sensitive but stable.other disagreement cells are less
frequently expected than predicted by chance itidigahat peers are able to distinguish
between these categories (see Table 6.3.19). Tkenglishability index shows
considerably low values for the categories [2 3J &h 3]. That is, peers can very well
distinguish if a target is neurotic or not, theestipeer does agree and not confound being
neurotic with another category.

Table 6.3.19
Distinguishability index and category-specific agmeent rates for neuroticism
NEUB
1 2 3
na=1 1.60 1.00 0.70
na=2 1.00 1.42 0.62

na=3 0.70 0.62 1.62
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Table 6.3.20 presents the latent bivariate distiobufor the two trait variables
measuring conscientiousness. There is consideragieeement reflected in high
proportions on the main diagonal. Peé&rsand B agree 3 times more frequently than
predicted by the product of the marginals with extpto the first category of
conscientiousness (category specific agreemens @tethe main diagonal). They agree
about 1.4 times more often than predicted by thegimals with respect to thé'2and &
category of conscientiousness. Absolutely, the reaiies can be found in the agreement
cell for high conscientious target persons. 40%albfratings fall into this category.
Neverthelessk =.32 indicates relatively low overall agreement.

Table 6.3.20
Cross-classification of expected proportions fa thtent variables representing
conscientiousness

CONB
1 2 3
ca=1 .06 (.02) .07 (.05) .03 (.08) 15
ca=2 .07 (.05) .14 (.10) 11 (.17) 31
ca=3 .03 (.08) 11 (.17) 40 (.29) 54
15 31 54

Note Values in parentheses represent the producedatbnt marginals.

Table 6.3.21
Distinguishability index and category-specific agmeent rates for conscientiousness
CONB
1 2 3
ca=1 3.00 1.40 0.38
ca=2 1.40 1.40 0.65

ca=3 0.38 0.65 1.38
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Table 6.3.21 depicts the distinguishability andegaty-specific agreement rates for
conscientiousness. Peers confound the two lowegoaks of conscientiousness but can
well distinguish between the highest and the other categories of conscientiousness.
Being traited seems to be a good moderator foreageat ratings of conscientiousness (see
Funder, 1995).

Table 6.3.22 presents the latent joint distributdrthe trait variables belonging to
one rater (recall that the parameters are identioalthe two raters). This cross-
classification corresponds to the heterotrait-moetbimd association sensu Campbell and
Fiske (1959) for interchangeable raters. The abslgluhighest deviations from the
expected cell proportions from the product of thargmals can be found for the cell
combinations [1 1], [1 3], and [2 3]. If one peedges a target to be not neurotic the
judgment will also more probably be not consciamitess than predicted by chance and
in the same vain more probably not highly consaest Sensitive but stable rated
individuals will more probably also be rated todmnscientious than not conscientious. All
other categories do not show strong deviations ftleenproducts of the latent marginals.
These over- and underrepresentation in the jostridution (combinations of categories)
may be due to true associations between the latergtructs but may also be due to rater
specific effects.

Table 6.3.22
Cross-classification of expected proportions fa thtent variables originating in one
peer rater

CONA
1 2 3
na=1 .08 (.04) .09 (.09) 11 (.16) 29
na=2 .02 (.05) .10 (.11) 23 (.19) 35
na=3 .05 (.05) 12 (.11) 19 (.19) .36
15 31 54

Note The model yields exactly the same results for pleer reportB. Values in

parentheses represent the product of the laterginads.
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Table 6.3.23 presents the latent bivariate distiobbuof neuroticism rated by one
peer and conscientiousness rated by the other Pleisrcross-classification corresponds to
the heterotrait-heteromethod association sensu Galinpnd Fiske (1959). The joint
ratings of the different peers are not influencedréter specific effects and, therefore,
represent bias-free rates of over- or underreptasen. This table shows that not
conscientious individuals are also rated not tonbarotic. This may be due to a real
association of the two categories but also duartbiguous signals sent out by the target
which may be interpreted as indicating not to besceentious by one rater and not to be
neurotic by the other. Additionally, the latentlcebmbinations of highly neurotic and
moderately conscientious as well as sensitive falles and highly conscientious are more

frequently expected than predicted based on theéugtmf the marginals.

Table 6.3.23
Cross-classification of expected proportions fa thtent variables of different constructs
originating in different peer reports

CONB
1 2 3
na=1 .08 (.04) .08 (.09) 13 (.16) 29
naz2 .04 (.05) .09 (.11) 22 (.19) 35
na=3 .03 (.05) 14 (11) 18 (.19) .36
15 31 54

Note The model yields exactly the same results forajpgosite combinatiofNEUB and
CONA. Values in parentheses represent the produtiedbtent marginals.
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Table 6.3.24
Method bias type Il for peer reports
CONA
1 2 3
na=1 1.00 1.00 0.85
na=2 0.50 1.11 1.05
na= 3 1.67 0.86 1.06

Note The model yields exactly the same results for paterB.

Table 6.3.24 presents the method bias type |l moefits comparing the association
within methods to the association across methotie. table reveals that monomethod
associations differ from the heteromethod assamnatmost strongly for the combinations
of low conscientious targets which are not perakias sensitive but stable (middle
category) by one rater but much more often as nieurSingle raters overestimate the
association of highly neurotic and not consciergias they also underestimate the
association of not conscientious and sensitivestalile. All other associations do virtually
not differ from the associations found betweenrsat®ne may speculate that targets who
are rated as at least moderately conscientiousated by their peers with a smaller bias.

Conscientiousness may be seen as a visibility adidor neuroticism.

6.3.2.2 Summary of the findings for the CT MTMR models for interchangeable

raters

Although the CT-MTMR models for interchangeablesratare much more restricted than
the models for structurally different raters andréiore should be more parsimonious, the
applications for the CT MTMR model for interchanglea raters yielded the same
computational difficulties that could also be foufat the models with structurally

different raters and, additionally, suffered fromstimation problems concerning the
equality restrictions in LEM (Vermunt, 1997a). Tim®dels with higher order interactions

yield aberrant parameter estimates and can nattbgoreted since they do not imply the
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correct structure for the expected proportions (dstimation yielded theoretically
impossible results).

Yet, the model with two-variable effects as highestler interactions yields
(relatively) sound parameter estimates which allimwv analyzing the latent bivariate
relationships. An inspection of the log-linear paeters is not meaningful with respect to
this model because the only way to estimate theetiodLEM is by means of dummy
coded effects. Therefore, the parameters do netttirrelate to the expected proportions
and, moreover, cannot be interpreted in the wagsrideed.

The analysis of the model with two-variable effeasshighest order effects can be
carried out with respect to the convergent andraiscant validity, method bias, and
accuracy of the interchangeable raters. There ¢®rsiderable overall agreement rate
showing that in about 1 out of 2 cases peer ratgrse with respect to at least one of the
two constructs. Inspecting the expected proportiorey lead to the conclusion that
agreement is highest for cell combinations of higtdnscientious and sensitive but stable
(middle category) as well as neurotic individudlbe partial agreement rates also show
that peer raters agree more often for individuddssified in one of the above mentioned
categories.

Since the CT MTMR model with two-variable interacts as highest order
interactions is a hierarchical model it reprodutes latent bivariate joint distributions
allowing for a direct interpretation of the expettavariate proportions and the latent one-
variable marginals. The category-specific agreemates can be calculated to identify the
overrepresentation in the cells on the (agreenmaath diagonals. There is agreement for
all cells on the two bivariate main diagonals (f@uroticism and conscientiousness). The
category-specific agreement rates show that thera much higher agreement for the
combinations of the*icategories for both traits. However, this doesimgly that these
rates are absolutely very high but relatively wigéspect to what can be expected knowing
the marginalsx is not very pronounced indicating low agreemettgalf there were a
possibility to estimate the saturated model withr@xt standard errors one might inspect
the corresponding log-linear effects to judge tit@rof agreement more exactly.

The distinguishability index reveals if disagreemecells are over- or
underrepresented with respect to the product ofldtent marginals. This index can be
used to detect sources of disagreement. For caortgzieness this index revealed for
example that peer raters confound the first twegates (lack of distinguishability). All

other categories can be relatively well distingatsfrom each other for the two traits.
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The cross-classification of trait variables beloggio the same method (heterotrait-
monomethod associations) revealed that there a@fgpover- and underrepresentations
of particular joint categories of neuroticism anghscientiousness. Being rated as not
conscientious is related to being rated as notateuHighly conscientious individuals are
more probably rated to be sensitive but stable dfaidategory). This is true for one rater
but also true for different raters. The method lyae 1l reveals differences with respect to
the monorater bivariate joint distributions (catege) and the heterorater bivariate joint
distributions for different traits. This index shewhat considerable differences can only be
found for individuals who are rated not to be caomsious.

In sum, | conclude that the CT MTMR model could used to detect category-
specific sources of convergence, category-speleifik of discriminant validity as well as
distinguishability, it allows for a comparison oftkin raters associations across traits to
estimate the rater-specific biases, and (theotbfjd@ examine if higher agreement rates
are due to two-, three-, and / or four-variableet$. That is, if higher or lower degrees of
convergent validity can be found depending on mates of agreement (see Funder,
1995).

6.4 Discussion of the CT MTMR Models

In empirical applications, the CT MTMR models defihin this dissertation could
provide a useful tool for the analysis of convetgand discriminant validity, rater bias,
and determinants as well as moderators of agreerntwever, to date these models
cannot be soundly estimated prohibiting a propderpretation of their log-linear
parameters (estimation problems in LEM, Vermun®7E). The practical applicability of
the CT MTMR models depends on the availability adwnsoftware packages that
overcome the current estimation problems.

Due to these estimation problems the expected piiops are reported and, more
importantly, the empirical findings should not bebstantively interpreted, instead the
empirical applications serve to illustrate the nedeveloped models and the possibilities
to interpret different model parameters. All difat model parameters and their meaning
for the analysis of the convergent and discriminaalidity are explained in detail.

Moreover, one can determine if one or more varglgkn be conceived to characterize a
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moderator of agreement (Funder, 1995). For instase@endable individuals (as a concept
related to conscientiousness) seem to be more wentdy rated by peers (see Colvin,
1993b).

| define the method bias type | and Il coefficiesvealing information about
different prevalence rates and different presumedo@ations of the rater. The
distinguishability index provides information as tehich categories can be neatly
differentiated and which categories can be easihfaunded. Additionally, the meaning of
all different log-linear parameters with respect ttee categories (agreement, partial
agreement, simple agreement, and disagreement)affesst is exemplified and linked to
the analysis of convergent and discriminant validithese parameters provide pieces of
information that cannot be retrieved from standatér agreement models or latent rater

agreement models.
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7 Summary and Discussion

The aim of this dissertation was to develop i) lateter agreement and ii) latent
Multitrait-Multirater (MTMR) models for multiple dagorical response variables in order
to provide psychometric models for the analysicarfivergent and discriminant validity
corrected for influences due to measurement efdditionally, indices have been defined
that allow for the analysis of category-specificresgnent rates, rater bias, and the
distinguishability of the latent categories. Furthere, the influence of particular latent
statuses on agreement and / or disagreement mayaheed. The focus was on the model
development and the interpretation of the modeampaters in terms of the analysis of
convergent and discriminant validity, rater biasg aater agreement (accuracy). Due to the
computational difficulties and the logic of log4iar modeling with latent variables all
definitions and applications are restricted todhse of maximally two traits judged by two
raters.

This restriction is justified for several reasonko date, the computational
difficulties encountered during the estimation @ prohibit the application of the
models to more complex data sets. The definitiomodlels for two raters comes closest to
the inspection of the bivariate relationships inAOATMM models—the extension to the
case of more than two raters and / or more thanttaits is, in principle, straightforward
for the CT MTMR models but adds higher order intéoms to the model definition for
each newly introduced latent variable. Therefores impossible to give a global model
definition; it is only possible to give model ddfions relying on the number of traits and
raters. The focus is on showing the strength ofnnely developed models for two raters
revealing pieces of information that are not alddan standard rater agreement models.
All models have been defined with respect to stmadly different and interchangeable
raters.

In a first step, | will summarize and discuss thewvly introduced models with
respect to the new pieces of information that ¢hadfetically) be gained. | will refer to
the results of the empirical applications being i@nthat these may only be interpreted for
illustrative reasons due to the estimation diffilgd. In a second step, the models will be

embedded in the larger context of research on mateuracy (Funder, 1995) combined
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with the perspective of Multitrait-Multimethod mesement. Finally, the limitations of the
newly developed models will be discussed and futeisearch directions will be derived.

7.1 Summary of the Model Parameters and Model Results

7.1.1 Latent Rater Agreement Models

The first research goal was to develop latent raggeement models which, in principle,
are equivalent to Monotrait-Multirater models. Dafig these models allows for an
examination of agreement and disagreement of tw&rsaon one particular construct.
Raters can agree in a general way yielding consigngement rates across all categories of
the latent trait but raters may also agree in aenspecific way showing high agreement
rates for some latent categories and smaller agneenates for other latent categories.
Assumptions about constant agreement can be tesied the quasi-independence i
models for structurally different and interchandeabaters but may also be tested
restricting the log-linear two-variable effects fwlls on the main diagonal to be constant
in all other models (saturated, quasi-, and symymatidels).

Disagreement may also be modeled in the newly m@&gonodels. Raters may well
distinguish between particular latent categoriesnfreach other but have difficulties to
distinguish between others. In these cases, disagnet rates for the first categories will
be low and they will be higher for the “difficultategories. High disagreement rates may
point to categories that may be easily confoundgddters but that are theoretically
distinct from each other or it may point to a laakconvergent validity within one trait.
Examining a rating scale the models may be usethégk if several categories may be
empirically distinguished from each other. High esfgd proportions (or log-linear
parameters around 1 or higher) for disagreemeris e¢ehy show that the category
definition should be optimized.

Disagreement is strongly related to rater biaseRbias may be analyzed yielding
very detailed information about the categories tr& more or less prone to the rater-
specific effects. The first type of bias conceriffetent prevalence rates in the univariate
latent distributions of the raters [method (ratgas type I; see Agresti, 1992].
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Additionally, the validity of the different itemsn be examined by an inspection of
the effect-parameters or the conditional responsbgbilities. Strong effect-parameters
indicate “marker” items (categories) for latentegairies and may be statistically tested
relying on the zvalues of the underlying log-linear two-variabldfeets of the
measurement model. However, these effects turnédoobe very prone to boundary
solutions and cannot soundly be interpreted inpttesented applications. The conditional
response probabilities however can be interpretedy clear implied typical response
patterns indicate more reliable prototypical clisaiions and more easy to distinguish
categories. The mean assignment probabilities @wailable in LEM) indicate the
reliability of the classifications.

The dimensionality of the response categories nisy lae examined using latent
rater agreement models or log-linear models with latent variable. Log-linear models
with latent variables may be administered to orderategorical ratings. If the categories
follow the presumed ordered structure the modeémesion will principally yield ordered
latent categories with response categories refigai general increase or decline in their
conditional response probabilities for increasimgdeclining response options (see e.g.,
Dillon & Mulani, 1984; Heinen, 1996, Langeheine 88%.

The meaning of all model parameters will be sumpeakiwith respect to the
saturated model because this model is most geoenghining all effects described below.
All other rater agreement models are restrictedigas of this model. See Figures 5.2 and
5.4 on how to obtain the more restricted rater egent models. The meaning of the
different variables and their effects or assocretiovill be highlighted following a
prototypical sequence of model inspection in eropirapplications. As a prerequisite the
model must show an adequate goodness-of-fit todtta in order to provide soundly

interpretable model parameters.

Meaning of the latent variables and validity ofithadicators. The meaning of the
latent variables in log-linear models with latemtrigbles can principally not be known
beforehand but has to be determined inspectingriy@rical results (except for the case of
a priori restricted model parameters). The directiad the strength of the link between the
latent variable and its indicators determine itsanieg in models with unordered
categorical latent variables (see e.g., Hagend&&3). This examination is nothing else
but the analysis of validity of the latent varialde its measures (Messick, 1989). In

general, different statuses on the latent variablst produce different expected scores on
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its manifest indicators. The two latent variabledatent rater agreement models must at
least approximately represent identical categanesrder to allow for an examination of
rater agreement. This is a crucial point for thalgsis of rater agreement (and also for CT
MTMR models). In the best case, the conditionapoese probabilities do not differ
across raters. If the conditional response proib@sil are not identical theoretical
considerations about and interpretation of the ttmmal response probabilities may still
guarantee that the two judges rate the same cohgsee Section 4 for more details).

One may examine the reliability and / or validitymodels with categorical latent
variables. The conditional response probabilitiedicate the degree to which a given
category of an indicator can be conceived as a gepksentation of the latent category.
In the same vain, effect-parameters or odds carseé to examine the convergent validity
of indicators in a way closely related to the irdm of the conditional response
probabilities. One may conclude that an indicasaa valid (good or marker) indicator of a
latent category if it shows strong effect-paranse{gee Section 4). However, there are no
benchmarks as to which size of a conditional respqgorobability or effect-parameters
may be considered showing a strong measuremetibredgip. The interpretation of these
parameters depends on the research domain andgsidts.

There is nobne parameter representing the relation between thefesa variable
and the latent variable in models with categorlagnt variables but there are as many
parameters as there are combinations of latentmaardfest categories. That is, there are
nine log-linear two-variable effects indicating theerplay between a three-categorical
latent and a three-categorical manifest variableis lllows for a detailed analysis of
validity with respect to the categories.

Consider neuroticism in the self-report. Therethree latent categories which can
be clearly distinguished with respect to their dbadal response probabilities. The
categories can be interpreted as three types afbti@am (not neurotic, sensitive but
stable, and neurotic) in a theoretically meaninghay inspecting the nine conditional
response probabilities. The conditional responseobatilities change quite
heterogeneously across the different items anchtlatategories. Different items may be
used to distinguish between the different latenégaries. The neurotic personality type
can be easily separated from the sensitive bulestaid the neurotic personality type
inspecting the typical response behavior for itéwignerable” and “sensitive” (large
differences in the conditional response probabgiti That is, these two items validly

separate the first latent category from the other latent categories. Yet, these two items
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cannot be used to separate the sensitive but dtabfethe neurotic personality type. The
typical responses for these two latent classesemgonses using the neurotic category.
These items thus do not validly separate the middi@ the highest latent classes from
each other. In the same vain, items “moody” andf-tbeubtful” can be regarded as valid
indicators to separate not neurotic as well asisemdut stable individuals from neurotic
individuals because the conditional response pribbeb differ to a great extent. These
two items do not very well discriminate between thtent categories “not neurotic”
(lowest category) and “sensitive but stable” (méldategory).

On the one hand, this examination of validity ianptex in the models with
categorical data; on the other hand, this exangnadilows for a better understanding of
the latent categories and the associations betwezmanifest response variables. The
conditional response probabilities imply that sevisy and vulnerability are easier to feel
or perceive than moodiness and self-doubtfulnessverter, this assumption should be
examined in detail additionally relying on modefsltem-Response-Theory (IRT) as the
graded-response model (Samejima, 1969), for examp#so must emphasize that |
collapsed two times two response categories todaeomputational difficulties. This
certainly also afflicts the interpretation of th@del results with respect to the difficulties
of the items and the ordered structure of the tatad manifest categories.

Latent one-variable distributiondnspecting the latent one-variable distributions
reveals if the two raters perceive the same precaleates for the construct under
consideration. In general, their prevalence ratesilsl not differ to a large extent from
each other to still reflect the same construct ¢kwil988). If the prevalence rates differ
considerably the raters judge different phenomelwavever, there are no guidelines as to
which differences in the prevalence rates can Imsidered meaningful. This problem is
not examined in this contribution. The differenddhe latent distributions is quantified by
the rater bias type | coefficient. This coefficiesadmpares the expected proportions of
identical categories of different ratings. One migt if the latent marginals are
homogenous (identical) comparing models with anthaut equality restrictions on the
latent univariate distributions. However, this & m the focus and thus was not done. The
focus is on the possible interpretations of therlabne-variable parameters and the pieces
of information they provide on agreement and disagrent as well as rater bias. For the

rater agreement models as well as for the CT MTMRlats, all rater bias | coefficients



Summary and Discussion 211

fell into the range of MBL =0.83 to MBI =1.15for neuroticism and

ns=1.na=1) ns=3.na3)

MBI, =0.79to MB], =1.41for conscientiousness (comparing the self-report

cs=1.ca=1) cs=3.ca=3)
with the peer report). The relatively high rateasi coefficient for the ' category of
conscientiousness has been interpreted in Sect®nT® my mind, it is plausible to
assume a peer bias towards higher conscientiousaisgs due to the composition of the
sample and some aspects of conscientiousness thathot be openly displayed (e.qg.,
fighting against a tendency of procrastination).

The rater bias type | reveals if a category for oater is strongly overrepresented
with respect to the identical category for the ottager and, additionally, if the necessary
underrepresentation of the other categories isddanone or for several categories. The
rater bias type | coefficients may reveal that cster shows more ratings in the highest
category than the other rater but that both shouakdg frequent ratings in the lowest
category. Therefore, one may conclude for ordereégories that the first rater has a

lower “threshold” to pass from the middle to thghest rating categories.

Latent two-variable distributionThe latent two-variable distribution reveals to
which extent the two raters agree or disagreemay serve as an indicator of overall
agreement. High agreement indicates convergendityalon the level of trait variables.
Additionally, category-specific agreement rates niy calculated indicating for which
categories agreement can be found. Without furtralyses on the decision making
process, one may conceive these categoriggpad categoriesipon which raters easily
agree. In general, some categories of a categdraitlare much easier to agree upon than
others (see e.g., the concept of visibility, Fund®95). The latent rater agreement models
allow for determining good categories inspecting thtegory-specific agreement rates and
the two-variable log-linear parameters for agredansetls. High and significant parameters
indicate good categories. Validity determined aagpent concerns absolute agreement.
Any slightest form of disagreement (i.e., one rat@wosing the risk-seeking category and
the other rater the gambling category) is relatedatdecrease in convergent validity
(although disagreement with respect to gambling rsidseeking might be less striking
than disagreement between gambling and securitgntad). This problem may be
circumvented by accepting disagreement for closelsted categories as still refelcing

vonvergent ratings or by collapsing these categorie
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In applications showing agreement, disagreemens el be less frequently
observed than predicted by the product of theanatnarginal distributions. However, it is
important to know which categories can be neatyimjuished from each other and which
may still be confounded. | propose the categoryirdjgishability index to examine the
ratio to which the expected proportion of the disagnent cell deviates from the product
of the marginals. Very small values (close to Odlicate that raters can very well
distinguish between the corresponding categorieduas close to 1 indicate that the
association of the latent categories correspondfidcassociation one would expect for
independent categories. In this case, raters deordbund the categories (this would be
indicated by a distinguishability index larger thBnbut they also do not distinguish well
between these categories. Therefore, values ctodedr above 1 indicate the need to
clarify the category definitions of the items or teain raters. Additionally, the
distinguishability index gives some hints on eféecf possible moderators of accuracy
(agreement). If for a specific category of onettthere are very low distinguishability
indices and there is very high category-specifieament, the specific category is a good

category.

Special rater agreement modefpecific patterns of agreement and disagreement
can be modeled adopting the rater agreement méatetsbserved variables to log-linear
models with latent variables. The latent saturatediel does not impose any restrictions
on the associations between latent categories.

If the patterns of disagreement (the distinguidiitghndices) can be approximately
mirrored on the main diagonal the quasi-symmetrgehonay be a good representation of
the data. This model implies that the two ratesimijuish the different categories in a
similar way. If additionally their latent marginalsre homogenous they distinguish
categories in perfectly the same way (symmetry).gxample, the two raters confound the
categories of being neurotic and moderately confioesness to the same ratio as the
inversed combination being moderately conscientiess and neurotic (keeping the
ordering of the raters the same).

If raters distinguish equally well between all gaires besides the main diagonal
one of the quasi-independence models may fit to daga. In these models, the
disagreement rates are constantly reduced since éine no associations besides the main
diagonal. All associations in this model are dueckance (independence assumption)

except for higher agreement rates on the main delgédgreement can be overrepresented
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changing from category to category yielding quasiependence | (reflecting more or less
good categories) or be constant across categoriesling quasi-independence |l
(reflecting good judges and / or good traits). ter agreement models can be derived

from the saturated model implying meaningful resions (see Figures 5.2 or 5.4).

Structurally different vs. interchangeable ratel models can be defined for
structurally different and interchangeable ratéfee summary of the meaning of the latent
variables and the model parameters presented aboadid for the more general case of
structurally different raters. The models for icteangeable raters differ with one major
aspect from the models for structurally differeaters. If raters are interchangeable they
originate in the same population leading to thdric®n of measurement invariance.
Additionally, their latent distributions must beeitical implying that they perceive the
same prevalence rates and that they confound c&egdo identical ways. Therefore, only
three rater agreement models exist for the cagg@tthangeable methods: The symmetry
as well as the quasi-independence | and Il moddis. inspection of rater bias type 1 is
meaningless in these models by definition; all othdices can be interpreted as presented

above.

7.1.2 Multitrait-Multirater (MTMR) Models

The second major research goal was to extend tlet leater agreement models to allow
for the analysis of more than one trait. Most enspghavas paid to the interpretation of the
different log-linear parameters in the saturated MCTMR model allowing for a detailed
analysis of agreement and disagreement (reflectingergent and discriminant validity as
well as method bias). In this model, moderatoragifeement and disagreement can be
identified relating the MTMR model to the realisticcuracy model (RAM, Funder, 1995).
Having estimated a CT MTMR model for categoricaladthe following steps should be
taken to investigate the results:

First of all, only models showing an adequatedithte data should be examined. In
fitting models thaneaning of the latent variables and validity ofittvedicators have to be
analyzed. The inspection of the effect-parametethe conditional response probabilities
has to be executed as described above. The distnBuof the latent marginals can be
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inspected to identify if the prevalence rates & $ame for identical constructs across
raters. Method (rater) bias type | can be deterchime described above. The analysis of
agreement (convergent validity), disagreement, bfasatings, discriminant validity and

moderators of agreement and disagreement is redingplex in CT MTMR models.

AgreementAs a great advantage the saturated CT MTMR msidelltaneously
allows for an inspection of agreement and modesabbragreement. Agreement between
raters may differ across categories of the latgitistunder consideration. Additionally, the
CT MTMR model allows for determining if agreemernffets with respect to ratings on
the second construct. The model reveals if thedg@igher agreement on neuroticism for
highly (congruently rated) conscientious individygbr example. | will shortly repeat the
theoretical impact of the log-linear effects offeient levels on agreement and convergent
validity (see Section 6 for more detailed explama). The empirical application revealed
that the models with higher order effects couldlm®soundly estimated.

Conditional complete agreemeist depicted by the four-variable log-linear effect
for cells indicating simultaneous agreement on th@® constructs. The log-linear
parameters indicate the odds for complete agreetoghte expected agreement due to all
lower order effects. They, therefore, reflect abaence complete agreement where
chance complete agreement is the expected agreegnat all lower order effects.
Complete agreement on the two constructs could lasproduced by the one- and two-
variable effects but not by the three-variable @feConditional complete agreement may
be constant for all cells or category specific (S&etion 6 for a thorough discussion).
Constant complete agreement is related to a prppértargets as being good targets. If
raters agree on one target's first trait (consimanshess), they also agree on this target's
second trait (neuroticism). Category-specific cagtgplagreement is related to palpability
(Funder, 1995). Palpability reflects the fact teame traits of some targets may well be
identified whereas the same traits cannot be atayrgdged for other targets. In the CT
MTMR model, palpability is more fine-graded as iaymalso occur that some targets may
only be better judged for given combinations okgaries. The heuristic inspection of the
latent quadrivariate distribution revealed thathiygneurotic individuals are more easily
congruently judged being highly conscientious. éwmg the four-variable log-linear
effect for this cell combination [3 3 3 3] wouldveal if this complete agreement was due

to lower order effects or due to the palpabilitieet.
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Partial agreementlepends on log-linear effects on different leveisur-variable
effects depict if specific constellations of dissgment on one construct co-occur more
frequently with agreement on the second constriibese effects indicate differential
views of the raters about the association of the tenstructs. Agreement on high
conscientiousness may be associated to differéingsaon neuroticism (e.g., neurotic by
the self-report and sensitive but stable by pegontéd). If one of the raters is outstanding
and may provide a better approximation of the siadus, the interpretation of the three-
variable effects as influencing the partial agreeintecomes meaningful. If, for example,
the self-raters judge themselves as not conscighitamay be the case that self- and peer
raters more easily agree on the not neurotic cayeddis may be due to the fact that
being not conscientious is a moderator of agreenteisibility indicator) for low
neuroticism.

“Simple agreement” Agreement may also be analyzed at the level wérlzte
relationships. If one is interested in agreemetgsravithout any further information about
the genesis of agreement the log-linear paraméversells of the bivariate distribution)
representing agreement can be examined as desaiioe@. However, these parameters
represent main effects which may change with rasgpedifferent constellations on the
other variables.

DisagreementThe CT MTMR model is suited for the analysis lo¢ tgenesis of
disagreement. In principle, disagreement shouldekpected to a lower extent than
predicted by the product of the latent marginalst, Yhe distinguishability index (the ratio
of the expected proportion to the product of theerda marginals) will differ across
category combinations indicating that raters caty veell or less well distinguish between
pairs of categories. This distinguishability candb@ble across all category constellations
on the other trait but also differ with respecthe other trait.

The four-, three-, and two-variable effects revefl specific patterns of
disagreement are more or less often expected tthar patternsPartial agreementas
described above is a special case of disagreernmer® the two raters agree on the other
construct. If there is high partial agreement aalysis of the decision making process for
the construct upon which the two raters disagreg lb@aworthwhile to reveal if the same
behavioral cues are perceived and if they arepnééed in the same way.

Disagreement which is due to four-variable effesttews to which degree the two

raters weigh information differentially. There i&r example, some confusion about
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targets who are rated sensitive but stable in éhierating and neurotic by peéx with
respect to the ratings of moderate and high conBoigsness (see Table 6.3.2). Peers have
a high probability to rate targets higher on comistousness if targets perceive themselves
as moderately conscientious.

Three-variable effects depict if there are speafitegories of one construct that
are associated to high rates of disagreement. Remynthe example of a target person
who does not show her or his feelings. This indiaidwill hardly be congruently judged
by peer raters concerning the momentary emoticla#ils The three-variable parameters
may thus indicate categories being moderatorssafgieement.

Disagreement mirrored by the two-variable log-Ime#fects shows the principle
disagreement “averaging” across all higher ordedenator effects. Inspecting the two-
variable effects reveals which categories cannatdédistinguished by the two raters. If
there is no higher order effect, the analysis @ decision making process concerning
categories that are too easily confounded may toeimprove rater agreement and reduce
disagreement. However, if higher-order effects @esent it is these effects that indicate
under which conditions peers agree and disagreewkiy these specific constellations

allows for a more precise and stringent analysth@fdecision making process.

Rater bias Rater bias can be analyzed relying on differadices. The method
(rater) bias type | coefficient reveals if theree atlifferences in the latent marginal
distributions for the same construct. This biasusthmot be very pronounced allowing for
an investigation of rater agreement. If ratersediféxtremely in the prevalence rates of
their ratings the examination of rater agreemenbbees meaningless (Zwick, 1988).

Raters may also show biased ratings with respethdocategories of different
constructs they associate. The rater bias typedéxXx compares the associations between
different categories across constructs of one taténe expected association across raters.
This index reveals if raters have a specific viem@which categories of the latent traits
are more or less associated than expected forralifferaters. The definition of this
coefficient as the ratio of a multitrait-monomethdd the multitrait-heteromethod
associations is related to the logic of direct piidnodels (see e.g., Browne, 1984, Oort,
1999; Wothke & Browne, 1990).

However, if higher order effects are present, Hierrbias type | and Il coefficients
can only be interpreted as average effects which beamoderated as are two-variable

effects in models with higher order interactioneeTTT MTMR model principally allows
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for determining specific category constellationsickhmay lead to especially biased

ratings or to a reduction in bias. However, in tiierent applications these constellations
could not be identified relying on the log-lineaarameters since the model estimation
yielded almost no higher order effect without baoanydsolution. Yet, inspecting the

expected proportions of Table 6.3.2 in a heuristy may lead to the hypothesis that peer
A associates moderate conscientiousness to beingtizeand high conscientiousness to
being sensitive but stable for targets who ratengedves being sensitive but stable and
moderately or highly conscientious. It would bewenteresting to analyze if these effects
are due to three-variable interactions or fourafalg interactions in soundly estimated
models. If these effects are not due to four-véeiahteractions but to three-variable

interactions the self-ratings on one construciuirfice the joint ratings of the peer raters.
This influence is then independent from the seédascore on the other construct.
However, there may also be an effect of this offedfrrated trait on the joint peer ratings.

This could be interpreted as two different and petelent effects representing the peer-
specific view as a function of the different stasisn the self-report. If these effects are
additionally due to a four-variable interaction pifit halo-effect” may be present

implying that one constellation in the self-rating®duces a particular joint bias in the
peer ratings. Detailed inspections of the answercgss may help to enhance rater

agreement and reduce rater bias.

Discriminant validity The discriminant validity can be analyzed relyiog
different associations. The simplest case in thdehwith two-variable effects as highest
order interactions has been illustrated in defBile inspection of the latent bivariate
associations is closely related to the inspectiometerotrait-heteromethod and heterotrait-
monomethod associations as described by CamplelFzke (1959). The application for
structurally different raters revealed that thessrolassification of neuroticism in the self-
report with peer-reported conscientiousness shoal@wst perfect discriminant validity.
This was also true for most of the cells in theshattrait-monomethod cross-classification
except for the combination of being not neurotid aot conscientious in the peer rating.
This category combination is expected almost twaes more often than expected by the
latent marginals. The opposite is true for the cowadion of not neurotic and conscientious
which is expected only half as often as predictgdttie product of the marginals. If

information on the log-linear parameters and tiséandard errors was available for the
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models with higher order effects the model paramet®uld indicate if discriminant
validity remains stable across different constelfeg on the other trait or if it changes.

Determinants and moderators of agreement and desgentIn principle the CT
MTMR models allow for the examination of moderatofsagreement and disagreement
via their latent three- and four-variable log-linedfects. These moderators have already
been discussed with respect to agreement and desagnt (see above). | will shortly
repeat the possible moderators that can princifedlgletected in the CT MTMR models.
Good categories may be identified as categorieb watry high agreement rates across
raters. Good targets are targets upon whom ratge an all constructs (i.e., especially
consistent individuals, see Funder, 1995), this nago be the case for special
combinations of good categories and good targets—-ethmbination has been introduced
as palpability for the interaction of traits andgets by Funder and extended to the
interaction of categories and targets in this diatien. Good judges agree with each other
independently of the category combinations. The NTMR model is restricted in its
information about all possible determinants and enatbrs of agreement and
disagreement because information is only avail&dyiéwo traits times two rater. It is not
possible to separate some of the different moderdtom each other to identify the
different influences (see below). Additional infation gained by more traits and raters

must be used to get more insight into the modegatffects.

Structurally different vs. interchangeable ratefthe CT MTMR models can be
used to analyze structurally different and intengemble raters. Interchangeable raters
require special restrictions on the model paramsatepresenting their interchangeability.
These restrictions have been introduced in detdilariables, effects, and parameters can

be interpreted as for the case of structurallyedéht raters.
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7.2 The “Joint Framework” of the CT MTMR Model and the Realistic

Accuracy Model

Validity and reliability are of highest importanée many areas in psychology. It is
important that psychologists detect and correcdg the behavioral cues that indicate
specific patterns of behaviors or latent typolofhiariables (such as clinical disorders).
The detection of the relevant cues and the praogssf information executed by a
psychologist, for example, can be described by msodisignal detection theory (SDT;
see Wickens, 2002). These models link the perclEvales (visual, auditory, haptic, and
olfactory) to a then activated category and to itihental registration. Analyzing these
processes may be very helpful to explain how judgeke up their minds depending on
the cues they can perceive or the cues they evenaliperceive concerning several items
as “being moody”, “self-doubtful”, “sensitive” ovtiinerable”.

Funder (1995) introduced the realistic accuracy éhgBAM) as a logic chain of
determinants of accurate judgment. The knowledgritathe properties ojood judges
good indicators good targetsandgood traitsas factors enhancing rater agreement may
help to improve the quality of ratings or may hétp explain why some ratings are
inaccurate. Funder (1995) developed the RAM foa@usin factors and their interactions
that may enhance “rating accuracy”. He argues feopostpositivist perspective saying
that “truth indeed exists but there is no sure wath to it (p. 656)" relying on
philosophical positions such as critical realisrd @ancritical rationalism (for more details
see Funder, 1995). His approach is closely reltdetthe approach of Brunswick (1956,
cited after Funder, 1995). In Funder's point ofwyi@ccuracy (approximating truth) is
enhanced when raters agree. Without engaging iscaission about the existence of truth
and the possibility to perceive or know it, his@argents seem to be true in the context of
rater agreement, too, as his considerations anticiatipns directly apply to the models of
rater agreement. Thus they may help to get a deepeerstanding of agreement and
disagreement of multiple raters.

Agreement as a joint product of the target andudge depends on four principal
sources of agreement: i) the relevance of behdvowres to a personality trait, ii) the
extent to which these cues are available to ob#eryaii) the extent to which these cues

are detected, and iv) the way in which these coesised (Funder, 1995, p. 658). These
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four determinants are connected using a logicaincleading from the trait (construct) to
the final ratings. i) A trait generally producesbahavioral effect which is conceived
relevant for this trait; however, ii) this behawabeffect must be available to the judge to
become meaningful with respect to the rating. Clang cortical activity may generally
not easily be observed whereas facial expressioih &s flushing or smiling are.
Additionally, iii) the judge must be attentive aable to detect these behavioral cues. The
detection may be hampered by many factors suchnasentive judges, distracting
situations, or situational factors which renderadvioral cue difficult to be seen—targets
may look into another direction due to experimentadtructions and therefore their
flushing is difficult to be seen. Finally, iv) thedge must correctly link the behavioral cue
to the trait it represents. A judge may believeeadvior to be diagnostic of a particular
trait while it is diagnostic of another trait ormdthing at all.

In RAM four theoretically possible moderators ota@acy are introduced: i) good
judge, ii) good target, iii) good trait, and iv)@binformation:

i) Good and bad judges can be differentiated byr thieilities to detect and use
readily available behavioral cues. Funder (199&pduces three components rendering a
judge a good judge. a) Experience and / or knovdeglgout personality traits and how
they are revealed in behavior. b) General abilisash as intelligence or more narrow
abilities as cognitive and attributional complexityay improve the possibility that detected
cues are used in a valid manner. This correspanttetanalysis of information processing
and can best be done using techniques of signettitat theory (see e.g., Wickens, 2002).
c) Finally, motivational aspects may lead to mareuaate judgments if the motivation to
provide valid ratings is high (Flink & Park, 199hut may also lead to a distortion of
ratings. A person who has a strong need to be alwathe right may not be a good judge
judging a target's actions which are opposed toates’'s own beliefs (see Funder, 1995).

i) Good targets can be judged correctly havingtre¢ly few information about
their behavior (see e.g., Colvin 1993a, 1993b). dStaogets are characterized by showing
a high cue availability and relevance. Funder (}98% a number of hypotheses which
might explain why some individuals are much eaigudge than others. Individuals with
high activity levels should show more behaviors,aterefore, be more easily judged
correctly. The same is true for talkative peoplgh-elf-monitoring individuals are more
difficult to judge according to RAM because thesdividuals change their behaviors as a
function of their surroundings. This is relatedttee question if individuals are traited (i.e.,

having a trait) or not. Baumeister and Tice (198®oduced the concept of "metatraits”
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describing the phenomenon that some individuals@asistently over situations and, thus,
have specific traits while others do not. Colvi@93a, 1993b) found that some individuals
are both more consistent in their behaviors ancertikely to be agreed about as a result of
their consistent behavior.

Conversely, "bad targets" are either individualsowdre inconsistent in their
behaviors (e.g., high self-monitoring) or individtkiavho conceal certain aspects of their
behavior. Criminals for example may not overtly whariminal acts leading to agreement
about their “non-criminality”, however these ratingre by far not accurate.

i) Good traits are characterized by easily avd@déaand highly relevant behavioral
cues. These are traits which are associated tty edxsiervable behaviors such as positive
social interaction for sociability and which areduently displayed (e.g., a person who
often seeks social interactions). In short, soraistiare moreisiblethan others. Visibility
is closely associated with interjudge agreemene (8g., Funder & Dobroth, 1987).
However, to my mind visibility is not the same agitability and relevance. Some
behaviors may be frequently available but relevémt different traits. Talkative
individuals may be nervous, sociable, dominant, aod all of the three. Therefore the
behavioral cue "talkative" is easily available lbmbiguous with respect to several traits.
Visibility in my understanding is the interplay of availdpiland relevance of several
combined behavioral cues being highly indicativedgarticular trait. Visibility may also
be enhanced by other properties of the individuaking it easier to differentiate between
different traits.

iv) Good information is the signals sent out by tasget which might principally
lead to accurate judgment. This moderator only eor the availability of relevant
information and not if raters perceive this infotroa or the way they process the
information.

These four moderators may each have an isolatedtefh the accuracy of ratings
but they may also interact. Traditional rater agreet models deal with one trait and
multiple raters allowing for an examination of agreent and disagreement. Moderators at
the level of targets and / or raters may be integran order to explain why there is
agreement on some targets and why some raters afieeothers do not. The interaction
between these two moderators is callethtionship (Funder, 1995). In RAMexpertise
denotes the interaction between raters and tiaxgertise is high if a particular rater has
enough knowledge about a given trait and its befmalvcuesSensitivitycharacterizes the

fact that some judges may be better in perceiviadgiqular relevant information than
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others; however, this effect changes as a funadfdhe kind of information and the rater.
Diagnosticity names the fact that some traits can only be judmexkd on particular
information and that the accuracy depends on thel lef generalization of the trait (see
Funder, 1995)Divulgencedenotes the fact that some information aboutgetanay help

a rater to judge this target accurately while #@e information concerning another target
may not at all help to improve the rating qualltydividuals of different ethnic groups may
show the same behavior but this information mayimdicate the same concepts (shaking
ones head is associated to saying no in westetareslbut means yes in large parts of
India).

All these interactions could be analyzed in ratgreament models if additional
information was incorporated into the model. Yhgre is one interaction that—at least in
parts—can be examined relating rater agreement Isxédesach other as is done in the
Multitrait-Multirater models:Palpability denotes the interaction of traits and targetst Tha
is, certain traits might be easy to judge in somgdts but not in others. Integrating
additional information into rater agreement modgleh as multiple traits allows for a
deeper understanding of which personality types bwygongruently or more accurately
rated. To my mind the interaction of targets araltdr (palpability) is related to the
visibility of a trait. That is, a highly extravedendividual may be much easier judgable on
certain traits because she or he provides much ipenavioral cues and is much more
open-hearted. Therefore, being extraverted may hésaonceived as an indicator of
visibility for some traits.

Funder (1995) explicitly claims to enlarge RAM Imydgrating a multiple cues and
multiple traits perspective. Without explicitly meming, Funder implies that Multitrait-
Multirater models can be seen as a special casailtitrait RAMs. His approach provides
some interesting theoretical considerations abat dfiferent effects of the Multitrait-
Multirater models for categorical data.

It is thus logic to combine the strength of thefediént approaches with each other
yielding a “joint framework” for the analysis ofteat agreement and disagreement. For
example the “Children's Depression Rating Scalevised” (Poznanski & Mokros, 2004)
is used to rate a child's status on a more ordbBsgact construct as depression based on a
semi-structured interview. The categorization ofheld as suffering from a depression
depends on the classification as being sad, hawioidpid thoughts, failing at school and
other classifications. This approach is psychoroallsi mirrored by the log-linear model

with one latent variable.
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In this example, it is of utmost importance thae thatings of the clinical
psychologist are accurate for each child she ohdseto rate. Therefore, new clinicians
(trainees) should be trained to provide accuraiags The latent rater agreement models
could be used to examine if the ratings of thengaicome close to what an expert rates
(considering the expert as gold standard in theetsdor structurally different methods) or
to compare the ratings of different trainees ineortd inspect which category definitions
should be made much clearer (using models forahtergeable raters).

Furthermore, it is very important to consider aiddial clinical symptoms to
inspect if the trainees correctly detect comorlidit if they have special beliefs or
theories about which symptoms are related or raté(tbias). To this end the CT MTMR
model could be used. It is also highly importankitmw more about the moderators of
agreement (accuracy). Which forms of depressionbeanonsidered palpable? Are there
some easily detectable forms of depression? Iseaggpt higher for particular children?
What are these children's' personality traits onadl disorders that render these children
more judgeable? Do trainees distinguish equallyl wetween all categories? Which
categories do they confound more often than oth&listhese pieces of information could
be detected by sound applications of the CT MTMRdeh@xtended to more than two
traits and more than two methods. However, thesetleg typical questions of the rater
accuracy model presented by Funder (1995). In daddifferentiate between good judges
and good targets, for example, more than two ratersieeded. If there is a group of easily
judgeable targets all raters will agree with respgedheir latent statuses. If agreement is
due to the good judges not all of the three or modges will agree with respect to the
targets. Additionally, more than two traits are ces to identify if there are good traits,
this is the case if some traits (extraversion aociability, for example) can be easily
judged (visible or good traits) by all raters whes®thers (e.g., neuroticism) are harder to
judge. The same is possible for specific categowésparticular traits and their
combinations. Detailed analyses of the log-lineaodel parameters would enable
researchers to identify these moderators of agreefaecuracy).

Although the CT MTMR model allows for a deeper umstiending about
determinants and moderators of agreement it isdoyneans a process oriented model.
That is, to study the underlying process of deaisiaking the implications of the realistic
accuracy model (Funder, 1995) should be relatechddels of signal detection theory

(SDT; e.g., Wickens, 2002). These approaches cbeldised to clarify which kind of



Summary and Discussion 224

information is good information and what availalyilimeans in the perspective of a
cognitive psychologist.

Crucial questions in this field are: What behaViartaes have to be emitted to
render a behavior judgeable? What kind of infororateads to a valid judgment on item
contents such as “vulnerable”? Is it best to peeeierbal, behavioral, and auditory cues
simultaneously or in sequence? SDT may help toyaaahese research questions at the
beginning of the rater accuracy model (relevanak arailability as well as perception of
cues). The CT MTMR model (but also models of SDBymather be used at the end of
the logic chain when several raters may be compartddrespect to how they used the
perceived information. Therefore, | consider the BTMR model as a model that may
broaden the perspective of the rater accuracy mmatedlso as a model that is—directly
implied by the logic of the realistic accuracy mbe be at the end of the logical chain

analyzing the ratings.

7.3 Limitations of the Models and Future Research Directions

The major limitation of the presented models isrtbemputational complexity. To date no
software package allows for a sound estimatiorheflog-linear parameters of the most
complex MTMR models. Future research directionsceam the development of better
estimation procedures for the log-linear modelshwidtent variables (Latent Class
Models). If these are available the applicabilit the CT MTMR model might be

examined in simulation studies relying on empirieadl / or simulated data sets. However,
there may only be guidelines concerning sample sieguirements because the
identification of a model is always in parts an @mpl issue (see Section 4.1.2). In the
current application, no information could be gairethe complex MTMR models could

not be estimated due to intrinsic non-identificatar to non-identification due to a sparse
data problem. Software packages that could be tesadalyze the MTMR models should
integrate several components: i) better estimapoocedures as Bayesian estimation
methods using prior information (Maris, 1999; Venh& Magidson, 2002, 2005), ii) an

automatic identification check as implemented inNRRARK, for example (van de Pol,

Langeheine, & de Jong, 1996), and iii) the possikib run bootstrap analysis.
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The MTMR model is not soundly applicable to theadsét presented in Section 4.
If researchers are confronted with similar probleass encountered in the empirical
applications at least different latent rater agreleirand Correlated Traits models can be
estimated crossing all traits and methods. Thesdefaoreveal information that may
answer some of the research questions listed abtmweever, conditional effects (as three-
or four-variable effects in the MTMR models) canhetanalyzed.

Future research should be conducted on analyzimyg ldata sets which may be
found in organizational psychology where many d¢Berate many employees. Consider a
call-center where clients are oftentimes aske@t® some properties of the agent. A fixed
number of clients could be randomly drawn for eagent and their agreement and
disagreement as well as the convergent and diswimivalidity of the evaluation scale
could be analyzed. The more complex situation wiffering numbers of clients for the
agents could be solved adopting the multilevelriatelass approach introduced by
Vermunt (2003, 2005, 2008).

Young physicians could be trained relying on therarater agreement models or
on the MTMR models if they were asked to rate pasieduring the ward rounds. Their
ratings could be compared with ratings of otherngpphysicians on the same patients or
with the ratings of the physician in charge. Tm$rmation could be used to develop
specific programs to train the accuracy of the ygpphysicians.

Data sets containing missingness on observed daikehvare likely to occur in
many applications will additionally increase themguexity of the estimation process.
Vermunt (1996) proposed an approach to analyze Imeodéh unobserved (latent), partly
observed, and observed data. In this approachomsespindicators have to be used
indicating the missingness. This results in adda@lomodel complexity and has not yet
been defined for the models presented here.

If the CT MTMR model should proof to be applicabdeempirical data situations
the newly defined indices (method bias type Il astinguishability index) should be
investigated in more detail. It should be examitiedere is any meaningful benchmark or
threshold as to which ratio is of substantial ies¢ifor given research domains. In settings
with many raters, careful considerations as to twhraters may provide bias free
associations are necessary and will afflict thénitedn of this index.

The quasi-independence models offer interesting sipies to model
disagreement and agreement. If the CT MTMR mode} besoundly estimated it may
also become meaningful to investigate the struatfisgreement restricting the monotrait-
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heteromethod associations in a larger model. Insdr@e vain, the structures of rater
agreement might be adapted to three- and fourtariaffects yielding non-hierarchical
higher-order rater agreement models. In these mpdkleffects may be removed from the
saturated model that do not relate to a simpletjgbaor conditional overall agreement.
This model would imply random associations for cteteo disagreement cells and might
give important insights into rater bias. The clgaychometric definition and the
interpretation of the log-linear parameters will teeious because these kinds of models
are no longer hierarchical. However, it might beguahte for rather distinct raters who
might be expected to agree more often on someeotadmstructs but not to show related
joint ratings for other constructs. Imagine colleeg and supervisors as raters of a target
working in the service sector where workers areedsto be especially friendly and
helpful. In this case, a®Border quasi-independence model could be fit algwonly for
higher overall agreement rates. The target persthmwast probably be rather friendly and
helpful to all clients and especially friendly am@lpful if the supervisor is present
(concealing some of her or his traits), but shén@may also be much less friendly and
helpful with some of her or his colleagues. Therefthe ratings of the supervisor and the

colleagues will most probably differ from each athe

The latent rater agreement and the CT MTMR modedsgnted in this dissertation may
reveal important information about the convergem discriminant validity of ratings in
empirical applications. To date, only the less cheaped models can be soundly
estimated. If there are more advanced and moreiegifi estimation procedures the CT
MTMR model may become applicable and its strength gain in information concerning
ratings can be used to enhance the quality of mdggltal ratings and to understand more

about the determinants and moderators of agreeaneindisagreement.
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Appendix A: Data Description

The German Version of the Big-Five scale (Ostend@90)
Im folgenden finden Sie eine Reihe von Eigenschefisffen.
Kreuzen Sie bitte die Antwort an, die am ehestdrSaials Person zutrifft.

Ich bin

kontaktfreudig

warmherzig

arbeitsam

verletzbar

klug

gesellig

fleilRig

ricksichtsvoll

intelligent

empfindlich

Uberhaupt
nicht
1 2
O O
O O
O O
O O
O O
O O
O O
O O
O O
O O
Uberhaupt
nicht

O O O O O O O O O Ow
o O O O O O O O O O0O-=

0
)
>
=

O O O O O O O O Ow

sehr

Ich bin

pflichtbewuf3t

launenhaft

lebhaft

kenntnisreich

gutmditig

temperamentvoll

hilfsbereit

geistreich

selbstzweiflerisch

strebsam

Uberhaupt
nicht
1 2
O O
O O
O O
O O
O O
O O
O O
O O
O O
O O
Uberhaupt
nicht

O O O O O O O O O O0Oe«
o O O O O O O O O O0O-

(%]
(¢)
>0
=

O O O O O O O O Ouw

sehr

The peer report form exactly corresponds to therepbrt form except for the pronomina
used to describe the acting person. Change frorm&efich" to "er / sie" and flexation of
the verb, from 1st person singular to 3rd persogugdar.



A.1 Frequency Distributions of the Big-Five Items

Table A.1.1
Frequency distribution of the Big-Five Items (Osteri, 1990) of the self-report data

categories
German item English item little middle highly total
arbeitssam industrious 93 165 220 478
verletzbar vulnerable 43 75 360 478
fleiRig diligent 116 159 203 478
empfindlich sensitive 63 77 338 478
pflichtbewuf3t dutiful 29 93 356 478
launenhaft moody 179 130 169 478
selbstzweiflerisch  self-doubtful 121 88 269 478
strebsam ambitious 122 150 206 478

Notes Categories 1 and 2 as well as 3 and 4 of thenaligcale have been collapsed.



Table A.1.2
Frequency distribution of the Big-Five Items (Osteri, 1990) of peer report A

categories
German item English item little middle highly total
kontaktfreudig sociable 34 69 375 478
arbeitssam industrious 78 127 273 478
verletzbar vulnerable 76 141 261 478
gesellig companionable 22 67 389 478
fleiRig diligent 78 134 266 478
empfindlich sensitive 113 150 215 478
pflichtbewuft dutiful 52 107 319 478
launenhaft moody 258 126 94 478
lebhaft vivacious 43 123 312 478
temperamentvoll  spirited 107 152 219 478
selbstzweiflerisch  self-doubtful 217 126 135 478
strebsam ambitious 110 140 228 478

Notes Categories 1 and 2 as well as 3 and 4 of théenadigcale have been collapsed.



Table A.1.3
Frequency distribution of the Big-Five Items (Osterf, 1990) of peer report B

categories
German item English item little middle highly total
kontaktfreudig sociable 37 64 377 478
arbeitssam industrious 68 127 283 478
verletzbar vulnerable 79 137 262 478
gesellig companionable 19 67 392 478
fleiRig diligent 82 131 265 478
empfindlich sensitive 105 154 219 478
pflichtbewuft dutiful 50 97 331 478
launenhaft moody 282 108 88 478
lebhaft vivacious 47 106 325 478
temperamentvoll  spirited 109 126 243 478
selbstzweiflerisch  self-doubtful 218 131 129 478
strebsam ambitious 101 141 236 478

Notes Categories 1 and 2 as well as 3 and 4 of thenaligcale have been collapsed.



A.2 Response Patterns of the Self-Report Data for Neuroticism

Table A.2.1

Response patterns of the observed self-report aladatheir frequencies for the basic one-
variable Latent-Class model

A B C D freauenc relative
vulnerable sensitive moody self-doubtful 9 y frequency

1 1 1 1 8 .02
1 1 1 2 3 .01
1 1 1 3 2 .00
1 1 2 1 3 .01
1 1 2 2 0

1 1 2 3 2 .00
1 1 3 1 1 .00
1 1 3 2 0

1 1 3 3 1 .00
1 2 1 1 5 .01
1 2 1 2 2 .00
1 2 1 3 2 .00
1 2 2 1 1 .00
1 2 2 2 2 .00
1 2 2 3 0

1 2 3 1 1 .00
1 2 3 2 1 .00
1 2 3 3 0

1 3 1 1 1 .00
1 3 1 2 0

1 3 1 3 4 .01
1 3 2 1 1 .00
1 3 2 2 1 .00
1 3 2 3 0

1 3 3 1 1 .00
1 3 3 2 0

1 3 3 3 1 .00
2 1 1 1 7 .01
2 1 1 2 4 .01
2 1 1 3 1 .00
2 1 2 1 2 .00
2 1 2 2 0

2 1 2 3 1 .00
2 1 3 1 3 .01
2 1 3 2 0

2 1 3 3 2 .00
2 2 1 1 10 .02
2 2 1 2 5 .01
2 2 1 3 5 .01
2 2 2 1 1 .00

Table continues...



Table continued

2 2 2 2 6 .01
2 2 2 3 1 .00
2 2 3 1 1 .00
2 2 3 2 1 .00
2 2 3 3 0
2 3 1 1 2 .00
2 3 1 2 0
2 3 1 3 4 .01
2 3 2 1 2 .00
2 3 2 2 3 .01
2 3 2 3 7 .01
2 3 3 1 3 .01
2 3 3 2 0
2 3 3 3 4 .01
3 1 1 1 8 .02
3 1 1 2 5 .01
3 1 1 3 3 .01
3 1 2 1 1 .00
3 1 2 2 1 .00
3 1 2 3 3 .01
3 1 3 1 2 .00
3 1 3 2 0
3 1 3 3 0
3 2 1 1 4 .01
3 2 1 2 6 .01
3 2 1 3 8 .02
3 2 2 1 1 .00
3 2 2 2 4 .01
3 2 2 3 5 .01
3 2 3 1 1 .00
3 2 3 2 1 .00
3 2 3 3 3 .01
3 3 1 1 21 .04
3 3 1 2 9 .02
3 3 1 3 50 .10
3 3 2 1 18 .04
3 3 2 2 15 .03
3 3 2 3 49 .10
3 3 3 1 12 .03
3 3 3 2 19 .04
3 3 3 3 111 .23
total 478 1

Notes. 1: non-neurotic response category; 2: neutral mspocategory; 3: neurotic
response category. Empty cells in the column retesy the relative frequency indicate
response patterns that have not been observed.



Appendix B: Collapsibility Theorem

Bishop (1971, p. 545) defined the “conditions... unglich collapsing multidimensional
contingency tables, by adding over variables, afiléct the apparent interaction between
the remaining variables”. Collapsing by adding ovariables is also known as collapsing
frequencies or categories of a variable or as psitey arrays. A variable is considered
collapsible if no interactions between variablesjch remain in the reduced matrix, are
changed compared to the effects in the full dat&rimnésee also .Bishop, Fienberg &
Holland, 1975).

Theorem:

In a rectangular more-dimensional table a variablecollapsible with respect to the
interaction between the other variables in a hadtaal model if and only if it is at least
conditionally independent of all but one of theestliariables given the last variable.
Proof:

See Bishop (1971) or Bishop. Fienberg, and Holl@®d5).

Example:

Without loss of generality the simplest case ok¢hwariables is considered. The full

additionally parameterized model reads as follows:
In(gy ) =N+A+ A5+ +NC+HAC+N S+ N (B.0.1)

Without loss of generality, a model with one poksiioteraction absent is assumed. The

interactionA}” is chosen to be absent (which automatically léadise absence of;™):
In(ey ) =N+A"+AT NS+ NS (B.0.2)
The logarithms of the marginal sums may be wrigéen

In(g;,) =n +A +)\jB +)\ijAB
IN(g.i) =N+A" A +ALE (B.0.3)

In(g, ) =N+A"+AZ+AE+N T+

The table is collapsible for the interaction of AGd AB.



Appendix C: Log-Linear Parameters of the Latent Rat  er
Agreement Models for Structurally Different Raters

C.1 Saturated Latent Rater Agreement Model
Table C.1.1

Parameters of the measurement model of neurotiofdhe saturated latent rater

agreement model for structurally different rateself report)

one variable
two variables effect
effect
variable manlfe'st ns=1 ns=2 ns=3
categorles
1 0.57 1.66 0.40 1.52
A (vulnerable) 2 0.17 7.92 4.49 0.03
3 10.50 0.08 0.56 23.38
1 8.51 10 3.17 16° 2.30 16° 1.38 10"
B (sensitive) 2 6.37 16 3.80 107 1.22 107 2.15 10*
3 1.84 16 8.3210*  3.56 10 3.38 16*
1 1.07 2.53 1.10 0.36
C (moody) 2 0.75 1.03 1.63 0.59
3 1.25 0.38 0.56 4.70
1 0.47 3.54 1.85 0.15
D (doubtful) 2 0.92 1.09 0.61 1.51
3 2.31 0.26 0.89 4.35

Notes * boundary values}s category oNEUS



Table C.1.2

Parameters of the measurement model of neurotiofdhe saturated latent rater

agreement model for structurally different ratepgé€r report A)

one variable _
effect two variables effectl
variable manlfe'st na=1 na=2 na=3
categorles

1 0.17 248 1d 1.75 2.29 10*
| (vulnerable) 2 0.43 603.47 19 3.99 4.15 10+

3 13.57 6.69 16* 0.14 1.04 10

1 3.68 102 4.37 16° 1.57 10 1.45 10"
J (sensitive) 2 1.04 16 5.32 1.46 10 1.28 14

3 0.26 4.31 16 4.33 5.36 1¢f

1 1.97 1.77 1.07 0.53
K (moody) 2 0.85 0.83 1.35 0.90

3 0.59 0.69 0.69 2.11

1 1.53 2.24 1.00 0.44
L (doubtful) 2 0.81 0.78 1.24 1.04

3 0.81 0.57 0.80 2.17

Notes * boundary values;an category oNEUA



C.2 Independence Latent Rater Agreement Model

Table C.2.1
Parameters of the measurement model of neuroticfdime independence latent rater

agreement model for structurally different rateself report)

one variable _
effect two variables effect
variable manlfe-st ns=1 ns=2 ns=3
categories

1 2.74 10" 3.22 16° 8.97 16° 3.47 10’
A (vulnerable) 2 4.20 16’ 3.00 10* 1.66 10' 2.01 16°

3 8.69 16° 1.0310°  6.73 10" 1.43 16’

1 1.07 16 5.76 10 1.74 10’ 0.00**
B (sensitive) 2 5.76 103 1.06 0 1.14 10* 8.24 1¢f

3 1.66 10* 1.60 10% 4.92 16 1.27 16

1 0.73 3.65 1.60 0.17
C (moody) 2 0.36 2.25 3.36 0.13

3 3.78 0.12 0.19 44.03

1 0.47 3.37 1.83 0.16
D (doubtful) 2 0.91 1.11 0.59 1.52

3 2.36 0.27 0.93 4.04

Notes * boundary values; **: zero fitted margins category oNEUS.



Table C.2.2
Parameters of the measurement model of neurotiofdhme latent rater agreement model

for structurally different raters (peer report A)

one variable _
effect two variables effect
variable manlfe'st na=1 na=2 na=3
categorles

1 2.11 16.71 0.00* 57.14
| (vulnerable) 2 0.10 202.26 198.50* 2.49%10

3 4.58 2.96 10 4.80* 702.64*

1 1.14 10 3.30 10 5.34 10 5.68 10"
J (sensitive) 2 324.27 0.01 0.00 3.7010

3 269.13 5.51 16 0.00 47519

1 1.95 1.53 1.24 0.53
K (moody) 2 0.90 0.82 1.40 0.88

3 0.57 0.80 0.58 2.18

1 1.55 2.09 0.89 0.54
L (doubtful) 2 0.82 0.82 1.25 0.98

3 0.79 0.59 0.90 1.90

Notes * boundary valuesya: category oNEUA



Table C.2.3

Conditional probabilities of the manifest respors¢egories for the construct neuroticism
(NEUS) in the quasi-independence | latent ratereegnent model for structurally different
raters (self-report)

latent status

variable manifes't ns=1 ns=2 ns=3
categories
1 31 .04 .01
A (vulnerable) 2 42 A2 .00
3 27 .84 .99
1 51 .03 .00*
B (sensitive) 2 A7 A1 .00
3 .01 .86 1.00
1 .69 .38 A1
C (moody) 2 .20 .33 13
3 A2 23 .76
1 .50 .28 .00
D (doubtful) 2 31 15 A3
3 18 57 .87

Notes.* boundary valuesns categories ofNEUS



Table C.2.4
Conditional probabilities of the manifest resporsgegories for the construct neuroticism
(NEUA) in the quasi-independence | latent rateresgnent model for structurally different

raters (peer report A)

latent status

variable manife.st na=1 na=2 na=3
categories
1 .58 .09 .00*
| (vulnerable) 2 .39 44 .00*
3 .03 A7 1.00*
1 .78 16 .00*
J (sensitive) 2 22 .50 .08
3 .00* .34 .92
1 .76 57 34
K (moody) 2 15 .32 .25
3 .09 A1 40
1 75 48 22
L (doubtful) 2 15 31 .26
3 A1 21 .52

Notes.* boundary valuespa: categories oNEUA



C.3 Quasi-Independence | Latent Rater Agreement Model

Table C.3.1

Parameters of the measurement model of neurotigfdhne quasi-independence | latent

rater agreement model for structurally differentees (self report)

one variable _
effect two variables effect
variable manlfe-st ns=1 ns=2 ns=3
categories

1 0.45 2.10 0.53 0.90
A (vulnerable) 2 0.32 4.00 241 0.10

3 6.88 0.12 0.79 10.68

1 57410°° 6.06 16°° 3.6413°° 454107
B (sensitive) 2 56716°° 56210°° 1.3710°° 1.3014"

3 3.0716°" 29310%° 20110°°  1.6914"

1 1.17 2.33 1.00 0.43
C (moody) 2 0.82 0.97 1.47 0.71

3 1.05 0.44 0.68 3.30

1 0.04 42.17 24.94 9.51 10
D (doubtful) 2 3.26 0.31 0.16 19.67

3 7.91 0.08 0.25 53.47

Notes * boundary values}s category oNEUS.



Table C.3.2
Parameters of the measurement model of neurotigfdhne quasi-independence | latent

rater agreement model for structurally differentaes (peer report A)

one variable _
effect two variables effectl
variable manlfe'st na=1 na=2 na=3
categorles

1 0.07 44.07 4.45* 6.33 16
| (vulnerable) 2 0.11 19.30 14.85* 574.75

3 119.83 0.00 0.64* 2.75 90

1 8.00 1¢' 2.3210 681.21 6.33 16"
J (sensitive) 2 711.33 0.75 0.00 574.75

3 1.76 5.72 10 0.64 2.75 10

1 1.97 1.74 1.08 0.53
K (moody) 2 0.85 0.81 1.37 0.90

3 0.60 0.71 0.68 2.07

1 1.53 2.15 1.00 0.47
L (doubtful) 2 0.82 0.80 1.22 1.02

3 0.80 0.58 0.82 2.10

Notes * boundary values;an category oNEUA



Table C.3.3

Conditional probabilities of the manifest respors¢egories for the construct neuroticism
(NEUS) in the quasi-independence | latent ratereegnent model for structurally different
raters (self-report)

latent status

variable manifes't ns=1 ns=2 ns=3
categories
1 31 .04 .01
A (vulnerable) 2 42 A2 .00
3 27 .84 .99
1 51 .03 .00*
B (sensitive) 2 A7 A1 .00
3 .01 .86 1.00
1 .69 .38 A1
C (moody) 2 .20 .33 13
3 A2 23 .76
1 .50 .28 .00
D (doubtful) 2 31 15 A3
3 18 57 .87

Notes.* boundary valuesns categories ofNEUS



Table C.3.4
Conditional probabilities of the manifest resporsgegories for the construct neuroticism
(NEUA) in the quasi-independence | latent rateresgnent model for structurally different

raters (peer report A)

latent status

variable manife.st na=1 na=2 na=3
categories
1 .58 .09 .00*
| (vulnerable) 2 .39 44 .00*
3 .03 A7 1.00*
1 .78 16 .00*
J (sensitive) 2 22 .50 .08
3 .00* .34 .92
1 .76 57 34
K (moody) 2 15 .32 .25
3 .09 A1 40
1 75 48 22
L (doubtful) 2 15 31 .26
3 A1 21 .52

Notes.* boundary valuespa: categories oNEUA



C.4 Quasi-Independence Il Latent Rater Agreement Model

Table C.4.1
Parameters of the measurement model of neurotiofgime quasi-independence Il latent

rater agreement model for structurally differentees (self report)

one variable _
effect two variables effect
variable manlfe-st ns=1 ns=2 ns=3
categories

1 0.36 2.68 0.41 0.90
A (vulnerable) 2 0.66 1.96 1.53 0.33

3 4.29 0.19 1.58 3.32

1 5.20 10” 4.03 16° 3.9910° 6.23 10 %
B (sensitive) 2 9.35 16° 1.99 16° 9.54 107 5.27 16°

3 2.06 16° 1.25 10 2.63 10 3.04 16¢

1 1.27 2.06 0.98 0.50
C (moody) 2 0.84 0.92 1.64 0.66

3 0.93 0.53 0.62 3.05

1 0.75 2.20 1.29 0.35
D (doubtful) 2 0.75 1.32 0.75 1.01

3 1.79 0.34 1.04 2.81

Notes * boundary valuesis category oNEUS.



Table C.4.2
Parameters of the measurement model of neurotiofdime quasi-independence Il latent

rater agreement model for structurally differentaes (peer report A)

one variable _
effect two variables effect
variable manlfe'st na=1 na=2 na=3
categorles
1 2.84 0.91 0.09 12.70
| (vulnerable) 2 0.04 47.59 56.14 3.74710
3 9.92 0.02 0.21 210.36
1 3.00 1¢ 1.53 10 1.80 16 3.63 10°*
J (sensitive) 2 201.06 0.08 0.01 1.4630
3 16.58 7.83 18 0.07 1.89 10
1 1.97 1.65 1.13 0.53
K (moody) 2 0.87 0.80 1.43 0.87
3 0.58 0.75 0.62 2.15
1 1.54 2.07 0.95 0.51
L (doubtful) 2 0.82 0.80 1.24 0.99
3 0.80 0.60 0.84 1.98

Notes * boundary values;an category oNEUA



Table C.4.3
Conditional probabilities of the manifest resporsgegories for the construct neuroticism
NEUS) in the quasi-independence Il latent ratereggnent model for structurally different

raters (self-report)

latent status

variable manife.st ns=1 ns=2 ns=3
categories

1 31 .02 .02

A (vulnerable) 2 42 A3 .01
3 27 .86 .96

1 .50 .03 .00*

B (sensitive) 2 41 14 .00*
3 .06 .83 1.00*

1 .67 .39 .16

C (moody) 2 .20 43 14
3 A3 18 .70

1 51 .29 .04

D (doubtful) 2 .30 A7 A3
3 19 .55 .83

Notes.* boundary valuesjs categories oONEUS



Table C.4.4
Conditional probabilities of the manifest resporsagéegories for the construct neuroticism
(NEUA) in the quasi-independence Il latent rateresgnent model for structurally

different raters (peer report A)

latent status

variable manife.st na=1 na=2 na=3
categories

1 57 .06 .02

| (vulnerable) 2 37 A7 .00*
3 .05 A7 .98

1 73 16 .00*

J (sensitive) 2 27 .50 .09
3 .00 34 91

1 74 .58 34

K (moody) 2 .16 .32 .25
3 10 .09 41

1 74 46 .25

L (doubtful) 2 15 32 .26
3 A1 21 .50

Notes.* boundary valuespa: categories oNEUA



C.5 Quasi-Symmetry Latent Rater Agreement Model

Table C.5.1
Parameters of the measurement model of neurotiofgime quasi-symmetry latent rater

agreement model for structurally different rateself report)

one variable _
effect two variables effect
variable manlfe-st ns=1 ns=2 ns=3
categories

1 0.45 2.09 0.56 0.91
A (vulnerable) 2 0.32 4.04 2.43* 0.10

3 6.91 0.12 0.78 10.78

1 4.42 10° 7.87 16° 4.72 16° 2.69 10
B (sensitive) 2 6.67 16° 4.78 10* 1.16 10'° 1.80 16’

3 3.39 16° 2.66 107 1.82 10° 2.06 14"

1 1.17 2.33 1.00 0.43
C (moody) 2 0.82 0.97 1.47 0.71

3 1.05 0.44 0.69 3.30

1 0.03 53.01 31.36 6.0210
D (doubtful) 2 3.66 0.28 0.15 27.73

3 8.87 0.07 0.22 67.22

Notes * boundary valuesis category oNEUS



Table C.5.2

Parameters of the measurement model of neurotigfdgine quasi-symmetry latent rater

agreement model for structurally different ratepgé€r report A)

one variable _
effect two variables effect
variable manlfe'st na=1 na=2 na=3
categories
1 0.07 43.41 4.38 0.01~*
| (vulnerable) 2 0.13 17.15 13.20 0.04
3 104.94 0.00 0.02 4.3140
1 0.00 1.53 10 521.43 1.25 18
J (sensitive) 2 577.28 0.80 0.00 439.96
3 1.66 8.20 10 0.67 1.81 10
1 1.97 1.74 1.08 0.53
K (moody) 2 0.85 0.81 1.37 0.90
3 0.60 0.71 0.68 2.07
1 1.53 2.15 1.00 0.47
L (doubtful) 2 0.82 0.80 1.22 1.02
3 0.80 0.58 0.82 2.10

Notes * boundary values;an category oNEUA



Table C.5.3
Conditional probabilities of the manifest resporsgegories for the construct neuroticism

in the quasi-symmetry latent rater agreement méatestructurally different raters (self-

report)
latent status
variable manlfes't ns=1 ns=2 ns=3
categories
1 31 .04 .01
A (vulnerable) 2 42 A2 .00
3 27 .84 .99
1 51 .03 .00*
B (sensitive) 2 A7 A1 .00
3 .01 .86 1.00
1 .69 .38 A1
C (moody) 2 .20 .39 13
3 A2 23 .76
1 .50 .28 .00
D (doubtful) 2 31 15 A3
3 18 57 .87

Notes.* boundary valuesjs categories oONEUS



Table C.5.4
Conditional probabilities of the manifest resporsgegories for the construct neuroticism
(NEUA) in the quasi-symmetry latent rater agreemeaidel for structurally different

raters (peer report A)

latent status

variable manife.st na=1 na=2 na=3
categories
1 .58 .09 .00*
| (vulnerable) 2 .39 44 .00
3 .03 A7 1.00
1 a7 16 .00*
J (sensitive) 2 22 .50 .08
3 .00 34 .92
1 .76 57 34
K (moody) 2 15 31 .25
3 .09 A1 40
1 75 48 22
L (doubtful) 2 15 31 .26
3 A1 21 .52

Notes.* boundary valuespa: categories oNEUA



Appendix E: Loglinear Parameters of the CT MTMR Mod el
with Two-Variable Effects as Highest Order Interact ions

The interpretation of the log-linear parametersusthdbe carried out very cautiously

because LEM encounters difficulties estimating éargg-linear models with latent
variables.

E.1: Loglinear Parameters of the Model for Structurally Different Raters

Table E.1.1
Cross-classification of the log-linear two-varialgéects for the construct neuroticism
NEUA
1 2 3

ns=1 2.08 0.89 0.54 0.73

ns=2 0.59 1.43 1.18 1.28
ns=3 0.81 0.79 1.58 1.08

0.95 1.06 0.99

Notes ° indicates parameters wittvalues larger than 2.0Bindicates boundary values.

Table E.1.2
Cross-classification of the log-linear two-varialdéfects for the construct
conscientiousness

CONA
1 2 3
cs=1 1.87 1.14 0.47 0.89
cs= 2 1.10 1.09 0.83 1.26
cs= 3 0.49 0.81 2.55 0.89
0.54 1.24 1.49

Notes ° indicates parameters wittvalues larger than 2.0Bindicates boundary values.



Table E.1.3
Cross-classification of the log-linear two-variatdéects for the self-report

CONS

1 2 3
ns=1 0.96 1.04 0.99
ns= 2 0.84 1.12 1.06
ns= 3 1.23 0.85 0.95

Notes ®indicates parameter values witlvalues larger than 2.00.

Table E.1.4
Cross-classification of the log-linear two-varialgéects for the peer report
CONA
1 2 3
na=1 1.83 1.11 0.49
na=2 0.62 0.89 1.83
na=3 0.89 1.01 1.11

Notes ° indicates parameters witkvalues larger than 2.0Bindicates boundary values.

Table E.1.5
Cross-classification of the log-linear two-variatdéects for neuroticism in the self-report
and conscientiousness in the peer report

CONA

1 2 3
ns=1 0.92 0.93 1.16
ns= 2 1.17 0.94 0.91

ns=3 0.93 1.14 0.95




Table E.1.6
Cross-classification of the log-linear two-variatdéects for neuroticism in the peer report
and conscientiousness in the self-report

CONS
1 2 3
na=1 1.18 0.90 0.94
naz 2 1.01 0.99 1.00
na= 3 0.84 1.12 1.06

E.2: Loglinear Parameters of the Model for Interchangeable Raters

Table E.2.1
Cross-classification of the log-linear two-varialite neuroticism
NEUB
1 2 3

na=1 7.24 5.87° 1.22 013
na=?2 5.8% 7.96 1.2¢ 0.12
na=3 1.22 1.2¢ 1 1

0.13 0.12 1

Notes ° indicates parameters wittvalues larger than 2.0Bindicates boundary values.

Table E.2.2
Cross-classification of the log-linear two-variatdéfects for conscientiousness
CONB
1 2 3

ca=1 3.20 3.03 0.39 0.4
ca=?2 3.03 4.03 0.89 0.57
ca=3 0.39 0.89 1 1

0.4C0 0.57 1

Notes ° indicates parameters witkvalues larger than 2.0Bindicates boundary values.



Table E.2.3
Cross-classification of the log-linear two-varialdéfects across traits

CONA

1 2 3
na=1 2.61° 1.75 2.40
na=2 0.74 1.81 4.49
ha= 3 0.53° 0.51° 1

Notes Due to the equality restrictions the same paramealues are found for the
associations dNEUBandCONB

Table E.2.4
Cross-classification of the log-linear two-varialdffects across raters
CONB
1 2 3
na=1 0.94 0.53° 0.67
naz=2 0.71 0.69 0.77
ha=3 0.62° 0.77° 1

Notes Due to the equality restrictions the same paramealues are found for the
associations dNEUBandCONA



Appendix F: Input Files

F.1: Input Files for Rater Agreement Models

Saturated Model
man 2

dm3 3

lab A B

nod {AB}

Independence Model
man 2

dim3 3

lab A B

nod {A, B}

Quasi-independence | Model
man 2

dim3 3

lab A B

nod {spe (AB, 5a)}

Quasi-Independence |l Model
man 2

ac(AB, 1)}

Quasi-symmetry Model
man 2

dim3 3

lab A B

fac(AB, 3)}

Symmetry Model

man 2

dm3 3

lab A B

nod {spe (AB, 3a)}




F.2: Input File for the Log-Linear Models with One Latent Variable and the model

with two latent variables

Log-linear Model with One Latent Variable

lat 1

man 4

dm3 3 333
lab X ABCD

nod {X X A X B, X.C X D}

TOTMMOO®W>

F.3: Input Files for the Latent Rater Agreement Models

Saturated Model for Structurally Different Raters

lat 2

man 8

dm3 333333333
lab SNANABCDI J KL
nod SN. AN

Al SN {A. SN}
B| SN {B. SN}
C] SN {C. SN}
D SN {D. SN}

AN {1 . AN}

AN {J. AN}
K
L

SN [.90 .05 .05 .05 .90 .05 .05 .05 .90]
AN [.90 .05 .05 .05 .90 .05 .05 .05 .90]

Quasi-symmetry Model for Structurally Different Reg

|at 2

man 8

dm3 333333333

lab SNANABCDI J KL

nod SN AN {SN, AN, fac(SN. AN, 5)}



Al SN {A. SN}

Bl SN { B. SN}

C| SN { C. SN}

D| SN { D. SN}

| AN {I.AN}

J| AN {J. AN}

K| AN { K. AN}

L] AN {L. AN}
sta AISN[.90 .05 .05 .05 .90 .05 .05 .05 .90]
sta I|AN[.90 .05 .05 .05 .90 .05 .05 .05 .90]
des |

123
2 45
3 5 0]

Quasi-independence | Model for Structurally Differ®aters

lat 2

man 8

dim3333333333

lab SNANABCDI JKL

nod SN. AN { SN, AN, spe(SN. AN, 5a) }

Al SN {A. SN}
B| SN {B. SN}
C SN {C. SN}
D

p=
4
p=
v

J
K| AN {K. AN}

,_
P
z
s
P
<

sta A/SN[.90 .05 .05 .05 .90 .05 .05 .05 .90]
sta ||AN[.90 .05 .05 .05 .90 .05 .05 .05 .90]

Quasi-independence |l Model for Structurally Diffat Raters

|at 2

man 8

dm3 333333333

lab SNANABCDI J KL

nmod SN AN { SN, AN, fac(SN. AN, 1)}

SN { A SN}
SN {B. SN}
SN {C. SN}

>
pd
P

N[.90 .05 .05 .05 .90 .05 .05 .05 .90]
sta I|AN[.90 .05 .05 .05 .90 .05 .05 .05 .90]



Independence Model for Structurally Different Rater

lat 2

man 8

dm3 333333333
lab SNANABCDI J KL
nod SN, AN

Al SN {A. SN}
B| SN {B. SN}
C] SN {C. SN}
D SN {D. SN}
AN {1 . AN}
J| AN {J. AN}
K| AN {K. AN}
L| AN {L. AN}

sta A/SN[.90 .05 .05 .05 .90 .05 .05 .05 .90]
sta ||AN[.90 .05 .05 .05 .90 .05 .05 .05 .90]

Symmetry Model for Interchangeable Raters

lat 2
man 8
dim3 333333333
lab X YEFGHI J KL
nod XY {fac(X Y, 2), fac(XY,8)}
E| X { EX}
F| X { FX}
g X {GX}
H X { HX}
I|Y eql E| X
J|Y eql F| X
KIY eql g X
LY eql H X

des [ 0 nodel the marginal of X

* ot
* to nodel the marginal of y

~NRRRR
WUIN NN
oOoOwWoOo

—_

sta Ef]X[.90 .05 .05 .05 .90 .05 .05 .05 .90]

Quasi-independence | Model for InterchangeableRate

lat 2
man 8
dim3 333333333
lab X YEFGHI J KL
nmod XY {fac(X Y, 2),fac(XY,3)}
E| X { EX}
F| X {FX}
g X {G
H| X { HX}



Y eql E| X

J|Y eql F| X

KIY eql g X

LY eql H X
des [ 120 * to nodel
120 * to nodel

100

020

0 0 3]

t he margi nal
t he margi nal

of X
of y

sta Ef]X[.90 .05 .05 .05 .90 .05 .05 .05 .90]

Quasi-independence |l Model for InterchangeableiRat

lat 2
man 8
dm3 3333333
lab X YEF GHI J
nod XY {fac(XY,?2),
E| X { EX}
F| X { FX}
g X {G&X}
H X { HX}
I|Y eql E| X
J|Y eql F X
KIY eql g X
LY eql H X
des | 120 * to nodel
120 * to nodel
100
010
0 0 1]

t he margi nal
t he margi nal

of X
of y

sta E/X [.90 .05 .05 .05 .90 .05 .05 .05 .90]

Independence Model for Interchangeable Raters

lat 2
man 8
dm3 3333333
lab X YEF GHI J
nod XY {fac(X YV, 2)}
E| X { EX}
F| X {FX}
g X {G&X}
H X { HX}
I|Y eql E| X
J|Y eql F| X
KIY eql g X
LY eql H X

120 * to nodel
12 0] * to nodel

des |

A w
—w

t he margi nal
t he margi nal

of X
of y

sta Ef]X[.90 .05 .05 .05 .90 .05 .05 .05 .90]



F.4: Input Files for the CT MTMR Models for Structurally Different and
Interchangeable Raters

Saturated CT MTMR Model for Structurally DiffereRaters

|at 4

man 16
dm33333333333333333333

lab SNSCANACEAFBGCDHMI NJOKLP
nod SN. SC. AN. AC

VOoOZIrA«—ITmmOOwm>

%>mm S>>0 WWWN

A Ay A Ay Ay A A Ay Ay A A Ay
VOZZIr AT IOM]

sta
sta
sta
sta

.90 .05 .05 .05 .90 .05 .05 .05 .90]
.90 .05 .05 .05 .90 .05 .05 .05 .90]
.90 .05 .05 .05 .90 .05 .05 .05 .90]
.90 .05 .05 .05 .90 .05 .05 .05 .90]

Z0Z 0000zzZzZzZz00O0OO

Z"m>

CT MTMR Model with Three-Variable Effects as High&xrder Interactions for
Structurally Different Raters

|at 4

man 16

dm33333333333333333333

lab SNSCANACEAFBGCDHMI NJOKLP

nmod SN. SC. AN. AC {SN. SC. AN, SN. SC. AC, SN. AN. AC, SC. AN. AC}

SN { SN. A}
SN { SN. B}
SN {SN. G
SN { SN. D}
SC {SC. B}
SC {SC. F}
sc {sC. G
SC {SC. H
AN {1 . AN}
AN {J. AN}
AN {K. AN}
AN {L. AN}
AC {M AC}
N. AC}
, AC
A

VOoOZIrX«—TommoOm>

588
o




sta A/SN[.90 .05 .05 .05 .90 .05 .05 .05 .90]
sta E/SC[.90 .05 .05 .05 .90 .05 .05 .05 .90]
sta I|AN[.90 .05 .05 .05 .90 .05 .05 .05 .90]
sta MAC[.90 .05 .05 .05 .90 .05 .05 .05 .90]

CT MTMR Model with Two-Variable Effects as Higha3tder Interactions for
Structurally Different Raters

|at 4
man 16
dm3 3333
lab SN SC A
nod SN. SC. A

333333333333333
NACEAFBGCDHMI NJOKLP
N. AC { SN. SC, SN. AN, SN. AC, SC. AN, SC. AC, AN. AC}

SN { SN. A}
SN { SN. B}
SN {SN. G
SN { SN. D}
SC {SC. B}
SC {SC. F}
SC {SC. G
SC { SC.

VOoOZIrX«—TommoOm>




CT MTMR Model with Two-Variable Effects as Higha3tder Interactions for
Interchangeable Raters

lat 4

man 16

dim33333333333333333333

lab ANACBNBCEFGHI JKLMNOPQRST

nod AN. AC. BN. BC {fac(AN, BN, 2), fac(AN BN,5), fac(AC, BC, 2),
fac(AC. BC,5), fac(AN. AC, BN. BC, 8), fac(AN. BC, AC. BN, 8),
fac(AN. AC. BN, AN. BN. BC, 0), fac(AC. BN. BC, AN. AC. BC, 0),
fac(AN. AC. BN. BC, 0) }

AN { AN. F}
AN { AN. H}
AN {AN. J}
AN { AN. K}
AC {E. AC}
AC { G AC}
AC {I.AC}
AC {L. AC}
BN eql
eql
BN eql
BN eql
BC eql
BC eql
BC eql
BC eql

00 WNIXTVZr — MRS T T
o
pzd
CTOmMX<TT
=
pzd

sta F/AN[.90 .05 .05 .05 .90 .05 .05 .05 .90]
sta E/AC[.90 .05 .05 .05 .90 .05 .05 .05 .90]
des [ 1 0 *AN, BN

* AN. BN

*AC, BC
*AC. BC

*AN. AC = BN. BC

*BN. BC = AN. AC

*AN. BC = AC. BN

*AC. BN = AN. BC

WNRNRARPNRARRPNRARWONRPRRWNRPE
CUIROUINOUINOUINUIRANNNORANNN

*AN. AC. BN = AN. BN. BC

*AN. BN. BC = AN. AC. BN

OCQOOOOO0OO OWNOOWOOOWOOWOUIWOOOUTIWO

[elololololoNe)
OCQOO0CO0OO0OOO0o
[ejololololoNe)
OQOO0CO0OO0OOO0o
OCQOOOO0OOO0o
[elololololoNe)
OCQOOCO0OO0OOO0o
[eJololololoNe)

* AN. AC. BC = AC. BN. BC



*AC. BN. BC= AN. AC. BC
*AN. AC. BN. BC

0000000000000 O
OCOO0OO0OO0OO0OOOO0O0OO0OOO0o
[ojelolelojolololololelalelel
OCOO0OO0OO0OO0OO0OOO0OO0OO0OOO0O
[ojejojelejolololololelalelel
COO0OO0OO0OO0OO0OOO0O0OO0OOO0o
OCOO0OO0OO0OO0OO0OO0OO0OO0OOLOOOOoO
COO0OO0OO0OO0OOOO0O0OO0OOO0O

OCOO0OO0OO0OO0OO0OO0OO0OO0OOLOO0OOoO



Appendix G in German Language (Anhang in deutscher
Sprache)

G.1:. Zusammenfassung in deutscher Sprache

In der vorliegenden Arbeit werden Modelle zur Estasg der Beurteileriibereinstimmung
fur latente kategoriale Variablen (latent ratereggnent models) und Multitrait-Multirater
Modelle definiert, um die konvergente und diskriamte Validitat von kategorialen Daten
messfehlerbereinigt analysieren zu kénnen.

In der Einleitung werden zunachst die Konzepte d@nvergenten und
diskriminanten Validitdt vorgestellt, lhre Analysaittels der Multitrait-Multimethod
(MTMM) Matrix (Campbell & Fiske, 1959) ist eine deam weitesten verbreiteten
Techniken der Konstruktvalidierung in der Psych@ofsiehe etwa Eid, Lischetzke, &
Nussbeck, 2006).

Moderne Weiterentwicklungen des urspringlichen Aesm zu CFA-MTMM
Modellen erlauben es, die Reliabilitat sowie dienkergente und die diskriminante
Validitdt bereinigt um Messfehlereinflisse zu bestien. Dartberhinaus koénnen
methodenspezifische Effekte bestimmt und mit andéfariablen in Beziehung gesetzt
werden. Allerdings wurden und werden die meisterddlle zur Analyse von MTMM
Datensatzen fur Modelle mit metrischen latentenalden entwickelt.

MTMM Modelle fur kategoriale Variablen, die die g@ste in einem Datensatz
vorliegende Information nutzen, erweisen sich ate ¢heoretisch sinnvolle Erweiterung
zu den bisher vorliegenden Modellen. Sie ermdghches, die konvergente und
diskriminate Validitat auf der Ebene der einzelnatenten Kategorien zu untersuchen.
Das heif3t, man kann feststellen, ob bestimmte Kaitey von Konstrukten (z. B. sehr
neurotisch zu sein) gut erkannt und somit von \Veestenen Ratern kongruent
eingeschatzt werden kénnen und ob andere Kateg@idh nicht neurotisch) nicht genau
so gut kongruent eingeschétzt werden konnen. Dderda hervorgerufenen Unterschiede
in den latenten Verteilungen werden explizit undelgarienspezifisch in log-linearen
Modellen analysiert.

Derzeit liegen jedoch keine Modellformulierungenr fMTMM Modelle mit

kategorialen latenten Variablen vor. In dieser Atrlvéird diese Liicke geschlossen, es



werden latente Beurteileriibereinstimmungsmodeli@ MiTMM Modelle fir kategoriale
latente Variablen fur den Spezialfall von RatesMEthoden (Kenny, 1995) entwickelt.

Zunachst werden die bereits definierten Beurtelileréinstimmungsmodelle fur
manifeste Variablen vorgestellt und ihre Bedeutfimglie Analyse von Ubereinstimmung
und mangelnder Ubereinstimmung hervorgehoben (@e2)i

Die Erweiterung der log-linearen Modelle zu logelamen Modellen mit latenten
Variablen (z. B. Hagenaars, 1990, 1993) ermdglehtdie Ubereinstimmung von zwei
Ratern bei der Einschatzung eines Konstruktes atehier (messfehlerfreier) Ebene zu
analysieren (Section 4). Zu diesem Zweck werden wkeschiedenen manifesten
Beurteileribereinstimmungsmodelle im log-linearenoddll mit latenten Variablen
adaptiert (Section 5). Die Bedeutung der Modellpeater wird im Detail erlautert und der
Zusammenhang zur Analyse der konvergenten undichsianten Validitat hergestellt.
Insbesondere  werden folgende Koeffizienten definierkategorienspezifische
Ubereinstimmung (category-specific agreement ratesjer Bias (sensu Agresti, 1992)
und die Unterscheidbarkeit (distinguishability) dategorien.

In den unterschiedlichen latenten Beurteileriibateimmungsmodellen kdnnen die
Rater entweder konstant hoher Ubereinstimmen, msetin Fall passt ein Quasi-
Unabhangigkeitsmodell 11 (oder ein Modell mit resgrierten Effekten fur Zellen auf der
Hauptdiagonalen), oder in ihrer Ubereinstimmungiiean, was zu einem Quasi-
Unabhangigkeitsmodell I, einem Quasi-Symmetry oei@em saturierten Modell fuhrt.
Diese Modelle bilden das zugrundeliegende MustaerWoereinstimmung und mangelnder
Ubereinstimmung ab, jedoch sind ihre log-linearanafeter nicht in allen Fallen einfach
zu interpretieren. Aus diesem Grund bietet es smh, das Verhéltnis der
modellimplizierten Ubereinstimmung zum Produkt demwarteten Randsummen zu
berechnen (category-specific agreement rate). D\t gibt an, um welchen Faktor die
Ubereinstimmung iberreprasentiert ist.

Der method-bias type | Koeffizient gibt an, ob siebrschiedene Rater in den
modellimplizierten Randverteilungen unterscheidda. starker der Koeffizient von 1
abweicht, desto starker ist die Divergenz zwisathem Ratern in der Pravalenzrate fur die
betreffende Kategorie. D. h. dieser Index gibt ab, die latenten Klassen, in die die
Ratings gruppiert werden, gleich grol3 sind furlok&gden Rater. Mittels dieser Werte lasst
sich feststellen, ob Rater eine unterschiedliche ruM@wahrnehmung” von

Merkmalsauspragungen haben. Sollten diese Untexdehzu grof3 sein, so kann nicht



davon ausgegangen werden, dass die Rater dasgyMmtkmal beurteilen und von einer
Untersuchung der Beurteileribereinstimmung solligeaehen werden.

Die Validitat eines Items zur Messung der lateri&tegorien kann anhand der
Zweivariableneffekte zwischen Items und latenteteldarie bestimmt werden. Zu diesem
Zweck kdnnen auch die bedingten Antwortwahrschehkieiten oder die Effekt-Parameter
herangezogen werden. Liegen fur bestimmte Kategarirer latenten Variablen starke
Effekte zu einer bestimmten manifesten Kategorige s kann die manifeste Kategorie als
“marker” fur die latente Kategorie angesehen werdemre Validitdt (bzw. ihre obere
Schranke die Reliabilitat) fur alle Items gemeinskamn (prinzipiell) mit den mittleren
Zuordnungswahrscheinlichkeiten bestimmt werden.

Werden die Rater-Agreement Modelle auf Ratings gabrdneten Kategorien
angewandt, so kann eine Uberprifung der theoretmupenommenen Ordnung der
Kategorien vorgenommen werden.

In Section 6, werden zwei saturierte Modelle alégemheinste Beurteiler-
Ubereinstimmungsmodelle miteinander kombiniert. [Mefinition dieses Multitrait-
Multirater (MTMR) Modells erdffnet weitere Analysé@glichkeiten fur die konvergente
und diskriminante  Validitat, = Beurteilertibereinstimmng, = Moderatoren  von
Ubereinstimmung und raterspezifischen Effekten.dlasen komplexen Modellen mit
Zwei-, Drei- und Viervariableneffekten ist eine aiéierte Analyse von Bedingungen und
Konstellationen moglich, die zu erhohter Uberemstiung und / oder verringerten
Abweichungen im Urteil fihren. Die Bedeutung derzeinen log-linearen Effekte auf die
Ubereinstimmung auf zwei Konstrukten, nur einem $tawkt oder abweichende Urteile
wird im Detail erlautert.

Raterspezifische Effekte kdnnen im MTMR Modell miehreren Koeffizienten
analysiert werden. Der method-bias type | Koeffizieeigt an, ob sich die Rater in ihren
angenommenen Pravalenzraten unterscheiden. Deodabihs type Il Koeffizient zeigt
an, ob die Rater die verschiedenen Kategorienkoatibimen Uber Traits hinweg
unterschiedlich stark bevorzugen, d. h. ob es eterspezifische Sicht in Bezug auf den
Zusammenhang von Merkmalen gibt. Das MTMR Moddlhst es, diese Effekte auch
als bedingte Effekte fur bestimmte Kategorienkdtetienen hoherer Ordnung zu
analysieren.

Die diskriminante Validitat kann auf der Ebene vdweivariableninteraktionen

untersucht werden oder in Abhangigkeit von Kategitonstellationen hoherer Ordnung.



Prinzipiell ist sie hoch, je geringer die Effektégr fZellen abseits der Hauptdiagonalen
ausgepragt sind.

Alle latenten Rater Agreement Modelle und alle MTN#®delle werden anhand
empirischer Anwendungen illustriert. Dabei werdén id Sections 5 und 6 fur strukturell
unterschiedliche und austauschbare Rater definidfiadelle jeweils an einem Datensatz
mit zwei Ratern (Selbst- und Fremdeinschatzung ozleei Fremdeinschatzungen)
angewendet. Dabei zeigt sich, dass die komplexen MRIT Modelle mit
Mehrvariableninteraktionen mit den vorliegenden t®afeprogrammen nicht geschatzt
werden kénnen.

In Section 7 werden die latenten Rater Agreemendédle und die MTMR
Modelle in Hinblick ihre Analysemdglichkeiten deorkvergenten und diskriminanten
Validitat, der Ubereinstimmung, der Unterschiedelém Ratings und der Methodeneffekte
diskutiert. Dartberhinaus wird das MTMR Modell iardKontext des Realistic Accuracy
Modells (Funder, 1995) gertckt, welches einen thieszhen Rahmen bietet, mdgliche
Interaktionen in der latenten Tabelle mit Moderatfmkten von akkuraten Urteilen
(accuracy) zu erklaren.

Abschliel3end werden die Schatzproblematik aufgegriind Anforderungen an zu
entwickelnde Softwareprogramme und Algorithmen falrert. Sollten diese vorliegen,

konnte die Anwendbarkeit des MTMR Modells an groBatensatzen tberprift werden.
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Promotionsverfahren angenommen oder abgelehnt worde
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