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Chapter 1

Introduction

1.1 Motivation

The cell is a three-dimensional space separated into different compartments. The
functional machinery of the cell - proteins - need to be present at specific cellular
compartments so that the cell can function properly. For example, for the correct
execution of the citric acid cycle, all necessary proteins are required to be localized
in the mitochondria. The same holds for DNA replication, signal transduction and,
more generally, for all cellular functions that require protein-protein interactions
of one sort or another, since the interacting proteins must be localized in the
same cellular location [1, 2]. Knowing the subcellular location of a protein is
helpful for designing experimental strategies for its detailed characterization. For
example a proteolytic assay might be a good choice for the study of an extracellular
protein, while for nuclear localized proteins DNA-footprinting might be a better
choice. Correct protein subcellular location plays a vital role in different cellular
mechanisms. A relevant example is the asymmetric cell division of stem cells.
In Drosophila melanogaster, asymmetric cell division of neuroblasts produces a
ganglion mother cell (GMC) and another neuroblast. The GMC produces a pair
of neurons while the neuroblast goes again through the asymmetric cell division

to produce another GMC and neuroblast. The proteins Numb and Prospero,



Chapter 1. Introduction 2

which are crucial for generating asymmetry in neuroblasts, are synthesized and
equally distributed throughout the neuroblast cytoplasm. When the neuroblast
starts to undergo mitosis, they localize at the basal cortex and initiate the process
of asymmetric cell division. In GMCs, Prospero re-localizes to the nucleus and
acts as a transcription factor. This localization of Prospero changes the fate of the
GMC, which results in the formation of neurons [3, 4|. Similarly, cellular dynamics
of many proteins (e.g. NFkB [5, 6]) are subject to proper subcellular localization.
Thus, in order to understand cellular mechanisms, it is crucial to have information

about the subcellular location of proteins.

The role of protein subcellular localization in diseases is well known [7, 8|. The
hereditary kidney-stone disease is caused by the mislocalization of the enzyme
alanine-glyoxylate aminotransferase (AGT) to mitochondria instead of peroxi-
som [9]. Aberrant localization of proteins can lead to deleterious gain-of-function
or dominant-negative effects. Hereditary disorders such as nephrogenic diabetes
insipidus [10, 11| and retinitis pigmentosa [12, 13| are caused by aberrant local-
ization of G-protein-coupled receptors (GPCRs). In neurodegenerative diseases
such as Alzheimer’s, Parkinson’s, Huntington’s and amyotrophic lateral sclerosis
(ALS) protein subcellular localization plays a vital role [14-17]. Aberrant cytoplas-
mic localization of transcription factors and their regulatory kinases such as p53,
NF-kB, activating transcription factor 2 (ATF2), cAMP response element-binding
(CREB), E2F transcription factor and NF-E2-related factor 2 (NRF2) contribute
to degenerating neurons [17, 18]. Several studies have shown that cancer is a dis-
ease of cellular pathway deregulation associated with the localization of essential
proteins [19-25|. For example, the tumor suppressor proteins p21 and p27 have
been found to have oncogenic roles when localized in the cytoplasm instead of the

nucleus [26-28].

The knowledge about protein subcellular localization can also be used for ther-
apeutic purposes. The Phosphoinositide 3-kinase/Akt signaling pathway plays a
role in cell growth and proliferation and is linked to cancer if deregulated. The
pathway can either be inhibited, but this may lead to serious side effects, or an-

other strategy is used which makes use of a compound called perifosine. Perifosine
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binds to Akt and can decrease its plasma membrane localization. This leads to a
partial silencing of the Akt pathway because Akt needs to be present in the plasma
membrane to execute its function. This strategy has been tested in clinical trials

as a prospective cancer treatment.

While attaining proper protein subcellular localization is a more complex issue in
eukaryotic than in prokaryotic cells given that the latter have no membrane bound
organelles, proper protein subcellular localization is also important for prokary-
otic cells [29]. Knowledge of protein subcellular localization in prokaryotic cells
is important for genome annotation and proteome characterization [30, 31|. Fur-
thermore it is also vital for diagnosis and drug development against pathogenic
bacteria. For example, the extracellular or secreted proteins can be used as diag-
nostic biomarkers. Similarly, the surface proteins can act as an important drug

target or vaccine component |32, 33].

Given the necessity, several methods for the detection and prediction of protein
subcellular location have been developed. Although experimental approaches such
as immunolocalization and fluorescent reporter based detection provide reliable de-
termination of protein subcellular location, they are time consuming, laborious and
expensive. Furthermore, it is difficult to scale-up and apply these methods in a
wide range of organisms and tissues. Thus, such experimental approaches cannot
cope with the rapidly growing sequence data. Currently, most protein sequences
in databases are the result of translation of hypothetical transcripts derived from
genomic sequencing data. Therefore, computational prediction of protein features
from their sequence is often used for designing strategies for protein experimental
characterization and is also important for genome annotation, interpretation of
screens and drug target identification. In particular, the computational predic-
tion of subcellular location from protein sequence information has been attempted
mainly using three approaches: search for signal peptides, sequence homology
based methods and using amino acid composition of the protein as a proxy for lo-
cation. Although the performance of signal peptide and homology based methods
are reasonable, they cannot be applied to any set of compartments and proteins.

For example, our knowledge of signal peptides is incomplete and thus absence
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of known motifs cannot be used to imply that a protein remains in the cytosol.
The homology based methods are limited by the amount of proteins with exper-
imentally verified location. Furthermore, there are many known exceptions to
the assumption that similar proteins end up at similar subcellular locations (e.g.
the proteins of the Lsgl family of GTPases [34]). The amino acid composition
approaches are based on the hypothesis that the physicochemical properties of
the residues of a protein must be somehow coupled to the physicochemical prop-
erties of the environment where the protein performs its function; therefore the
differences between environments will be imprinted in the protein’s amino acid
composition. This approach has the advantage that it can be applied to any set

of compartments and proteins, provided one has enough data.

Despite several advances, most composition-based methods for the prediction of
location are a simple application of machine-learning methods without much bio-
logical background and providing little biological insight. Therefore, in this work
we first present a detailed analysis of the relation between protein amino acid
exposure, residue type and subcellular location. This allows us to establish the
fact that physicochemical properties of the residues of proteins are correlated to
their subcellular location and that this correlation changes with the exposure of
the residue. The focus here is on eukaryotic proteins and three locations: nu-
clear, cytoplasmic and extracellular. In addition, we will consider the necessity
of introducing a fourth class and demonstrate that membership to this class can
be predicted: proteins of nucleocytoplasmic localization. This class is not gen-
erally taken into account by methods of prediction of location, despite the fact
that a large number of proteins are known to shuttle between nucleus and cy-
toplasm and perform functions in both compartments. We also introduce a two
step novel classification approach that uses a support vector machine (SVM) and
an artificial neural network (ANN). We will illustrate the usefulness of our novel
approach through application of the method to pairs of homologous proteins with
different experimentally known location (e.g. two homologous proteins where one

is localized to the nucleus and the other to the cytoplasm). The analysis indicates
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that the method can find the appropriate location in cases where methods using

homology would make a wrong inference.

1.2 Overview

Chapter 2 starts with an overview of experimental techniques used for subcellular
location detection. Advantages and disadvantages of the most commonly applied
experimental techniques are discussed. Computational approaches for subcellular
location prediction are introduced in chapter 3. It provides an overview of the main
approaches used in computational prediction of subcellular location. Chapter 4

discusses the two main machine learning methods used in this work: SVMs and

ANNSs.

In chapter 5 we present the analysis of the relation between protein amino acid
exposure and subcellular location. The procedure of selecting data for protein
subcellular location and integration with protein three-dimensional structure is
introduced. The basics of relative accessibility and residue exposure frequency are
explained. The chapter closes with a discussion on the residue exposure pattern

present in proteins belonging to different subcellular locations.

Chapter 6 addresses the role of different residue exposure ranges in subcellular
location prediction. We will also discuss the problems associated with applying

machine learning methods to unbalanced data.

After developing the algorithm to predict protein subcellular location using residue
exposure, in Chapter 7 we illustrate the significance of our method through its ap-
plication for the analysis of homologous proteins pairs. The procedure for selecting
homologous protein pairs with distinct subcellular localizations is explained. The
chapter also describes the comparison of our method with other state-of-the-art
subcellular location prediction tools. The results and performance evaluation are

discussed in detail.






Chapter 2

Experimental Approaches for

Detection of Protein Location

Subcellular localization is a fundamental feature of a protein and correlated with
its function. For example a protein localizing in the nucleus can be inferred to be
involved directly or indirectly in transcription and gene-expression control. Sim-
ilarly, proteins localizing in mitochondria may be related to cellular respiration.
In prokaryotic organisms, knowing that a protein localizes on the surface of the
bacteria can make it a potential drug target [29, 35| or a useful vaccine compo-
nent [33, 36]. Thus subcellular location analysis has a vital importance in protein
characterization. Consequently, for analyzing protein’s subcellular location several
experimental approaches have been developed. The following section describes a

broad overview on experimental techniques of protein subcellular location analysis.

2.1 Immunolocalization

Prediction of protein location via immunological detection methods is one of the
most robust methods. This is also one of the first methods of protein location
prediction. To analyze protein location, specific antibodies against the native

proteins are generated. These antibodies can be used for localization detection

7
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using a fluorescent secondary antibody and fluorescence microscopy. A large scale
project called the Human Protein Atlas, aims to generating antibodies for at least
one protein from each human protein-coding gene [37-39]. Subsequently, using
these antibodies the protein distribution at the subcellular level is investigated in

different cell lines and tissues [40].

Though immunolocalization methods are robust, they are hard to implement. One
of the big challenges in immunolocalization methods is to generate specific antibod-
ies against the protein of interest, which is a very effortful and time-consuming
process. Antibody generation also requires sufficient previous knowledge about
the protein of interest (e.g. the need to purify the protein) [41]. Due to all these
factors immunolocalization methods lack scalability and they are not suitable for
genome-wide detection of protein localization. To overcome the laborious pro-
cess of generating antibodies against native proteins, epitope tagging methods are
applied. In this method, rather than generating antibodies against the native

protein, a well-characterized epitope sequence is fused to the gene of interest.

The antibody against the marker epitope can then be used for protein location
detection. As this method does not require the generation of antibodies against
the native protein, a single antibody can be used for protein location detection of
several proteins. It provides a useful way for large scale protein location study.
There are several variations of the method of epitope-tagging of proteins. In
S. cerevisiae, epitope-tagging has been successfully applied at whole-genome level
[42] and several shuttle vectors are available for epitope-tagging [43|. Gene trap
screening and sequencing strategies [44] are able to detect the location of more
than 100 proteins, which are mostly localized within compartments of the nucleus,
nuclear periphery or in other nuclear foci. Kumar et al. [45] used directed topoiso-
merase [-mediated cloning and genome-wide transposon mutagenesis strategies to
tag the S. cerevisiae proteome. The authors claim to have epitope-tagged 60% of
the S. cerevisiae proteome and subsequently using high-throughput immunolocal-
ization they elucidated the subcellular location of 2744 proteins in S. cerevisiae.
By combining these results with published location information they further iden-

tified subcellular location for about 55% of the S. cerevisiae proteome (considering
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the size of yeast proteome of about 6100 proteins). Interestingly, to detect the sub-
cellular location of S. cerevisiae proteome, machine learning methods were applied
on the remaining (45%) of proteins. The overall accuracy of this large scale subcel-
lular location study is about 85%. This indicated that computational methods of
subcellular location prediction can be complementary to large scale experimental

methods.

The immunolocalization technique is also used as rapid in situ protein subcellular
location detection in plant cells [46]. The protocol takes only a short time (2-3

days) and can be applied to various tissues and embryos of different plant species.

In any immunolocalization experiment the choice of the antibody is crucial for the
outcome of the experiment. Furthermore, fixation of the tissue/cells and perme-
abilization (making a membrane or cell wall permeable through the use of surfac-
tants) without disturbing the tissue and cell integrity requires skills and is a time
consuming process. If not done properly, accessibility to epitopes will be low or
none, which will lead to wrong results. Epitope tagging of the partial open read-
ing frames (ORFSs) can interrupt localization signals. Without these localization

signals the protein can end up at the wrong subcellular location.

Using random transposon-tagging, Ross-MacDonald et al. [47] developed econom-
ical methods for genomic scale analysis of gene expression and protein location.
They generated a collection of over 11,000 strains of yeast S. cerevisiae mu-
tants within a single genetic background in which each was carrying an inserted
transposon. Using indirect immunofluorescence, the authors analysed over 1300
transposon-tagged proteins. However, during immunofluorescence analysis, two-
thirds of all the randomly placed transposon-tags did not yield observable staining
patterns. To detect the protein at a specific location sometimes overexpression of
the protein is necessary. Though the overexpression of the protein facilitates its
detection it can lead to a saturation of the cellular transport mechanisms and to

abnormal subcellular localization [48].
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2.2 Fluorescent reporter based detection of loca-

tion

Green fluorescent protein (GFP) is widely used to tag proteins in vivo in molecular
biology. Due to the special sequence of three amino acids: serine-tyrosine-glycine
(sometimes, the serine is replaced by threonine), GFP can create its own fluores-
cent chromophore [49]. It does not require any exogenous substrates or cofactors
for being fluorescent. GFP, first isolated from the jelly fish Aequorea victoria, has
several variants and can be expressed in a wide range of organisms. While most
fluorescent molecules are strongly phototoxic and not suitable for live cell imaging,
GFP is usually much less harmful when illuminated in living cells. This makes
GFP a very popular reporter for monitoring gene expression [50] and protein lo-

calization in vitro [51, 52].

GFP has been used in many large-scale and genome wide analysis of protein subcel-
lular location. Using the phage Lambda recombination system, Simpson et al. [53]
generated N-terminal and C-terminal GFP fusions of 107 human ¢cDNAs. The
monkey Vero cells and human HeLa cells were transfected with these constructs
to determine the subcellular location of the corresponding proteins. The authors
determined clear intracellular localization to known structures or organelles for

about 80% of these proteins.

The fission yeast Schizosaccharomyces pombe has been used as a model organism
in several genome and proteome wide studies as its genome size is quite small
compared to other known eukaryotes [54]. Furthermore, it shares many traits

with higher eukaryotic cells.

To search for the intracellular localization of proteins, Ding et al. [52] constructed
a GFP-fusion genomic DNA library of fission yeast S. pombe. To construct the li-
brary, random fragments of genomic DNA were fused in all three reading frames to
the 5" end of GFP in a fashion that GFP-fusion protein expression would be under
the control of the own promoters contained in the genomic DNA fragments. The

yeast S. pombe was subsequently transformed by the GFP-fusion library and cells
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were screened for fluorescence by microscopy. They screened 49845 transformants
out of which 728 transformants exhibited GFP fluorescence localization. The local-
ization was in distinct and well-defined intracellular structures such as the nucleus,
the nuclear membrane, and cytoskeletal structures. Using plasmid isolation, the

authors categorized intracellular location of 250 GFP-fusion constructs.

Efforts were made to determine protein subcellular location at wild-type levels
of protein expression or keeping perturbation in protein expression at minimum.
Huh et al. [48] constructed a collection of yeast strains expressing full-length, chro-
mosomally tagged GFP fusion proteins. The proteins were tagged at the carboxy
terminal end with GFP under their endogenous promoters. To do so the coding se-
quence of GFP was inserted in-frame immediately preceding the stop codon of each
ORF. With this strategy the authors were able to circumvent potential problems
of transposon-mediated random epitope tagging [47] as localization signals can be
interrupted in epitope tagging of ORFs. Furthermore this method did not require
overexpression of proteins. This is an advantage over plasmid-based overexpres-
sion of epitope-tagged proteins [45] as the overexpression of proteins can saturate
the cellular transportation machinery and can lead to abnormal subcellular local-
ization. The authors defined the subcellular locations for about 75% of the yeast
proteome in the GFP library [55] and were able to determine subcellular loca-
tion for about 70% of previously unlocalized yeast proteome. On comparing their
results with earlier done large-scale studies [45, 47| and published location data
from the Saccharomyces Genome Database (SGD) [56], authors found high (about
80%) agreement. For the nuclear pore complex, the results were compared with
a previous study that used mass spectrometry for nuclear pore complex analysis.
The comparison revealed that out of 29 nuclear pore complex proteins identified by
mass spectrometric analysis [57], 23 proteins were localized to the nuclear periph-
ery. Similarly, 14 proteins out of 16 spindle-pole-body components identified by
mass spectrometry [58] were rightly localized to the spindle pole. In the study the
proteins were classified in 22 different subcellular location categories and generated

location data for about three-quarters of the yeast proteome.
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In a large scale project called ‘ORFeome’; Yoshida et al. [59] cloned the entire
set of protein-coding open reading frames (ORFs) of the fission yeast S. pombe
for genomic and proteomic level analysis. Using a recombination-based cloning
approach, the authors created 4910 ORFs for analysis. By tagging each ORF
with YFP (yellow fluorescent protein) they determined the subcellular location
for 4431 proteins in S. pombe. The authors also did a genome-wide comparison
of protein subcellular location between two different eukaryotic organisms. They
compared the protein subcellular location data from previous studies on budding
yeast S. cerevisiae [48] with the S. pombe localization data. Interestingly the com-
parison showed that not all pairs of homologous proteins had the same location.
The study also revealed a subset of homologous proteins that are known to be
localized in the bud neck in S. cerevisiae whereas in S. pombe they localized in
the septum. The fact that septum and bud neck are structurally distinct makes
this discovery more interesting. The analysis also revealed that more than 50% of
all proteins are localized in multiple compartments, which is a larger amount than
the existing literature would suggest. Crml (Chromosome region maintenance
protein) is an importin family nuclear export receptor that facilitates nuclear ex-
port of proteins having the nuclear export signal (NES) sequence [60]. To identify
the proteins whose location is mediated by Crm1, they inhibited Crm1 using lepto-
mycin B [61] and analysed the subcellular location. They discovered 285 proteins
whose subcellular location was modified by Crm1 inhibition. On closer analysis
it was found that the proteins whose localization is disturbed by Crm1 inhibition
and got accumulated in the nucleus, belong not only to the expected location
category (like cytosol) but also include proteins that are supposed to localize in
other cellular location, including the septum. This indicates that, for the proper
localization of these proteins it is necessary to have a transit into and out of the
nucleus. Crml required the proteins to have a leucine-rich nuclear export signal
for nuclear export [62]. It is widely assumed that only proteins with a leucine-rich
nuclear export signal can use Crml as a localization and transport mediator [61].
Contrary to this, the study revealed that almost half of the proteins that use Crm1

as a nuclear exporter do not have a clear leucine-rich nuclear export signal. This
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indicates the limitations of our knowledge of the signals used by the cell to sort
proteins. How these proteins are able to undergo Crm1 dependent nuclear export
without a ‘consensus’ leucine-rich nuclear export signal? One possible explanation
is that these proteins are using the so-called “piggy-back” mechanism of transport
in which they associate with other proteins that bear functional nuclear export
signals [63]. It may also be possible that our understanding of ‘consensus nuclear
export signal’ is not complete and we may need to further investigate and rede-
fine complex nuclear export signals. The study also reveals the fact that protein
subcellular localization pathways are not a simple transportation process from
the cytosol to other subcellular location and rather involve complicated cellular

processes and several cellular organelles.

Elucidating protein subcellular localization using GFP and fluorescence microscopy
has its limitations as it is not possible to distinguish some locations using this
method. For example, these methods are not able to distinguish membrane versus

mitochondrial lumen or the endoplasmic reticulum [48, 64].

Fusing GFP to the C-terminal may cause mislocalization of proteins. It can in-
terrupt the localization signal sequences at the C-terminal [65] or can cause steric
hindrance in protein structure [66], which can result in mislocalization. For ex-
ample, due to modification of the C-terminus with palmitoyl and farnesyl groups,
Ras2 gets localized in the plasma membrane |67, 68|. Tagging the Ras2 gene with
GFP at its C-terminal interferes with the C-terminus modification process, which

leads to the mislocalization of Ras2 to the nucleus and the cytoplasm [48].

Similarly, many other proteins, specially those known to be localized in peroxi-
some [69], endoplasmic reticulum [70] and cell wall [71], contain C-terminal tar-
geting signals. GFP tagging at C-terminal of such proteins often shows wrong

localization results.
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2.3 Subcellular proteomics approach

In addition to immunofluorescence and fluorescent tagging of proteins, subcellular
proteomics is a powerful method that analyses the whole proteome of a given sub-
cellular compartment at once. The method is based on the biochemical fractiona-
tion of cells to isolate the compartment of interest followed by a further separation
of the proteins by gel electrophoresis. The bands are excised and subsequently
digested to make protein fragments amenable for analysis by mass spectrometry.
Dreger et al. [72] used this method to identify novel integral membrane proteins
of the inner nuclear membrane. They found 148 different proteins, among them
19 previously unknown or uncharacterized, by combining 16-benzyl dimethyl hex-
adecyl ammonium chloride (16-BAC) gel electrophoresis and matrix-assisted laser

desorption ionization (MALDI) mass spectrometry.

The largest advantage of this technique is the abolishment of laborious and time
consuming antibody production and protein tagging. However, the accuracy of
this method crucially depends on the quality of the biochemical preparation of
the subcellular compartment. As the fractionation of cells is prone to impurities
and can distort the outcome of the mass spectrometry analysis, a validation of the
results by immunofluorescence or fluorescent reporter based assays is necessary.
Another disadvantage over the previously described methods is the limitation in
studying changes in protein localization. If, for instance, a protein shuttles between
nucleus and cytosol its fragments can be detected in both the nuclear and cytosolic
fraction. This does not clarify whether copies of the same protein reside in both
compartments at the same time or the protein shuttles between them. Therefore
subcellular proteomics will only provide a static picture of the organelle’s proteome
at a given point in time, in contrast to e.g. fluorescent tagging of proteins that

can unravel the protein trafficking.



Chapter 3

Computational Prediction of

Protein Location

While the experimental methods of protein subcellular location prediction provide
reliable detection, they are not able to cope with growing amount of genomic
and proteomic data. Furthermore in many cases it is not possible to apply the
experimental methods. To overcome such problems and to take advantage of the
growth of biological data, over the years different computational approaches have
been implemented for protein location prediction in eukaryotic and prokaryotic
cells. On the basis of their underlying principles these methods can broadly be

classified as

e Signal peptide methods

e Homology based methods

e Sequence feature based methods
Some of the modern protein subcellular location prediction tools utilize all of these
approaches for high end accuracy. The reason behind this is that there is no one

principle that fits all proteins. Moreover, lack of reliable data sometimes can

invalidate the underlying principle. This is a frequently encountered problem in

15
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homology based methods. In the following sections we describe these principles

and their implementation strategy.

3.1 Signal peptide methods

The cell is a crowded place, thousands of proteins are getting produced and trans-
ported to various cellular locations. After translation, most proteins in the cell are
recognized by the protein sorting machinery and transported to the appropriate
destinations in the cell or secreted outside the cell. The protein translocation pro-
cess often requires helping proteins like chaperons and in case of active transport
requires an energy (ATP or GTP) gradient [73-75|. However some proteins can
diffuse in and out of an organelle such as the nucleus. In case of the nuclear pore
complex, it was generally believed that proteins smaller than 60kDa molecular
weight are allowed to diffuse through |73, 76, 77]. Recent studies have shown
that proteins with a molecular weight larger than 60kDa can also diffuse into the

nucleus [78].

To enter inside a compartment the protein has to cross the compartment mem-
brane. The proteins whose translocation is facilitated by machinery present at
the surface of the compartment need to have localization information that must
be recognized by the sorting machinery. This localization information is generally
present at the primary sequence level in form of short sequence segments called
signal peptides. In particular, signal peptides are 3 to 70 amino acids long se-
quence motifs usually present at the terminus of many newly synthesized proteins.
They are also referred as target peptide, sorting signal or leader peptide. In the
process of protein sorting the signal peptides play a critical role and act like a zip
code for proteins |79]. By interacting with appropriate receptors at the organelle
membrane, they guide the protein transport and translocation process [80, 81].
After entering the appropriate cellular compartment, the signal peptides usually
get cleaved by signal peptidases [82, 83]. Various studies have analysed features

of signal peptides. For example, the mitochondrial targeting peptides are poor in
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negatively charged residues, rich in Arg, Ala, Leu and Ser, and form amphiphilic
a-helices [84, 85]. Similarly, the chloroplast targeting peptides are rich in Ser and
Thr residues but they have less negatively charged amino acid residues (Asp and
Glu) [84, 85]. Most signal peptides are known to have a region rich in positively
charged amino acid residues at one side, a polar residue rich region at the other
side and in between is a hydrophobic residue region [85, 86|. Unfortunately, signal
peptides are not always a well-defined linear motif, rather in many cases localiza-
tion information is contained in vague sequence features. The signal peptide based
method of protein subcellular location prediction tries to define and analyses the
motifs crucial for protein localization. Using knowledge base and machine learning
approaches these methods can predict subcellular location with reliable certainty.
Early work predicting signal peptides used simple linear discriminant methods.
For example one of the first methods used a weight matrix and simple rules like
the residues at —3 and —1 positions from the cleavage site must be neutral and
small, to discriminate signal peptide sequences from the non-signal peptide se-
quence [87]. As the amount of the reference signal peptide data grew, such simple
rules did not seem valid in several cases. To overcome these problems non-linear
discriminant approaches and machine learning methods such as artificial neural
networks (ANNs) [88], hidden markov models (HMMs) [89] and support vector
machines (SVMs) [90] have been extensively applied. Nielsen et al. developed the
prediction tool called “SignalP”, which used an ANN [88, 91]. The initial tools for
signal peptide prediction (such as SignalP version 1.0) had limited capability of
distinguishing between signal peptides and N-terminal transmembrane helices as
both are prominently hydrophobic in nature. In comparison to signal peptides,
the transmembrane helices typically contain longer hydrophobic regions and do not
have cleavage sites. Thus, complete genome level analysis for signal peptides with
those early methods may yield many false positive predictions. Different strate-
gies have been applied to account for this issue e.g. SignalP (version 2.0) used
HMMs and submodels for signal anchor [89]. Similarly, tools like Philius [92],
Spoctopus [93] and MEMSAT-SVM [94] use the transmembrane protein struc-

ture and topology models along with signal peptide models. It is important to
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mention that the main aim of SignalP (and of other signal peptide prediction
tools) is to discover the presence and location of signal peptides and the corre-
sponding cleavage sites in protein sequences rather than subcellular location itself.
Nonetheless the tools designed for location prediction using target motif discov-
ery use the same principles and can be used in couple for better prediction and
analysis of protein location [95]. One of such specialized tools for signal peptide
based subcellular location assignment is “TargetP” [95, 96]. The method uses an
ANN and is specialized for eukaryotic proteins. It analyses the protein sequence
for the presence of N-terminal presequences such as secretory pathway signal pep-
tides and mitochondrial or chloroplast targeting peptides and assigns one of four
classes out of mitochondrion, chloroplast, secretory pathway and “other”. Fur-
thermore, using SignalP it also predicts the potential cleavage site for the signal
peptide. Analysis with redundancy-reduced protein test sets shows 85% accuracy
for plant proteins and 90% accuracy for non-plant proteins. To predict location,
another tool, SLP-Local [97], divides the sequence into three regions: N-terminal,
middle and C-terminal. These portions are used as feature vector along with
di-peptide frequency and other features. Using SVM as classification algorithm,
SLP-Local predicts location in one of the 4 classes (nuclear, cytoplasmic, extra-
cellular and mitochondrial) and achieved 87% accuracy for eukaryotic proteins in
five-fold crossvalidation. In their analysis the authors concluded that using N and
C-terminal parts of the sequence as features is helpful for classification [97]. Tools
and methods for detecting organelle specific signal peptides have been also devel-
oped. Nucleolar localization sequence Detector (NoD) is one of the first tools for
predictions of nucleolar localization sequences in diverse eukaryotes and virus pro-
tein sequences [98|. It uses an ANN and reached 79% positive predictive value with
71% sensitivity when testing with experimentally validated nucleolar localization
sequences. Moses et al. suggested an HMM-based approach for the prediction of
novel nuclear localization signals [99]. Application on a yeast dataset showed a low
true positive rate and had 37% success rate. Claros and Vincens performed mul-
tivariate discriminant analysis to predict mitochondrial targeting sequences [100].

Several databases also have been compiled for signal peptide related information.
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The database NLSdb contains experimentally determined as well as predicted nu-
clear localization signals using in-silico mutagenesis [101]. SPdb [102] is a database
containing experimentally determined and computationally predicted signal pep-
tides. It integrates information from Swiss-Prot and EMBL nucleotide sequence

databases.

The signal peptide based methods of subcellular location work better in cases
where a known signal peptide is present in the query protein sequence. Unfor-
tunately our knowledge about signal peptides is incomplete. Hitherto unknown
signal peptides might be present in a query sequence, in which case the signal
peptide based methods will not work efficiently. There is no consensus sequence
or rules for all signal peptides. Although there have been several efforts to pre-
dict possible novel signal peptides, the high rate of false positive prediction still
remains a problem. More than such technical problems, the biological fact that
not all proteins have localization peptide sequence makes the method unsuitable
for proteome scale location prediction. Recently Ivankov et al. have shown that
in E. coli only half of the previously estimated proteins contain signal peptides
and about 90% of proteins do not have signal peptides [103]. Another important
and usually ignored aspect of protein subcellular localization is the ‘piggyback ride’
mechanism. There is a growing amount of evidence suggesting that many proteins,
although they do not have specific localization signals, use this mechanism for sub-
cellular localization [104-109]. Subcellular localization for such proteins can not
reliably detected via signal based methods. It is safe to say that for a large number
of proteins, the localization prediction method solely based on signal peptide is

not applicable at all.

3.2 Homology based methods

Homology between protein sequences indicates an evolutionary link, homologous

proteins usually share similar properties. Thus the homology between protein
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sequences can be used for the transfer of annotations. The homology based sub-
cellular location prediction methods try to infer the location from the annotated
information of similar proteins [110]. In a large scale study Nair and Rost [111]
highlighted the association between sequence homology and similarity in subcel-
lular localization. Authors found out that the subcellular location of proteins
is more conserved than expected. The conservation of subcellular localization is
true for different cellular compartments and it is analogous to the conservation of
structure and functional activity. Further analysis by Yu et al. [112] showed that
even at as low as 30% sequence identity, the homology based approach performs
well. Pierleoni et al. [113] developed a subcellular location database for eukary-
otic proteins using this method. The authors also pointed out the fact that about
68% of the human genome can be annotated using both experimental results and
the homology search approach. Interestingly, in Arabidopsis thaliana this number
is down to only 33%. This is because of the fact that a very low number of A.

thaliana proteins are annotated with experimentally verified location information.

Identifying sequence homologs is the first step in location prediction via homology.
Defining thresholds for finding homologous proteins is a challenging task. Are two
proteins having 50% sequence identity homologous? Such questions are difficult to
answer and are very much context dependent. Pairwise BLAST and PSI-BLAST
are commonly used sequence similarity search tools used for homologous protein
identification and subsequent location prediction [114-116]. Different measures
of sequence similarity can be used for the assignment of subcellular localization
e.g. the BLAST expectation values (EVAL), pairwise sequence identity or HSSP-
values [117]. Using BLAST E-value as sequence similarity measure, Horton et al.
[118] achieved 83% cross-validated accuracy for 2113 fungi proteins. Authors used
12,771 animal and 2333 plant proteins for further analysis and concluded that the
BLAST E-value is sufficient to achieve high (about 94% for animal and 86% for
plant) accuracy [118, 119]. Although the results appear trivial if we consider the
fact that the datasets used in the analysis were highly redundant and included
many well-conserved orthologous protein sequences from SWISS-PROT. Never-

theless the fact that sequence homology can be used for reducing the error rate in
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localization assignment is well established [120-123]. It has been shown that for
subcellular location assignment, the HSSP-value based sequence similarity mea-
sure performs better [124]. Unfortunately high sequence similarity itself does not
ensure same subcellular location. It has been shown that the shift from the regions
of conserved to non-conserved location is very sharp [111|. Furthermore, even a
change in only few residues can affect the localization of a protein. In humans,
the beta oxidation enzymes are targeted to mitochondria while in yeast the ho-
mologous proteins are present in peroxisomes [125]. Another well known example
is the Lsgl family proteins [34]. Members of this family of proteins are present
in multiple cellular compartments. The performance of homology-based methods
is also questionable in cases where the target protein may have isoforms localized
at different places in the cell. In their study Nakao et al. [126] concluded that
there are many genes whose protein isoforms have different subcellular location

and sequence similarity should be used carefully when predicting protein location.

A major obstacle in sequence similarity based location detection is the requirement
of precisely annotated homologous proteins. Given the vast amount of sequences
in databases, it is not very difficult to find homologous proteins to a query protein.
But the homologous proteins may not necessarily have annotated localization in-
formation. Usually localization prediction is required for proteins that already
lack well-characterized highly similar homologs. Thus, homology based methods

alone are not sufficient for localization prediction of novel proteins.

3.3 Sequence feature based methods

Some properties of proteins are correlated with their amino acid composition
[127, 128|. Accordingly, through analyzing the residue composition of a protein
it is possible to infer some of its properties. This is the case for the subcellular
localization of proteins [129]|. Using correlation analysis for nuclear, extracellular,
intracellular, integral membrane and anchored membrane proteins, Cedano et al.

[130] analyzed the relation between the amino acid composition and subcellular
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location. In a landmark study Andrade et al. [131]| hypothesized that proteins
from different locations have characteristic differences in their surface residues.
This is because of the fact that different subcellular locations have characteristic
physio-chemical environments and during evolution the proteins localizing in a
compartment have to adapt to the environment of that particular compartment.
As the surface of the protein is in direct contact with the environment, the adapta-
tion will be most imprinted on the surface of the protein. For example, compared
to intracellular proteins, the extracellular protein’s surface is rich in polar residues.
Similarly, extracellular proteins have a relatively low percentage of ionic residues.
Proteins localizing in the nucleus are known to have relatively more positively
charged residues as the presence of DNA makes the environment of the nucleus

highly anionic.

By organizing experimental and computational observations as a collection of if-
then rules Nakai et al. [132] constructed a knowledge base of sequence-function
relationships. Using this knowledge base they developed an expert system that
required only amino acid sequence information for subcellular location prediction.
For animal and plant cells authors considered 14 and 17 locations, respectively
and used 401 eukaryotic proteins with known location for training and testing.
For testing data they achieved 59% accuracy. This system is named as PSORT
and later extended as PSORT II [133, 134]. PSORT II uses sequence driven fea-
tures and k-nearest neighbors (kNN) classifier for location prediction. Horton et al.
[134] also compared the kNN classifier method with three other classifiers: a struc-
tured probabilistic model, the binary decision tree classifier and the naive bayes
classifier. The cross validation results showed that the kNN classifier outperforms
other methods. An important conclusion of this study was that for subcellular lo-
cation prediction problems, domain specific features are much more efficient than

sequence homology alone.

Subsequently, several methods were developed utilizing the idea that amino acid
composition of proteins is related to their subcellular location. Reinhardt et

al. [135] trained neural networks on amino acid composition of proteins. For
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prokaryotic organisms, 81% overall classification accuracy is achieved while clas-
sifying proteins into three subcellular locations. In case of eukaryotic organisms
four subcellular locations were considered and a lower accuracy of 66% is reported.
The predictor ‘SubLoc’ uses an SVM for subcellular location prediction of proteins
from their amino acid composition [136]. The amino acid composition of the pro-
teins were encoded in input vectors of 20 dimensions, each dimension representing
an amino acid. For prokaryotic sequences a 3-class classifier and for eukaryotic
sequences a 4-class classifier was trained. The cross validation accuracy of 91.4%

for prokaryotic organisms and 79.4% for eukaryotic organisms is reported.

Protein sequence based features such as residue pair frequency are easy to calculate
and can be a rich source of information. They also provide a large feature space.
For example, the di-peptide frequency can result in (20 x 20 = 400) features and
tri-peptide frequency can lead to (20 x 20 x 20 = 8000) features. Such features
are used as input in different machine learning algorithms for location prediction.
Using a Markov model and residue pair probability, 78.7% classification accuracy
was achieved considering three location categories for eukaryotic proteins [137].
The three location categories considered were nuclear, extracellular and a mixture
of cytoplasmic and mitochondrial. For four separate categories (considering cyto-
plasmic and mitochondrial separately) the accuracy was 73%. Fujiwara et al. [86]
used the amino acid composition and sequence order for subcellular location pre-
diction. The amino acid composition is used to express the global features of the
protein. The local features of the protein are represented via the amino acid se-
quence order. HMMs and ANNs are used for this classification purpose. Zhang
et al. [138] used hydrophobic patterns along with pseudo amino acid composi-
tion to predict subcellular location and in the jackknife test an accuracy of 73%
was achieved. There are several tools which try to predict subcellular location by
representing the sequence features in different ways. For example CELLO [139]
computes gapped and ungapped amino acid pair composition. A large number
of tools combine several based sequence features with other sequence and textual

information. One such tool, ESLpred [114, 140] combines n-peptide composition
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and their physico-chemical properties with PSI-BLAST analysis. Similarly, pTAR-
GET [141] computes amino acid composition based properties and combines them
with the pattern of occurrence of Pfam domains. The tool SherLoc [142, 143] is a
hybrid method combining 3 different approaches: MultiLoc2, EpiLoc and Dialoc
and exploits amino acid composition, along with motifs information as well as text
descriptions from the literature and the SwissProt database. The tool Yloc [144]
derives more than 30000 sequence based features such as amino acid composition,
pseudo amino acid composition, hydrophobicity, etc. Furthermore, the feature
space also includes PROSITE motifs and GO terms from close homologous pro-

teins and other homology based features.

The main advantage of sequence feature based methods is that they can be applied
to any set of compartments and proteins. In the protein databases, there is a large
number of proteins without known signals, known predicted domains associated
to protein locations, or without homology to proteins of experimentally verified
protein location. For such proteins the sequence feature based methods are the

only reasonable choice.



Chapter 4

Machine Learning

Not long ago ‘Biological discovery’ was considered to take place on the lab bench.
But in the last years, high-throughput methods of analysis have changed the face
of biology and the era of ‘omics’ has arrived. Whether it is a question of genome
evolution or how cancer drugs will affect a particular patient, scientists have to

grapple with big data and the amount of biological data is growing exponentially.

The European Bioinformatics Institute in Hinxton, UK, has currently 20 petabytes
of data related to genes, proteins and molecules and this amount is increasing
every year [145]. In parallel, the questions biologists are trying to address are of
increasing complexity. Thus, generating large amount of data is a first step in
biological discovery. To gain an insight the data need to be processed, analysed
and integrated, which requires sophisticated algorithms and techniques. Machine
learning approaches are ideally suited for such analysis and characterization of
complex and large amounts of biological data. Machine learning, a branch of
artificial intelligence, refers to construction and study of algorithms and systems

that can learn from data.

Machine learning methods are data-driven algorithms. In machine learning al-
gorithms, unlike “normal” algorithms it is the data that drives the algorithms to
find the best answer. Let’s assume we want to differentiate between apples and

oranges. A hypothetical non-machine learning algorithm for this task will try to
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define what is an apple (or orange). For example it can try to define the geomet-
rical shape of an apple or the amount of red pixels in the photo of an apple, etc.
In contrast, a machine learning algorithm would not have such a coded definition
of an apple. It will look at various examples of apples and will learn from them
what is an apple. Thus, it will learn by examples to be able to distinguish apples

from oranges.

Today machine learning is considered as a collection of several different techniques
and algorithms though they all share a unifying framework developing since the
late 1980s [146]. Biology has a historic relation with machine learning methods.
Some of the first machine learning techniques were inspired by biological systems.
For example, the perceptron [147] was an attempt to model actual neuronal be-
havior which later emerged as artificial neural network (ANN) methods. Similarly,
the neocognitron [148| and adaptive resonance theory (ART) [149] are inspired by
the visual nervous system. Evolutionary algorithms such as genetic algorithms are
inspired by natural evolution phenomena such as inheritance, mutation, selection,
and crossover [150]. Regardless of their biological inspirations, the use of machine
learning methods to solve biological problems started comparatively late. One of
the first examples is the use of the perceptron algorithm for the analysis of transla-
tion initiation sequences in Escherichia coli [151]. In recent years, there has been
a large improvement of machine learning techniques and computational power has
increased substantially. This led to machine learning becoming a reliable tool for

biological discovery in complex and mounting volumes of biological data.

Broadly, machine learning algorithms can be organized into two categories, ac-
cording to the way the examples are used to train the method, supervised learning
and unsupervised learning. Supervised learning works through the generalisation
of a set of rules that can be used for the assignment of previously unseen objects to
classes based on features. Here, during the model-fitting process the target values
of output in the fitted data are known. In supervised learning the goal is to make
object-to-class mapping models using currently available objects (and the respec-
tive class), so that we can predict the class for unknown objects as accurately as

possible. The object-to-class mapping is called training process and this mapping
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does not need to be absolutely accurate. Prediction of protein location from the
amino acid sequence is a relevant biological example of supervised learning. The
amino acid related information of proteins can be represented by a feature vector.
Based on the feature vector and the respective target values (subcellular location)
we can build a model that can predict class membership of new objects based on
the available features. Supervised learning methods not only perform discriminant

analysis but can also be used for regression analysis.

In contrast with supervised learning, no predefined class labels are available in un-
supervised learning. The goal of unsupervised learning is to discover similarities
(and dis-similarities) between objects without any external inputs other than the
raw data. This happens through clustering the objects in different classes based
on the object properties [152]. In this way, unsupervised learning helps to unveil
the natural patterns and grouping of data. Unsupervised learning methods can
also be used for density estimation or for data dimension reduction. Clustering
algorithms such as k-means, or hierarchical clustering are popular unsupervised
learning techniques and often used for analysis of high dimension data such as
microarray data [153, 154]. Similarly, principal component analysis (PCA) is use-
ful for data dimension reduction and visualization [155, 156]. Self-organizing map
(SOM, also called Kohonen map) [157] is also used to produce a low-dimensional,
discretized representation of the input space of data and is used in many bioinfor-

matics problems [158-160].

In summary, supervised learning uses labeled data and tries to associate new data
with classes; unsupervised learning uses unlabeled data and attempts to define
patterns in the data. Most biological data problems boil down to classification,
pattern recognition and prediction. The ability of machine learning techniques
to cope with high dimensions and nonlinearities of data makes them perfect for
biological applications. In the next section, SVMs and ANNs will be introduced

which are further used for analysis of protein subcellular location.
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4.1 Support vector machines

In machine learning, support vector machines (SVMs), sometimes also called sup-
port vector networks, are supervised learning method. They are useful for clas-
sification, pattern recognition and regression analysis [161-164]. The theoretical
framework related to SVMs has a long history of development starting from the
1960’s [165]. The SVMs close to their current form were introduced by Vapnik et
al. in 1992 at COLT conference [166]. In 1995 Vapnik et al. further introduced the
soft margin classifier [167] and an extension of SVMs for regression analysis [168].
Since then, several further extensions and improvements (e.g. “Kernel Trick”) were
developed [169] and SVMs have become more popular [170]. In this thesis I utilized
the Support Vector Regression (SVR) for the classification of proteins in different
subcellular location. Using SVR I calculated the probability value for a protein
to be in a location class. The concept of SVR is derived from Support Vector

Classification (SVC), thus it is useful to first understand SVC.

4.1.1 Support vector classification

The basic SVM is a non-probabilistic binary linear classifier. In a binary classi-
fication problem the objects are labeled with one of two labels. Here we assume
a positive class and a negative class denoted as +1 and —1 respectively. Let X
denote a vector with n components which implies that X is a point in n dimen-
sional space. The notation X; will represent the i*" vector in the dataset where
1 =1,2..., M and that have y;, the corresponding class label. For the binary class

problem
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Here X, is called a feature vector and y; is a class label. The goal is to build a
classifier to separate positive instances from the negative ones. In the example

plot (figure 4.1), a line can be used to separate the dataset into two classes.

F1GURE 4.1: Classification planes of two separable classes. There can be several
possible separating hyperplanes.

This is because the dataset in figure 4.1 is two dimensional. Similarly, if we have
a dataset with three dimensions, we require a plane to separate the data; and for
n dimensional data we will require an (nn — 1) vector subspace, which is called
a hyperplane. There can be an infinite number of existing hyperplanes that can
separate the data into two classes (figure 4.1). A hyperplane will provide the best
classification if the hyperplane not only separates the classes correctly but also
does so with largest distance possible to the nearest training data point of any
class i.e. with large margin [171, 172]. The data points that are on the boundaries
of the class and closest to the optimal separating hyperplane are termed Support
Vectors (SV). The optimal hyperplane is the one that maximizes the distance
between it and the support vectors. This is called Optimal Separating Hyperplane
(OSH). The aim of the SVM is to find such optimal hyperplane that separates the
data into two classes.

(w,x) + b= f(x) (4.2)
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where w is a vector (known as weight vector) in R™ and b is a scalar called bias. To
classify all instances, the optimal classifier hyperplane must satisfy the following

constraints:

w-X; +b>+1ify; = +1,
(4.3)
w-X;+b< —1ify; =—1
This can be written as a single expression:
yi(W-Xi+b)>1 (4.4)

The optimal hyperplane can be computed by solving the following optimization

problem:

1
Minimize §||W||2
subject to: y;(W-X; +b) —1 >0, (4.5)

fori=1,2,... M

where ||w]| is the norm (or the length of W). By minimizing ||w||* we maximize
the margin. The set of formula above is a convex quadratic programming (QP)
optimization problem and is called the primal formulation of linear SVMs. For this
problem the optimal solution can be obtained such that it satisfies equation 4.4,
while the distance from support vectors is as small as possible. Using the Lagrange

multipliers, we can recast this problem in the dual formulation.

M M
. 1 > o
Maximize E o; — 5 E G0GY Y X X

i=1 ij=1
M

subject to: «a; = 0 and Zaiy,- =0
i=1

fori=1,2,.... M
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The variable o; can be interpreted as the contribution of the i** training example

to the final solution. The vector w can be defined as
M
i=1

and now the solution can be written as:

f(z) =sgn (i X - X+ b) (4.8)

=1

The data points X; for which o; > 0 are the support vectors. The large margin
hyperplane is defined only by these data points i.e., support vectors and other
data-points do not affect the hyperplane. In the dual formulation of the SVM
(equation 4.7 and 4.8) we do not require the original data, rather we need to
access only the dot product for optimization. Also in the dual formulation, the
number of free parameters does not explicitly depend on the number of variables
but is bounded by the number of support vectors. Thus, the dual formulation
transforms the optimization problem in M variables, where M is the size of the
training data. This is especially useful in solving problems with high dimensions as
it can save us from the curse of dimensionality [173]. For example for a microarray
dataset which contains information on 100 patients and 10000 genes, we need to
optimize only up to 100 parameters. Caruana et al. [173] has shown that generally

SVMs perform well for high-dimensional data.

The above formulations enforce that all data-points are out of the margin. This
is called hard margin. This kind of classifier makes sure that all input examples
are correctly classified and give zero training error. Consequently, the hard margin
works only for linearly separable data. Moreover in case of the hard margin classi-
fier, the outliers can affect the performance [174|. To overcome this problem, some
data-points can be allowed to be misclassified and also a greater margin can be
achieved. The result will be a soft margin classifier that gives a non-zero training
error. The soft margin SVM can achieve better performance than the hard margin

and is less likely to overfit. A simple approach of soft margin is to assign a slack
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variable £ to each instance. Thus we can rewrite equation 4.4 as

—

(4.9)
fori=1,2,.. M

where & > 0 is a slack variable that allows a data-point to be misclassified. From

equation 4.5, the new formulation becomes

M
SV SR
Minimize §HW|| + C'Zzlél

. Lo (4.10)
subject to: y;(W-X; +b) > 1—¢
fori=1,2,....M
Similarly the dual formulation in equation (4.6) becomes
M LM
Minimize Z a; — 5 Z aiCijiyj)_()l- . ;()j
=1 i,7=1
(4.11)

M
subject to: 0 < a; < C and Zaiyi =0
i=1

fori=1,2,..,M

The variable C' works as a control mechanism for the slack variable £. By having
a small value of C, misclassifications are allowed during the training. In case of a
very large value of C' a large penalty will be assigned to errors and the soft margin

SVM will behave similar to a hard margin SVM.

4.1.2 Kernels for nonlinear data

The formulation of the SVM in the previous section is restricted to only linearly
separable data. If a classification algorithm is able to handle only linearly separable
data, its usefulness would be quite limited as many real world problems are not
linearly separable. For example consider the data in figure 4.2. Intuitively, there
is some pattern in this data but ordinary formulation for linearly separable data

(e.g. equation 4.11) will not able to adequately recognize it.
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FIGURE 4.2: Classifying data using the kernel trick.

This raises the question whether linear SVM can be extended to the construction
of non-linear decision functions for classification of nonlinearly separable data. The
straightforward way to deal with this problem is to map the features to another
feature space called kernel methods. The basic idea of kernel methods is to first
map the data using some non-linear mapping function to a higher-dimensional
space and then apply the linear algorithm as before in the higher-dimensional
space. Using the non-linear function ¢ for mapping, equation 4.2 can be written

as

(w,6(x)) +b = f(x) (4.12)

Since the existing data feature space is mapped to a higher-dimensional space,
this can substantially increase the number of features to consider, which can be
problematic. The kernel methods make sure that the number of features increases
only linearly with the size of the data and feature explosion does not occur. They
do so by avoiding the explicit mapping of data features to higher dimensional

space. Equation 4.7 can be redefined for using the mapping function ¢ as
M
W= Z aiyi¢<¥i) (4.13)
i=1
Similarly equation 4.8 becomes

f(z) = sgn (Z aiid(Xi) - H(X) + b) (4.14)
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As indicated earlier, the resulting feature space can be very high-dimensional,

which should be avoided. We can define the kernel function k(x,z’) as

k(z,2') = (¢(x), ¢(a")) (4.15)

Here computation can be done efficiently as we do not need to know explicitly the
mapping function ¢, rather only defining the kernel function k(x,z’) : R® x R* —
R is sufficient. Furthermore, mapping into very high dimensional space can be
avoided. There are certain conditions for a function to be a kernel function. Not
every function R™ x R" — R can be a valid kernel. To be a useful kernel a
function has to satisfy the Mercer conditions, otherwise the resulting quadratic

problem may not be solved [170].

Several different kernel functions have been proposed [175, 176]. Some of the

commonly used kernels are:

Linear Kernel

k(r,y) = 2"y +c

Polynomial Kernel

k(z,y) = (axTy +c)?

Radial Basis Function Kernel
k(z,y) = exp <——”x2_g%”2>

Sigmoid Kernel
k(z,y) = tanh(axTy + )

In a practical classification problem which kernel to use depends upon the type of
data in hand. Kernels have been developed for specific types of data i.e. kernels
for sequences [177| or graphs [178, 179]. In case of small data size the nonlinear or
complex kernels may lead to over-fitting. A rule of thumb is to start with a simple
linear kernel and try other kernel functions if sufficient classification accuracy is
not achieved. In case of complex problems, combining different kernels can also

be useful.
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4.1.3 Probabilistic output from SVM

The standard SVM classification model discussed above is non-probabilistic. From
a training set in which each instance is marked as belonging to one of two classes,
an SVM training algorithm can build a model that will assign the future examples
to one of the two classes. The assignment of a class to an unseen instance will
be non-probabilistic, i.e. the classifier will only tell whether the instance belongs
to a class or not. It will not produce the posterior probability for the resulting
class. The probabilistic output from a classification algorithm is a richer and
more expressive formulation of the underlying data pattern. It also enables the

post-processing and interpretation of the output.

To map the unthresholded SVM outputs into probability values, several formu-
lations have been proposed, for example feature space decomposing [180], Platt’s
method [181], SVM binning [182], Isotonic Regression [183] and recently Induc-
tive Venn Predictor [184]. Over the years Platt’s method [181] has become the
standard for calculating the probabilistic output for SVMs. Libsvm [185], the
software library used for SVM based classification in this work has also adopted
Platt’s method for probabilities output calculation [186]. For predicting the poste-
rior class probability Pr(y =1 | x), Platt’s method approximates it by a sigmoid
function

_ 1

Pr(y=1]|z)~ Pap(f)

where f = f(z)

The optimization of parameters A and B is done so that they minimize the neg-
ative log-likelihood of the training data. Different optimization methods can be
used for this purpose. In the original work Platt uses Levenberg-Marquardt op-
timization to solve this. Lin et al. [186] proposed a more robust algorithm by
using Newton’s method with backtracking and implemented it in Libsvm (since
version 2.6). Experimental analysis has shown that Platt’s algorithm required
more iterations and does not produce solutions in some cases, whereas the effi-

ciency and robustness of the Lin et al. [186] method has been demonstrated and
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has been widely adopted. We utilized this feature of Libsvm for calculation of in

class probability of proteins in case of binary classification.

4.2 Artificial neural networks

Artificial Neural Networks (ANNs) are a supervised machine learning method.
The concept of ANNs is inspired by the working of the human brain. Through
the long course of evolution the human brain has developed remarkable capacities
of learning and processing information. It can process complex and non-linear
data and can recognize patterns. As a system, the brain is robust and adaptive
with generalization ability which helps in the prediction for future cases. In case
of numeric computation the modern computers can easily outperform the human
brain. However, the human brain is far superior to von Neumann machines in
solving deep perceptual problems. The reason of superiority of the human brain is
because it differs from a computer at a fundamental architecture level. Compared
to von Neumann architecture of computers, computations in the brain are done
by a highly connected network of neurons. This raises the question “based on
brain computation architecture, can we create intelligent systems?” ANNs are
such an attempt to use the organizational principles of the brain for the creation

of machine learning systems.

The very first attempt in this direction was made by McCulloch and Pitts in
1943, when they modeled neurons as a switch that remains active or inactive
depending on input from other neurons. In the 1960s Rosenblatt, Minsky and
other researchers developed neuron models called “perceptrons”, that have simi-
lar properties like biological neuron networks and can learn and do some pattern
recognition. After Minsky and Papert’s work in the 1960s [187|, showing that sim-
ple perceptrons can solve only linearly separable and limited classes of problems,
enthusiasm in the field damped. Interest in ANNs began to resurge in the early

1980s. The Hopfield energy approach [188] and the back-propagation algorithm



Chapter 4. Machine Learning 37

[189] were some of the major developments. Since then ANNs have been exten-
sively used in solving many complex real-world problems. They have emerged as
an attractive choice because of their remarkable information processing, general-

ization and learning characteristics.

4.2.1 Biological and artificial neural networks

In this section we present a generalized explanation of brain activity which played
a fundamental role in the development of ANNs and other neurocomputing ap-
proaches. In the nervous system, neurons are the basic building blocks that process
information. The human nervous system is composed of billions of neurons of var-
ious shapes, sizes and types [190]. A typical biological neuron has three main
functional units - cell body or soma, dendrites and axon. The cell body contains
nucleus, cytoplasm and the molecular machinery required for the functioning of
the cell. From the signaling and information processing viewpoint, the dendrites
and axon are the most important part of the neuron. The dendrites receive sig-
nals from other neurons. They appear as tentacles sprouting from the soma. The
axon is a long projection of the neuron and it passes the signal to other neurons.
Thus, in a neuron the dendrites act as receivers and the axon as the transmitter.
As illustrated in figure 4.3, the axons eventually branch into collaterals, which

are connected to other neurons via synapses. The synapse, a microscopic gap be-

@

Synapse

Dendrite

FIGURE 4.3: Structure of a typical neuron.
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tween a neuron’s axon and another neuron’s dendrite, transmits the signal from
one to the other neuron. The impulse travels from the dendrites and the cell
body towards the pre-synaptic membrane. The arrival of the impulse at the pre-
synaptic end causes vesicles to release neurotransmitters, which diffuse towards
the post-synaptic membrane. Once the neurotransmitter binds to receptors at the
post-synaptic membrane of a dendrite of another neuron, it causes an action po-
tential in the postsynaptic neuron. The intensity of the signal passed to the other
neuron depends on several factors like the intensity of the incoming signal and the
threshold of the receiving neuron and, more importantly, the synaptic strength.
As the signal passes through the synapse, it can adjust the synaptic strength and
thus the synapse can learn from the signal. In essence, the neurons are part of
a highly connected network. For example, in the human cerebral cortex, which
contains at least 10'° neurons, each neuron is connected to 103 to 10* other neu-
rons via synapses, making in total around 10* synaptic connections [191]. Due
to their massively connected nature, neurons can receive and send a large number
of signals simultaneously. This also implies that the brain runs parallel processes.

At the conceptual level, the neurons in an artificial neural network try to mimic

FIGURE 4.4: Schematic representation of an artificial neuron. The artificial
neurons are the basic processing unit of an ANN.

the behavior of actual neurons. The nodes in an artificial neural network repre-
sent neurons, while the connections between the nodes can be considered as axons
and dendrites. The connection weight is similar to the synapse activity and the

threshold acts same as soma in actual neurons. A biological neural network learns
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by adjusting the synapse activity. Similar to this, the ANN learns by adjusting
the weight.

In an ANN an artificial neuron receives input from its environment. It can re-
ceive several input signals and integrate all signals in a specific way to produce a
combined value. The neuron fires according to this combined value and activation
function. For example a neuron with a binary threshold activation function passes
the signal to other neurons only when the combined value is greater than a partic-
ular threshold. This binary threshold model was first proposed by McCulloch and
Pitts [192]. If the McCulloch-Pitts neuron receives n input signals it generates
the output of 1 if the sum of input signals is above its threshold. The output y of

McChulloch-Pitts neuron can be described as

( n
j=1

y = (4.17)

0 if zn: w;jT; <b

\ j=1

where z is the input signal, w is the synapse weight and b is the threshold. The
sign of the synapse weight w determines whether a synapse is excitatory or in-
hibitory. The positive (4) weight value represents excitatory synapses while nega-
tive weights represent inhibitory synapses. The simple artificial neuron described
above can learn concepts. The weight values can be adjusted to learn to respond
with True or False (1 or 0) for inputs presented to it. Such a system is also called

Perceptron.

The McCulloch-Pitts neuron can be modified and generalized in various other
forms. For example the activation function can be changed from a binary threshold
function to a sigmoid or gaussian function. Table 4.1 shows different types of the

activation functions.

In ANNSs, the sigmoid function is a frequent choice. As indicated in table 4.1
the sigmoid function has a somewhat identical property to a step function, with

the additional region of uncertainty. Compared to other activation functions, the
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input-output relationship of a sigmoid function is closer to biological neurons [193].
There is a wide variety of sigmoid functions such as the logistic sigmoid and
hyperbolic tangent sigmoid functions. The logistic function is the standard sigmoid

function and is defined as

1

-1 (4.18)

¢(x)

where [ is the slope parameter. It is easy to calculate the derivatives of sigmoid

functions, which saves time and resources during certain training algorithms.
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Step Function

0 if x <0

1 ifxz>0

Sigmoid Function

Identity Function

¢(z) =z

Gaussian Function

o(a) = e 2

oV 2r

TABLE 4.1: Examples of activation functions commonly used in ANNs.
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4.2.2 Multilayer feed-forward neural networks

The architecture of neural networks can be defined as a weighted directed graph
where artificial neurons are the nodes and connections between the neurons are
weighted directed edges. Considering this graph theory based architecture, ANNs

can be categorized as:

e Feed-forward neural networks

e Recurrent neural networks

In the feed-forward neural networks the nodes (neurons) do not form a loop (di-
rected cycle). Thus the information flow in a feed-forward neural network is only
unidirectional. The feed-forward neural networks are static in nature. Accord-
ingly, given an input they generate only one set of output values. Moreover, these
output values do not depend upon the network state or the previous input values
and they can be regarded as memory-less [194]. On the other hand, the recurrent
neural networks have loops or cyclic paths. Because of these feedback loops they
are also called feedback neural networks and they are dynamic in nature. In the
recurrent neural networks, the output not only depends on the input but also on
the state of the network. Thus the network has memory and it can use the inter-
nal memory for processing the input. Although recurrent neural networks can be
very powerful [195, 196], the theoretical and practical difficulties have currently

prevented their practical applications.

For the classification purpose, multi-layered feed-forward neural networks are the
most commonly used artificial neural networks. In multi-layer feed-forward neural
networks there are no connections between the neurons in the same layer [197].
Moreover, no feed-back connections exist between the layers. The nodes (and the
layers) in such neural networks always feed the signal forward. In such networks
there is an input layer, an output layer and in between there are hidden layers.
The input values are fed in the network via the input layer, which passes it to

the hidden layer. After processing, the hidden layer forwards the signals to the
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next layer. Thus, in a feed-forward neural network composed of three layers, an
input layer, a hidden layer and an output layer (figure 4.5), signals are passed
from input to hidden and then to the output layer. The hidden layer processes the
signal according to connection weights and the activation function (e.g. equation
4.18). Similarly the signal received from the hidden layer is processed by the

output layer.

Input Layer

Hidden Layer

Output Layer

FIGURE 4.5: A typical three layered feed-forward neural network.

The multilayer feed-forward neural networks can solve nonlinear classification

problems via making complex decision boundaries.

4.2.3 Learning

ANNSs can learn by updating connection weights. In a usual learning process, the
training patterns are presented to the network and used to update the connec-
tion weights to try to improve performance. ANNs can be trained using different
learning paradigms. Unsupervised learning is used for exploring the underlying
structure of data, clustering or organizing the patterns. Self-organizing maps
(SOMs), also called Kohonen map, are one relevant example. They produce a
low-dimensional and discretized representation of the input data, which is useful
for visualizing high-dimensional data and multidimensional scaling [157, 198]. Su-

pervised learning approach is commonly used for classification purposes. Here,
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ANNSs are presented both with the training set and with the corresponding output
values, based on which the network tries to optimize the connection weights to

generate answers as close as possible to the desired output values.

For training of ANNs, the choice of the learning algorithm depends on factors
like sample complexity and computational complexity [194]. The error back-
propagation learning algorithm is commonly used as a training algorithm. The
back-propagation algorithm works on the principle of error-correction. Upon pre-
senting input data, the network generates an output d. This output of the net-
work d may be different from the desired value. The error-correction principle
uses the difference between real and predicted values (y — d) to modify the net-

work connection weights to minimize the difference.

Let us consider a feed-forward neural network which has 6 layers after the input
layer. In this network a layer I € 1,2, ..., 0 has n nodes. The layers before and after
l can be represented as I — 1 and I + 1 respectively. Thus the total number of
possible connections to the layer I will be (n; x n;_;) and there will be (n; X n;y;)
connections from the layer I to the next layer. Each connection has the weight w;;
where ¢ is the node in layer [ and j is the node in layer [ — 1. Thus node j can be
considered as the source node residing in layer [ — 7 and node ¢ as the destination
node residing in layer [ . The neuron 7 on layer [ calculates the integrative value

¢ of all incoming signals as

ni—1

(= Zwijxé'_l (4.19)
j=1

where z!~!

is the incoming signal from the layer [ — 7 and w;; is the weight of
the connection between neuron ¢ and j . The output value of this neuron will
be calculated using the corresponding activation function ¢ (see table 4.1). The
sigmoid function (in equation 4.18) is one of such common activation functions.

Thus the output value of neuron ¢, represented as y; will be

v = 6(G) (4.20)
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Using this equation the output value for each neuron is calculated in a layer and
the signal is propagated to the next layer. At the output layer the output signal
of the network y is compared with the desired value d and the error signal & is

calculated

E=d—y (4.21)

By propagating the output layer’s error signal £ back to the network, the back-
propagation algorithm tries to optimize the network connection weights. However
it is not possible to calculate the error signal for a layer other than the output
layer. Thus, the error signals are propagated in a specific way such that the output
signal of the neuron is the input signal and the current connection weight is used

for error propagation. For the neuron i at layer [ the back-propagated error signal

will be

ni41

0 = (x:) Y windy'! (4.22)
k=1

where wj; is the connection weight between neuron ¢ at layer [ and neuron k at
layer [+ 1 and ¢ represents the derivative of the activation function 4.1. This
formula allows us to calculate the error signal for each neuron in the network. In
the next step the algorithm modifies the connection weights in proportion to the

calculated error signal. The change in connection weights Aw is
Awiy = 7755% (4.23)
Where 7 is the learning rate. The algorithm uses Aw;;, to adjust the weight w;; as
wir = wir + Awik (4.24)

and modifies all the connection weights in the network back up to the input layer.
This is the back-propagation step. In the next step, a new data point is presented

to the network and the algorithm repeats the steps again. The steps are repeated
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until the error at the output layer drops below a specified threshold. Another
criteria to stop training is when no significant change in error value is observed

(error value converges) or a maximum number of iterations is reached.

The back-propagation algorithm uses the gradient descent method for finding
the minimum of the error function in weight space. Consequently, the back-
propagation algorithm may converge to a local minimum. If there is only one
minimum, the hill climbing based gradient descent can cope with the local min-
ima problem. In practical problems, the error surface is usually rough and can
contain several local minima and maxima. Depending upon the error surface, gra-
dient descent can be sensitive to the starting point and may lead to local minima.
In summary the convergence to a global mimima is not guaranteed when using the
back-propagation algorithm. To overcome such problems, several variants of back-
propagation algorithms have been proposed, for example using genetic algorithm
[199] or swarm optimization techniques [200] together with the back-propagation
algorithm.

The back-propagation algorithm is an iterative process. The learning and conver-
gence of error can be very slow and may require a great deal of resources and time.
Time and resources required by back-propagation algorithms also depend on the
network architecture. For example a fully connected network will have more con-
nections (and parameters) to optimize compared to a partially connected network.
During implementation, by using programing techniques like multithreading, cache

optimization, etc. convergence times can be reduced.
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Residue Exposure and Subcellular

Location

5.1 Motivation

The functional properties of proteins are associated with their subcellular loca-
tion. Therefore, predictions of protein location can facilitate the study of protein
function and characterization. As described in chapter 3, the computational pre-
diction of subcellular location from protein sequence has been attempted using
mainly three approaches. The signal peptide based approach tries to identify
sorting signals present in the sequence. Although signal peptide based methods
show reasonable accuracy in many cases, their performance differs widely between
compartments. This is because of the fact that our knowledge about the signals
leading proteins into different compartments is limited. The sequence homology
based approach considers proteins with sequence similarity to be localized at the
same subcellular location. However, the assumption that homologous proteins
have similar subcellular locations is not always correct. Exceptions for this rule
(e.g. the proteins of the Lsgl family of GTPases [34]) are growing in number
as we gather more knowledge about biological systems. Moreover, similar to sig-

nal peptide based methods, the homology based approach is not applicable to all

47
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proteins. A third way for the prediction of protein subcellular location uses the
general observation that amino acid composition of proteins and protein subcel-
lular location are related. A major advantage of this approach is that it can be
applied to any protein and any compartment. Over the years, several tools have
been developed utilizing the amino acid composition based approach for protein
subcellular location prediction. However, despite several advances these methods

have a mediocre performance for several reasons that we will discuss later.

In a landmark study, Andrade et al. [131] have shown that amino acid exposure
influences the amino acid composition of proteins in different compartments and
inferred that using this property could improve location prediction. The ratio-
nale was that differently exposed residues have different evolutionary pressures to
mutate towards specific amino acid types whose side chains have physicochemical
properties that agree to the subcellular location where the protein performs its
major activity. Since the publication of this previous work, much data on pro-
tein structures and experimentally verified protein locations has been deposited in

public databases.

With the objective of predicting subcellular location from sequence information
only, we present a novel analysis of the relation between protein amino acid ex-
posure, residue type and subcellular location, which takes advantage of recent
experimental data. Our focus is on eukaryotic proteins and three locations: nu-
clear, cytoplasmic and extracellular. In addition, we will consider the necessity of
introducing a fourth class and demonstrate that this can be predicted: proteins of
nucleocytoplasmic localization. This class is not generally taken into account by
methods of prediction of location, despite the fact that a large number of proteins
are known to shuttle between nucleus and cytoplasm and perform functions in

both compartments [201, 202].

Through careful filtering and data integration, we created a reliable high quality
dataset and explored the relationship between residue exposure and protein subcel-
lular location. To gain insight into the relationship between amino acid exposure

and environment, we performed frequency distribution and PCA analysis on the
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data set. Thus, using detailed and systematic analysis we showed that proteins

belonging to different subcellular locations have distinct residue expose patterns.

5.2 Selection of proteins with known structure and

location

The Universal Protein Resource (UniProt) is a comprehensive and freely accessi-
ble resource for protein sequence and annotation data [203]. It is known for its
high-quality information, minimal level of redundancy and high level of integration
with other databases. The subcellular location information of proteins is a funda-
mental part of UniProt annotation since its creation. The growing quantity and
complexity of location information led to some major improvements in the UniProt
subcellular location controlled vocabulary, around 2007 (UniProt release version
12.4) and in 2008 (UniProt release version 12.7). The current release version of
UniProtKB uses controlled vocabulary to describe the subcellular locations and
membrane topologies of proteins under the line “SUBCELLULAR LOCATION”

and provides other relevant information.

As our focus is on eukaryotic proteins, we first obtained all eukaryotic protein-
identifiers (IDs) from UniProtKB/Swiss-Prot database (release-2012_05). Fur-
thermore, to improve data quality, all unreviewed records from UniProtKB were
removed. The resulting protein-IDs were mapped to the corresponding location in-
formation defined as ontology terms for subcellular location in the UniProt records.
For several proteins for which there is no experimentally verified location informa-
tion, UniProt provides location information derived from other resources. In the
subcellular location annotation UniProt record field this information is described
as “by similarity”, “probable” or “potential”. Thus, to select only the proteins with
experimentally verified location annotation, all the proteins containing such terms
in the subcellular location annotation were removed from the dataset. The pro-

teins that are known to have undergone the post-translational modification process

of glycosylation are discarded as the glycosylation can affect the protein’s surface
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charge and other properties [204-206|. In the next step, all the proteins containing
location terms other than nuclear, cytoplasmic or extracellular were removed from
the dataset. Thus, a protein having an annotation such as “mitochondria, nucleus”
is also discarded as the focus is only on proteins within the above three categories.
Interestingly, there is a significant number of proteins annotated as nuclear as well
as cytoplasmic (figure 5.1). These are proteins that can shuttle between nucleus

and cytoplasm.

] Extracellular
Cytoplasmic

(E&C&N)132 -

— 45(E & N}

137042

Nuclear

F1GURE 5.1: Venn diagram of eukaryotic proteins exclusively found in three
location categories. A significant number of proteins are found both in the
cytoplasm and in the nucleus.

This led us to include another location class “Nucleocytoplasmic” in our analysis for
the proteins which can have such a dual location. The selected eukaryotic proteins
were mapped to the available protein structure entries in the Protein Data Bank
(PDB) database. For many proteins, the mapping to the PDB database is not
one to one. If multiple PDB entries were available for a sequence we selected the

PDB id corresponding to the longest sequence fragment.

Small protein sequences might not have enough residues for doing statistics on
their exposed residues and they can increase the noise during the analysis. For this

reason, we discarded sequences shorter than 150 amino acids. We ended up with a
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Location Proteins
Nuclear 336
Nucleocytoplasmic 347
Cytoplasmic 543
Extracellular 132
Total 1358

TABLE 5.1: Number of proteins with PDB information

total of 336, 347, 543 and 132 proteins for nuclear, cytoplasmic, nucleocytoplasmic

and extracellular locations, respectively, for a total of 1,358 proteins (Table 5.1).

5.3 Computation of relative accessibility and residue

exposure frequency distributions

For assigning secondary structure to the amino acids from the atomic coordinates
of the protein’s structure, the DSSP algorithm [207| is considered as the stan-
dard method. The DSSP database contains an associated entry for each protein
structure in the PDB database, which includes information on the exposure of
each residue automatically inferred from the 3D structure. This information is

available under the column “ACC” (figure 5.2).

9 6 60 0 0 066 0 0 0 6 6 06 0 0 LADDERS PER SHEET
STRUCTURE BP1 BP2 |ACC N-H-->0 0-->H-N N-H--> 0 -N TCO KAPPA ALPHA PHI ~ PSI
0 (207 o o 8 o A 0.0600 360.0 360.0 360.0-114.0

A . 8 2 121.0-140.0 167.4
.0-101.0 177.5

0.890 107.
0.951 110.4

FIGURE 5.2: An example of a DSSP file. The highlighted yellow column is for
amino acids, accessibility values are colored in green.

Using the entries from the DSSP database, the values of relative accessibility to

the solvent were calculated for each of the residues of every selected protein. To
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calculate these relative accessibility values, the ACC (accessibility) value (from
DSSP) is normalized by the maximum residue accessibility for each of the 20

amino acids as defined by [208]|. Thus the relative accessibility is calculated as

ACC

Relative A bility =
arve Accessivny Maximal Residue Accessibility

A relative accessibility value of 1 means high accessibility. This means the residue
is exposed to the solvent. Similarly, a value of zero means no accessibility, which
indicates the residue is buried in the protein structure. An example protein is
shown in figure 5.3 displaying three different levels of relative accessibility. Around
50% of all the residues of the proteins considered had a relative accessibility below
0.1, with 32% above 0.5 and only 10% above 0.9, but these values depend very

much on the type of amino acid considered.

Relative Accessibility

. n>=0.35

B 0.07<=n<035

.n< 0.07

FIGURE 5.3: Visualization of DSSP ranges on protein structure. The protein
structure is colored according to the relative accessibility values.

Next the distribution of relative accessibility values for each of the 20 amino acid
types is calculated. For this purpose, the relative accessibility range (0 to 1) is
divided into 10 equal sized bins and the number of residues falling in each bin is

counted. This procedure is followed for each of the 20 residue types (figure 5.4 ).
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FIGURE 5.4: Residue exposure frequency distributions (from buried to exposed)
for each of the 20 amino acids in the proteins of known structure and experimen-
tally verified location used to train the algorithm. The graphs were arranged

according to similarity.
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FIGURE 5.5: Residue exposure frequency distributions (from buried to exposed)
for each of the 20 amino acids for the dataset of nuclear proteins. The graphs
were arranged according to similarity.
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FIGURE 5.6: Residue exposure frequency distributions (from buried to exposed)
for each of the 20 amino acids for the dataset of nucleocytoplasmic proteins. The
graphs were arranged according to similarity.
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FIGURE 5.7: Residue exposure frequency distributions (from buried to exposed)
for each of the 20 amino acids for the dataset of cytoplasmic proteins. The graphs
were arranged according to similarity.
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FIGURE 5.8: Residue exposure frequency distributions (from buried to exposed)
for each of the 20 amino acids for the dataset of extracellular proteins. The
graphs were arranged according to similarity.
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FIGURE 5.9: Principal component analysis of the vectors of exposure of the 20
amino acids shown in figure 5.4. Amino acids with similar properties appear close
in the projection: polar residues like arginine (R), aspartic acid (D), glutamic
acid (E) and lysine (K) group together. Same is true for alcoholic residues such
as threonine (T) and serine (S), and for aromatic residues (tryptophan (W),
histidine (H), tyrosine (Y), phenylalanine (F)).

This reflects the similarities between amino acid chain properties so that, for ex-
ample, the distributions of hydrophobic residues are similar to each other. Accord-
ingly, we observed that residues with side chains belonging to the same physic-
ochemical property group show similar frequency distributions (figure 5.4). For
example the hydrophobic residues isoleucine (I), valine (V), leucine (L) and alanine
(A) show very similar distributions with a very high frequency in the low accessi-
bility region and fewer residues in the high relative accessibility region. Principal

component analysis (PCA) of these data shows this more prominently (figure 5.9).

The distribution of exposure values for the 20 different amino acids is also calcu-
lated for each of the four protein classes separately. Through the comparison of
the distribution of class specific amino acid exposure values we observed variation
for particular amino acids and protein locations. For example, when we compare

the distribution of exposure values for glutamine (Q) in different location classes
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we can see that glutamines in extracellular proteins are more buried than in in-
tracellular proteins. Conversely, cysteines in extracellular proteins have a distinct
peak at high exposure values, which is absent in intracellular proteins. These

differences imply that exposure values can be used to predict protein location.

5.4 Discussion

In this chapter, we presented a detailed analysis of amino acid composition and
its exposure variation with the subcellular location of the corresponding protein.
Our study demonstrated that the residue exposure in a protein varies with its
subcellular location. This also implies that the residue exposure values can be
used, in combination with amino acid composition, for the prediction of subcellular
location of proteins. We selected proteins for our analysis with experimentally
verified subcellular location. Although it is possible that the location annotation
of a protein in UniProt may contain errors, it is very unlikely that such errors affect
the proteins used in this study because we used only proteins that have a three
dimensional structure available in PDB and usually those are well studied and
characterized. The residue accessibility values of the amino acids of these proteins
were calculated using the DSSP database. The tool NACESS [209] could have
been also applied for this purpose, although we found no significant difference in
relative accessibility and residue exposure frequency for many randomly selected

proteins.

The calculated vectors of accessibility distribution for each amino acid reflect their
physicochemical properties. We used principal component analysis (PCA) to rep-
resent this high-dimensional data in a low-dimensional form. PCA is a robust
method for dimensionality reduction without a serious loss of information. In
the projection of the vectors of accessibility distribution for the 20 amino acids,
residues with similar properties occupy close positions. The analysis also indi-
cates that more than pKa (acidity) or net charge, polarity and size drive residue

exposure.






Chapter 6

Development of the NYCE
Algorithm

6.1 Motivation

Proteins from different subcellular locations have distinct residue exposure pat-
terns. The detailed analysis of proteins from four different classes, described in
chapter 5, establishes this fact and suggests that residue exposure patterns can be
used for subcellular location prediction. An example case, shown in figure 6.1, rep-
resents the distribution of glutamine (Q) residue exposure values in four different
location classes. We can clearly see that glutamines in extracellular proteins are
more buried than in intracellular proteins. Even among the intracellular location
classes, there are coherent differences in the protein residue exposure patterns.
Compared to cytoplasmic proteins, the glutamine residues are more exposed in

nuclear proteins.

The general principle that a protein’s location is correlated to its residue exposure
properties has been studied earlier by Andrade et al. [131], though the systematic
study of the relation between residue exposure and subcellular location is lacking.
Here we first analysed the different ranges of exposure values and tried to find out

which range contributes most to protein location. For this purpose, the relative
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N Y

FIGURE 6.1: Distribution of values of exposure of glutamine (Q) in different
location class proteins: nuclear (N), nucleocytoplasmic (Y), cytoplasmic (C),
and extracellular (E).

accessibility value is divided into six ranges, making sure that an equal number of
residues fall in each range. Using SVMs we carried out the location wise study on
the effect of residue exposure range on classification accuracy. This analysis pro-
vided us insight into the amount of information each exposure range has. To apply
these newly discovered principles in practical use, we used a two level classification
approach. For the final classification we developed a hybrid method that combines
SVMs and an ANN, trained on proteins of known location and structure for the
prediction of the four locations mentioned above: nuclear (N), nucleocytoplasmic
(Y), cytoplasmic (C) and extracellular (E). We also adapted the method for use
on sequences of unknown structure by using predicted amino acid exposure values
with reasonable performance. To provide a convenient tool for location analysis
from protein sequence only, we also implemented the algorithm in form of a web

tool.
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Range DSSP SABLE

[0,0.01]

[0.01, 0.08]
[0.08, 0.21]
0.21, 0.37]
0.37, 0.57]
[0.57, 1.00] [5, 9

Y T W N =
W N = O

—_—

TABLE 6.1: Ranges of exposure used and their corresponding DSSP and SABLE
values

6.2 Calculating amino acid composition vectors

From the normalized relative accessibility of each protein, 20 and 40 component
vectors are computed. The amino acid composition vector of a protein is a vector
of 20 components, one for each amino acid type. Each component ¢ is the fraction
of residues of type 7 in the protein. Therefore the sum of the components is equal
to one. The amino acid composition vectors at six ranges of residue exposure
values were computed such that at every range there is an almost equal number

of residues (Table 6.1).

This allows us to compare and combine different ranges in terms of power for pre-
diction of protein location. For particular calculations, the 40-component vectors

were created by combining two 20-component vectors.

6.3 First step classification using SVMs

At the first step of classification, an SVM learning method is applied. For this
purpose the software library LIBSVM, Version 3.11 [185] is used. As discussed
in the previous chapter, SVMs are a binary classification algorithm. For the pro-
tein location classification problem, the extension of SVMs to multiclass data is
required. There are two main approaches to solve the multiclass (N-class) prob-
lem: one-vs.-one approach or one-vs.-rest approach. To solve N-class problems

the one-vs.-one approach creates N x (N — 1)/2 binary classification models. In
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the next step it applies majority voting for a final decision. The one-vs.-rest ap-
proach creates only N different models and a final decision is based on maximum

probability. This is also described as “winner takes all” approach.

4 Class Data
N|Y|C|E

One-vs-One One-vs-Rest
N|Y | NIC | NIE | Y|C | Y|E | CIE |
10 10 10 10 01 0| 0.710.3 06[0.4 01J09 0505

N Y | C E_ N Y | C | E
3 1 0 2 0.7 0.6 0.1 0.5

FIGURE 6.2: SVM based multiclass classification approaches. Two possible ap-
proaches, One-vs-One and One-vs-Rest are represented along with the required
number of binary classification models.

To decide which of these classification strategies should be used, it is important
to contemplate the nature of the classification problem in hand [210]. Consider
the case of a protein that is localized in the nucleus. Classifying this protein using
the one-vs.-one approach will require (4 x (4 — 1))/2 = 6 binary classification
models. Out of these 6 classification models, only 3 will have the option to classify
the protein in the correct class “nuclear”. The other 3 classifiers will necessarily
classify the protein in a category other than nuclear, therefore wrong. The one-
vs.-rest approach will use only 4 classification models. Out of these 4 classification
models, 1 classifier will have the option to classify the protein in the nuclear class
while the remaining 3 classifiers might correctly classify the protein in the ‘rest’
category. Considering this fact we chose the one-vs.-rest approach for multiclass
classification. For each exposure range and their combinations, we trained 4 one-

vs.-rest SVM models.

6.3.1 Data balancing and training

Vectors of amino acid composition for a set of proteins of known structure and

location using amino acids in different ranges of exposure were used as input
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data for LIBSVM. The dataset in-hand is highly unbalanced (Table 5.1). In an
unbalanced dataset, where one class instance far outnumbers other class instances,
SVMs perform poorly and can produce biased results. For instance, if a classifier
classifies a data set where the class ratio is 3:1, the classifier can perform at 75%
accuracy just by classifying all data-points in the larger class. To overcome this
problem the data-balancing method is applied. For each of the four location classes
(N, Y, C and E) one was taken as positive and an equal sized negative dataset was
created with members from the other three classes. When possible, the negative
dataset contained the same amount of sequences for each of the 3 classes. When
using C as the positive set (543 sequences) there were not enough E proteins
to be used as negatives (123 < 534/3 = 181). In this case all E proteins were
used as negatives and an equally sized set was taken from Y and N proteins to
complete the negative set (210 from each). For each SVM training a 10-fold cross
validation was performed. For this purpose the data was randomly divided into
10 sets. For each of the 10 cross validations one set was used as test data and
the others were used as training data. To obtain an optimized SVM model the
parameter space of the SVM was searched. The parameter values that produce the
best accuracy were recorded and used for the optimized model. As the training
datasets were balanced it was safe to use accuracy as performance measure. The
accuracy of the SVM was evaluated as the fraction of proteins in the test set
correctly predicted. An average accuracy value was calculated from the 10-fold
cross validation tests. Performance of different range vectors were compared using

ROC (receiver operating characteristic) curves.

6.3.2 SVM classification using vectors of amino acid com-

position in selected ranges

As described in section 6.2, we separated the values of amino acid exposure in
six percentiles (1-6, from buried to exposed). The vectors of amino acid compo-
sition for different combinations of these six ranges were tested. Initially we tried

vectors with 20 components (one for each amino acid) describing the composition
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of residues found within a particular range of exposure values. For example, the
range “1” composition vector for a protein would be defined by the distribution
of amino acids of this protein with exposure values in the most buried category.
The range “5 6”7 would be defined by the amino acids in the two most exposed
categories. The range “1 2 3 4 5 6” would be the amino acid composition of the
entire protein and so on. We then trained an SVM on such amino acid composi-
tion vectors for proteins from each of the four location categories. The accuracy
of the classifier was distinctively better for extracellular proteins and worst for

nucleocytoplasmic proteins (figure 6.3).

Interestingly, for nuclear proteins, and less so for nucleocytoplasmic and cytoplas-
mic proteins, the middle ranges of exposure (3 and 4) seem to contain less signal
about the location of the protein. For extracellular proteins, buried residues con-
tain more information on the location of the protein than exposed residues. In any
case, the complete protein amino acid composition (full range: 1 2 3 4 5 6) was
a better predictor than each of the six individual ranges, with composition from
multiple ranges, e.g. (1 2), (345 6), close. The bad performance of vectors of
residues in smaller ranges may be due to the fact that we are dealing with proteins
with an average size of 322 amino acids and the resulting range-specific amino acid
composition vectors may be based on small numbers of amino acids. This effect
is obviously reduced when the full range or a combination of ranges is used. Since
combined ranges seemed to perform next to full-range we wondered if combining
these vectors could outperform full-range vectors. Therefore, we next tested SVM
classifications using as training 40-component vectors that combined two differ-
ent 20-component vectors. In particular, the 40-component vector combining the
20-component vectors for residue composition in the three most buried categories
with the 20-component vectors for residue composition in the three most exposed
categories (1 2 3, 4 5 6) provided on average better predictions than the full-range
vector for the four location categories (figure 6.3). Generally, this vector produced
better results than other combinations excluding some ranges (e.g. (1 2, 5 6)) or

using scrambled residue ranges (e.g. (135,24 6)).
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FIGURE 6.3: Accuracy of one-vs.-rest SVM classifications for nuclear (N), nucle-
ocytoplasmic (Y), cytoplasmic (C) and extracellular (E) proteins using residues
in different ranges of exposure (1-6, from buried to exposed).
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F1GURE 6.4: ROC curves of one-vs.-rest SVM classification for four location
classes using composition vectors of residues in different ranges: 20-component
vector based classification (ranges 123456 and 1256) and 40-component vector
based classification (ranges 123,456 and 135,246).

Since from each one-vs.-rest SVM model we obtain a probability of being in a
location class, it is possible to evaluate the accuracy of the model using a threshold
for this probability. That is, we can compute the recall and precision of the
predictions above various cut-offs of probability. The plot of these values as ROC
curves confirms that the extracellular class is predicted the best and that the
40-component vector (1 2 3, 4 5 6) provides better predictive power than full
composition (figure 6.4). To rule out the possibility that the superiority of the 40-
component vector would be due to the higher amount of components, we tested a
40-component vector with scrambled ranges (1 3 5, 2 4 6), which performed poorly
(figure 6.4).

To combine multiple SVM predictions into a single one we applied a simple

“winner-takes-all” strategy, that is, the prediction with the best score is selected.
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ROC curves indicated that the 40-component vector (1, 2 3 4 5 6) performed
best against other 40-component vectors (e.g. (1 2 3, 4 5 6)) or the full range 20-
component vector (1 2345 6) (figure 6.6). We then applied the “winner-takes-all”
strategy to the three SVM sets mentioned above (that is, a set of 12 SVMs), but

this did not improve performance significantly (dotted cyan curve in figure 6.6).

6.4 Combining class probabilities with an ANN

We wondered if combining SVM scores for different locations and ranges using an
Artificial Neural Network (ANN) for a second level of classification, as opposed to
just taking the best score prediction, could improve the accuracy of the method.
The ANN used for this purpose is a multilayer perceptron, consisting of 3 layers:
input, hidden and output layer. The output probability values from one-vs.-rest
SVM models are used as input for the ANN. The number of neurons in the hidden
layer was optimized for maximum accuracy, as well as the type and number of
SVMs using as input (figure 6.5). For each individual range, the probability values
obtained from 4 different one-vs-rest SVM models are fed into the ANN. Thus, for
such cases the input layer of the network consists of 4 input neurons taking the
probability values from one-vs.-rest SVM models for each of the four categories as
input. For better accuracy the combinations of ranges are also analysed using an
ANN. Thus for combination of 2 and 3 ranges, the ANN input layer consists of 8

and 12 input neurons, respectively.

For all the cases the output layer of the neural network consists of 4 neurons,
one for each location class. The back-propagation algorithm is used for training
and the number of neurons in the hidden layer was optimized by 10-fold cross-
validation. Different combinations of SVM models trained with different range
vectors were tested for better accuracy. The best result was obtained for 28 hidden-
layer neurons and 12 input-layer neurons; the inputs were obtained from four
SVMs using 40-component vectors for ranges 1 2 3 and 4 5 6, four SVMs using 40-

component vectors for ranges 1 and 2 3 4 5 6, and four SVMs using 20-component
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FIGURE 6.5: Optimization of the artificial neural network (ANN). (Top) ANNs
were optimized using different numbers of hidden neurons and SVM types. (Bot-
tom) Best accuracy value obtained. The legends indicate the type of SVM input
used. SVM ranges and vectors (of 20 or 40 components) are indicated as in
figure 6.4. Use of multiple sets of SVMs are indicated by labels using “|” as
separator. For example, the best accuracy value (0.68) was obtained using as
input three sets of SVMs, two of them trained on 40-component vectors, and
another trained on 20-component vectors.

vectors of full protein composition (accuracy 68%; figure 6.5). Increasing the
number of SVMs used as input eventually decreased accuracy, probably due to
over-training of the ANN. The final number of connections in the optimal ANN,
(12 x 28) + (28 x 4) = 448, is well below the number of examples used for the
training (1,358).

Like we did for SVM optimization, the performance of different ANN models were

compared using average accuracy and ROC curves. The output of ANN models



Chapter 6. Development of the NYCE Algorithm

71

True Positive Rate

0.

ANN

Range

SVM

123456

123,456

1,23456

123,456|123456]1,23456

02

0.4

False Positive Rate

0.6 )

Lo

FIGURE 6.6: ROC curves from SVM classifications (winner-takes-all strategy)
and ANN classifications that use as input the SVM values. For SVMs the ROC
curves (dotted lines) were made by taking the best prediction from sets of SVMs
(winner-takes-all strategy). Either best of four SVMs for each location category
(red, green and cyan dotted curves indicating the different ranges), or best of
12 SVMs (the combination of three SVM types is indicated with pipe signs
indicating the vectors; violet dotted curve) used. For ANNs the ROC curves
(continuous lines) used just the ANN output.

was also compared against the SVM models. ROC curves for the ANN classifi-

cations indicate that they improve the predictions over the SVMs used as input,

and confirm that the ANN selected performs best (figure 6.6). This combination

of SVM inputs and ANN architecture was therefore selected for further work and

finally for implementation as a public tool.
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6.5 Prediction of location for proteins without struc-

tural information

Our next goal is to apply the predictive architecture optimized above to protein
sequences. Our method uses as input the composition of residues of a protein
in six different ranges of exposure. However, generally a given protein sequence
has no 3D-information and therefore no known exposure values. Thus, we first
need a method to provide predicted exposure values for the residues in the protein

sequence whose localization has to be predicted.
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FIGURE 6.7: Mapping of DSSP and SABLE scores. The 6 ranges of distributions
from the DSSP are mapped to the distribution of 9 possible SABLE values,
according to percentile distribution as well as possible.

To obtain predicted exposure values alone from sequence we have used a method
called ‘SABLE’, which predicts exposure based on residue type and similarity
to other sequences with high reliability [211, 212|. This tool predicts relative
solvent accessibility of an amino acid residue on a scale from 0 to 9 with an
approximate accuracy of 78%. In principle, the scoring scale of SABLE does not

necessarily correspond directly to the scale of values of exposure that we obtained
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from proteins of known structure. Since the final model of NYCE is based on
residues classified in six ranges of relative solvent accessibility values derived from
DSSP it is required to map the SABLE predicted solvent accessibility values to
those 6 ranges. For this purpose, the protein sequences with PDB information
that were used to train the method were analysed by SABLE. The distribution
of exposure values predicted by SABLE was compared against the DSSP based
distribution. The 9 possible SABLE values were matched to 6 ranges according
to percentile distribution as well as possible (Table 6.1). Finally, we equated
SABLE scores 0 to 4 to our 3D-derived ranges 1 to 5, respectively, and the SABLE
ranges of 5 and above (the less populated) to range 6, which was not perfect
but approximated best the percentile distribution (Table 6.1, Figure 6.7). These
values are then used to generate the different range exposure vectors derived from
SABLE values that are fed into the classification model. The algorithm finally
scores a protein for its membership to the four location classes. The accuracy
of the predictions with the optimal architecture SVM-ANN method was of 62%,
which, as it could be expected, was lower than the value of 68% obtained when

using the obviously more accurate 3D-derived values.

6.6 Significance of the NYCE score

The algorithm of NYCE is trained exclusively on proteins from four locations.
This poses the question of how will NYCE behave if the query protein sequence
belongs to locations other than those considered in NYCE. To test this we ran
the method on a set of 1358 eukaryotic proteins randomly selected from proteins
with experimentally verified location but not assigned to nuclear, cytoplasmic or
extracellular locations. To select the proteins, we followed a procedure similar to

the one described earlier in section 5.2 and we refer to them as ‘other’ class.

All the proteins were analysed using NYCE and the score was recorded. We
observed that more than 75% of these proteins not present in NYCE locations

received scores below 0.4 (figure 6.8). This indicates that NYCE assigns lower
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FIGURE 6.8: Box-plot of the scores obtained in the classification of proteins
from four locations (nuclear (N), nucleocytoplasmic (Y), cytoplasmic (C) or
extracellular (E)) or from other locations (Other). Proteins present in other
locations received lower scores, indicating that the method can discriminate
between them.

scores to the proteins that do not belong to one of the 4 classes considered in
our study. Thus the NYCE score can be used for indicating the reliability of
predictions and a NYCE score of 0.4 can be used as threshold. A NYCE score
lower than 0.4 indicates that the protein might belong to some other location
class. In the web tool, we provide all the 4 NYCE class scores, which can be more

informative from the user’s perspective.

6.7 Implementation of the NYCE web tool

We implemented the NYCE algorithm in a web interface that allows users to
analyse the protein sequence of interest. The NYCE web tool is implemented via
Django. Django is a free and open source high-level web application framework
written in Python and follows the model-view-controller architectural pattern with

an emphasis on the DRY (Don’t Repeat Yourself) principle [213].

As an input, the web tool accepts a protein sequence in FASTA format and the
corresponding residue exposure values of its amino acids as provided by SABLE.

Using JavaScript, the input is first analysed to make sure that it has proper format
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FIGURE 6.9: Schematic representation of the NYCE algorithm.

and length. For the NYCE web tool the input sequence must be at least 150 amino
acids long. The residue accessibility values were first mapped to DSSP values. In
the next step, NYCE calculates the frequency distribution of amino acids at dif-
ferent range values and makes 3 different range vectors (figure 6.9). Each range
vector is fed to 4 different one-vs.-rest SVM models (one for each location class).
The probability values obtained from these SVM models are combined by an opti-
mized ANN model. The ANN gives a score for each of the 4 location classes. The
web tool presents the score for each of the 4 location classes along with the input
provided. The scores can be helpful for further interpretation of results. The web

tool can be accessed at http://cbdm.mdc-berlin.de/amer/cgi-bin /nyce/ .
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6.8 Discussion

In this chapter, we presented a novel approach for protein location prediction
utilizing the residue exposure based signals. For the classification, different ranges
of residue exposure values were analysed using a one-vs.-rest SVM approach. The
probability values from the one-vs.-rest SVM model of best performing ranges were
used as input for the ANN for the final classification. By comparing our two-step
approach with SVM based winner-takes-all strategy, we showed that the two-
step approach performs better. Furthermore, the comparison of scores obtained
in the classification of proteins from four locations (nuclear, nucleocytoplasmic,
cytoplasmic or extracellular) with proteins from other locations provides evidence

that our method can differentiate between them.

On a technical note, our method illustrates how a multi-class problem can be
approached by using a two-step approach where first SVMs of different types
score class membership for each of the multiple classes and in a second step an
artificial neural network (ANN) integrates the data and reassigns membership
considering the scores from the SVMs. This type of two-stage mixed classifier
might be especially useful in other situations where, as in our case, the number
of examples to be used as test is relatively small and limits the size of the ANN
that can be used without resulting in over-training. For example, we could not
have trained the ANN directly on the 20 and 40-component vectors used as input
for the SVMs with the few hundreds of examples of eukaryotic proteins of known
location and structure available. In this respect, the SVM step can be considered
as a kind of data compression prior to the use of an ANN. A Bayesian approach

might also be feasible for this second step.

We note that our method depends on the quality of the predicted exposure values.
Although SABLE has already high accuracy in the prediction of amino acid expo-
sure [212], further developments in this field can be used to improve our predictions
towards accuracy values close to those obtained when using 3D-derived values of

amino acid exposure. Applying our approach to other protein location prediction
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problems, for example for prokaryotic proteins or for additional eukaryotic loca-
tions, is certainly possible but results will depend on the quality of experimental
data on protein location and on the amount of signal for each location present in

the sequences of experimentally verified locations.

Expanding the method will thus require careful selection of training datasets con-
sidering new taxonomic divisions and locations on a case by case basis. We expect
that the development of novel techniques for high-throughput characterization of

protein location might eventually facilitate such a development.






Chapter 7

Location Analysis for Paralog

Protein Pairs

7.1 Motivation

One major challenge in protein location prediction is the prediction of location for
homologous proteins. There can be very similar proteins that act in different sub-
cellular locations. For example, the two well known protein-tyrosine kinases BMX
and FRK are cytoplasmic and nucleo-cytoplasmic, respectively; however they both
have two N-terminal domains (SH2-Protein kinase) that are responsible for about
25% sequence identity in a global alignment. Similarly, through a genome-wide
comparison of protein subcellular location in S. cerevisiae and S. pombe, Yoshida
et al. [59] have identified pairs of homologous proteins that do not have the same
location. Homology is therefore not necessarily the best criterion to assign location

to proteins.

The NYCE algorithm does not use protein homology and accordingly can assign
different subcellular locations to homologous proteins. To test that NYCE can
evaluate proteins independently of their homology, we analysed pairs of paralog
proteins that are experimentally known to be in different subcellular locations. Our

analysis shows that the performance of NYCE is significantly better compared to

79
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random tests where the pairs were assigned to each of four locations with equal
probability. Furthermore, we compared the performance of NYCE with other state
of the art subcellular location prediction methods. NYCE outperforms them both
in terms of total accuracy and number of correctly predicted pairs of homologs.
Thus the analysis verifies the fact that NYCE can find the appropriate location in

cases where methods using homology would make a wrong inference.

7.2 Paralog selection

For the analysis, we collected pairs of homologous proteins with different experi-
mentally known location (e.g. two homologous proteins where one is localized to
the nucleus and the other to the cytoplasm). A relevant example of such a homol-
ogous protein pair (as mentioned earlier) are the tyrosine kinases BMX and FRK
that share about 25% sequence identity and have similar domains. Despite such
sequence homology, they have different subcellular location. To collect homolo-
gous protein pairs for the analysis, first we obtained pairs of homologous human
proteins from the Eukaryotic Paralog Group Database [214|. These sequences are
mapped to the corresponding Uniprot IDs. As discussed in chapter 5, shorter
sequences can increase the noise. Thus, from the paralog protein pair data, we
removed the protein pairs in which at least one protein sequence is shorter than
150 amino acids. For the remaining proteins in the dataset the subcellular location
ontology terms in the UniProt records are analysed. From the data we selected
the protein pairs such that both proteins in the pair have experimentally verified
subcellular location information. Subsequently, we focused only on four locations:
nuclear, cytoplasmic, nucleocytoplasmic and extracellular. For this purpose, all
the proteins that have any location term other than these four were removed from
the dataset along with the corresponding protein in the pair. Thus we are left with
a set of paralog protein pairs where each protein is assigned to only one of the
four considered location classes. From this set, we selected the pairs in which the

proteins do not have the same subcellular location. The resulting paralog protein
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pair set contains 93 proteins that make up 64 paralog protein pairs. For simplicity

we call it paralog-pair list.

7.3 Analysis of paralog protein pairs

Using NYCE, each protein pair in the paralog-pair list is analyzed in terms of its
subcellular location. Out of 93 proteins, NYCE predicted the correct location for
about 52% of the proteins, whereas 15 out of 64 pairs were predicted correctly.
A pair’s location is considered correctly predicted only if the location is predicted
correctly for both proteins in the pair. In such a case of prediction for pairs, the

simple notion of accuracy can be misleading.

It is possible that an algorithm achieves a high total accuracy in the prediction
of individual sequences but shows poor performance at pair level. For example,
consider 100 proteins that constitute 50 pairs. Assume we have a very efficient
algorithm that predicts in total 80 proteins correctly, thus indicating a total ac-
curacy of 80%. In such a case, depending upon the structure of pairs we may end
up with a lower accuracy in the prediction of pairs; this can be as low as 60% if
all 20 wrongly predicted proteins pair with correctly predicted proteins, leading to
20 wrongly predicted pairs. On the contrary, the highest accuracy we can achieve
is as high as 80% if all the wrongly predicted 20 proteins pair among themselves
leading to 10 wrongly predicted pairs.

To get a better statistical overview of NYCE'’s efficiency, rather than relying on

the simple accuracy we compared it with random location prediction.

In a random location assignment test we assign one of the four locations with
equal probability to each protein. We performed the random test 100000 times
and computed the accuracy from the total number of correctly predicted pairs each
time. The distribution of accuracy scores is shown in figure 7.1. We computed
how many times the accuracy of the random test was equal to or greater than

the NYCE accuracy score. By definition this is the p-value. Out of 100000 tests,
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FIGURE 7.1: Comparison of NYCE with random assignment of location. As-
signment of location to pairs of paralogs using NYCE is significantly better than
random assignment. The green line represents the accuracy of NYCE versus the
distribution of accuracies obtained from random simulations. In only 1499 cases
out of 10° the result of the random test was better than NYCE.

the score was equal to or greater than the NYCE accuracy score for 4000 times.
This results in a low p-value of 4000/100000 = 0.0015, which indicates that NYCE

performs significantly better compared to random location assignment.

7.4 Comparison of NYCE with other tools

To evaluate the performance of NYCE, we furthermore compared it with four other
state-of-the-art subcellular location prediction tools: Yloc [144], Hum-mPLoc [215,
216], SherLoc [142] and PSORT-II [134|. For this purpose, these tools were se-
lected based on the following criteria: public (web server) availability, reasonable
response time, the ability to predict all three (nuclear, cytoplasmic and extracellu-
lar) location classes and the capacity to perform multi-class classification. None of
the published methods for subcellular location prediction considers nucleocytoplas-
mic location as a separate class [217] and thus we will consider only the methods

that can classify a protein into more than one class (nuclear and cytoplasmic) at
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the same time. Yloc and Hum-mPLoc have the capacity to classify proteins into
multiple locations. Thus, proteins classified as nuclear and cytoplasmic by these
tools are equivalent to the nucleocytoplasmic class of NYCE. Although the tools
SherLoc and PSORT-II do not consider nucleocytoplasmic as a separate class,
they provide a score for each class. We utilized the nuclear and cytoplasmic class
score from these tools to generate a nucleocytoplasmic class association. For this
purpose we applied a simple strategy that if the normalised nuclear + cytoplas-
mic score together is larger than 50% the protein is considered to be predicted as
nucleocytoplasmic. It is important to mention that taking a cutoff value of more
or less than 50% resulted in a poor performance of these tools regarding the total
accuracy on proteins. Thus 50% is the optimized value for SherLoc and PSORT-II
in the case of four-class classification. The result of this analysis is summarized in

table 7.1.

Tool Number of  Accuracy on Number of  Accuracy on
correctly proteins correctly  pairs (in %)
predicted (in %) predicted

proteins pairs

NYCE 49 52.68 13 20.31

Yloc 42 45.16 3 4.68

Hum-mPLoc 35 37.63 3 4.68

SherLoc 40 43.01 0 0.00

PSORT 11 37 39.78 10 15.62

TABLE 7.1: Performance of NYCE in comparison to other location prediction
methods.

7.5 Discussion

In terms of total number of correctly predicted proteins, NYCE performs best. The
tools Yloc and PSORT II are also reasonably close to the performance score of
NYCE. For the paralog pairs, NYCE outperforms all the other tools. Performance
of Yloc and SherLoc is reasonable in case of total accuracy but is bad for paralog
protein pairs. This is not surprising given the fact that both Yloc and SherLoc use

homology based methods for location analysis. On the other hand PSORT II does
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not depend on sequence homology for location detection, rather it uses sequence
driven features and a k-nearest neighbors (kNN) classifier. This clearly indicates

that homology is not necessarily the best criterion for location prediction.

Out of a total of 64 paralog pairs NYCE predicted the same location for both
proteins in only 27 cases. This indicates that the NYCE method does not have a
dependency on sequence homology. Furthermore, this analysis also showed that
NYCE can discern proteins in different locations even when they show high simi-

larity.

The methods used in this comparison are representative for other methods in terms
of the underlying principle for location prediction. For example Yloc uses a combi-
nation of methods such as sequence homology, amino acid composition, PROSITE
motifs, signal peptides, GO terms, etc. for location prediction. Similarly, Hum-
mPloc which is part of the Cell-PLoc [215] package, is specific to human proteins
and applies a hybrid approach for prediction. The tool SherLoc integrates text-
based features with several sequence-based classifiers originated from the Multi-
Loc [218, 219] prediction system. In general, the four location prediction methods
used for this comparison cover other widely used methods for subcellular location
prediction. Thus we can safely say that other existing prediction methods will not

have a drastically higher performance.



Chapter 8

Discussion

After transcription and translation the resulting proteins are transported into
proper subcellular locations to fulfill their functional purposes. Similar to the
protein structure information, the subcellular location information of a protein
should be encoded in its amino acid sequence and three-dimensional structure.
Consequently, these signals are recognized by other sorting proteins and recep-
tors. The prediction of subcellular location based on the identification of some of
these signals (e.g. N-terminal signal peptides for extracellular, mitochondrial and
chloroplast location) works quite well. However, our knowledge of these signals
is incomplete. Furthermore, there are methods that infer the location of proteins
based on the location of homologous proteins of experimentally verified location
under the assumption that homologous proteins work in the same cellular loca-
tions. Such homology based methods lack accuracy and are not applicable in many
cases, especially for novel proteins. In this thesis, we addressed the problem of
protein subcellular location prediction from a different perspective and presented a

novel method for subcellular location prediction based on protein residue exposure.
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8.1 Residue exposure and subcellular location

We hypothesized that proteins evolve to match their environment by mutating
their residues towards specific amino acid types whose side chains have physico-
chemical properties that agree to the subcellular location where the protein per-
forms its major function. Since cellular compartments have different physico-
chemical environments, we reasoned that we could study amino acid composition
to infer location. Moreover, we supposed that this process will depend on the
levels of exposure of the amino acids involved and should be different for residues
buried inside the protein, probably involved in interactions holding the protein
together, or placed outside in contact with the solvent. Therefore, first we anal-
ysed how the composition of protein residues at various levels of exposure changes
with the subcellular location of the protein. We demonstrated that the distribu-
tion of amino acids at different levels of exposure has signal about the location of
proteins. The exposed residues are in direct contact to the subcellular environ-
ment. Thus for the proper functioning and interaction with other macromolecular
entities such as DNA, RNA, etc. the exposed residues have to adapt according
to the corresponding subcellular physicochemical properties [131]. Surprisingly,
our analysis indicates that not only the exposed residues, but the buried residues
also have location dependent roles. The buried residues, though not in direct con-
tact to the subcellular environment, play an important role in protein stability.
For example, compared to intracellular proteins, the extracellular proteins have to
face an unspecified functional environment. To increase the stability, extracellular
proteins require a more stable core [220, 221|. While location signals that guide
protein sorting mechanisms are possibly the best predictor of a proteins’ location,
the residue exposure properties can be a useful predictor of subcellular location if

such sorting signals are absent or unknown.
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8.2 Two-step classification approach

To classify proteins into subcellular locations based on their residue exposure prop-
erties, we devised a two-step classification approach. We illustrated how a multi-
class problem can be approached by using a two-step approach where first SVMs of
different types score class membership for each of multiple classes and in a second
step an ANN integrates the data and reassigns membership considering all scores

from the SVMs.

Applying machine learning approaches in biological problems is a challenging task.
In most cases the available datasets are unbalanced and/or small in size. For in-
stance, the homology-reduced Hoglund dataset [218], which is used for training
and testing in several subcellular location prediction tools, contains 1411 cyto-
plasmic proteins while only 63 proteins are annotated as vacuolar. Applying a
classification strategy (e.g. an ANN) on such unbalanced datasets with a high
number of features can easily lead to a highly biased model. Our approach of
creating a balanced dataset and using a two-step classification can be useful in
such cases. In the proposed approach, the first step of classification (SVM) acts
as a data compression technique. On such compressed data, for the final decision

we can apply machine learning methods such as ANNs or a Bayesian approach.

8.3 Sequence homology is not location homology

For analysis and comparison, we collected pairs of homologous human proteins
with different experimentally known locations. We found 64 paralog protein pairs
that have different subcellular locations despite having sequence homology. It is
important to note that we found this substantial amount of proteins although we
considered only proteins with experimentally verified location annotation in one
species (i.e. human) and exclusively four locations. We expect that considering
many more subcellular locations and looking at other species will likely increase

this number significantly. For example, by comparing subcellular location data of
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two yeast species S. cerevisiae and S. pombe, Yoshida et al. [59] identified several
homologous proteins that have different subcellular location patterns. Similarly,
Imai et al. [122] identified eighty protein pairs with significant homology but dis-
tinct subcellular locations in different animal species. Thus, there is growing

evidence that “homologous sequences have similar locations” is not a canonic rule.

The method presented in this thesis can evaluate proteins independently of their
homology. Thus it is a useful subcellular location predictor, especially in cases
where homology is absent or homology is the only available criterion for location

prediction.

8.4 Outlook

The focus of this work is on eukaryotic proteins from four subcellular locations.
It is certainly possible to extend our classification system to other eukaryotic lo-
cations or for prokaryotic proteins. A major challenge in expanding the approach
will be the lack of experimentally annotated location information and availabil-
ity of three-dimensional protein structures. With the goal to analyse the whole
human proteome, the Human Protein Atlas project is expect to be finished in
2015 |222]. It will provide high quality subcellular location information for pro-
teins in 44 different normal human tissues and 20 different cancer types, as well
as 46 different human cell lines. Similarly, a proteome level protein folding ef-
fort |223| called Human Proteome Folding Project, is in its second phase. We
expect that such proteome level projects will provide reliable data for expansion
of our approach. Using the optimized ‘NYCE’ algorithm it is possible to find
protein families that have members with different location despite having high
sequence similarity. Analysis of such protein families could reveal signals for yet
unknown protein transport systems. Such information could be integrated with
the protein-protein interaction (PPI) network to reveal the common partners of

the proteins bearing a putative transporting signal, which then could be proposed
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as putative transport proteins. This will not only work as validation of PPI data

but might also lead to the discovery of novel protein transport systems.

In the current era of high throughput systems biology, the significance of protein
subcellular location information is becoming increasingly apparent. The direct
correlation between protein mislocalization and diseases is well established [8, 224].
The proper function of a protein is subject to temporal and spatial conditions.
Aberrant localization of proteins can disturb its normal function which can affect
the cellular and metabolic pathway and lead to disease and cell death. Similarly,
Xu et al. [225] have identified potential cancer biomarker proteins by comparing
the subcellular location of proteins in normal and cancer tissues. Subcellular
localization is also known to play a role in drug resistance in cancer cells [226].
Thus, the protein subcellular location information is becoming increasingly crucial
not only for protein characterization but also to understand cellular mechanisms
and disease. We expect that the novel approach presented in this thesis will

eventually contribute to this goal.






Abstract

The proteins perform their functions in associated cellular locations. Therefore, subcellular lo-
cation is a key-feature in the functional characterization of proteins. The experimental methods
of determining a protein’s subcellular location are costly, time consuming, error prone and can
not cope with exponentially growing genomic and proteomic data. Therefore, computational
prediction of protein subcellular location is a major effort in bioinformatics research. Subcellu-
lar location of a protein can be predicted either from its sequence by identifying the targeting
peptide and motifs, or by homology to proteins of known location. Another approach, which is
complementary, exploits the differences in amino acid composition of proteins associated to dif-
ferent cellular locations. This is an especially useful approach if motif and homology information
are missing. In this study, we expand this approach taking into account amino acid composition

at different levels of amino acid exposure.

Through careful selection and data integration we created a high quality dataset of proteins
with known structure and location. The members of three subcellular location categories were
considered: nuclear, cytoplasmic and extracellular, plus the extra category nucleocytoplasmic,
accounting for the fact that a large number of proteins shuttle between nucleus and cytoplasm.
We explored the relationship between residue exposure and protein subcellular location. The
analysis demonstrated that amino acids at different levels of exposure have signal about the

location of proteins.

For the classification purpose we applied a novel approach of two stage classification. At stage
one, multiple Support Vector Machines (SVMs) were trained to score eukaryotic protein se-
quences for membership to each location class. In stage two, an artificial neural network (ANN)
was used to propose a category from the scores assigned to the four locations in stage one.
The method reaches an accuracy of 68% when using as input 3D-derived values of amino acid
exposure. Calibration of the method using predicted values of amino acid exposure allows clas-
sifying proteins without 3D-information with an accuracy of 62%. The algorithm is implemented

as the web server ‘NYCE'.

We compared the performance of NYCE against other state-of-the-art subcellular location pre-
diction tools. The comparison revealed the fact that ‘NYCE’ performs reasonably well compared
to other tools, though using a limited set of information. A major challenge of protein subcellular
location prediction methods based on homology is that there are very similar proteins that act
in different subcellular locations. Using pairs of paralog proteins experimentally known to be in
different locations, we demonstrated that our algorithm can evaluate proteins independently of
their homology. NYCE can discern proteins in different locations even if they share high levels

of identity whereas other tools fail to do so.






Zusammenfassung

Proteine kdnnen ihre Funktion nur in bestimmten intrazellularen Kompartimenten erfiillen, de-
shalb ist die subzellulare Lokalisation ein wichtiges Hauptmerkmal in der funktionellen Charak-
terisierung von Proteinen. Die experimentellen Methoden zur Bestimmung der subzellularen
Lokalisation von Proteinen sind teuer, zeitintensiv, fehleranfallig und kénnen nicht mit der ex-
ponentiell anwachsenden Menge an genomischen und proteomischen Daten mithalten. Aus
diesem Grund ist die computergestitzte Vorhersage der intrazellularen Lokalisation von Pro-
teinen ein wichtiges Ziel der bioinformatischen Forschung. Die Lokalisation eines Proteins kann
entweder aus dessen Sequenz durch die Analyse von Zielsequenzen und -motiven vorherge-
sagt werden oder durch das Heranziehen homologer Proteine deren Lokalisation schon bekannt
ist. Ein anderer, komplementérer Ansatz nutzt die Aminosédurezusammensetzung von ver-
schieden lokalisierten Proteinen. In dieser Arbeit erweitern wir diesen Ansatz, indem wir die
Aminnosdurezusammensetzung in Zusammenhang damit betrachten, wie gut die Aminoséuren

aufgrund der Proteinstruktur von auf3en zugénglich sind.

Es wurden drei Kategorien der subzelluldren Lokalisation in die Untersuchungen einbezogen:
nuklear, zytoplasmatisch und extrazellular. Zusatzlich wurde die Kategorie nukleo-zytoplasmatisch
eingeflihrt, welche Proteine enthalt, die sich zwischen Zytoplasma und dem Nukleus bewegen.
Wir haben einen qualitativ hochwertigen Datensatz zusammengestellt, der Proteine mit bekan-
nter Struktur und Lokalisation enthdlt und den Zusammenhang zwischen der Zugéanglichkeit
der Aminosauren und der subzellularen Lokalisation des Proteins untersucht. Diese Analyse
hat gezeigt, dass Aminosauren mit verschiedenen Zuganglichkeiten zur Vorhersage der Lokali-

sation von Proteinen genutzt werden kénnen.

Zum Zweck der Klassifizierung haben wir einen neuartigen Ansatz, basierend auf einer zweistu-
figen Klassifizierung, verwendet. In der ersten Stufe werden Support Vector Machines (SVMs)
trainiert, die Wahrscheinlichkeit der Zugehérigkeit (Score) fir alle Klassen anhand der Pro-
teinsequenzen zu berechnen. Die zweite Stufe, ein kiinstliches neuronales Netzwerk (KNN),
wird benutzt um eine Kategorie auf der Grundlage der vorher berechneten Scores fir die vier
mdglichen Lokalisationen vorzuschlagen. Diese Methode erreicht eine Prazision von 68% wenn
auf 3D-Strukturen basierende Werte fiir die Zuganglichkeit der Aminosauren benutzt werden.
Die Kalibrierung der Methode mithilfe theoretisch berechneter Werte fir die Zuganglichkeit der
Aminosauren erméglicht eine Klassifizierung der Proteine ohne 3D-Information mit einer Prazi-

sion von 62%. Der Algorithmus wurde als der Webserver “NYCE” implementiert.

Ein Vergleich von “NYCE” mit anderen modernen Vorhersageprogrammen zeigte, dass ob-
wohl “NYCE” nur die Proteinsequenz und somit ein sehr beschrénktes Set an Informationen

nutzt, die Leistung vergleichsweise gut ist. Ein groBes Problem der auf Homologie basierenden
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Vorhersageprogramme ist die Existenz von Proteinen mit sehr &hnlicher Sequenz aber unter-
schiedlicher subzelluldrer Lokalisation. Anhand paraloger Proteine, welche unterschiedliche
Lokalisation aufweisen, konnten wir zeigen dass “NYCE” - im Gegensatz zu anderen Vorher-
sageprogrammen - zwischen Proteinen mit groBer Sequenzahnlichkeit aber verschiedener Lokali-

sation unterscheiden kann.

Unser Ansatz kann in Zukunft flir die Vorhersage der Lokalisation von Proteinen in anderen
Kompartimenten und in nicht-eukaryotischen Organismen n(itzlich sein. Dennoch ist eine gewis-
senhafte Auswahl an Trainingsdaten notwendig, um verlassliche Resultate in der Vorhrsage zu
erzielen. Wir erwarten, dass solch eine Erweiterung unserer Methode durch die wachsende
Anzahl von in Datenbanken verfligbaren Proteinstrukturen und Proteinen mit experimentell

bestatigter Lokalisation erleichtert wird.
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Appendix

TABLE 8.1: Comparison of NYCE to other location prediction methods. N, nuclear; Y, nucleo-
cytoplasmic; C, cytoplasmic; E, extracellular; MB, membrane; ER, endoplasmic reticulum; MT,
mitochondrial; CN, centriole; GA, golgi apparatus; VA, vacuolar.

Uniprot AC ‘l Location ‘l NYCE ‘ Yloc ‘ Hum-mPLoc ‘l SherLoc ‘l PSORT II
Q14145| 095198 | Y C Y Y C C MB C C C C Y
P62714| 000743 | Y C Y C C C C C C C C Y
Q14145| QOUJP4| Y C Y E C C MB N C Y C C
Q5HOR7 | 075170 Y C N N N C C N C C N Y
QOHC16 | Q8IUX4 | Y C N E N N N C C C C C
014682 | QOCOH6|| Y C C C C C C C C C C C
014682 | QONR64 || Y C C C C C C C C C C C
QoY2M5 | QOCOH6 || Y C C C C C MB C C C ER C
014682 | QOUJP4 | Y C C E C C C N C Y C C
P42685| P51813| Y C Y C C C N C C C C N
P48595| P50453 | Y C Y C C E E N C C Y MT
P62136| 000743 | Y C C C C C C C C C C Y
QOY2M5 | QOUJP4| Y C C E C C MB N C Y ER C
000204 | 000338|| Y C C C C C N C C C Y C
000204 | 075897 || Y C C C C C N C C C Y C
000204 | Q06520 || Y C C C C C N C C C Y C
Q14164 | QOUHD2| Y C Y C C C C C C C C C
QOUKV8 | QOHCK5 || Y C Y E Y N C MB C C Y C
QOUKV8 | QOHOGT || Y C Y C Y N C MB C C Y C
QOUKV8 | QOUL18| Y C Y C Y Y C C C C Y C
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QOoUM11 | Q12834 Y C Y C N N N Y C N Y Y
Q8ND90 | QOUL42 Y N C N PR C N N Y C C C
014862 | Q6KOP9 Y N N N N N N N C N Y N
P35226 | P35227 Y N N N N N MB N N N N N
P41218| Q6KOP9 Y N N N Y N N N N N N N
Q13568 | Q15306 Y N N N N N N N N N N N
QONR64 | QOY2M5 C Y C C C C C MB C C C ER
Q86WH2 | QONS23 C Y C N C Y N N C C N N
015182 | Q8TD86 C Y C E C C CN C C C C C
P26196 | Q13838 C Y C N C C C N N N Y C
Q12798 | Q8TD86 C Y N E C C CN C C C C C
Q53G59 | Q14145 C Y Y Y C C MB MB C C C C
Q96PQ7 | Q14145 C Y C Y E C MB MB GA C ER C
QONP86 | 8TD86 C Y N E C C C C C C C C
QOUHT77 | Q14145 C Y C Y C C N MB C C C C
Q9Y573| Q14145 C Y C Y C C MB MB C C C C
000170 | QONZN9 C Y C N C C C C C C C C
P26196| 000148 C Y C N C C C N N N Y C
P50225| 000204 C Y C C C C C N C C C Y
P50226 | 000204 C Y C C C C C N C C C Y
000743 | P60510 C Y C C C C C C C C Y C
QOUDY6 | (86WT6 C Y N C Y N C C N N Y C
000743 | P62140 C Y C C C C C C C C Y C
QOUDY6 | Q6AZZ1 C Y N Y Y Y C N N N Y C
Q16829 | Q05923 C N Y E C C C N C C Y C
Q68J44 | P51452 C N C N Y C C C C C C N
P15086| P15088 E C E N E E E C E E ER E
P48052| P15088 E C C N E E MB C E E C E
P15085| P15088 E C E N E E E C E E E E
Q01196| Q13761 N Y N N N Y N N N N Y N
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P10828| P10826 N Y N N N N N N N N C N
P43356 | QOUBF1 N Y N N C Y C N C C VA Y
Q15306 | Q00978 N Y N N N N N N N N N MT
Q8WYH8 | QOH160 N Y N N N N N N N N N N
QOHOS4 | Q13838 N Y C N N C MT N N N Y C
075676 | Q15418 N Y Y Y C C C N C C C C
Q5TDI7 | Q13642 N Y E E C C N E C C N N
Q9HOS4 | 000148 N Y C N N C MT N N N Y C
Q01543 | P11308 N Y N N N N N N N N N N
QO9H3D4 | 015350 N Y N Y N N N N N N N N
Q96B02 | P61088 N Y E Y C C N N Y PR MT C
Q96B02 | P68036 N Y E N C Y N N Y PR MT N
QO9BTZ2 | Q9BPX1 N C N C MT Y N MT PR PR C C
Q13115| Q16829 N C N Y Y C MB C C C Y Y
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