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1 Introduction 

1.1 Epidemiology of diabetes mellitus 

Diabetes has become a global burden in recent decades, causing premature deaths and a 

number of complications including cardiovascular disease, blindness, kidney failure and 

neuropathy [1]. According to the estimation made by the International Diabetes 

Federation (IFD) for 2015, 415 million people worldwide have diabetes, which 

corresponds to 8,8 % of the total world population [2]. By 2040 this number is expected 

to reach 642 million (10,4 % of the world population). Type 2 diabetes accounts for about 

90 % of all diabetes cases [1, 2] and is rapidly expanding worldwide due to urbanization, 

i.e. changes in diet, lifestyle and other aspects of human life. 

Regional prevalence of diabetes is shown in Figure 1-1. The top five countries with the 

highest numbers of adults suffering from diabetes include China (109,6 M), India (69,2 M), 

USA (29,3 M), Brazil (14,3 M) and the Russian Federation (12,1 M). 

 

Figure 1-1 Estimated prevalence of diabetes in adults (20-79), 2015. 
Figure source: IDF diabetes atlas -7th edition 
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1.2 Chronic inflammation in obesity-induced insulin resistance and 
type 2 diabetes. 

1.2.1 Chronic inflammation in obesity 

The dramatic increase in cases of type 2 diabetes (T2D) is largely due to an epidemic of 

obesity caused by lifestyle and diet changes, in particular calorie-rich diet. Often obese 

patients develop insulin resistance leading to the development of T2D. Patients with 

obesity are highly heterogeneous, differing in body mass index (BMI), age, genetic 

background and numerous other parameters influencing the risk in developing T2D [3-5]. 

Molecular mechanisms underlying the progression of insulin resistance include activation 

of inflammatory pathways, impaired lipid metabolism, endoplasmatic reticulum stress, 

oxidative stress and abnormal adipokine secretion. Essentially, all these processes 

contribute to chronic low-grade inflammation leading to insulin resistance [6, 7]. 

The first evidence of the connection between inflammation and obesity was shown in 

1993 when G.S. Hotamisligil and B. M. Spiegelman found an increased level of TNFα 

secretion from adipose tissue of obese rodents [8]. It was later observed that not only 

TNFα, but many other pro-inflammatory molecules are overexpressed in obesity including 

interleukin 1-beta (IL1β), interleukin 6 (IL6), macrophage inhibitory factor (MIF), 

monocyte chemotactic protein 1 (MCP1) and others [6, 7]. 

1.2.2 Role of macrophages in chronic inflammation 

A major mechanism contributing to chronic inflammation development is the 

accumulation and activation of proinflammatory immune cells. It may occur not only in 

adipose tissue, but also in the liver, skeletal muscles and pancreatic islets (Figure 1-2). 

Low-grade inflammation represents a cumulative effect of the diversity of activated 

immune cells aggregated in tissue; for example, macrophages play a major role in this 

process. Macrophages represent the most abundant pro-inflammatory immune cells in 

obese tissues. Notably, adipose tissue macrophages may make up to as much as 40 % of 

obese adipose tissue mass [9]. 

Recruitment of adipose tissue macrophages in obese conditions is prompted by adipocyte 

secretion of chemoattractant molecules MCP1 and LTB4, which are recognized by 

corresponding receptors CCR2 and BLT1 [10-13]. After recruitment and activation, 

macrophages also express attractant chemokines promoting further recruitment and 

inflammation in a feed-forward manner. 

Not only increased macrophage recruitment, but also impaired emigration from adipose 

to lymphoid tissue contributes to increased macrophage accumulation. This phenomenon 
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was mainly studied in the context of atherosclerosis, where accumulation of lipid-loaded 

macrophages causes local inflammation in atherosclerotic plaques [14]. Macrophage 

recruitment to lymphoid tissues can be regulated by chemokines CCL19 and CCL21, 

expressed in macrophages, which bind to a CCR7 receptor. 

In addition to macrophages, a number of other pro-inflammatory immune cells (such as 

neutrophils, mast cells, B lymphocytes, CD8+ T lymphocytes and CD4+ Th1 cells) are 

accumulated in obese adipose tissue [15-18]. Additionally, numbers of immune 

modulating cells including CD4+ regulatory T cells (Treg), Th2 cells, eosophils and natural 

killer cells are typically decreased in obesity [15, 19]. 

In the liver, there are two main types of macrophages: Kupfer cells (KCs) and recruited 

hepatic macrophages (RHM). Kupfer cells play an important regulatory role in supporting 

 

Figure 1-2 Obesity-induced inflammation in adipose tissue, skeletal muscle and liver. 
Figure source: McNelis, J.C. and J.M. Olefsky, Macrophages, immunity, and metabolic disease. 
Immunity, 2014. 41(1): p. 36-48 
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tissue homeostasis, whereas recruited hepatic macrophages are attracted to the liver 

during obesity and develop pro-inflammatory phenotype, causing hepatic insulin 

resistance [20]. 

Recent studies have shown that local inflammation is also developed in skeletal muscles 

and is caused by macrophage accumulation in intermuscular adipose depots [21, 22]. 

Inflammation-induced insulin resistance in muscles may play a major role in the 

development of hyperglycemia as muscles consume up to 80 % of the glucose. 

1.2.3 Macrophage plasticity and polarization 

Macrophages can be found in various tissue types where they play different functional 

roles such as supporting tissue homeostasis, immune response, tissue repair and 

development regulation. They demonstrate incredible plasticity, which underlies their 

ability to adjust to the microenvironment and respond to diverse environmental stimuli. 

A number of studies have been conducted to analyse the macrophage molecular 

phenotype in homeostasis and disease; however, the complete classification and 

description of the full spectrum of macrophage phenotypes is not established. 

The commonly used concept of two major macrophage states describes classically 

activated macrophages (M1 state) and alternatively activated macrophages (M2 state) 

[23]. M1 macrophages are pro-inflammatory cells that were originally obtained by IFN-γ 

stimulation. It was shown later that other activators of toll-like receptors (such as LPS) also 

induce an M1 macrophage molecular phenotype [24]. Alternatively activated, or M2 

macrophages were obtained via stimulation with IL4 or IL13. They show distinctions from 

the M1 anti-inflammatory profile and were originally linked to wound healing, as well as 

to Th2 type responses [25, 26]. 

Since the original definition of two major states was introduced, many studies have shown 

that the variety of macrophage phenotypes in different physiological conditions is much 

broader, and that there is a full spectrum of diverse macrophage states between M1 and 

M2 [24]. With the accumulating evidence of macrophage diversity, additional terminology 

appeared to describe subsets of M1/M2 states (M2a, M2b) [27-29]. Another widely- 

studied group of macrophages is Tumor Associated Macrophages (TAM). They are 

characterized by a low level of inflammation and have a specific M2-like state [24]. 

Macrophages differentiate to M1 state during bacterial infection and display a high 

expression of numerous pro-inflammatory signaling molecules: cytokines and 

chemokines, as well as high levels of oxygen and nitrogen radicals and superoxide anion 

production to increase their microbicidal activity. M1 macrophages are induced by IFNγ 

and TNF, produced in the organism by Natural Killer (NK) and T helper 1 (Th1) cells which 
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initially respond to infection. The M1 phenotype can also be induced by LPS or other 

pathogen-associated molecular patterns through toll-like receptor (TLR) recognition and 

signaling. TLR ligand activates MyD88 and TRIF-dependent signaling pathways, inducing 

the expression of TNF and IFNβ. This mechanism replaces signals produced by NK and Th1 

cells in the stimulation of M1 polarization [30]. The key regulatory mechanism in M1 

macrophages includes activation through transcription factors NFkB and AP-1, JAK-STAT 

signaling pathways, where STAT1 protein plays a particularly important role [24, 30, 31]. 

M1 cells are typically characterised by high expression of MHC class II molecules, IL12, IL1, 

IL23, IL6, NOS2, IRF3 and IRF5. [32]. 

Alternative activation of macrophages is induced by IL4 and IL13 molecules, produced 

mainly by Th2 cells, mast cell, eosinophils and basophils [25, 26]. IL4 and IL13 have highly 

overlapping functions and have been associated with host defence from parasitic 

infections, allergic reactions and asthma [33, 34]. IL4 is rapidly expressed during tissue 

injury by basophils and mast cells, promoting wound healing activity of M2 macrophages 

[35, 36]. It can be also expressed as a response to chitin and other components of fungi 

and parasites [37]. IL4-activated macrophages feature high arginase activity associated 

with the production of an extracellular matrix, as well as high-mannose receptor activity 

(associated with increased endocytosis) and upregulated MHC class II production 

(associated with antigen presentation activity). IL13 has specific functions in mucus 

secretion and tissue eosinophilia [26]. Both IL4 and IL13 molecules are recognized by the 

IL4-Rα receptor, and act through STAT6 and IRS2 pathways. Although IL10 was previously 

thought to induce the same macrophage state as IL4 and IL13, it was later shown that it 

has distinct effects, including more efficient deactivation of inflammatory cytokine 

production and antigen presenting activity [25]. 

With the advancement of single-cell technologies, macrophage studies will soon achieve 

unprecedented accuracy and sensitivity, allowing the identification of rare cell 

subpopulations and the pervasive molecular characterization of macrophage states. 

However, it is common that newly described macrophage phenotypes, along with their 

nomenclature and underlying experimental approaches, are not systematic nor 

standardized. It is widely accepted in the scientific community that clear nomenclature 

and the experimental guidelines that are being developed are essential to the 

advancement of macrophage-related fields [31]. 

1.2.4 Macrophage polarization in obesity 

Adipose tissue is one of the main tissues that contributes to the development of insulin 

resistance. The chronic inflammation characteristic for obese adipose tissue is caused by 

highly increased macrophage infiltration and activation. In lean state, adipose tissue 



Introduction 

6 
 

resident macrophages have an M2-like phenotype and can be distinguished as CD11c 

negative. They produce anti-inflammatory molecules such as IL10 and IL1RA and are 

associated with metabolic homeostasis [25, 26]. 

In obesity, newly recruited macrophages acquire a pro-inflammatory M1 phenotype that 

can be distinguished by the expression of CD11c [38]. A number of studies have shown 

that there is a direct correlation between the ratio of M1/M2 macrophages and insulin 

resistance. It has been demonstrated that shifting the ratio back to the prevalence of M2 

macrophages in obesity decreases inflammation in adipose tissue and improves insulin 

sensitivity [39]. 

Recent studies on the molecular basis of M1 macrophage activation in obesity 

demonstrate the significant role of inflammasomes. Inflammasomes recognise pathogen-

derived molecules with an NLR or AIM2 sensor and stimulate the production of pro-

inflammatory cytokines through ASC and caspase-9 pathways. Apart from the major role 

of inflammasomes in pathogen-induced innate immunity, the pro-inflammatory activation 

can be also caused by elevated levels of other compounds present in the blood of obese 

patients, such as free fatty acids, cholesterol, islet amyloid polypeptides (IAPP) and 

apoptotic adipocytes [40]. Mice who are deficient in key inflammasome molecules such 

 

Figure 1-3 Obesity-induced inflammasome activation and macrophage polarization in 
adipose tissue. 
Figure source: Kanneganti, T.D. and V.D. Dixit, Immunological complications of obesity. Nat 
Immunol, 2012. 13(8): p. 707-12. 
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as caspase-1, ASC, NLRP3 and IL1β showed improved insulin sensitivity and glucose 

tolerance when in high- fat diet conditions [41]. 

Inflammasome-activated IL1β induces recruitment of macrophages that further induce 

pro-inflammatory signaling by secreting IL1β, IL6, IL12, CCL2 and other chemokines and 

cytokines [40, 42, 43]. These processes contribute to the attraction of other immune cells 

such as CD4+ and CD8+ T-cells. Activated T-cells further increase inflammation with 

secretion of IFNγ and TNF (Figure 1-3) [40]. 

1.2.5 Inflammation induced by elevated free fatty acids 

It has been well established that an elevated concentration of free fatty acids (FFAs) or 

nonesterified fatty acids (NEFAs) in blood plasma are associated with obesity and insulin 

resistance [42, 43]. Consumed dietary fatty acids circulate in blood plasma as free fatty 

acids or can be deposited in adipocytes. Adipose tissue fat can be released from 

adipocytes by lipolysis. The increase of white adipose tissue (WAT) mass in obesity 

consequently leads to an increase of plasma FFAs. Particularly in obese adipose tissue 

surroundings, ATMs and other immune cells are constantly exposed to a high 

concentration of FFAs released by neighbouring adipocytes. 

Although the increase of FFA levels between obese and lean conditions is evident, it has 

been systematically reviewed that the increase of WAT often does not lead to a 

proportional increase of FFAs concentration, as there are mechanisms inhibiting further 

increase of FFAs. It has been demonstrated that lipolysis per kilogram of WAT is reduced 

in obese conditions, leading to a controversial relationship between WAT mass and 

concentration of FFAs. It has also been reported that key enzymes controlling fat 

mobilization, such as hormone-sensitive lipase and adipose triglyceride lipase, are 

downregulated in obese individuals [44, 45]. These findings indicate that further research 

is necessary to understand the complexity of FFA metabolism in obesity. 

Circulating FFAs are known to induce inflammatory pathways in various cell types such as 

adipocytes, macrophages, hepatocytes etc. via toll-like receptor associated signaling. The 

exact mechanism of interaction between toll-like receptors and circulating FFAs was 

unknown before it was discovered in 2012 that fetuin A (FetA) acts as an adaptor protein 

between FFAs and TLR4 (Figure 1-4) [46]. In this study Pal et al. showed that the 

concentration of FetA, a liver-secreted protein, is increased in obese humans and mice. 

HFD-fed FetA knockout mice featured improved glucose homeostasis and did not develop 

adipose tissue inflammation. Overall, the discovery of FetA provided new opportunities 

for potentially targeting obesity-related inflammation without effecting crucial functions 

of the innate immune system [47]. 
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This discovery was followed by a systematic study of 347 healthy individuals with a high 

risk of the development of type 2 diabetes or cardiovascular disease (CVD) [46]. In this 

study subjects were divided into four groups depending on the level of blood 

concentration (high/low) of FFAs and FetA, and insulin sensitivity was determined for 

these individuals. There was a decline of insulin sensitivity with the increase of FFA and 

FetA concentration, but only in groups where both FFAs and FetA were highly abundant. 

This result indicates the importance of both FFA and FetA concentration to define the 

optimal therapeutic strategy. 

 

Figure 1-4 Role of fetuin A in free fatty acid induced chronic inflammation and insulin 
resistance. 
Liver-produced glycoprotein fetuin A acts as an adaptor between FFAs and toll-like receptor 4 
to activate pro-inflammatory cytokine expression in adipocyte. 
Figure source: Heinrichsdorff, J. and J.M. Olefsky, Fetuin-A: the missing link in lipid-induced 
inflammation. Nat Med, 2012. 18(8): p. 1182-3. 
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1.2.6 Role of saturated and unsaturated fatty acids 

The dietary fatty acids consumed with food can be divided into two major groups 

according to their chemical structure: saturated and unsaturated fatty acids. In saturated 

fatty acids all carbon atoms are linked by single bonds, whereas in unsaturated fatty acids 

one or more double bonds are present (monounsaturated and polyunsaturated fatty 

acids). Obesity-induced pathological processes including low grade inflammation 

triggered by activation of inflammasome and toll-like receptor signaling are mainly 

associated with saturated fatty acids (palmitic acid, stearic acid, myristic acid etc.) [46, 47]. 

Saturated fats are mainly present in meat and dairy products such as butter and cheese 

[48]. In high-fat western diet, associated with obesity, the balance between fat types is 

shifted towards high content of saturated fatty acids, and this misbalance is linked to high 

risks of cardiovascular disease, metabolic syndrome and obesity-induced T2D. 

In contrast, unsaturated fatty acids, in particular omega-3 fatty acids such as 

docosahexanoic (DHA) and eicosapentanoic (EPA) acids decrease risks of metabolic-

related disorders. Unsaturated fatty acids are mainly present in fish, plant oils (olive oil, 

canola oil etc.) and nuts. Beneficial effects of mediterranean diet is largely attributed to 

the high content of unsaturated fatty acids contained in olive oil. A number of studies in 

animal models and human individuals have demonstrated beneficial effects of diet with 

increased ratio of unsaturated/saturated fatty acids in various diseases including type 2 

diabetes, cardiovascular disease, Alzheimer disease and cancer [49-53]. Exact mechanisms 

of action in diverse physiological conditions are not completely established, however 

significant progress was made in recent years. 

It has been shown that fatty acids can interact with G-protein coupled receptors (GPR40 

(FFA1), GPR41 (FFA3), GPR43 (FFA2), GPR120 (FFA4) and GPR84) [54, 55]. In 2010 D. Y. Oh 

et al. discovered a key role of G-protein-coupled receptor 120 (GPR120) in insulin-

sensitizing effects of omega-3 fatty acids [56]. Omega-3 acids (DHA, EPA and palmitoleate) 

were shown to interact with GRP120 and activate anti-inflammatory mechanisms. These 

authors demonstrated that impaired glucose homeostasis caused by HFD enriched with 

saturated fatty acids in mice were reduced by the addition of omega-3 fatty acids. This 

effect was achieved through GRP120 activation and was eliminated in GRP120 deficient 

mice. Furthermore, these authors observed that β-arrestin 2 protein is essential for anti-

inflammatory effects of GRP120-dependent action of omega-3 fatty acids. 

GRP120 and its pharmaceutical agonists have attracted a lot of attention in recent years 

for their potential in treatment of type 2 diabetes and other metabolic and inflammatory 

diseases. In 2014, in another study D. Y. Oh et al. demonstrated that small molecule spdA 

acts as a selective agonist of GPR120 in vitro and in obese mice in vivo [57]. Orally taken 
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spdA improved insulin sensitivity, glucose tolerance and decreased hepatic steatosis in 

obese mice. This finding demonstrates that GPR120 receptor agonists can potentially be 

used for T2D treatment. 

1.2.7 Molecular pathways linking chronic inflammation and insulin resistance 

Diverse pathological processes such as endoplasmatic reticulum and oxidative stress, 

glucotoxicity, lipotoxicity and chronic inflammation contribute to the development of 

insulin resistance and type 2 diabetes in obesity. Many of these processes are involved in 

the activation of pro-inflammatory signaling through several pathways [58] (Figure 1-5) 

One of the major mechanisms causing pro-inflammatory activation in macrophages and 

other cells is through toll-like receptor (TLR) signaling. As was described in the previous 

paragraphs, circulating FFAs in plasma activate TLR2 and TLR4 receptors through adaptor 

protein fetuin A (Figure 1-4). TLR2/4 activation induces transcription factors nuclear factor 

κB (NFκB) and AP-1, which leads to the expression of multiple pro-inflammatory cytokines 

including TNFα and IL1β. Activation of TNFα and IL1β signaling results in insulin resistance 

in insulin sensitive tissues through an activation of IkB kinase (IKK) and c-Jun N-terminal 

kinase (JNK). These kinases inhibit insulin signaling by serine phosphorylation of insulin 

receptor substrate 1 (IRS1). 

In addition to detrimental effects of elevated circulating FFAs, ectopic lipid storage inside 

tissues can also lead to insulin resistance [59]. Ectopic lipid accumulation is largely 

regulated by lipid transport proteins such as lipoprotein lipase (LpL), CD36 and fatty acid 

transport proteins (FATPs). Deletion of LdL, CD36 and FATPs in mice decreases lipid 

accumulation in muscles and liver and improved insulin sensitivity in high fat diet [60-62].  

Lipids are accumulated in the tissues mainly in a form of intracellular diacylglycerols (DAG) 

or ceramides. Lipids accumulating in muscle cells and liver in non-alcoholic fatty liver 

disease (NAFLD) were shown to cause muscle and hepatic insulin resistance [63, 64] 

through the activation of specific isoforms of novel protein kinase C. Protein kinase C θ 

(nPKC θ) plays a role particularly in skeletal muscles [65-67], whereas PKCε and PKCδ are 

associated with the development of hepatic steatosis, glucose intolerance and insulin 

resistance in liver [68, 69]. 

There is growing evidence that ceramides are associated with obesity and the 

development of type 2 diabetes by interacting with various pathways [70]. Ceramides are 

produced with cells from FFAs such as palmitic acid. The underlying pathway is 

upregulated by TLR4 activation, mitochondrial and ER stress. Ceramides influence insulin 

sensitivity by directly interacting with nPKCζ that phosphorylates and inhibits the 

translocation of Akt/PKB. Ceramides can also activate protein phosphatase 2A (PP2A) 



Introduction 

11 
 

responsible for dephosphorylating Akt/PKB. W. L. Holland and colleagues demonstrated 

in vitro and in vivo that ceramides are also essential in a TLR4-regulated mechanism of 

insulin resistance [71]. They showed that ceramide production is induced by TLR4 signaling 

via the activation of IKKβ kinase and ceramide accumulation was required for the 

development of TLR4-dependent insulin resistance, although ceramides did not influence 

pro-inflammatory cytokine production. 

Another important mechanism contributing to insulin resistance is regulated by 

inflammasome activation causing M1 macrophage polarization as was described in 

paragraph 1.2.4. The role of nucleosomal protein NLRP3 and other NLRs has been 

extensively studied in the context of various autoimmune disorders including arthritis, 

neuroinflammatory diseases and type 2 diabetes [40]. In obesity NLRP3 inflammasomes 

are involved in recognition of FFAs, products of lipid metabolism and products of damaged 

 

Figure 1-5 Signaling pathways involved in the development of obesity-induced chronic 
inflammation and insulin resistance. 
Figure source: Lackey, D.E. and J.M. Olefsky, Regulation of metabolism by the innate immune 
system. Nat Rev Endocrinol, 2016. 12(1): p. 15-28. 
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cells - damage-associated molecular patterns (DAMPs). Inflammasome activation by these 

components leads to the activation of caspase-1, cleavage of pro-IL1β and pro-IL18 to 

their mature forms and an increased production of IL1β and IL18 [40, 70, 71]. 

Wen et al. demonstrated in vivo that HFD fed mice promoted insulin resistance via NLRP3-

PYCARD activation [70]. Inflammasome activation was associated with other signaling 

cascades such as reactive oxygen species production, AMP-activated protein kinase and 

ULK1 autophagy signaling pathways. Supporting the previous knowledge, they 

demonstrated that only saturated fatty acid (palmitate), but not unsaturated fatty acid 

(oleate) induced inflammasome activation. IL1β has been shown to play a key role in 

inflammasome-associated development of insulin resistance acting in TNFα-dependent 

and independent manner. IL1β deficient mice in contrast to WT did not develop insulin 

resistance after 2 weeks of feeding with HFD.  

B. Vandanmagsar et al. confirmed previous NLRP3-related findings from in vitro and in 

vivo models in type-2-diabetic patients examined before and after healthy diet and 

exercise-induced weight loss [71]. T2D patients exhibited significant reduction of IL1β and 

NLRP3 expression and improved insulin sensitivity after weight loss. B. Vandanmagsar et 

al. also demonstrated the NLRP3-dependent activation of mouse adipose tissue 

macrophages by ceramides and their role in promoting M1/M2 misbalance. 

Endoplasmatic reticulum (ER) stress and unfolded protein response (UPR) are also shown 

to significantly contribute to metabolic dysfunctions including chronic inflammation [72]. 

The connection between ER stress and inflammation is regulated by several mechanisms. 

These involve ATF6 pathway, IRE1α and TRAF2 regulated activation of JNK and IkB kinase 

(IKK) and PERK-mediated signalling. All these pathways contribute to the expression of 

pro-inflammatory molecules such as NFκB, IL6, TNFα [73]. In obese mice fed with HFD, 

PERK and IRE1a phosphorylation as well as JNK activity are significantly higher than in lean 

state [74]. The role of ER stress in the development of insulin resistance was demonstrated 

in model cells and mice, deficient in XBP1 and ORP150. These proteins play a significant 

role in the response and regulation of ER stress. Deficiency of each of these proteins 

resulted in increased levels of ER stress [75] leading to glucose intolerance and insulin 

resistance [74, 76].  

Another important mechanism connecting ER stress and inflammation in adipose tissue is 

associated with C/EBP homologous protein (CHOP). CHOP is a well-known transcription 

factor regulating cell response to various stresses including ER stress, where it plays 

essential roles in the activation of apoptosis. The association between CHOP expression 

and regulation of macrophage polarization was previously studied in different models and 

treatment conditions where CHOP was shown to regulate different macrophage 
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phenotypes leading to some controversy [77, 78]. In a recent study Suzuki et al. analysed 

the role of CHOP in the regulation of macrophage polarization during HFD-induced obesity 

in mice [79]. CHOP-deficient mice exhibited normal M1/M2 balance of macrophage states 

and maintained insulin sensitivity during HFD, whereas WT mice featured increased M1 

polarization of macrophages and developed insulin resistance. 

Another pathway linking inflammation and insulin resistance is regulated by pro-

inflammatory eicosanoid leukotriene B4 (LTB4) through its specific receptor LTB4R. 

Several studies demonstrated its role in atherosclerosis, arthritis and insulin resistance 

[10, 80, 81]. In 2015 J.M Olefsky’s group showed that genetic and pharmacologic depletion 

of LTB4 in HFD-fed mice improved glucose homeostasis and insulin sensitivity, although it 

did not influence the development of obesity [75]. 

Overall, the described studies demonstrate the complexity of the molecular basis of 

insulin resistance in obesity and type 2 diabetes. Nevertheless, there is evidence of the 

crucial role of inflammatory signalling in the development of insulin reistance. Discovery 

of the key regulators and missing links in molecular signalling represents an important 

field for future studies in obesity-induced insulin resistance and type 2 diabetes. 

1.2.8 Pathways counter playing chronic inflammation and insulin resistance 
in obesity 

As was discussed in the previous paragraphs, the ratio between classically and 

alternatively activated macrophages in metabolic target tissues plays a crucial role in the 

development of insulin resistance. Alternative macrophage activation, associated with 

lean state and improved insulin sensitivity, is triggered by a cumulative stimulation of 

other immune cells including eosinophils, regulatory T cells (Treg) and ILC2 cells. ILC2 cells 

induce eosinophils maturation and recruitment by producing interleukins IL5 and IL13. 

Eosinophils and Treg cells induce alternative M2 macrophage state through IL4 and IL10 

signaling. 

One of the most widely studied genes improving the pathological processes in obesity and 

regulating M2 macrophage activation is PPARγ. PPARγ ligands demonstrated significant 

insulin sensitizing effects and lowering serum glucose. In 2007 Odegaard et al. showed 

that PPARγ expression is required for alternative macrophage activation and maintains 

insulin sensitivity in obese HFD-fed mice [82]. The beneficial effects of PPARγ are not 

induced by the gene itself, but through its target genes [83]. The exact mechanisms of 

insulin sensitizing characteristics of PPARγ are not completely understood and more 

systematic studies are necessary to fully understand this regulatory mechanism. 
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Another important anti-inflammatory mechanism regulated by omega-3 fatty acids 

through GRP120 was described in paragraph 1.2.5. GRP120 acts through the activation of 

β-arrestin2/TAB1 and blocks TLR4 signaling by the isolation of Tak1 that is necessary for 

TLR4 signal transduction. 

Transcription factor ATF3 represents another interesting anti-inflammatory regulator. D. 

De Nardo et al. demonstrated in 2014 a significant role of ATF3 in anti-inflammatory 

reprogramming of macrophages via high density lipoprotein (HDL) stimulation [84]. HDL 

has protective properties in atherosclerosis regulating reverse cholesterol transport by 

exerting anti-inflammatory effects. The authors validated the essential role of anti-

inflammatory characteristics of HDL in ATF3-deficient macrophages and mice. Thus, this 

mechanism is also potentially interesting in the context of chronic inflammation in obesity 

and other metabolic complications. 

1.2.9 Treatment strategies of obesity-induced type 2 diabetes 

Current anti-diabetic therapies involve insulin therapy, metformin, thiazolidinediones, 

sulphonylureas, meglitinides, α-glucosidase inhibitors, incretin hormone-based therapy, 

sodium-dependent glucose co-transporter inhibitors and insulin therapy. Anti-

inflammatory treatment of type 2 diabetes is an emerging approach, in particular to 

prevent insulin resistance [85]. 

Metformin is the most widely used medication of type 2 diabetes. It has a highly efficient 

glucose-lowering effect and relatively low and rare side effects compared to other 

treatments [86]. It is a first-line drug recommended by American Diabetes 

Association/European Association for the Study of Diabetes, both, for monotherapy and 

combination therapy. Despite the vital importance and efficiency of metformin as an anti-

diabetic drug, it mainly effects the liver glucose production. Metformin effects on insulin 

sensitization and chronic inflammation have also been reported, however they are not so 

well described and validated systematically [83, 86-89]. 

Thiazolidinediones (TZD) such as rosiglitazone and pioglitazone act through the activation 

of PPAR receptors with particularly high affinity to PPARγ. PPARγ ligands demonstrate 

well-known insulin sensitizing effect. The beneficial effects of PPARγ activation are 

thought to be in part associated with its anti-inflammatory properties. However, several 

side effects were described for TZDs including weight gain, increase of low-density 

lipoprotein cholesterol, cardiovascular complication and others [1, 90]. 

Natural compounds including extracts from plants were shown to induce potential anti-

inflammatory and insulin sensitizing effects [91]. In particular PPARγ agonists including 



Introduction 

15 
 

amorfrutins, found in the roots of licorice, or other plant compounds have shown 

potential antidiabetic effects in vitro and in obese mice [91, 92]. 

Anti-inflammatory therapies are considered to support treatment of metabolic diseases, 

however the advances in their application are limited so far [83]. TNFα antagonists can be 

potentially efficient due to the significant role of TNFα in the development of chronic 

inflammation. Several studies demonstrated positive effects on insulin sensitivity and 

glycaemia in obese non-diabetic subjects and patients with rheumatoid arthritis, psoriasis 

and Crohn’s disease [93-96]. However, the full-scale studies on diabetic patients are still 

necessary to provide statistically significant effects of such treatments. 

A group of studies used IL1 antagonists in T2D patients based on widely described roles of 

IL1β in context of obesity-related insulin resistance and diabetes. These treatments 

involved anakinra (an IL receptor agonist), canakinumab (human monoclonal anti-IL1 

antibody) and I1β specific antibody LY2189102 [93-96]. All these treatments had 

moderate positive effects decreasing glycated haemoglobin, reducing inflammation and 

improving insulin sensitivity. These initial clinical studies demonstrated a potential of IL1 

antagonists in the treatment of insulin resistance and T2D without obvious side effects. 

Salsalate is another potential anti-diabetic supplement that acts through the inhibition of 

NFκB pathway. It was tested in several human studies including diabetic and non-diabetic 

patients and proved its efficiency in Phase III clinical trials [85, 97, 98]. Although salsalate 

treatment increased the level of LDL cholesterol in blood and urinary albumin, the patients 

demonstrated significant decrease in the glycated haemoglobin and overall it proved its 

efficiency. 

Taken together, these findings demonstrate the high potential of their usage in the field 

of anti-inflammatory treatment in obesity and type 2 diabetes. However, it is important 

to develop treatments that would not affect the vital immune functions, but would 

precisely and more efficiently inhibit obesity-induced chronic inflammation and prevent 

insulin resistance. 

1.3 Single-cell transcriptome analysis 

1.3.1 Single-cell RNA sequencing technology 

Throughout the last decade, the advancement of the Next Generation Sequencing (NGS) 

technology has significantly improved the sensitivity and efficiency of a variety of DNA-

sequencing based methods and broadened the range of applications. Many single-cell 

genomics procedures were introduced and dramatically evolved over the recent years. 

These include methods for RNA sequencing, whole genome sequencing and analysis of 
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epigenetic states of individual cells. Whole transcriptome sequencing of single cells 

represents an engaging technology. Currently, single-cell RNA sequencing methods are 

based on the individual cell separation and library preparation using cell sorting, emulsion 

and microfluidics based methods. Here, the selected methods for single-cell RNA 

sequencing are briefly described. The information can be found in various reviews [99-

102] 

SMART (Switching Mechanism at 5' end of RNA Template) template switching technology 

is widely used in single-cell RNA sequencing. It was originally applied for manual single-

cell RNA library preparation in multiwell plates and later was adopted for emulsion and 

microfluidics based methods [102-104]. In these protocols, cell lysis is directly followed by 

reverse transcription of polyadenylated RNA using oligo-dT primers. When reverse 

transcriptase reaches the 5’ end of the transcript, it adds a non-template tag to the end 

of the first strand cDNA. In the presence of adaptor oligonucleotides hybridizing to the 

added tag, the reverse transcriptase switches the template and transcribes the adaptor 

sequence at the end of first strand cDNA, which allows the adaptor sequence 

incorporation into both RNA template and first strand cDNA. 

SMART technology allows for cell lysis, reverse transcription and pre-amplification in one 

reaction without an intermediate purification and adaptor ligation step. This method 

allows full-length transcript coverage without a significant 3’/5’ end bias. These 

characteristics permit it to become one of the most widely used approaches in single-cell 

RNA library preparation. 

Commercial Fluidigm C1 system utilizes the SMART template switching protocol in 

microfluidics. The overview of the standard workflow is depicted in Figure 1-6 B. Individual 

cells are captured in microwells of the integrated fluidic circuits (IFCs) allowing the 

processing of the cells in a broad range of sizes (5-25 µm). Captured cells in microwells 

can be visualized using a light microscope. Following cell lysis, polyadenylated RNA is 

reverse-transcribed using cell-specific barcodes, and pre-amplified for further library 

preparation following harvesting from the IFC. 
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In 2015 E. Z. Macosko et al. introduced Drop-seq - a technology utilizing template switch 

mechnism in emulsion microdroplets [104]. Drop-seq is based on the separation of 

individual cells in aqueous droplets formed in an oil solution in a microfluidics system. 

Individual cells from a cell suspension are captured in nanoliter droplets along with 

uniquely barcoded microbeads (Figure 1-7). Each bead is covered with primers consisting 

 

Figure 1-6 SMART method for single-cell RNA library preparation. 
A An overview of SMART method implemented in SMARTer kit (Clontech). Figure source: 
http://www.clontech.com/US/Products/cDNA_Synthesis_and_Library_Construction/NGS_Lea
rning_Resources/Technical_Notes/  
B A workflow of C1 Single-cell Auto Prep System (Fluidigm) utilizing SMARTer chemistry in 
microfluidics. Figure source: http://www.well.ox.ac.uk/ogc/single-cell-resources 
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of 3 parts: a common sequence for further PCR amplification, bead-specific barcode for 

the encoding of individual cell and unique molecular identifier (UMI), which allows a digital 

count of unique transcripts and PCR bias correction. 

Using microfluidics, thousands of aqueous droplets are formed per minute with some of 

them containing individual cells and some containing microbeads. When a cell and 

microbead are captured in the same droplet, following cell lysis, the RNA from the cell is 

hybridized to the bead and combined with the other beads. The mRNA from thousands of 

cells is then reverse transcribed using the template switch mechanism and the cDNA is 

amplified and sequenced. 

The ability to prepare thousands of single cell libraries in a short amount of time, as well 

as the simplicity of the protocol, distinguishes Drop-seq from alternative methods. 

However, unlike in the microfluidic chip systems, such as Fluidigm C1, the cell doublets 

captured in a single reaction can not be monitored microscopically. The estimated 

percentage of cell doublets accounts for up to 11 % depending on the cell concentration, 

however it potentially varies depending on cell type. 

CEL-Seq (Cell Expression by Linear amplification) protocol and its updated version CEL-

Seq2 were introduced by T. Hashimshony et al. in 2012 and 2016, respectively. This 

method utilizes in vitro transcription (IVT) instead of the template switch step applied in 

SMART-based approaches. CEL-Seq2 enables the incorporation of the UMI similarly to 

Drop-Seq to identify single transcripts. The cell-specific barcode in this method is 

introduced during the reverse transcription reaction, followed by the second strand 

synthesis. Single-cell cDNA is further pooled and amplified using linear IVT. This method 

 

Figure 1-7 Drop-seq workflow for single-cell library preparation. 
Figure source: Macosko, E.Z., et al., Highly Parallel Genome-wide Expression Profiling of 
Individual Cells Using Nanoliter Droplets. Cell, 2015. 161(5): p. 1202-14. 
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was originally developed for library preparation in tubes or microwell plates, but later, 

similarly to SMART seq, it was efficiently incorporated in Fluidigm C1 workflow. Both 

methods demonstrated considerable efficiency and reproducibility however require 

further optimisation. 

1.3.2 Analytical approaches in single-cell RNA-sequencing 

In many aspects, the experimental design and analysis of single-cell transcriptomes is 

similar to standard RNA sequencing. However, there are a number of unique features that 

distinguish single-cell RNA data and requires optimisation of the existing analytical 

approaches and the development of new tools. The key steps involve experimental design, 

the control of sequencing quality and filtering of cells, reads mapping, quantification and 

normalisation and methods for analysis of cell populations and underlying gene regulatory 

mechanisms. 

An optimal design of a single-cell experiment requires, similar to conventional RNA-seq, 

the minimization of experimental differences between conditions, such as various 

technicians and the usage of different equipment and kits. Potential sources of systematic 

bias, including variance between robotic channels or well positions in microfluidic chips, 

must be extensively evaluated. For multiple conditions the cell subsets from different 

experimental conditions should be processed in the same batches and sequencing pools 

should contain cells from all conditions split in different sequencing flow cells or lanes, as 

it is recommended for conventional sequencing procedures [99, 101]. The addition of 

external RNA molecules, such as External RNA Controls Consortium (ERCC) RNA spike 

allows for better control of bias induced during library preparation, sequencing and data 

analysis. 

The newest methods allow low-cost RNA library preparation from thousands of individual 

cells, but the costs of sequencing remain a limiting factor. Most single-cell studies 

published indicate that sequencing depth of ~1-1.5M reads per cell is sufficient to capture 

more than 95 % of the genes present in the library [105]. Nevertheless, the balance 

between cell number and depth of sequencing should be defined based on the specific 

research tasks and considering the used cell type and method of library preparation.  

Quality control of sequencing reads before and after mapping can be performed using 

standard tools, such as FastQC, RSeQC and SAMTools [106-108]. Although estimation of 

the full list of standard parameters for all cells can be time consuming, some key features, 

such as total number of reads, percentage of mapped reads, duplication rate and base 

quality should be controlled. These parameters, together with microscopic data of 

captured cells if available, can be used to filter out inferior quality cells from further 

analysis. 
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Read quantification and normalization represents one of the major steps in single-cell 

sequencing reads processing that influences analysis outcome. Standard approaches 

developed for bulk sequencing, such as HTSeq, RSEM and Cufflinks are widely used [109-

111]. However, these methods assume low variance of the sequencing depth and total 

RNA input from different samples, which cannot be fully achieved in single-cell 

approaches due to large numbers of samples and biological differences between 

individual cells. Additionally, standard normalization approaches do not consider large 

fraction of zeros typical for single-cell data. Although these limitations may influence 

further analysis, many studies demonstrated that size factor normalization used in HTSeq 

or normalization to total number of sequencing reads and gene length producing TPM and 

FPKM values (RSEM, Cufflinks) can be efficiently applied [112-115]. 

The limitation of the standard normalization approaches is that they cannot account for 

the differences of RNA input. This problem can be solved by the usage of an external RNA 

spike, such as ERCC RNA spike, for read counts normalization [116, 117]. As the spike is 

added to the reaction at a known equal concentration, it allows normalization to the 

sequencing depth and estimation of absolute number of input RNA molecules. 

The majority of single-cell studies aim to identify novel cell types or cell transcriptional 

states within a population. Supervised or unsupervised clustering methods are typically 

used to separate cells into subgroups. Widely used unsupervised methods, such as PCA, 

ICA, tSNE and hierarchical clustering can be applied to the whole transcriptome, highly 

expressed genes, differentially expressed genes between conditions or highly variable 

genes [99-101, 118]. Several unsupervised clustering methods have been developed 

specifically for the analysis of cell subpopulations. These include ZIFA, optimized for high 

fraction of zero values, SNN-cliq and Race-ID targeted at rare cell type identification [119-

121]. Supervised clustering methods can be used when expression of certain marker genes 

as well as when temporal or spatial location of cells is predefined [99, 122, 123]. 

The estimation of cell-to-cell heterogeneity and the results of cell clustering can be 

affected by different superfluous biological factors and technical noise. Apart from 

potential systematic biases and batch effects, certain levels of steady technical variability 

are introduced during library preparation and sequencing due to efficiency differences of 

cell lysis, reverse transcription, PCR and other experimental procedures. 

P. Brennecke et al. introduced a statistical model to assess the total variability for each 

expressed gene compared to the technical noise estimated based on ERCC spike 

expression [124]. In this study, the level of technical noise was estimated for the manual 

and microfluidics-based single-cell library preparation protocol utilizing SMART 

technology. Technical variability measured for each gene across all single cells 
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demonstrated dependency on the expression level (CV2 ~ 1/gene expression + const). The 

proposed statistical model allows for the identification of genes featuring biological 

variability significantly exceeding technical noise and is widely used to discriminate highly 

variable genes. An additional simple method proposed by B. Ding et al. allows technical 

noise reduction from gene expression values based on ERCC spike expression data [117]. 

Overall, the usage of ERCC spike and other external RNA molecules in single-cell protocols 

provides a wide range of additional information about the quality of single-cell data and 

can be used for expression normalization, as well as estimation and correction of technical 

noise. However, several limitations exist preventing its universal usage. Firstly, if not 

optimized, a substantial proportion of spike molecules may significantly increase 

sequencing costs. Secondly, ERCC spike molecules are shorter than average human mRNA 

molecules (ERCC spikes length is 500-2000nt, whereas the average human mRNA length 

is ~2100nt) and have a shorter polyA tail [99]. Additionally, it has been shown that ERCC 

spike demonstrate a lower level of PCR bias compared to endogenous transcripts [118]. 

Interfering biological factors such as cell cycling may also cause considerable problems in 

the analysis of cell populations masking other regulatory mechanisms. Buettner et al. 

developed a computational approach (scLVM) to account for hidden confounding factors 

in single-cell data and eliminate them from the analysis of cell heterogeneity [113]. This 

method demonstrated its efficiency on single-cell data of T cell differentiation where the 

elimination of cell cycle-related genes allowed to identify otherwise hidden biologically 

relevant cell subpopulations [113]. 

An additional intriguing application of single-cell data is an inference of gene co-

expression networks. In such networks, genes represented as nodes are connected by 

edges representing co-expression values, such as Pearson or Spearman’s correlations, 

their derivatives or other metrics. Weighted gene co-expression networks analysis 

(WGCNA) is an approach that was originally developed for conventional RNA sequencing 

and then proved its efficiency for single-cell data [125-127]. It allows comprehensive 

analysis of gene modules that potentially represent functional relations and coregulation, 

as well as analysis of gene connectivity, allowing identification of important hub genes. 

The derived networks can be used as a powerful resource for further functional 

experiments. 

Overall, the field of bioinformatical methods for single-cell RNA-seq is rapidly expanding 

allowing better quality results to be obtained in a shorter time period. However, the 

proper experimental validation of the obtained results remains crucial to avoid potentially 

biased interpretation. 
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1.4 Aims of the thesis 

Obesity is one of the major causes of the type 2 diabetes epidemic worldwide. Insulin 

resistance underlying the development of diabetes is largely related to a chronic low-

grade inflammation characteristic in obese patients. Macrophages accumulating in the 

obese adipose tissue and other metabolic tissues represent one of the key cell types 

causing chronic inflammation through the activation of the TLR signaling pathway and 

other regulatory mechanisms. 

Several distinct macrophage polarization states widely described in the literature 

demonstrate macrophage natural plasticity and heterogeneity. However, the full range of 

macrophage molecular phenotypes in different physiological conditions and underlying 

gene regulatory mechanisms are not fully described. In this study, we aimed to 

characterize metabolically stressed macrophages on a single-cell level to investigate the 

diversity of macrophage phenotypes and decipher key genes regulating macrophage 

polarization. 

First, we aimed to establish a physiologically relevant cell model typical for adipose tissue 

macrophages in obesity. For the unbiased characterization of a cell response to mild 

metabolic stress it was particularly important to control for unwanted biological factors, 

such as different metabolic background of the analysed cells, cell cycle and others. 

Second, we aimed to perform single-cell transcriptome sequencing and to develop and 

apply a comprehensive analytical workflow optimized for the characterization of mild 

changes in gene expression relevant for our cell model. This involves an extensive analysis 

of sequencing quality, unbiased cell filtering and the evaluation of technical noise 

introduced by the applied experimental procedures. Novel computational approaches 

should be evaluated and applied for the identification of cell subpopulations and analysis 

of the underlying gene regulatory networks. 

Finally, the observed key regulatory mechanisms and pathways expressed in cell 

subpopulations require validation using additional experimental approaches including 

microscopy-based techniques devoid of bias by PCR amplification. 

This study would provide a novel view on the macrophage biology in the context of obesity 

and type 2 diabetes. The derived gene regulatory networks and validated molecular 

mechanisms underlying cell state polarization would make a valuable resource for future 

studies. 
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2 Materials and Methods 

2.1 Cell culture  

2.1.1 THP-1 cells 

We used THP-1 monocytes differentiated to macrophages using phorbol 12-myristate 13-

acetate (PMA, Sigma-Aldrich) for further palmitate stimulation. The THP-1 cell line was 

established in 1980 from an acute monocytic leukemia patient and is widely used as a 

model for monocyte and macrophage regulation in vascular diseases, diabetes and 

atherosclerosis [128-131]. 

THP-1 cells (ATCC) were cultured in a RPMI 1640 growth medium (Sigma-Aldrich) 

supplemented with 10 % fetal bovine serum (FBS, Biochrom) at 37 °C under 5 % CO2 in a 

CO2 incubator. Subculturing was performed every 2-3 days to achieve the cell density of 

2.5 x 105 cells/ml.  

The total number of 1 x 106 cells in 4 ml volume were plated into each well of a 6-well 

plate (Corning) for differentiation. Then, a PMA concentration of 10nM was chosen, as it 

was previously shown to be optimal for weak stimulation of macrophages [132]. After 

approximately 24 hours of PMA-based differentiation, cells became adherent and 

acquired macrophage morphology. After 48 hours of PMA treatment cells were used for 

a subsequent 24 hours of treatment with palmitate or left unstimulated. 

2.1.2 Primary human macrophages 

First, peripheral blood mononuclear cells (PBMC) were isolated from human buffy coats, 

donated by 3 healthy individuals (provided by Deutsches Rotes Kreuz). Cells were isolated 

using density centrifugation with Ficoll-Paque (GE Healthcare) for 40 min at 400 g and 

washed with Dulbecco’s Phosphate Buffered Saline (PBS, Sigma-Aldrich) supplemented 

with 0.5 % Bovine Serum Albumin (BSA, Sigma-Aldrich) and 2mM EDTA (Sigma-Aldrich). 

Next, monocyte enrichment from PBMC was performed using the MACS Monocyte 

Isolation Kit II (Miltenyi Biotec) and MACS LS columns (Miltenyi Biotec). 

Purified monocytes were subsequently seeded in 6-well cell culture plates (Corning) at a 

density of 5x105 cells/ml, in a total volume of 4 ml per well. Cells were differentiated for 

7 days in RPMI 1640 growth medium (Sigma-Aldrich) supplemented with 10 % human AB 

serum (First Link UK LTD) and 1 % Penicillin/Streptomycin (Biochrom). After 

differentiation, primary human macrophages were used for palmitate stimulation or left 

unstimulated. 
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2.2 Macrophage stimulation with palmitate 

A cell medium with 250 µM palmitate was prepared using the following previously 

validated procedure [133-135]:  

1. Sodium palmitate solution (62.5 mM) was prepared by dissolving Sodium 

palmitate powder (Sigma-Aldrich) in 0.1M NaOH (Sigma-Aldrich) at 70°C for 30 %. 

2. Fatty Acid Free BSA (Sigma-Aldrich) was dissolved in PBS (1:3 mass ratio) (Sigma-

Aldrich) and pre-heated at 37 °C. 

3. The palmitate solution was mixed with dissolved pre-warmed (37 °C) BSA at a 1:5 

volume ratio and incubated at 37 °C for 30 min to form palmitate: BSA complex 

(molar ratio of palmitate: BSA was 7.5:1). 

4. For THP-1 cells stimulation, the palmitate-BSA complex was diluted in a 

prewarmed (37°C) RPKM 1640 medium (Sigma-Aldrich) supplemented with 10 % 

fetal bovine serum (Biochrom) and 10 nM PMA (Sigma-Aldrich) to achieve a 

palmitate concentration of approximately 400-500 µM. 

5. For primary human macrophages the palmitate-BSA complex was diluted in a 

prewarmed (37°C) RPKM 1640 medium (Sigma-Aldrich), supplemented with 10 % 

human AB serum (First Link UK LTD) and 1 % Penicillin/Streptomycin (Biochrom) 

to achieve the palmitate concentration of approximately 400-500 µM. 

6. The medium with palmitate was filter sterilized using a 0.22 µm Stericup Filter Unit 

(Merck Millipore) and the Stericup Receiver Flask (Merck Millipore). 

7. The palmitate concentration in medium was measured using a Free Fatty Acid 

Quantification Kit (BioVision) and adjusted to 250 µM.  

8. In parallel to palmitate preparation, a control medium was made by combining 0.1 

M NaOH (Sigma-Aldrich) with dissolved BSA instead of step 2, followed by a 

process identical to the palmitate medium preparation procedure, described in 

steps 3-7. 

9. For palmitate stimulation of macrophages, THP-1 cells, previously differentiated in 

6-well culture plates, were incubated with palmitate/ control medium for 24 

hours. 

10. After 24 hours of stimulation, cells were washed with 37 C warm PBS (Sigma-

Aldrich), dissociated for 13 min using TrypLE (GIBCO) in CO2 incubator at 37 °C and 

resuspended in PBS with 2 % BSA (Sigma-Aldrich). 

2.3 RNA isolation and quality control 

The RNeasy mini kit (Qiagen) was used according to standard manufacturer’s protocol for 

total RNA isolation. We included 30 min on-column DNase digestion, using the RNase-Free 
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DNase Set (Qiagen). RNA quantification and quality control was performed using the Qubit 

3.0 fluorometer (Thermo Fisher Scientific) with the Qubit RNA HS Assay Kit (Thermo Fisher 

Scientific) and Bioanalyzer 2100 (Agilent Technologies) with the RNA 6000 nano kit 

(Agilent Technologies) in addition to an agarose gel electrophoresis-based quality check. 

2.4 Quantitative real-time PCR 

To perform gene expression quantification, we used Sybr Green I-based quantitative real-

time PCR. HPLC-purified custom primers were obtained from Sigma-Aldrich. Primer 

sequences (Table 2-9) were designed using Primer-BLAST software [136]. Additionally, we 

used a Toll-Like Receptor Signaling Pathway PCR Array (Qiagen) for gene expression 

analysis in bulk and single-cell validating experiments.  

2.4.1 Bulk quantitative real-time PCR 

Reverse transcription for bulk qPCR experiments was performed using the qScript cDNA 

SuperMix (Quantabio). Reverse transcription reaction was prepared in a total volume of 

10 µl and incubated in a PCR thermal cycler using the program, summarized in Table 2-1: 

Table 2-1 Reverse Transcription thermal cycler program 

Temperature Time 

25 °C 5 min 

42 °C 30 min 

85 °C 5 min 

4 °C hold 

 

We used PerfeCTa SYBR Green SuperMix (Quantabio) to prepare the qPCR reaction mix as 

follows (Table 2-2): 

Table 2-2 Quantitative PCR reaction 

Component Final concentration Volume (µl) 

PerfeCTa SYBR Green SuperMix 

(2x) 

1x 5 

Primer pair 0.2 µM 2 

cDNA 0.5 ng/µl 1-3 

Nuclease-free H2O  variable 

Total  10 
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Biological and technical triplicates were prepared for all qPCR experiments with custom 

designed primers. For bulk qPCR with a Toll-like Receptor Signaling Pathway PCR array we 

used biological duplicates. 

Using the following program (Table 2-3), qPCR reactions were run in Light Cycler 480 384-

well plates (Roche) on a LightCycler 480 II System (Roche): 

Table 2-3 Quantitative PCR LightCycler 480 II program 

Step Temperature Time 

Pre-incubation 95 °C 3 min 

Amplification - 45 cycles (60 cycles 

for single-cell qPCR) 

95 °C 10 s 

60 °C 35 s 

Melting curve analysis 95 °C 5 s 

65 °C 1 min 

up to 97 °C 0.03 °C /s 

 

2.4.2 Single-cell quantitative real-time PCR 

The following previously validated [137-139] procedure was carried out for single-cell 

gene expression analysis using quantitative real-time PCR: 

2.4.2.1 Cell sorting into 96-well plates 

1. 5 µl of nuclease-free water (Thermo Fischer Scientific) were pipetted into each of 

the A1-B12 wells in 96-well plates (Biozym) for single-cell sorting, and stored on 

ice. 

2. After treatment, cells were harvested in ice-cold PBS (Sigma-Aldrich) with 2 % BSA 

(Biochrom) (approximate cell density was 1M cells/ml). 

3. 5 µl of 7-Aminoactinomycin D (7-AAD) cell viability staining solution were added 

per 1 ml of cell suspension 10 min before cell sorting, and cell suspension was 

filtered through a 40 µm cell strainer. 

4. Individual intact living cells were sorted into 96-well plates using the BD FACSAria 

II system with the following layout: wells A1-H11 contained a single cell per well 

(88 wells in total), wells A12 and B12 contained 40 cells per well, and the remaining 

6 wells were left empty for “No Template Control” and “Interplate Calibrator 

Control”. 

5. Plates with cells were sealed with aluminum foil, snap frozen on dry ice and stored 

at -80°C. 
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2.4.2.2 Reverse transcription 

Plates with cells were thawed at room temperature for 10 min and spun down. After 

thawing, all the pipetting steps were carried out on ice and centrifugation was done at 

+4°C. Both, THP-1 cells and primary human macrophages, were efficiently lysed after 

being frozen in nuclease-free water, and the reverse transcription reaction was prepared 

by adding the reverse transcription mix directly to cell lysates in the 96-well plate as 

follows: 

1. qScript cDNA SuperMix (Quantabio) was diluted to 1:1 with nuclease-free water 

(Thermo Fischer Scientific) and stored on ice. 

2. 1 µl of diluted qScript cDNA SuperMix was added to all wells with 1/40 cells, and 

the plate was sealed with aluminium foil (VWR). The plate was spun down, briefly 

vortexed and spun down again. 

3. Reverse transcription reaction was performed in a thermal cycler as described in 

Table 2-1. 

4. We used an “Interplate Calibrator” (IPC, TATAA Biocenter AB) to account for plate-

to-plate bias. An IPC mix was prepared by combining 0.6 µl of IPC template, 1.5 µl 

of IPC primer and 2.9 µl of nuclease-free water (Thermo Fischer Scientific) (the 

total volume of 5 µl IPC mix required for a one qPCR reaction in 384-well plate). 

5. When reverse transcription was finished, 35µl of nuclease-free water was added 

to wells with cDNA; 45 µl of IPC mix was added to the wells C12, D12, E12, and 45 

µl of nuclease-free water was added to the wells F12, G12, H12 for No Template 

Control. The plate was briefly vortexed and centrifuged. 

6. Diluted cDNA and controls material was transferred from 96- into Light Cycler 480 

384-well plates (Roche) using the Biomek NX Liquid Handling Automation 

workstation (Beckman Coulter). 2x20 µl was aspirated from each well of the 96-

well plate using AP96 P20 Tips (Beckman Coulter) and 5 µl was dispensed into 4 

wells of each of the 384-well plates (A1 (96-well plate)->A1, A2, B1, B2 etc.). 

2.4.2.3 Quantitative single-cell PCR 

Directly after cDNA splitting, qPCR reaction mixes were prepared and dispensed into 384-

well plates as follows: 

1. PCR primer pairs were mixed with PerfeCTa SYBR Green SuperMix (Quantabio) to 

obtain a primer concentration of 0.4 µM. For IPC controls, nuclease-free water was 

added instead of primer solution. 

2. 5 µl of PerfeCTa SYBR Green SuperMix with primers were dispensed into 

corresponding wells of the 384-well plates containing 5 µl of diluted cDNA. Plates 

with qPCR reaction mixes were sealed with aluminium foil (VWR), snap frozen and 

stored at -20°C until the qPCR run. 
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3. For the qPCR run, plates were thawed for 10min in room temperature, briefly 

centrifuged, ate which the aluminium foil was replaced with LightCycler 480 clear 

sealing foil (Roche). 

4. For single-cell qPCR, we ran the same program as for bulk qPCR analysis (Table 2-2) 

using LightCycler 480 II System (Roche), but with a higher number (60) of 

amplification cycles. 

2.4.3 Quantitative PCR data analysis 

For the first part of qPCR analysis, we used LightCycler 480 software (Roche). To obtain 

the Quantification cycle (Cq value), we applied the “Abs Quant/2nd Derivative Max” 

method, implemented in the software. Melt Curve Analysis was performed by applying 

the “Tm calling” method. Melt curves were visually inspected to identify potential 

technical outliers and unspecific primer pairs with more than one melt peak, which were 

excluded from further analysis.  

The next analytical steps with Cq values were executed using R statistical software. For 

bulk qPCR analysis, we applied the 2-ΔΔCt method [140] (Equation 2-1,Equation 

2-2,Equation 2-3) to quantify gene expression fold change relative to unstimulated control 

samples. For all bulk qPCR experiments, we used GAPDH as a reference gene. 

Equation 2-1 

𝛥𝐶𝑡 = 𝐶𝑡 (𝑇𝑎𝑟𝑔𝑒𝑡 𝑔𝑒𝑛𝑒)  −  𝐶𝑡 (𝐺𝐴𝑃𝐷𝐻) 

Equation 2-2 

𝛥𝛥𝐶𝑡 = 𝛥𝐶𝑡 (𝑆𝑡𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒)  −  𝛥𝐶𝑡 (𝐶𝑜𝑛𝑡𝑟𝑜𝑙 𝑠𝑎𝑚𝑝𝑙𝑒) 

Equation 2-3 

𝑅 = 2−𝛥𝛥𝐶𝑡 

Unpaired two-tailed Student’s t-test was applied to Cq values in order to test for statistical 

significance of the observed differences. For multiple comparisons, we used one-way 

ANOVA followed by Dunnett’s or Tukey’s HSD test . 

2.5 RNA sequencing 

2.5.1 Cells preparation for bulk and single-cell RNA sequencing 

For RNA sequencing, palmitate-stimulated and unstimulated cells were prepared in 

biological triplicates. After cell harvesting, ⅓ of the cell suspension volume from each 

triplicate was taken and combined for a further single-cell RNA-seq procedure. The 

remaining cells were processed in triplicates for validating bulk RNA-seq and qPCR 

experiments. 
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For the single-cell RNA-seq, we stained cells with a 7-Amino-Actinomycin D staining 

solution (BD Pharmingen) (5 µl per 1 ml cell suspension) and sorted approximately 60000 

living cells into PBS (Sigma-Aldrich) with 2 % BSA, using BD FACSAria II (BD Biosciences). 

After sorting, the cell concentration was adjusted to the range of 66,000-333,000 cells/ml, 

and 5 µl of the cell suspension (~1000 cells) were loaded into the corresponding inlet of 

the Integrated Fluidic Circuit (IFC, Fluidigm) for medium cell size (10-17 µm). 

2.5.2 Bulk RNA sequencing 

RNA concentration measurement and quality control was carried out using the Qubit 3.0 

Fluorometer (Thermo Fisher Scientific) and the Agilent 2100 Bioanalyzer (Agilent 

Technologies) with the RNA 6000 Nano Kit (Agilent Technologies). Sequencing libraries 

were prepared using the Illumina TruSeq RNA Library Prep Kit v2 (Illumina), and paired-

end sequencing 2x100bp was performed using a HiSeq 2500 system(Illumina). 

2.5.3 Single-cell RNA sequencing 

We used the C1 Single-Cell Auto Prep System (Fluidigm) for cell lysis, reverse transcription 

and preamplification according to protocol provided by the manufcturer. One 96-cells 

Integrated Fluidic Circuit (IFC, Fluidigm) was used per treatment condition (palmitate-

stimulated or unstimulated).  

Reverse transcription and pre-amplification reactions were carried out using SMARTer 

chemistry. This method utilizes SMART-RACE technology, allowing full length processing 

of polyadenylated transcripts. Sequencing libraries were prepared using a Nextera XT 

transposase-based approach. 96 barcoded single-cell libraries were pooled and 

sequenced in parallel with the corresponding bulk controls. Information on single-cell 

library quality control is provided in Supplementary Figure 6. 

In short, the workflow consisted of the following steps:  

1. A medium size C1 IFC was primed and loaded with THP-1 macrophages. 

2. Cells captured in chip micro wells were imaged using a light microscope. 

3. Cells were lysed, RNA was reverse transcribed and cDNA was pre-amplified in the 

C1 system, using the SMARTer Ultra Low Input RNA Kit (Clontech) for Illumina 

Sequencing. 

4. Pre-amplified cDNA products were harvested from IFC inlets; a cDNA 

concentration of C1 harvest amplicons was measured using the POLARstar Omega 

Plate Reader Spectrophotometer (BMG LABTECH) using a Quant-IT PicoGreen 

dsDNA Assay Kit (Thermo Fisher Scientific). 

5. Additionally, selected C1 harvest products were run on an Agilent 2100 Bioanalyzer 

High Sensitivity DNA chip (Agilent Technologies). 

http://www.bmglabtech.com/en/products/omega-series/polarstar-omega/
http://www.bmglabtech.com/en/products/omega-series/polarstar-omega/
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6. All 96 harvest amplicons were used for Illumina library preparation with the 

Nextera XT DNA sample preparation kit (Illumina). 

7. 96 single-cell sequencing libraries were pooled together, and the library pool was 

analysed on an Agilent Bioanalizer (Agilent Technologies), using the Agilent High 

Sensitivity DNA chip (Agilent Technologies). The average library size for an 

unstimulated sample was 719bp and 653bp for palmitate-stimulated. Obtained 

library concentrations were 325 and 270pg/µl correspondingly. 

8. The single-cell library pools were sequenced using a Illumina HiSeq 2500 system to 

obtain 2x100bp paired-end reads. 

2.6 Sequencing data analysis 

2.6.1 Primary data analysis and quality control 

BCL Illumina files were demultiplexed and converted to a FASTQ file format using bcl2fastq 

Conversion Software v1.8.4 (Illumina) with default parameters. For all bulk samples and 

selected single cells, the FASTQ file quality was controlled using FastQC software 

(Supplementary Figure 7) [106]. 

Adapter sequences and low-quality bases were cut from FASTQ files using Trimmomatic 

version 0.30 [141] with the following parameters: 

• Remove adapter sequences (default settings) 

• Remove leading/trailing low quality bases (below quality 3) 

• Scan reads with a 4-base wide window, and cut when the average quality per base 

drops below 15 

Trimmed FASTQ files were mapped to the human reference genome hg19 (Genecode 19 

annotation [142]) using a STAR v. 2.4.0 RNA-seq aligner [143] with default parameters. 

Reads quantification and FPKM normalization was performed using an HTseq-count script 

from the HTseq-0.6.1 python package [109] or the Cufflinks (v. 2.2.1) software [111] with 

default parameters. 

2.6.2 Secondary data analysis of bulk RNA sequencing 

Differential Expression (DE) analysis of bulk RNA-seq was executed using the DESeq2 

package in R [144] according to a standard workflow described in the manual. We 

considered genes to be differentially expressed when the absolute expression fold change 

was higher than 2, and P-Value was less than 0.001. 

We performed gene functional annotation enrichment analysis of detected DE genes 

using DAVID Bioinformatics Resources [145, 146].  
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2.6.3 Independent Component Analysis of single-cell RNA sequencing data 

Single cells were filtered based on IFC capture sites image analysis. 74 palmitate-

stimulated and 72 unstimulated cells were used for further analysis. For the Independent 

Component Analysis (ICA) of single cells, we used DE genes, defined for bulk RNA samples 

and expressed with a minimum mean expression level of 5 read counts in single-cell data 

for palmitate treatment. We also excluded genes that did not belong to defined gene co-

expression clusters in WGCNA analysis. Altogether, 266 genes were selected. For ICA 

analysis, single-cell gene expression values were log-transformed (ln(read count+1)). ICA 

analysis was performed by using the sc_DimensionalityReductionObj function from the 

“sincell” statistical package in R [147]. Cell subpopulatons were defined based on density 

distribution of cells in 2-dimensional IC-space.  

2.6.4 Weighted gene co-expression network analysis of single-cell RNA 
sequencing data 

We constructed and analysed gene co-expression networks based on single-cell gene 

expression data using a WGCNA package in R [125, 148, 149]. The following workflow was 

implemented: 

1. Optimal “soft threshold” power (𝛽) was defined for further network construction 

using the pickSoftThreshold function, based on the scale free topology property of 

the gene network. 

2. An adjacency matrix was calculated based on single-cell expression matrix for 

palmitate-stimulated cells using the adjacency function. Pearson’s correlation was 

used to calculate gene co-expression similarity. We used the “signed” type of 

network to preserve information about the sign of Pearson’s correlation 

coefficient. 

3. A Topological Overlap Matrix (TOM) was calculated based on the adjacency matrix 

using the TOMsimilarity function. (TOM dissmilarity=1-TOMsimilarity). 

4. Hierarchical clustering was performed based on TOM dissimilarity with the cluster 

method “average” using the flashClust function. 

5. Gene modules were defined from the dendrogram, generated in the previous step, 

using the Dynamic Tree Cut method. 

6. Module membership and intramodular connectivity were calculated for all genes 

to identify “hub” genes in different gene co-expression modules. 

2.6.5 Variance estimation in single-cell RNA sequencing 

To estimate variability levels between single cells in a population, we used a previously 

described approach by A.A Kolodziejczyk et al. [114]. This method aims to compute a 

variance metric that is not dependent on the mean expression of a particular gene. First, 
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we plotted mean expression values versus squared coefficients of variation (CV2) for each 

gene. Then, we used the local polynomial regression fitting function (loess function from 

stats package in R) with a formula y~1/x. Finally, for each gene we calculated a distance 

between the squared CV and local regression fit. This distance we used as a variance 

metric to compare the variability between individual cells of genes and gene modules. 

2.7 Immunofluorescence double staining 

Immunofluorescence double-staining protocols allow for the simultaneous detection of 2 

different antigens in the same sample using primary antibodies derived from different 

species. For our experiments, we used combinations of mouse and rabbit primary 

antibodies with the corresponding secondary antibodies conjugated with Alexa 488 and 

Alexa 594 fluorescent dyes.  

2.7.1 Specimen preparation 

THP-1 cells or primary monocytes were seeded on Poly-L-Lysin (Sigma-Aldrich) coated 

glass slides in 24-well cell culturing plates (Corning). Cells were further differentiated to 

macrophages and stimulated with palmitate as described in sections 2.1 and 2.2. 

After treatment cells were fixed and permeabilized using the Transcription Factor Buffer 

Set (BD Pharmingen) and blocked with normal goat serum. Immunofluorescent double-

labelling for different antibodies pairs was prepared as follows: 

1. The primary antibodies mix (200 µl) was added into each well, and plates were 

incubated at +4°C overnight. The primary antibodies mix (per well) was prepared 

by combining 200 µl of the Perm/Wash buffer and a pair of primary antibodies 

(mouse and rabbit) to obtain a working concentration of 1.5 µg/ml for each 

antibody. 

2. After incubation with primary antibodies, glass slides with attached cells were 

washed twice with 200 µl of the Perm/Wash buffer and 100 µl of the secondary 

antibodies mix was added to each well, followed by a 1 hour incubation in the dark, 

at +4 °C. The secondary antibodies mix was prepared by combining (per well) 100µl 

of the Perm/Wash buffer with a pair of Goat anti-Mouse and Goat anti Rabbit 

fluorescently labelled secondary antibodies to obtain a final concentration of 

4mg/ml of each antibody. 

3. The glass slides with the cells were washed twice with 200 µl of ice-cold 

Perm/Wash buffer and mounted on microscopic slides using ProLong Gold 

Antifade Reagent with DAPI (Thermo Fisher Scientific). 

4. Specimens were dried in room temperature overnight and stored at +4 °C in the 

dark for up to 1 week, after which the imaging was performed. 
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The full list of primary and secondary antibodies used for immunofluorescence analysis is 

provided in Table 2-10 and Table 2-11. In parallel the specimens treated with only 

secondary antibodies were prepared and analyzed to account for unspecific binding. 

2.7.2 Image acquisition and analysis 

Immunofluorescence images were obtained using AxioObserver Z1 Inverted Microscope 

(Zeiss). For each specimen, we acquired a 100 tiled-image (10x10) using Z-stacking (4 Z-

layers) and 3x3 binning. We used 3 channels corresponding to Alexa 488 and Alexa 594 

fluorescent dyes for antibodies detection and DAPI for nuclei staining. Detailed 

information on microscopy settings and image acquisition parameters is provided in Table 

2-4: 

Table 2-4 Microscopy settings and acquisition parameters for Immunofluorescence 

Image dimensions 

Channels 3 

Scaling per Pixel 0.330 µm x 0.330 µm 

Image Size (Pixel) 666 x 545 

Image Size (Scaled) 219.88 µm x 179.94 µm 

Bit Depth 14 Bit 

Acquisition information 

Objective Plan-Apochromat 40x/1.4 Oil DIC (UV) 

VIS-IR M27 

 

 Channel 1 Channel 2 Channel 3 

Reflector 50 Cy 5 38 HE Green 

Fluorescent Protein 

49 DAPI 

Beam Splitter 660 495 395 

Filter Ex. Wavelength 625-655 450-490 335-383 

Filter Em. 

Wavelength 

665-715 500-550 420-470 

Contrast Method Fluorescence Fluorescence Fluorescence 

Light Source HXP120 V HXP120 V HXP120 V 

Channel Name Alexa Fluor 594 Alexa Fluor 488 DAPI 

Excitation 

Wavelength 

280 493 353 

Emission Wavelength 618 517 465 

Imaging Device Axiocam 506 Axiocam 506 Axiocam 506 
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Image analysis was performed in 2 major steps: 

First, we used the following tools from ZEN 2 blue edition software for primary image 

processing: 

1. Extended depth focus was applied to generate a 1-layered optimally focused 

image with 100 tiles from 4 Z-layers. 

2. Stitching with fuse tiles and shading correction was used to obtain a single image 

from 100 tiles, and to correct background fluorescence between different tiles. 

3. Manual black/ white background correction was finally used for each combination 

of antibodies to subtract background fluorescence. 

4. Pre-processed images were exported in TIFF file format for further analysis. 

The following analytical steps were performed using the EBImage package in R [150]. Our 

workflow generally followed the recommended procedure for cell and nuclei 

segmentation and signal quantification (provided with the package at Bioconductor). We 

used thresh, fillHull and bwlabel functions for nuclei segmentation. As a next step, we 

performed Voronoi-based cell segmentation, using the propagate function and taking 

previously defined nuclei as seeds. Signal intensity for each antibody or DAPI nuclei 

staining was quantified using the computeFeatures function. 

Images of IF specimens were acquired using an inverted microscope with 3 active channels 

corresponding to two antibodies and nuclei stain DAPI. We acquired 4 Z-stacks for all 

images and applied a focus stacking method, integrated in ZEN 2 software, to obtain a 

single Extended Depth of Focus image with optimal focus for all cells varying in the Z-

coordinate (Supplementary Figure 15). 

The obtained images had a full size of 2.5 × 2.0 mm and consisted of 100 tiles (10 × 10). 

Tiles were stitched, and shading between tiles was automatically corrected using ZEN 2 

software (Supplementary Figure 16, Supplementary Figure 17). 

Cell segmentation and signal quantification was performed using the EBImage package in 

R (Supplementary Figure 18). 

In our first step of EBImage-based analysis, we optimized the parameters of nuclei 

detection and watershed transformation-based separation of closely located nuclei. 

Secondly, cell detection was performed based on a raw combined signal from all 3 

channels. Cells overlapping with image borders were subsequently removed, and cell 

segmentation was performed, using previously identified nuclei as the seed. Finally, the 

total fluorescent signal for both antibodies was quantified for each cell. 
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2.8 Reagents and consumables 

Table 2-5 Kits 

Kit  Cat.number Manufacturer 

Agencourt AMPure XP A63880 Beckman Coulter 

Agilent High Sensitivity DNA Kit 5067-4626 Agilent Technologies 

Agilent RNA 6000 Nano kit 5067-1511 Agilent Technologies 

C1 Single-Cell Auto Prep Array for 

mRNA Seq (10-17um) 

100-5760 Fluidigm 

C1 Single-Cell Auto Prep Reagent Kit 

for mRNA Seq 

100-6201 Fluidigm 

ERCC RNA Spike-In Mix 4456740 Thermo Fisher Scientific 

Free Fatty Acid Quantification Kit K612-100 BioVision 

Nextera XT DNA Sample Preparation 

Index Kit 

FC-131-1002 Illumina 

Nextera XT DNA Sample Preparation 

Kit 

FC-131-1096 Illumina 

PerfeCTa SYBR Green SuperMix 95054 Quantabio 

qScript cDNA SuperMix 95048 Quantabio 

Quant-iT™ PicoGreen® dsDNA Assay 

Kit 

P11496 Thermo Fisher Scientific 

Qubit RNA BR Assay Kit Q10210 Thermo Fisher Scientific 

Qubit RNA HS assay Kit Q32852 Thermo Fisher Scientific 

RNase-Free DNase Set 79254 Qiagen 

RNeasy mini kit 74104 Qiagen 

RT² Profiler PCR Array Human Toll-Like 

Receptor Signalng Pathway 

PAHS-018ZG-1 Qiagen 

SMARTer Ultra Low Input RNA Kit for 

Illumina Sequencing 

634828 Clontech 

TATAA Interplate Calibrator IPC250S TATAA Biocenter AB 
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TruSeq PE Cluster Kit v3 - cBot - HS PE-401-3001 Illumina 

TruSeq RNA Library Prep Kit v2 RS-122-2001 Illumina 

TruSeq SBS Kit v3 - HS (200-cycles) FC-401-3001 Illumina 

 

Table 2-6 Reagents 

Reagent/Chemical Cat.number Manufacturer 

2-Mercaptoethanol 805740 Merck Millipore 

2-Propanol EMSURE 109634 Merck Millipore 

7-Amino-Actinomycin D (7-AAD) 

staining solution 

559925 BD Pharmingen 

Ethanol EMSURE 100983 Merck Millipore 

Ethylenediaminetetraacetic acid 

(EDTA) 

E6635 Sigma-Aldrich 

Nuclease-free water AM9937 Thermo Fisher Scientific 

Poly-L-Lysine Hydrobromide P7890 Sigma-Aldrich 

ProLong Gold Antifade Reagent with 

DAPI 

P36931 Thermo Fisher Scientific 

Sodium hydroxide solution (NaOH) 72068 Sigma-Aldrich 

Sodium palmitate  P9767 Sigma-Aldrich 

 

Table 2-7 Cell culture 

Product Cat.number Manufacturer 

Bovine Serum Albumin (BSA) A7030 Sigma-Aldrich 

C-Chip Neubauer  PK36.1 Carl Roth 

Dulbecco’s Phosphate Buffered Saline 

(PBS) 

D8537 Sigma-Aldrich 

Fetal Bovine Serum (FBS) Superior S 0615 Biochrom 

Ficoll-Paque E6635 GE Healthcare 

Human AB serum  First Link UK LTD 

MACS LS columns 130-042-401 Miltenyi Biotec 

MACS Monocyte Isolation Kit II, 

human  

130-091-153 Miltenyi Biotec 

Penicillin/ Streptomycin, liquid A 2213 Biochrom 

http://www.sigmaaldrich.com/catalog/product/sigma/d8537?lang=de&region=DE
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Product Cat.number Manufacturer 

Phorbol 12-myristate 13-acetate 

(PMA) 

P8139 Sigma-Aldrich 

RPMI 1640 medium with 2.0 g/l 

NaHCO3,with stable glutamine 

FG 1215 Biochrom 

THP-1 cell line TIB-202 ATCC 

Transcription Factor Buffer Set 562725 BD Pharmingen 

TrypLE Express  12604021 GIBCO 

 

Table 2-8 Consumables 

Product Cat. Number Manufacturer 

150 cm² flask 90151 TPP 

25 cm² flask 90026 TPP 

75 cm² flask 90076 TPP 

Aluminium Sealing Foil for 96-well 

plates 

391-1282 VWR 

AP96 Tips, P20 Sterile Barrier 717256 Beckman Coulter 

Costar 12-well Cell Culture Plate 3737 Corning 

Costar 24-well Cell Culture Plate 3738 Corning 

Costar 6-well Cell Culture  Plate 3736 Corning 

Hard-Shell 96 Well Plate 621601 Biozym 

LightCycler 480 Multiwell Plate 384, 

white 

04729749001 Roche 

LightCycler® 480 Sealing Foil 4729757001 Roche 

Stericup Filter Unit, 0.22 µm SCGPT02RE Merck Millipore 

Stericup Receiver Flask, 500 ml, radio-

sterilized 

SC00B05RE Merck Millipore 

2.9 Quantitative real-time PCR primers and antibodies 

Table 2-9 Quantitative PCR primer sequences 
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Gene 

symbol 

Gene full name Forward Primer Reverse Primer 

ACTB Beta Cytoskeletal Actin GAGCACAGAGCCTC

GCCTTT 

ATCATCATCCATGGT

GAGCTGG 

ATF3 Activating Transcription 

Factor 3 

TGGATGGGATCAGA

TGGGAAGA 

GCATCATTTTGATTTT

GGGGCA 

CRELD2 Cysteine-Rich With EGF-

Like Domains 2 

CAGAGGCTGAAGCC

ACAGAA 

GTCCGGCACATTACA

GGTCT 

DDIT3 DNA-Damage-Inducible 

Transcript 3 

GGAACCTGAGGAGA

GAGTGTTC 

AGCTGGTCTGATGCC

TGTTT 

DPP4 Dipeptidyl-Peptidase 4 ACGATGAAGACACC

GTGGAA 

TTGTTCAGCAGAACC

ACGGG 

GAPDH Glyceraldehyde-3-

Phosphate 

Dehydrogenas 

CTCCTCCTGTTCGAC

AGTCA 

CGACCAAATCCGTTG

ACTCC 

IL1B Interleukin 1, beta GGACAGGATATGGA

GCAACAAG 

AACACGCAGGACAG

GTACAG 

IL8 Interleukin 8 CTGATTTCTGCAGCT

CTGTG 

GGGTGGAAAGGTTT

GGAGTATG 

MYD88 Myeloid Differentiation 

Primary Response 88 

CTCTCTCCAGGTGCC

CATCA 

GGTTGGTGTAGTCG

CAGACA 

NFkB Nuclear factor kappa-

light-chain-enhancer of 

activated B cells 

TGAGTCCTGCTCCTT

CCA 

GCTTCGGTGTAGCCC

ATT 

NFkBIA Nuclear factor of kappa 

light polypeptide gene 

enhancer in B-cells 

inhibitor, alpha 

CTTCGAGTGACTGAC

CCCAG 

TCACCCCACATCACT

GAACG 

TICAM 1 Toll-Like Receptor 

Adaptor Molecule 1 

GTCCGGGAGCCCTTC

ATTTA 

TCCAGTTCTGACCAC

CCTGA 

TNF Tumor Necrosis Factor AGGGACCTCTCTCTA

ATCAGC 

CTCAGCTTGAGGGTT

TGCTAC 

 

Table 2-10 Primary antibodies 
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Antibody Cat. Number Host Manufacturer 

ATF3 (6G11) SAB1412010-

100UG 

Mouse Sigma-Aldrich 

ATF3 (C-19) sc-188 Rabbit  Santa Cruz Biotechnology 

IL1Β mAb 12703 Rabbit  Cell Signaling Technology 

IL1Β (11E5) sc-52012 Mouse  Santa Cruz Biotechnology 

PPARG (52B83) sc-7196 Rabbit  Santa Cruz Biotechnology 

PPARG (8D1H8H4) sc-81152 Mouse  Santa Cruz Biotechnology 

 

Table 2-11 Secondary antibodies 

Antibody Conjugate Cat. Number Manufacturer 

Goat anti-Mouse 

IgG (H+L)  

Alexa Fluor 488 A28175 Thermo Fisher Scientific 

Novex Goat anti-

Mouse IgG (H+L)  

Alexa Fluor 594 A11032 Thermo Fisher Scientific 

Novex Goat anti-

Rabbit IgG (H+L)  

Alexa Fluor 488 A11034 Thermo Fisher Scientific 

Novex Goat anti-

Rabbit IgG (H+L)  

Alexa Fluor 594 A11012 Thermo Fisher Scientific 

2.10   Laboratory equipment 

Table 2-12 Equipment 

Instrument Manufacturer 

AxioObserver Z1 Inverted Microscope Zeiss 

BD FACSAria II BD Biosciences 

Bioanalyzer 2100 Agilent Technologies 

Biomek NX Liquid Handling Automation 

workstation 

Beckman Coulter 

C1 Single-Cell Auto Prep System Fluidigm 

HiSeq 2500 Illumina 

LightCycler 480 Instrument II Roche 

POLARstar Omega Plate Reader 

Spectrophotometer 

BMG LABTECH 

Qubit 3.0 Fluorometer Thermo Fisher Scientific 

http://www.bmglabtech.com/en/products/omega-series/polarstar-omega/
http://www.bmglabtech.com/en/products/omega-series/polarstar-omega/
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2.11   Software 

Table 2-13 Software 

Software Provider 

bcl2fastq Conversion Software v1.8.4 Illumina 

DAVID Bioinformatics Resources National Institute of Allergy and 

Infectious Diseases (NIAID), NIH; 

https://david.ncifcrf.gov/home.jsp 

DESeq2 Michael Love, Simon Anders, Wolfgang 

Huber; 

https://bioconductor.org/packages/relea

se/bioc/html/DESeq2.html 

ZEN 2 blue edition Zeiss 

EBImage Andrzej Oleś, Gregoire Pau, Mike Smith, 

Oleg Sklyar, Wolfgang Huber, with 

contributions from Joseph Barry and 

Philip Marais; 

https://bioconductor.org/packages/relea

se/bioc/html/EBImage.html 

HTseq-0.6.1 Simon Anders; EMBL Heidelberg, 

Genome Biology Unit; http://www-

huber.embl.de/HTSeq/doc/overview.ht

ml 

Primer-BLAST Ye J, Coulouris G, Zaretskaya I, 

Cutcutache I, Rozen S, Madden T , NCBI; 

https://www.ncbi.nlm.nih.gov/tools/pri

mer-blast/ 

sincell Miguel Julia, Amalio Telenti, Antonio 

Rausell; 

https://bioconductor.org/packages/relea

se/bioc/html/sincell.html 

STAR v. 2.4.0 RNA-seq aligner Alexander Dobin; 

https://github.com/alexdobin/STAR 

STRING database Szklarczyk D, Franceschini A, Wyder S, 

Forslund K, Heller D, Huerta-Cepas J, 

Simonovic M, Roth A, Santos A, Tsafou 

KP, Kuhn M, Bork P, Jensen LJ, von 

Mering C.; http://string-db.org/ 
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Trimmomatic version 0.30 AG Usadel; RWTH Aachen University, 

Institute for Biology I 

UCSC Genome Browser UC Santa Cruz, UCSC Genome 

Bioinformatics Group 

WGCNA Peter Langfelder, Steve Horvath; Dept. of 

Human Genetics, UC Los Angeles, Dept. 

of Biostatistics, UC Los Angeles; 

https://labs.genetics.ucla.edu/horvath/C

oexpressionNetwork/Rpackages/WGCNA

/ 
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3 Results 

3.1 Establishing an in vitro model for metabolic disease 

3.1.1 Palmitate-stimulated THP-1 macrophages model 

An elevated level of plasma free fatty acids (FFAs) is a characteristic feature in obese and 

atherosclerotic patients [151, 152]. Plasma FFAs were shown to play a critical role in the 

stimulation of immune cells underlying chronic inflammation [46, 59, 153]. Increased 

dietary consumption of saturated FFAs is associated with insulin resistance and type 2 

diabetes [47, 154]. Common saturated fatty acids consumed in food involve stearic, 

palmitic, oleic, linoleic and other acids [155, 156]. 

In our study, we applied elevated concentrations of palmitate to in vitro cultured THP-1 

macrophages. Palmitate is one of the most abundant fatty acids in human blood plasma 

and has been widely studied in obesity and type 2 diabetes research [157-159]. For most 

of our experiments, we used 250 µM palmitate, which corresponds to physiological ranges 

[133, 160-162]. 

The application of isogenic THP-1 cell line enabled us to eliminate potential hidden biases 

that can introduced by a metabolic status of a primary cell donor or other effects. Another 

important feature of THP-1 macrophages is that they are cell cycle arrested, which allows 

to maximize the level of homogeneity in the system before the metabolic stress is applied 

[163]. 

 

Figure 3-1 Light microscopy picture of cultured THP-1 cells (scale – 25 µM). 
A THP-1 monocytes. 
B THP1 macrophages after 48 hours of 10 nM PMA stimulation. 
C THP-1 macrophages after PMA-induced differentiation and 24 hours of 250 µM palmitate 
treatment. 
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During PMA stimulated differentiation, THP-1 monocytes adhered to the culture plate and 

acquired flat shape (Figure 3-1 A, B). After differentiation, THP-1 macrophages were 

activated with palmitate and acquired a “foam cell” phenotype (Figure 3-1 C). 

We measured the cytotoxicity level for THP-1 macrophages treated with different 

palmitate concentrations in the range of 0-625 µM (Supplementary Figure 1). The 

subsequently applied 250 µM concentration had a relatively low cytotoxic effect (15 %). 

3.1.2 Gene expression analysis of inflammatory markers 

To observe the effects of palmitate stimulation, we firstly analysed the expression of 

important marker genes, which are regulated by toll-like receptor signaling pathway, using 

quantitative real-time PCR (Figure 3-2). 

Interleukin 1 Beta (IL1β), Interleukin 8 (IL8), Tumour Necrosis Factor-Alpha (TNFα) as well 

as Cluster of Differentiation 54 (CD54/ ICAM1) and Nuclear Factor Kappa B Subunit 1 

(NFKB1) genes are involved in innate immune response upon toll-like receptor 4 (TLR4) 

stimulation and promote inflammation [164, 165]. These genes are characteristic for M1 

polarized macrophages [23, 24]. Interleukin 10 (IL10) and NFκB Inhibitor Alpha, on the 

contrary, are involved in immune modulation. IL10 plays a major role in enhancing the M2 

macrophage phenotype [166, 167]. 

 

Figure 3-2 Quantitative real-time PCR analysis of marker genes, involved in toll-like receptor 
4 signaling. 
Expression fold change was measured between palmitate-stimulated (250 µM, 24 hours) and 
unstimulated THP-1 macrophages. Results are expressed as mean expression fold change ± 
SEM. * P-Value < 0.05; ** P-Value < 0.01; *** P-Value < 0.001  
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For most of the tested pro-inflammatory genes, we observed a statistically significant 

upregulation of expression. Although, for all these genes except IL8, the expression fold 

change did not exceed 2. This corresponds to low-grade inflammatory processes 

described in macrophage stress response to FFAs. 

3.2 Technical noise estimation in single-cell RNA sequencing 

To evaluate the level of technical variability between different wells of the C1 Integrated 

Fluidic Circuits (IFC), we performed an additional experiment using bulk RNA from the 

unstimulated THP-1 macrophages and ERCC spikes. The External RNA Control Consortium 

(ERCC) spike represents a set of 92 synthetic transcripts with the length of 250-2000nt 

spanning 106-fold concentration range to mimic eukaryotic mRNA [196]. The addition of 

the ERCC mix, with defined concentrations for each synthetic transcript to wells containing 

single cells, allows for the estimation of technical bias introduced by sample preparation 

workflow. This strategy has been routinely used in the C1 Fluidigm-based protocol, as well 

as in other methods of single-cell RNA-seq [112, 197]. 

In our experiment, the mixture of ERCC spikes and bulk RNA from the unstimulated cells 

was added into a cell-loading inlet of a medium size C1 IFC. We repeated the procedure 

that was used for single-cell library preparation by utilizing technical duplicates with a bulk 

RNA/ERCC mix. The obtained libraries were sequenced using the Illumina paired-end 

2x75bp workflow, and produced 680M sequencing reads for both IFCs. Using this 

approach, we aimed to reveal potential systematic biases between different IFCs, 

estimate the differences in well sizes and to understand how representative the ERCC 

spike is for the total single-cell transcriptome analysed by the C1-based approach. 

After sequencing and read mapping, we obtained in total 315 and 365 million reads for 

two IFCs. 97 % of the reads were mapped to transcriptome and 2 % were mapped to ERCC 

spike sequences for both IFCs. The correspondence of expression levels between IFCs for 

detected genes and spike molecules is shown in Figure 3-3. Technical replicates exhibited 

a very high correlation for the whole expression range: Pearson’s correlation coefficient 

for mRNA was 0.992, and for ERCC spike 0.958. 

To estimate potential systematic biases in particular wells and sections of the IFC, we 

looked at the read numbers produced from all 96 wells in both replicates and compared 

these to the previously obtained results for the single-cell mRNA-seq of unstimulated 

macrophages (Supplementary Figure 2). Read numbers were normalized to the mean 

value and visualized according to the 96-well plate layout, obtained from the C1 RNA-seq 

protocol. 



Results 

45 
 

We did not observe any patterns for over- or under-sequenced wells. We also looked at 

density distribution of the normalized read numbers across the 96-wells, and we observed 

that in bulkRNA/ERCC the distribution was more narrow when compared to single-cell 

RNA sequencing. 
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Figure 3-3 Estimation of technical noise introduced by Fluidigm C1-based single-cell RNA 
sequencing workflow. 
A-C Analysis of ERCC spike. A, B Correspondence between known input concentration of each 
spike and observed expression (A) and fraction of wells (out of 96) where the molecule was 
detected (at least 1 read count) (B). C Correlation between two microfluidic IFCs. 
D Correlation between two IFCs based on bulk mRNA analysis. 
E-F Variance estimation for ERCC spike and bulk mRNA genes for two IFCs. 
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This difference can be explained by the biological variability between different cells 

(including cell size and total RNA content). The technical reason for this lies in the 

efficiency of cell lysis, which can vary between wells, although for the bulk analysis of THP-

1 macrophages, we observed a very high efficiency of cell lysis when using simple RNAse 

free water as a buffer. 

We also estimated the dependency of expression variance across 96 IFC wells on a mean 

expression level for all detected transcripts (Figure 3-3). Linear correlation was observed 

for both mRNA and ERCC spike molecules. Variance, observed in ERCC spikes, was similar 

to the variance observed in bulk RNA. A generalized linear regression for ERCC and bulk 

transcriptome showed a perfect overlap, in particular for transcripts with an expression 

level higher than 100 read counts (Supplementary Figure 5). 

Next, we compared the gene expression variance observed in single-cell transcriptome 

analysis of unstimulated macrophages with the variance quantified for bulk RNA and ERCC 

spikes (Figure 3-4). We observed, that for low-expressed transcripts with a read count of 

up to 10, quantified technical variance was comparable to the total variance of single-cell 

data. For the expression range from 10 to 100, a significant fraction of genes had a total 

variance higher than technical. The genes with an expression higher than 100 read counts 

could be clearly separated from the estimated technical noise. Thus, we have shown that 

the single-cell protocol used in our experiments allows for robust quantification of 

biological variability in highly expressed genes. 
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3.3 Single-cell RNA sequencing of palmitate-stressed macrophages 

3.3.1 Single-cell RNA library preparation and quality control 

For single-cell transcriptome analysis of palmitate-activated THP-1 macrophages, we used 

a microfluidics-based C1 system from Fluidigm [102]. In the C1-based single-cell mRNA 

preparation workflow, 96 cells were captured in an integrated fluidic circuit (IFC), lysed, 

single-cell RNA was reverse transcribed and generated cDNA was pre-amplified. 

In our experiment we prepared two IFCs: for palmitate-activated and unstimulated cells. 

Microfluidic wells with captured macrophages were inspected using light microscopy to 

annotate empty wells and wells with cell doublets (Figure 3-5). From all capture wells 3 

%/7 % of the wells contained cell doublets and 13 %/7 % of the wells were empty for 

palmitate-activated and unstimulated cells, respectively. 

 

Figure 3-4 Technical and biological variance estimation across IFC 96 wells. 
Biological variance is computed based on single-cell RNA data from unstimulated THP-1 cells. 
Technical variance is estimated based on bulk RNA and ERCC spike data (IFC #2). 
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3.3.2 Primary sequencing data analysis 

Sequencing was performed for two 96 single-cell library pools (palmitate-stimulated (PAL) 

and unstimulated (UN)) and for bulk samples from the same cell samples prepared 

simultaneously in biological triplicates. For single-cell libraries, we obtained 3.7 x 108 and 

3.3 x 108 sequencing paired-end reads for palmitate-stimulated and unstimulated cells 

respectively. The total read number per cell was (3.9 ± 0.34) × 106 and (3.7 ± 0.32) × 106 

for PAL/ UN cells. 

 

Figure 3-5 Fluidigm C1 Integrated Fluidic Circuit (IFC) with captured THP-1 macrophages. 
A Empty capture cite. 
B Captured single cell.  
C Captured cell doublet. 

 

Figure 3-6 Read mapping statistics for single-cell RNA sequencing libraries of palmitate-
stimulated (PAL) and unstimulated (UN) cells. 
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Previously published single-cell studies have shown that a sequencing depth of around 1 

million reads per cell and, for specific cases even as low as 50000 reads per cell, is sufficient 

for representing the complexity of single-cell transcriptomes [102, 105]. 

For bulk samples, we performed sequencing with high depth to ensure sufficient detection 

sensitivity for rare transcripts. We obtained (41.6 ± 2.6) × 106 and (44.2 ± 3.7) × 106 reads 

for PAL/UN samples accordingly. 

Quality control of raw sequencing reads demonstrated good results for both single-cell 

and bulk sequences (Supplementary Figure 7). For most single-cell and bulk samples the 

mean value of the Phred quality score per base was higher than 28 for all bases in the 

sequencing reads. 

Reads mapping statistics is shown in Figure 3-6, Figure 3-7 and Supplementary Figure 8. 

On average, 78.4 ± 8.2 % and 65.1 ± 17 % of single-cell sequencing reads and 92.2 ± 0.4 % 

and 92.2 ± 1.2 % of bulk sequencing reads were uniquely mapped to the reference genome 

for PAL /UN samples accordingly. 

To confirm that 96 single-cell sampling is representative of bulk transcriptome from 

thousands of cells, we looked at the correlation between bulk RNA-seq data and in 

silico pulled single-cell data (Figure 3-8). 

 

 

Figure 3-7 Read mapping statistics for bulk RNA samples of palmitate-stimulated (PAL) and 
unstimulated (UN) macrophages. 
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In both experimental conditions, we observed a high correlation of gene expression: 

Spearman’s r was 0.56 / 0.66 and Pearson’s r was 0.75 and 0.80 for PAL/UN respectively. 

Additionally, we prepared in silico pools of different sample sizes from randomly sampled 

single cells and measured their correlation with bulk data (Figure 3-9). We observed that 

both Pearson’s and Spearman’s correlation coefficients saturated for approximate sample 

size of 40-60 cells, suggesting that small cell numbers are sufficient to represent bulk 

transcriptome in our experimental model. 

 

Figure 3-8 Correlation between bulk and in silico pooled single-cell libraries for PAL 
stimulation (A) and unstimulated (UN) cells (B). 
Each dot represents a mean expression value of a single gene. 

 

Figure 3-9 Correlation between bulk and single-cell gene expression for random subsets of 
individual cells. Single-cell average and SD was calculated for 10 random samplings of cells for 
each data point. 
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3.4 Differential gene expression analysis of palmitate-stressed 
macrophages 

As a first step in secondary sequencing data analysis, we looked at up- and down-regulated 

genes in palmitate-stimulated cells compared to unstimulated using bulk RNA-seq data. 

Overall, we found 453 up-regulated and 242 down-regulated genes with an absolute 

expression fold change higher than 2 and P-Values lower than 0.001. 

We performed gene functional annotation analysis using DAVID software for both groups 

of genes. For palmitate-induced genes we obtained the highest enrichment for the 

following pathways, annotated in the KEGG database: cytokine-cytokine receptor 

interaction, MAPK signaling, TNF signaling, chemokine signaling, NFκB signaling, 

rheumatoid arthritis and toll-like receptor signaling (Supplementary Table 1). Gene 

expression fold changes for key induced pathways are shown in Figure 3-11. For down-

regulated genes, we did not obtain significant enrichment for any pathways. 

As toll-like receptor (TLR) signaling pathway plays an important role in our experimental 

model, we performed qPCR validation of sequencing data for 84 genes involved in TLR 

signaling. We observed a high correlation between RNA-seq and qPCR results: Pearson‘s 

correlation was 0.66, and Spearman’s r was 0.54 (Figure 3-10). All genes that were 

significantly upregulated based on RNA-seq data and had a fold change higher than 2, were 

successfully validated using qPCR. 
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Figure 3-10 Correlation between bulk RNA sequencing and quantitative real-time PCR results 
for genes, related to the toll-like receptor signaling pathway. 
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Figure 3-11 Gene expression data for pathways induced by palmitate activation of 
macrophages. 
Shown pathways had the highest significance and gene number in gene functional annotation 
analysis, based on bulk RNA sequencing data. 
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3.5 Analysis of macrophage transcriptional states 

To analyse cell-to-cell gene expression differences in the palmitate-stressed macrophage 

population, we applied Independent Component Analysis (ICA). For dimension reduction 

we used expression data for differentially expressed genes, upregulated in palmitate-

stimulated cells. Single-cell expression data was reduced to 2-dimentional independent 

component space (Figure 3-12). The majority of palmitate-induced cells separated from 

the unstimulated cell population with independent component 1 (IC 1). IC 2 describes 

another variability source and shows a broad distribution range for both palmitate-

activated and unstimulated cell populations. Strikingly, the IC 2 separated a distinct group 

consisting of 7 palmitate-stimulated and 2 unstimulated cells. 

We divided palmitate-stimulated cells into 3 states (P1, P2 and P3) based on density 

distribution along IC 2 (Figure 3-13 A). Three local minimums of density distribution were 

used to determine limits for separation of the groups. Defined P1, P2 and P3 states 

contained 51 %, 39 % and 10 % of the cells respectively. 

To understand the level of response to applied stress for individual cells, we visualized an 

average expression values of differentially expressed genes used in ICA (Figure 3-13 B). 

 

Figure 3-12 Independent Component Analysis (ICA) of single-cell RNA sequencing data. 
Each dot represents an individual palmitate-stimulated or unstimulated cell. Side and bottom 
plots represent cell density distribution along independent components. 
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We observed that expression of defined genes grows with the increase of IC 1 and IC 2 

coordinates. The lowest expression levels we observed in the bottom left corner 

predominantly for unstimulated cells, as was expected. 

Additionally, we performed quantitative analysis of the stress response level in each cell 

group (Figure 3-14). The average expression level for all used DE genes in cell states was 

6.4 ± 0.6 FPKM (UN), 10.7 ± 0.9 FPKM (P1), 32 ± 7.4 FPKM (P2) and 46.3 ± 5.9 FPKM (P3). 

Our cell states annotation clearly represents an overall response level to palmitate-

induced stress. Palmitate state P1 representing approximately half of the cells showed a 

relatively low difference to control cells. States P2 and P3, however, display significantly 

up-regulated gene expression and represented distinct groups based on ICA and gene 

expression analysis. 

 

Figure 3-13 Independent Component Analysis of single cells. 
A Separation of cell states in 2-dimesional independent component space. Palmitate-
stimulated cells were divided into 3 groups (P1, P2 and P3) based on peaks of density 
distribution along IC 2. B Representation of expression levels of differentially expressed genes 
in individual cells. Log-transformed mean expression of 266 genes, induced by palmitate 
stimulation in each cell is proportional to dot size. 
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To understand how signaling pathways, upregulated in palmitate-activated cells were 

expressed in individual cells, we visualized an average expression level for each cell in 2-

dimensional ICA-space (Figure 3-15 A-C). In addition, we quantified single-cell expression 

for these genes in each defined cell state (Figure 3-15 D). We observed that palmitate-

induced states P1 and P2 showed, on average, similar expression of all 3 pathways (MAPK 

signaling, TNF signaling and toll-like receptor signaling), but population P2 contained more 

outliers. Cell state P3 featured the highest expression level for all 3 pathways, in particular 

for the MAPK signaling pathway and had a very distinct synchronized profile for all cells. 

 

Figure 3-14 Expression level of palmitate-induced genes in defined cell states. 
For each cell, the mean expression of 266 palmitate-induced genes was calculated. 
A Cell density shows expression of palmitate-induced genes in cells corresponding to different 
states. 
B The fraction of cells with expression of the defined genes lower than the corresponding level 
defined on X axis is shown. 
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Figure 3-15 Expression of palmitate-induced signaling pathways in individual cells and cell 
states. 
A, B, C Color intensity of each dot in independent component space represents the log-
transformed mean expression of the corresponding pathway in an individual cell. D Log-
transformed mean expression level for corresponding pathways in previously defined cells 
states. Each dot represents an individual cell. 
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Our next step in the analysis of gene regulatory pathways underlying the distinct 

formation of cell states, was to build gene co-expression networks based on single-

cell expression data. 

3.6 Weighted gene co-expression network analysis (WGCNA) of 
palmitate-induced genes 

Weighted gene co-expression networks analysis (WGCNA) is a widely used systems 

biology approach [168-170]. It was originally applied for conventional bulk microarray and 

RNA-seq data, but several studies recently showed its usefulness for the analysis of single-

cell transcriptome data [127, 171, 172]. The WGCNA method is used in our study to 

describe gene correlation patterns across a cell populations, decipher gene regulatory 

modules specific for different cell groups, characterize relationships between gene 

modules and to find important regulatory “hub” genes.  

For network construction we used 266 DE genes induced by palmitate stimulation. The 

same gene set was applied for Independent Component Analysis. First, we used single-cell 

data for palmitate stimulation to calculate Pearson’s correlation coefficient for all DE 

genes across all single cells.  

Next, we applied the soft thresholding approach implemented in the WGCNA package in 

order to adjust our co-expression network to a scale-free topology network. To determine 

optimal soft threshold value, we estimated the degree of correlation between our 

network and the scale free topology model (Figure 3-16 A). Additionally, we calculated the 

mean gene connectivity within our network (Figure 3-16 B). We selected the soft 

threshold value β = 10 as it corresponded to the curve saturation level for both plots. 
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As a next step, we calculated the adjacency matrix as follows: 

Equation 3-1 

A𝑖, 𝑗 = (0.5 ∗ (1 + 𝑟𝑖,𝑗(𝑃𝑒𝑎𝑟𝑠𝑜n′𝑠)𝛽 

Described transformation is required to obtain positive values as adjacency coefficients. 

This method of calculating the adjacency matrix is used for “signed” gene networks as it 

preserves information about the sign of the correlation coefficient. With this method, 

negative correlation is transformed into small positive values, whereas positive 

correlation coefficients correspond to higher values in the interval from 0 to 1. For our 

network with β = 10, adjacency values lower than 9.7 × 10-4 corresponded to negative 

values of the original Pearson’s correlation coefficient. 

Based on the adjacency matrix, we calculated a Topological Overlap Matrix (TOM). The 

heatmap representing obtained TOM is shown in Figure 3-17 C, where red clusters 

represent highly correlating gene groups. TOM dissimilarity was further used to compute 

the hierarchical clustering of genes. The hierarchical clustering tree shown in Figure 3-17 

A represents the clustering of all 266 genes used in our analysis. To divide clustered genes 

into modules, we specified the cutting height of the hierarchical tree equal to 0.99 and 

tested 4 different minimal module sizes (6, 9, 12 and 15). Detected modules are color-

 

Figure 3-16 Defining optimal soft threshold value for weighted gene co-expression network 
construction. 
A Correlation of constructed network with the scale free topology Model. 
B Mean gene connectivity in the constructed network. 
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coded and shown in Figure 3-17 B. For the final gene module definition we used 

annotation with the minimal module sizes of 12 genes. Color representation of selected 

gene modules and module numbering is shown in the upper and left-side panel of the 

Figure 3-17 C. Defined modules contain 16, 47, 18, 32 and 41 genes, respectively, for the 

modules I to V. The remaining DE genes colored in grey could not be assigned to any co-

expression cluster. 

Due to the low gene number in modules, it was difficult to achieve significant enrichment 

for annotated pathways in functional gene annotation analysis; however, we did find a 

number of interesting pathways specifically expressed in detected modules. The first 

module (green) contained genes involved in cancer transcriptional misregulation (CEBPB, 

DDIT3, WT1). The largest module II (turquoise) consisted of genes involved in PPAR 

signaling (CD36, ACSL1, PPARγ, SCD), toll-like receptor and TNF signaling (CD40, IL1β, 

MAP2K3, CCL20) and MAPK signaling (DUSP1, PDGFA). Modules III and IV (yellow and 

brown) had significant enrichment (Benjamini–Hochberg corrected P-Value=2.8E-3) for 

genes involved in cholesterol biosynthesis (HMGCS1 HSD17B7 MSMO1, SQLE). Module V 

(blue) contained genes related to cytokine-cytokine signaling (CCR, CSF1, IL23A). 
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In order to understand key regulatory genes in the constructed weighted gene network, 

we analysed a subnetwork of transcription factors associated with the defined co-

expression modules (Figure 3-18). 

Many of the observed transcription factors were extensively described in the context of 

macrophage activation and polarization in metabolic disease. In Table 3-1 we summarize 

 

Figure 3-17 Construction of the weighted gene co-expression network. 
A Hierarchical clustering of genes based on gene correlation values, represented in a topological 
overlap matrix. 
B Different annotations of gene co-expression modules. 
C Topological overlap matrix for the weighted gene network with the selected gene module 
annotation. 
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information about the regulatory roles of these transcription factors in macrophages and 

other cells during metabolic stress and immune response. 

 
Table 3-1 Palmitate-activated transcription factors regulating identified gene co-expression 
modules. 

Transcription factor Gene 

module 

Function in macrophage, immune 

and metabolic stress response 

References 

DDIT3 (CHOP) 

DNA Damage Inducible 

Transcript 3 

I Plays important role in ER stress 

response, ER associated 

apoptosis, inflammation 

modulation. 

[173-175] 

 

Figure 3-18 Subnetwork of palmitate-induced transcription factors. 
Node colours correspond to gene modules, defined for the fully constructed correlation 
network. Node sizes are proportional to the log-transformed mean expression of each gene 
across palmitate-stimulated macrophages. 
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WT1 

Wilms Tumor 1 

I Regulates IL10; overexpressed in 

acute leukemia. 

[176, 177] 

CEBPB 

CCAAT/Enhancer 

Binding Protein Beta 

I Controversial effects in different 

studies. Was shown to induce M2 

macrophage phenotype, but also 

associated with HFD-induced 

inflammation in mouse 

macrophages. 

[178-180] 

HIVEP3 

Human 

Immunodeficiency Virus 

Type I Enhancer Binding 

Protein 3 

I Negatively regulates cytokine 

gene expression, regulates NFκB-

mediated responses to infection 

in human fibroblast and 

macrophage cell lines. 

[181, 182] 

PPARγ  

Peroxisome Proliferator 

Activated Receptor 

Gamma 

II Key regulator of alternative 

macrophage activation, improves 

insulin sensitivity. 

[82, 183, 

184] 

XBP1 

X-Box Binding Protein 1 

II Marker of ER stress and Unfolded 

Protein Response; activated by 

TLR2/4. 

[185, 186] 

SNAI1 

Snail Family 

Transcriptional 

Repressor 1 

II Associated with macrophage 

migration to injury sites and 

wound healing. 

[187] 

TCF7L2 

Transcription Factor 7 

Like 2 

II Regulates differentiation of 

monocytes to macrophages. 

[188] 

ATF3 

Activating Transcription 

Factor 3 

III Plays anti-inflammatory role in 

macrophages, negatively 

regulates TLR pathway. 

[84, 189, 

190] 

KLF6 

Kruppel Like Factor 6 

III Inhibits anti-inflammatory gene 

expression by negatively 

regulating PPARγ expression in 

macrophages. 

[191] 

HES1 

Hes Family BHLH 

Transcription Factor 1 

III Inhibits cytokine production in 

TLR response. 

[192] 
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TFAP2A 

Transcription Factor AP-

2 Alpha 

III Not described in macrophage 

context. Regulates face and limbs 

development in embryogenesis, 

regulates tumor development. 

[193, 194] 

EGR1 

Early Growth Response 

1 

IV Regulates macrophage 

differentiation. 

[195, 196] 

EGR2 

Early Growth Response 

2 

IV Induced in M2 macrophages. [181] 

MYC 

V-Myc Avian 

Myelocytomatosis Viral 

Oncogene Homolog 

IV Induced in M2 macrophages. [197] 

RCAN1 

Regulator of Calcineurin 

1 

IV Promotes atherosclerosis 

progression, regulates CD36 

expression; shown to repress 

inflammation. 

[198-200] 

BHLHE40 

Basic Helix-Loop-Helix 

Family Member E40 

IV Promotes inflammation in T-cells. [201] 

MAFF 

MAF BZIP Transcription 

Factor F 

IV Induced in M1 macrophages. [202] 

PBX4 

PBX Homeobox 4 

V Upregulated in Acute 

Lymphoblastic Leukaemia. 

[203] 

BATF3 

Basic Leucine Zipper 

ATF-Like Transcription 

Factor 3 

V Controls development of thymic 

dendritic cells. 

[204] 

MSC (ABF1) 

Musculin 

V Downstream target of B-cell 

receptor signaling, induces 

memory B-cell formation. 

[205] 

 

The expression level of defined gene modules in macrophage states is shown in Figure 

3-19. For state P1, we observed the lowest expression level for all 5 gene co-expression 
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modules. As we have already observed in IC space (Figure 3-12), these cells showed a 

molecular phenotype most similar to unstimulated cells. 

Cell state P2 featured significant upregulation of gene module II and pronounced 

upregulation of gene module I. For gene modules III and IV this state is slightly up-

regulated when compared to P1, and for gene module V cells from P1 and P2 showed very 

similar expression levels. 

Cell state P3 showed the highest expression level for gene modules III, IV and V, and a 

highly significant upregulation in comparison with cell state P1 and P2 for these genes. For 

gene module II the expression of P3 cells is also significantly upregulated compared to 

cells from P1; however the average expression across state P3 was lower than in P2. For 

gene module I P3 had on average slightly downregulated expression compared to P2 and 

P1, although the distribution range for individual genes was very broad. 

Summarizing the results, shown in Figure 3-19, we can characterize cell state P1 as low-

responsive for all described gene groups. Cell state P2 had an overall intermediate 

expression of DE genes and exhibited high upregulation in gene modules I and II. Cell state 

P3 featured significant upregulation of gene Modules III, IV and V, and overall, shows a 

distinct molecular phenotype as well as high response to palmitate-induced stress. 

 

Figure 3-19 Expression of palmitate-induced genes, associated with co-expression modules in 
defined cell states. 
Each dot represents the mean expression of a specific gene across the corresponding cell state. 
Significance of expression difference between cell groups was tested using ANOVA and Tukey’s 
HSD test. * P-Value < 0.05; ** P-Value < 0.01; *** P-Value < 0.001. 
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Figure 3-20 represents the expression level of transcription factors related to defined gene 

modules in cell states P1, P2 and P3. Overall, individual transcription factors followed the 

general tendency of having an average gene module expression in these states. All 

transcription factors from gene modules III, IV and V showed the highest expression in cell 

group P3. Notably, 4 genes from these modules (TFAP2A, EGR1, MAFF, BATF3) were 

upregulated in cell population P1 compared to P2. 

Based on the analysis represented in Figure 3-18, Figure 3-19 and Figure 3-20 we found 

cell state P3 particularly interesting, as it showed the highest level of stress response in 

general. But at the same time, this state revealed a relatively low expression of pro-

inflammatory genes like IL1β and IL8, which were restricted to gene co-expression module 

II. Although both M1- and M2-specific transcription factors belong to gene modules III, IV 

and V, we assume that ATF3 plays a key role in down-regulating inflammation in P3 cells.  

ATF3 has been previously described to inhibit inflammation in HDL stimulated mouse 

macrophages [84]. In our model we found that ATF3 and IL1β showed mutually exclusive 

expression (Figure 3-21 A). This result indicates that mediation of inflammation does not 

occur homogeneously in a concentration-dependent manner in all cells but may rather be 

controlled by a changing ratio of certain cell phenotypes. 

 

Figure 3-20 Expression of palmitate-induced transcription factors, specific for particular gene 
co-expression modules in defined cell transient states.  
Roman numbers indicate corresponding gene co-expression modules. 
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3.7 Single-cell quantitative PCR validation of key regulatory genes 

We used single-cell quantitative PCR to validate the mutually exclusive expression of ATF3 

and IL1β genes which we detected by single-cell RNA sequencing (Figure 3-21). In addition 

to the previously used THP-1 macrophage model, we prepared identical palmitate 

stimulation of primary human macrophages, which were isolated from the buffy coats of 

3 healthy volunteers. 

For THP1 cells, we obtained higher numbers of both ATF3 (RNA-seq – 10.8 %, qPCR – 22.3 

%) and IL1β (RNA-seq – 5.4 %, qPCR – 22.6 %) positive cells. This effect can be due to the 

higher sensitivity of the qPCR method. In qPCR data we also observed 7.1 % of the cells 

expressing both IL1β and ATF3 genes, indicating that mutual exclusiveness is not absolute, 

as was suggested by the sequencing data. However, there might be a technical reason for 

these double positive cells, as in the FACS sorting-based single-cell qPCR method that we 

used, we could not distinguish between single cells and cell doublets. 

In primary human macrophages we observed only 0.4 % of ATF3/L1B double positive cells. 

This is similar to the THP-1 single-cell sequencing results. However, the percentage of 

inflammatory IL1β positive cells was lower (3.2 %), and the percentage of ATF3 positive 

cells was almost twice as high(39.3 %). 

 

Figure 3-21 Single-cell qPCR indicated mutually exclusive expression of ATF3 and IL1β genes.  
A Single-cell RNA sequencing data. Each dot represents expression values (FPKM) in an 
individual cell. 
B, C Single-cell qPCR data for THP-1 (B) and primary human macrophages (C). Each dot 
represents (Ctmax-Ct) value in an individual cell. 
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Overall the single-cell qPCR experiments for both cell models validated our sequencing 

results for THP1 macrophages and indicated mutually exclusive relationship between 

ATF3 and IL1β genes.  

3.8 Immunofluorescence analysis of macrophages  

We further extended our analysis to the protein level by using immunofluorescence (IF) 

double staining. We applied the IF approach for both THP-1 and primary human 

macrophages, which were stimulated with palmitate to detect proteins of mutually 

exclusive genes (ATF3 and IL1β) and highly correlating genes (IL1β and PPARγ). 

Immunofluorescence analysis for THP-1 and primary human macrophages was performed 

using an identical experimental and analytical workflow. After the fluorescence from cells 

was quantified, cells were filtered based on cell total area and total signal for all three 

channels in order to exclude outliers. To calculate Spearman’s correlation coefficient , we 

used random sampling of 300 cells per treatment condition to have identical sample size. 

 

Figure 3-22 IF analysis of THP-1 macrophages. 
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The immunofluorescence-based Spearman’s correlation in THP-1 cells was 0.37 for ATF3/ 

IL1β and 0.63 for PPARγ/ IL1β (Figure 3-22). The results for highly correlating genes IL1β/ 

PPARγ were very similar to the gene expression results previously obtained using 

sequencing and qPCR (0.66 and 0.67 respectively). For ATF3/ IL1β showing mutually 

exclusive expression, the correlation based on the IF was higher than in sequencing and 

qPCR data for THP-1 cells (0.011 and -0.06 respectively).  

Protein analysis in primary human macrophages produced Spearman’s correlation of 0.16 

for ATF3/ IL1β and 0.84 for PPARγ / IL1β (Figure 3-23). This corresponds very well with 

single-cell qPCR results (-0.10 and 0.70 for ATF3/IL1β and PPARγ/IL1β respectively). 

The overall protein quantification in individual THP-1 and primary human cells 

corresponds to single-cell gene expression results and shows similar tendencies for highly 

correlating and non-correlating genes. For both cell models, we obtained a slightly positive 

correlation on the protein level for ATF3 and IL1β, which were mutually exclusive based 

on single-cell RNA-seq. This effect could be due to the biological nature of protein 

translation and degradation regulation. Additionally, we assume that technical limitations 

 

Figure 3-23 IF analysis of primary human macrophages. 
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of the IF technique may have produced a “shift” towards positive correlation as 

background fluorescence usually appeared in all channels. 

3.9 Gene expression variance in macrophages 

3.9.1 Variance estimation methods for single-cell gene expression data 

Single cell RNA sequencing provides new analytical opportunities for estimation of cell-to 

cell variation within different cell states. Having whole transcriptome data for individual, 

stressed macrophages, we are able to quantitatively estimate the level of cell 

“synchronization” in response to palmitate stimulation for individual genes and gene 

regulatory pathways. If we look at the density distribution of single-cell gene expression 

for a specific gene, the standard way of describing dispersion of this distribution would be 

by utilizing the standard deviation (SD) or coefficient of variation (CV). 

The coefficient of variation is commonly used for comparing distributions with different 

mean values, as we observed in different genes with the mean expression values 

distributed from 0 to 104 FPKM (Figure 3-24 A). However, the CV2 measured for individual 

genes across the macrophage population indicated a clear dependency on the mean gene 

expression level (Figure 3-24 A). 

To overcome this limitation, we applied two previously published variance measurements, 

specifically developed for single-cell variance estimation and independent on the mean 

gene expression level (Figure 3-24, Supplementary Figure 19). 

The first approach was used by A. Kolodziejczyk et al. for variance estimation in 

populations of embryonic stem cells in mice [114]. In this study, the distance to the 

median (DM) was used as a measure of gene expression heterogeneity. DM is calculated 

as a distance between CV squared for a particular gene and the running median fit derived 

from all detected genes. It is corresponding to the mean expression level of the gene of 

interest.  

We quantified the variance score for single-cell RNA-seq of palmitate-stressed and 

unstimulated THP1 cells in a similar way by calculation the distance between CV2 and the 

corresponding local polynomial regression fitting (Figure 3-24 A). The defined variance 

score did not correlate with the mean gene expression (Pearson’s correlation -0.01) 

(Figure 3-24 B).  

Another method was applied by R. Avraham et al., to measure cell-to-cell heterogeneity 

in Salmonella-infected macrophages [206]. Cell-to-cell variation was quantified as a 

distance between expression variance and regression fit, defined for the corresponding 

mean gene expression level from all detected genes (Supplementary Figure 19 A). 
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Applying this approach to our macrophage data showed similarities to the results 

published by Avraham et. al. The quantified variance score was also not correlated with 

the mean gene expression. 

Although both described methods for cell-to cell heterogeneity quantification showed 

good performance on our single-cell data, the first approach was subsequently used to 

evaluate variability within palmitate-stressed and unstimulated macrophages, as the 

underlying statistical model was successfully validated in different single-cell datasets 

[113, 114, 124]. 

3.9.2 Gene expression heterogeneity in stressed macrophages 

Using the described variance measurement, we compared heterogeneity of palmitate-

stimulated and unstimulated cells and palmitate-induced transcriptional states (P1, P2 

and P3) (Figure 3-25). We calculated variance scores for each of the 266 palmitate-

induced, differentially expressed genes across corresponding cell groups. We observed 

that for all described cell groups, the average variance score was lower than zero. This 

indicates that overall, the selected DE genes have lower variability than the whole 

transcriptome that was used to build a regression fit. 

 

Figure 3-24 Variance score calculation. 
A Each dot corresponds to a gene, mean expression level (FPKM) and coefficient of variation 
(CV) was calculated across all palmitate-stimulated and unstimulated cells. 
B Each dot represents a gene. Scatter plot demonstrates relation between estimated variance 
score and average gene expression (FPKM) quantified across all palmitate-stimulated and 
unstimuated cells. 
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Although palmitate-stimulated and unstimulated cells visually showed a similar level of 

“synchronization” (Figure 3-25 A), the difference between the estimated mean variance 

score was highly significant (Student’s t-test P-Value 2 × 10-7). In palmitate-induced cell 

states we observed highly significant differences between all three groups (Figure 3-25 B). 

Palmitate-induced cell state P3 had the lowest level of variability among others and 

contained a number of outlier genes with a variance score lower than -1. In low responsive 

cell state P1, the variability level was the highest.  

Next, we looked at the variance in 2 signaling pathways, which were selected using DAVID 

gene functional annotation analysis and had a sufficient number of highly expressed genes 

for variance estimation (Figure 3-26). For the described pathways, we observed an 

analogous tendency for the lowest variance to be observed in P3 cells, whereas cell states 

P1 and P2 showed comparable levels of heterogeneity. However, the difference between 

transient states was not significant, due to the small number of observations. 

 

Figure 3-25 Variance estimation for palmitate-induced genes in stressed THP-1 macrophages. 
Each dot represents a gene. The variance score was quantified across the cells from the 
corresponding cell group/state. 
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Finally, we estimated the variance score in gene co-expression modules, which were 

identified using weighted gene co-expression analysis (Figure 3-27). We observed the 

highest variance level for gene modules I and II in palmitate-induced cell state P2, where 

there was a notably high expression of them. On the other hand, gene modules III, IV and 

V, highly expressed in state P3, demonstrated an average level of heterogeneity. 

 

Figure 3-26 Heterogeneity in key regulator pathways. 
Variance score was quantified for genes described in DAVID gene annotation analysis 
(paragraph 3.3) for the corresponding pathways. 

 

Figure 3-27 Variance estimation for gene co-expression modules identified using WGCNA 
workflow. 
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The results obtained for gene co-expression modules are consistent with the variance 

analysis for all palmitate-induced DE genes, as well as for highly enriched pathways. Cell 

state P3 demonstrated the highest level of response to stress and low levels of cell-to-cell 

heterogeneity for different metabolic, stress-associated genes. Cell state P2 had a high 

response to stress, and the cell diversity in this subgroup was high as well. P1 macrophages 

showed the lowest response level, similar to unstimulated cells, and had an intermediate 

level of heterogeneity. 
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4 Discussion 

4.1 Novelty and significance of the research 

We present a single-cell whole transcriptome analysis of THP-1 macrophages undergoing 

metabolic stress caused by free fatty acid stimulation (palmitate). Metabolically stressed 

THP-1 cells analysed in this study were previously evaluated using RNA sequencing, qPCR 

and other techniques [207-210]. However, standard approaches averaging gene 

expression from thousands of cells are unable to describe the natural diversity of 

macrophages and distinguish signals from distinct cell subpopulations.  

The dataset obtained and analysed in this study represents the first single-cell RNA 

sequencing analysis of obesity-related stress in macrophages. This state of the art 

approach allowed us to identify distinct cell subpopulations and describe gene regulatory 

mechanisms defining macrophage identity. We applied a previously described analytical 

strategy (WGCNA) for the construction of gene co-expression networks that recently 

proved its efficiency for single-cell sequencing data [127, 171]. The obtained gene network 

was used to identify previously known overrepresented pathways, as well as novel 

candidates triggering macrophage phenotypes polarization towards different 

transcriptional states. Palmitate-induced genes were classified into distinct co-expression 

modules and the relationship within modules was extensively analysed. This information 

provides novel hypotheses about key regulatory candidates and can be used for future 

functional experiments. 

We discovered and validated that key regulatory genes (ATF3, IL1β) demonstrate mutually 

exclusive expression representing distinct cell groups, which proves the concept that 

system homeostasis is maintained by a certain ratio between distinct types of 

macrophages. Our findings were confirmed using primary human macrophages both on 

the gene and protein expression levels. 

Our findings shed new light on the regulation of macrophage response to metabolic stress 

underlying the development of obesity-induced insulin resistance. We described novel 

candidate genes and their relationship within gene regulatory networks with a special 

focus on potentially highly relevant transcription factors. The provided data can serve as 

a valuable resource for future studies. 

4.2 Metabolic stress in THP-1 macrophages 

THP-1 cell line, firstly established in 1980, has become universally applied in the context 

of metabolic and cardiovascular disease [131, 211]. Other popular monocytic and 
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macrophage-like human cell lines include HL-60, U-937, Mono Mac 6 and others. We 

performed PubMed search analysis (Table 4-1) to estimate the number of studies utilizing 

different human cell lines. We observed that THP-1 cell were second most popular overall 

after HL-60 cell and represent the most popular cell line in the context of diabetes. 

Generally, the THP-1 cell model is systematically studied in the context of differentiation 

to macrophages, atherosclerosis, obesity and inflammation and its comparison with 

primary human macrophages was extensively described. There are several advantages of 

THP-1 macrophages when compared to other cell lines and primary human macrophages 

for their application in genomics analysis of metabolic stress. 

Table 4-1 Number of studies utilizing different monocytic/ macrophage-like human cell lines 
according to PubMed search (06/2017). 

Cell line PubMed search term 

Cell name  Cell name + 

diabetes 

Cell name + 

inflammation 

HL-60 16893 62 564 

THP-1 8795 256 1914 

U-937 1500 6 86 

Mono Mac 6 336 4 47 

AML-193 48 0 0 

Kasumi-3 8 0 1 

 

First, the isogenic background of THP-1 cells minimizes cell-to-cell bias, which cannot be 

controlled in primary human macrophages obtained from different donors. Second, the 

cell cycle of differentiated THP-1 macrophages is inhibited in G1-phase [163]. Genes 

associated with the cell cycle may significantly complicate the analysis of single-cell 

transcriptome often representing a major confounding factor defining cell 

subpopulations. Although several approaches were reported to overcome this limitation, 

the cell-cycle background cannot be fully eliminated [113, 212]. 

A technical advantage of THP-1 cells usage for single-cell-based methods is that the cells 

can be efficiently lysed in diverse types of lysis buffer, as well as in simple water. In single-

cell-based approaches there is no reaction purification between cell lysis, reverse 

transcription and pre-amplification steps. Therefore, the usage of water, as it was 

implemented in our study for single-cell qPCR, or other standard lysis buffers allows 

minimization of the inhibitory effects in the following reactions. 

Although the PMA-induced differentiation of THP-1 monocytes is well established and 

characterized, in our experiment we aimed to minimize the potential impact of PMA 
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stimulation. It was shown that low PMA concentrations, such as 10nM used in our study, 

are optimal for studying mild stress responses [132]. 

Additionally, although we demonstrated high concordance between THP-1 and primary 

human macrophages for our treatment, we observed some gene expression biases 

between different donors of primary cells, which may be indicative of diverse metabolic, 

inflammatory and genetic background of donors. For mild metabolic stimulations it is 

especially important to prevent preliminary cell stress, associated with metabolic and 

other functions. 

4.3 Single-cell RNA sequencing 

Single-cell RNA analysis using C1 Fluidigm workflow, and other methods, have now proven 

their power [103, 105, 123, 127, 137]. However, the efficiency of single-cell experiments 

may considerably vary between different methods and cell types, therefore accurate 

validation and estimation of the quality parameters is necessary to obtain unbiased results 

[101].  

To estimate the level of technical noise introduced by the C1 microfluidics-based workflow 

we performed an independent experiment using a mixture of bulk mRNA from 

unstimulated THP-1 macrophages, prepared as a control for single-cell samples, and ERCC 

RNA spike. The mRNA/ERCC spike mix was loaded onto microfluidic IFCs identical to those 

used for the single-cell experiment. The usage of the ERCC spike in parallel with single-cell 

library preparation is widely applied. However, the mRNA/ERCC spike mix is not typically 

analysed [101, 102, 124]. This experiment allowed us to particularly answer the following 

questions: 

1. How strong is the concordance between different C1 microfluidic chips and cell 

capture microwells within one chip? 

2. What level of technical noise is introduced by the applied workflow and is this 

related to expression levels and other parameters of specific transcripts? 

3. How representative is an ERCC spike of human mRNA in a single-cell setting? 

4. Are there any systematic biases introduced by the C1 Fluidigm-based workflow? 

The results illustrated in Figure 3-3 revealed a strong concordance between different IFCs 

and individual wells within each IFC. Importantly, this result was confirmed by ERCC spike 

on the whole-transcriptome level. Overall, the results obtained for ERCC spike were highly 

representative of the whole transcriptome data. The ratio between mRNA and ERCC 

molecules in the mix was optimal, with a relatively low fraction of reads mapped to the 

ERCC reference (approximately 2 %), and the most highly expressed ERCC transcript 
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exceeding the most highly expressed human mRNA genes (Figure 3-4). We also did not 

observe any systematic biases for specific IFC microwells. 

The variance introduced by technical noise was comparative to the total variance 

estimated in the single-cell experiment for low read counts (<10 read counts/cell). 

However, for middle-range (10-100 read counts/cell) and especially for highly expressed 

genes (>100 read counts/cell) a significant fraction of genes demonstrated biological 

variance exceeding technical noise (Figure 3-4). 

Overall, the applied technology features a number of advantages providing high quality 

data. The possibility to microscopically detect individual cells captured in microwells 

allows for control of potential cell doublets and identification of low quality cells, which 

enabled us to efficiently filter our data. The full-length transcript coverage provides 

increased accuracy of expression quantification and valuable information regarding 

transcript isoforms. This method has a high detection sensitivity compared to other single-

cell methods allowing the detection of high gene numbers per cell [102].  

4.4 Single-cell sequencing data analysis 

The choice of optimal analytical workflows is crucial in the analysis of single-cell data to 

ensure robust and reproducible outcomes. In contrast to commonly analysed data sets, 

our single-cell data of palmitate-stressed macrophages featured mild changes in gene 

expression between treatment and unstimulated control as well as between individual 

cells for each treatment. The optimal workflow had to provide a robust result capturing 

the differences related to palmitate effects rather than the effects of any unrelated 

biological or technical factors. 

The crucial steps of the workflow that have potentially the highest effect on the result 

include [100, 101, 118]: 

• Choice of read normalization method 

• Selection of a gene set for further cell clustering 

• Cell clustering method 

For our final analytical workflow we selected FPKM read normalization (Cufflinks) and 

performed cell clustering using ICA based on differentially upregulated genes (palmitate 

vs. unstimulated). The comparison of different methods for our data set is represented in 

Supplementary Figure 9-12. 

Surprisingly, although the differences between sequencing depth for individual cells were 

considerable, the unnormalized read counts gave cell clustering results very similar to the 

FPKM, TPM and size factor normalized reads (Supplementary Figure 9). The normalization 
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methods slightly changed the distribution between P1 and P2 palmitate cell states, but 

did not influence the subpopulation P3. 

Different gene sets were tested for cell clustering including all detected or highly variable 

genes (Supplementary Figure 10). Due to relatively low effects induced by metabolic 

stress, the usage of whole-transcriptome or other gene sets not directly related to 

palmitate stimulation was not efficient to separate palmitate-stimulated cells from 

unstimulated in low dimensional space. In our final analytical workflow we focused on 

stringently selected gene sets including only significantly upregulated genes based on bulk 

data analysis. This data set allowed us to accurately separate cells from different 

treatments and further focus on the functional pathways related to the induced metabolic 

stress response. 

We compared commonly used clustering methods applied for single-cell RNA data 

including PCA, ICA and tSNE for the selected gene sets (Supplementary Figure 11-12) 

[147]. ICA, which was used for further analysis, and PCA produced similar outcome 

efficiently separating cells from different treatments, as well as cell states. Data 

visualization using tSNE revealed more than five small cell states. However, this method 

was unable to distinguish palmitate-stimulated and unstimulated cells. Additionally, the 

visualization of common marker genes, associated with M1/ M2 macrophages in tSNE-

based coordinates did not reveal any expected patterns. 

The final workflow was mainly determined according to the specificity of our data set. Our 

results demonstrate that the selected approach produces a robust outcome highlighting 

the effects of palmitate-induced metabolic stress rather than irrelevant factors. 

4.5 Transcriptional regulation of macrophage states 

Standard functional enrichment analysis of palmitate-induced genes in our data showed 

significant overrepresentation of the pathways related to inflammatory processes as well 

as the metabolic stress response, as it was expected, validating the overall applied 

experimental and analytical approach (Supplementary Table 1). To efficiently utilize the 

single-cell expression data, we have constructed gene co-expression networks based on 

empirically obtained correlations between genes in single-cells. This approach allows to 

associate genes and gene modules to the specified cell groups and decipher potentially 

important regulatory connections. 

The detected gene modules were clearly assigned to cell states underlying the regulation 

of macrophage heterogeneity. Most of the genes associated with inflammation clustered 

into the largest module (II), expressed in M1-like cells (P2 state). Another module (I), 

specifically expressed in M1-like cells contained known ER-stress markers including DDIT3 
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and XBP1. Interestingly, in M1-like cells we found several transcription factors that have 

not been previously associated with M1 macrophages (PPARγ, CEBPB, HIVEP3). 

PPARγ is widely studied as an important regulator of alternative macrophage activation. 

High fat diet-fed mice with the depletion of PPARγ in macrophages demonstrate increased 

insulin resistance and glucose intolerance [82]. Synthetic PPAR activators, 

thiazolidinediones (TZDs), represent highly efficient anti-diabetic drugs. However, the lack 

of knowledge of PPARγ -related transcriptional networks and their complexity is limiting 

further treatment improvement that would overcome TZDs-related side effects [213]. In 

our single-cell data we observed that PPARγ was highly expressed in M2-like cells (P3 

state), but also had very high expression in a small proportion of M1-like cells 

(Supplementary Figure 14). We assume, that PPARγ response might be differently 

regulated in the context of different cell transcriptional states depending on the presence 

of other transcription factors, epigenetic and metabolic cell state and other factors, as it 

was suggested by previous studies [213]. 

Similarly, the expression of transcription factor CEBPB was on average the highest in M2-

like cells. However, it was also highly expressed in some M1-like cells. Interestingly, CEBPB 

was described both in context of pro- and anti-inflammatory regulation [178-180]. 

Generally, its functions were shown to be dependent on post-translational modifications 

[214, 215] and we assume that its gene regulatory activity may be potentially influenced 

by cell transcriptional states. 

Gene modules specific for M2-like macrophages (P3 state) contained known transcription 

factors inhibiting TLR response (ATF3, HES1), but also some pro-inflammatory regulators 

(KLF6, MAFF). Interestingly, M2-like cells were also regulated by several transcription 

factors related to adaptive immunity (MSC, BATF3, BHLHE40). 

Activating transcription factor 3 (ATF3), specifically expressed in M2-like macrophages has 

been studied as an inhibitor of pro-inflammatory signaling in macrophages and other cells 

[190, 216, 217]. Its beneficial role has been demonstrated in the context of 

atherosclerosis, acute liver inflammation, pressure overload heart failure and 

inflammation of human fetal membranes [84, 216, 218, 219]. ATF3 has been shown to 

inhibit several inflammation-related genes including IL6, IL12, TNF, iNOS, IFNγ, CSCL10 and 

others [189, 220, 221]. In a recent study published by J.-W. Kwon et al. ATF3 expressed 

upon LPS stimulation in RAW 264.7 cells was demonstrated to bind the p65 subunit of 

NFκB in a complex with histone deacetylase 1 (HDAC1), suggesting that ATF3 assists in p65 

deacetylation [222] . In our analysis, ATF3 was identified as an important regulator of anti-

inflammatory signaling in M2-like cells (P2). The mutually exclusive expression between 
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ATF3 and IL1β demonstrates a novel view on pro- and anti-inflammatory regulation in 

metabolically stressed macrophages. 

Another highly interesting transcription factor, appearing on the border of pro- and anti-

inflammatory gene co-expression modules is RCAN1. The number of publications about 

this gene is very limited so far. In a recent study reported by H. Peiris et al. RCAN1, located 

on chromosome 21, was identified as a key regulator connecting trisomy 21 with β-cell 

mitochondrial dysfunction in T2D [223]. Authors observed reduced glucose-stimulated 

insulin secretion and β-cells mitochondrial dysfunction in vivo in mice overexpressing 

RCAN1. In another study, published by N. Mendes-Barbero et al., a dominant role of 

RCAN1 was described in the context of atherosclerosis [199]. They reported that Apoe(-/-

) mice with genetically inactivated Rcan1 featured reduced atherosclerosis development 

and had higher expression of anti-inflammatory markers compared to Apoe(-/-). 

The described transcription factors as well as other regulatory hub genes demonstrated 

interesting expression patterns in cell states and exhibited many unexpected gene 

connections (Figure 3-20, Supplementary Figure 14). The obtained single-cell data allows 

for accurate analysis of gene regulatory mechanisms in the context of different 

transcriptional states. We assume, that potential future functional experiments targeted 

on specific genes and their functions in the context of obesity-induced inflammation and 

insulin resistance will provide novel insights in this field. 

4.6 Future perspectives 

In this study we demonstrate the diversity of macrophage transcriptional states induced 

in an isogenic cell population by a single trigger producing mild metabolic stress. Assuming 

the complexity and heterogeneity of signals affecting macrophage behavior in vivo, the 

single cell approach is crucial for accurate analysis and re-evaluation of macrophage 

transcriptional states. 

In particular in the context of metabolic stress and type 2 diabetes as well as immune 

response, the analysis of macrophage metabolome on single-cell level may play important 

role. Although the technology for single-cell metabolic profiling is new and no biological 

applications were obtained so far, a lot of advances were made in the field, in particular 

in techniques based on mass spectrometry [224]. 

In addition to transcriptome, genome and epigenome profiling of individual cells including 

simultaneous detection techniques are highly interesting [225-228]. Additionally, much 

progress was observed in methods development for space- and time resolved analysis of 

individual cells [229-232]. 
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Generally, we assume that macrophage studies and many other fields will significantly 

benefit from the development of various single-cell analysis methods. The upcoming 

Human Cell Atlas project as well as more targeted studies utilizing single-cell methods will 

provide novel view on cell type and transcriptional states classification, and will serve as 

a valuable resource for future research [233]. 
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5 Summary 

Obesity-induced metabolic disorders and type 2 diabetes have become global burden in 

the last decades causing a number of deaths and significant social and economical 

damage. Chronic inflammation underlies obesity-induced development of insulin 

resistance, cardiovascular disease and metabolic syndrome. Chronic inflammation is 

mainly caused by increased accumulation and activation of various immune cells in obese 

tissues. Macrophages play a particularly important role in the development of this 

pathological process. Previous studies described pro-inflammatory M1 and anti-

inflammatory M2 macrophage states and the role of imbalance between M1 and M2 

macrophages in the development of chronic inflammation. However, growing evidence of 

macrophage diversity in health and disease requires more accurate analysis of 

macrophage molecular phenotypes. 

In this study we used single-cell transcriptome analysis of macrophages, stimulated with 

high levels of FFAs typical for obese adipose tissue microenvironment. Analyzing full 

transcriptomes of individual cells, we were able to distinguish 3 macrophage 

transcriptional states and decipher gene regulatory pathways underlying macrophage 

state identity. We also quantified the level of cell-to-cell variability for different pathways 

and gene co-expression modules to distinguish highly robust and “noisy” molecular 

mechanisms. These results can be used for further gene perturbation experiments to 

better understand their role in macrophage response to metabolic stimulation. We show 

that pro-and anti-inflammatory genes and pathways act in a mutually exclusive way in 

distinct macrophage states. We identified ATF3 as one of the important transcription 

factor, suppressing fatty acids-induced inflammation, to be expressed in a mutually 

exclusive manner with inflammatory mediator genes such as IL1β. The results obtained 

for well-controlled isogenic THP-1 macrophages were validated using primary human 

macrophages.  

Overall, our findings demonstrate that macrophages form distinct states in response to 

stress and the ratio between cell states seems crucial for homeostasis regulation. Our 

results contain valuable information of highly correlating gene modules, specifically 

expressed in distinct cell states as well as information about newly described genes in such 

context. These findings represent a valuable resource for future studies of molecular 

mechanisms of obesity-induced insulin resistance and type 2 diabetes. 
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6 Zusammenfassung 

Stoffwechselstörungen und Typ-2-Diabetes infolge von Fettleibigkeit sind in den letzten 

Jahrzehnten zu einer globalen Belastung geworden und für eine Reihe von Todesfällen 

sowie soziale und wirtschaftliche Schäden verantwortlich. Chronische Entzündungen 

spielen bei der durch Fettleibigkeit induzierten Entwicklung von Insulinresistenz sowie bei 

der Entstehung der Herz-Kreislauf-Erkrankung und des metabolischen Syndroms eine 

entscheidende Rolle. Chronische Entzündungen werden hauptsächlich durch eine erhöhte 

Ansammlung und Aktivierung verschiedener Immunzellen im Fettgewebe verursacht. 

Makrophagen spielen bei der Entwicklung dieses pathologischen Prozesses eine 

besonders wichtige Rolle. In früheren Studien wurden pro-inflammatorische M1- und anti-

inflammatorische M2-Makrophagen-Zustände sowie die Rolle des Missverhältnisses 

zwischen M1- und M2-Makrophagen im Rahmen der Entwicklung chronischer 

Entzündungen beschrieben. Allerdings wird im Hinblick auf die Bereiche Gesundheit und 

Krankheit durch die zunehmenden Hinweise auf Makrophagen-Diversität eine genauere 

Analyse der molekularen Phänotypen von Makrophagen erforderlich. 

In dieser Studie führten wir eine „Einzelzelle-Transkriptom-Analyse“ von Makrophagen 

durch, stimuliert mit einer hohen Menge FFAs, die für die Mikroumgebung des 

Fettgewebes bei fettleibigen Personen typisch sind. Durch die Analyse von kompletten 

Transkriptomen individueller Zellen waren wir in der Lage, drei transkriptionelle 

Makrophagen-Zustände zu differenzieren und Gen-regulierende Bahnen, die der Identität 

von Makrophagen-Zuständen zugrunde liegen, zu entschlüsseln. Außerdem ist es uns 

gelungen, das Maß der Zelle-zu-Zelle-Variabilität der verschiedenen Bahnen sowie die 

Module der Co-Expression der Gene zu quantifizieren, um besonders stabile und "laute" 

molekulare Mechanismen zu differenzieren. Diese Ergebnisse können für weitere 

Versuche zur Gen-Perturbation genutzt werden, um deren Rolle bei der Makrophagen-

Reaktion auf Anregung des Stoffwechsels besser zu verstehen. Wir zeigen, dass pro- und 

anti-inflammatorische Gene und Bahnen in sich einander ausschließender Weise in 

verschiedenen Makrophagen-Zuständen wirken. Als einen der bedeutenden 

Transkriptionsfaktoren haben wir ATF3 identifiziert - dieser unterbindet die durch 

Fettsäuren induzierten Entzündungen, wobei in sich einander ausschließender Weise mit 

inflammatorischen Mediator-Genen wie zum Beispiel IL1β exprimiert wird. Die 

Ergebnisse, die im Hinblick auf gut kontrollierte, isogene THP-1-Makrophagen ermittelt 

worden sind, wurden mithilfe primär menschlicher Makrophagen validiert.  

Insgesamt zeigen unsere Erkenntnisse, dass Makrophagen als Reaktion auf Stress 

unterschiedliche Zustände annehmen, während das Verhältnis zwischen den Zuständen 

der Zellen für die Homöostase-Regulierung von zentraler Bedeutung zu sein scheint. 
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Unsere Ergebnisse umfassen wertvolle Informationen zu in hohem Maße korrelierenden 

Gen-Modulen, die speziell in verschiedenen Zellzuständen exprimiert werden, sowie 

außerdem in diesem Zusammenhang Informationen zu neu beschriebenen Genen. Im 

Hinblick auf zukünftige Studien an molekularen Mechanismen von Insulinresistenz und 

Typ-2-Diabetes aufgrund von Fettleibigkeit stellen diese Erkenntnisse eine wertvolle 

Ressource dar. 
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7 Supplementary Materials 

7.1 Supplementary figures and tables 

Supplementary Figure 1 Cell cytotoxicity detection of THP-1 macrophages treated with different 
palmitate concentrations. 
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Supplementary Figure 2 Estimation of technical variability between IFC wells and well-specific 
technical biases. 
Normalized total number of sequencing reads obtained for each well for bulk RNA combined with 
ERCC spike (IFC 1 and IFC 2) and single-cell sequencing (unstimulated cells) are shown in 96-plate 
layout. Density distribution indicates variability in read number output from 96 microfluidic wells 
for each IFC. 
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Supplementary Figure 3 Principal Component Analysis (PCA) of ERCC spike in Fluidigm C1 
workflow. 
Each dot represents a well from standard 96-well layout for each of the two analysed microfluidic 
IFCs. 
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Supplementary Figure 4 Principal Component Analysis (PCA) of bulk mRNA in Fluidigm C1 
workflow. 
Each point represents a well from standard 96-well layout for each of the two analysed 
microfluidic IFCs. 
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Supplementary Figure 5 Gene variance versus expression for bulk RNA/ ERCC spikes sequencing. 
Generalized linear fit, based on scatter plot represented in Figure 3.27 is shown. 
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Supplementary Figure 6 Quality control of preamplified single-cell cDNA and single-cell 
sequencing library pools using Bioanalyzer. 
A Preamplified cDNA from an individual representative cell after harvesting from C1 IFC. 
B Preamplified cDNA from empty well of C1 IFC. 
C, D Analysis of single-cell library pools for unstimulated (C) and palmitate-stimulated (D) 
macrophages. 
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Supplementary Figure 7 Quality control of representative FASTQ files for single-cell and bulk 
RNA samples. 
Plots represent standard output files of FastQC software. 
A, C Per base sequencing quality figures for selected samples. Red line represents median and blue 
line represents mean Phred quality score for each base in a sequencing read. Yellow box 
represents inter-quartile range (25-75 %) and upper and lower whiskers indicate 10 % and 90 % of 
data points. 
B, D Distribution of read quality for all reads corresponding to selected samples. 
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Supplementary Figure 8 Mapping statistics for bulk RNA sequencing reads. 
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Supplementary Figure 9 Comparison of different read normalization strategies represented in 
ICA coordinates for palmitate-stimulated and unstimulated cells. 
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Supplementary Figure 10 Independent Component Analysis (ICA) based on different selected 
genes. 
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Supplementary Figure 11 Principal Component Analysis (PCA) of individual cells based on 
palmitate-induced genes. 
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Supplementary Figure 12 tSNE analysis of individual cells based on palmitate-induced genes. 
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Supplementary Figure 13 96-well plate and Fluidigm C1 IFC layout reconstruction with 
identified cell transcriptional states. 
No technical bias related to well position was observed to potentially influence cell transcriptional 
state identity. 
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Supplementary Figure 14 Expression of selected transcription factors in individual cells (ICA 
coordinates) and cell states. 
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Supplementary Figure 15 Generation of extended depth of focus image from 4 Z-stacked IF 
image. 
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Supplementary Figure 16 Representation of 100-tiled IF image. 

 

 

Supplementary Figure 17 IF image of 4 tiles stitching borders. 
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Supplementary Figure 18 EBImage-based analysis of IF images. 
A-C Nuclei detection, thresholding and labeling (A, B) and watershed transformation-based 
separation of nuclei including closely located nuclei (C). 
D-I For cell segmentation, cell borders were firstly defined based on combined unfiltered signal 
from Alexa 488 and Alexa 595 (D-F). Identified cells were filtered based on surface area, labeled, 
empty segments inside cell surface were filled (F). Incomplete cells were removed from image 
borders (G). Cell segmentation was performed using previously defined nuclei as seeds (H, I). 
Finally, total signal was quantified within defined cell borders for all 3 channels along with other 
parameters of all detected cells (cell surface area etc.). 
Scale – 20 µM 
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Supplementary Figure 19 Quantification of cell-to cell gene expression variance score. 
A Each dot represents a gene. On the scatter plot variance across all palmitate-stimulated and 
unstimulated single cell versus mean expression for each detected gene is shown. Variance is 
estimated as a distance between quantified gene variance and generalized linear fit for 
corresponding expression level. 
B Correlation between estimated variance score and gene expression level. 

 

 

  



Supplementary Materials 

106 
 

Supplementary Table 1 DAVID gene functional annotation analysis results for palmitate-induced 
differentially expressed genes. 
Enriched pathways with minimum gene count 15 and corrected P-Value lower than 10-3 are shown. 

 

 
  

Category  Term Gene 

count 
P-Value Benjamini-

Hochberg 

corrected P-

Value 
KEGG Pathway  Cytokine-

cytokine 

receptor 

interaction  

26 1.9E-8 2.0E-6 

KEGG Pathway  MAPK signaling 

pathway  
23 7.2E-6 1.6E-4 

KEGG Pathway  TNF signaling 

pathway  
22 3.0E-12 7.5E-10 

KEGG Pathway  Chemokine 

signaling 

pathway 

20 2.7E-6 8.5E-5 

KEGG Pathway  NF-kappa B 

signaling 

pathway  

16 3.5E-8 2.6E-6 

KEGG Pathway  Rheumatoid 

arthritis 
15 2.9E-7 1.6E-5 

KEGG Pathway  Toll-like 

receptor 

signaling 

pathway 

15 3.0E-6 8.1E-5 
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 Supplementary Table 2 Assignment of palmitate-induced genes to gene co-expression modules 
with computed connectivity based on weighted gene co-expression network analysis. 

 

Gene Gene 

module 

Cell state Total 

connectivity 

Connectivity 

within assigned 

module 

CEBPB I P2 3.7297 3.7293 

DDIT3 I P2 3.6967 3.6958 

DENND3 I P2 0.0028 0.0005 

GPRC5A I P2 1.8608 1.8600 

HBEGF I P2 1.5432 1.5414 

HIVEP3 I P2 0.4362 0.4360 

KCNN4 I P2 1.1305 1.1304 

KIAA0020 I P2 0.0156 0.0144 

PLAUR I P2 0.5766 0.4561 

RGCC I P2 0.6355 0.6354 

RRP12 I P2 0.0293 0.0293 

TLR2 I P2 0.0029 0.0021 

TNFRSF10B I P2 3.6888 3.6884 

TPM4 I P2 1.1873 1.1871 

WT1 I P2 1.0566 1.0566 

ZCCHC14 I P2 0.1072 0.1066 

ACSL1 II P2 0.0118 0.0062 

AMPD3 II P2 0.0314 0.0279 

ARAP3 II P2 0.0004 0.0000 

C5AR1 II P2 4.4135 4.3763 

CCL20 II P2 7.6831 7.6768 

CD36 II P2 0.1208 0.0772 

CD40 II P2 5.6293 5.6256 

DUSP1 II P2 0.5052 0.4720 

EHD1 II P2 0.0209 0.0207 

FFAR2 II P2 8.0006 7.9927 

FHOD1 II P2 4.1079 4.1052 

FLOT1 II P2 0.2759 0.2704 

G0S2 II P2 0.0168 0.0163 

GFPT1 II P2 0.2855 0.2508 
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GPR84 II P2 0.0043 0.0039 

IL1β II P2 0.2614 0.2605 

IL32 II P2 2.6352 2.6323 

IL8 II P2 7.2064 7.1983 

ISG20 II P2 0.0106 0.0095 

IVNS1ABP II P2 3.3772 3.3707 

LFNG II P2 7.4028 7.3899 

MAP1B II P2 0.2337 0.1622 

MAP2K3 II P2 6.7136 6.6934 

NCF1 II P2 0.0167 0.0130 

NRIP3 II P2 0.2327 0.2298 

OPTN II P2 0.0118 0.0110 

PDGFA II P2 0.0036 0.0016 

PHC2 II P2 2.6650 2.6632 

PLIN2 II P2 3.6933 3.6760 

PPARG II P2 6.6337 6.6278 

RAI14 II P2 0.0609 0.0488 

RGS1 II P2 0.0729 0.0716 

RGS16 II P2 0.0439 0.0409 

RHOB II P2 2.3575 2.3554 

S100A10 II P2 0.2863 0.2696 

SCD II P2 0.1169 0.1003 

SH3RF1 II P2 0.0366 0.0329 

SLAMF8 II P2 0.3537 0.3375 

SLC20A1 II P2 0.0182 0.0153 

SLC43A3 II P2 0.0612 0.0471 

SNAI1 II P2 0.1999 0.1918 

SPOCD1 II P2 0.0104 0.0099 

STARD4 II P2 0.0879 0.0553 

TCF7L2 II P2 0.0457 0.0446 

UBALD2 II P2 0.0884 0.0618 

XBP1 II P2 4.4599 4.4542 

ZFYVE28 II P2 4.6444 4.6405 

ATF3 III P3 3.3363 3.3322 

CADPS2 III P3 1.2169 1.2001 

CD44 III P3 0.6351 0.6327 

CKAP4 III P3 0.6118 0.5933 
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CRELD2 III P3 0.6100 0.5680 

DERL3 III P3 0.5313 0.5277 

DNAJB9 III P3 0.5079 0.4952 

HES1 III P3 0.2271 0.2216 

IER2 III P3 0.1801 0.1799 

KLF6 III P3 0.1882 0.1674 

MMP19 III P3 0.1359 0.1337 

NME1-

NME2 

III P3 0.1001 0.0931 

PHLDA1 III P3 0.0891 0.0856 

RASGEF1B III P3 0.0659 0.0409 

SERPINE1 III P3 0.0161 0.0160 

STK10 III P3 0.0064 0.0045 

TFAP2A III P3 0.0066 0.0045 

VASP III P3 0.0010 0.0005 

ASNS IV P3 3.5759 3.5733 

BHLHE40 IV P3 1.5855 1.5733 

BIRC3 IV P3 1.4295 1.3951 

CCL3 IV P3 0.9832 0.9568 

CCL3L3 IV P3 0.9785 0.9393 

CCL4 IV P3 0.8420 0.8320 

DUSP2 IV P3 0.4711 0.4572 

EGR1 IV P3 0.3356 0.3315 

EGR2 IV P3 0.3320 0.3311 

FAM129B IV P3 0.3399 0.3184 

HDAC7 IV P3 0.2574 0.2320 

HMGCS1 IV P3 0.2241 0.2174 

HS3ST3A1 IV P3 0.2323 0.2153 

HSD17B7 IV P3 0.2097 0.2069 

ICAM1 IV P3 0.1963 0.1803 

LDLR IV P3 0.1583 0.1554 

MAFF IV P3 0.1731 0.1504 

MSMO1 IV P3 0.1272 0.1112 

MYC IV P3 0.1281 0.1075 

NAMPT IV P3 0.0978 0.0959 

PER2 IV P3 0.1025 0.0890 

PIM1 IV P3 0.0774 0.0727 
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RCAN1 IV P3 0.0431 0.0393 

SESN2 IV P3 0.0164 0.0155 

SGK1 IV P3 0.0251 0.0144 

SH2B3 IV P3 0.0138 0.0133 

SHISA2 IV P3 0.0150 0.0116 

SNX9 IV P3 0.0050 0.0049 

SQLE IV P3 0.0056 0.0045 

TNFAIP3 IV P3 0.0030 0.0029 

TNFAIP6 IV P3 0.0054 0.0028 

TNFRSF10D IV P3 0.0025 0.0020 

AEN V P3 3.9781 3.9730 

AK4 V P3 3.6924 3.6891 

BAG3 V P3 2.7483 2.7413 

BATF3 V P3 2.4360 2.4299 

CBLB V P3 1.1804 1.1667 

CBWD6 V P3 1.1272 1.1150 

CCL18 V P3 1.0224 1.0022 

CCR7 V P3 0.8664 0.8222 

CD300A V P3 0.6500 0.6494 

CSF1 V P3 0.5665 0.5635 

DUSP5 V P3 0.3590 0.3406 

EMP1 V P3 0.3277 0.3196 

FKBP14 V P3 0.3493 0.3004 

GDF15 V P3 0.2492 0.2444 

HSPA1A V P3 0.1907 0.1885 

IL23A V P3 0.1799 0.1796 

KCNQ4 V P3 0.1759 0.1756 

MEI1 V P3 0.1812 0.1346 

MSC V P3 0.1425 0.1322 

MST1 V P3 0.1251 0.1082 

MYO10 V P3 0.1194 0.1023 

PBX4 V P3 0.0956 0.0920 

PER1 V P3 0.1024 0.0897 

PIM3 V P3 0.0689 0.0683 

PLEK2 V P3 0.0753 0.0629 

PLK3 V P3 0.0568 0.0504 

PPP1R15A V P3 0.0478 0.0473 
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PSAT1 V P3 0.0430 0.0430 

RHBDF2 V P3 0.0918 0.0319 

RRP9 V P3 0.0304 0.0208 

SAPCD1 V P3 0.0170 0.0164 

SHB V P3 0.0171 0.0129 

SLC17A9 V P3 0.0128 0.0113 

SLC2A1 V P3 0.0224 0.0100 

SLC39A14 V P3 0.0163 0.0093 

SLC7A11 V P3 0.0279 0.0086 

TMEM135 V P3 0.0030 0.0029 

TRIB3 V P3 0.0013 0.0011 

TRIM16L V P3 0.0008 0.0008 

TULP3 V P3 0.0007 0.0006 

ZFAND2A V P3 0.0005 0.0003 
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7.2 Abbreviations 

Abbreviation Full term 

7-AAD 7-Aminoactinomycin D 

ATM Adipose tissue macrophage 

BMI Body mass index 

BSA Bovine Serum Albumin 

CV Coefficient of variation 

CVD Cardiovascular disease 

DAG Diacylglycerol 

DAMP Damage-associated molecular patterns 

DE Differential expression 

DHA Docosahexanoic acid 

DM Distance to median 

EPA Eicosapentanoic acid 

ER Endoplasmatic reticulum 

ERCC External RNA control consortium 

FATP Fatty acid transport proteins 

FBS Fetal bovine serum 

FetA fetuin A 

FFA Free fatty acid 

HFD High fat diet 

ICA Independent component analysis 

IF Immunofluorescence 

IFC Integrated fluidic circuit 

IFD International diabetes federation 

IPC Interplate calibrator 

KC Kupfer cell 

LpL Lipoprotein lipase 

LPS Lipopolysacharide 

NAFLD Non-alcoholic fatty liver disease 

NEFA Nonesterified fatty acids 

NK Natural killer cell 

nPKC Novel protein kinase C 

PBMC Peripheral blood mononuclear cells 

PBS Dulbecco’s phosphate buffered saline 

PCR Polymerase chain reaction 
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PKC Protein kinase C 

PMA Phorbol 12-myristate 13-acetate 

RHM Recruited hepatic macrophage 

RT Reverse transcription 

T2D Type 2 diabetes 

TAM Tumor associated macrophage 

Th1, Th2 T helper cell 1, T helper cell2 

TLR Toll-like receptor 

TOM Topological overlap matrix 

TZD Thiazolidinediones 

UPR Unfolded protein response 

WAT White adipose tissue 

WGCNA Weighted gene co-expression network analysis 

WT Wild type 
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