Aus dem Institut für Sozialmedizin, Epidemiologie und Gesundheitsökonomie
der Medizinischen Fakultät Charité – Universitätsmedizin Berlin

DISSERTATION

Stress am Arbeitsplatz als Risikofaktor für den Myokardinfarkt
- Geschlechtsspezifische Unterschiede

zur Erlangung des akademischen Grades
Doctor medicinae (Dr. med.)

vorgelegt der Medizinischen Fakultät
Charité – Universitätsmedizin Berlin

von
Katharina Urban
aus Berlin

Datum der Promotion: 23.06.2013
Für meinen Vater
Inhaltsverzeichnis

INHALTSVERZEICHNIS .. 3

ABKÜRZUNGSVERZEICHNIS ... 4

1 **EINLEITUNG** ... 5

1.1 MYOKARDINFARKT: HÄUFIGKEIT UND RISIKOFAKTOREN ... 5

1.2 **STRESS** .. 6

1.2.1 **Stress allgemein** .. 6

1.2.2 Jobstress .. 7

1.2.2.1 Jobstressmodelle .. 8

1.2.2.1.1 Anforderungs-Kontroll Modell / Jobstrain nach Karasek .. 8

1.2.2.1.2 Modell beruflicher Gratifikationskrisen / Effort-Reward-imbalance (ERI) nach Siegrist 10

1.3 **KARDIOVASKULÄRE AUSWIRKUNGEN VON JOBSTRESS** .. 13

1.4 **ZIELSTELLUNG** .. 19

2 **METHODEN** ... 20

2.1 **STUDIENDESIGN- UND SETTING** ... 20

2.2 **STUDIENPOPULATION** .. 20

2.3 **DATENERHEBUNG UND -MANAGEMENT** .. 21

2.4 **ERHEBUNG POTENTIELLER EINFLUSSFAKTOREN** ... 23

2.5 **EFFORT-REWARD IMBALANCE FRAGEBÖGEN NACH SIEGRIST ZUR ERFASSUNG DES JOBSTRESSLEVELS** .. 24

2.5.1 geforderte Verausgabung und berufsbezogene Belohnung (Effort-Reward Imbalance - ERI) 25

2.5.2 Berufliche Vorausgabenneigung (Overcommitment - OC) ... 27

2.6 **STATISTISCHE METHODEN** .. 28

3 **ERGEBNISSE** ... 31

3.1 **GESCHLECHTS- UND ALTERSVERTEILUNG** ... 31

3.2 *MEDIZINISCHE, LEBENSTIL- UND BERUFSBEDINGTE EINFLUSSFAKTOREN* 32

3.3 **JOBSTRESS** ... 34

3.3.1 **Deskriptiv (ungematchte Studienpopulation; N=1665)** ... 34

3.3.2 **Logistische Regressionsanalysen (N=1665; ungemacht)** .. 35

3.3.3 **Logistische Regressionsanalysen (N=971; gemacht)** ... 37

4 **DISKUSSION** ... 39

4.1 **HAUPTERGEBNISSE** .. 39

4.2 **STUDIENDESIGN** .. 39

4.3 **ADJUSTIERUNGSVARIABLEN** .. 40

4.4 **VERGLEICH MIT ANDEREN JOBSTRESSSTUDIEN** .. 42

4.5 **LIMITATIONEN** ... 49

4.6 **SCHLUSSFOLGERUNGEN** .. 50

5 **ZUSAMMENFASSUNG** ... 51

6 **LITERATUR** .. 53

7 **TABELLEN UND ABBILDUNGSVERZEICHNIS** .. 59
Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>95% KI</td>
<td>95% Konfidenzintervall</td>
</tr>
<tr>
<td>BMI</td>
<td>Body Mass Index = Körpergewicht in kg / (Körperlänge in m)^2</td>
</tr>
<tr>
<td>CVD</td>
<td>cardiovascular diseases (kardiovaskuläre Erkrankungen)</td>
</tr>
<tr>
<td>DM</td>
<td>Diabetes Mellitus</td>
</tr>
<tr>
<td>ERI</td>
<td>Effort-Reward Imbalance</td>
</tr>
<tr>
<td>HDL</td>
<td>High Density Lipoprotein</td>
</tr>
<tr>
<td>HR</td>
<td>Hazard ratio</td>
</tr>
<tr>
<td>JS</td>
<td>Jobstrain</td>
</tr>
<tr>
<td>KHK</td>
<td>Koronare Herzkrankheit</td>
</tr>
<tr>
<td>MI</td>
<td>Myokardinfarkt</td>
</tr>
<tr>
<td>m</td>
<td>männlich</td>
</tr>
<tr>
<td>NaRoMI</td>
<td>“Noise and Risk of Myocardial Infarction”-Study</td>
</tr>
<tr>
<td>OC</td>
<td>Overcommitment - Verausgabungsneigung</td>
</tr>
<tr>
<td>OR</td>
<td>Odds Ratio</td>
</tr>
<tr>
<td>PASS</td>
<td>Power Analysis and Sample Size (Software zur Fallzahlschätzung)</td>
</tr>
<tr>
<td>RR</td>
<td>Relatives Risiko</td>
</tr>
<tr>
<td>SD</td>
<td>Standardabweichung (engl. Standard Deviation)</td>
</tr>
<tr>
<td>w</td>
<td>weiblich</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization (Weltgesundheitsorganisation)</td>
</tr>
</tbody>
</table>
1 Einleitung

1.1 Myokardinfarkt: Häufigkeit und Risikofaktoren

Kardiovaskuläre Krankheiten sind nach wie vor die Haupttodesursache weltweit und für ca. 30% aller Todesfälle verantwortlich (WHO CVD fact sheet 2011). Auch in Deutschland führt diese Krankheitsentität die Rangliste der häufigsten Todesursachen an. So gingen 2010 in Deutschland 41% aller Todesfälle auf eine kardiovaskuläre Ursache zurück; 1998 waren es sogar noch 48% (Gesundheitsberichterstattung des Bundes 2010).

Abbildung 1 Häufigste Todesursachen in Deutschland im Jahr 2008 (Statistisches Bundesamt 2010)
Obwohl immer noch mehr Männer als Frauen an den Folgen eines Herzinfarktes versterben, zeigen die Daten der MONICA Studie aus der Region Augsburg, dass sowohl die Rate der Infarkttodesfälle bei Männern als auch die Rate der insgesamt neu auftretenden Herzinfarkte zwischen 1985 -1995 zurückgegangen sind. Allerdings steigt bei den Frauen zwischen 25 und 54 Jahren die Neuerkrankungsrate an, was sich wahrscheinlich mit einem zunehmenden und früher beginnenden Zigarettenkonsum der weiblichen Bevölkerung erklären lässt (Löwel 2002).

1.2. Stress

1.2.1 Stress allgemein

Etwa 20 Jahre später befasste sich Hans Selye erstmalig mit diesem Thema und verfasste im Laufe seines Lebens etwa 1700 Werke zu Stress, seinen Ursachen und

Seither wurden zahlreiche Studien durchgeführt, die Stress als auslösenden und aufrechterhaltenden Faktor unterschiedlicher Erkrankungen sehen. So werden kardiovaskuläre Erkrankungen genauso genannt, wie viszerale Adipositas, Diabetes mellitus und Depressionen (VanItallie 2002).

In seiner Übersichtsarbeit von 2008 zum Thema Stress und kardiovaskuläre Erkrankungen hat Joel Dimsdale zwei Gruppen von möglichen Auslösern für Stress (Stressoren) unterschieden: akute Stressoren wie z.B. Erdbeben und chronische Stressoren, worunter auch Stress am Arbeitsplatz, Jobstress, einzuordnen ist (Dimsdale 2008).

Auch wenn Stress ein subjektives Element darstellt, existieren unterschiedliche Modelle und Methoden, um die Stressbelastung zu messen und sie so vergleichbar zu machen (Kopp 2010). Im Folgenden soll insbesondere auf jene Modelle eingegangen werden, die sich mit der Stressbelastung am Arbeitsplatz auseinandersetzen.

1.2.2 Jobstress

Beide Modelle wurden in mehrere Sprachen übersetzt und seit ihrer Einführung in vielen Studien verwendet und weiterentwickelt. Siegrist veröffentlichte 2008 eine Übersicht beider Modelle, die im Folgenden zusammengefasst wird:
1.2.2.1 Jobstressmodelle

In den vergangenen Jahren wurden zur Erfassung des Jobstresslevels und zur Identifikation von Stress auslösenden Faktoren am Arbeitsplatz hauptsächlich zwei Modelle verwendet. Zum einen das Anforderungskontrollmodell nach Karasek und zum anderen das Modell beruflicher Gratifikationskrisen nach Siegrist.

1.2.2.1.1 Anforderungs-Kontroll Modell / Jobstrain nach Karasek

Die beiden Dimensionen Anforderung und Kontrolle werden mit einem Fragebogen bestimmt, der insgesamt 42 Fragen beinhaltet, wobei in den meisten Studien nur Auszüge des Fragebogens verwendet wurden. Die Antworten werden mittels einer 4-stufigen Skala (stimme voll und ganz zu, stimme zu, stimme nicht zu, stimme überhaupt nicht zu) erfasst.

Kontrolle im Rahmen dieses Fragebogens kann auch als der Entscheidungsspielraum, den der einzelne am Arbeitsplatz hat, verstanden werden. Hierbei wird erfragt, ob der Erwerbstätige unabhängig arbeiten und selbstständig Entscheidungen treffen kann.

Der Begriff Anforderung umfasst sowohl physische als auch psychische Belastungen. Eine hohe Anforderung ist z.B. durch Aussagen wie „ich arbeite sehr hart“, „ich arbeite
sehr lange“ und „ich habe nicht ausreichend Zeit, um die mir gestellten Aufgaben zu erledigen“ gekennzeichnet.

Anhand der ermittelten Aussagen lässt sich die Arbeitssituation der/des Erwerbstätigen in eine von vier Kategorien einordnen. Es wird nun angenommen, dass die Kombination von hoher Anforderung und geringer Entscheidungsfreiheit zu psychischem und physischem Stress führen kann, ein Zustand der als „high job strain“ bezeichnet wird.

Ein typisches Beispiel für eine solche Arbeitssituation wäre die Arbeit am Fließband im Schichtsystem. Ein Arbeitsplatz mit hoher physischer aber auch psychischer Belastung ohne die Möglichkeit der Einflussnahme.

Sind die gestellten Anforderungen zwar hoch ist aber auch die Möglichkeit der Mitbestimmung und Kontrolle vorhanden geht man davon aus, dass man sich in einem aktiven Zustand befindet, in dem man wissbegierig und motiviert ist und auch Bereitschaft zeigt, neue Verhaltensweisen zu erlernen. (s Abbildung 2)

![Anforderungs-Kontroll-Modell nach Karasek (Karasek 1981)](image)

Abbildung 2 Anforderungs-Kontroll-Modell nach Karasek (Karasek 1981)

Neben den beiden Hauptbestandteilen (Kontrolle und Anforderung) wird mit der Erfassung des sozialen Rückhaltes bei der Arbeit noch ein weiterer Aspekt beleuchtet.

Außerdem beschränkt sich das Modell vollständig auf das Arbeitsumfeld und lässt Aspekte außer Acht, die ebenfalls zu einem erhöhten Stresslevel führen können, wie z.B. eine fehlende Alternative zum eigenen Arbeitsplatz. So kann ein Arbeitnehmer, der auf seinen Arbeitsplatz angewiesen und Alleinverdiener einer fünfköpfigen Familie ist ein höheres Maß an Stress empfinden als ein familiär und geographisch unabhängiger Erwerbstätiger, der mehrere Jobangebote hat, auch wenn beide der gleichen beruflichen Tätigkeit nachgehen. Diese beiden Faktoren haben in das Modell beruflicher Gratifikationskrisen Eingang gefunden.

1.2.2.1.2 Modell beruflicher Gratifikationskrisen / Effort-Reward-Imbalance (ERI) nach Siegrist

Hierzu gehören:

- eine fehlende Arbeitsplatzalternative; sei es durch fehlende Qualifikation oder eingeschränkte Mobilität
- für den Arbeitnehmer ungünstige Arbeitsverträge, die jedoch aus unterschiedlichen Beweggründen in Kauf genommen werden
- eine erhöhte Vorausgabenneigung seitens des Arbeitnehmers in Leistungssituationen

Somit berücksichtigt das Modell beruflicher Gratifikationskrisen nicht nur die eigentlichen Arbeitsumstände sondern schließt auch die psychische Komponente des einzelnen Arbeitnehmers mit ein und lässt auch die sich verändernde Arbeitswelt nicht außer Acht, die ein immer größeres Maß an Mobilität erfordert (Siegrist 2008).

Extrinsische Komponente (geförderte Vorausgabe und berufsbezogene Belohnung – Effort-Reward-Imbalance - ERI):

Die extrinsischen Komponenten werden durch einen Fragebogen ermittelt, der 17 Fragen umfasst und fünf mögliche Antwortmöglichkeiten zulässt. Hierbei wird sowohl auf die Arbeitsumstände eingegangen (z.B. Überstunden, körperlich anstrengende Tätigkeit, Zeitdruck) als auch die Entlohnung (z.B. angemessene Bezahlung, Anerkennung von Kollegen und Vorgesetzten) erfasst. Zwei typische Beispiele hierfür wären:

Anforderung:

Bei meiner Arbeit habe ich viel Verantwortung zu tragen.

<table>
<thead>
<tr>
<th>Antwort</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nein..........................</td>
<td>☐ (1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ja, aber das belastet mich gar nicht........</td>
<td>☐ (2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ja, und das belastet mich mäßig..................</td>
<td>☐ (3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ja, und das belastet mich stark..................</td>
<td>☐ (4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ja, und das belastet mich sehr stark</td>
<td>☐ (5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Entlohnung:

Wenn ich an all die erbrachten Leistungen und Anstrengungen denke, halte ich die erfahrene Anerkennung für angemessen.

Ja... □ (1)
Nein, aber das belastet mich gar nicht............... □ (2)
Nein, und das belastet mich mäßig..................... □ (3)
Nein, und das belastet mich stark...................... □ (4)
Nein, und das belastet mich sehr stark.......... □ (5)

Aus den Werten von Anforderung und Entlohnung wird ein Quotient gebildet, der das zentrale Element des Modells beruflicher Gratifikationskrisen darstellt.

Intrinsische Komponente (berufliche Verausgabungsneigung - Overcommitment - OC):

Die intrinsische Komponente hingegen wird durch neunundzwanzig Fragen näher umrissen, die nur vier Antwortmöglichkeiten zulassen.

Ein typisches Beispiel hierfür wäre:

Diejenigen, die mir am nächsten stehen sagen, ich opfere mich zu sehr für meinen Beruf auf.

Stimme gar nicht zu... □ (1)
Stimme eher nicht zu.. □ (2)
Stimme eher zu.. □ (3)
Stimme voll und ganz zu................................. □ (4)

Es wird postuliert, dass jede Entität (sowohl intrinsisch als auch extrinsisch) für sich genommen einen Anstieg im Stressempfinden verursachen kann, dies aber besonders deutlich wird, wenn es zu einer Kombination beider Aspekte kommt. Dies wäre bei einem Arbeitnehmer der Fall, der eine überhöhte Verausgabungsneigung zeigt und gleichzeitig einer Arbeit nachgeht, die ihn sehr fordert, ohne ihm die nötige Entlohnung in Form von Lohn, Anerkennung oder Sicherheit zu geben (Siegrist 1998).
1.3 Kardiovaskuläre Auswirkungen von Jobstress

Sieht man einmal von der Spezifizierung des Stresses am Arbeitsplatz ab und betrachtet Stress als solchen, lässt sich das erhöhte Risiko einer kardiovaskulären Erkrankung durch Stress in folgender Grafik zusammenfassen:

![Abbildung 3 Vereinfachtes Wirkungsmodell für Stress als Risikofaktor kardiovaskulärer Erkrankungen (modifiziert nach Theorell 2006 European Heart Network)](image)

Insbesondere akuter Stress kann zu physiologischen Veränderungen (erhöhter Blutdruck, erhöhte Lipide, Ausschüttung von Stresshormonen, etc.) führen, welche ihrerseits als Risikofaktoren für kardiovaskuläre Erkrankungen gelten. Chronischer Stress hingegen führt häufig zu Verhaltensänderungen, welche als modifizierbare Risikofaktoren anzusehen sind. Stress welcher Ursache auch immer, kann also selbst als Risikofaktor für kardiovaskuläre Erkrankungen betrachtet werden (Chandola 2008; Theorell 2006; WHO 2004).
Auch Joel Dimsdale hat die Auswirkungen kurz- und langfristiger Stressoren auf das kardiovaskuläre System in seiner Übersichtsarbeit beschrieben und kam zu dem Schluss, dass Stress als modifizierbarem Risikofaktor in der Prävention kardiovaskulärer Erkrankungen Rechnung getragen werden sollte (Dimsdale 2008).

Die folgenden Tabellen stellen die für die vorliegende Arbeit relevanten Beobachtungsstudien der letzten Jahre vor und sind anhand des Geschlechtes der Studienpopulation in 4 Abschnitte (gemischte Studienpopulation gemeinsam bzw. getrennt ausgewertet, Studienpopulation ausschließlich männlich bzw. ausschließlich weiblich) unterteilt.

Tabelle 1 Jobstress als Risikofaktor für Herz/Kreislaufkrankheiten in Studien mit männlichen und weiblichen Teilnehmern (nicht geschlechtsspezifisch ausgewertet)

Statistisch signifikante Ergebnisse sind fettgedruckt

<table>
<thead>
<tr>
<th>Erstautor/Jahr/Ort</th>
<th>Studien- typ / Dauer</th>
<th>Anzahl / Alter</th>
<th>Verwendetes Jobstressmodell</th>
<th>Zielgröße</th>
<th>Risikoschätzer</th>
<th>Adjustierungen</th>
<th>Bemerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kiwimäki / 2002 / Finnland</td>
<td>Kohorte / 25,6 Jahre</td>
<td>545m / 267w / 18 - 247 Jahre</td>
<td>ERI/ Anforderungs- Kontroll Modell</td>
<td>Tod durch kardiovaskuläre Erkrankung</td>
<td>Hazard Ratio (95%KI): Job Strain Intermediate: 1,64 (0,85-3,19)</td>
<td>Alter, Geschlecht, Tabak, körperliche Inaktivität, systolischer Blutdruck, Cholesterin, BMI</td>
<td>anhand des Sterberegisters, zeigt Validität beider Stressmodelle; Job Stress: intermediate entspricht aktiv und passiv kombiniert; ERI ratio in Drittel unterteilt (low, intermediate, high) Altersobergrenze nicht eindeutig angegeben (lediglich >47)</td>
</tr>
<tr>
<td>Kuper / 2002 / London (England)</td>
<td>Kohorte / 11 Jahre</td>
<td>6895m / 3413w / 35 - 55 Jahre</td>
<td>ERI+OC</td>
<td>Koronartod, MI, AP</td>
<td>Hazard Ratio (95%KI): ERI: 4. Quartile: 1,26 (1,03-1,55)</td>
<td>OC nur mit einer einzigen Frage abgeschätzt (mit Punkte Skala erfasst und zur Analyse dichotomisiert); ERI ratio wurde in 4 Quartile unterteilt</td>
<td></td>
</tr>
<tr>
<td>Bonde/ 2009/ Dänemark</td>
<td>Kohorte / 5 Jahre</td>
<td>3834m / 14423w / 16-71 Jahre</td>
<td>Anforderungs- Kontroll Modell</td>
<td>MI oder AP</td>
<td>Hazard Ratio (95% KI): Anforderung oberhalb Medians + Kontrolle unterhalb Medians: 1,3 (0,9 –2,1)</td>
<td>Geschlecht, Alter, Familienstand, sozioökonomischer Status, Kinder unter 15 Jahren die mit im Haushalt leben</td>
<td>Nicht für bekannte Risikofaktoren adjustiert; nur Angestellte im öffentlichen Dienst</td>
</tr>
</tbody>
</table>

AP – Angina pectoris; BMI – Body Mass Index; DM – Diabetes Mellitus; ERI – Effort Reward Imbalance; HDL – High Density Lipoprotein; JS – Jobstrain; KHK – koronare Herzkrankheit; KI- Konfidenzintervall; MI – Myokardinfarkt; m – männlich; OC – Overcommitment; Occ. Grade- occupational Grade; RH- Relative Hazard; w – weiblich
Tabelle 2: Jobstress als Risikofaktor für Herz-Kreislauferkrankheiten in Studien mit männlichen und weiblichen Teilnehmern (geschlechtsspezifisch ausgewertet)

<table>
<thead>
<tr>
<th>Erstautor / Studientyp / Ort</th>
<th>Studienjahr / Dauer</th>
<th>Anzahl / Alter</th>
<th>Verwendetes Jobstressmodell</th>
<th>Zielgröße</th>
<th>Risikoschätzer und Referenzkategorie</th>
<th>Risikoschätzer und Referenzkategorie</th>
<th>Adjustierungen</th>
<th>Bemerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peter / 2002 / Stockholm (Schweden)</td>
<td>Fall-Kontrollstudie / 2 Jahre</td>
<td>1548m / 45-64 Jahre</td>
<td>ERI+OC / Anforderungskontrollmodell</td>
<td>Odds Ratio (95% KI): 1,58 (1,16-2,15), Referenz: Ratio<1</td>
<td>Odds Ratio (95% KI): 1,49 (0,93-2,41), Referenz: 2 untere Drittel</td>
<td>Odds Ratio (95% KI): 1,45 (0,9-2,16), Referenz: 3 untere Viertel</td>
<td>ERI für OC und UC für ERI, Bluthochdruck, Cholesterin, DM, Familienanamnese CVD, Rauchen, BMI> 27, körperliche Inaktivität</td>
<td>Inkongruente Populationen bei Analysen (n variert zwischen 74 und 389)</td>
</tr>
<tr>
<td>Eaker ED / 2004 / Framingham (USA)</td>
<td>Kohorte / 10 Jahre</td>
<td>1711m / 1328w / 18-77 Jahre</td>
<td>Anforderungskontrollmodell</td>
<td>Querschnittsstudie (Framingham Heart)</td>
<td>Odds Ratio (95% KI): Aktiv: 0,87 (0,51-1,50), low strain: 0,85 (0,50-1,45), Referenz: high strain</td>
<td>Odds Ratio (95% KI): Aktiv: 2,80 (1,09-7,17), low strain: 1,63 (0,57-4,67), Referenz: high strain</td>
<td>Alter, Bluthochdruck, Cholesterin/HDL, BMI, Tabak, DM</td>
<td>Cave: Referenz: high strain</td>
</tr>
<tr>
<td>Uchihama / 2005 / Japan</td>
<td>Patienten- kohorte / 5,6 Jahre</td>
<td>9087m / 707w / 40-65 Jahre</td>
<td>Anforderungskontrollmodell</td>
<td>Kardiovaskuläre Ereignisse *</td>
<td>Relatives Risiko (95% KI): passiv: 0,61 (0,24 - 2,73), aktiv: 2,94 (1,29 - 6,73), high strain: 1,86 (0,56 - 6,75)</td>
<td>Relatives Risiko (95% KI): passiv: 3,15 (0,55 - 18,05), aktiv: 3,97 (0,34 - 46,88), high strain: 9,05 (1,17 - 69,86)</td>
<td>Alter, syst.RR, BMI, Chol., HDL, Proteinurie, Familienanamnese Schlaganfall, Linkserzhypertrophie, Vorhofflimmern, ischämische ST-t Veränderungen, Rauchen</td>
<td>Anforderung und Kontrolle für sich betrachtet: KEINEN Effekt; sehr weitgefächte Zielgröße: dennoch geringe Fallzahlen; Patientenkohorte (Bluthochdruckpat. i.Bhd.)</td>
</tr>
<tr>
<td>André-Pettersson / 2007 / Schweden</td>
<td>Kohorte / 5,6 Jahre</td>
<td>4770w / 3063m / Mittl. Alter: 54 Jahre</td>
<td>Anforderungskontrollmodell</td>
<td>Myokardinfarkt; Schlaganfall</td>
<td>Relative hazard (95% KI): High social support at work: +Aktiv: 1,00 (0,59 - 1,79), +Passiv: 1,07 (0,57-2,00), +High strain: 1,11 (0,60-2,06), Referenz: no strain</td>
<td>Relative hazard (95% KI): High social support at work: +Aktiv: 1,99 (0,89-4,46), +Passiv: 2,07 (1,00-4,27), +High strain: 1,51 (0,70-3,27), Referenz: no strain</td>
<td>M+M: Alter, Antihyper- tensive Med, DM, aktuelles Rauchen; W: diast. RR; M: syst. RR, körperliche Inaktivität</td>
<td>Die angegebenen Resultate geben die Kombination von Jobstress und geringer Unterstützung am Arbeitsplatz wider.</td>
</tr>
</tbody>
</table>

* (Hirnblutung, Hirnnähe, subarachnoidal Blutung, Myocardinfarkt, Herzversagen, Ruptur eines Aortenaneurysmas, plötzliche eingetretener Tod während der Follow up Periode)
Tabelle 3: Jobstress als Risikofaktor für Herz-Kreislauferkrankungen in Studien mit ausschließlich weiblichen Teilnehmern

<table>
<thead>
<tr>
<th>Erstautor/Jahr/Ort</th>
<th>Studien-typ/Dauer</th>
<th>Anzahl I / Alter</th>
<th>Verwendetes Jobstressmodell</th>
<th>Zielgröße</th>
<th>Risikoschätzer</th>
<th>Adjustierungen</th>
<th>Bemerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orth-Gomer /2005/Stockholm (Schwed en)</td>
<td>Fall-Kontroll Studie / 5 Jahre</td>
<td>292 / 30-65 Jahre</td>
<td>Anforderungs-Kontroll Modell</td>
<td>akuter Myokardinfarkt</td>
<td>Odds Ratio (95% KI): vol Stress am Arbeitsplatz/Job strain (oberen zwei Quartile): 4,5 (2,5 - 8,4)</td>
<td>Alter, Menopause, Bildungsniveau, Rauchen, Physische Aktivität, DM, systolischer Blutdruck, Triglyzeride, HDL, Gesamtcholesterin, Symptome von Herzversagen</td>
<td>Kombination mit häuslich/ehelichem Stress; OR (95% KI) 10,2 (2,4 - 23,6) !!</td>
</tr>
<tr>
<td>Kuper /2006/Uppsala (Schwed en)</td>
<td>Kohorte / 11 Jahre</td>
<td>48066 / 30-50 Jahre</td>
<td>Anforderungs-Kontroll Modell</td>
<td>KHK (akuter MI und Tod durch KHK)</td>
<td>Odds Ratio (95% KI): High strain: Vollzeit: 1,13 (0,61 - 2,07) Teilzeit: 1,1 (0,7 - 1,7) Aktiv: Teilzeit: 1,2 (0,7 - 2,2) Vollzeit: 1,3 (0,5 - 3,3) Passiv: Teilzeit: 1,0 (0,5 - 2,0) Vollzeit: 1,0 (0,4 - 2,3)</td>
<td>Alter, koronare Risikofaktoren (BMI, Tabak, Diabetes, Blutdruck, körperliche Betätigung, Alkohol)</td>
<td>Keine Berufsgruppenunterscheidung; Unterscheidung in Voll und Teilzeit; follow up mittels nationaler Register</td>
</tr>
</tbody>
</table>

ASS - Acetylsalizylsäure; **BMI** – Body Mass Index; **DM** – Diabetes Mellitus; **ERI** – Effort Reward Imbalance; **HDL** – High Density Lipoprotein; **JS** – JobStrain; **KHK** – koronare Herzkrankheit; **MI** – Myokardinfarkt; **OC** – Overcommitment; **OR** Odds ratio

Tabelle 4: Jobstress als Risikofaktor für Herz-Kreislauferkrankungen in Studien mit ausschließlich männlichen Teilnehmern

<table>
<thead>
<tr>
<th>Erstautor/Jahr/Ort</th>
<th>Studien-typ/Dauer</th>
<th>Anzahl I / Alter</th>
<th>Verwendetes Jobstressmodell</th>
<th>Zielgröße</th>
<th>Risikoschätzer</th>
<th>Adjustierungen</th>
<th>Bemerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>de Bacquier /2005/Belgien</td>
<td>Kohorte / 3,2 Jahre</td>
<td>14 337 / 35-59 Jahre</td>
<td>Anforderungs-Kontroll Modell</td>
<td>Tödlich, nicht-tödlich</td>
<td>Hazard ratio (95% KI): KHK</td>
<td>Alter, Bildung, BMI, Tabak, DM, Blutdruck, Cholesterin, ISCO, Arbeitgeber</td>
<td>für low soc supp: 2,36 (1,38 - 4,01)</td>
</tr>
<tr>
<td>Netterstrom /2006/Dänemark</td>
<td>Kohorte (MONICA II) / 13 Jahre</td>
<td>659 / ≥30 Jahre</td>
<td>Anforderungs-Kontroll Modell</td>
<td>Ischämische Herzkrankung</td>
<td>Hazard ratio (95% KI): KHK</td>
<td>Alter, sozialer Status, Freizeitaktivität, Alkohol, Serumlipide</td>
<td>keine Berufsgruppenunterscheidung, insgesamt nur 6 Fragen, Altersspektrum der Subpopulation nicht genau definiert</td>
</tr>
<tr>
<td>Kivimäki /2008/Stockholm</td>
<td>Kohorte (WOLF) / 11 Jahre</td>
<td>3160 / 19-65 Jahre</td>
<td>Anforderungs-Kontroll Modell</td>
<td>Akuter MI/Herztod; Hazard ratio (95% KI): MI</td>
<td>Alter</td>
<td>keine weitere Adjustierung als Alter angegeben; nur job strain ja/nein; Auswertung der Scores nicht genau definiert</td>
<td></td>
</tr>
</tbody>
</table>

BMI – Body Mass Index; **DM** – Diabetes Mellitus; **ERI** – Effort Reward Imbalance; **HDL** – High Density Lipoprotein; **ISCO** - International Standard Classification of Occupations; „Internationale Standardklassifikation der Berufe"; **JS** – JobStrain; **KHK** – koronare Herzkrankheit; **KI**-Konfidenzintervall; **MI** – Myokardinfarkt; **OC** – Overcommitment
1.4 Zielstellung

Die Zielsetzung der vorliegenden Arbeit war die Untersuchung des Zusammenhanges zwischen Jobstress und dem Auftreten eines Myokardinfarkts unter Berücksichtigung geschlechtsspezifischer Unterschiede.
2 Methoden

2.1 Studiendesign und -setting

Für die teilnehmenden 32 Berliner Akut-Krankenhäuser galten folgende Einschlusskriterien:

1. Mindestens 200 Betten
2. Vorhandensein einer Intensivstation
3. Einverständnis von Klinikleitung, Ärztlicher Direktion und Chefärzten der jeweiligen Abteilungen und der Pflegedienstleitung

2.2 Studienpopulation

Im definierten Erhebungszeitraum wurden konsekutiv Patienten dieser Krankenhäuser eingeschlossen, deren Diagnose „akuter Myokardinfarkt“ oder „Plötzlicher Herztod“ (erfolgreich reanimiert) lautete. Die Einwilligung zur Teilnahme erfolgte schriftlich nach vorheriger standardisierter mündlicher und schriftlicher Patientenaufklärung.

Ein- und Ausschlusskriterien

Als Studienteilnehmer kamen Patienten in Frage, die seit mindestens 5 Jahren in Berlin lebten, sich mindestens 6 Monate im Jahr in Berlin aufhielten, ausreichend Deutsch sprachen und unter siebzig Jahre alt waren. Für die vorliegende Arbeit wurden außerdem ausschließlich jene Teilnehmer näher betrachtet, die zum Zeitpunkt des Interviews berufstätig waren und mindestens 10 Stunden pro Woche arbeiteten.

- charakteristische klinische Symptomatik
- spezifische Veränderungen im Elektrokardiogramm (EKG)
- Veränderungen von Enzymen im Blut, die beim Zelluntergang von Myokardgewebe entstehen

Matching

Da bei Frauen der untersuchten Altersgruppe der Myokardinfarkt seltener als bei Männern auftritt, wurden für die NaRoMi Studie pro weiblichem Myokardinfarktpatienten zwei Kontrollen und pro männlichen Myokardinfarktpatienten eine Kontrolle rekrutiert. Diese wurde jeweils nach Alter (in 5-Jahres Kategorien), Geschlecht und Krankenhaus gemacht.

2.3 Datenerhebung und -management

Die Studie wurde von einem Studienkoordinator, einer Study Nurse und 10-15 Interviewern (Studierende der Humanmedizin und ärztliche Mitarbeiter) durchgeführt und begleitet. Die Interviewer kontaktierten nach anfänglicher Schulung 1-3-mal wöchentlich die Krankenhäuser, für die sie zuständig waren, um gegebenenfalls neu aufgenommene geeignete Myokardinfarktpatienten zu rekrutieren. Während der
Datenerhebungsphase wurden alle 6-8 Wochen gemeinsame Teambesprechungen mit Projektkoordinator, Study Nurse und Interviewerinnen/Interviewern durchgeführt.

Vor Aufnahme in die Studie und Vergabe einer Patientennummer erfolgte die Aufklärung geeigneter Patienten über die Zielsetzung der Studie in standardisierter Form. Die Interviews wurden computergestützt mittels Laptops direkt am Patientenbett durchgeführt, was im Vorfeld in einer Pilotphase im April und Mai 1998 im Urban-Krankenhaus in Berlin-Kreuzberg getestet wurde.

Die Daten wurden von den Interviewern sowohl auf dem verwendeten Laptop als auch auf Disketten gespeichert, welche 14-tägig im Studienbüro ausgelesen und in einer Datenbank gespeichert wurden. Hierbei wurden die Angaben auf ihre Plausibilität geprüft und bei nicht schlüssigen Angaben kontaktierte die Study Nurse zwecks Nachfrage die Patienten telefonisch oder schriftlich.

Nachdem die Patienten einer Teilnahme zugestimmt hatten wurden die Interviews computergestützt mittels eines Laptops direkt am Patientenbett durchgeführt. Die Dauer des Interviews betrug ca. 1 – 1,5 Stunden.

Bei Patienten, die zusätzlich einer Einsicht in ihre Patientenakte zugestimmt hatten, wurden dieser die folgenden Informationen entnommen:

 Körpergewicht, Körperlänge und das Vorliegen relevanter kardiovaskulärer Diagnosen, wie Diabetes mellitus, Hypertonie und Hyperlipidämie

 Sowie für die Fälle: Lokalisation des Infarkts, Reinfarkt und/oder Plötzlicher Herztod (erfolgreich reanimiert)

 Bzw. für die Kontrollen: Genaue Diagnose und/oder Art des Unfalls

Durfte die Akte des Patienten nicht eingesehen werden, wurden o.g. Informationen so weit wie möglich im Rahmen des Interviews ermittelt.

Datenschutz und Ethikvotum

Die personenspezifischen Daten wie Name, Geschlecht oder Anschrift wurden in einem separaten Datenblatt gespeichert, welches passwortgeschützt und von den übrigen Studienunterlagen getrennt aufbewahrt wurde. Nachdem der Datensatz vollständig war wurde nur noch ein bereinigter Datensatz verwendet.

2.4. Erhebung potentieller Einflussfaktoren (kardiovaskuläre Risikofaktoren, soziodemographische Faktoren)

Im Rahmen des Fragebogens wurden unter den Abschnitten „Risikofaktoren“ und „Soziodemographie“ mögliche kardiovaskuläre Risikofaktoren abgefragt.

So wurden neben Größe, Gewicht und Alter die familiäre Vorbelastung und das Rauchverhalten erfasst. Aber auch der höchste Schulabschluss, die häusliche und die Arbeits situation wurden erfragt.

Diese Angaben wurden wie folgt kategorisiert:

- Alter in Jahren und Gewicht in Kilogramm wurden als absolute Zahlen aufgenommen und bearbeitet
- Familiäre Vorbelastung: Ja vs. Nein (wobei die Angabe „keine Ahnung“ als „Nein“ gewertet wurde)
- Rauchverhalten: Raucher vs. Ex-Raucher (> Jahr) vs. Nie-Rauchern
- Schulabschluss: kein Abitur/Fachabitur vs. Abitur o. Fachabitur
- Persönliche häusliche Situation: alleine lebend vs. mit Partner zusammenlebend

Um geeignete Patienten für die Befragung zum Thema Stress am Arbeitsplatz herauszufiltern bzw. als Adjustierungsvariablen wurden Fragen zu Erwerbsstatus, Nebentätigkeiten, Schichtarbeit und wöchentlicher Arbeitszeit gestellt:

- arbeitslos/ (Früh-)Rentner/ Hausfrau/ Sonstiges vs. erwerbstätig
- Bezahltete Tätigkeit >5h pro Woche/ Hausbau/ Pflege hilfsbedürftiger Personen vs. keine der 3 Nebentätigkeiten
- Tag- u./o. Nachtschicht vorhanden vs. nie Schichtarbeit
- mind. 1 Arbeitsplatz mit >40h vs. immer ≤40h Wochenarbeitszeit
Außerdem wurde das monatliche Haushaltsnettoeinkommen in 6 Stufen von <1000 DM (\(\cong\) 510 €) bis \(\geq\) 6500 DM (\(\cong\) 3300 €) und die körperliche Aktivität in Stunden pro Tag erfasst.

2.5 Effort-Reward Imbalance Fragebogen nach Siegrist zur Erfassung des Jobstresslevels

Befragt wurden hierzu im Rahmen der NaRoMI Studie nur Studienteilnehmer, welche zum Zeitpunkt des Interviews zehn Stunden oder mehr pro Woche arbeiteten. Zur Erfassung des Jobstresslevels wurde das Modell beruflicher Gratifikationskrisen nach Siegrist verwendet.

Der Jobstress-spezifische Teil des Fragebogens umfasste insgesamt 46 Fragen. Siebzehn Fragen bezogen sich auf den extrinsischen Aspekt, also die geforderte Vorausgabe und berufsbezogene Belohnung und 29 Fragen beleuchteten den intrinsischen Aspekt, also die berufliche Vorausgabungsneigung, genauer.
2.5.1. geforderte Verausgabung und berufsbezogene Belohnung (Effort-Reward Imbalance - ERI)

Im Folgenden findet sich der erste Teil des Jobstressfragebogens der die geforderte Verausgabung und berufsbezogene Belohnung hinterfragt:

<table>
<thead>
<tr>
<th>Fragestellung</th>
<th>Ja □</th>
<th>Nein □</th>
<th>Antwortskaala 1-5 □</th>
</tr>
</thead>
<tbody>
<tr>
<td>01 Aufgrund des hohen Arbeitsaufkommens besteht häufig großer Zeitdruck.</td>
<td>Nein □</td>
<td>Ja □</td>
<td></td>
</tr>
<tr>
<td>02 Bei meiner Arbeit werde ich häufig unterbrochen und gestört.</td>
<td>Nein □</td>
<td>Ja □</td>
<td></td>
</tr>
<tr>
<td>03 Bei meiner Arbeit habe ich viel Verantwortung zu tragen.</td>
<td>Nein □</td>
<td>Ja □</td>
<td></td>
</tr>
<tr>
<td>04 Ich bin häufig gezwungen, Überstunden zu machen.</td>
<td>Nein □</td>
<td>Ja □</td>
<td></td>
</tr>
<tr>
<td>05 Meine Arbeit ist körperlich anstrengend.</td>
<td>Nein □</td>
<td>Ja □</td>
<td></td>
</tr>
<tr>
<td>06 Im Laufe der letzten Jahre ist meine Arbeit immer mehr geworden.</td>
<td>Nein □</td>
<td>Ja □</td>
<td></td>
</tr>
<tr>
<td>07 Ich erhalte von meinen Vorgesetzten die Anerkennung, die ich verdiente.</td>
<td>Ja □</td>
<td>Nein □</td>
<td></td>
</tr>
<tr>
<td>08 Ich erhalte von meinen Kollegen die Anerkennung, die ich verdiente.</td>
<td>Ja □</td>
<td>Nein □</td>
<td></td>
</tr>
<tr>
<td>09 Ich erhalte in schwierigen Situationen angemessene Unterstützung.</td>
<td>Ja □</td>
<td>Nein □</td>
<td></td>
</tr>
<tr>
<td>10 Ich werde bei meiner Arbeit ungerecht behandelt.</td>
<td>Nein □</td>
<td>Ja □</td>
<td></td>
</tr>
<tr>
<td>11 Die Aufstiegschancen in meinem Bereich sind schlecht.</td>
<td>Nein □</td>
<td>Ja □</td>
<td></td>
</tr>
<tr>
<td>12 Ich erfahre - oder erweise - eine Verschlechterung meiner Arbeitssituation.</td>
<td>Nein □</td>
<td>Ja □</td>
<td></td>
</tr>
<tr>
<td>13 Mein eigener Arbeitsplatz ist gefährdet.</td>
<td>Nein □</td>
<td>Ja □</td>
<td></td>
</tr>
<tr>
<td>14 Wenn ich an meine Ausbildung denke, halte ich meine berufliche Stellung</td>
<td>Ja □</td>
<td>Nein □</td>
<td></td>
</tr>
<tr>
<td>15 Wenn ich an all die erbrachten Leistungen und Anstrengungen denke,</td>
<td>Ja □</td>
<td>Nein □</td>
<td></td>
</tr>
<tr>
<td>16 Wenn ich an all die erbrachten Leistungen und Anstrengungen denke,</td>
<td>Ja □</td>
<td>Nein □</td>
<td></td>
</tr>
<tr>
<td>17 Wenn ich an all die erbrachten Leistungen denke,</td>
<td>Ja □</td>
<td>Nein □</td>
<td></td>
</tr>
</tbody>
</table>

Antwortskaala

(1) belastet mich überhaupt nicht (2) belastet mich mäßig (3) belastet mich stark (4) belastet mich sehr stark (5) keine Angabe
Die hier gestellten Fragen sollten auf einer fünfstufigen Skala (nein; ja in vier „Schweregraden“ bzw. ja; nein in vier „Schweregraden“) beantwortet werden, wobei es auch die Möglichkeit gab, zum Grad der Belastung keine Angabe zu machen.

Die ersten sechs Fragen (1 bis 6 einschließlich) bezogen sich auf die geforderte Vorausgabung (Effort) und wurden folgendermaßen zur weiteren Berechnung kodiert:

(1) und (2) erhielten also den Wert 1; (3) und (4) den Wert 2.

Die letzten elf Fragen (7 bis 17 einschließlich) bezogen sich auf die berufsbezogene Belohnung (Reward), die ihrerseits in folgende Subgruppen gegliedert werden konnte: Gehalt/Förderung am Arbeitsplatz (Fragen 12, 14, 27 und 28), Anerkennung (Fragen 7, 8, 9, 10, 15) und gesicherter Arbeitsplatz (Fragen 11 und 13). Hier galt für die Fragen 7-9 sowie 14-17, dass die Angabe „ja“ wie die Angabe „belastet mich überhaupt nicht“ (1) behandelt wurde. Für die Fragen 10-13 war dies für die Angabe „nein“ der Fall.

Die Zuteilung von Wertigkeiten (1 bzw. 2) erfolgte ebenso wie bei den Fragen zur Vorausgabung (Effort). Zur Berechnung der so genannten Effort-Reward Ratio wurden nun die Werte für Effort (min 6, max. 11) und Reward (min 11, max 22) jeweils zusammengezählt und unter Verwendung eines Korrekturfaktors c im Nenner als Ratio ausgedrückt.

\[
\frac{\Sigma \text{Effort}}{\Sigma \text{Reward} \times c}
\]

Um die ungleiche Verteilung der Anzahl der Fragen zu Effort bzw. Reward auszugleichen, musste ein Korrekturfaktor miteinbezogen werden, der in diesem Fall 6/11 also 0,454545 betrug.

Ein Wert von 1,0 spiegelte eine gute Balance von Vorausgabung und Belohnung wider. Ein Wert, der über 1,0 liegt signalisierte jedoch ein Ungleichgewicht, das laut theoretischem Modell als Jobstress gewertet wurde. In dieser Studie wurde einem Teilnehmer bei einem Wert über 1 Jobstress attestiert; Teilnehmer mit einem Wert ≤1 litten dagegen nicht unter Stress am Arbeitsplatz.
2.5.2 Berufliche Verausgabungsneigung (Overcommitment - OC)

Die berufliche Verausgabungsneigung als intrinsische Komponente wurde durch den folgenden Teil des Fragebogens erfasst:

Bitte geben Sie an, in welchem Maße Sie folgenden Aussagen zustimmen oder sie ablehnen.

Verwenden Sie bitte die Antwortskala und tragen den jeweils zutreffenden Wert ein.

Antwortskala
1= stimme gar nicht zu
2= stimme nicht zu
3= stimme zu
4=stimme sehr zu
5=keine Angabe

01 Kritik nehme ich mir meistens sehr zu Herzen. □
02 Ich bin leicht beim Ehrgeiz zu packen. □
03 Schon die kleinste Störung finde ich sehr lästig. □
04 Wenn eine Aufgabe gut gemacht werden soll, kümmere ich mich am besten selbst darum. □
05 Es macht mir Spaß, gewissen Leuten Fehler nachweisen zu können. □
06 Ich mache mir einen Sport daraus, immer etwas besser oder schneller zu sein als andere. □
07 Wenn mich jemand daran hindert, meine Pflicht zu erfüllen, kann ich mich sehr aufregen. □
08 Oft rege ich mich mehr über andere auf, als es angebracht wäre. □
09 Beim Arbeiten komme ich leicht in Zeitdruck. □
10 Es passiert mir oft, daß ich schon beim Aufwachen an Arbeitsprobleme denke. □
11 Ich bin verärgert, wenn es mir mißlingt, meine Aufgaben hundertprozentig zu lösen. □
12 An meine Arbeitsaufgaben lasse ich keinen ran. □
13 Besonders enttäuscht bin ich, wenn meine Leistungen nicht so richtig anerkannt werden. □
14 Wenn andere nicht schnell kapieren, kann ich aus der Haut fahren. □
15 Wenn ich nach Hause komme, fällt mir das Abschalten von der Arbeit sehr leicht. □
16 Diejenigen, die mir am nächsten stehen sagen, ich opfere mich zu sehr für meinen Beruf auf. □
17 Ich habe nur dann Erfolgsgefühle, wenn meine Leistungen meine Erwartungen übertreffen. □
18 Bei schwierigen Aufgaben sagen die andere: „Du kriegst das hin“. □
19 Ich setze meine ganze Energie ein, um die Dinge immer im Griff zu haben. □
20 Zuerst kommt bei mir die Familie bzw. das Privatleben, dann die Arbeit. □
21 Wer bei der Zusammenarbeit meine Fähigkeiten an zweifelt, bringt mich zur Weißglut. □
22 Es stört mich nicht weiter, wenn ich in meinen Arbeitsgewohnheiten unterbrochen werde □
23 Immer wieder nehme ich mir mehr vor, als ich in die Tat umsetzen kann. □
24 Die Arbeit läßt mich selten los, das geht mir abends noch im Kopf herum. □
25 Auch das kleinste Lob spornt mich ungeheuer an. □
26 Ich finde es nicht ärgerlich, wenn mich andere übertreffen. □
27 Ich lasse mich eigentlich ganz gern mal von der Arbeit abhalten. □
28 In Gedanken bin ich immer schon bei der nächsten Aufgabe. □
29 Wenn ich etwas verschiebe, was ich eigentlich heute tun müßte, kann ich nachts nicht schlafen. □
Die 29 Fragen zur Erfassung des Ausmaßes beruflicher Verausgabungsneigung enthielten Angeben zu folgenden Subgruppen: Bedürfnis nach Anerkennung, Konkurrenzkraft, unverhältnismäßige Reizbarkeit, Unfähigkeit sich der Arbeit zu entziehen.

Die Antworten sollten anhand einer vierstufigen Skala gegeben werden. Bevor den Antworten eine Wertigkeit zugeordnet werden konnte, musste für fünf Fragen (15, 20, 22, 26, 27) die Kodierung umgekehrt werden (1=4, 2=3, 3=2, 4=1). Eine (4) für „stimme sehr zu“ wurde somit zu einer (1) und eine (2) für „stimme nicht zu“ wurde zu einer (3).

Daraufhin wurde den Kodierungen (1) und (2) ein Wert von „0“ gegeben, (3) und (4) erhielten den Wert „1“ und schließlich wurde von diesen Werten die Summe aller 29 Fragen gebildet.

Die Bandbreite der erreichbaren Punktzahl lag somit zwischen 0 und 29. Je höher der Wert des einzelnen Teilnehmers, umso eher neigt dieser zu einer überhöhten Verausgabung am Arbeitsplatz.

Die Ergebnisse bisheriger Studien deuten darauf hin, dass jene Teilnehmer, die das obere Drittel der Punkteverteilung ausmachen, Schwierigkeiten mit der Bewältigung von Stress am Arbeitsplatz haben (Siegrist 2004).

Dies wurde auch in der vorliegenden Arbeit so gehandhabt, so dass die unteren zwei Drittel als ungefährdet, das obere Drittel jedoch als Risikopersonen im Sinne von unverhältnismäßiger berufsbedingter Verausgabungsneigung eingestuft wurden.

2.6 Statistische Methoden

Fallzahlschätzung

Die Fallzahlschätzung für die Hauptstudie wurde mittels des Programms „PASS 6.0: Power Analysis and Sample Size for Windows“ vorgenommen. Für eine statistische Power von 80%, bei Signifikanzniveau von 5% (alpha) und erwarteter Exposition von 15% ergab sich, dass bei einem Einschluss von 2.000 Fällen und 2.000 Kontrollen noch eine Risikoerhöhung von 30% statistisch gesichert werden könnte (Willich 2006).

Da es sich bei der vorliegenden Arbeit um eine Analyse einer Subgruppe der Probanden, die aktuell erwerbstätig waren, handelte, lag keine gesonderte Fallzahlschätzung für diese Untersuchung vor.
Fehlende Werte

Da die Daten per Interview oder durch Einsicht in die Krankenakte gewonnen wurden, gab es im Vergleich zur Datenerhebung mittels versandter Fragebögen nur sehr wenig fehlende Werte. Kam es zu fehlenden Werten bei den potentiellen Einflussfaktoren (kardiovaskuläre Risikofaktoren, sozioökonomische Faktoren) wurde die Anzahl dieser Patienten im deskriptiven Teil erwähnt. Kam es zu fehlenden Werten bei der Erfassung des Jobstressausmaßes (Effort-Reward Imbalance Ratio und Overcommitment), wurden also einzelne Items des jeweiligen Fragebogens nicht beantwortet, wurde wie folgt verfahren: es wurde ein Minimumkriterium eingeführt, nach dem mindestens zwei Drittel der Items der jeweiligen Subskala beantwortet sein mussten, damit der Teilnehmer bei der Berechnung der Scores berücksichtigt werden konnte. Die Originalvariablen wurden entsprechend der Vorgaben von Siegrist umkodiert (s. oben). Bei den multivariablen Analysen konnten bis auf eine Fallgruppe (2 männliche, 1 weiblicher Proband) alle Studienteilnehmer berücksichtigt werden.

Statistische Analysen

Bezüglich des Einkommens wurde in etwa 20% der Fragebögen keine Angabe gemacht, so dass dieser Aspekt nicht als Adjustierungsvariable in die Analyse mit einging. Bezüglich der körperlichen Aktivität gab es zwischen Fällen und Kontrollen keine relevanten Unterschiede. Dies mag an der Art der Fragestellung gelegen haben, die sämtliche körperliche Aktivitäten (inklusive Gartenarbeit, Treppensteigen, berufliche...
körperliche Aktivität und Sport) eines normalen Werktages umfasste und gegebenenfalls zu Missverständnissen geführt haben mag.

3 Ergebnisse

3.1 Geschlechts- und Altersverteilung

Von den 4115 in die NaRoMi Studie eingeschlossenen Patienten waren 1665 derzeitig berufstätig und hatten die Fragebögen zu Jobstress beantwortet. Diese Probanden verteilten sich auf 1356 Männer mit einem mittleren Alter±SD von 52±7 Jahren und 309 Frauen mit einem mittleren Alter±SD von 51±7 Jahren (siehe auch Abbildungen 4 + 5).
3.2 Medizinische, lebensstil- und berufsbedingte Einflussfaktoren

Myokardinfarktpatientinnen hatten bei Analyse der sozioökonomischen Faktoren häufiger einen niedrigeren Schulabschluss (kein Abitur oder Fachabitur) als die Patientinnen der Kontrollgruppe, wobei der Zusammenhang zwar statistisch signifikant aber nicht sehr ausgeprägt war. Auch die Analyse der Männer bestätigte die bekannten Risikofaktoren. So waren die klassischen Risikofaktoren (Diabetes, positive Familienanamnese, arterielle Hypertonie und Rauchen) signifikant mit einem erhöhten Risiko assoziiert, einen Myokardinfarkt zu erleiden (OR zwischen 1,5 und 3,4). Im Gegensatz zu den Frauen wiesen bei den Männern auch die Ex-Raucher (>1Jahr nicht geraucht) ein erhöhtes Risiko auf. Ebenso wie bei den Frauen wurde bei den Männern mit Myokardinfarkt um ein vielfaches häufiger eine ärztlich diagnostizierte Hyperlipidämie festgestellt als bei den Männern der Kontrollgruppe (OR: 6,2).

Die Analyse sozioökonomischer Faktoren ergab, dass sowohl eine Wochenarbeitszeit von mehr als 40 Stunden als auch die Belastung durch eine Nebentätigkeit bei den Männern mit einem erhöhten Risiko für einen Myokardinfarkt assoziiert waren.

Ein fehlender höherer Schulabschluss (Abitur/Fachabitur) stand ähnlich wie bei den Frauen mit einem erhöhten Myokardinfarktrisiko in Zusammenhang, jedoch war dieser Effekt nur grenzwertig statistisch signifikant (siehe Tabelle 5).
Tabelle 5 Verteilung und univariate Odds Ratios (OR) mit 95%-Konfidenzintervallen (95%KI) aller in den Analysen verwendeten Adjustierungsvariablen

Statistisch signifikante Ergebnisse sind fett gedruckt.

<table>
<thead>
<tr>
<th>Frauen N=309</th>
<th>Männer N=1356</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fälle n (%)</td>
<td>Kontrollen n (%)</td>
</tr>
<tr>
<td>Diabetes</td>
<td>11 (68,8)</td>
</tr>
<tr>
<td>MI bei Eltern/Geschwistern</td>
<td>49 (54,4)</td>
</tr>
<tr>
<td>Hypertonie</td>
<td>42 (52,2)</td>
</tr>
<tr>
<td>Nie-Raucher (Vergl.-Katg.)</td>
<td>20 (18,0)</td>
</tr>
<tr>
<td>Ex-Raucher (>1 Jahr)</td>
<td>15 (24,2)</td>
</tr>
<tr>
<td>Derzeitige Raucher</td>
<td>67 (49,6)</td>
</tr>
<tr>
<td>Hyperlipidämie</td>
<td>40 (75,5)</td>
</tr>
<tr>
<td>BMI <25 kg/m² (Vergl.-Katg.)</td>
<td>53 (33,8)</td>
</tr>
<tr>
<td>BMI >25 kg/m²</td>
<td>29 (29,0)</td>
</tr>
<tr>
<td>BMI >30 kg/m²</td>
<td>20 (39,2)</td>
</tr>
<tr>
<td>O. A. in Patientenakte zum BMI</td>
<td>0</td>
</tr>
<tr>
<td>Ohne Abitur/Fachabitur/o.A.</td>
<td>82 (36,3)</td>
</tr>
<tr>
<td>Alleinstehend (ohne Partner)</td>
<td>31 (30,1)</td>
</tr>
<tr>
<td>Schichtarbeit (im 10-J.-Zeitraum)</td>
<td>24 (39,3)</td>
</tr>
<tr>
<td>>40 h Wochenarbeitszeit (im 10-J.-Zeitraum)</td>
<td>39 (39,4)</td>
</tr>
<tr>
<td>Belastung durch Nebentätigkeit (bezahnte Nebentätigkeit, Hausbau oder Pflegetätigkeit)</td>
<td>22 (40,0)</td>
</tr>
</tbody>
</table>

* Aufgrund fehlender Werte für Rauchstatus Angaben für: N=308 (Frauen) bzw. N=1354 (Männer)
† Fallzahl zu niedrig zur Schätzung der OR

BMI-Body Mass Index, h- hour (Stunden), KI- Konfidenzintervall, MI- Myokardinfarkt, OR- Odds Ratio
3.3 Jobstress

3.3.1 Deskriptiv (ungemachte Studienpopulation; N=1665)
Für knapp zwei Drittel der befragten 302 Frauen (61,5%) ergab sich weder eine „Effort-Reward Imbalance“ noch wiesen sie „Overcommitment“ auf. Bei jeweils knapp 2% konnten eine Kombination der Stressformen („Effort-Reward Imbalance“ und „Overcommitment“) bzw. eine „Effort-Reward Imbalance“ alleine festgestellt werden. Bei einem Drittel (31,4%) zeigte sich eine Belastung durch „Overcommitment“ (siehe Tabelle 6).

<table>
<thead>
<tr>
<th>Tabelle 6 Jobstress Arten bei Frauen und Männern</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frauen N=309</td>
</tr>
<tr>
<td>Häufigkeit (N)</td>
</tr>
<tr>
<td>beide Stressformen</td>
</tr>
<tr>
<td>Effort-Reward Imbalance (ERI)</td>
</tr>
<tr>
<td>Overcommitment (OC)</td>
</tr>
<tr>
<td>* Ohne Stress (Vergleichskategorie)</td>
</tr>
<tr>
<td>Ohne Erwerbstätigkeit/o. A.</td>
</tr>
<tr>
<td>Gesamt</td>
</tr>
</tbody>
</table>

Bei den Männern zeigte sich ein ähnliches Bild wie bei den Frauen. Ca. 2% wiesen beide Stressformen bzw. „Effort-Reward Imbalance“ alleine auf. Der Anteil derer ohne jegliche Stressart lag mit etwa 64% geringfügig höher als bei den Frauen. „Overcommitment“ wiesen ca. 28% der Männer auf (siehe Tabelle 6).
3.3.2 Logistische Regressionsanalysen (N=1665; ungematcht)

Tabelle 7 Effort-Reward Imbalance vs. keine Effort-Reward Imbalance (Referenzkategorie):
Odds Ratios mit 95%-Konfidenzintervallen in der ungemachten Population (N=1665); statistisch signifikante Ergebnisse sind fett gedruckt

<table>
<thead>
<tr>
<th></th>
<th>Rohe OR (95% KI)</th>
<th>Adjustierte OR* (95%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamt</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,41 (0,90-2,21)</td>
<td>1,26 (0,61-2,60)</td>
</tr>
<tr>
<td>Frauen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,37 (0,47-3,96)</td>
<td>0,91 (0,13-6,43)</td>
</tr>
<tr>
<td>Männer</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,43 (0,87-2,37)</td>
<td>1,48 (0,66-3,32)</td>
</tr>
</tbody>
</table>

*adjustiert für Diabetes mellitus, Myokardinfarkt in der Anamnese, arterielle Hypertonie, Rauchstatus, Body Mass Index, Schulabschluss, Schichtarbeit, Wochenarbeitszeit, Nebentätigkeit
Effort-Reward Imbalance (Missverhältnis von Verausgabung und berufsbezogener Belohnung); OR-Odds Ratio; KI-Konfidenzintervall

Tabelle 8 Overcommitment vs. kein Overcommitment (Referenzkategorie): Odds Ratios mit 95%-Konfidenzintervallen in der unangematchten Population (N=1665); statistisch signifikante Ergebnisse sind fett gedruckt

<table>
<thead>
<tr>
<th></th>
<th>Rohe OR (95% KI)</th>
<th>Adjustierte OR* (95% KI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamt</td>
<td>1,00 (0,81 – 1,23)</td>
<td>0,92 (0,65 – 1,31)</td>
</tr>
<tr>
<td>Frauen</td>
<td>1,57 (0,96 – 2,57)</td>
<td>2,92 (1,16 – 7,74)</td>
</tr>
<tr>
<td>Männer</td>
<td>0,92 (0,73 – 1,16)</td>
<td>0,76 (0,51 – 1,14)</td>
</tr>
</tbody>
</table>

*adjustiert für Diabetes mellitus, Myokardinfarkt in der Anamnese, arterielle Hypertonie, Rauchstatus, Body Mass Index, Schulabschluss, Schichtarbeit, Wochenarbeitszeit, Nebentätigkeit

OR-Odds Ratio; KI- Konfidenzintervall
3.3.3 Logistische Regressionsanalysen (N=971; gemachtd)

Von den in die vorliegende Arbeit eingeschlossenen 1665 Probanden waren nur etwas mehr als die Hälfte, 971 Patienten, entsprechend dem Design der NaRoMi Studie „matched pairs“ (Fall und Kontrolle gematcht nach Alter, Geschlecht und Krankenhaus). In einer Analyse dieser Subgruppe der 971 gematchten Patienten ergaben sich für den Zusammenhang von Effort-Reward Imbalance und Auftreten eines Myokardinfarkts ähnliche Ergebnisse wie in der ungemachten Gruppe aller 1665 Patienten. Eine Effort-Reward Imbalance war weder in der unadjustierten noch in der adjustierten Analyse mit einem erhöhten Myokardinfarktrisiko statistisch signifikant assoziiert (siehe Tabelle 9).

Tabelle 9 Effort-Reward Imbalance vs. keine Effort-Reward Imbalance (Referenzkategorie):
Odds Ratios mit 95%-Konfidenzintervallen in der gemachten Population (N=971); statistisch signifikante Ergebnisse sind fett gedruckt

<table>
<thead>
<tr>
<th></th>
<th>Rohe OR (95% KI)</th>
<th>Adjizierte OR* (95% KI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamt</td>
<td>1,28 (0,70 – 2,32)</td>
<td>1,31 (0,60 – 2,88)</td>
</tr>
<tr>
<td>Frauen</td>
<td>0,87 (0,24 – 3,13)</td>
<td>1,61 (0,14 – 17,82)</td>
</tr>
<tr>
<td>Männer</td>
<td>1,44 (0,76 – 2,72)</td>
<td>1,25 (0,52 – 3,01)</td>
</tr>
</tbody>
</table>

*adjustiert für Diabetes mellitus, Myokardinfarkt in der Anamnese, arterielle Hypertonie, Rauchstatus, Body Mass Index, Schulabschluss, Schichtarbeit, Wochenarbeitszeit, Nebentätigkeit

OR-Odds Ratio; KI- Konfidenzintervall

Tabelle 10 Overcommitment vs. kein Overcommitment (Referenzkategorie):
Odds Ratios mit 95%-Konfidenzintervallen in der ge matched Population (N=971);
statistisch signifikante Ergebnisse sind fett gedruckt

<table>
<thead>
<tr>
<th></th>
<th>Rohe OR (95% KI)</th>
<th>Adjustierte OR* (95% KI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamt</td>
<td>0,96 (0,73 – 1,27)</td>
<td>0,89 (0,61 – 1,29)</td>
</tr>
<tr>
<td>Frauen</td>
<td>2,13 (1,13 – 4,03)</td>
<td>3,12 (1,04 – 9,34)</td>
</tr>
<tr>
<td>Männer</td>
<td>0,79 (0,58 – 1,08)</td>
<td>0,73 (0,47 – 1,10)</td>
</tr>
</tbody>
</table>

*adjustiert für Diabetes mellitus, Myokardinfarkt in der Anamnese, arterielle Hypertonie, Rauchstatus, Body Mass Index, Schulabschluss, Schichtarbeit, Wochenarbeitszeit, Nebentätigkeit

OR-Odds Ratio; KI- Konfidenzintervall
4 Diskussion

4.1 Hauptergebnisse

Im Rahmen der vorliegenden Arbeit zeigte sich für die männlichen Studienteilnehmer kein statistisch signifikanter Zusammenhang zwischen Stress am Arbeitsplatz und einem Myokardinfarkt. Bei den männlichen Studienteilnehmern, die einen Myokardinfarkt erlitten hatten, konnte weder eine erhöhte Verausgabungsneigung (Overcommitment - OC) noch ein Missverhältnis von Verausgabung und berufsbezogener Belohnung (Effort-Reward Imbalance - ERI) festgestellt werden.

4.2 Studiendesign

Die Daten der vorliegenden Arbeit wurden im Rahmen der NaRoMi Studie erhoben, die als Fall-Kontroll Studie angelegt und durchgeführt wurde. Aufgrund der damaligen ökonomischen und zeitlichen Rahmenbedingungen sowie der vielschichtigen Fragestellung wurde dies als adäquates und vertretbares Studiendesign gewählt.

Die Kontrollgruppe der vorliegenden Studie wurde aus praktikablen Gründen aus Krankenhauspatienten rekrutiert. Zum einen weil die Responserate bei Bevölkerungskontrollen niedriger eingeschätzt wurde und zum anderen um die Interviewsituation von Fall und Kontrollprobanden ähnlich zu gestalten.

Basierend auf der Annahme, dass ein Patient nach einem Unfall ins nächst gelegene Krankenhaus gebracht wird und unfallchirurgische Abteilungen in den meisten Krankenhäusern existieren, wurden die Patienten für die Kontrollgruppe initial auf unfallchirurgischen Stationen rekrutiert. Nachdem ca. 600 Interviews durchgeführt
waren, wurde dieses Procedere evaluiert. Es stellte sich heraus, dass nicht ausreichend gematchte Kontrollen gefunden werden konnten. Bis dato hatten 50% der 400 Fälle eine gematchte Kontrolle. Daraufhin wurden auch allgemeinchirurgische Patienten mit den folgenden Diagnosen als Kontrollprobanden rekrutiert: „Leistenbruch (Leistenhernie)“, „gutartige Vergrößerung der Schilddrüse (Struma)“ und „darmchirurgischer Eingriff (unterhalb des Zwölffingerarms)“. Dennoch wurde primär auf den unfallchirurgischen Stationen nach geeigneten Patienten gesucht, bevor Patienten von allgemeinchirurgischen Abteilungen aufgesucht wurden. Durch dieses Vorgehen ließ sich für mindestens 90% der Fälle eine entsprechend gematchte Kontrolle zeitnah finden und dieses Verhältnis bis zum Ende der Studie aufrecht zu erhalten.

Die Kontrollen wurden nach Alter, Geschlecht und Krankenhaus zu den Fällen gematcht. Da sowohl Herzinfarktpatienten als auch Patienten mit häufigen und chirurgisch einfach zu versorgenden Erkrankungen meist in ein wohnortnahes Krankenhaus gebracht werden, könnte das Matching anhand des Krankenhauses auch als Matching für soziale Faktoren gesehen werden.

Um die Studienpopulation möglichst repräsentativ für die Berliner Bevölkerung bis 70 Jahre zu halten, wurden nur Patienten mit Wohnsitz in Berlin aufgenommen. Im Gegensatz zu den meisten früheren epidemiologischen Studien zu dieser Thematik wurden hier sowohl Männer als auch Frauen mit eingeschlossen und getrennt ausgewertet, um auch über geschlechtsspezifische Aspekte eine Aussage machen zu können. Da bei Frauen der untersuchten Altersgruppe der Myokardinfarkt seltener als bei Männern auftritt wurden pro weiblichem Patienten zwei Kontrollen und pro männlichen Patienten eine Kontrolle rekrutiert.

4.3 Adjustierungsvariablen

Die klassischen Risikofaktoren wie Diabetes, Myokardinfarkt in der Familienanamnese, arterielle Hypertonie und Rauchen in der Gesamtpopulation waren mit einem 2-3-fach erhöhten Risiko für einen Myokardinfarkt assoziiert. Dies bestätigte die Werte die im Rahmen großer Kohortenstudien wie der Framingham oder der INTERHEART Studie festgestellt wurden. Eine Ausnahme bildet das mit einer Hyperlipidämie (pathologische Erhöhung von Cholesterin oder Triglyzeriden) verknüpfte Risiko (Frauen OR=9,6 Männer OR=6,2), welches das in früheren Studien assoziierte Risiko deutlich überstieg.

Bei den Männern waren außerdem die Arbeitsbedingungen (Schichtarbeit) und die Belastung durch Nebentätigkeiten (bezahlte Nebentätigkeit, Hausbau, Pflege) mit einem erhöhten Myokardinfarktrisiko assoziiert. Dies bestätigt die Resultate von Liu et al, die zeigten dass Arbeitnehmer mit regelmäßigen Überstunden und Schlafmangel ein erhöhtes Myokardinfarktrisiko aufweisen (Liu 2002).

Männliche Myokardinfarktpatienten waren im Vergleich zur Kontrollgruppe seltener alleinstehend, lebten also mit einem Partner zusammen. Dies könnte durch die Wahl der Kontrollgruppe bedingt sein. Nach einem Unfall werden alleinstehende Menschen
eher stationär aufgenommen und länger im Krankenhaus versorgt als Patienten mit einem Partner. Daher hatten alleinstehende unfallchirurgische Patienten eine größere Chance rekrutiert zu werden und waren somit überrepräsentiert bei den Kontrollen.

4.4 Vergleich mit anderen Jobstressstudien
Ziel der vorliegenden Arbeit war es, die geschlechtsspezifischen Unterschiede des Myokardinfarktrisikos durch Stress am Arbeitsplatz zu untersuchen. Frühere Studien, die sich mit dieser Thematik auseinandergesetzt haben, wiesen unterschiedliche Herangehensweisen in Form von verwendetem Jobstressmodell, Zusammensetzung der Studienpopulation und Analyse der Daten auf (s. Tabelle 1-4). Im Folgenden sollen die für Männer und Frauen getrennt berechneten Ergebnisse der vorliegenden Arbeit mit den Ergebnissen jeweils entsprechender früherer Studien verglichen werden.

Männer

De Bacquer et al untersuchten ebenfalls eine Kohortenstudie auf den Zusammenhang von Jobstress und Myokardinfarkt (tödlich/nicht tödlich) bzw. Angina pectoris und verwendeten das Anforderungs-Kontroll Modell nach Karasek. Auch sie konnten,
ebenso wie die vorliegende Arbeit, keine statistisch signifikante Assoziation zwischen Myokardinfarkt und Jobstress feststellen (de Bacquer 2005).

2008 veröffentlichten Kivimäki et al ihre Auswertungen der WOLF Studie, einer Kohortenstudie aus dem Großraum Stockholm mit ausschließlich männlichen Studienteilnehmern zwischen 19 und 65 Jahren. Die Altersstruktur der untersuchten Population entsprach damit jener der vorgelegten Arbeit. Interessanterweise haben die Autoren einerseits die Gesamtpopulation untersucht, mit dem Ergebnis, dass Jobstress das Myokardinfarktrisiko nicht signifikant erhöht, was sich mit den vorgelegten Resultaten deckt. Andererseits haben sie die Gruppe der 19-55jährigen Studienteilnehmer untersucht, also jene Studienteilnehmer, die älter als 55 Jahre waren nicht berücksichtigt. Hierbei zeigte sich ein signifikanter Zusammenhang zwischen Jobstress und Myokardinfarkt bzw. tödlicher KHK (Hazard ratio 1,76 (95%KI 1,05-2,95)). Das Risiko für einen Myokardinfarkt durch Stress am Arbeitsplatz scheint nach dieser Analyse also in erster Linie Männer unter 55 Jahre zu betreffen (Kivimäki 2008).

Auch Peter et al kamen zu einem anderen Ergebnis als das der vorliegenden Arbeit. Sie analysierten Daten einer Fall-Kontroll Studie mit dem primären Ziel beide Jobstressmodelle miteinander zu vergleichen. Jobstress wurde also sowohl mit dem Effort-Reward Imbalance Modell nach Siegrist als auch mit dem Anforderungs-Kontroll Modell nach Karasek erfasst. Für beide Modelle ergab sich eine statistisch signifikante Erhöhung des Myokardinfarktrisikos durch Jobstress um das 1,5-fache. Allerdings wurden Effort und Reward lediglich mit insgesamt 13 Fragen erfasst und die Autoren räumen eine niedrige interne Konsistenz des Fragebogens ein (Cronbachs α = 0,32 für Effort und 0,37 für Reward). Dies kann eine nicht adäquate Risikoabschätzung bedingen und könnte, neben einer anderen Zielgröße als die in der vorliegenden Arbeit,
die unterschiedlichen Ergebnisse erklären. Weiterhin ist diese Auswertung die einzige die außerdem die intrinsische Komponente (Overcommitment) mit in ihre Analysen aufgenommen hat. Hier konnte bei den Männern kein statistisch signifikanter Zusammenhang mit einem Myokardinfarkt hergestellt werden, was die Ergebnisse der vorliegenden Arbeit bestätigt (Peter 2002).

Frauen

Die Ergebnisse für die weiblichen Studienteilnehmerinnen waren in der vorliegenden Arbeit etwas heterogener als bei den Männern. So zeigte sich einerseits keinerlei statistisch signifikanter Zusammenhang zwischen einer Effort-Reward Imbalance und dem Auftreten eines Myokardinfarktes. Andererseits war die intrinsische Komponente (Overcommitment) mit einem fast 3-fach erhöhten Myokardinfarktrisiko assoziiert. Eine fehlende Assoziation von Myokardinfarktrisiko und Jobstress findet sich auch bei anderen Autoren, die allerdings, bis auf Peter et al, Overcommitment nicht mit erfassen.

In der Auswertung der Nurses Health Study von Lee et al fand sich weder für eine koronare Herzkrankheit noch für einen Myokardinfarkt ein erhöhtes Risiko durch Jobstress. Dies bestätigt die Ergebnisse der vorliegenden Arbeit bezüglich der Erfassung der extrinsischen Komponente. Da die Autoren den Jobstresslevel mit dem Anforderungs-Kontroll Modell erfasst haben und so eine intrinsische Komponente (wie
Overcommitment) nicht mit berücksichtigen, kann diesbezüglich kein Vergleich mit der vorgelegten Arbeit unternommen werden (Lee 2002).

In der bereits erwähnten Arbeit von Bosma et al wurden Daten des WHITEHALL II Projektes unter Verwendung beider Jobstressmodelle ausgewertet. Lediglich für die Kombination „high effort AND low rewards“ ließ sich ein signifikanter Zusammenhang von Angina pectoris bzw. ärztlich diagnostizierter Ischämie mit Jobstress darstellen (OR 3,59 95%KI 1,10-11,7). Inwiefern die unterschiedliche Altersstruktur der Studienpopulationen hierbei ein Rolle spielt ist nicht zu sagen könnte aber –analog der Überlegungen bezüglich der männlichen Studienteilnehmer- ursächlich für die unterschiedlichen Ergebnisse sein (Bosma 1998).

Orth-Gomer et al analysierten Daten der „Stockholm Female Coronary Risk“ Studie und verwendeten das Anforderungs-Kontroll Modell nach Karasek. Laut dieser Auswertung war Stress am Arbeitsplatz mit einem 4,5-fach erhöhten Myokardinfarktrisiko assoziiert, entspricht also nicht den Ergebnissen der vorgelegten Arbeit. Allerdings muss hinzugefügt werden, dass die Autoren die Resultate des Anforderungs-Kontroll Fragebogens entgegen dem gewöhnlichen Procedere nicht in 4 Kategorien (low strain, aktiv, passiv, high strain) unterteilt sondern dichotomisiert haben. Es wurden also nicht –wie sonst üblich- die einzelnen Kategorien (aktiv, passiv, high strain) mit einer Referenzkategorie (low strain) verglichen (s. auch Abb. 2) sondern eine Ratio gebildet, die Aussagen darüber treffen sollte ob Jobstress vorhanden ist oder nicht. Dieses Vorgehen macht eine Vergleichbarkeit schwierig. Ein weiterer Bestandteil dieser Analyse war die Untersuchung von häuslichem/ehelichem Stress und es scheint als sei gerade die Kombination von Stress am Arbeitsplatz und häuslichem/ehelichem Stress bei Frauen ein Risikofaktor für die Entstehung eines Myokardinfarktes (OR 10,2 95% KI 2,4-23,6). Dies könnte in eine ähnliche Richtung wie die Erfassung einer intrinsischen Komponente (Overcommitment) weisen. Zwar hat eine erhöhte Verausgabungsneigung nicht direkt mit dem Arbeitsalltag zu tun –ebenso wenig wie Stress zu Hause oder in der Beziehung- aber bei einer Prädisposition durch eine erhöhte Verausgabungsneigung oder eben durch eine Belastung zu Hause/in der Beziehung kann gerade die Kombination mit Stress am Arbeitsplatz zu einem erhöhten Myokardinfarktrisiko führen (Orth-Gomer 2005).

Meta-Analysen/Reviews

zu dem Myokardinfarktrisiko von Frauen durch Stress am Arbeitsplatz machen. Für künftige Forschung empfehlen die Autoren bei Frauen nicht nur den Stress am Arbeitsplatz sondern auch begleitende Umstände wie häuslichen/ehelichen Stress abzufragen. Aus Sicht der Verfasser konnte keines der in epidemiologischen Studien verwendeten Modelle (Effort-Reward Imbalance und Anforderungs-Kontroll Model) die Stress-Krankheit Beziehung genau zu erklären. Es sei nicht klar, ob eher die intrinsischen Faktoren (z.B. Coping, erhöhte Verausgabungsneigung) oder die objektiven Arbeitsbedingungen (z. B. Zeitdruck, Arbeitsorganisation) eine stärkere Auswirkung haben. Allerdings stellten Backé et al fest, dass die mittels des Effort-Reward Imbalance Fragebogens erhobenen Daten ein konsistenteres Bild liefern und heben die Unterschiede der Geschlechter bei der Bearbeitung dieser Thematik hervor (Backé 2012).

4.5 Limitationen

Bei der Interpretation der Ergebnisse muss berücksichtigt werden, dass für die vorliegende Arbeit Daten einer Subpopulation (nur derzeit berufstätige Probanden) der NaRoMI-Studie analysiert wurden. Die Untersuchung von Jobstress als Risikofaktor für den Myokardinfarkt war nicht das Primärziel der Hauptstudie, daher lag für die Zielsetzung der vorliegenden Arbeit keine explizite Fallzahlabschätzung vor.

Da das Studiendesign einer Fall-Kontroll Studie gewählt wurde, sind Selektionsbias und Informationsbias mögliche Verzerrungsquellen. Außerdem muss erwähnt werden, dass Patienten mit akut tödlich verlaufendem Myokardinfarkt nicht erfasst wurden, somit können die vorliegenden Ergebnisse nur für nicht-tödliche Myokardinfarkte gelten.

Die Übertragbarkeit der Ergebnisse auf die gesamtdeutsche Bevölkerung (insbesondere Bewohner mittlerer und kleiner Städte und Kommunen) ist nicht möglich, da die gesamte Studienpopulation in der Großstadt Berlin rekrutiert wurde.

Für die vorliegende Arbeit konnte keine Unterscheidung nach Berufsgruppen vorgenommen werden. Analysen des Zusammenhangs zwischen Jobstress und Myokardinfarktrisiko für einzelne Berufsgruppen oder -kategorien könnten tiefergehende Erkenntnisse insbesondere für die Entwicklung gezielter präventiver Strategien liefern.
4.6 Schlussfolgerungen

Die vorliegende Arbeit versucht durch geschlechtsspezifische Betrachtung und Verwendung eines Jobstressmodells, das sowohl extrinsische als auch intrinsische Faktoren berücksichtigt, neue Erkenntnisse über berufs- und arbeitsplatzbezogene gesundheitliche Risiken zu gewinnen.

In der vorliegenden Studie zeigte sich, dass Myokardinfarktpatientinnen 3-mal häufiger eine erhöhte Verausgabungsneigung durch Stress am Arbeitsplatz aufwiesen als Kontrollprobandinnen ohne Myokardinfarkt. Bei den männlichen Studienteilnehmern war Jobstress nicht statistisch signifikant mit einem erhöhten Myokardinfarktrisiko assoziiert.

Sollten sich die Ergebnisse in anderen Studien bestätigen, wäre es gegebenenfalls sinnvoll, den geschlechtsspezifisch unterschiedlichen Umgang mit Stress am Arbeitsplatz anzuerkennen und diesem bei der Entwicklung präventiver Strategien Rechnung zu tragen.
5 Zusammenfassung

Einleitung

Die vorliegende Arbeit untersucht den Zusammenhang zwischen Jobstress und dem Auftreten eines Myokardinfarkts mittels eines Fragebogens, der ex- und intrinsische Faktoren beinhaltet, unter Berücksichtigung geschlechtsspezifischer Unterschiede.

Methoden

Ergebnisse

1665 Patienten waren derzeit berufstätig und haben die Fragebögen zu Jobstress beantwortet. Diese verteilten sich auf 1356 Männer mit einem mittleren Alter±SD von 52±7 Jahren und 309 Frauen mit einem mittleren Alter±SD von 51±7 Jahren.

Die klassischen Risikofaktoren (Diabetes, pos. Familienanamnese, arterielle Hypertonie, Rauchen) waren bei Männern statistisch signifikant mit einem erhöhten Myokardinfarktrisiko assoziiert (ORs lagen zwischen 1,5 und 3,4). Auch bei Frauen zeigte sich für die klassischen Risikofaktoren ein statistisch signifikant erhöhtes Myokardinfarktrisiko mit ORs zwischen 3,1 und 4,9. Im Gegensatz zu den Frauen wiesen bei den Männern auch die Ex-Raucher (>1Jahr nicht geraucht) ein erhöhtes Risiko auf.

Bei der Analyse der Auswirkungen von Jobstress zeigte sich bei den Männern weder für Effort-Reward-Imbalance (adj. OR 1,25; 95%KI 0,52-3,01) noch für Overcommitment (adj. OR 0,73 95%KI 0,47-1,10) ein erhöhtes Myokardinfarktrisiko.

Frauen mit Myokardinfarkt wiesen häufiger, jedoch nicht statistisch signifikant, eine Effort-Reward-Imbalance auf als Frauen ohne Myokardinfarkt (adj. OR 1,61; KI 0,14-17,82). Darüber hinaus zeigten sie 3-mal häufiger und statistisch signifikant eine erhöhte Verausgabungsneigung (Overcommitment - OC) als Frauen der Kontrollgruppe ohne Myokardinfarkt (adj. OR 3,12; 95%KI 1,04-9,34).

Schlussfolgerung

6 Literaturverzeichnis

Cannon WB. The emergency function of the adrenal medulla in pain and the major emotions. Am J Physiol. 1914; 33:(2) 356-372

Netterstrøm B, Kristensen TS, Sjøl A. “Psychological job demands increase the risk of ischaemic heart disease: a 14-year cohort study of employed Danish men” European Journal of Cardiovascular Prevention & Rehabilitation 2006; 13(3): 414-420

RKI (Hrsg.) Gesundheit in Deutschland - Gesundheitsberichterstattung des Bundes: Koronare Herzkrankeheit und Myokardininfarkt Heft 33 (2006).

7 Tabellen und Abbildungsverzeichnis

Tabelle 1 Jobstressstudien mit männlichen und weiblichen Teilnehmern
(nicht geschlechterspezifisch ausgewertet) ... 16
Tabelle 2 Jobstressstudien mit männlichen und weiblichen Teilnehmern
(geschlechtsspezifisch ausgewertet) .. 17
Tabelle 3 Jobstressstudien mit ausschließlich weiblichen Teilnehmern 18
Tabelle 4 Jobstressstudien mit ausschließlich männlichen Teilnehmern 18
Tabelle 5 Verteilung und OR mit 95%KI aller Adjustierungsvariablen 33
Tabelle 6 Jobstress Arten bei Frauen und Männern 34
Tabelle 7 Effort-Reward Imbalance vs. keine Effort-Reward Imbalance 35
Tabelle 8 Overcommitment vs. kein Overcommitment 36
Tabelle 9 Effort-Reward Imbalance vs. keine Effort-Reward Imbalance 37
Tabelle 10 Overcommitment vs. kein Overcommitment 38

Abbildung 1 Häufigste Todesursachen 2008 ... 5
Abbildung 2 Anforderungs-Kontroll Modell nach Karasek (Karsek 1981) 9
Abbildung 3 Stress als Risikofaktor kardiovaskulärer Erkrankungen 33
Abbildung 4 Altersverteilung Männer N=1356 ... 31
Abbildung 5 Altersverteilung Frauen N=304 ... 31

Alle Stellen, die wörtlich oder dem Sinne nach auf Publikationen oder Vorträgen anderer Autoren beruhen, sind als solche in korrekter Zitierung (siehe „Uniform Requirements for Manuscripts (URM)“ des ICMJE -www.icmje.org) kenntlich gemacht. Die Abschnitte zu Methodik (insbesondere praktische Arbeiten, Laborbestimmungen, statistische Aufarbeitung) und Resultaten (insbesondere Abbildungen, Graphiken und Tabellen) entsprechen den URM (s.o) und werden von mir verantwortet.

Die Bedeutung dieser eidesstattlichen Versicherung und die strafrechtlichen Folgen einer unwahren eidesstattlichen Versicherung (§156,161 des Strafgesetzbuches) sind mir bekannt und bewusst.

Datum

Unterschrift
Lebenslauf

Mein Lebenslauf wird aus datenschutzrechtlichen Gründen in der elektronischen Version meiner Arbeit nicht veröffentlicht.
Danksagungen

Dass Doktorandenkolloquium mit all seinen Dozenten am Institut für Sozialmedizin der Charité und Frau Sylvia Binting als Organisatorin desselben möchte ich an dieser Stelle ebenfalls dankend erwähnen. Für Unterstützung bei der statistischen Auswertung möchte ich mich bei Frau Prof Martina Stallmann bedanken.

Insbesondere meine „Schwiegerfamilie“ möchte ich hier nennen! Dank großartiger Schwiegereltern und Schwägerinnen hatten meine Söhne tolle Oma/Opa/Tanten Nachmittage!! Ich weiß nicht, was ich ohne Euch gemacht hätte - und die Jungs haben es genossen!

Großer Dank gilt meinem Mann, der mitunter mit beiden Kindern nach seinem Nachtdienst unterwegs war, damit mir zu Hause ein bisschen Zeit zum Arbeiten vergönnt war.

Und natürlich möchte ich meinen Eltern danken, die sich durch die Lektüre mehrerer Versionen dieser Arbeit gequält haben und deren Orthographiekenntnisse mich vor dem einen oder anderen Faux pas bewahrt haben.

Abschließend ein Wort zu meinen beiden Jungs, die mich glücklich, stolz und dankbar machen und mich an die wirklich wichtigen Dinge im Leben erinnern. Es tut mir leid, dass so viele gemeinsame Spiele in den letzten 3 Jahren ungespielt blieben…wir holen das nach!