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Summary

This thesis presents recent developments concerning two open problems related to alge-

bra and discrete geometry. In 1934, Harold S. M. Coxeter introduced Coxeter groups as

abstractions of groups generated by reflections in a vector space [Cox34]. The present

work lays out how a study of geometric and combinatorial properties of Coxeter groups

contributed to the comprehension of the two open problems. Furthermore, this thesis

presents some progress in proving the first problem, and an application of the approach

introduced in this thesis for the second problem.

Open Problem (Lattice for infinite Coxeter groups, Dyer [Dye11]). Is there, for each

infinite Coxeter group, a complete ortholattice that contains the weak order?

In Chapter 2, we study the asymptotical behaviour of roots of infinite Coxeter groups,

which is part of a joint work with Christophe Hohlweg and Vivien Ripoll [HLR13].

In particular, we show that the directions of roots tend to the isotropic cone of the

geometric representation of the root system. Moreover, using this framework, this thesis

presents a proof that there is a complete ortholattice structure enclosing the weak order

of infinite Coxeter groups of rank at most 3.

Open Problem (Existence of multiassociahedra, Jonsson [Jon05]). Let k be an integer

such that k ≥ 1. Is there a polytope whose boundary complex corresponds to the simplicial

complex of sets of diagonals of a convex polygon not containing k + 1 mutually crossing

diagonals?

In Chapter 3 we introduce, for any finite Coxeter group and any nonnegative integer k,

a spherical subword complex called multi-cluster complex. This family generalizes the

concept of multitriangulations of type A and B to arbitrary finite Coxeter groups. For

k = 1, this simplicial complex coincides with the finite cluster complex of the given

type. We study combinatorial and geometric properties of multi-cluster complexes.

In particular, we show that every spherical subword complex is the link of a face of a

multi-cluster complex. This work was realized jointly with Cesar Ceballos and Christian

Stump [CLS13]. Finally, this approach allows us to exhibit formulas counting the number

of common vertices of permutahedra and generalized associahedra for arbitrary finite

Coxeter groups and Coxeter elements.

vii





Zusammenfassung

Diese Dissertation beschäftigt sich mit den neuesten Entwicklungen in zwei noch offenen

Problemen der Algebra und diskreten Geometrie. 1934 führte Harold S. M. Coxeter die

Coxeter-Gruppen als Abstraktion von Gruppen ein, die durch Spiegelungen in einen

Vektorraum erzeugt werden. In dieser Dissertation verwenden wir geometrische und

kombinatorische Eigenschaften der Coxeter-Gruppen um das Verständnis der beiden

unten genannten Probleme zu verbessern. Genauer gesagt bietet diese Arbeit einen

ersten Schritt zum Beweis des ersten Problems, und diskutiert einen möglichen Ansatz

für die Lösung des zweiten Problems.

Offenes Problem (Verband Struktur für unendliche Coxeter-Gruppen, Dyer [Dye11]).

Gibt es einen vollständigen Orthoverband, der die schwache Ordnung der unendlichen

Coxeter-Gruppen enthält?

Im 2. Kapitel untersuchen wir die asymptotische Verhalten der Wurzeln von unendlichen

Coxeter-Gruppen. Dies ist Teil einer gemeinsamen Arbeit mit Christophe Hohlweg und

Vivien Ripoll [HLR13]. Insbesondere zeigen wir, dass die Richtungen der Wurzeln zu

den isotropen Kegeln der geometrischen Darstellung des Wurzelsystems konvergieren.

Darüber hinaus demonstrieren wir mit diesem Ansatz, dass ein vollständiger Orthover-

band für die schwache Ordnung der unendlichen Coxeter-Gruppen von Rang höchstens 3

existiert.

Offenes Problem (Existenz der Multiassoziaeder, Jonsson [Jon05]). Sei k eine ganze

Zahl ≥ 1. Existiert ein Polytop, dessen Randkomplex dem Simplizialkomplex der Menge

von Diagonalen eines konvexen Polygons entspricht, die keine k + 1 sich paarweise

schneidende Diagonalen enthalten?

Im 3. Kapitel führen wir für jede Coxeter-Gruppe und jede nichtnegative ganze Zahl k

einen sphärischen Teilwortkomplex ein, den sogenannten Multi-Cluster Komplex. Diese

Familie verallgemeinert das Konzept von Multitriangulierungen der Typen A und B auf

beliebige endliche Coxeter-Gruppen. Für k = 1 fällt dieser Simplizialkomplex mit dem

endlichen Cluster Komplex des gegebenen Typs zusammen. Wir untersuchen kombina-

torische und geometrische Eigenschaften von Multi-Cluster Komplexen. Insbesondere

zeigen wir, dass jeder sphärische Teilwortkomplex der Link einer Seite in einem Multi-

Cluster Komplex ist. Dieser Teil der Dissertation basiert auf einer gemeinsamen Arbeit

mit Cesar Ceballos and Christian Stump [CLS13]. Abschließend ermöglicht es uns dieser

Ansatz Formeln zu entwickeln, die die Anzahl der gemeinsamen Eckpunkte von Permu-

taedern und verallgemeinerten Assoziaedern für beliebige endliche Coxeter-Gruppen und

Coxeter-Elemente berechnen.
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Hohlweg, François Bergeron, Christophe Reutenauer, Pierre Bouchard, Michel Mendès

France, Vincent Pilaud, and Francisco Santos, who had a thriving influence through out

my studies. I would like to thank all my collegues (past and present) from LaCIM, the

Berlin Mathematical School, the research training group Methods for Discrete Struc-

tures, the workgroup Discrete Geometry with whom I spent a wonderful time, and espe-

cially to Giulia Battiston, Tommaso Benacchio, Giovanni De Gaetano, Stefan Keil, Kaie

Kubjas, Barbara Jung, Emerson Leon, Julie Meißner, Jennifer Rasch, Annie Raymond,
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Notation

Z,N,R the integers, the nonnegative integers, the real numbers

℘(X) the power set of X

(W,S) a Coxeter system: a Coxeter group W with generators S

W〈s〉 the parabolic subgroup of W generated by S \ {s}
Γ the Coxeter graph

V a real vector space of dimension n

n the dimension of V / cardinality of S

B(·, ·) the bilinear form of a geometric representation

1, e the identity transformation of V , the identity element of W

∆ a simple system / basis of V

sα(v) reflection of the vector v ∈ V with respect to the vector α

Φ the root system

Φ̂ the normalized roots

Φ〈s〉 the root system associated to W〈s〉

Φ+ the positive roots

Φ≥−1 the almost positive roots

(Φ,∆) a based root system

h the Coxeter number of (finite irreducible) W

N the cardinality of Φ+ (when (W,S) is finite)

inv(w) the inversion set of w ∈W
dp(α) the depth of a root α ∈ Φ+

c a Coxeter element

w◦ the longest element of a finite Coxeter group W

ψ the involution ψ(s) = w−1
◦ sw◦

w a reduced expression for the element w

w(c) the c-sorting word for the element w

rev(w) the reverse of a word w

cone(E) the polyhedral cone over the set of vectors E ⊂ V

xv



conv(E) the convex hull of the set of vectors E ⊂ V
span(E) the linear span over the set of vectors E ⊂ V
int(E) the interior of a set E ⊂ V
M an alignment

A
M

the closure of the set A with respect to the alignment M

Ac the set Φ+ \A
B(Φ+), C(Φ+),S(Φ+) biclosed sets, biconvex sets and separable sets of Φ+

∆m the boundary complex of the dual associahedron

∆m,k the simplicial complex of multitriangulations

∆(Q, π) subword complex associated to the word Q and the element π

δ(Q) the Demazure product of Q

Q	
s

the rotation of the letter Q along the initial letter s

‖c the c-compatibility relation on almost positive roots

Lrc bijection between letters of cw◦(c) and almost positive roots

rF the root function associated to a facet F

∆k
c (W ) the multi-cluster complex of type W

≺w◦ the natural partial order on letters of w◦

Z a bounded cylinder
	
w◦ a cyclic longest word

Zw◦ the cylindric graph of w◦

Lw◦ the loops of Zw◦

T , GT a tile of Zw◦ , the boundary graph of T

κ, κ∗ a cut of Zw◦ , its opposite cut

Tκ the support of a cut κ

T∨κ,κ′ the split tile of two crossing cuts κ and κ′

Z� the cylindric graph of sorting words

Iκ(T ), Sκ(T ) inferior and superior poset of a tile T in the support of a cut κ

Conventions. For edges s—t labeled by∞ in a Coxeter graph where the value B(αs, αt)

is strictly smaller than −1, we adopt Peter Abramenko & Kenneth S. Brown’s notation

[AB08, Section 10.3.3]. The corresponding edges are dashed and labeled with the value

B(αs, αt) < −1, αs, αt ∈ ∆. Words in the alphabet S are written as a sequence between

brackets (a1, a2, . . . , ar) and bold letters such as w denote them. Group elements are

written as a concatenation of letters a1a2 · · · ar and normal script such as w denote

them. Letters of words are considered with their embedding in the word: two letters

representing the same generators are considered different, since they are at different

positions.



Introduction

Coxeter groups are combinatorial abstractions of groups generated by reflections of a

vector space. It is with no surprise that they arise in many fields of mathematics when-

ever symmetry is involved. For instance, in geometry, they are studied as the symmetry

groups of regular polytopes; in algebra, they are studied in relation to root systems of

semi-simple Lie algebras. Furthermore, by their exceptional definition, Coxeter groups

possess a rich combinatorial structure. In this thesis, we study two seemingly unrelated

topics—the weak order of infinite Coxeter groups and generalizations of triangulations

of a polygon—where geometric and combinatorial properties of Coxeter groups play a

prominent role. At first sight, the weak order of Coxeter groups—a combinatorial object

defined from an abstract group—and triangulations—simplicial complexes on a plane—

are not directly related. The former has become classical for algebraic combinatorialists

for the study of Coxeter groups [BB05, Chapter 3], [Hum92, Section 5.9], whereas the

latter are classical tools for discrete geometers and topologists; see the recent book

[DLRS10]. The relation between the weak order and triangulations subtly lies in the

notion of reflection order [Dye93]. On the one hand, reflection orders are important in

the study of Bruhat order, Hecke algebras, and Kazhdan–Lusztig polynomials. In finite

Coxeter groups, reflection orders correspond to maximal chains in the weak order, which

correspond to reduced expressions of the longest element. However, in infinite Coxeter

groups, there is no element of maximal length and maximal chains of the weak order

are infinite. Therefore, reflection orders need a different description in the infinite case.

On the other hand, reflection orders are related to sorting words of the longest element

in finite Coxeter groups, which are related to finite cluster complexes in the theory of

cluster algebras.

In Chapter 2, we study a conjecture of Matthew Dyer concerning an extension of the

weak order of infinite Coxeter groups to a complete ortholattice, which would provide

a geometric description for reflection orders. In studying this conjecture, a difficulty

came up: We do not know much about the distribution of the roots of an infinite root

system over the space. Taking up this challenge, the following pictures (Figures 1(a) and

1(b)) were obtained using the computer algebra system Sage [Sage]. They suggest that
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framework of several recent studies about infinite root systems of Coxeter groups (see

for instance [BD10, Dye10, Dye11, Fu11b, Fu11a]).

Taking up this framework and using the computer algebra system Sage, we obtain the

following pictures (Figures 1(a) and 1(b)), which suggests that roots have a very inter-

esting asymptotical behaviour. In this article, we initiate the study of this behaviour.
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for instance [BD10, Dye10, Dye11, Fu11b, Fu11a]).

Taking up this framework and using the computer algebra system Sage, we obtain the

following pictures (Figures 1(a) and 1(b)), which suggests that roots have a very inter-

esting asymptotical behaviour. In this article, we initiate the study of this behaviour.
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(a) The first 100 normalized roots, around

the isotropic cone Q, for the rank 3 Coxeter

group with the depicted graph.

(b) The first 1665 normalized roots, around

the isotropic cone Q, for the rank 4 Coxeter

group with the depicted graph.

Figure 1: Root systems for two infinite Coxeter groups computed via the computer
algebra system Sage.

Let us explain what we see in these pictures. First, we fix a geometric action of W

on a finite dimensional real vector space V , which implies the data of a symmetric

bilinear form B, and a simple system ∆, which is a basis for V (the framework we use

is introduced in detail in Section ??). In Section 2.2, we first show that the norm of

an (injective) sequence of roots diverges to infinity. So, in order to visualize “limits” of

roots (actually the limits of their directions), we cut the picture by an affine hyperplane.

Define V1 to be the affine hyperplane spanned by the points corresponding to the simple

roots: Figures 1(a) and (b) live in V1 and the triangle (resp. tetrahedron) is the convex

hull of the simple roots. The blue dots are the intersection of V1 with the rays spanned

by the roots, and we call them normalized roots. The red part depicts the isotropic cone

Q = {v ∈ V | B(v, v) = 0} of the quadratic form associated to B. We see on the pictures

that the normalized roots tend to converge to points on Q, and that the set of limit

points has an interesting structure: it seems to be equal to Q in Figure 1(a), whereas in

Figure 1(b) it is similar to an Apollonian gasket.

Let E be the set of accumulation points of the normalized roots, and call limit roots

the points of E. After having explained our framework in Section ??, we state our
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on a finite dimensional real vector space V , which implies the data of a symmetric

bilinear form B, and a simple system ∆, which is a basis for V (the framework we use

is introduced in detail in Section ??). In Section 2.2, we first show that the norm of

an (injective) sequence of roots diverges to infinity. So, in order to visualize “limits” of

roots (actually the limits of their directions), we cut the picture by an affine hyperplane.

Define V1 to be the affine hyperplane spanned by the points corresponding to the simple

roots: Figures 1(a) and (b) live in V1 and the triangle (resp. tetrahedron) is the convex

hull of the simple roots. The blue dots are the intersection of V1 with the rays spanned

by the roots, and we call them normalized roots. The red part depicts the isotropic cone

Q = {v ∈ V | B(v, v) = 0} of the quadratic form associated to B. We see on the pictures

that the normalized roots tend to converge to points on Q, and that the set of limit

points has an interesting structure: it seems to be equal to Q in Figure 1(a), whereas in

Figure 1(b) it is similar to an Apollonian gasket.

Let E be the set of accumulation points of the normalized roots, and call limit roots

the points of E. After having explained our framework in Section ??, we state our
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(a) The first 100 normalized roots, around

the isotropic cone Q, for the rank 3 Coxeter

group with the depicted graph.

(b) The first 3890 normalized roots, around

the isotropic cone Q, for the rank 4 Coxeter

group with the depicted graph.

Figure 1: Root systems for two infinite Coxeter groups computed via the computer
algebra system Sage

roots have a very interesting asymptotical behaviour. This motivated the study of the

asymptotical behaviour of roots of infinite Coxeter groups, see [HLR13] and its sequel

[DHR13]. Let us explain what we see in these pictures. First, we fix a geometric action

of an infinite Coxeter group W on a finite dimensional real vector space V , which implies

the data of a symmetric bilinear form B, and a simple system ∆, which is a basis for V .

In order to visualize the roots, we normalize the positive cone by looking at the affine

hyperplane V1 spanned by the points corresponding to the simple roots: Figures 1(a)

and (b) live in V1 and the triangle resp. tetrahedron is the convex hull of the simple

roots. The dots are the intersection of V1 with the rays spanned by the roots. The closed

curve resp. the closed surface depicts the isotropic cone Q = {v ∈ V : B(v, v) = 0} of

the quadratic form associated to B. We see on the pictures that the normalized roots

tend to converge to points on Q, and that the set of limit points has an interesting

structure: it seems to be equal to Q in Fig. 1(a), whereas in Fig. 1(b) it is similar

to an Apollonian gasket. Using this framework, this thesis contains, in Section 2.4, a

proof that the weak order of Coxeter groups of rank at most 3 can be extended to a

complete ortholattice where the join and meet operations are defined geometrically. As

we will see, in Chapter 2, geometric objects play an important role in understanding the

combinatorial structure of Coxeter groups.

In Chapter 3, this thesis introduces a twofold generalization of the notion of triangu-

lations of a convex polygon, the multi-cluster complexes, which subsumes naturally the

following two generalizations. On the one hand, in cluster algebra theory, triangulations

are generalized by cluster complexes of finite type. They were introduced by Sergey

Fomin and Andrei Zelevinsky to encode exchange graphs of cluster algebras [FZ03].
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Nathan Reading then showed that the definition of cluster complexes can be extended

to all finite Coxeter groups [Rea07a, Rea07b]. The cluster complex of type A is isomor-

phic to the simplicial complex of sets of diagonals of a convex polygon which are mutually

noncrossing (the boundary complex of the dual associahedron). On the other hand, in

convex geometry, k-triangulations (or multitriangulations), with k ≥ 1, are formed by

maximal sets of diagonals of a convex polygon which do not contain k+1 diagonals that

mutually cross. When k = 1, we get back the original notion of triangulations. In Sec-

tion 3.9, we use this framework to derive formulas that enumerate the common vertices

of W -permutahedra and c-generalized associahedra, see [HLT11], [MHPS12, Chapter 8].

To obtain this natural generalization, we present a new combinatorial description of

cluster complexes using subword complexes. These were introduced by Allen Knutson

and Ezra Miller, first in type A to study the combinatorics of determinantal ideals and

Schubert polynomials [KM05], and then for all Coxeter groups in [KM04]. We provide,

for any finite Coxeter group W and any Coxeter element c ∈ W , a subword complex

which is isomorphic to the c-cluster complex of the corresponding type, and we thus ob-

tain an explicit type-free characterization of c-clusters. The present approach allows us

to define a new family of simplicial complexes by introducing an additional parameter k,

such that one obtains c-cluster complexes for k = 1. In type A, this simplicial complex

turns out to be isomorphic to the simplicial complex of multitriangulations of a convex

polygon which was described by Christian Stump in [Stu11], and, in a similar manner,

by Vincent Pilaud and Michel Pocchiola in the framework of sorting networks [PP12].

In type B, we obtain that this simplicial complex is isomorphic to the simplicial complex

of centrally symmetric multitriangulations of a regular convex polygon. Multi-cluster

complexes are different from generalized cluster complexes as defined by Sergey Fomin

and Nathan Reading [FR05]. In the generalized cluster complex, the vertices are given

by the simple negative roots together with several distinguished copies of the positive

roots, while the vertices of the multi-cluster complex correspond to the positive roots

together with several distinguished copies of the simple negative roots. Multi-cluster

complexes turn out to be intimately related to Auslander–Reiten quivers and repetition

quivers [GR97]. In particular, the Auslander–Reiten translate on facets of multi-cluster

complexes in types A and B corresponds to cyclic rotation of (centrally symmetric)

multitriangulations. Furthermore, multi-cluster complexes uniformize questions about

multitriangulations, subword complexes, and cluster complexes. One important example

concerns the open problem of realizing the simplicial complexes of (centrally symmetric)

multitriangulations and spherical subword complexes as boundary complexes of convex

polytopes. In Chapter 3, we will see that the combinatorial structure of Coxeter groups

plays an unifying role in the study of these generalized triangulations.





Chapter 1

Coxeter groups and discrete

geometry

This chapter introduces the concepts used in this thesis. Section 1.1 deals with classic

notions of the theory of Coxeter groups. Section 1.2 describes geometric representations

of Coxeter groups with examples. Finally, Section 1.3 recalls the notion of multitrian-

gulations.

1.1 Basic notions on Coxeter groups

Throughout the text, (W,S) denotes a Coxeter system. The set S ⊆ W is a set of

generators for the group W . The generators in S are subject only to relations of the

form (st)ms,t = e, where ms,t ∈ {1, 2, . . . ,∞} for each pair of generators s, t ∈ S, with

ms,s = 1 and ms,t ≥ 2 for s 6= t. We write ms,t = ∞ if the product st has infinite

order in W . The latter relations are called braid relations of order ms,t. When ms,t = 2,

the generators s and t commute in W . The cardinality |S| of S is called the rank of

(W,S). In this thesis, we will always assume that Coxeter systems have finite rank n.

Chapter 2 deals with Coxeter systems where the group W is infinite and Chapter 3 with

finite ones. The Coxeter graph Γ of a Coxeter system (W,S) is the graph with vertices

labeled by elements of S, edges between two vertices s and t whenever ms,t ≥ 3, and

when ms,t > 3, the edge between s and t comes with a label ms,t. A Coxeter system

is irreducible if the Coxeter graph Γ is connected. Denote by c a Coxeter element, i.e.,

the product of the generators in S in some order. For finite Coxeter systems, consider

a bipartition of the set S = S− t S+ such that any two generators in Sε commute (this

is possible since the graph of a finite Coxeter group is a tree), the Coxeter element

c∗ = c−c+, where cε =
∏
s∈Sε s, is called a bipartite Coxeter element. Coxeter elements

5
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of W are in bijection with acyclic orientations of the Coxeter graph Γ, see [Shi97]. A

noncommuting pair s, t ∈ S has the orientation s −→ t if and only if s comes before t

in c, i.e., s comes before t in any reduced expression for c. For finite irreducible Coxeter

groups W , the smallest integer h for which ch = e ∈ W is called the Coxeter number

of W . The Coxeter number does not depend on the choice of Coxeter element c, since

Coxeter elements belong to the same conjugacy class. The length function on W is given

by `(w) = min{r : w = s1 · · · sr, si ∈ S}. An expression for w of minimal length is called

reduced. In finite Coxeter groups, the unique longest element is denoted by w◦, and its

length is given by `(w◦) = N := nh/2. For reading convenience, a reduced expression

w◦ = (w1, · · · , wN ) of w◦ will be called a longest word. Let ψ : S → S be the involution

given by ψ(s) = w−1
◦ sw◦. Using the fact that w◦ is the longest element, ψ is verified to

be an automorphism of the Coxeter graph. It is known that ψ is the identity on S if

and only if w◦ = −1. For more details about the involution ψ, see [BB05, Exercise 10,

Chapter 4]). Two reduced expressions (or words) coincide up to commutations if they

can be obtained from each other by a sequence of braid relations of order 2. A generator

s ∈ S is called initial or final in a reduced expression w if `(sw) < `(w) or `(ws) < `(w),

respectively. Let T = {wsw−1 : w ∈ W and s ∈ S} be the set of reflexions of W . The

(left) inversion set inv(w) of an element w = w1w2 · · ·wr, with `(w) = r and wi ∈ S, of

W is

{w1, w1w2w
−1
1 , . . . , (w1 · · ·wk−1)wk(w1 · · ·wk−1)−1}.

The inversion set inv(w) does not depend on the choice of reduced expression for w, see,

for instance, [Hum92, Chapter 5.6, Exercise 1] for an equivalent formulation. Inversion

sets have the following important property (see [BB05, Chapter 1]):

`(w) < `(ws)⇐⇒ inv(w) ⊂ inv(ws).

The right weak order (W,≤) is the poset (i.e. partially ordered set) whose cover relations

are w ≤ ws, where `(w) < `(ws), w ∈ W , and s ∈ S. Alternatively, this poset is

isomorphic to the (left) inversion sets ordered by inclusion where the length `(w) of an

element w is viewed as the cardinality of inv(w), see [BB05, Proposition 3.1.3]. This

poset is a complete meet-semilattice [BB05, Theorem 3.2.1] which is graded by the length

function and with finitely many elements of fixed length.

Definition 1.1 ([BB05, Section 3.2]). A lattice L with bottom element 0̂ and top

element 1̂ is called an ortholattice if there exists a map x 7→ x⊥ on L such that the

following properties hold:

(i) x ∨ x⊥ = 1̂, x ∧ x⊥ = 0̂, for all x ∈ L,

(ii) x ≤ y ⇒ x⊥ ≥ y⊥, for all x, y ∈ L,

(iii) x⊥⊥ = x, for all x ∈ L.
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For finite Coxeter groups, since there is a longest element, the join of any set of elements

of W always exists. Therefore, when W is finite, the weak order forms a complete lattice

and the translation w 7→ ww◦ gives the structure of an ortholattice to the poset (W,≤).

Example 1.2. The Hasse diagram of the weak order of the Coxeter groups A2, B2

and I2(∞) with generating set S = {s1, s2} are depicted in Fig. 1.1. In type I2(∞), the

join of s1 and s2 does not exist.

e

s1 s2

s1s2 s2s1

s1s2s1

e

s1 s2

s1s2 s2s1

s1s2s1 s2s1s2

s1s2s1s2

e

s1 s2

s1s2 s2s1

s1s2s1 s2s1s2

(a) A2 (b) B2 (c) I2(∞)

Figure 1.1: Hasse diagrams of the Coxeter groups A2, B2 and I2(∞).

In Chapter 2, we will see how the weak order poset can be defined on inversion sets

geometrically, without the use of the weak order. Furthermore, in the case of infinite

Coxeter groups, we investigate how the meet-semilattice could be extended to a complete

ortholattice. We refer the reader to the books of Nicolas Bourbaki [Bou68], James E.

Humphreys [Hum92], and Anders Björner & Francesco Brenti [BB05] for further defini-

tions and for detailed introductions to Coxeter groups.

1.2 Geometric representations of Coxeter groups

Coxeter groups are modeled to be the abstract combinatorial counterparts of reflection

groups, i.e., groups generated by reflections. Any finite Coxeter group can be represented

geometrically as a finite reflection group. This property still holds for infinite Coxeter

groups, for some adapted definition of reflection that we recall now. The classical geo-

metric representation is defined as follows, see [Hum92, Section 5.3-5.4]. Consider a real

vector space V of dimension n, with basis ∆ = {αs : s ∈ S} and let B be the symmetric

bilinear form defined by:

B(αs, αt) =




− cos

(
π

ms,t

)
if ms,t <∞,

−1 if ms,t =∞.
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For α ∈ V such that B(α, α) 6= 0, denote by sα the map

sα(v) = v − 2
B(α, v)

B(α, α)
α, for any v ∈ V. (1.1)

Denote by Hα := {v ∈ V : B(α, v) = 0} the orthogonal space of the line Rα with

respect to the form B. Since B(α, α) 6= 0, we have Hα ⊕ Rα = V . It is straightforward

to check that sα fixes Hα pointwise, that sα(α) = −α, and that sα also preserves the

form B, so it lies in the associated orthogonal group OB(V ). We call sα the B-reflection

associated to α (or simply reflection whenever B is clear). When B is a scalar product,

this is of course the usual formula for a Euclidean reflection. Then any element s of

S acts on V as the B-reflection associated to αs (as defined in Equation (1.1)), i.e.,

s(v) = v − 2B(αs, v) αs for v ∈ V . This action induces a faithful action of W on V ,

which preserves the form B; thus we denote by the same letter an element of W and its

associated element of OB(V ).

The root system of W is a way to encode the reflections T of the Coxeter group, i.e.,

the conjugates of elements of S, which are called simple reflections. The elements

of ∆ = {αs : s ∈ S} are called simple roots of W , and the root system Φ of W is de-

fined to be the orbit of ∆ under the action of W . By construction, any root ρ ∈ Φ gives

rise to the reflection sρ of W , which is conjugate to some sα ∈ S. Thus reflections in T

correspond to pairs of opposed roots of Φ.

A reflection subgroup of W is a subgroup of W generated by reflections; so it can be built

from a subset of Φ. It turns out that any such reflection subgroup is again a Coxeter

group, with some canonical generators [Deo89],[Dye90]. So it is natural to desire to apply

results valid for W to a reflection subgroup simply by restriction. A major drawback of

the classical geometric representation we described above is that it is not “functorial”

with respect to the reflection subgroups. It is possible that the representation of some

reflection subgroups W ′ of W , induced (by restriction) by the geometric representation

of W , is not the same as the geometric representation of W ′ as a Coxeter group; see

Example 1.3 below.

Example 1.3 (Reflection subgroups of rank 2). Let us consider the Coxeter group of

rank 3 with S = {sα, sβ, sγ} and msα,sβ = 5, msβ ,sγ = msα,sγ = 3 (whose Coxeter dia-

gram is on Fig. 1(a) on page 2). Take the root ρ = sαsβ(α) = sβsα(β), so that sρ corre-

sponds to the longest element in the subgroup 〈sα, sβ〉: sρ = sαsβsαsβsα = sβsαsβsαsβ.

We compute ρ = 1+
√

5
2 (α + β). Consider the reflection subgroup W ′ generated by sγ

and sρ. The product sγsρ has infinite order, so W ′ is an infinite dihedral group, with

generators sγ and sρ. But, if B denotes the bilinear form associated to the Coxeter

group W , we get: B(γ, ρ) = −1+
√

5
2 6= −1. So, the restriction to W ′ of the geometric

representation of W does not correspond to the classical geometric representation of W ′



1.2. Geometric representations of Coxeter groups 9

as an infinite dihedral group. In Example 2.21 we give a geometric interpretation of this

fact, which is visible in Fig. 1(a).

To solve this problem, we relax the requirements on the bilinear form B used to represent

the group W : we allow the values of some B(α, β) to be any real numbers less than or

equal to −1 (when the associated product of reflections sαsβ has infinite order). The

notion of a based root system is better adapted here. It is used for instance in [How96],

[Kra09], and [BD10].

Definition 1.4. Let V be a real vector space, equipped with a bilinear form B. Consider

a finite subset ∆ of V such that

(i) ∆ is positively independent1: If
∑

α∈∆ λαα = 0 with all λα ≥ 0, then all λα = 0,

(ii) for all α, β ∈ ∆, with α 6= β, B(α, β) ∈ (−∞,−1] ∪
{
− cos

(
π
k

)
, k ∈ Z≥2

}
,

(iii) for all α ∈ ∆, B(α, α) = 1.

Such a set ∆ is called a simple system. Denote by S := {sα : α ∈ ∆} the set of B-

reflections associated to elements in ∆ (see Equation (1.1)). Let W be the subgroup of

OB(V ) generated by S, and Φ be the orbit of ∆ under the action of W . The pair (Φ,∆)

is a based root system in (V,B); its rank is the cardinality of ∆, i.e., the cardinality of S.

We call the pair (V,B) a geometric representation2 of W .

Remark 1.5. • Condition (ii) is natural to ensure that subrepresentations are again

geometric representation in the sense of this new definition. We saw in Example 1.3

that this does not work for the usual definition.

• In Condition (i), the relaxation is more subtle, but also necessary if we want a nice

functorial behaviour on the subrepresentations. For instance, for some Coxeter

group W there exists a reflection subgroup (as a Coxeter group) of rank strictly

higher than that of W ; see [HLR13, Example 5.1].

• Even if ∆ is not anymore required to be a basis, the condition that it is positively

independent is necessary to keep the usual properties of root systems, in particular

the distinction between the set of positive roots and the set of negative roots.

This generalization of root system enjoys the following expected properties. See, for

instance, [BD10, Kra09]).

• (W,S) is a Coxeter system, where the order of sαsβ is k whenever B(α, β) =

− cos(πk ), and the order of sαsβ is ∞ if B(α, β) ≤ −1.

1Geometrically, this means we require that 0 does not lie in the affine hull of the points of ∆, i.e. the
cone spanned by ∆ is pointed.

2The triplet (V,∆, B) is sometimes called a Coxeter datum in the literature, see, for instance, [Fu12b,
Fu12a].
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• The convex cone cone(∆) consisting of all positive linear combinations of elements

of ∆ allows to define the set of positive roots Φ+ := Φ ∩ cone(∆), and then Φ =

Φ+ t (−Φ+) and Rρ ∩ Φ = {ρ,−ρ}, for ρ ∈ Φ.

If all ms,t are finite, then the only possible representation (supposing that ∆ is a basis)

is the classical one. In particular, when the form B is positive definite, then Φ is a finite

root system and contains no more information than its associated finite Coxeter group.

Definition 1.6. A based root system (Φ,∆) is an affine based root system when the

form B is positive semidefinite, but not definite.

Traditionally, the Coxeter group itself is said to be affine if the root system of its classical

geometric representation is affine.

Example 1.7 (Irreducible affine root systems). The infinite dihedral group I2(∞) has

more than one geometric representation. If Φ is an infinite root system of rank 2, with

simple roots α, β, then B(α, β) ≤ −1, and Φ is affine if and only if B(α, β) = −1, i.e.,

when Φ corresponds to the classical geometric representation of W . We give a geometric

description of these two cases in Fig. 2.3. However, if W is irreducible of rank ≥ 3, then Φ

is affine if and only if W is affine, because there is no label ∞ in an irreducible affine

Coxeter graph of rank ≥ 3.

All the desired properties of the root system and of positive and negative roots still hold

for a based root system. In particular, the following statements are still valid in this

new framework.

Proposition 1.8. Let (Φ,∆) be a based root system in (V,B), with associated Coxeter

system (W,S).

(i) The set {B(α, ρ) : α ∈ ∆, ρ ∈ Φ+ and |B(α, ρ)| < 1} is finite.

(ii) Denote by Q the isotropic cone3:

Q := {v ∈ V : q(v) = 0}, where q(v) = B(v, v)

Let ρ1 6= ρ2 be two roots in Φ+. Denote by W ′ the dihedral reflection subgroup

of W generated by the two reflections sρ1 and sρ2, and

Φ′ := {ρ ∈ Φ : sρ ∈W ′} .

Then there exists ∆′ ⊆ Φ+ ∩ Φ′ of cardinality 2 such that (Φ′,∆′) is a based root

system of rank 2, with associated Coxeter group W ′. Moreover:

3In Section 1.3 and Chapter 3, the letter Q is used to denote a word in S. Since both notions will
not be used simultaneously, no confusion should be possible.
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(a) Φ′ is infinite if and only if the plane span(ρ1, ρ2) intersects Q \ {0}, if and

only if |B(ρ1, ρ2)| ≥ 1,

(b) Φ′ is affine if and only if span(ρ1, ρ2)∩Q is a line, if and only if B(ρ1, ρ2) =

±1,

(c) when Φ′ is infinite, ∆′ = {ρ1, ρ2} if and only if B(ρ1, ρ2) ≤ −1.

Proof. The nontrivial parts of the proofs of these statements in the context of a based

root system are word for word the same as the proofs in the case of the root system of

the classical geometric representation. The reader may find these for instance in [BB05,

Section 4.5]. The last statement (ii)(c) is a consequence of [Dye90, Theorem 4.4]; see

also [Fu12a, Theorem 1.8 (ii)].

Let (W,S) be a Coxeter group. Fix a matrix A = (as,t)s,t∈S such that





as,t = − cos
(

π
ms,t

)
if ms,t <∞,

as,t ≤ −1 if ms,t =∞.
(1.2)

We associate to the matrix A a canonical geometric representation (VA, BA) of W as

follows.

• VA is a real vector space with basis ∆A = {αs : s ∈ S} and BA is the symmetric

bilinear form defined by BA(αs, αt) = as,t for s, t ∈ S.

• Any element s of S acts on V as the B-reflection associated to αs, i.e., s(v) =

v − 2B(αs, v) αs for v ∈ VA.

Since ∆A satisfies the requirement of Definition 1.4, W acts faithfully on VA as the sub-

group of OBA(VA) spanned by the B-reflections associated to the αs. Moreover, (ΦA,∆A)

is a based root system of (VA, BA), where ΦA is the W -orbit of ∆A. Giving a matrix A,

as we did, is equivalent to fixing the values in Conditions (ii) and (iii) in Definition 1.4.

Example 1.9 (Continuation of Example 1.3). In the case of Example 1.3, the restriction

of the classical geometric representation of W to the reflection subgroup W ′ generated

by sγ and sρ gives the geometric representation that is associated to the canonical

geometric representation of W ′ given by the matrix

A =

(
1 −1+

√
5

2

−1+
√

5
2 1

)
.

Remark 1.10. By construction, the set ∆A is a basis in the based root system (ΦA,∆A)

associated to the canonical geometric representation (VA, BA) defined above. This set-

ting will actually be the one used throughout the text: We assume that the set of simple
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roots is a basis for the vector space. See [HLR13, Section 5] for a discussion of the case

when ∆ is not a basis.

1.3 Multi-triangulations

Definition 1.11 ([Tam51] [Sta63]). Let ∆m be the simplicial complex whose vertices

correspond to the diagonals of a convex m-gon and faces correspond to subsets of non-

crossing diagonals. Its facets correspond to triangulations (i.e., maximal subsets of

diagonals which are mutually noncrossing).

This simplicial complex is the boundary complex of the dual associahedron [Hai84, Lee89,

Rea06, HL07]. We refer to the recent book [MHPS12] for a detailed treatment of the

history of associahedra. The complex ∆m can be generalized using a positive integer k

with 2k+1 ≤ m: Define a (k+1)-crossing to be a set of k+1 diagonals which are pairwise

crossing. A diagonal is called k-relevant if it is contained in some (k + 1)-crossing, that

is, if there are at least k vertices of the m-gon on each side of the diagonal.

Definition 1.12 (Jonsson [Jon05, Section 1]). The simplicial complex of multitriangu-

lations, ∆m,k is the simplicial complex of sets of k-relevant diagonals of a convex m-gon

that do not contain a (k+1)-crossing. Its facets are given by k-triangulations of the con-

vex m-gon (i.e., maximal subsets of diagonals which do not contain a (k + 1)-crossing),

without considering k-irrelevant diagonals.

The reason for restricting the set of diagonals is that including all non k-relevant di-

agonals would yield the join of ∆m,k and an mk-simplex. Multitriangulations have

been studied by several authors, see e.g. [CP92, Nak00, DKM02, Jon05, Kra06, JW07,

Rub11, Stu11]. An interesting recent treatment of k-triangulations using complexes of

star polygons can be found in [PS09]. In [Stu11], the following description of ∆m,k is

exhibited: Let Sn+1 be the symmetric group generated by the n simple transpositions

si = (i i+ 1) for 1 ≤ i ≤ n, where n = m− 2k− 1. The k-relevant diagonals of a convex

m-gon are in bijection with (positions of) letters in the word

Q = (sn, . . . , s1, · · · sn, . . . , s1︸ ︷︷ ︸
k times sn,...,s1

, sn, . . . , s1, sn, . . . , s2, · · · sn, sn−1, sn)

of length kn +
(
n+1

2

)
=
(
m
2

)
− mk. If the vertices of the m-gon are cyclically labelled

by the integers from 1 to m, the bijection sends the ith letter of Q to the ith k-relevant

diagonal in lexicographic order. Under this bijection, a collection of diagonals forms a

facet of ∆m,k if and only if the complement of the corresponding subword in Q forms
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a reduced expression for the permutation [n+ 1, . . . , 2, 1] ∈ Sn+1. A similar approach

which admits various possibilities for the word Q was described in [PP12] in the context

of sorting networks.

Example 1.13. For m = 5 and k = 1, we get Q = (q1, q2, q3, q4, q5) = (s2, s1, s2, s1, s2).

By cyclically labeling the vertices of the pentagon with the integers {1, . . . , 5}, the

bijection sends the (position of the) letter qi to the ith entry of the list of ordered

diagonals [1, 3], [1, 4], [2, 4], [2, 5], [3, 5]. On one hand, two cyclically consecutive diagonals

in the list form a triangulation of the pentagon. On the other hand, the complement of

two cyclically consecutive letters of Q form a reduced expression for [3, 2, 1] = s1s2s1 =

s2s1s2 ∈ S3; see Fig. 1.2.

q1

q2

q3 q4

q5

Figure 1.2: The simplicial complex ∆5 of triangulations of the pentagon.

Example 1.14. Label the vertices of a convex 10-gon from 1 to 10 in clockwise direc-

tion. The set of relevant diagonals {[1, 8], [2, 5], [2, 8], [3, 6], [3, 7], [3, 8], [3, 10], [5, 8], [5, 10],

[7, 10]} forms a 2-triangulation of the 10-gon, see Fig. 1.3. This 2-triangulation is also

centrally symmetric.

1

2

34

5

6

7

8 9

10

Figure 1.3: A 2-triangulation of the decagon. Relevant diagonals separate the remaining 8
vertices into two sets containing at least 2 vertices.





Chapter 2

A lattice for infinite Coxeter

groups?

In this chapter, we investigate how the meet-semilattice structure of the weak order of

infinite Coxeter groups could be extended to a complete ortholattice. This extension

uses the notions of closure operators on biclosed, biconvex and separable sets. This

is motivated by a conjecture of Matthew Dyer from [Dye11, Section 2], which states

that biclosed sets ordered by inclusion form a complete ortholattice extending the weak

order. This lattice would extend the complete lattice of the weak order in the finite case

to the case of infinite Coxeter groups. If this conjecture is true, it would allow the use

of new geometric computational methods in infinite Coxeter groups. This conjecture is

motivated by the application of reflection orders to study questions related to Iwahori–

Hecke algebras. For that, a substitute for the reduced expressions of the longest element

in the infinite case is required. It would be possible to define this substitute using

biclosed sets of an infinite Coxeter group. Also, in relation to cluster algebras and

related structures, reflection orders in Coxeter groups recently received attention: This

will be explored in more detail in the next chapter via the notion of sorting words.

This chapter is divided as follows. First, Section 2.1 presents different extensions of

convex geometries to infinite root systems. Then, we discuss the extended weak order

of Coxeter groups and relevant conjectures in Section 2.2. This motivated a study

of the asymptotical behaviour of roots of infinite Coxeter groups (joint work with

Christophe Hohlweg and Vivien Ripoll, see [HLR13]), from which we introduce the

relevant results for our purpose in Section 2.3. Then, initial results concerning the con-

jectures and their limits in attempting to prove the conjectures in full generality are

presented in Section 2.4. Finally, we conclude the chapter by a short discussion about

the fractal behaviour of limit points of roots in Section 2.5.

15
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2.1 Geometries of infinite root systems

In this section, we describe different generalizations of the concept of convex geometry.

Definition 2.1 (Edelman–Jamison [EJ85, Section 2]). Let X be a set and let M be a

collection of subsets of X with the properties:

(i) ∅ ∈M and X ∈M ,

(ii) Ai ∈M for i ∈ I implies
⋂
i∈I Ai ∈M .

The collection M is called an alignment of X.

Definition 2.2 (Edelman–Jamison [EJ85, Section 2]). Let A be a subset of an align-

ment M . The closure A
M

of A, with respect to the alignment M , is

A
M

:=
⋂

{B∈M : A⊆B}

B.

Definition 2.3 (Edelman–Jamison [EJ85, Section 2]). An alignment M of a set X is a

convex geometry, if given any K ∈M and two distinct element p and q in X \M , then

q ∈ K ∪ {p}M implies that p 6∈ K ∪ {q}M .

Usually, it is assumed that X is finite. For more details about convex geometries where X

is a finite root system, we refer to the article [Pil06]. We will be interested in the case

when the set X is an infinite root system, in the sense of [Hum92, Chapter 5]. Thus, we

will loosen the definition of convex geometry. Denote by Ac the set Φ+ \A.

Definition 2.4 (Bourbaki [Bou68, Chap. 6, Sect. 7, Def. 4]). Let (Φ,∆) be a based root

system in (V,B) of a Coxeter group W . A subset A of Φ+ is closed if given any α, β ∈ A
and γ ∈ Φ+ with γ = aα + bβ, where a, b ∈ R+, we have γ ∈ A. A subset A of Φ+ is

biclosed if A and Ac are closed. Denote by B(Φ+) the collection of biclosed sets of Φ+.

Remark 2.5. The original notion of closed sets dates back to Nicolas Bourbaki [Bou68,

Chap. 6, Sect. 7, Def. 4], where it is assumed that that W is a finite Weyl group and

a, b ∈ Z+. To work with arbitrary finite Coxeter groups, this condition needs to be

changed to R+, for the results about biclosed sets to hold, see the discussion after

Definition 4.1 in [BHS05]. Moreover, Z-closedness and R-closedness give rise to quite

different convex geometries depending on the Coxeter group, see the theorem in [Pil06,

Section 1]. The notion of closed set also appeared with different names such as completely

closed, R-closed, and 2-closed; see for instance [BHS05], [Pil06], and [Dye11].

The interest of closed sets lie in the following fundamental property. Recall that the

inversion set inv(w) of w is the set Φ+ ∩ w−1Φ−, due to the bijection between positive
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roots and reflections. We will sometimes abuse the notation and consider the inversion

sets as sets of roots or reflections, depending on the context.

Lemma 2.6 (Pilkington [Pil06, Proposition 1.2]). Let Φ be a root system of a possibly

infinite Coxeter group, and let A ⊆ Φ+. Then A = inv(w) for some w ∈ W if and only

if A is finite and biclosed.

This shows that finite biclosed subsets of Φ+ are in natural bijection with elements of W .

Next, we give two other families of collections of Φ+.

Definition 2.7 (Dyer [Dye11, Section 11.4]). A subset A of Φ+ is convex if there exists

a convex cone C of cone(Φ+) pointed at the origin such that Φ+ ∩ C = A. A subset A

of Φ+ is biconvex if A and Ac are convex. Denote by C(Φ+) the collection of biconvex

sets of Φ+.

Definition 2.8. A subset A of Φ+ is separable if there exists a hyperplane H = {v ∈
V : B(v, y) = 0} for y ∈ V such that

B(α, y) > 0⇐⇒ α ∈ A,
B(α, y) < 0⇐⇒ α ∈ Ac,

for all α ∈ Φ+. Denote by S(Φ+) the collection of separable sets of Φ+.

Remark 2.9. In general, the collections B(Φ+), C(Φ+) and S(Φ+) do not always form

alignments in the sense of Definition 2.1. Indeed, already in the case of A2, the sets

{αs1 , αs1 +αs2} and {αs2 , αs1 +αs2} are separable, but their intersection {αs1 +αs2} is

not separable; see Fig. 2.1 on page 18. Therefore, we will refer to the collections B(Φ+),

C(Φ+) and S(Φ+) simply as geometries of Φ+.

It is clear from their definitions that we have the sequence of inclusion S(Φ+) ⊆ C(Φ+) ⊆
B(Φ+). Restricting to finite sets, we get the reverse inclusion.

Lemma 2.10. Let S◦(Φ+), C◦(Φ+) and B◦(Φ+) denote the collections of finite separable,

finite biconvex and finite biclosed sets of a root system Φ, respectively. Then

S◦(Φ+) = C◦(Φ+) = B◦(Φ+) = {inv(w) : w ∈W}.

Proof. The last equality is a consequence of Lemma 2.6. Now take a finite biclosed set A.

Again by Lemma 2.6, there exists an element w ∈W such that inv(w) = A. The sets Φ+

and and Φ− can be strictly separated by a hyperplane H, so the hyperplane w(H) will

separate inv(w) and Φ+ \ inv(w) since inv(w) ⊆ w(Φ−) and Φ+ \ inv(w) ⊆ w(Φ+). See

the beginning of the proof in [Dye11, Proposition 11.6] for a similar argument.
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Example 2.11. Let (W,S) = (A2, {s1, s2}). Fig. 2.1 on page 18 shows the correspond-

ing root system and the biclosed, biconvex and separable sets can be easily obtained.

αs1

αs1 + αs2αs2

−αs1

−αs1 − αs2 −αs2
H

Figure 2.1: The root system of type A2. The inversion sets ∅, {αs1}, {αs2}, {αs1 , αs1 +αs2},
{αs2 , αs1 + αs2} and {αs1 , αs2 , αs1 + αs2} are biclosed, biconvex and separable sets of Φ+.

In Lemma 2.31 in Section 2.4, we give an example of root system of rank 3 with a biconvex

set which is not separable. Moreover, some examples of root systems of Coxeter groups

of rank 4 are known to have biclosed sets which are not biconvex [DH12]. Finally, we

define an operation on sets of ℘(Φ+).

Definition 2.12. Let M be a geometry of Φ+. The M -closure operator sends a subset A

of Φ+ to the subset

A
M

:=
⋂

{B∈M : A⊆B}

B.

of ℘(Φ+). Note that A
M

does not necessarily belong to M , since M is not a convex

geometry.

We will study this closure operator more precisely in the next section. In particular, we

will investigate how the union of two biconvex sets could be described geometrically.

2.2 Extended weak order of Coxeter groups

The weak order of Coxeter groups was extended by Matthew Dyer in [Dye11]. This

extension uses the notion of geometries on root systems introduced in the previous

section. In this extension, the geometry of the root system is used to describe the join

(when it exists) and meet operations of the weak order and several of its properties.

In the weak order, maximal chains going from the identity to any given element are in

natural bijection with the reduced expressions of this element, which in turn correspond

to admissible orders of the inversion set of the element; see [BB05, Proposition 3.1.2]

and [Dye93, Proposition 2.13]. In the extended weak order, new elements are joined to
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the group W in the form of infinite sets of roots and their admissible orders are viewed

as generalizations of reduced expressions. Moreover, the definition of the extended weak

order allows one to determine the join of a set of elements (if it exists) in a geometric

way. By Lemma 2.6, the elements of W are in bijection with finite biclosed sets B(Φ+)

of Φ+ via their inversion sets and that for w ∈W and s ∈ S,

`(w) < `(ws) ⇐⇒ inv(w) ⊂ inv(ws).

Therefore, biclosed sets inherit a complete meet-semilattice structure using the weak

order. In attempting to describe the weak order in terms of biclosed sets, one could think

of a naive set theoretical definition. But, in general, one can not use the intersection

operation on inversion sets to obtain the meet of two elements in the poset.

Example 2.13. Let (W,S) = (A2, {s1, s2}), w = s1s2 and w′ = s2s1. The inversion

set inv(w ∧ w′) is not equal to inv(w) ∩ inv(w′). Indeed the inversion sets of w, w′ and

w ∧ w′ are inv(w) = {s1, s1s2s1}, inv(w′) = {s2, s1s2s1}, and ∅ respectively. But the

intersection inv(w) ∩ inv(w′) = {s1s2s1} is not the empty set, and not even biclosed.

Compare the root system on Fig. 2.1 and the weak order on Fig. 2.2.

inv(e) = ∅

inv(s1) = {s1} {s2} = inv(s2)

inv(s1s2) = {s1, s1s2s1} {s2, s2s1s2} = inv(s2s1)

inv(s1s2s1) = {s1, s2, s1s2s1}

Figure 2.2: The weak order of the Coxeter group A2.

The following result gives the “right” description of the weak order in terms of inversion

sets and closure operations.

Theorem 2.14 (Dyer [Dye11, Theorem 1.5]). Let W be a Coxeter group, M be either

the geometry of biclosed sets B(Φ+) or of biconvex sets C(Φ+), and · M be the closure

operator defined in Definition 2.12. The poset (W,≤) is a complete meet semilattice.

The meet and the join (if it exists) of a non-empty subset X of W are given as follows:

(i) If L :=
∧
X then Φ+ \ inv(L) = ∪x∈XΦ+ \ inv(x)

M
,

(ii) The join J :=
∨
X exists in (W,≤) if and only if X has an upper bound in W , in

which case inv(J) = ∪x∈X inv(x)
M

.

The top element 1̂ is the set Φ+.



20 Chapter 2. A lattice for infinite Coxeter groups?

The preceding theorem was obtain by investigating generalizations of reduced expres-

sions, reflection orders and admissible orders. Many properties about this generalization

using the geometry of biclosed and biconvex sets are still open, see [Dye11, Section 2].

We present here the conjectures that motivated the work presented in this chapter.

Conjecture 2.15 (Dyer [Dye11, Conjecture 2.5]). The poset (B(Φ+),⊆) of biclosed

sets ordered by inclusion is a complete ortholattice. The join of a family X of biclosed

subsets of Φ+, is given by
∨
X = ∪Γ∈XΓ

B(Φ+)
, and the ortholattice complement is the

set complement in Φ+.

Remark 2.16. In [Dye11], it is stated that this conjecture is open for all infinite ir-

reducible Coxeter groups except the infinite dihedral groups. Part of this conjecture is

verified for particular cases of biclosed sets in the aforementioned article. This conjecture

dates back to an observation of Matthew Dyer [Dye93, Remark 2.12].

As a first step to study the previous conjecture, Christophe Hohlweg stated the following

conjecture.

Conjecture 2.17 (Hohlweg [Hoh10]). Let A,B ∈ C(Φ+) be two biconvex sets of Φ+.

The C(Φ+)-closure of the union of A and B is exactly Φ+∩cone(A∪B). In other words,

A ∪BC(Φ
+)

:=
⋂

{C∈C(Φ+)|(A∪B)⊆C}

C = Φ+ ∩ cone(A ∪B).

In Section 2.4, we prove Conjecture 2.17 for Coxeter groups of rank at most 3 and

provide a counter example of rank 4.

2.3 Limit points of normalized roots and isotropic cone

In the literature, the term infinite root system seems to designate different objects,

depending on whether associated to Lie algebras (see [Kac90, LN04]), Kac–Moody Lie

algebras (see [MP89]) or Coxeter groups via their geometric representations (see [Hum92,

Ch.5 & 6]). While all definitions of root systems are related to a given bilinear form,

the bilinear forms considered in the case of Kac–Moody algebras or Lie algebras are

different from the one in the classical definition of a root system for infinite Coxeter

groups. In particular, a difference lies in the ability to change the value of the bilinear

form on a pair of reflections whose product has infinite order. In this vein, more general

geometric representations of a Coxeter group and of root systems (that we described

in Section 1.2) have been introduced. These more general geometric representations

were recently presented in [Kra09] and [BD10] (see also [How96]) but seem to go back
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to [Vin71], as stated in Daan Krammer’s thesis. They have been the framework of

several recent studies about infinite root systems of Coxeter groups (see for instance

[BD10, Dye10, Dye11, Fu12a, Fu12b]).

In order to study the closure operation on biconvex sets of roots, we need a geometric

description of the distribution of positive roots in cone(Φ+). When W is finite, Φ is

also finite and the distribution of the roots in the space V is well understood. However,

when W is infinite, the root system is infinite and we have, as far as we know, very few

tools to study the distribution of the roots over V . The asymptotical behaviour of roots

is one of them. This section deals with a first step of this study: We show that the

“lengths” of the roots tend to infinity, and that the limit points of the “directions” of

the roots are included in the isotropic cone of the bilinear form associated to Φ.

2.3.1 Roots and normalized roots in ranks 2, 3, 4, and general setting

Let (Φ,∆) be a based root system in (V,B), with associated Coxeter group W (as defined

in Definition 1.4) and suppose that ∆ is a basis for V . In order to get a first grip on

what happens, we begin with some examples. Since Φ = Φ+ t (−Φ+), it is enough to

look at the positive roots, which are inside the polyhedral cone cone(∆).

Example 2.18 (Rank 2: representations of infinite dihedral groups). Let (Φ,∆) be

a based root system of rank 2. We get a Coxeter group W of rank 2, geometrically

represented in a 2-dimensional vector space V (together with a bilinear form B), where

V is generated by two simple roots α, β. Assume that W is an infinite dihedral group,

so B(α, β) ≤ −1.

Suppose first that B(α, β) = −1, i.e., that Φ is affine and with the classical geometric rep-

resentation. Then the positive roots are ρn = (n+ 1)α+ nβ, and ρ′n = nα+ (n+ 1)β,

for n ∈ N.

If we fix a (Euclidean) norm on V (e.g., such that {α, β} is an orthonormal basis), then

the norms of the roots tend to infinity, but their directions tend to the line generated by

α+ β, as depicted in Fig. 2.3 (a). This line is precisely the isotropic cone of the bilinear

form B, i.e., the set

Q := {v ∈ V : q(v) = 0} , where q(v) = B(v, v).

In a general geometric representation of W , Φ can be non-affine, i.e., B(α, β) = x with

x < −1 (see Definition 1.6). Then the isotropic cone Q consists of two lines (generated

by (−x±
√
x2 − 1)α+β). Fig. 2.3 (b) shows that, again, the norms of the roots diverge
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α = ρ1β = ρ′1

ρ2ρ′2

ρ3ρ′3

ρ4ρ′4

Q

V1

Q−

α = ρ1β = ρ′1

ρ2ρ′2

ρ3ρ′3

ρ4ρ′4

V1

(a) B(α, β) = −1 (b) B(α, β) = −1.01 < −1

Figure 2.3: The isotropic cone Q and the first positive roots of an infinite based
root system of rank 2. (a): in the classical affine representation. (b): in a non-affine

representation (the part Q− denotes the set {v ∈ V : q(v) < 0}).

to infinity and their directions tend to the two directions of the lines of Q. See [How96,

p.3] for a detailed computation.

Let us go back to the general case of an infinite based root system of rank n. In the

example of dihedral groups, we saw that the roots themselves have no limit points; this

phenomenon is actually general, so we are rather interested in the asymptotic behaviour

of their directions. In order to talk properly about limits of directions, we normalize

the roots. One simple way to do so is to intersect the line Rβ generated by a root β in

Φ with the affine hyperplane V1 spanned by the simple roots (seen as points), i.e., the

affine hyperplane

V1 := {v ∈ V :
∑

α∈∆

vα = 1} ,

where the vα’s are the coordinates of v in the basis ∆ of simple roots. This yields the

set of normalized roots, denoted by Φ̂:

Φ̂ :=
⋃

β∈Φ

Rβ ∩ V1.

Let us describe this set more precisely. Set

V0 := {v ∈ V : |v|1 = 0}, and

V +
0 := {v ∈ V : |v|1 > 0}, where |v|1 :=

∑
α∈∆ vα.
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Since all the positive roots are in the half-space V +
0 , the entire root system Φ is contained

in V \ V0. So the following normalization map can be applied to Φ:

V \ V0 → V1

v 7→ v̂ := v
|v|1 .

For any subset A of V \ V0, write Â for the set {â : a ∈ A}. Because for ρ ∈ Φ,

Rρ ∩ Φ = {ρ,−ρ}, it is then obvious that Φ+ is in bijection with

Φ̂ = Φ̂+ = −̂Φ+ = {ρ̂ : ρ ∈ Φ+}.

Remark 2.19. Obviously, we could also have considered other affine hyperplanes to

“cut” the rays of Φ; it suffices that the chosen hyperplane be “transverse to Φ+”, and

this is discussed in [HLR13, Section 5.2]. We could also have considered the roots

abstractly, in the projective space PV . Considering the intersection of cone(Φ+) and an

affine hyperplane, such as V1, has the advantage of representing positive roots as points

inside an n-simplex (here n = dimV ). This enables us to use convex geometry tools.

As a convex polytope, conv(∆) is compact, which is practical when studying sequences

of roots. From now on, in examples, we only draw the normalized roots inside the

n-simplex conv(∆).

We now examine the relation between normalized roots and the isotropic cone Q.

Example 2.20 (Normalized roots in the dihedral case). For the infinite dihedral case,

the “normalized” version of Fig. 2.3 is Fig. 2.4. Here Φ̂ is contained in the segment

[α, β] and there are one or two limit points of normalized roots (depending on whether

B(α, β) = −1 or not), and the set of limit points is always equal to the intersection

Q ∩ V1 = Q̂.

V1Q̂

α = ρ1β = ρ′1 ρ̂2ρ̂′2 · · ·
sα sβ

∞

V1

α = ρ1β = ρ′1 ρ̂2ρ̂′2 · · ·

Q̂−

sα sβ
−1.01

(a) B(α, β) = −1 (b) B(α, β) = −1.01 < −1

Figure 2.4: The normalized isotropic cone Q̂ and the first normalized roots of an
infinite based root system of rank 2. (a): in the (classical) affine representation. (b): in
a non-affine representation. The Coxeter graphs follow Abramenko–Brown’s notation

[AB08, Section 10.3.3].

We give now some examples and pictures in rank 3 and 4.

Example 2.21 (Rank 3). In Figures 1(a) (in the Introduction, on page 2) and 2.5

through 2.8, the normalized isotropic cone Q̂, the 3-simplex cone(∆), and the first
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normalized roots are drawn. The normalized roots seem again to tend quickly towards

α β

γ

sα sβ

sγ

6

Figure 2.5: The normalized isotropic cone Q̂
and the first normalized roots with depth ≤ 12
(see Definition 2.27) for the based root system

of type G̃2 (affine).

α β

γ

sα sβ

sγ

7

Figure 2.6: The normalized isotropic cone Q̂
and the first normalized roots with depth ≤ 10
(see Definition 2.27) for the based root system

with labels 2, 3, 7.

Q̂. In the affine cases, Q̂ contains only one point, which is the intersection of the line V ⊥

(the radical of B) with V1. In rank 3, there are three different types: Ã2, B̃2, and G̃2.

The latter is drawn in Fig. 2.5. Otherwise, Q̂ is always a conic (because the signature of

B is (2, 1)), and moreover it is always an ellipse in the classical geometric representation

(see [HLR13, Section 5.2] for more details).

α β

γ

sα sβ

sγ

−1.1 −1.1

Figure 2.7: The normalized isotropic cone
Q̂ and the first normalized roots (with depth
≤ 10) for the based root system with labels

2,−1.1,−1.1.

α β

γ

sα · β

sα · γ

sα sβ∞

sγ

4 −1.5

y

x

sα · y

sα · x

Figure 2.8: The normalized isotropic cone
Q̂ and the first normalized roots (with depth
≤ 8) for the based root system with labels

∞,−1.5, 4.

Some rank 2 root subsystems appear in Fig. 2.7 and 2.8; they correspond to dihedral

reflection subgroups. The normalized roots corresponding to such a reflection subgroup,

generated by two reflections sρ1 and sρ2 , lie in the line containing the normalized roots

ρ̂1 and ρ̂2. Because of Proposition 1.8 (ii), the subgroup is infinite if and only if Q̂

intersects this line. In Fig. 1(a), for the group with labels 5, 3, 3, the line joining γ and

ρ̂ = α+β
2 intersects the ellipse in two points, as predicted by Example 1.3.

In general, the behaviour for standard parabolic dihedral subgroups is seen on the edges

of the simplex, where three situations can occur. The ellipse Q̂ can either cut an edge
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[α, β] in two points, or be tangent, or not intersect it, depending on whether B(α, β) <

−1, = −1, or > −1 respectively; see in particular Figures 2.7 and 2.8.

Remark 2.22. When Q̂ is included in the simplex, it seems that the limit points of

normalized roots cover the whole ellipse, whereas in the other cases the behaviour is

more complicated. We discuss this phenomenon in Section 2.5.

sα sβ

sδ

sγ

Figure 2.9: The normalized isotropic cone
Q̂ and the first normalized roots (with depth
≤ 8) for the based root system with diagram

the complete graph with labels 3.

sα sβ
∞

sδ

∞ ∞

sγ
∞ ∞

∞

Figure 2.10: The normalized isotropic cone
Q̂ and the first normalized roots (with depth
≤ 8) for the based root system with diagram

the complete graph with labels ∞.

Example 2.23 (Rank 4). Figures 1(b) (in Introduction), and 2.9-2.10 illustrate some

based root systems of rank 4, together with the tetrahedron conv(∆). Analogous prop-

erties seem to be true: The limit points are in Q̂, and the way in which Q̂ cuts a facet

depends on whether the associated standard parabolic subgroup of rank 3 is infinite non

affine, affine, or finite. Moreover, Remark 2.22 still holds: In Fig. 2.9 the limit points

seem to cover the whole of Q̂, whereas in Figures 1(b) and 2.10, some Apollonian gasket

shapes appear.

2.3.2 The limit points of normalized roots lie in the isotropic cone

Recall that we denote by q the quadratic form associated to B, and by Q the isotropic

cone:

Q := {v ∈ V : q(v) = 0}, where q(v) = B(v, v).

The following theorem, proved on page 27, formalizes our observations.

Theorem 2.24. Consider an injective sequence of positive roots (ρn)n∈N, and suppose

that (ρ̂n) converges to a limit r. Then

(i) the norm ||ρn|| tends to infinity (for any norm on V ),
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(ii) the limit r lies in Q̂ = Q ∩ V1.

In other words, the set Q̂ of accumulation points of normalized roots Φ̂ is contained in

the isotropic cone.

Remark 2.25. Matthew Dyer proved independently this property in the context of his

work on imaginary cone [Dye13], extending a study of Victor Kac (in the framework of

Weyl groups of Lie algebras), who states that the convex hull of the limit points corre-

spond to the closure of the imaginary cone (see [Kac90], Lemma 5.8 and Exercise 5.12).

This theorem has the following consequence, which can of course be proved more directly

using the fact that W is discrete in GL(V ), see [Kra09] or [Hum92, Prop. 6.2].

Corollary 2.26. The set of roots of a Coxeter group is discrete.

Proof. Suppose ρn is an injective sequence converging to ρ ∈ Φ+. Then ρ̂n converges

to ρ̂, so by Theorem 2.24, ρ̂ ∈ Q. Therefore q(ρ̂) = 0 which gives a contradiction since

q(ρ) = 1.

The remainder of this subsection is devoted to the proof of Theorem 2.24. We first need

to recall the notion of depth of a root.

Definition 2.27 ([BB05, Definition 4.6.1]). Let ρ ∈ Φ+. The depth dp(ρ) of ρ is the

positive integer

1 + min{k : ρ = sα1sα2 . . . sαk(αk+1), for α1, . . . , αk, αk+1 ∈ ∆}.

If t ∈ T is the reflection corresponding to ρ, then `(t) = 2 dp(ρ)− 1.

The depth is a very useful tool that allows inductive proof in infinite root systems: if γ

is a root of depth d ≥ 2, then there is a root γ′ of depth d− 1 and a simple root α ∈ ∆

such that γ = sα(γ′), and moreover B(α, γ′) < 0, see [BB05, Lemma 4.6.2].

By construction, the number of positive roots of bounded depth is finite. Consider an

injective sequence (ρn)n∈N of positive roots, as in Theorem 2.24. Then we obtain easily

that dp(ρn) diverges to infinity as n → ∞. So, to prove the first item of the theorem,

it is sufficient to show that when the depth of a sequence of roots tends to infinity, so

does the norm of the roots. This is done using the following lemma, which clarifies the

relation between norm and depth.

Lemma 2.28. Let (Φ,∆) be a based root system. Let ||.|| be the Euclidean norm for

which ∆ is an orthonormal basis for V . Then, we have the following properties.
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(i) The set {|B(α, ρ)| : α ∈ ∆, ρ ∈ Φ+ and B(α, ρ) 6= 0} is bounded away from 0,

(ii) Let ρ ∈ Φ+. The square of the norm ||ρ||2 of ρ ∈ Φ grows linearly with respect to

its depth.

Proof. The first point is a direct consequence of Proposition 1.8 (i). Let us now prove,

by induction on dp(ρ), that

∀ρ ∈ Φ+, ||ρ||2 ≥ λ(dp(ρ)− 1) + 1,

where λ = 4κ2 with 0 < κ ≤ |B(α, ρ)| for all α ∈ ∆ and ρ ∈ Φ+ is given by (i). If

dp(ρ) = 1, ρ ∈ ∆ so ||ρ|| = 1 = λ(dp(ρ) − 1) + 1 by the choice of the norm || · ||.
If dp(ρ) = r ≥ 2, then we can write ρ = sα(ρ′), with ρ′ ∈ Φ+ and α ∈ ∆ such that

dp(ρ′) = r − 1 and B(α, ρ′) < 0, by [BB05, Lemma 4.6.2]. We get

||ρ||2 = ||ρ′ − 2B(α, ρ′)α||2

= ||ρ′||2 + 4B(α, ρ′)2 − 4B(α, ρ′)
〈
α, ρ′

〉
,

where 〈·, ·〉 is the Euclidean product of || · ||. But we know that B(α, ρ′) < 0, and

〈α, ρ′〉 ≥ 0 since ρ′ ∈ cone(∆) and ∆ is an orthonormal basis for || · ||. So we obtain by

induction hypothesis on ρ′ and by (i):

||ρ||2 ≥ ||ρ′||2 + 4B(α, ρ′)2 ≥ (r − 2)λ+ 4κ2 + 1.

Since λ = 4κ2, we have ||ρ||2 ≥ (r − 2)λ + λ + 1 = (r − 1)λ + 1, which concludes the

proof of (ii).

We can now finish the proof of Theorem 2.24.

Proof of Theorem 2.24. As explained before Lemma 2.28, and by (ii) of this same lemma,

the norm ||ρn|| of any injective sequence (ρn)n∈N in Φ+ tends to infinity. Recall that

for v ∈ V +
0 , v̂ = v

|v|1 , where |v|1 =
∑

α∈∆ vα. If ρ belongs to Φ+, the coordinates ρα

are nonnegative, so |ρ|1 is the L1-norm of ρ. In particular, by equivalence of the norms,

|ρn|1 tends to infinity as ||ρn|| does. We get

q(ρ̂n) = q

(
ρn
|ρn|1

)
=

q(ρn)

(|ρn|1)2
=

1

(|ρn|1)2
−−−→
n→∞

0.

Supppose now that ρ̂n tends to a limit r. Then we obtain q(r) = 0, i.e., r ∈ Q, which

concludes the proof of Theorem 2.24.

From Theorem 2.24 and its proof, we also get these easy consequences.
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Corollary 2.29. Let dist(·, ·) denote the Euclidean distance on V1. The two following

statements hold.

(i) for any x ≥ 0, the set {ρ ∈ Φ : ||ρ|| ≤ x} is finite,

(ii) for any ε > 0, the set {ρ ∈ Φ : dist(ρ̂, Q̂) ≥ ε} is finite.

Definition 2.30. Let (Φ,∆) be a based root system in (V,B). The set E(Φ) (or simply

E when there is no possible confusion) consists of accumulation points (or limit points)

of Φ̂. We refer to the points of E as limit roots of the root system (Φ,∆).

As Φ̂ is included in the simplex conv(∆) (which is closed), Theorem 2.24 implies

E(Φ) ⊆ Q ∩ conv(∆) = Q̂ ∩ cone(∆).

The reverse inclusion is not always true: We saw some examples of this fact in Fig. 2.8

and 2.10. We address a more precise description of E(Φ) in Section 2.5.

In [HLR13], we discuss the case of dihedral, reducible and affine groups in more ex-

amples. We also describe an action of W on the set E which helps to understand the

fractal behaviour appearing. Then, we exhibit a countable dense subset of E using di-

hedral reflection subgroups. Finally, we examine how this approach applies to parabolic

subgroups, how to normalize using “transverse” hyperplanes and we examine the case

where the based root system is not a basis.

2.4 Complete ortholattice for rank ≤ 3

In this section, we study Conjecture 2.17 with the intuition gained from the previous

section. As we will see, the conjecture is false in general, which makes the study of

Conjecture 2.15 less tractable in terms of biconvex sets.

2.4.1 The convex union is closed for rank ≤ 3

First, we establish that biconvex sets are not separable in general.

Lemma 2.31. Let n ≥ 3. There exists an infinite irreducible Coxeter group of rank n

with based root system (Φ,∆) for which the inclusion S(Φ+) ⊂ C(Φ+) is strict.

Proof. Assume n = 3 and consider the affine Coxeter group Ã2 whose normalized root

system is illustrated in Fig. 2.11, where the simple system is ∆ = {α, β, γ}. By a simple

inspection, the roots contained in the convex cone A = cone{α, α+ γ, 2α+ 2β+ 3γ, α+
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β} ∩ Φ+ form a biconvex set. As the picture shows, the hyperplane H spanned by the

roots γ and α+ β separates the complement Ac and A, but it contains roots of both Ac

and A. This shows that the biconvex set A is not separable. For n > 3, consider any

irreducible Coxeter group whose Coxeter graph contains the Coxeter graph of Ã2. The

set A defined above still forms a biconvex set which is not separable.

α β

γ

α+ β

α+ γ
2α+ 2β + 3γ

sα sβ

sγ

H

Figure 2.11: The root system of type Ã2, with roots of depth at most 10 the convex hull of
{α, α + γ, 2α + 2β + 3γ, α + β} is shadowed and the separating hyperplane H in shown by a

dotted line.

Nevertheless, biconvex sets of rank smaller or equal to 3 still fulfill an important sepa-

ration property. Before giving this property, we first give a useful lemma.

Lemma 2.32. Let A be a non-empty biclosed set in B(Φ+). Then A contains at least

one simple root, i.e. A ∩∆ 6= ∅.

Proof. Assume to the contrary, that A does not contain any simple root. Then its

complement Ac contains them all. Since A is biclosed, the complement of A in Φ+ is

closed, and Φ+ ⊆ Ac. This implies that A is empty which contradicts the assumption.

Lemma 2.33. Let (W,S) be an Coxeter system of rank n ≤ 3 and A ∈ C(Φ+) be a

biconvex set. There exist an hyperplane H = {v ∈ V : B(v, y) = 0} for some y ∈ V

such that

B(α, y) > 0 =⇒ α ∈ A,
B(α, y) < 0 =⇒ α ∈ Ac,

for all α ∈ Φ+. If B(α, y) = 0, then α may belong to either A or Ac.
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Proof. It is straightforward to check that it is true if A = ∅ or A = Φ+, which proves

the rank 1 case. Now suppose that both A and Ac are nonempty. By Lemma 2.32, they

contain at least one root. In the rank 2 case, nonempty biconvex sets consist of roots

contained in a 2-dimensional cone with a simple root. By Lemma 2.10, if A or Ac is

finite, A is separable and the desired hyperplane clearly exists. The remaining case is

when A and Ac are both infinite: When A contains the roots in the cone cone(α, α+ β)

located on one side of Q and Ac contains the ones inside the cone cone(β, α + β), see

Fig. 2.3 and 2.4. In this case, the line R(α+ β) separates the two sets. Finally, assume

that n = 3. Again by Lemma 2.32 and 2.10, it remains to check the case when A

and Ac are infinite and such that ∆∩A = {a1, a2} and ∆∩ (Ac) = {ac}, without loss of

generality. Since A is biconvex, there exist cones C and D, such that C ∩ Φ+ = A and

D ∩ Φ+ = Ac. Therefore C ∩D ∩ Φ+ = ∅.

If int(C) ∩ D = ∅, we can look at the normalization of the cones on the plane V1,

to obtain 2-dimensional convex subsets of V1. Since înt(C) and D̂ are convex, non-

empty, disjoint subsets of V1 and that înt(C) is open, there exists an hyperplane H =

{v ∈ V : B(v, y) = 0} for some y ∈ V such that int(C) ⊂ H− and D ⊆ H+ (by the

Hahn–Banach separation theorem). Then, if a root is located strictly on one side of

the hyperplane, it belongs either to A or Ac. For roots located on the hyperplane, it is

possible that a root belongs to A and another to Ac.

If int(C) ∩D 6= ∅, we have to study more carefully what could happen. First, consider

the closure of the normalized convex regions Ĉ and D̂. Their intersection is also convex

and homeomorphic to a 0, 1 or 2-dimensional ball (since Ĉ and D̂ are homeomorphic

to balls of dimension at most 2). If the intersection is 0 or 1-dimensional, we are in the

previous case of int(C) ∩D = ∅.

Now assume that the intersection of Ĉ and D̂ is 2-dimensional. The boundaries of the

convex sets Ĉ and D̂ in V1 form two convex Jordan curves. We study how the Jordan

curve divides V1. Since Ĉ and D̂ are convex, the intersection Ĉ ∩ D̂ on V1 is also convex,

thus connected. Now we show that Ĉ \ (Ĉ ∩ D̂) and D̂ \ (Ĉ ∩ D̂) are also connected

and therefore the two Jordan curves form three bounded connected components on V1:

int(Ĉ), int(D̂) and int(Ĉ ∩ D̂). Applying the rank 2 argument to standard parabolic

subgroups, the root in cone(ac, a1) and cone(ac, a2) can be separated by 1-dimensional

cones H1 and H2. The cone cone(a1, a2) is completely included in C; see Fig. 2.12

for a representation of the normalized cone ∆̂. Now take two points p, q in the same

convex set but not in the intersection Ĉ ∩ D̂. If p, q are in D̂, we can draw a straight

line passing through p and ac and another line passing through q and ac. These two

segments define a path from p to q completely in D̂ \ Ĉ: Indeed, if there would be a

point in Ĉ it would force p or q to be in the intersection Ĉ ∩ D̂. If p, q are in Ĉ, we can
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draw again straight lines passing through p and q from ac, this time connecting them to

the segment [a1, a2]. The same argument works to prove that these segments do not go

through the intersection Ĉ \ D̂, since the segment [a1, a2] is in Ĉ \ D̂. Therefore, there

is a path connecting p and q is both cases.

a1 a2

ac

C

D

p

p

q

q

H

Figure 2.12: The set A ∈ C(Φ+) and its complement Ac. The line segments going from p, q to
ac or to the segment [a1, a2] do not pass through the intersection C ∩D. The hyperplane H is

obtained via the Hahn–Banach separation theorem.

Since there are three bounded connected regions determined by the boundaries of Ĉ

and D̂, their boundaries intersect on two closed connected regions R1, R2 ⊂ V1. The

boundary of the (closed) intersection Ĉ∩D̂ is again a convex Jordan curve and removing

R1 and R2 from it gives two disjoint closed connected curves: the boundary of Ĉ included

in D and the boundary of D̂ included in C. Then, taking away a segment [r1, r2] (where

r1 ∈ R1 and r2 ∈ R2) from the intersection clearly disconnects it and any connected

path from the boundary of Ĉ included in D to the boundary of D̂ included in C has to

cross [r1, r2] by the intermediate value theorem.

Now, consider H to be the hyperplane spanned by the vectors {r1, r2}, such that r1 ∈ R1

and r2 ∈ R2 and let y ∈ V be such that H = {v ∈ V : B(v, y) = 0}. On V1, the

projection Ĥ is a line passing through r1 and r2. The intersection Ĥ ∩ (Ĉ ∪ D̂) is

contained in Ĉ ∩ D̂ since the latter is convex and r̂1 and r̂2 belong to both the boundary

of Ĉ and D̂.

Since Ĉ \ (Ĉ∩ D̂) and D̂ \ (Ĉ∩ D̂) are connected, and Ĥ ∩ (Ĉ∪ D̂) is contained in Ĉ∩ D̂,

it means that the interior of Ĉ \(Ĉ∩D̂) is located on one side of Ĥ. The same argument

shows that Ĉ \ (Ĉ ∩ D̂) is located on one side of Ĥ. It remains to show that Ĥ separates

them. Any path going from a point of Ĉ \ (Ĉ ∩ D̂) to a point of D̂ \ (Ĉ ∩ D̂) has to go

through their intersection from the boundary of Ĉ included in D to the boundary of D̂

included in C. As we have seen, any such path cross the segment [r1, r2]. Finally, since
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C ∩D ∩ Φ+ = ∅, roots on boundaries of Ĉ and D̂ are on the same side as the interior.

Thus Ĥ satisfies the desired conditions.

Remark 2.34. For rank 1 and 2 the reverse of Lemma 2.33 is true, but not in rank 3;

i.e. there could be α ∈ Φ+ such that B(α, y) = 0 and α can belong to A or Ac (see

Lemma 2.31).

Theorem 2.35. Let (W,S) be a Coxeter group of rank n ≤ 3 and let A,B ∈ C(Φ+) be

two biconvex sets. The closure of the union of A and B with respect to C(Φ+) is equal

to the intersection of Φ+ and cone(A ∪B). In other words,

A ∪BC(Φ
+)

:=
⋂

{C∈C(Φ+) : (A∪B)⊆C}

C = Φ+ ∩ cone(A ∪B).

Proof. For n = 1 this is trivial. Next, we consider the case where W is of rank 2,

i.e. S = {s1, s2}. Using the normalization in Fig. 2.4. The positive cone becomes a line

segment Φ̂+, i.e. a 1-simplex. Looking at Φ̂+, roots are now points on the line segment.

A set A of roots in Φ̂+ forms a convex set if there is a polytope (in dimension 1: a

point or a line segment) that contains these roots and that any root in this polytope is

again in A. Using Lemma 2.32, biconvex sets in Φ̂+ are either sets containing one of the

point αs1 or αs2 or intervals that contains a least one of the roots αs1 or αs2 . Taking

the convex hull of two such sets yields again a set of this form. By minimality of the

convex hull the equality

⋂

{C∈C(Φ+) : (A∪B)⊆C}

C = Φ+ ∩ cone(A ∪B)

follows. Finally, suppose W is of rank 3. Once again, the cone Φ+ is normalized giving a

a 2-simplex Φ̂+. Let A and B be two nonnested biconvex sets. Consider the set of roots

Φ+ ∩ cone(A∪B). By definition it is convex, so it remains to show that its complement

in Φ+ is convex and by minimality of the convex hull the required equality will follow.

Now use Lemma 2.33 to separate the two biconvex sets A and B with hyperplanes HA

and HB respectively; see Fig. 2.13. Suppose A and B are contained on the positive side

of their hyperplanes. We can assume that HA and HB are not parallel, otherwise the

sets A and B would be nested or the convex hull of the union of the two would be the

complete cone and in both cases the result would follow. The 2-dimensional plane V1 is

then separated into four regions and two hyperplanes where roots are distributed. By

definition, the closure of the convex set conv(Â ∪ B̂) contains all roots in H+
A and H+

B

and on the half-lines HA ∩ H+
B and HB ∩ H+

A . Therefore, roots in the complement of

Φ+ ∩ conv(Â ∪ B̂) are restricted to the closure of H−A ∩H−B , which is a convex set.
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H+
A H+

B

H+
e

B is on this side of HB A is on this side of HA

cone(A ∪B) is on this side of He

Φ+ \ (A ∪B) is on this side of HA and HB

Figure 2.13: The hyperplanes HA and HB separate the sets A and B from their complements.
The hyperplane He supports the convex union A ∪B. Therefore, the roots in Φ+ \ A ∪B are

restricted to a convex region (shadowed) which doesn’t contain roots of A ∪B.

Suppose that the convex set conv(Â∪B̂) does not intersectH−A∩H−B . Then form a cone C

from the roots on HA and HB that are not in conv(Â ∪ B̂) and the roots in H−A ∩H−B .

This cone C is such that Φ+ ∩ C = Φ+ \ conv(A ∪ B). Therefore Φ+ ∩ conv(Â ∪ B̂) is

biconvex.

If conv(Â ∪ B̂) intersects H−A ∩ H−B , then consider a supporting hyperplane He for an

element e of the boundary of conv(Â ∪ B̂) in H−A ∩H−B . Without loss of generality, all

roots in Φ+ ∩ conv(Â ∪ B̂) are located (not necessarily strictly) in the halfplane H+
e .

Then form a cone C from the roots on HA and HB that are not in conv(Â∪ B̂) and the

roots in H−A ∩H−B ∩H−e . This cone C is such that Φ+ ∩ C = Φ+ \ conv(A ∪B).

Corollary 2.36. Let W be a Coxeter group of rank n ≤ 3 with based root system (Φ,∆).

The biconvex sets ordered by inclusion (C(Φ+),⊆) form a complete ortholattice, where

the join of a collection of biconvex sets X is given by
∨
X = Φ+ ∩ cone(

⋃
Γ∈X Γ). The

ortholattice map is the set complementation in Φ+.

Proof. The closure operator · C(Φ+) on the union of two biconvex sets is again a biconvex

set. The closure operation thus corresponds to the join in the poset (C(Φ+),⊆), since the

closure is inclusion minimal. The complementation in Φ+ clearly satisfies the condition

of Definition 1.1.

Example 2.37. Let (W,S) = (I2(∞), {s1, s2}) with corresponding based root system

(Φ,∆ = {αs1 , αs2}). The sets {αs1} and {αs2} are biconvex, see Fig. 2.3 and Fig. 2.4.

Their join {αs1} ∨ {αs2} in (C(Φ+),⊆) is Φ+. Therefore, the join of s1 and s2 does not

exist in the weak order (W,≤) since Φ+ is infinite, see Fig. 1.1 (c).
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Example 2.38. Let (W,S = {s, t, u}) be the Coxeter group of rank 3 whose graph

is complete with edges labeled by 5 with corresponding based root system (Φ,∆ =

{αs, αt, αu}), see Fig. 2.14. Moreover, let w1 = uts, w2 = utu, w3 = sut, and w4 =

susu. The join w1 ∨ w2 exists in (W,≤). Indeed, cone(inv(w1) ∪ inv(w2)) does not

intersect the isotropic cone therefore by Corollary 2.29 it contains a finite number of

roots and by Lemma 2.10 there exists an element w ∈ W such that inv(w) = Φ+ ∩
cone(inv(w1)∪ inv(w2)). This element w is utsusus. The join w3 ∨w4 does not exist in

(W,≤) since cone(inv(w3)∪inv(w4)) intersects the isotropic cone: evaluating the bilinear

form B(u(αs), su(αt)) ≈ −2.11 < −1 yields an infinite dihedral group.

α̂s α̂t

α̂u

ŝ(αu)

û(αs) û(αt)

ŝu(αt)

ût(αs)
ût(αu)

s t5

u

5 5

Figure 2.14: The inversion sets inv(w1) and inv(w3) are shown with shadowed triangles.
The inversion sets inv(w2) and inv(w4) are shown using thicker lines on the boundary of the
positive cone. The inversion set inv(utsusus) is shown as the union of the triangle and the
adjacent checkerboard triangle. The segment between u(αs) and su(αt) intersects the isotropic

cone therefore the join w3 ∨ w4 does not exist in (W,≤).

2.4.2 The convex union is not closed for rank at least 4

In this section, we present an example that disproves Conjecture 2.17 for rank ≥ 4. It

was obtained looking at the geometric intuition behind separable sets of roots: Consider

the two polytopes obtained by cutting a n-dimensional simplex with an hyperplane and

looking at the two pieces left by the cut. Now, let P1 and P2 be two polytopes obtained

in such a way from two different hyperplanes and consider the convex hull of their union.

Can this new polytope be obtained by cutting the n-simplex by a unique hyperplane?

The answer is no in general and the example below uses this fact to construct a polytope
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(see Fig. 2.15) included in the simplex which can not be obtained by cutting the simplex

with a unique hyperplane.

Example 2.39. Consider the free Coxeter group on four generators, i.e. the Coxeter

graph on four vertices with ∞ labels. See Fig. 2.10 for a normalized representation of

the positive cone Φ+. Let ∆ = {α1, α2, α3, α4} be the simple system. Now consider the

α2

α4

α1

α3

R

Figure 2.15: The convex hull cone(A ∪B) of A and B in yellow. The root R is marked by a
bigger sphere.

α2

α4

α1

α3

R

Figure 2.16: The complement Φ+ \ cone(A ∪B) must at least contain the shown convex set.
The root R is marked by a bigger sphere.

sets A = cone{α2, α2 + 2α3} ∩Φ+ and B = cone{α4, α4 + 2α1} ∩Φ+. It is easy to check

that they are both biconvex sets. The cone cone(A ∪ B) is represented in Fig. 2.15.

We now fix a specific root R = σδ(σα4(δ)) = 1284α1 + 70α2 + 35α3 + 648α4, where
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δ = σα2(α3). On the one hand, an easy calculation yields

R = 105/2 · (α2) + 35/2 · (α2 + 2α3) + 6 · (α4) + 642 · (2α1 + α4) ∈ cone(A ∪B).

Thus R is a positive combination of the rays of cone(A ∪ B). On the other hand, the

complement Φ+ \ cone(A ∪B) must at least contain the following set of roots

{α1, α1 + 2α2, α3, α3 + 2α4, σγ(σα3(γ)) = 297α1 + 10α3 + 198α4}, (�)

where γ = σα1(σα4(α1)); see Fig. 2.16. Again an easy calculation yields

R = 277(α1)+35(α1+2α2)+25/11(α3)+36/11(297α1+10α3+198α4) ∈ Φ+\cone(A∪B).

So R belongs to both cone(A∪B) and Φ+ \cone(A∪B). Consider a biconvex set C that

contains A ∪ B. By minimality, C contains the root R. Since C is biconvex, C ∩ (Cc)

is empty and R cannot be contained in the cone generated by the roots of Φ+ not in C.

Hence, C has to contain at least one of the five roots in (�). Thus the closure

A ∪BC(Φ
+)

:=
⋂

{C∈C(Φ+) : (A∪B)⊆C}

C

of A ∪B is not equal to Φ+ ∩ cone(A ∪B).

2.5 Fractal description of the limit roots

To end this chapter, we discuss the fractal behaviour of limit roots. As seen on the title

page of this thesis, in Figures 1(b), 2.6, 2.7, 2.9 and 2.10. The roots seem to tend to

Q̂ in two possible distinct ways: the limit roots E cover the whole isotropic cone or a

subset of it, which appears to form a fractal shape.

For affine Coxeter groups, the isotropic cone Q̂ is 1-dimensional, i.e., a point in V1. Using

Theorem 2.24, the limit root is then unique and Q̂ = E. Now, consider the Coxeter group

represented in Fig. 2.8. The isotropic cone Q̂ goes out of the positive cone cone(Φ+).

Acting by α on the isotropic cone Q̂, the portion of Q̂ outside ̂cone(Φ+) is mapped

inside ̂cone(Φ+) and seems not to contain limit roots. This is indeed the case, otherwise

it would be possible to send a root close to this portion of Q̂ outside ̂cone(Φ+), which is

not possible. This roughly explains why fractal shapes appear in higher dimension. See

[HLR13, Section 3] for more details about the action of W on the set conv(∆) ∩ Q̂. In

the sequel [DHR13, Section 4], Matthew Dyer, Christophe Hohlweg and Vivien Ripoll

prove Conjecture 3.9 of [HLR13] explaining how the fractal phenomenon appears. It
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would be interesting to investigate in details the relations between this fractal behaviour

and sphere packings produced by hyperbolic reflection groups; see, for instance, [Max82]

and [DHR13, Section 7]. See the Appendix A, for more representations of normalized

root systems of rank 3 and 4.





Chapter 3

Subword complexes in discrete

geometry

In the preceding chapter, we looked at infinite Coxeter groups. The main objective of the

present chapter is to introduce and study a natural generalization of multitriangulations

to finite Coxeter groups: the multi-cluster complex. Also, we present an application to

the enumeration of the common vertices of W -permutahedra and c-generalized associa-

hedra [MHPS12, Problem 3.3, Chapter 8].

First, we review subword complexes of Coxeter groups in Section 3.1 and finite clus-

ter complexes in Section 3.2. Section 3.3 presents the main results and defines the

multi-cluster complex (Definition 3.7). Section 3.4 concerns flips on spherical subword

complexes and exhibits two natural isomorphisms between subword complexes whose

words differ by commutation or rotation of letters. In Section 3.5, we prove that the

multi-cluster complex is independent of the choice of the Coxeter element (Theorem 3.8).

Section 3.6 contains a proof that for k = 1 the multi-cluster complex is isomorphic to

the cluster complex (Theorem 3.4). In Section 3.7, we discuss the generalizations of

associahedra using subword complexes; we review known results about polytopal real-

izations, prove polytopality of multi-cluster cluster complexes of rank 2 (Theorem 3.42),

and prove that the multi-cluster complex is universal in the sense that every spheri-

cal subword complex is the link of a face of a multi-cluster complex (Theorem 3.19).

Section 3.8 introduces a combinatorial description of the sorting words of the longest

element of finite Coxeter groups (Theorem 3.45) and an alternative definition of multi-

cluster complexes in terms of the strong intervening neighbors property (Theorem 3.11).

In Section 3.9, we derive formulas counting the common vertices of W -permutahedra

and c-generalized associahedra using the approach presented in the previous sections.

39
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Finally, in Section 3.10, we discuss open problems and questions arising in the context

of multi-cluster complexes.

Sections 3.3 to 3.8 and Section 3.10 originate from joint work with Cesar Ceballos

and Christian Stump contained in the article [CLS13], which also appeared in the the-

sis [Ceb12]. Moreover, in [CLS13, Section 8], we define a natural action on the vertices

and facets of the multi-cluster complex and use this action to relate multi-cluster com-

plexes to Auslander–Reiten and repetition quivers (not reproduced here).

3.1 Subword complexes

Subword complexes were introduced by Allen Knutson and Ezra Miller in order to study

Gröbner geometry of Schubert varieties, see [KM05], and was further studied in [KM04].

Definition 3.1 (Knutson–Miller [KM05, Definition 1.8.1]). Let (W,S) be a finite Cox-

eter system and Q = (q1, . . . , qr) be a word in the generators S of W and let π ∈W . The

subword complex ∆(Q, π) is the simplicial complex whose faces are given by subwords P

of Q for which the complement Q \ P contains a reduced expression of π.

Here subwords come with their embedding into Q; two subwords P and P ′ representing

the same word are considered to be different if they involve generators at different

positions within Q. In Example 1.13 on page 13, we have seen an instance of a subword

complex with Q = (q1, q2, q3, q4, q5) = (s2, s1, s2, s1, s2) and π = s1s2s1 = s2s1s2. In this

case, ∆(Q, π) has vertices {q1, . . . , q5} and facets

{q1, q2}, {q2, q3}, {q3, q4}, {q4, q5}, {q5, q1}.

Subword complexes are known to be vertex-decomposable and hence shellable [KM04,

Theorem 2.5]. Moreover, they are topologically spheres or balls depending on the De-

mazure product of Q. Let Q′ be the word obtained by adding s ∈ S at the end of a

word Q. The Demazure product δ(Q′) is recursively defined by

δ(Q′) =




δ(Q)s if `(δ(Q)s) > `(δ(Q)),

δ(Q) if `(δ(Q)s) < `(δ(Q)),

where the Demazure product of the empty word is defined to be the identity element

in W . A subword complex ∆(Q, π) is a sphere if and only if δ(Q) = π, and a ball

otherwise [KM04, Corollary 3.8].
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3.2 Cluster complexes

In [FZ03], Sergey Fomin and Andrei Zelevinsky introduced the cluster complex associ-

ated to a finite crystallographic root system. This simplicial complex along with the

generalized associahedron has become the object of intensive studies and generalizations

in various contexts in mathematics, see, for instance, [CFZ02, MRZ03, Rea07a, HLT11].

Recall that the finite Coxeter group W acts naturally on the real vector space V with

basis ∆ = {αs : s ∈ S}, whose elements are called simple roots. Let Φ denote a root

system for W , and let Φ+ ⊆ Φ be the set of positive roots for the simple system ∆. Fur-

thermore, let Φ≥−1 = Φ+∪−∆ be the set of almost positive roots. We denote by W〈s〉 the

maximal standard parabolic subgroup generated by S \ {s}, and by Φ〈s〉 the associated

subroot system. For s ∈ S, the involution σs : Φ≥−1 −→ Φ≥−1 is given by

σs(β) =




β if − β ∈ ∆ \ {αs},
s(β) otherwise.

Nathan Reading showed that the definition of cluster complexes can be extended to all

finite root systems and enriched with a parameter c being a Coxeter element [Rea07a].

These c-cluster complexes are defined using a family ‖c of c-compatibility relations

on Φ≥−1, see [RS11, Section 5]. This family is characterized by the following two prop-

erties:

(i) for s ∈ S and β ∈ Φ≥−1,

−αs ‖c β ⇐⇒ β ∈
(
Φ〈s〉

)
≥−1

,

(ii) for β1, β2 ∈ Φ≥−1 and s being initial in c,

β1 ‖c β2 ⇐⇒ σs(β1) ‖scs σs(β2).

A maximal subset of pairwise c-compatible almost positive roots is called c-cluster.

Definition 3.2 (Reading [Rea07a, Section 7]). The c-cluster complex ∆c(W ) is the

simplicial complex whose vertices are the almost positive roots and whose facets are

c-clusters.

It turns out that the c-cluster complexes associated to different Coxeter elements are

isomorphic, see [MRZ03, Proposition 4.10] and [Rea07a, Proposition 7.2]. In crystallo-

graphic types, they are moreover isomorphic to the cluster complex as defined in [FZ03].
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3.3 Multi-cluster complexes

In this section, we define the multi-cluster complex (see Definition 3.7), the central object

which generalizes multitriangulations to all finite Coxeter groups.

Definition 3.3 (Reading [Rea07a, Section 2]). Let c = (c1, . . . , cn) be a reduced expres-

sion for a Coxeter element c ∈ W , and let w = (w1, . . . , w`(w)) be the lexicographically

first subword of c∞ that represents a reduced expression for the element w ∈ W . The

word w(c) is called the c-sorting word for w.

The first theorem (proved in Section 3.6) gives a description of the cluster complex as a

subword complex.

Theorem 3.4. Let W be a finite Coxeter group, c a Coxeter element, and w◦(c) the

c-sorting word of w◦. The subword complex ∆(cw◦(c), w◦) is isomorphic to the c-cluster

complex ∆c(W ). The isomorphism is given by sending the letter ci of c to the negative

root −αci and the letter wi of w◦(c) to the positive root w1 · · ·wi−1(αwi).

As an equivalent statement, we obtain the following explicit description of the c-compa-

tibility relation.

Corollary 3.5. A subset C of Φ≥−1 is a c-cluster if and only if the complement of

the corresponding subword in cw◦(c) = (c1, . . . , cn, w1, . . . , wN ) represents a reduced

expression for w◦.

For finite crystallographic root systems, this description was obtained independently

by Kiyoshi Igusa and Ralf Schiffler [IS10] in the context of cluster categories [IS10,

Theorem 2.5]. They use results of William Crawley-Boevey and Claus M. Ringel saying

that the braid group acts transitively on isomorphism classes of exceptional sequences of

modules over a hereditary algebra, see [IS10, Section 2]. Kiyoshi Igusa and Ralf Schiffler

then show combinatorially that the braid group acting on sequences of elements in any

Coxeter group W of rank n also acts transitively on all sequences of n reflections whose

product is a given Coxeter element [IS10, Theorem 1.4]. They then deduce Corollary 3.5

in crystallographic types from these two results, see [IS10, Theorem 2.5]. The approach

presented in this thesis is valid uniformly for all finite Coxeter groups and is developed

completely in terms of Coxeter group theory. Connections to the work of Kiyoshi Igusa

and Ralf Schiffler are studied more closely in [CLS13, Section 8]. In the particular

case of bipartite Coxeter elements, as defined in Section 1.1, a similar description as in

Corollary 3.5 was as well obtained by Thomas Brady and Colum Watt in [BW08] in the

context of the geometry of noncrossing partitions1.

1We thank an anonymous referee of [CLS13] for pointing us to this result.
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Example 3.6. Let W be the Coxeter group of type B2 generated by S = {s1, s2} and let

c = c1c2 = s1s2. Then the word cw◦(c) is (c1, c2, w1, w2, w3, w4) = (s1, s2, s1, s2, s1, s2).

The corresponding list of almost positive roots is

[−α1, −α2, α1, α1 + α2, α1 + 2α2, α2].

The subword complex ∆(cw◦(c), w◦) is a hexagon whose facets are given by any two

cyclically consecutive letters in cw◦(c). The corresponding c-clusters are

{−α1,−α2}, {−α2, α1}, {α1, α1 + α2}, {α1 + α2, α1 + 2α2}, {α1 + 2α2, α2}, {α2,−α1}.

Inspired by results in [Stu11] and [PP12], we generalize the subword complex in The-

orem 3.4 by considering the concatenation of k copies of the word c. In type A, this

generalization coincides with the description of the complex ∆m,k given in a different

language in [PP12].

Definition 3.7. Let W be a finite Coxeter group, c be a Coxeter element and k ≥ 1.

The multi-cluster complex ∆k
c (W ) is the spherical subword complex ∆(ckw◦(c), w◦).

Multi-cluster complexes offer a twofold generalization of the simplicial complex of non-

crossing diagonals of a convex polygon that subsumes the generalization to multitrian-

gulations of a convex polygon and to cluster complexes of finite Coxeter groups. The

diagram depicted in Fig. 3.1 illustrates the different families and their relations. See

Section 3.7 and Appendix B for more details about the different families and their prop-

erties.

dual associahedron
∆m (triangulations)

Definition 1.11

simplicial complex
∆m,k (multitriangulations)

Definition 1.12

cluster complex
∆c(W ) (clusters)

Definition 3.2

multi-cluster complex
∆k
c (W ) (multi-clusters)

Definition 3.7

Type A finite Coxeter group W

k = 1

k > 1

generalization
k > 1

generalization
to any finite

Coxeter group W

generalization
to any finite

Coxeter group W

generalization
k > 1

Figure 3.1: The twofold generalization of the multi-cluster complex. See Section 3.7 for
references about the different objects.
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Multi-cluster complexes are in fact independent of the Coxeter element c. In particular,

we reobtain that all c-cluster complexes are isomorphic (see Section 3.5 for the proof).

Theorem 3.8. Let W be a finite Coxeter group and c and c′ be two distinct Coxeter

elements of W . Then the multi-cluster complexes ∆k
c (W ) and ∆k

c′(W ) are isomorphic.

Definition 3.9 (Eriksson–Eriksson [EE09, Section 3] and Speyer [Spe09, Proposition

2.1]). A word Q = (q1, . . . , qr) in S has the intervening neighbors property, if all non-

commuting pairs s, t ∈ S alternate within Q.

Recall that ψ : S → S is the involution given by ψ(s) = w−1
◦ sw◦, it is extended to words

as ψ(Q) = (ψ(q1), . . . , ψ(qr)).

Definition 3.10. We say that Q has the strong intervening neighbors property (SIN-

property) if Qψ(Q) = (q1, . . . , qr, ψ(q1), . . . , ψ(qr)) has the intervening neighbors prop-

erty and if in addition the Demazure product δ(Q) is w◦.

The following two results give alternative descriptions of multi-cluster complexes. The

next theorem (proved in Section 3.8) characterizes all words that are equal to ckw◦(c)

up to commutations.

Theorem 3.11. A word in S has the SIN-property if and only if it is equal to ckw◦(c),

up to commutations, for some Coxeter element c and some nonnegative integer k.

The following proposition gives a different description of the facets of the multi-cluster

complex. It generalizes results in [BW08, Section 8] (see also [ABMW06, Section 2.6])

and in [IS10, Lemma 3.2]. In [BW08], the authors consider the case k = 1 with bipartite

Coxeter elements. In [IS10], the authors consider the case k = 1 for crystallographic

types with arbitrary Coxeter elements. Set ckw◦(c) = (q1, q2, . . . , qkn+N ). For an index

1 ≤ i ≤ kn + N , set the reflection ti to be q1q2 . . . qi−1qiqi−1 . . . q2q1. For example, in

Example 3.6, we obtain the sequence

(t1, t2, t3, t4, t5, t6) = (s1, s1s2s1, s2s1s2, s2, s1, s1s2s1).

Proposition 3.12. A collection {q`1 , . . . , q`kn} of letters in ckw◦(c) forms a facet of

∆k
c (W ) if and only if

t`kn · · · t`2t`1 = ck.

The proof follows the lines of the proof of [IS10, Lemma 3.2]:

Proof. A direct calculation shows that t`1 · · · t`knq1q2 · · · qkn+N equals the product of all

letters in cw◦(c) not in {q`1 , . . . , q`kn}. We get that {q`1 , . . . , q`kn} is a facet of ∆k
c (W )
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if and only if t`1 · · · t`knq1q2 · · · qkn+N = w◦. As q1q2 · · · qkn+N = ckw◦, the statement

follows.

We have seen in Section 1.3 that the multi-cluster complex of type Am−2k−1 is isomorphic

to the simplicial complex whose facets correspond to k-triangulations of a convex m-gon,

∆k
c (Am−2k−1) ∼= ∆m,k.

Thus, the multi-cluster complex extends the concept of multitriangulations to finite

Coxeter groups and provides a unifying approach to multitriangulations and cluster

complexes.

Remark 3.13. There is as well a “naive” way of extending the notion of cluster com-

plexes. Consider the simplicial complex on the set of almost positive roots whose faces

are given by the sets that do not contain any subset of k+1 pairwise incompatible roots.

In type A, this complex gives rise to the simplicial complex of multitriangulations of a

convex polygon as desired. However, this simplicial complex lacks basic properties of

cluster complexes in general; in type B3, it is not pure. In this case, the maximal faces

have cardinality 6 or 7. A similar phenomenon was observed in [PP12, Remark 29],

where the authors suggest that subword complexes of type A (viewed as pseudoline ar-

rangements) are the right objects to define “multi-pseudotriangulations”, and explain

that the approach using pairwise crossings does not work.

The dictionary for type A is presented in Table 3.1. The general bijection between k-

relevant diagonals of the m-gon and (positions of) letters of the word Q = ckw◦(c) of

type Am−2k−1 is given as follows. Label the vertices of the m-gon from 0 to m − 1 in

clockwise direction, and let n = m− 2k − 1 for simplicity. For i ∈ {1, 2, . . . , n}, denote

by pi the position of the generator si in c, and let

ai =
∣∣{j ∈ {1, 2, . . . , n} : j < i and pj < pj+1

}∣∣ mod(m),

bi = −k − 1−
∣∣{j ∈ {1, 2, . . . , n} : j < i and pj > pj+1

}∣∣ mod(m).

The bijection sends the `th copy of a generator si inQ to the k-relevant diagonal obtained

by rotating `− 1 times the diagonal [ai, bi] in clockwise direction. Under this bijection,

a collection of k-relevant diagonals is a facet of ∆m,k if and only if the corresponding

subword in Q is a facet of ∆k
c (Am−2k−1).

In type B we also obtain a previously known object, namely the simplicial complex ∆sym
m,k

of centrally symmetric k-triangulations of a regular convex 2m-gon. The vertices of this

complex are pairs of centrally symmetric k-relevant diagonals, and a collection of vertices
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∆m,k ∆k
c (Am−2k−1)

vertices: k-relevant diagonals of a convex letters of Q = ckw◦(c)
m-gon

facets: maximal sets of k-relevant diagonals such that Q \ P is
without (k + 1)-crossings a reduced expression for w◦

simplices: sets of k-relevant diagonals P ⊂ Q such that Q \ P contains
without (k + 1)-crossings a reduced expression for w◦

ridges: flips between two k-triangulations facet flips using Lemma 3.23

Table 3.1: The correspondence between the concepts of diagonals, multitriangulations and
flips of multitriangulations in ∆m,k and in the multi-cluster complex ∆k

c (Am−2k−1).

form a face if and only if the corresponding diagonals do not contain a (k+ 1)-crossing.

This simplicial complex was studied in algebraic and combinatorial contexts by [SW09],

[RS10]. We refer to Section 3.7.3 for a proof of Theorem 3.14.

Theorem 3.14. The multi-cluster complex ∆k
c (Bm−k) is isomorphic to the simplicial

complex of centrally symmetric k-triangulations of a regular convex 2m-gon.

The description of the simplicial complex of centrally symmetric multitriangulations as

a subword complex provides straightforward proofs of nontrivial results about centrally

symmetric multitriangulations.

Corollary 3.15. The following properties of centrally symmetric multitriangulations of

a regular convex 2m-gon hold.

(i) All centrally symmetric k-triangulations of a regular convex 2m-gon contain exactly

mk relevant (centrally) symmetric pairs of diagonals, of which k are diameters.

(ii) For any centrally symmetric k-triangulation T and any k-relevant symmetric pair

of diagonals d ∈ T , there exists a unique k-relevant symmetric pair of diago-

nals d′ not in T such that T ′ = (T\{d}) ∪ {d′} is again a centrally symmetric

k-triangulation. The operation of interchanging a symmetric pair of diagonals

between T and T ′ is called symmetric flip.

(iii) All centrally symmetric k-triangulations of a 2m-gon are connected by symmetric

flips.

The dictionary between the type B multi-cluster complex and the simplicial complex

of centrally symmetric k-triangulations of a regular convex 2m-gon is presented in Ta-

ble 3.2.

The bijection between k-relevant symmetric pairs of diagonals of a regular convex 2m-

gon and (positions of) letters of the word Q = ckw◦(c) = cm of type Bn, where n = m−k
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∆sym
m,k ∆k

c (Bm−k)

vertices: k-relevant symmetric pairs of letters of Q = ckw◦(c) = cm

diagonals of a regular convex 2m-gon

facets: maximal sets of k-relevant centrally P ⊂ Q such that Q \ P is
symmetric diagonals without a reduced expression for w◦
(k + 1)-crossings

simplices: sets of k-relevant symmetric pairs of P ⊂ Q such that Q \ P contains
diagonals without (k + 1)-crossings a reduced expression for w◦

ridges: symmetric flips between two centrally facet flips using Lemma 3.23
symmetric k-triangulations

Table 3.2: The generalization of the concept of diagonals, multitriangulations and flips of
multitriangulations to the Coxeter group of type Bn.

and (s1s2)4 = (sisi+1)3 = 1 for 1 < i < n, is given as follows. Label the vertices of the

2m-gon from 0 to 2m−1 in clockwise direction. For 1 ≤ i ≤ n, denote by pi the position

of the generator si in c, and let

ai = |{j : 1 ≤ j < i and pj < pj+1}|,
bi = m− |{j : 1 ≤ j < i and pj > pj+1}|.

The bijection sends the jth copy of a generator si in Q to the k-relevant symmetric

pair of diagonals obtained by rotating j − 1 times the symmetric pair [ai, bi]sym :=
{

[ai, bi], [ai+m, bi+m]
}

in clockwise direction (observe that both diagonals coincide for

i = 1). Under this bijection, a collection of k-relevant symmetric pairs of diagonals is a

facet of ∆sym
m,k if and only if the corresponding subword in Q is a facet of ∆k

c (Bm−k).

Example 3.16. Let m = 5 and k = 2, and let W be the Coxeter group of type B3

generated by S = {s1, s2, s3} where (s1s2)4 = (s2s3)3 = (s1s3)2 = 1. The multi-

cluster complex ∆2
c(B3) is isomorphic to the simplicial complex of centrally symmetric

2-triangulations of a regular convex 10-gon. In the particular case where the Coxeter

element c = c1c2c3 = s1s2s3, the bijection between 2-relevant symmetric pairs and the

letters of the word Q = c2w◦(c) = (s1, s2, s3)5 is given by

s1 s2 s3 s1 s2 s3 s1 s2 s3 s1 s2 s3 s1 s2 s3

[6, 1] [6, 2] [6, 3] [7, 2] [7, 3] [7, 4] [8, 3] [8, 4] [8, 5] [9, 4] [9, 5] [9, 6] [10, 5] [10, 6] [10, 7]

[1, 7] [1, 8] [2, 8] [2, 9] [3, 9] [3, 10] [4, 10] [4, 1] [5, 1] [5, 2]

.

For instance, the first appearance of the letter s3 is mapped to the symmetric pair of di-

agonals [6, 3]sym =
{

[6, 3], [1, 8]
}

, while the third appearance of s1 is mapped to the sym-

metric pair of diagonals [8, 3]sym =
{

[8, 3]
}

. The centrally symmetric k-triangulations
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can be easily described using the subword complex approach. For example, the sym-

metric pairs of diagonals at positions {3, 5, 7, 9, 13, 15} form a facet of ∆sym
m,k ; the cor-

responding 2-triangulation is depicted in Fig. 1.3 on page 13. The symmetric flips are

interpreted using Lemma 3.23.

Using algebraic techniques, Daniel Soll and Volkmar Welker proved that ∆sym
m,k is a

(mod 2)-homology-sphere [SW09, Theorem 10]. The subword complex description in

Theorem 3.14 and the results by Allen Knutson and Ezra Miller [KM04, Theorem 2.5

and Corollary 3.8] imply the following stronger result.

Corollary 3.17. The simplicial complex of centrally symmetric k-triangulations of a

regular convex 2m-gon is a vertex-decomposable simplicial sphere.

This result together with the proof of [SW09, Conjecture 13] given in [RS09] implies the

following conjecture by Daniel Soll and Volkmar Welker.

Corollary 3.18 ([SW09, Conjecture 17]). For the term-order � defined in [SW09,

Section 7], the initial ideal in�(In,k) of the determinantal ideal In,k defined in [SW09,

Section 3] is spherical.

We finish this section by describing all spherical subword complexes in terms of faces of

multi-cluster complexes (see Section 3.7.5 for the proofs). This generalizes the univer-

sality of the multi-associahedron presented in [PS12a, Proposition 5.6] to finite Coxeter

groups.

Theorem 3.19. A simplicial sphere can be realized as a subword complex of a given

finite type W if and only if it is the link of a face of a multi-cluster complex ∆k
c (W ).

The previous theorem can be obtained for any family of subword complexes, for which

arbitrary large powers of c appear as subwords. However, computations seem to in-

dicate that the multi-cluster complex maximizes the number of facets among subword

complexes ∆(Q,w◦) with word Q of the same size. We conjecture that this is true in

general, see Conjecture 3.103. We also obtain the following corollary.

Corollary 3.20. The following two statements are equivalent.

(i) Every spherical subword complex of type W is polytopal.

(ii) Every multi-cluster complex of type W is polytopal.
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3.4 General results on spherical subword complexes

Before proving the main results, we discuss several properties of spherical subword com-

plexes in general which are not specific to multi-cluster complexes. Throughout this

section, we let Q = (q1, . . . , qr) be a word in S and π = δ(Q) be its Demazure product.

3.4.1 Flips in spherical subword complexes

Lemma 3.21 (Knutson–Miller [KM04, Lemma 3.5]). Let F be a facet of ∆(Q, δ(Q)).

For any vertex q ∈ F , there exists a unique vertex q′ ∈ Q \ F such that
(
F \ {q}

)
∪ {q′}

is again a facet.

Proof. This follows from the fact that ∆(Q, δ(Q)) is a simplicial sphere [KM04, Corol-

lary 3.8].

Such a move between two adjacent facets is called flip. Next, we describe how to find

the unique vertex q′ /∈ F corresponding to q ∈ F . For this, we introduce the notion of

root functions.

Definition 3.22. The root function rF : Q → Φ associated to a facet F of ∆(Q, π)

sends a letter q ∈ Q to the root rF (q) := wq(αq) ∈ Φ, where wq ∈ W is given by the

product of the letters in the prefix of Q \ F = (qi1 , . . . , qi`) that appears on the left of q

in Q, and where αq is the simple root associated to q.

Lemma 3.23. Let F be a facet of ∆(Q, δ(Q)) and let q ∈ F and q′ ∈ Q \ {q} be such

that
(
F \ {q}

)
∪ {q′} is again a facet. The vertex q′ is the unique vertex not in F for

which rF (q′) ∈ {±rF (q)}.

Proof. Since qi1 . . . qi` is a reduced expression for π = δ(Q), the set {rF (qi1), . . . , rF (qi`)}
is equal to the inversion set inv(π) = {αi1 , qi1(αi2), . . . , qi1 · · · qi`−1

(αi`)} of π, which only

depends on π and not on the chosen reduced expression. In particular, any two elements

in this set are distinct. Notice that the root rF (q) for q ∈ F is, up to sign, also contained

in inv(π), otherwise it would contradict the fact that the Demazure product of Q is π. If

we insert q into the reduced expression of π, we have to delete the unique letter q′ that

corresponds to the same root, with a positive sign if it appears on the right of q in Q,

or with a negative sign otherwise. The resulting word is again a reduced expression for

π.

Remark 3.24. In the case of cluster complexes, this description can be found in [IS10,

Lemma 2.7].
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Example 3.25. As in Example 3.6, consider the Coxeter group of type B2 gener-

ated by S = {s1, s2} with c = c1c2 = s1s2 and cw◦(c) = (c1, c2, w1, w2, w3, w4) =

(s1, s2, s1, s2, s1, s2). Considering the facet F = {c2, w1}, we obtain

rF (c1) = α1, rF (w2) = s1(α2) = α1 + α2,

rF (c2) = s1(α2) = α1 + α2, rF (w3) = s1s2(α1) = α1 + 2α2,

rF (w1) = s1(α1) = −α1, rF (w4) = s1s2s1(α2) = α2.

Since rF (c2) = rF (w2), the letter c2 in F flips to w2. As w2 appears on the right of c2,

both roots have the same sign. Similarly, the letter w1 flips to c1, because rF (c1) =

−rF (w1). In this case, the roots have different signs because c1 appear on the left of w1.

The following lemma describes the relation between the root functions of two facets

connected by a flip.

Lemma 3.26. Let F and F ′ =
(
F \ {q}

)
∪ {q′} be two adjacent facets of the subword

complex ∆(Q, δ(Q)), and assume that q appears on the left of q′ in Q. Then, for every

letter p ∈ Q,

rF ′(p) =




tq(rF (p)) if p is between q and q′, or p = q′,

rF (p) otherwise.

Here, tq = wqqw
−1
q where wq is the product of the letters in the prefix of Q\F that

appears on the left of q in Q. By construction, tq is the reflection in W orthogonal to

the root rF (q) = wq(αq).

Proof. Let p be a letter in Q, and wp, w
′
p be the products of the letters in the prefixes

of Q\F and Q\F ′ that appear on the left of p. Then, by definition rF (p) = wp(αp)

and rF ′(p) = w′p(αp). We consider the following three cases:

• If p is on the left of q or p = q, then wp = w′p and rF (p) = rF ′(p).

• If p is between q and q′ or p = q′, then w′p can be obtained from wp by adding the

letter q at its corresponding position. This addition is the result of multiplying wp

by tq = wqqw
−1
q on the left, i.e. w′p = tqwp. Therefore, rF (p) = tq(rF ′(p)).

• If p is on the right of q′, consider the reflection tq′ = wq′q
′w−1
q′ where wq′ is the

product of the letters in the prefix of Q\F that appears on the left of q′. By the

same argument, one obtains that w′p = tqtq′wp. In addition, tq = tq′ because they

correspond to the unique reflection orthogonal to the roots rF (q) and rF (q′), which

are up to sign equal by Lemma 3.23. Therefore, w′p = wp and rF ′(p) = rF (p).
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3.4.2 Isomorphic spherical subword complexes

We now show how the study of general spherical subword complexes can be reduced to

the study of spherical subword complexes satisfying the condition that δ(Q) = π = w◦

and give two operations on the word Q giving isomorphic subword complexes.

Theorem 3.27. Every spherical subword complex ∆(Q, π) is isomorphic to ∆(Q′, w◦)

for some word Q′ such that δ(Q′) = w◦.

Proof. Let r be a reduced word for π−1w◦ = δ(Q)−1w◦ ∈ W . Moreover, define the

word Q′ as the concatenation of Q and r. By construction, the Demazure product of Q′

is w◦, and every reduced expression of w◦ in Q′ must contain all the letters in r. The

reduced expressions of w◦ in Q′ are given by reduced expressions of π in Q together

with all the letters in r. Therefore, the subword complexes ∆(Q, π) and ∆(Q′, w◦) are

isomorphic.

Recall from Section 3.10, on page 44, the involution ψ : S → S given by ψ(s) = w−1
◦ sw◦.

This involution was used in [BHLT09] to characterize isometry classes of the c-generalized

associahedra, and will also be in Section 3.9. Define the rotated word Q	
s

or the rotation of

Q = (s, q2, . . . , qr) along the letter s as (q2, . . . , qr, ψ(s)). The following two propositions

are direct consequences of the definition of subword complexes.

Proposition 3.28. If two words Q and Q′ coincide up to commutations, then ∆(Q, π) ∼=
∆(Q′, π).

Proof. The isomorphism between ∆(Q, π) and ∆(Q′, π) is induced by reordering the

letters of Q to obtain Q′.

Proposition 3.29. Let Q = (s, q2, . . . , qr). Then ∆(Q,w◦) ∼= ∆(Q	
s
, w◦).

Proof. The isomorphism between ∆(Q,w◦) and ∆(Q	
s
, w◦) is induced by sending qi to

qi for 2 ≤ i ≤ r and the initial s to the final ψ(s). The result follows from the fact that

sw◦ = w◦ψ(s).

Theorem 3.27 and Proposition 3.29 give an alternative viewpoint on spherical subword

complexes. First, we can consider π to be the longest element w◦ ∈W . Second, ∆(Q,w◦)

does not depend on the word Q but on the bi-infinite word

Q̃ = · · · Q ψ(Q) Q · · ·
= . . . q1, . . . , qr, ψ(q1), . . . , ψ(qr), q1, . . . , qr, . . . .
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Taking any connected subword in Q̃ of length r gives rise to an isomorphic spherical

subword complex. This is a key observation that we will use in Section 3.9.

3.5 Proof of Theorem 3.8

In this section, we prove Theorem 3.8 which states that multi-cluster complexes given

by distinct Coxeter elements are isomorphic. This result relies on the theory of sorting

words (see Definition 3.3 on page 42), introduced by Nathan Reading in [Rea07a]. We

use the following result.

Lemma 3.30 (Speyer [Spe09, Corollary 4.1]). The longest element w◦ ∈ W can be

expressed as a reduced prefix of c∞ up to commutations.

The next lemma unifies previously known results; the first statement is trivial, the second

statement can be found in [Spe09, Section 4], and the third statement is equivalent to

[HLT11, Lemma 1.6].

Lemma 3.31. Let s be initial in c, and let p = (s, p2, . . . , pr) be a prefix of c∞ up to

commutations. Then,

(i) (p2, . . . , pr) is a prefix of (c′)∞ up to commutations, where c′ denotes a word for

the Coxeter element c′ = scs,

(ii) if p = sp2 · · · pr is reduced, then p is the c-sorting word for p up to commutations,

(iii) if sp2 · · · prs′ is reduced for some s′ ∈ S, then p is a prefix of the c-sorting word

for ps′ up to commutations.

Proposition 3.32. Let s be initial in c, and let w◦(c) = (s, w2, . . . , wN ) be the c-sorting

word of w◦ up to commutations. Then, (w2, . . . , wN , ψ(s)) is the scs-sorting word of w◦

up to commutations.

Proof. By Lemma 3.30, the element w◦ can be written as a prefix of c∞. By Lemma 3.31,

this prefix is equal to the c-sorting of w◦, which we denote by w◦(c). Let scs denote

the word for the Coxeter element scs. By Lemma 3.31 (i), the word (w2, . . . , wN ) is a

prefix of (scs)∞, and by (ii) it is the scs-sorting word for w2 · · ·wN . By the definition

of ψ, the word (w2, . . . , wN , ψ(s)) is a reduced expression for w◦. Lemma 3.31 (iii) with

the word (w2, . . . , wN ) and ψ(s) implies that (w2, . . . , wN , ψ(s)) is the scs-sorting word

for w◦ up to commutations.

Remark 3.33. In [RS11], Nathan Reading and David Speyer present a uniform ap-

proach to the theory of sorting words and sortable elements. This approach uses an anti-

symmetric bilinear form, which is used to extend many results to infinite Coxeter groups.

In particular, the previous proposition can be easily deduced from [RS11, Lemma 3.8].
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We are now in the position to prove that all multi-cluster complexes for the various

Coxeter elements are isomorphic.

Proof of Theorem 3.8. Let c and c′ be two Coxeter elements such that c′ = scs for some

initial letter s of c, and let c and c′ denote reduced words for c and c′, respectively.

Moreover, let Qc = ckw◦(c), and Qc′ = (c′)kw◦(c
′). By Proposition 3.28, we can

assume that Qc = (s, c2, . . . , cn)k · (s, w2, . . . , wN ), and by Proposition 3.32, we can

also assume that Qc′ = (c2, . . . , cn, s)
k · (w2, . . . , wN , ψ(s)). Therefore, Qc′ = (Qc)	

s
,

and Proposition 3.29 implies that the subword complexes ∆(Qc, w◦) and ∆(Qc′ , w◦)

are isomorphic. Since any two Coxeter elements can be obtained from each other by

conjugation of initial letters (see [GP00, Theorem 3.1.4]), the result follows.

3.6 Proof of Theorem 3.4

In this section, we prove that the subword complex ∆(cw◦(c), w◦) is isomorphic to

the c-cluster complex. As in Theorem 3.4, we identify letters in cw◦(c) = (c1, . . . , cn,

w1, . . . , wN ) with almost positive roots using the bijection Lrc : cw◦(c) −̃→ Φ≥−1 given

by

Lrc(q) =




−αci if q = ci for some 1 ≤ i ≤ n,

w1w2 · · ·wi−1(αwi) if q = wi for some 1 ≤ i ≤ N.

In [Rea07a], this map was used to establish a bijection between c-sortable elements and

c-clusters. Note that under this bijection, letters of cw◦(c) correspond to almost positive

roots and subwords of cw◦(c) correspond to subsets of almost positive roots. We use

this identification to simplify several statements in this section. Observe, that for the

particular facet F0 of ∆(cw◦(c), w◦) corresponding to the prefix c of cw◦(c), we have

that

Lrc(q) = rF0(q) for every q ∈ w◦(c) ⊂ cw◦(c),

where rF0(q) is the root function as defined in Definition 3.22. We interpret the two

parts (i) and (ii) in the definition of c-compatibility (see Section 3.2), in Theorem 3.34

and Theorem 3.40. Proving these two conditions yields a proof of Theorem 3.4. The

majority of this section is devoted to the proof of the initial condition. The proof of the

recursive condition follows afterwards.

3.6.1 Proof of condition (i)

The following theorem implies that ∆(cw◦(c), w◦) satisfies the initial condition.
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Theorem 3.34. {−αs, β} is a face of the subword complex ∆(cw◦(c), w◦) if and only

if β ∈
(
Φ〈s〉

)
≥−1

.

We prove this theorem in several steps.

Lemma 3.35. Let F be a facet of the subword complex ∆(cw◦(c), w◦) such that ci ∈ F .

Then

(i) for every q ∈ F with q 6= ci, rF (q) ∈ Φ〈ci〉,

(ii) for every q ∈ cw◦(c), rF (q) ∈ Φ〈ci〉 if and only if Lrc(q) ∈ (Φ〈ci〉)≥−1.

Proof. For the proof of (i), notice that if F = c, then the result is clear. Now suppose

that the result is true for a given facet F with ci ∈ F , and consider the facet F ′ =
(
F \{p}

)
∪{p′} obtained by flipping a letter p 6= ci in F . Since all the facets containing ci

are connected by flips which do not involve the letter ci, it is enough to prove the result

for the facet F ′. By hypothesis, since p ∈ F and p 6= ci, we have rF (p) ∈ Φ〈ci〉. Then,

the reflection tp orthogonal to rF (p) defined in Lemma 3.26 satisfies tp ∈ W〈ci〉. Using

Lemma 3.26 we obtain that for every q ∈ cw◦(c),

rF ′(q) ∈ Φ〈ci〉 ⇐⇒ rF (q) ∈ Φ〈ci〉.

If q ∈ F ′ and q 6= ci, then (q ∈ F and q 6= ci) or q = p′. In the first case, rF (q) is

contained in Φ〈ci〉 by hypothesis, and consequently rF ′(q) ∈ Φ〈ci〉. By Lemma 3.23, the

second case q = p′ implies that rF (q) = ±rF (p). Again since rF (p) belongs to Φ〈ci〉 by

hypothesis, the root rF ′(q) belongs to Φ〈ci〉.

For the second part of the lemma, notice that the set {q ∈ cw◦(c) : rF (q) ∈ Φ〈ci〉} is

invariant for every facet F containing ci. In particular, if F = c, this set is equal to

{q ∈ cw◦(c) : Lrc(q) ∈ (Φ〈ci〉)≥−1}. Therefore, rF (q) ∈ Φ〈ci〉 if and only if Lrc(q) ∈
(Φ〈ci〉)≥−1.

Proposition 3.36. If a facet F of ∆(cw◦(c), w◦) contains ci and q 6= ci, then Lrc(q) ∈
(Φ〈ci〉)≥−1.

Proof. This proposition is a direct consequence of Lemma 3.35.

Next, we consider the parabolic subgroup W〈ci〉 obtained by removing the generator ci

from S.

Lemma 3.37. Let c′ be the Coxeter element of the parabolic subgroup W〈ci〉 obtained

from c by removing the generator ci. Consider the word Q̂ = c′w◦(c) obtained by deleting
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the letter ci from Q = cw◦(c), and let Q′ = c′w◦(c
′). Then, the subword complexes

∆(Q̂, w◦) and ∆(Q′, w′◦) are isomorphic.

Proof. Since every facet F of ∆(Q̂, w◦) can be seen as a facet F ∪{ci} of ∆(cw◦(c), w◦)

which contains ci, for every q ∈ F , we have that Lrc(q) ∈ (Φ〈ci〉)≥−1 by Proposition 3.36.

This means that only the letters of Q̂ that correspond to roots in (Φ〈ci〉)≥−1 appear in

the subword complex ∆(Q̂, w◦). The letters in Q′ are in bijection, under the map Lrc′ ,

with the almost positive roots (Φ〈ci〉)≥−1. Let ϕ be the map that sends a letter q ∈ Q̂
corresponding to a root in (Φ〈ci〉)≥−1 to the letter in Q′ corresponding to the same root.

We will prove that ϕ induces an isomorphism between the subword complexes ∆(Q̂, w◦)

and ∆(Q′, w′◦). In other words, we show that F is a facet of ∆(Q̂, w◦) if and only if ϕ(F )

is a facet of ∆(Q′, w′◦). Let r̃F and r′ϕ(F ) be the root functions associated to F and ϕ(F )

in Q̂ and Q′, respectively. Then, for every q ∈ Q̂ such that Lrc(q) ∈ (Φ〈ci〉)≥−1, we have

r̃F (q) = r′ϕ(F )(ϕ(q)). (?)

If F = c′, then ϕ(F ) = c′, and the equality (?) holds by the definition of ϕ. Moreover,

if (?) holds for a facet F , then it is true for a facet F ′ obtained by flipping a letter

in F . This follows by applying Lemma 3.26 and using the fact that the positive roots

(Φ〈ci〉)≥−1 in Q̂ and Q′ appear in the same order, see [Rea07a, Prop. 3.2]. Finally,

Lemma 3.23 and (?) imply that the map ϕ sends flips to flips. Since c′ and ϕ(c′) are

facets of ∆(Q̂, w◦) and ∆(Q′, w′◦), respectively, and all facets are connected by flips, F

is a facet of ∆(Q̂, w◦) if and only if ϕ(F ) is a facet of ∆(Q′, w′◦).

The next lemma states that every letter in cw◦(c) is indeed a vertex of ∆(cw◦(c), w◦).

Lemma 3.38. Every letter in cw◦(c) is contained in some facet of ∆(cw◦(c), w◦).

Proof. Write the word Q = cw◦(c) as the concatenation of c and the c-factorization

of w◦, i.e., Q = ccK1cK2 · · · cKr , where Ki ⊆ S for 1 ≤ i ≤ r and cI , with I ⊆ S, is

the Coxeter element of WI obtained from c by keeping only letters in I. Since w◦ is

c-sortable, see [Rea07a, Corollary 4.4], the sets Ki form a decreasing chain of subsets

of S, i.e., Kr ⊆ Kr−1 ⊆ · · · ⊆ K1 ⊆ S. This implies that the word ccK1 . . . ĉKi . . . cKr

contains a reduced expression for w◦ for any 1 ≤ i ≤ r. Thus, all letters in cKi are

indeed vertices.

Proposition 3.39. For every q ∈ cw◦(c) satisfying Lrc(q) ∈ (Φ〈ci〉)≥−1, there exists a

facet of ∆(cw◦(c), w◦) that contains both ci and q.
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Proof. Consider the parabolic subgroup W〈ci〉 obtained by removing the letter ci from S,

and let Q̂ and Q′ be the words as defined in Lemma 3.37. Since ∆(Q̂, w◦) and ∆(Q′, w′◦)

are isomorphic, applying Lemma 3.38 to ∆(Q′, w′◦) completes the proof.

Proof of Theorem 3.34. Taking ci = s, −αs = Lrc(ci) and β = Lrc(q), the two directions

of the equivalence follow from Propositions 3.36 and 3.39.

3.6.2 Proof of condition (ii)

The following theorem proves condition (ii).

Theorem 3.40. Let β1, β2 ∈ Φ≥−1, and let s be an initial letter of a Coxeter element c.

Then, {β1, β2} is a face of the subword complex ∆(cw◦(c), w◦) if and only if {σs(β1),

σs(β2)} is a face of the subword complex ∆(c′w◦(c
′), w◦) with c′ = scs.

Proof. Let Q = cw◦(c), s be initial in c, and Q	
s

be the rotated word of Q, as defined in

Section 3.4.2. By Proposition 3.32 the word Q	
s

is equal to c′w◦(c
′) up to commutations,

and by Proposition 3.29 the subword complexes ∆(cw◦(c), w◦) and ∆(c′w◦(c
′), w◦) are

isomorphic. For every letter q ∈ cw◦(c), we denote by q′ the corresponding letter in

c′w◦(c
′) obtained from the previous isomorphism. We write q1 ∼c q2 if and only if

{q1, q2} is a face of ∆(cw◦(c), w◦). In terms of almost positive roots, this is written as

Lrc(q1) ∼c Lrc(q2)⇐⇒ Lrscs(q
′
1) ∼scs Lrscs

(
q′2
)
.

Note that the bijection Lrscs can be described using Lrc. Indeed, it is not hard to check

that Lrscs(q
′) = σs(Lrc(q)) for all q ∈ Q. Therefore,

Lrc(q1) ∼c Lrc(q2)⇐⇒ σs(Lrc(q1)) ∼scs σs(Lrc(q2)).

Taking β1 = Lrc(q1) and β2 = Lrc(q2), we get the desired result.

3.7 Polytopality of spherical subword complexes

In this section, we discuss the polytopality of spherical subword complexes and present

what is known in the particular cases of cluster complexes, simplicial complexes of multi-

triangulations, and simplicial complexes of centrally symmetric multitriangulations. We

then prove polytopality of multi-cluster complexes of rank 2. Finally, we show that every
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spherical subword complex is the link of a face of a multi-cluster complex, and conse-

quently reduce the question of realizing spherical subword complexes to the question of

realizing multi-cluster complexes.

Definition 3.41. A generalized multi-associahedron of type W is the dual of a polytopal

realization of a multi-cluster complex of type W .

The existence of such realizations remains open in general; see Table 3.3. The subword

complex approach provides new perspectives and methods for finding polytopal real-

izations. In a recent article, Christian Stump and Vincent Pilaud obtain a geometric

construction of a class of subword complexes containing generalized associahedra purely

in terms of subword complexes [PS12b].

simplicial complex polytopal realization of the dual

of triangulations associahedron
(classical) [Hai84, Lee89, Lod04, Rea06]

[HL07, GKZ08, CSZ11]

of multitriangulations multi-associahedron
[Jon05, Kra06, PS09, PP12, Stu11] (existence conjectured)

of centrally symmetric multi-associahedron of type B
multitriangulations [SW09, RS10] (existence conjectured)

cluster complex generalized associahedron
[FZ03, Rea06, Rea07a, Rea07b] [CFZ02, HL07, HLT11, Ste12, PS12b]

multi-cluster complex generalized multi-associahedron
[CLS13] (existence conjectured)

Table 3.3: Dictionary for generalized concepts of triangulations and associahedra.

3.7.1 Generalized associahedra

We have seen that for k = 1, the multi-cluster complex ∆1
c(W ) is isomorphic to the

c-cluster complex. Sergey Fomin and Andrei Zelevinsky conjectured the existence of

polytopal realizations of the cluster complex in [FZ03, Conjecture 1.12]. Frédéric Chapo-

ton, Sergey Fomin, and Andrei Zelevinsky then proved this conjecture by providing

explicit inequalities for the defining hyperplanes of generalized associahedra [CFZ02].

Nathan Reading constructed c-Cambrian fans, which are complete simplicial fans coars-

ening the Coxeter fan, see [Rea06]. In [RS09], Nathan Reading and David Speyer prove

that these fans are combinatorially isomorphic to the normal fan of the polytopal real-

ization in [CFZ02]. Christophe Hohlweg, Carsten Lange and Hugh Thomas then pro-

vided a family of c-generalized associahedra having c-Cambrian fans as normal fans

by removing certain hyperplanes from the permutahedron [HLT11]. Vincent Pilaud
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and Christian Stump recovered c-generalized associahedra by giving explicit vertex and

hyperplane descriptions purely in terms of the subword complex approach introduced

in the present paper [PS12b]. Moreover, Salvatore Stella completed the construction of

Frédéric Chapoton, Sergey Fomin and Andrei Zelevinsky to all orientations of the Dynkin

diagram and showed its relation to the one of Christophe Hohlweg, Carsten Lange and

Hugh Thomas in the context of Cambrian fans, see [Ste12].

3.7.2 Multi-associahedra of type A

In type An for n = m− 2k − 1, the multi-cluster complex ∆k
c (An) is isomorphic to the

simplicial complex ∆m,k of k-triangulations of a convex m-gon. This simplicial complex

is conjectured to be realizable as the boundary complex of a polytope2. It was studied

in many different contexts. See [PS09, Section 1] for a detailed description of previous

work on multitriangulations. Apart from the most simple cases, very little is known

about its polytopality. Nevertheless, this simplicial complex possesses very nice prop-

erties which makes this conjecture plausible. Indeed, the subword complex approach

provides a simple description of the 1-skeleton of a possible multi-associahedron (see

Lemma 3.23), and gives a new and very simple proof that it is a vertex-decomposable

triangulated sphere [Stu11, Theorem 2.1]; see also [Jon03]. Below we survey the known

polytopal realizations of ∆m,k as boundary complexes of convex polytopes. The simpli-

cial complex ∆m,k, or equivalently the multi-cluster complex ∆k
c (An) for n = m−2k−1,

is the boundary complex of

• a point if k = 0,

• an n-dimensional dual associahedron if k = 1,

• a k-dimensional simplex if n = 1,

• a 2k-dimensional cyclic polytope on 2k+ 3 vertices if n = 2, see [PS09, Section 8],

• a 6-dimensional simplicial polytope if n = 3 and k = 2, see [BP09].

The case n = 2 is also a direct consequence of the rank 2 description in Section 3.7.4.

Further unsuccessful attempts to realize ∆m,k come from various directions in discrete

geometry.

(a) A generalized construction of the polytope of pseudo-triangulations [RSS08] using

rigidity of pseudo-triangulations [Pil10, Section 4.2 and Remark 4.82].

(b) A generalized construction of the secondary polytope. As presented in [GKZ08],

the secondary polytope of a point configuration can be generalized using star

polygons [Pil10, Section 4.3].

2As far as we know, the first reference to this conjecture appears in [Jon05, Section 1].
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(c) The brick polytope of a sorting network [PS12a]. This new approach brought up a

large family of spherical subword complexes that are realizable as the boundary of

a polytope. In particular, it provides a new perspective on generalized associahe-

dra [PS12b]. Unfortunately, this polytope fails to realize the multi-associahedron.

3.7.3 Multi-associahedra of type B

Theorem 3.14 stated that the multi-cluster complex ∆k
c (Bm−k) is isomorphic to the sim-

plicial complex of centrally symmetric k-triangulations of a regular convex 2m-gon. This

simplicial complex was studied in [SW09, RS10]. We then present what is known about

its polytopality. The new approach using subword complexes provides in particular very

simple proofs of Corollaries 3.15, 3.17, and 3.18.

Proof of Theorem 3.14. Let S = {s0, s1, . . . , sm−k−1} be the generators of Bm−k, where

the generator s0 is such that (s0s1)4 = 1 ∈W , and the other generators satisfy the same

relations as in type Am−k−1. Then, embed the group Bm−k in the group A2(m−k)−1

by the standard folding technique: replace s0 by s′m−k and si by s′m−k+is
′
m−k−i for

1 ≤ i ≤ m−k−1, where the set S′ = {s′1, . . . , s′2(m−k)−1} generates the group A2(m−k)−1.

The multi-cluster complex ∆k
c (Bm−k) now has an embedding into the multi-cluster com-

plex ∆k
c′(A2(m−k)−1), where c′ is the Coxeter element of type A2(m−k)−1 corresponding

to c in Bm−k; the corresponding subcomplex has the property that 2(m− k) generators

(all of them except s′m−k) always come in pairs. Using the correspondence between

k-triangulations and the multi-cluster complex described in Section 1.3, the facets of

∆k
c (Bm−k) considered in ∆k

c′(A2(m−k)−1) correspond to centrally symmetric multitrian-

gulations.

Here, we present the few cases for which this simplicial complex is known to be polytopal.

The multi-cluster complex ∆k
c (Bm−k) is the boundary complex of

• an (m − 1)-dimensional dual cyclohedron (or type B associahedron) if k = 1, see

[Sim03, HL07],

• an (m− 1)-dimensional simplex if k = m− 1,

• a (2m− 4)-dimensional cyclic polytope on 2m vertices if k = m− 2, see [SW09].

The case k = m− 2 also follows from the rank 2 description in Section 3.7.4.
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3.7.4 Generalized multi-associahedra of rank 2

We now prove that multi-cluster complexes of rank 2 can be realized as boundary com-

plexes of cyclic polytopes. In other words, we show the existence of rank 2 multi-

associahedra. This case was known independently by Drew Armstrong [Arm11].

Theorem 3.42 (Type I2(m) multi-associahedra). The multi-cluster complex ∆k
c (I2(m))

is isomorphic to the boundary complex of a 2k-dimensional cyclic polytope on 2k + m

vertices. The multi-associahedron of type I2(m) is the simple polytope given by the dual

of a 2k-dimensional cyclic polytope on 2k +m vertices.

Proof. This is obtained by Gale’s evenness criterion (see [Zie95, Section 0]) on the word

Q = (a, b, a, b, a, . . . ) of length 2k + m: Let F be a facet of ∆k
c (I2(m)), and take two

consecutive letters x and y in the complement of F . Since the complement of F is a

reduced expression of w◦, x and y must represent different generators. Since the letters

in Q are alternating, this implies that the number of letters between x and y is even.

3.7.5 Generalized multi-associahedra

Recall from Section 3.1 that a subword complex ∆(Q, π) is homeomorphic to a sphere if

and only if the Demazure product δ(Q) is π, and it is homeomorphic to a ball otherwise.

This motivated the question whether spherical subword complexes can be realized as

boundary complexes of polytopes [KM04, Question 6.4.]. We show that it is enough

to consider multi-cluster complexes to prove polytopality for all spherical subword com-

plexes, and we characterize simplicial spheres that can be realized as subword complexes

in terms of faces of multi-cluster complexes.

Proposition 3.43. Every spherical subword complex ∆(Q,w◦) is the link of a face of a

multi-cluster complex ∆(ckw◦(c), w◦).

Proof. Observe that any word Q in S can be embedded as a subword of Q′ = ckw◦(c)

for k less than or equal to the size of Q, by assigning the ith letter of Q within the ith

copy of c. Since the Demazure product δ(Q) is equal to w◦, the word Q contains a

reduced expression for w◦. In other words, the set Q′ \ Q is a face of ∆(Q′, w◦). The

link of this face in ∆(Q′, w◦) consists of subwords of Q—viewed as a subword of Q′—

whose complements contain a reduced expression of w◦. This corresponds exactly to the

subword complex ∆(Q,w◦).

We now prove that simplicial spheres realizable as subword complexes are links of faces

of multi-cluster complexes.
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Proof of Theorem 3.19. For any spherical subword complex ∆(Q, π), we have that the

Demazure product δ(Q) equals π. By Theorem 3.27, ∆(Q, π) is isomorphic to a subword

complex of the form ∆(Q′, w◦). Using the previous lemma, we obtain that ∆(Q, π) is

the link of a face of a multi-cluster complex. The other direction follows since the

link of a subword (i.e., a face) of a multi-cluster complex is itself a subword complex,

corresponding to the complement of this subword.

Finally, we prove that the question of polytopality of spherical subword complexes is

equivalent to the question of polytopality of multi-cluster complexes.

Proof of Corollary 3.20. On one hand, if every spherical subword complex is polytopal,

then clearly every multi-cluster complex is polytopal. On the other hand, suppose that

every spherical subword complex is polytopal. Every spherical subword complex is the

link of a face of a multi-cluster complex. Since the link of a face of a polytope is also

polytopal, Theorem 3.19 implies that every spherical subword complex is polytopal.

3.8 Sorting words of the longest element and the SIN-

property

In this section, we give a simple combinatorial description of the c-sorting words of w◦

and prove that a word Q coincides up to commutations with ckw◦(c) for some nonneg-

ative integer k if and only if Q has the SIN-property as defined in Section 3.3. This

gives us an alternative way of defining multi-cluster complexes in terms of words hav-

ing the SIN-property. Recall the involution ψ : S → S from Section 3.5 defined by

ψ(s) = w−1
◦ sw◦. The sorting word of w◦ has the following important property.

Proposition 3.44. The sorting word w◦(c) is, up to commutations, equal to a word

with suffix (ψ(c1), . . . , ψ(cn)), where c = c1 · · · cn.

Proof. As w◦ has a c-sorting word having c = (c1, . . . , cn) as a prefix, the corollary is

obtained by applying Proposition 3.32 n times.

Given a word w in S, define the function φw : S → N given by φw(s) being the number

of occurrences of the letter s in w.
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Theorem 3.45. Let w◦(c) be the c-sorting word of w◦, and let s, t be neighbors in the

Coxeter graph such that s comes before t in c. Then

φw◦(c)(s) =




φw◦(c)(t) if ψ(s) comes before ψ(t) in c,

φw◦(c)(t) + 1 if ψ(s) comes after ψ(t) in c.

Proof. Sorting words of w◦ have intervening neighbors; see [Spe09, Proposition 2.1] for

an equivalent formulation. Therefore, s and t alternate in w◦(c), with s coming first.

Thus, φw◦(c)(s) = φw◦(c)(t) if and only if the last t comes after the last s. Using

Proposition 3.44, this means that s appears before t in ψ(c) or equivalently ψ(s) appear

before ψ(t) in c. Otherwise, the last s will appear after the last t.

It is known that if ψ is the identity on S, or equivalently if w◦ = −1, then the c-

sorting word of w◦ is given by w◦(c) = c
h
2 , where h denotes the Coxeter number given

by the order of any Coxeter element. In the case where ψ is not the identity on S

(that is, when W is of types An (n ≥ 2), Dn (n odd), E6 and I2(m) (m odd), see [BB05,

Exercise 10 of Chapter 4]), the previous theorem gives a simple way to obtain the sorting

words of w◦.

Algorithm 3.46. Let W be an irreducible finite Coxeter group, and let c = c1c2 · · · cn
be a Coxeter element.

(i) Since the Coxeter diagram is connected, one can use Theorem 3.45 to compute

φw◦(c)(s) for all s depending on m := φw◦(c)(c1),

(ii) using that the number of positive roots equals nh/2, one obtains m and thus all

φw◦(c)(s) using

2 ·
∑

s∈S
φw◦(c)(s) = nh,

(iii) using that w◦(c) = cK1cK2 · · · cKr where Ki ⊆ S for 1 ≤ i ≤ r and cI , with I ⊆ S,

is the Coxeter element of WI obtained from c by keeping only letters in I, we obtain

that cKi is the product of all s for which φw◦(c)(s) ≥ i.

This algorithm provides an explicit description of the sorting words of the longest el-

ement w◦ of any finite Coxeter group using nothing other than Coxeter group theory.

This answers a question raised in [HLT11, Remark 2.3] and simplifies a step in the con-

struction of the c-generalized associahedron. In Section 3.9, we use this description to

count the number of singletons. We now give two examples of how to use this algorithm.

Example 3.47. Let W = A4 and S = {s1, s2, s3, s4} with the relations (s1s2)3 =

(s2s3)3 = (s3s4)3 = e and the other pairs of generators commute. Moreover, let c =

s1s3s2s4. Fix φw◦(c)(s1) = m. Since s1 comes before s2 in c and that ψ(s1) = s4
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comes after ψ(s2) = s3, the letter s1 appears one more time than the letter s2 in

w◦(c), i.e., φw◦(c)(s2) = m − 1. Repeating the same argument gives φw◦(c)(s3) =

m and φw◦(c)(s4) = m−1. Summing up these values gives the equality 4m−2 = n·h
2 =

4·5
2 = 10, and thus m = 3. Finally, the c-sorting word is w◦(c) = (s1, s3, s2, s4|s1, s3, s2,

s4|s1, s3).

Example 3.48. Let W = E6 and S = {s1, s2, . . . , s6} with the relations (s1s2)3 =

(s2s6)3 = (s4s5)3 = (s5s6)3 = (s3s6)3 and the other pairs of generators commute.

Moreover, let c = s3s5s4s6s2s1. Fix φw◦(c)(s6) = m. Repeating the same procedure from

the previous example and using that ψ(s6) = s6, ψ(s3) = s3, ψ(s2) = s5, ψ(s1) = s4,

we get φw◦(c)(s1) = φw◦(c)(s2) = m− 1, φw◦(c)(s3) = φw◦(c)(s6) = m, φw◦(c)(s4) =

φw◦(c)(s5) = m + 1. As the sum equals nh
2 = 6·12

2 = 36, we obtain m = 6. Finally, the

c-sorting word is (c5|s3, s5, s4, s6|s5, s4).

Remark 3.49. Propositions 3.32 and 3.44 have the following computational conse-

quences. Denote by rev(w) the reverse of a word w. First, up to commutations, we

have

w◦(c) = rev(w◦(ψ(rev(c)))).

Second, we also have, up to commutation,

ch = w◦(c) rev(w◦(rev(c))).

Third, for all s ∈ S,

φw◦(c)(s) + φw◦(rev(c))(s) = φw◦(c)(s) + φw◦(c)(ψ(s)) = h.

We are now in the position to prove Theorem 3.11.

Proof of Theorem 3.11. Suppose that a word Q has the SIN-property; then it has com-

plete support by definition, and it contains, up to commutations, some word c =

(c1, . . . , cn) for a Coxeter element c as a prefix. Moreover, the word (ψ(c1), . . . , ψ(cn))

is a suffix of Q, up to commutations. Observe that a word has intervening neighbors if

and only if it is a prefix of c∞ up to commutations, see [EE09, Section 3]. In view of

Lemma 3.30 and the equality δ(Q) = w◦, the word Q has, up to commutations, w◦(c)

as a prefix. If the length of Q equals w◦, the proof ends here with k = 0. Otherwise, the

analogous argument for rev(Q) gives that the word rev(Q) has, up to commutations,

w◦(ψ(rev(c))) as a prefix. By Remark 3.49, the word w◦(ψ(rev(c))) is, up commuta-

tions, equal to the reverse of w◦(c). Therefore, Q has the word w◦(c) also as a suffix.

Since c = (c1, . . . , cn) is a prefix of Q and of w◦(c), and Q has intervening neighbors, Q

coincides with ckw◦(c) up to commutations. Moreover, if Q is equal to ckw◦(c) up to
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commutations, it has intervening neighbors, and a suffix (ψ(c1), . . . , ψ(cn)), up to com-

mutations, by Proposition 3.44. This implies that the word Q has the SIN-property.

Remark 3.50. In light of Theorem 3.11 and Section 3.4.2, starting with a wordQ having

the SIN-property suffices to construct a multi-cluster complex, and choosing a particular

connected subword in the bi-infinite word Q̃, defined in Section 3.4.2, corresponds to

choosing a particular Coxeter element.

3.9 Common vertices of permutahedra and generalized as-

sociahedra

The associahedron has been realized using many different constructions. We refer the

reader to the recent book [MHPS12] for an extensive collection of them. In this sec-

tion, we consider the construction of the c-generalized associahedron for arbitrary finite

irreducible Coxeter groups presented in [HLT11] which is a generalization of a construc-

tion by Christophe Hohlweg and Carsten Lange for type A and B presented in [HL07].

This construction is also described in [MHPS12, Chapter 8]. In this construction, the

c-generalized associahedron is obtained from the n-dimensional W -permutahedron by

taking away certain facets. The n-dimensional W -permutahedron is a simple zonotope

whose 1-skeleton corresponds to the Hasse diagram of the weak order of the Coxeter

group W . In particular, the vertices of the W -permutahedron are labeled by elements

of the group. The facets to take away are determined using the notions of sorting words

and sortable elements, discussed in Section 3.5 and 3.8; they are facets that do not con-

tain a vertex labeled by a c-singleton element. Consequently, c-singletons correspond

to the vertices shared by the W -permutahedron and the resultant c-generalized asso-

ciahedron, which is dual to the c-cluster complex of the corresponding type. In this

section, we give explicit formulas counting singletons for all finite Coxeter groups and

Coxeter elements. This answers a question raised in [HL07, Section 4.2] and [MHPS12,

Problem 3.3, Chapter 8] about lower and upper bounds for common vertices.

3.9.1 Natural partial order and singletons

Let us recall the definition of sorting words; see Definition 3.3. Let c = (c1, . . . , cn) be

a reduced expression for a Coxeter element c ∈ W , and let w(c) = (w1, . . . , wN ) be

the lexicographically first subword of c∞ that represents a reduced expression for the

element w ∈W . The word w◦(c) is called c-sorting word for w◦ (see Section 3.5 and 3.8

for more details about sorting words and their related structures).
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Definition 3.51 (Hohlweg–Lange–Thomas [HLT11, Theorem 2.2]). Let W be a finite

irreducible Coxeter group and c be a Coxeter element. A c-singleton is an element of W

expressible by a prefix of the c-sorting word w◦(c) up to commutations.

Singletons admit different definitions. For example, they are sortable elements which

are alone in their projection class π↓c (see [Rea07a]), therefore the name singleton. In

Section 3.8, Theorem 3.45, Algorithm 3.46, and Remark 3.49 give a combinatorial de-

scription of the sorting word w◦(c).

Remark 3.52. In this section, we assume that Coxeter groups are finite and irreducible.

The enumerative results of this section can easily be extended to reducible Coxeter

groups by taking the product of the irreducible parabolic subgroups formulas.

Ádám Galambos and Vic Reiner gave a definition of natural partial order on crossings

in a pseudoline arrangements, see [GR08, Definition 6]. This turns out to be an efficient

way to encode prefixes of a longest word up to commutation as ideals of this natural

partial order. To work with arbitrary finite irreducible Coxeter groups, we generalize

the natural partial order.

Definition 3.53. Let W be an irreducible finite Coxeter group and w◦ be a longest

word. Define the natural partial order ≺w◦ on the letters of a longest word w◦ as follows:

p ≺w◦ q if and only if there exists a subword u = (u1, . . . , uk), with k ≥ 1, of w◦ such

that u1 = p, uk = q and every pair ui, ui+1 for 1 ≤ i ≤ k − 1 do not commute.

Lemma 3.54. Let W be an irreducible finite Coxeter group, c a Coxeter element

and w◦(c) the c-sorting word of w◦. Lower ideals of ≺w◦(c) are in bijection with c-

singletons.

Proof. The set of c-singletons ordered with the (right) weak order is known to form a

distributive lattice, see [HLT11, Proposition 2.5]. Given a finite distributive lattice L,

there exists a unique (up to isomorphism) poset P for which the lattice of lower ideal

J(P ) is isomorphic to L, see [Sta12, Theorem 3.4.1]. For a finite poset, anti-chains are in

one-to-one correspondance with lower ideals, see [Sta12, Section 3.1]. We will prove that

the lattice of lower ideals of ≺w◦(c) is isomorphic to the lattice of c-singletons ordered

by the weak order. Let wc be a c-singleton, that is a prefix of w◦(c) up to commutation.

This prefix is a subset of letters of w◦(c). If t is a letter in wc and s ≺w◦(c) t, then there

exists a subword u = (u1, . . . , uk) of w◦(c), with u1 = s and uk = t such that every pair

ui, ui+1 for 1 ≤ i ≤ k − 1 do not commute. The subword wc is a prefix of w◦(c) and

therefore every letter in the subword u have to be in wc. Indeed, otherwise, a certain ui

on the left of t in w◦(c) could not be moved to the right of t using only commutations, in
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order for t to be in a prefix wc. In other words, letters of wc form a lower ideal of ≺w◦(c).

The cover relations of the weak order on the c-singletons transfer to cover relations on

lower ideals of ≺w◦(c). The identity element correspond to the empty lower ideal and

the c-singleton w◦(c) correspond to the complete poset ≺w◦(c). Since both posets are

finite, they are isomorphic. See [Sta12, Exercice 3.123] for a related problem.

In this section, we enumerate ideals of the natural orders ≺w◦(c), for all irreducible finite

Coxeter groups and Coxeter elements.

3.9.2 Cylindric graphs of longest words and cuts

For all longest words w◦ of a finite irreducible Coxeter group W , we introduce a graph

called the cylindric graph that encodes the natural partial order ≺w◦ and cuts of a

cylindric graph. Cuts encode conjugation by initial letters of w◦ and lower ideals of the

natural order. We start with a simple lemma.

Lemma 3.55. Let w◦ = (w1, · · · , wN ) be a longest word of W and define the cyclic

longest word
	
w◦ := (w1, · · · , wN , ψ(w1), · · · , ψ(wN )) .

Then, considering the word
	
w◦ cyclically, all consecutive subwords (up to commutations)

of length N are reduced expressions of w◦.

Proof. By definition, there is a sequence of commutation and rotation of letters (see

the definition before Proposition 3.28 on page 51) from any consecutive subword of
	
w◦

of length N , up to commutation, to w◦ = (w1, · · · , wN ). These two actions leave the

expression reduced.

Definition 3.56. Let w◦ = (w1, · · · , wN ) be a longest word of a finite irreducible

Coxeter group W . The cylindric graph Zw◦ = (V,E) of w◦ is the oriented graph with

vertices indexed by the 2N letters in
	
w◦ and edges given by vwi −→ vwj , for any

noncommuting pair wi, wj such that wi comes before wj in a consecutive subword of
	
w◦

(considered cyclically) and no letter represented by wi or wj appear between them.

Let Z denote a bounded cylindric surface and refer to its boundaries as the bottom and

top boundaries.

Example 3.57. Let (W,S) = (A4, {s1, s2, s3, s4}). Consider the longest word w◦ =

(s3, s2, s1, s2, s3, s4, s2, s3, s2, s1). The cyclic word is then
	
w◦ = (s3, s2, s1, s2, s3, s4, s2, s3,

s2, s1|s2, s3, s4, s3, s2, s1, s3, s2, s3, s4). The cylindric graph Zw◦ is depicted in Fig. 3.2.
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Figure 3.2: A cylindric graph Zw◦ for the word w◦ in the group A4.

Definition 3.58. A loop L is a minimal length cyclic oriented closed chain in Zw◦ .

Let Lw◦ be the set of loops of Zw◦ .

A priori, it is not clear if it is always possible to embed a cylindric graph on a cylinder

as on Fig. 3.2. The following two lemmas give topological and combinatorial properties

of cylindric graphs that guarantee the existence of natural embeddings on a cylinder Z.

The present approach relies on the existence of such natural embeddings.

Lemma 3.59. Let W be a finite irreducible Coxeter group and w◦ a longest word. There

is a natural embedding of a cylindric graph Zw◦ on a cylinder Z, with the following

properties:

(i) the projections of oriented edges of Zw◦ on a boundary of Z all share the same

orientation,

(ii) a loop of Lw◦ goes around Z exactly once.

Proof. First we label the vertices of the Coxeter graph Γ. Select a longest chain τ in Γ

and set k as the number of vertices in it. The integer k is equal to n − 1 when Γ is of

type D or E, it is equal to n otherwise. Label the vertices going through the chain τ

using label s1,1 to sk,k. If k = n−1, label the remaining vertex with the special label sn,j ,

where j is the integer used in the label of its neighbor. Let c = (s1,i1 , s2,i2 , . . . , sn,in),

where ij are given by the labeling, and let m be the smallest integer such that
	
w◦ is a

subword of cm. Define the functions

Epc : S → Z× {1, . . . , n}
si1,i2 7→ (xi1 + 2p, i2),

where xi1 = xj1 + 1 whenever si1,i2 −→ sj1,j2 in the orientation given by c, x1 = 1

and 0 ≤ p ≤ m. Looking at E0
c(S), putting edges between noncommuting vertices and

orienting them according to c gives an embedding of Γ on the plane such that projections

of edges on the first coordinate all have the same orientation. The other functions give
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embeddings which are translations of E0
c . Form the graph Gc from the m + 1 copies

together with the oriented edges (xi1 + 2r, i2) −→ (xj1 + 2r + 2, j2), where 0 ≤ r < m,

whenever si1,i2 and sj1,j2 do not commute and sj1,j2 −→ si1,i2 in c. This graph is

embedded on the infinite strip R× [0, n+1]. Next, take the identification 0 = n+2m+1

on the first coordinate of this strip, to obtain a cylinder Z. Then, move each vertex

in E0
c(S) across the identification line to its corresponding vertex in Emc to obtain a

graph Zc embedded on a cylinder Z. This graph has property (i) by construction. Now,

consider a minimal length oriented closed cycle C in Zc and its projection P (C) on a

boundary of Z. Suppose it goes k > 1 times around the cylinder. Using basic algebraic

topology arguments and property (i), one can show, by contradiction, that there exists a

point p on the boundary whose fiber P−1(p) has fewer than k elements. This means that

the oriented closed cycle is self-crossing, therefore one can remove a part of the oriented

closed cycle and obtain a shorter closed cycle. This contradicts the minimality of the

length of C and proves property (ii). The last step in the proof is to realize that Zw◦ is a

subgraph of Zc. Using the embedding of
	
w◦ in cm, one gets the desired properties.

Example 3.60 (Example 3.57 continued). The cyclic longest word
	
w◦ is embedded in

the word c9 = (s1, s2, s3, s4)9. The natural embedding is depicted in Fig. 3.3.
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Figure 3.3: The natural embedding of Zw◦ of Example 3.57 as a subgraph of Zc, shown with
dotted edges. The shadowed subgraph are identified to obtain the cylindric embedding.

Fix once and for all a natural embedding of Zw◦ on Z.

Definition 3.61. Let w◦ be a longest word and Zw◦ its cylindric graph. A tile T of

Zw◦ is a connected component of Z \ Zw◦ which do not contain a boundary of Z. The

boundary graph GT of a tile T is the induced oriented subgraph of Zw◦ whose vertices

are on the boundary of T .

The next lemma allows to identify a tile of a cylindric graph with the unique source of

its boundary.
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Lemma 3.62. Let W be a finite irreducible Coxeter group, and let w◦ be a longest word.

The cylindric graph Zw◦ has the following properties;

(i) the graph Zw◦ contains no sources nor sinks,

(ii) the boundary graph GT of a tile T of Zw◦ is an oriented cycle with exactly one

source and one sink.

Proof. (i) Let v be a vertex of Zw◦ corresponding to a generator s ∈ S and consider a

consecutive longest word starting with the vertex v. Since all generators in S appear in

any longest word, there exists a generator t not commuting with s that appears after it.

Hence v is not a sink. The same argument for a longest word ending with the vertex v

proves that v is not a source. (ii) As a consequence of (i), any oriented path in Zw◦

can be extended by adding another oriented edge. Therefore, the boundary graph GT
of a tile T is necessarily a oriented cycle. Assume that the boundary graph GT has two

sources u1 and u2 that separates GT into two component p1 and p2. Using Lemma 3.59,

there has to be a chord going from p1 to p2 disconnecting the tile T , which is impossible.

The proof for sinks works mutatis mutandis.

Definition 3.63. Let w◦ be a longest word and Zw◦ its cylindric graph. A cut κ of Zw◦

is a path joining the two boundaries of Z starting from the bottom which crosses Zw◦

on edges and such that any loop of Zw◦ is cut exactly once by κ.

A cut κ corresponds to a (possibly empty) sequence of conjugation by initial letters

of w◦ to obtain a word
	
w◦,κ = w◦,κψ(w◦,κ). Moreover, this cut determines another

cut κ∗ which separates w◦,κ and ψ(w◦,κ). We refer to this cut as the opposite of κ.

Example 3.64. Following Example 3.57, consider the cut κ depicted in Fig. 3.4. The

cut κ corresponds to the word
	
w◦,κ obtained from

	
w◦ by a sequence of conjugation by

initial letters and the cut κ∗ separates w◦,κ and ψ(w◦,κ).
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Figure 3.4: A cut κ and its opposite κ∗. The word w◦,κ is obtain from w◦ conjugating by
s2s4s3s2s1s2s3. The supports Tκ and Tκ∗ consist of only one shaded tile.
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Definition 3.65. Denote by P κ,+w◦ the induced subgraph of Zw◦ whose vertices are

letters of w◦,κ. Similarly, denote by P κ,−w◦ the induced subgraph of Zw◦ whose vertices

are letters of ψ(w◦,κ).

Example 3.66. Following Example 3.57 and 3.64, the cut κ gives rise to the graphs P κ,+w◦

and P κ,−w◦ , represented in Fig. 3.5.
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Figure 3.5: The Hasse diagrams of the partial order ≺w◦,κ and ≺ψ(w◦,κ).

The next lemma is a consequence of the definition of Zw◦ .

Lemma 3.67. The subgraphs P κ,+w◦ and P κ,−w◦ correspond to the Hasse diagrams of the

natural partial order ≺w◦,κ and ≺ψ(w◦,κ) respectively.

By Lemma 3.54, counting c-singletons amounts to count lower ideals in P κ,+w◦(c) (for a

well chosen κ). The main motivation of the present method lies in the following fact:

lower ideals of P κ,+w◦ are obtained by cuts of the cylinder which do not cross κ. Let us

be more precise.

Definition 3.68. Given a cut κ of a cylindric graph Zw◦ , a cut κ′ crosses κ if there

exists a pair (`, r) ∈ V 2 of vertices of Zw◦ satifying the following conditions:

(i) ` belongs to P κ,−εw◦ and P κ
′,ε

w◦ ,

(ii) r belongs to P κ,εw◦ and P κ
′,−ε

w◦ ,

where ε ∈ {−,+}.

Example 3.69. Let (W,S) = (A5, {s1, s2, s3, s4, s5}) and Zw◦(c) be the cylindric graph

where c = (s2, s4, s1, s3, s5); see Fig. 3.6. The cut κ′ crosses the cut κ: the circled

relabeled vertices ` = s2 and r = s5 satisfy the conditions.
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Figure 3.6: Two crossing cuts κ and κ′ in type A5. The split tile T∨κ,κ′ is shaded. Since the cut

λ do not cross κ, it corresponds to an ideal of Pκ,+w◦ represented by the prefix (s3, s5, s2, s4, s1, s5)
of the word w◦,κ.

Finally, we define the remaining objects necessary to our approach.

Definition 3.70. The support Tκ of a cut κ is the sequence (T1, . . . , Tk) of tiles of Zw◦

which κ crosses in their relative interior. The support of a cut may be empty.

Definition 3.71. Let κ be a cut of Zw◦ , and T a tile in the support Tκ. The oriented

chain on the boundary graph GT that κ crosses to enter T is called inbound boundary.

Similarly, the oriented chain on the boundary graph GT that κ crosses to leave T is

called outbound boundary.

Definition 3.72. Let κ and κ′ be two crossing cuts of a cylindric graph Zw◦ . The

split tile T∨κ,κ′ is the first tile in the support Tκ for which there exists a vertex v on its

outbound boundary such that v ∈ P κ,εw◦ ∩ P κ
′,−ε

w◦ .

Given two crossing cuts, the split tile exists by the definition of crossing cuts. Finally, we

define the notion of commuting vertices before proceeding to cylindric graphs of sorting

words.

Definition 3.73. Let v be a vertex of Zw◦ . A vertex u of Zw◦ commutes with v if the

following conditions are fulfilled:

(i) there exists a cut κ such that u, v ∈ P κ,+w◦ ,

(ii) for all cuts κ such that u, v ∈ P κ,+w◦ , the set {u, v} is an anti-chain of P κ,+w◦ .

Denote the set of commuting vertices of v by Cv. It is evident that anti-chains of P κ,+w◦

correspond to cuts of Z. Therefore, given two commuting letters u, v, there are cuts

of Z which describe every anti-chain containing u and v. Using the support of κ, we

say that the vertex u is inferior to v in a anti-chain when u appears in the boundary

of a tile of Tκ before v. Similarly, v is superior to u in an anti-chain when v appears in
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the boundary of a tile of Tκ after u. By Lemma 3.62, two commuting vertices can not

appear simultaneously on a outbound boundary of a tile of Tκ. Thus, a set of commuting

vertices Cv can be partitioned into the inferior commuting vertices CIv and the superior

commuting vertices CSv .

Example 3.74. Following Example 3.69, the commuting vertices of vertices labeled

by s3 and s5 are shown in Fig. 3.7 using shadows.
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s3

s5

s2

s4

s1

s3

s5

s2

s4

s1

s3

s5

s2

s4

s1

s3

s5

s2

s4

s1

s3

s5

s2

s4

s1

s3

s5

Z

Figure 3.7: The commuting vertices for the circled vertex is checkerboard-shadowed. The
commuting vertices of the boxed vertex is shaded with Polka dots.

3.9.3 Cylindric graphs of sorting words

Let us now restrict the study of cylindric graphs to the case of sorting words w◦(c). The

next two lemmas form the base of our approach.

Lemma 3.75. Let W be a finite irreducible Coxeter group and let c and c′ be two distinct

Coxeter elements. Then the cylindric graphs Zw◦(c) and Zw◦(c′) are isomorphic. Denote

the cylindric graph of sorting words by Z�. Different cuts of the cylindric graph Z�
correspond to Coxeter elements.

Proof. Using the two equalities of Remark 3.49, one gets that ch = w◦(c)ψ(w◦(c)). Any

two Coxeter elements can be obtained from each other by conjugation of initial letters

(see [GP00, Theorem 3.1.4]), therefore cyclic longest words
	
w◦(c) are all equivalent by

commutation of initial letters. Cuts of the cylindric graph Z� then correspond to a

specific choice of Coxeter element c. In type A, this corresponds to a well-known fact

about pseudoline arrangements on the Möbius strip [PP12, Section 2].

Example 3.76 (Example 3.69 continued). The cut κ of Z� corresponds to the Coxeter

element c = s3s5s2s4s1. The cut κ′ corresponds to the Coxeter element c′ = s1s2s3s4s5.

Lemma 3.77. Let W be a finite irreducible Coxeter group and Z� its cylindric graph of

sorting words. The boundary graphs GT of tiles of Z� all have 4 vertices.
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Proof. Cylindric graphs are simple, therefore cycle graphs in Z� have at least 3 vertices.

Since finite irreducible Coxeter graphs do not contain cycles and edges of Z� are between

pairs of distinct noncommuting generators, cycle graphs in Z� contain at least 4 vertices.

Since sorting words have the SIN-property, pairs of noncommuting generators alternate

in
	
w◦(c). Thus all boundary graphs of tiles of Z� consist of 4 vertices.

The previous lemma makes the following definitions possible.

Definition 3.78. Let T be a tile of the cylindric graph Z�. The vertex on the outbound

boundary of T which is between the source and the sink is called the apex of T .

Definition 3.79. Let κ be a cut of a cylindric graph Z�, Tκ = (T1, . . . , Tk) its support,

and ai be the apex of the tile Ti and assume ai ∈ P κ,εw◦ . The inferior poset Iκ(Ti) is the

subposet of P κ,−εw◦ whose element are inferior commuting vertices of ai. The superior

poset Sκ(Ti) is the poset induced by Z� whose elements are superior commuting vertices

of vi, where vi is the unique neighbor of ai on the boundary of Ti belonging to P κ,εw◦ .

Theorem 3.80. Let κ and κ′ be two crossing cuts with split tile T∨κ,κ′. The cut κ′

correspond to a unique pair of ideals (J,K) ∈ (Iκ(T∨κ,κ′), Sκ(T∨κ,κ′)). Conversely, pairs

of ideals (J,K) ∈ (Iκ(T∨κ,κ′), Sκ(T∨κ,κ′)) correspond to cuts κ′ crossing κ, with the only

restriction that J is nonempty (or not the whole Iκ(T∨κ,κ′) depending on the cut κ).

Proof. The cut κ′ has to arrive on the the split tile T∨κ,κ′ from the bottom. The corre-

sponding paths correspond to ideals of the inferior poset Iκ(T∨κ,κ′), with the exception

that there should be an vertex between κ and κ′. By Lemma 3.77, the cut κ′ has to

go through the edge on the outbound boundary of T∨κ,κ′ that κ does not cross. The

existence of a vertex between κ and κ′ above T∨κ,κ′ is guaranteed from the definition of

split tile. Then, κ′ can go to the top boundary without further restrictions. Hence, after

going through the split tile T∨κ,κ′ the cut κ′ corresponds to an ideal of Sκ(T∨κ,κ′).

Using the previous theorem, the set of cuts crossing κ can be expressed as a disjoint

union of sets indexed by the split tiles.

Example 3.81. Suppose (W,S) = (A5, {s1, s2, s3, s4, s5} and consider the cylindric

graph shown on Fig. 3.8. The cut κ has 3 tiles in its support. The superior poset of the

first tile and the inferior poset of the second tile are highlighted with different shadows.

Lemma 3.82. Let W be a finite irreducible Coxeter group and Z� its cylindric graph

of sorting words. The number of different cuts of Z� is 2n−1h, where h is the Coxeter

number of W .
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Figure 3.8: The inferior poset Iκ(T2) is shadowed in checkerboard. The superior poset Sκ(T1)
is shadowed in with dots.

Proof. By Lemma 3.75, cuts of Z� correspond to the choice of a Coxeter element. There

are 2n−1 such choices [Shi97]. The only remaining choice is to decide where the cuts

begin: there are exactly h copies of the Coxeter graph in Z�, hence the formula.

Lemma 3.83. Let W be a finite irreducible Coxeter group and Z� its cylindric graph of

sorting words. In the cylindric graph Z�, the number of lower ideals in Sκ(Ti) is equal

to 2n−2−i.

Proof. Notice that the definition of superior poset does not depend on the cut itself.

Therefore, it suffices to look at the superior commuting vertices of the neighbors of

apexes. Using the fact that lower ideals of Sκ(Ti) correspond to paths going from Ti

to the top boundary by crossing on the edge ai—vi, we get that the number of ideals

is 2n−2−i. Indeed by Lemma 3.77, at every tile that a path crosses after Ti it has 2

possibilities and there are n− 2− i remaining tiles to cross by Lemma 3.75.

3.9.4 Formulas for the number of singletons

Theorem 3.84. Let W be a finite irreducible Coxeter group of rank n and c be a Coxeter

element. The number of c-singletons is

2n−2h−Kc + 1,

where h is the Coxeter number and Kc is the number of cuts crossing the corresponding

cut κc of Z�.

Proof. By Lemma 3.54 counting c-singletons correspond to counting ideals of the natural

partial order ≺w◦(c). Moreover, by Lemma 3.67 and Lemma 3.75 these ideals correspond
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to cuts κ′ of Z� which do not cross the cut κc, corresponding to the Coxeter element c.

Using Theorem 3.80, Lemma 3.82 and Lemma 3.83, we double count the cuts of Z�.
By Lemma 3.82, the number of different cuts of Z� is 2n−1h. Now let κc be a cut

corresponding to a Coxeter element c. There are five distinct possibilities for a cut κ′:

(i) it crosses κc,

(ii) it crosses the opposite cut κ∗c ,

(iii) it represents a c-singleton,

(iv) it represents a ψ(c)-singleton,

(v) it represents a c-singleton and a ψ(c)-singleton.

By [BHLT09, Theorem 2.3], the number of c-singletons and ψ(c)-singletons are equal,

and thus cuts crossing κc and κ∗c are also equal. There are exactly two cuts which

represent both a c-singleton and a ψ(c)-singleton, namely κ and κ∗. Therefore, we have

2Kc + 2Sc = 2n−1h+ 2, (??)

where Sc is the number of c-singletons and Kc is the number of cuts crossing κc.

Remark 3.85. Based on the duality of pseudoline arrangements, Carsten Lange ob-

tained a formula for the number of c-singletons in type A and B which is closely related

to the method presented here [Lan12].

Theorem 3.86. Let W be a finite irreducible Coxeter group of rank n and c be a Coxeter

element. The number of c-singletons is

2n−2(h+ 1)−
n−2∑

i=1

2n−2−iι(Ti),

where h is the Coxeter number, ι(Ti) is the number of ideals of the inferior poset Iκc(Ti)

and κc is a cut of Z� corresponding to c.

Proof. To obtain this formula, we develop the term Kc of the equality (??) from the proof

of Theorem 3.84. Let Tκc = (T1, . . . , Tn−2) be the support of κc. By Theorem 3.80, we

obtain a formula for Kc when the split tile T∨κ,κ′ is Ti, with 1 ≤ i ≤ n−2. By Lemma 3.83,

we obtain a formula for the number of ideals of Sκc(Ti).

Kc =
n−2∑

i=1

(ι(Iκc(Ti))− 1) ι(Sκc(Ti)),

=
n−2∑

i=1

ι(Iκc(Ti))2
n−2−i −

n−2∑

i=1

2n−2−i,

=
n−2∑

i=1

ι(Iκc(Ti))2
n−2−i − 2n−2 + 1.
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Replacing this in (??), we get

2

(
n−2∑

i=1

ι(Iκc(Ti))2
n−2−i − 2n−2 + 1

)
+ 2Sc = 2n−1h+ 2,

2

n−2∑

i=1

ι(Iκc(Ti))2
n−2−i − 2n−1 + 2 + 2Sc = 2n−1h+ 2,

2

n−2∑

i=1

ι(Iκc(Ti))2
n−2−i − 2n−1 + 2Sc = 2n−1h,

and finally

Sc = 2n−2(h+ 1)−
n−2∑

i=1

ι(Iκc(Ti))2
n−2−i.

3.9.5 Upper bounds

To find the Coxeter elements that maximize the number of singletons, we introduce the

cut function3

K : S → Z,

satifying |K(s)−K(t)| = 1 for all noncommuting pairs s, t ∈ S.

Taking the values of K(S) modulo h yields a cut κ on the cylindric graph Z� correspond-

ing to a certain Coxeter element. Indeed, given a cut function K, label the vertices of

degree 2 closer to the bottom boundary from 0 to h− 1 (and assume they correspond to

the generator s1) in the direction of the orientation given by the embedding. The first

edge that the corresponding cut κ will cross will be adjacent to the vertex j labeled by

j ≡ K(s1) modulo h. Then, κ will cross sequentially the edges whose sources have the

highest value given by K. The definition of crossing cuts can be reformulated in the case

of a cylindric graph Z�: Two cut functions K1,K2 are crossing if there exists s, t such

that K1(s) < K2(s) and K1(t) > K2(t). The width µK of K is max(K(S))−min(K(S)).

Example 3.87 (Example 3.69 and 3.76 continued). The cut κ corresponding to the Cox-

eter element c = s3s5s2s4s1 can be obtained from the cut function K(s1, s2, s3, s4, s5) =

(4, 3, 2, 3, 2). The cut κ′ corresponding to the Coxeter element c′ = s1s2s3s4s5 can be

obtained from the cut function K′(s1, s2, s3, s4, s5) = (0, 1, 2, 3, 4). They are crossing

since K(s2) > K′(s2) and K(s5) < K′(s5).

3The author is thankful to Cesar Ceballos for suggesting the cut function which simplified the ap-
proach.
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Theorem 3.88. Let W be a finite irreducible Coxeter group, c be a Coxeter element,

and Sc denote the number of c-singletons. The following statements are equivalent.

(i) The Coxeter element c is bipartite.

(ii) The width µKc of the cut function Kc is 1.

(iii) For all Coxeter elements c′ of W , Sc ≥ Sc′.

Proof. The equivalence of the first two statements is a consequence of the definition of

cut function. We will show that cuts of width 1 are the only cuts that minimize the

number of crossing cuts. Therefore they are the only cuts that maximize the number of

singletons by the formula of Theorem 3.86. For this, we use the m-reflection defined as

the linear function

Mm : Z→ Z

m+ 1 7→ m− 1

m− 1 7→ m+ 1.

For a cut function K of width νK > 1 consider the cut function

K′ : S → Z

s 7→




K(s) if s < max(K(Γ)),

K(s)− 2 if s = max(K(Γ)).

The cut function K′ has width νK − 1; see Fig. 3.9 for an example. Denote by µK

the maximum max(K(Γ)). Denote KK\K′ the set of cuts crossing K but not K′, and

similarly, KK′\K the set of cuts crossing K′ but not K. Now, we show that the set of

cuts crossing K is bigger than the set of cuts crossing K′. Therefore, the number of

singletons corresponding to the cut K′ will be greater than the singletons corresponding

to the cut K. To see this, consider the (µ− 1)-reflections of the cuts in KK′\K. It sends

cuts crossing K′ but not K to cuts crossing K but not K′. Indeed, if Λ ∈ KK′\K, the

cutMµK−1(Λ) belongs to KK\K′ , and the injectivity of this map is clear. Now, consider

the cutMµK−1(K), this cut belongs to KK\K′ by construction and K does not cross K′.
Hence, the (µK − 1)-reflection map going from the set KK′\K to the set KK\K′ is not

surjective and thus there are more cuts crossing K than K′.

The next three theorems give formulas for the number of singletons for bipartite Coxeter

elements. Before stating them, we give a useful combinatorial equality.
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K

K′

Λ M3(K) M3(Λ)

0 1 2 3 4 5 6

0 1 2 3 4 5 6

s1

s2

s3

s4

s5

s6

s7

Figure 3.9: Examples of 3-reflections with the Coxeter system A7. Let K be the cut function
K(s1, s2, s3, s4, s5, s6, s7) = (4, 3, 4, 3, 2, 1, 2). The cut function K is shown with a solid line, the
cut K′(s1, s2, s3, s4, s5, s6, s7) = (2, 3, 2, 3, 2, 1, 2) is shown with a dotted line, and a cut function
Λ(s1, s2, s3, s4, s5, s6, s7) = (2, 3, 4, 3, 2, 1, 0) crossing K′ but not K is shown with a dashed line.
The 3-reflections of K and Λ are shown in solid and dashed lines respectively. The cut function
K′ has less crossings than the cut function K. Some cuts are drawn with a slight deviation for

visualization purposes.

Lemma 3.89. Let n ∈ N. Then,

n∑

i=0

1

4i

(
2i

i

)
=

2(n+ 1)

4n+1

(
2(n+ 1)

n+ 1

)
.

Proof. This equality is easily obtained using Gosper’s algorithm, for instance. See

[PWZ96, Chapter 5] for more details about this method.

Theorem 3.90. Let W be a finite irreducible Coxeter group of rank n > 1, whose graph

is a chain (Type A,B, F,H and I2(m)). The number of singletons for a bipartite Coxeter

element is

2n−2(h+ 3)−




n
2

(
n
n/2

)
for even n,

(n− 1
2)
(

n−1
(n−1)/2

)
for odd n.

Proof. Let W be a finite irreducible Coxeter group whose Coxeter graph is a chain and

n > 1. The case n = 1 is trivial. Consider a cut κ of width 1 on Z�, see Fig. 3.10 for an

example.

From Theorem 3.86, it remains to find formulas for ι(Ti), for 1 ≤ i ≤ n − 2. From the

shape of Z�, we deduce that counting ideals of inferior posets of an apex of a tile T2j ,
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Figure 3.10: A cut of width 1 on the cylindric graph of sorting words Z� of type A7. The
inferior poset Iκ(T4) is shown over checkerboard shadow, it has

(
4
2

)
= 6 lower ideals. The inferior

poset Iκ(T5) is shown over dotted shadow, it has
(
6
3

)
/2 = 10 lower ideals.

with j ≥ 1, in the support of κ is equivalent to count sequences of letters + and − of

length 2j where the number of instances of − is always smaller or equal to the number

of instances of + in any initial segment of the sequences. The number of such sequences

is
(

2j
j

)
, see, for instance, [Nil12, Corollary 6] for a detailed proof. By construction, the

number of ideals of the inferior poset of an apex of a tile T2j−1, with j ≥ 1, in the

support of κ is
(

2j
j

)
/2.

Assume n is even, the formula of Theorem 3.86 gives

2n−2(h+ 1)−
n−2
2∑

j=1

(
2j
j

)
2n−2−(2j−1)

2
−

n−2
2∑

j=1

(
2j

j

)
· 2n−2−2j ,

= 2n−2(h+ 1)− 2 ·
n−2
2∑

j=1

(
2j

j

)
· 2n−2−2j ,

= 2n−2(h+ 1)− 2n−1 ·
n−2
2∑

j=1

(
2j
j

)

4j
.

For odd n, a similar procedure gives

2n−2(h+ 1)− 2n−1 ·
n−3
2∑

j=1

(
2j
j

)

4j
− 1

2
·
(
n− 1
n−1

2

)
.
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Finally, applying Lemma 3.89 and simplifying, we get

2n−2(h+ 3)−




n
2

(
n
n/2

)
for even n,

(n− 1
2)
(

n−1
(n−1)/2

)
for odd n.

Remark 3.91. In type A, this gives back the formula for the number of permutations

satisfying the alternating scheme obtained in [GR08, Theorem 4]. Theorem 3.88 also

provides the “right” condition for Conjecture 1 of Ádám Galambos and Vic Reiner to

be true: the maximal reduced decompositions have to be restricted to sorting words. A

general counter-example to Conjecture 1 is provided in type A41 in [DKK12, Section 6].
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Figure 3.11: Cuts on the cylindric graph of sorting words Z� of type D6: κb is cut of width 1,
κp (pseudo-straight) and κs (straight) have width 4.

Theorem 3.92. Let W be a Coxeter group of type D. The number of singletons for a

bipartite Coxeter element is

2n−2(h+ 3) +




−n

2

(
n
n/2

)
+ 1

2

(
n−2

(n−2)/2

)
for even n,

−(n− 1)
(

n−1
(n−1)/2

)
−
(

n−3
(n−3)/2

)
for odd n.

Proof. Using Lemma 3.59, select a natural embedding of the cylindric graph of the

sorting word such that the vertex of degree 6 is closer to the top boundary, by which we

mean that any cut going from bottom to top will cross less (not necessarily strictly) tiles

after crossing an edge adjacent to a vertex of degree 6. This way, the cylindric graph Z�
below the vertices of degree 6 is similar to that of type A, see Fig. 3.11. Consider a

cut κ of width 1 on Z�. From Theorem 3.86, it remains to find formulas for ι(Ti), for

1 ≤ i ≤ n− 2. Using the same arguments as in the proof of Theorem 3.90, we get that

ι(T2j), with 1 ≤ j ≤ b(n− 3)/2c, is equal to
(

2j
j

)
and ι(T2j−1), with 1 ≤ j ≤ d(n− 3)/2e,

is equal to
(

2j
j

)
/2. Finally, ι(Tn−2) is equal to ι(Tn−3).
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Assume n is even, the formula of Theorem 3.86 gives

2n−2(h+ 1)−
n−2
2∑

j=1

(
2j
j

)

2
2n−2−(2j−1) −

n−4
2∑

j=1

(
2j

j

)
· 2n−2−2j −

(
n− 2
n−2

2

)
1

2
,

= 2n−2(h+ 1)− 2

n−2
2∑

j=1

(
2j

j

)
· 2n−2−2j +

(
n− 2
n−2

2

)
1

2
,

= 2n−2(h+ 1)− 2n−1

n−2
2∑

j=1

(
2j
j

)

4j
+

1

2

(
n− 2
n−2

2

)
.

For odd n, a similar procedure gives

2n−2(h+ 1)− 2n−1 ·
n−3
2∑

j=1

(
2j
j

)

4j
−
(
n− 3
n−3

2

)
.

Finally, applying Lemma 3.89 and simplifying, we get

2n−2(h+ 3) +




−n

2

(
n
n/2

)
+ 1

2

(
n−2

(n−2)/2

)
for even n,

−(n− 1)
(

n−1
(n−1)/2

)
−
(

n−3
(n−3)/2

)
for odd n.

Theorem 3.93. The number of singletons for a bipartite Coxeter element is 182, 546

and 1840 for type E6, E7, and E8 respectively.

Proof. Similarly to the proof of Theorem 3.92, select a natural embedding of the cylindric

graph of the sorting word such that the vertex of degree 6 is closer to the top boundary.

Consider a cut κ of width 1 on Z�. From Theorem 3.86, it remains to find formulas

for ι(Ti), for 1 ≤ i ≤ n − 2. By inspection, one finds that ι(Ti) = i for 1 ≤ i ≤ n − 5,

and ι(Tn−4) = ι(Tn−3). The latter number takes the values 2,3 and 6 for E6 E7 and E8

respectively. Finally, ι(Tn−2) is equal to 6, 12 and 20 for E6 E7 and E8 respectively.

For E6, the formula of Theorem 3.86 gives

24(12 + 1)− 1 · 24−1 − 2 · 24−2 − 2 · 24−3 − 6 · 24−4 = 182.

For E7, the formula of Theorem 3.86 gives

25(18 + 1)− 1 · 25−1 − 2 · 25−2 − 3 · 25−3 − 3 · 25−4 − 12 · 25−5 = 546.
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For E8, the formula of Theorem 3.86 gives

26(30 + 1)− 1 · 26−1 − 2 · 26−2 − 3 · 26−3 − 6 · 26−4 − 6 · 26−5 − 10 · 26−6 = 1840.

3.9.6 Lower bounds

The next proposition is a consequence of the proof of Theorem 3.88.

Proposition 3.94. Let W be a finite irreducible Coxeter group, c be a Coxeter element,

and Sc denote the number of c-singletons. If Sc ≤ Sc′, for all Coxeter elements c′ of W ,

then the width of Kc is maximal.

The following theorem proves that the converse is true for Coxeter groups whose graphs

are chains.

Theorem 3.95. Let W be a finite Coxeter group of type A, B, F , H or I2(m), c be a

Coxeter element, and Sc denote the number of c-singletons. The following statements

are equivalent.

(i) The Coxeter element c corresponds to an orientation of Γ with a unique sink and

a unique source.

(ii) For all Coxeter elements c′ of W , Sc ≤ Sc′.

The minimal number of singletons is 2n−2(h− n+ 3).

Proof. By Proposition 3.94, cuts giving rise to the minimal number of singleton have

maximal width. Clearly, the corresponding orientations have a unique sink and a unique

source. Consider such a cut, and refer to it as a straight cut. Using Theorem 3.86, it

remains to compute the values of ι(Ti) for 1 ≤ i ≤ n− 2. But since apexes of tiles in the

support of a straight cut all lie on one side of the cut, the inferior posets are very regular.

Indeed, by inspection, it is easy to check that ι(Ti) is equal to 2i for 1 ≤ i ≤ n − 2.

Putting this in the formula of Theorem 3.86 gives

2n−2(h+ 1)−
(
n−2∑

i=1

2i · 2n−2−i

)
= 2n−2(h+ 1)− 2n−2(n− 2).

Simplifying gives 2n−2(h − n + 3). Giving 2n and 2n−2(n + 3) for type An and Bn

respectively. Moreover, for type F4, H3, H4, and I2(m), the formula gives 44, 20, 116

and m+ 1 respectively.

In types D and E, a more precise description is needed.
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Theorem 3.96. Let W be a finite Coxeter group of type D or E. Orientations of

the Coxeter graph Γ whose corresponding Coxeter elements minimize the number of

singletons are shown in Fig. 3.12.

Dn (n ≥ 4)
s1 s2 s3 sn−3 sn

sn−2

sn−1

E6

s1 s3 s4 s5 s6

s2

E7,8

s1 s3 s4 s5 s6 s7 s8

s2

Figure 3.12: The orientations corresponding to the Coxeter elements minimizing the number
of singletons in type D and E (the reverse orientations is also minimizing, see [BHLT09] for more

details). In type E6, the edge between s2 and s4 can be oriented at will.

Proof. By Proposition 3.94, the width of a minimizing cut should have maximal width.

Therefore, consider a longest chain in Γ and orient its edges so that the chain as a unique

sink and a unique source. Now, there is one edge between, say t1 and t2, left to orient.

Before orienting it, we select a natural embedding of the cylindric graph of the sorting

word that puts the edges between t1 and t2 closer to the top boundary, by which we

mean that any cut going from bottom to top will cross less (not necessarily strictly) tiles

after crossing an edge between t1 and t2.

Now, assume W is of type D and that edges between t1 and t2 in the cylindric graph are

on the boundary of two tiles. This way, we make use of Theorem 3.86, to differentiate

between the two possible orientations of the edge between t1 and t2. In Fig. 3.11, t1 = s4

and t2 = s6 and κp and κs are the two possible cuts of maximal width. The formula to

count singletons remains exactly the same with the exception of the term with indices

n− 3 and n− 2 in the sum. There is an orientation for which the apexes of the support

are all located on one side of the cut, call this orientation straight (κs in Fig. 3.11). In

the other one, the apex of the tile Tn−3 is located on the other side of the others, call it

pseudo-straight (κp in Fig. 3.11). Therefore, only ι(Tn−3) and ι(Tn−2) will change in the

formula. For the straight orientation, by inspection ι(Ti) is equal to 2i for 1 ≤ i ≤ n− 3

and ι(Tn−2) is equal to 2n−3. Putting this in the formula of Theorem 3.86 gives

2n−2(h+ 1)−
(
n−3∑

i=1

2i · 2n−2−i

)
− 2n−3 · 20 = 2n−2(h+ 1)− 2n−3(2n− 5).
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Simplifying and replacing h by its value 2(n − 1) gives 2n−2n + 3 · 2n−3. Now for the

pseudo-straight orientation, by inspection ι(Ti) is equal to 2i for 1 ≤ i ≤ n − 4. The

number ι(Tn−3) is equal to 1 since the inferior poset of the apex of Tn−3 is empty.

Finally, the number ι(Tn−2) is 2n−2 because the apex of Tn−3 is in the inferior poset of

the apex of Tn−2. Putting this in the formula of Theorem 3.86 gives

2n−2(h+ 1)−
(
n−4∑

i=1

2i · 2n−2−i

)
− 1 · 21 − 2n−2 · 20 = 2n−2(h+ 1)− 2(2n−3(n− 3) + 1).

Simplifying and replacing h by its value 2(n − 1) gives 2n−2n + 2n−1 − 2. As expected

by [BHLT09, Example 2.5], the straight and pseudo-straight orientation give the same

number for n = 4, and for n > 4 the pseudo-straight has more singletons. Finally, the

straight orientation and its inverse (up to automorphism of the Coxeter graph) give rise

to the minimal number of singletons.

Now, assume W is of type E. Again we use Theorem 3.86 to compare the straight and

pseudo-straight orientations. For the straight orientation, by inspection ι(Ti) is equal

to 2i for 1 ≤ i ≤ n−4, ι(Tn−3) is equal to 2n−4, and ι(Tn−2) is equal to 3 ·2n−4. Putting

this in the formula of Theorem 3.86 gives

2n−2(h+ 1)−
(
n−4∑

i=1

2i · 2n−2−i

)
− 2n−3 − 3 · 2n−4.

Simplifying gives 2n−4(4(h−n) + 15). Giving 156, 472 and 1648 for type E6, E7 and E8

respectively. Now for the pseudo-straight orientation, by inspection ι(Ti) is equal to 2i

for 1 ≤ i ≤ n− 5. The number ι(Tn−4) is equal to 1 since the inferior poset of the apex

of Tn−4 is empty. The number ι(Tn−3) is 2n−3 because the apex of Tn−4 is in the inferior

poset of the apex of Tn−3. Finally, the number ι(Tn−2) is 4 · 2n−4. Putting this in the

formula of Theorem 3.86 gives

2n−2(h+1)−
(
n−5∑

i=1

2i · 2n−2−i

)
−1·22−2n−3·21−4·2n−4·20 = 2n−2(h+1)−2n−2(n−3)−4.

Simplifying gives 2n−2(h−n+ 4)− 4. Giving 156, 476 and 1660 for type E6, E7 and E8

respectively. The straight orientations in type D and E are represented in Fig. 3.12.

In type E6 the pseudo-straight and straight orientation both give rise to the minimal

number of singletons.
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3.9.7 Enumerative results

We summarize the results for the maximal and minimal values for the number of c-

singletons for irreducible finite Coxeter groups in Table 3.4, along with the number of

vertices of the c-generalized associahedron.

W bipartite Coxeter elements straight Coxeter elements Coxeter–Catalan number

An Theorem 3.90 2n 1
n+1

(
2n
n

)

Bn Theorem 3.90 2n−2(n+ 3)
(

2n
n

)

Dn Theorem 3.92 2n−2n+ 3 · 2n−3 3n−2
n

(
2n−2
n−1

)

E6 182 156 833
E7 546 472 4160
E8 1840 1648 25080
F4 48 44 105
H3 21 20 32
H4 120 116 280
I2(m) m+ 1 m+ 1 m+ 2

Table 3.4: Enumeration of c-singletons: maxima and minima for irreducible finite Coxeter
groups.

3.10 Open problems

Finally, we discuss open problems and present several conjectures concerning subword

complexes. We start with two open problems concerning counting formulas for multi-

cluster complexes.

Open Problem 3.97. Find multi-Catalan numbers counting the numbers of facets in

the multi-cluster complexes.

Although a formula in terms of invariants of the group for the number of facets of the

generalized cluster complex defined by Sergey Fomin and Nathan Reading is known

[FR05, Proposition 8.4], a general formula in terms of invariants of the group for the

multi-cluster complex is yet to be found. An explicit formula for type A can be found

in [Jon05, Corollary 17]. In type B, a formula was conjectured in [SW09, Conjecture

13] and proved in [RS09, Section 7]. In the dihedral type I2(m), the number of facets

of the multi-cluster complex is equal to the number of facets of a 2k-dimensional cyclic

polytope on 2k + m vertices. These three formulas can be reformulated in terms of

invariants of the Coxeter groups of type A, B and I2 as follows:

∏

0≤j<k

∏

1≤i≤n

di + h+ 2j

di + 2j
,
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where d1 ≤ · · · ≤ dn are the degrees of the corresponding group, and h is its Coxeter

number. In general, this product is not an integer. The smallest example we are aware

of is type D6 with k = 5. Therefore, this product cannot count facets of the multi-cluster

complex in general.

The next open problem raises the question of finding a family of simplicial complexes

that includes the generalized cluster complexes of Sergey Fomin and Nathan Reading

and the multi-cluster complexes.

Open Problem 3.98. Construct a family of simplicial complexes which simultaneously

contains generalized cluster complexes and multi-cluster complexes.

The next open problem concerns a possible representation theoretic description of the

multi-cluster complex in types ADE. For k = 1, in the cluster category, indecomposable

objects V are indexed by almost positive roots and one can describe the compatibility

between them by saying that V ‖c V ′ if and only dim(Ext1(V, V ′)) = 0, see [BMR+06].

Open Problem 3.99. Describe the multi-cluster complex within the repetition quiver

using similar methods.

The following problem extends the diameter problem of the associahedron to the family

of multi-cluster complexes, see [Pil10, Section 2.3.2] for further discussions in the case

of multitriangulations.

Open Problem 3.100. Find the diameter of the facet-adjacency graph of the multi-

cluster complex ∆k
c (W ).

Finally, we present several combinatorial conjectures on the multi-cluster complexes.

We start with a conjecture concerning minimal nonfaces.

Conjecture 3.101. All minimal nonfaces of the multi-cluster complex ∆k
c (W ) have

cardinality k + 1.

Since w◦ is c-sortable, we have ckw◦(c) = ckcK1cK2 · · · cKr with Kr ⊆ . . . ⊆ K2 ⊆ K1.

This implies that the complement of any k letters still contains a reduced expression

for w◦. In other words, minimal nonfaces have at least cardinality k + 1. Moreover,

using the connection to multitriangulations and centrally symmetric triangulations, we

see that the conjecture holds in types A and B. It also holds in the case of dihedral

groups: it is not hard to see that the faces of the multi-cluster complex are given by

subwords of ckw◦(c) = (a, b, a, b, . . . ) that do not contain k+ 1 pairwise nonconsecutive

letters (considered cyclically). The conjecture was moreover tested for all multi-cluster

complexes of rank 3 and 4 with k = 2.
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In types A and I2(m), there is a binary compatibility relation on the letters of ckw◦(c)

such that the faces of the multi-cluster complex can be described as subsets avoiding k+1

pairwise incompatible elements. We remark that this is not possible in general: in

typeB3 with k = 2, as in Example 3.16, ∆2
c(B3) is isomorphic to the simplicial complex of

centrally symmetric 2-triangulations of a regular convex 10-gon. Every pair of elements

in the set A = {[1, 4]sym, [4, 7]sym, [7, 10]sym} is contained in a minimal nonface. But

since A does not contain a 3-crossing, it forms a face of ∆2
c(B3).

Theorem 3.11 gives an alternative way of defining multi-cluster complexes as subword

complexes ∆(Q,w◦), where the word Q has the SIN-property. It seems that this defini-

tion covers indeed all subword complexes isomorphic to multi-cluster complexes.

Conjecture 3.102. Let Q be a word in S with complete support, and π ∈ W . The

subword complex ∆(Q, π) is isomorphic to a multi-cluster complex if and only if Q has

the SIN-property and π = δ(Q) = w◦.

The fact that π = δ(Q) is indeed necessary so that the subword complex is a sphere.

It remains to show that π = w◦ and that Q has the SIN-property. One reason for this

conjecture is that if Q does not have the SIN-property, then it seems that the subword

complex ∆(Q,w◦) has fewer facets than required. Indeed, we conjecture that multi-

cluster complexes maximize the number of facets among all subword complexes with a

word Q of a given size.

Conjecture 3.103. Let Q be any word in S with kn+N letters (where N denotes the

length of w◦) and ∆(Q,w◦) be the corresponding subword complex. The number of facets

of ∆(Q,w◦) is less than or equal to the number of facets of the multi-cluster complex

∆k
c (W ). Moreover, if both numbers are equal, then the word Q has the SIN-property.

The previous two conjectures hold for the dihedral types I2(m). In this case, the multi-

cluster complex is isomorphic to the boundary complex of a cyclic polytope, which is a

polytope that maximizes the number of facets among all polytopes in fixed dimension

on a given number of vertices, see, e.g., [Zie95, Section 0]. Moreover, we present below

a simple polytope theory argument in order to show that if a word does not satisfy

the SIN-property, then the corresponding subword complex has strictly fewer facets

than the multi-cluster complex. First note that Corollary 3.20 and Theorem 3.42 imply

that all spherical subword complexes of type I2(m) are polytopal. By the upper bound

theorem, a polytope has a many facets as a cyclic polytope if and only if it is neighborly,

see, e.g., [Zie95, Section 8.4]. Therefore, it is enough to prove that if Q = (q1, . . . , qr)

with r = 2k+m is a word in S = {a, b} containing two consecutive letters that are equal,

then the subword complex ∆(Q,w◦) is not neighborly. Since this is a 2k-dimensional
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complex, this is equivalent to showing that there is a set of k letters of Q that do not

form a face. By applying rotation of letters and Proposition 3.29, we can assume without

loss of generality that the last two letters of Q are equal. Among the first 2k+ 1 letters

of Q, one of the generators a or b appears no more than k times. The set of these no

more than k letters is not a face of the subword complex. The reason is that the reduced

expressions in the complement of this set in Q have length at most m− 1, which is one

less than the length of w◦.

In view of Corollary 3.20, the following conjecture restricts the study of [KM04, Ques-

tion 6.4].

Conjecture 3.104. Let W be a finite Coxeter group. The multi-cluster complex of

type W is the boundary complex of a simplicial polytope for all k ≥ 1.

In types A and B, this conjecture coincides with the conjecture on the existence of the

corresponding multi-associahedra, see [Jon05, SW09], and Theorem 3.42 shows that this

conjecture is true for dihedral groups.
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Some root systems of rank 3 & 4

Here are some images of normalized root systems of rank 3 and 4 with small labels.

Appendix A

Some root systems of rank 3 & 4

In this Appendix, we collect images of normalized root systems of rank 3 and 4.

α β

γ

sα sβ

sγ

α β

γ

sα sβ

sγ
4

α β

γ

sα sβ

sγ
5

α β

γ

sα sβ

sγ
6

α β

γ

sα sβ

sγ
7

α β

γ

sα sβ

sγ

Figure A.1: In the first column: type A3, B3 and �I2(6). In the second column: type �A2, H3

and the triangle group {2, 3, 7}.

Figure A.1: In the first column: type A3, H3 and the triangle group {2, 3, 7}. In the second

column: B3, Ĩ2(6) and type Ã2.
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76 Appendix A. Root systems of rank 3 & 4

α β

γ

sα sβ

sγ
4 4

α β

γ

sα sβ

sγ
4 5

α β

γ

sα sβ

sγ
4

α β

γ

sα sβ

sγ
4 4

Figure A.2: The other examples...Figure A.2: In the first column: type B̃2 and the triangle group {3, 3, 4}. In the second column:
the triangle group {2, 4, 5} and the triangle group {3, 4, 4}.
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4

4

4

4

4 4

4 4

4

3

3 3

∞ ∞

∞

Figure A.3: The other examples...
Figure A.3: In the top right image: type C̃3 and three different groups two of which give rise

to fractal limits.
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Subword complex vade-mecum

Spherical subword complex families

Spherical subword complexes ∆(Q, δ(Q))

If δ(Q) 6= w◦, then ∆(Q, δ(Q)) ∼= ∆(Q′, w◦)

for some Q′ such that δ(Q′) = w◦ (Theorem 3.27)

If δ(Q) = w◦ and Q does not have the SIN-property, then ∆(Q, δ(Q)) is the

link of a face of ∆(Q′, w◦) where Q′ is a word with the SIN-property.

(Theorem 3.11 and Proposition 3.43)

Multi-cluster complexes ∆k
c (W ) (Q with SIN-property)

cluster complexes (k = 1): ∆c(W ) k > 1: ∆k
c (W )

Type A: ∆k
c (Am−2k−1)

Type B: ∆k
c (Bm−k)

Type I2(m): ∆k
c (I2(m))

dual associahedron ∆m

(triangulations)

dual cyclohedron ∆sym
m

(centrally sym. triangulations)

(m+ 2)-gon

simplicial complex ∆m,k

(multitriangulations)

simplicial complex ∆sym
m,k

(centr. sym. multitriang.)

2k-dim. cyclic polytope

on 2k +m vertices

91
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Bruhat order on subword complexes

The following result was obtained during a discussion with Cesar Ceballos. We denote

by ≤B the Bruhat order of a Coxeter group and by ∂∆(Q, π) the boundary of the

subword complex ∆(Q, π).

Proposition B.1. Let (W,S) be a Coxeter system, Q be a word in S, and π, τ ∈W be

such that the Demazure product δ(Q) strictly contains a reduced expression for π, i.e.

π <B δ(Q) and the element τ is a cover of π with respect to ≤B. Then

∆(Q, τ) ⊆ ∂∆(Q, π),

with equality if τ = δ(Q).

Proof. Let F be a facet of ∆(Q, τ). Then Q \ F is a reduced expression of τ . The word

Q \ F contains a subword which is a reduced expression for π, by the subword property

[BB05, Theorem 2.2.2]. Moreover, this reduced subword is unique. Therefore F is

contained in a unique facet G of ∆(Q, π). Thus, F is on the boundary of ∆(Q, π) since

it is a vertex decomposable triangulated ball, see Section 3.1.

Corollary B.2. Given a word Q, the nonempty subword complexes

{∆(Q, π) : π ≤B δ(Q)}

ordered by boundary-inclusion form a poset isomorphic to the interval [δ(Q), e] of the

reverse Bruhat order ≥B on W .

Example B.3. Let (W,S) = (A2, {s1, s2}) and Q = (s1, s2, s1, s2, s1). Fig. B.1 depicts

the subword complexes {∆(Q, π) : π ∈ A2} ordered by boundary-inclusion.

π = s1s2s1

π = s1s2 π = s2s1

π = s1 π = s2

π = e

q1

q2

q3 q4

q5

q1

q2

q3 q4

q5

q1

q2

q3 q4

q5

q1

q2

q3

q4

q5

q1

q2

q3

q4

q5

4-dimensional ball

Figure B.1: Subword complexes ordered by boundary inclusions, see also Example 1.13.
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[Bou68] Nicolas Bourbaki, Groupes et algèbres de Lie. Chapitre 4-6, Paris: Hermann,

1968.

[BW08] Thomas Brady and Colum Watt, Lattices in finite real reflection groups,

Trans. Amer. Math. Soc. 360 (2008), 1983–2005.

[BMR+06] Aslak Bakke Buan, Robert Marsh, Markus Reineke, Idun Reiten, and Gor-

dana Todorov, Tilting theory and cluster combinatorics, Adv. Math. 204

(2006), no. 2, 572–618.

97



98 BIBLIOGRAPHY

[CP92] Vasilis Capoyleas and János Pach, A Turán-type theorem on chords of a

convex polygon, J. Combin. Theory Ser. B 56 (1992), no. 1, 9–15.

[Ceb12] Cesar Ceballos, On associahedra and related topics, Ph.D. thesis, Freie Uni-

versität Berlin, 2012, pp. xi+87.

[CLS13] Cesar Ceballos, Jean-Philippe Labbé, and Christian Stump, Subword com-
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