Appendix B: Stable
distributions and domain of
attraction

The stable laws were introduced by Paul Lévy [60] during his in-
vestigations of the behaviour of the sums of independent identically
distributed random variables. Then the theory was developed by
many authors and laid out in many books, including for examples:
B. V. Gnedenko & A. N. Kolmogorov [23], Feller [20], Lukacs [61],
Breiman [8], Chung-Jeh [11], K. L. Chung, [12], Laha & Rohatgi
[59], Zolotarev & Uchaikin [104] and Meerschaert & Scheffler [74].
We recall here some basic results without proof. They are needed
to simulate the CTRW of the fractional diffusion equation with and
without drift (see Chapter 4).

A random variable X is said to have a stable distribution P(z) =
Prob{X < z} if for any n > 2 there are a positive number ¢, and a
real number d,, such that

X1+X2+"‘+Xn6£0nX+dn, (Bl)

where X, Xs,---, X, are mutually independent random variables
having the same distribution as X, and d represents here and later

equality in distribution. We use the abbreviation #d for the random
variables, when they are mutually independent and have a common
distribution shared with a given random variable X. If d,, = 0, the
distribution is called strictly stable.

Feller has shown that the norming constant ¢, in equation (B.1)
are of the form

cn=n"% 0<a<2,n>2. (B.2)

The parameter « is called the characteristic exponent or the index
of stability.
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Lukacs [61] has given an alternative definition in place of (B.1)
as: A random variable X is said to have a stable distribution if for
any positive numbers A and B, there are a positive number C and
a real number D such that

AX, +BX;d CX + D, (B.3)

where X; and X, are independent realizations of the random vari-
able X. If D = 0 the distribution is called strictly stable.

A stable distribution is called symmetric if the random variable
—X has the same distribution as X.

An important rule for the constants A, B, and C in (B.3) states
that: For any stable distribution, there is a number « € (0, 2] satis-
fying the relation

C*= A%+ B*. (B.4)

The proof of this relation can be found in [91]. This relation is con-
sidered as an alternative to Feller’s relation (B.2). It is known that
a sum of two iid random variables having the same stable distribu-
tion function is again stable with the same index a. However, the
invariance of this property does not hold for different indices, (i. e.
a sum of two iid stable random variables with different a’s is not
stable) [61].

We need now to define the domain of attraction. We say that the
random variable X has a domain of attraction, if there exist three
sequences of the following kind: a sequence of iid random variables

Y,Y, .-, . withsums S, =Y, +Y5---4Y,, a sequence of positive
numbers ¢, € R", and a sequence of real numbers ¢,, € R, such that
Sn
— 4+, d X, n>2, (B.5)
Cn =

where d denotes convergence in distribution (see Feller [20], Zolotarev

=
[109] and Uchaikin et al [104]). Trivially a stable random variable
X is lying in its own domain of attraction.

If all Y; are taken to be independent and all have the same dis-
tribution as X, then there exists a sequence of norming constants
¢, such that

Sn Vi+Yot+--+Y,

— d X n>2. (B.6)
Cn Cn =

When X is Gaussian and all Y; are iid with finite variance, then
(B.5) is the statement of the ordinary Central Limit Theorem. The
domain of attraction is said to be normal if the elements of the
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sequence c, satisfies the relation (B.2). For more information, see
for example: Feller [20], Lukacs [61], Breiman [8] and [59].

Now for the simulation of the random variable X, we need to
search for a general form of the probability density function p(z),
therefore we must study first the characteristic function.

The characteristic function

The properties of many distributions are more easily investigated
in terms of their characteristic functions. The characteristic func-
tion is a variant of the Fourier transform of the applied probability
density function. Let us denote the characteristic function of a ran-
dom variable X with density p(z) = £P(X < z) by p(x), defined
as

o0

p(k) = Ele"*] = / e*p(z)dr , K €ER.

The probability density function is said to be symmetric (P(z) =
1—P(—z—0))iff

p(—k) =D(k),
where P(z) is the probability distribution function (see [61]).

In our survey of the theorem of stable probability distributions,
we follow Gnedenko and Kolmogorov [23], which is based on the
results of Khintchine and Lévy. By using their notation, the charac-
teristic function p(k) belongs to an a-stable distribution, a € (0, 2],
if and only if it has the form

loghl) = in'r = e |wl*{1 +if" Sw( @)} (B
K
where k € R, ¢ > 0, ¢/ > 0, |f'| < 1, and the function w(k, a) is
defined as

w(e,@) =0 % LT (B:5)
(2/m)log|lk| fa=1,eR,

(see [61] and the references therein). For o = 2, we have w(|k|, o) =
0 which is the special case of the normal distribution. We note here
that the authors who follow Lévy [60] assign the opposite sign to 5’
in the canonical form (B.7).

Here (' is the symmetry parameter. It determines the skewness
of the distribution. 3’ = 0 corresponds to a symmetric distribution.
c is the scale parameter. It determines the spread of the samples
from a distribution around the mean. p' is the location parameter
and exp(iy'k) basically corresponds to a shift in the x — azis of the
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probability density function . For 1 < a < 2, i represents the mean
and for 0 < a < 1, it represents the median. A stable distribution
is said to be standard if 4/ =0 and ¢ = 1.

In our work we use another parameterization of the characteristic
function. According to Feller the characteristic function of strictly
stable densities p(x; #) are denoted by D, (k;8) and are defined as

Pal(k; 0) = exp| —|k|* T 9] (B.9)
The range of the parameters a and 6 is restricted to: 0 < a <
2, 10| < min{a,2 — a}, and is visualized by the Feller-Takayasu
diamond [65]. The relation between the Gnedenko-Kolmogorov and
Feller on the other side is related to the skewness 6 of p,(k;6) in
equation (B.9) and the skewness (' of p(k) in equation (B.8) as
follows
_ tan(0%sig(k))
~ tan(%)

!

La#l (B.10)
with ¢/ =0, c=1.

It is important to say here that in most cases, the inverse Fourier
transform of the general canonical form (B.7, B.8) can not be carried
out with elementary functions. The most known ones (see [61]) are
corresponding to a = 1, 8/ = 0, and ¢ = 1 giving the Cauchy
distribution,

1 1
Tl4a2 "’

a=2, 8 =0, and ¢ = 1 giving the Gaussian distribution

pl(-’b";o) =

—z2/4

1
Pz(ﬂf; 0) = me )

and o = 1/2 which has been shown by Lévy with ¢/ =0, ¢ = 1, and
B =—1as

L3271/ ifg >0,

Pyjp(a;—1) = {m (B.11)

0 ifx <0.

For a = 1, 6 # 0, the stable distributions according to Feller are
different from those of Gnedenko-Kolmogorov. In fact in this case
Feller’s distributions are strictly stable whereas those of Gnedenko-
Kolmogorov are not. Feller has shown for o =1, 0 < 6] < 1 that

1 cos(0m/2)
pi(z;0) = 7 [z + sin(07/2)]2 + [cos(67/2)]2

—oo<x <00,
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and fora =1, § = £1,
p(z;£1) =0z £1), o<z <o0.

Apart from these three cases no stable distribution functions are
known whose density functions are elementary functions. The other
stable distributions according to Feller can be obtained from equa-
tion (B.9) in terms of convergent power series valid for z > 0 (see
for example: [18], [20] and [65])

(a) 0 < a < 1 (negative powers), 0| < «

WL Z #ﬂ) sm[%(e —a)], (B12)

The values for z < 0 can be obtained from (B.12) and (B.13) by
using the symmetry relation

Pa(—1;0) = pa(z; —0) .

For figures exhibiting graphs of p,(z;6) for different values of «
and 6, see [65]. See also Fig. [B.1].
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Figure B.1: the comparison of the probability density of Gaussian, Cauchy and
the one corresponds to & = 1/2,8' = —1 equation (B.11).
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