The discrete solution

of the time-fractional
diffusion

with drift in a potential well

3.1 Introduction

In this chapter, we consider another important generalization of the
diffusion equation with drift. Namely, we shall discuss the time-
fractional diffusion under various forms of forces (see [28] and [29]).
By fractional in time, we mean the replacement of the first-order
time derivative by the Caputo fractional derivative operator, t.D*ﬂ ,

with 8 € (0, 1]. The relation between the Caputo fractional deriva-
tive and Riemann-Liouville fractional derivative is given in Ap-
pendix A. In this case the diffusion equation under the action of the
outward external force F'(z), with tDﬂu(m, t) = Pﬁ (u(z,t)—u(z,0)),
is written as
?u(z,t) 0
B — > <
tD* u(z,t) = a 92 9% (F(z)u(z,t)), 0<p <1, (3.1.1)
where u(x,0) = 0(x — z*), «* is the origin of the diffusion process.
Here F(z) is an odd function of z, where —F(z) > 0, and a is
a positive constant. If U(z) represents the potential energy, then
F(z)=-9.
We remark here that equation (3.1.1) can be written in another
form. First we rewrite the R.H.S. of it by using the Fokker-Planck
operator Lpp, defined in (2.7.13), with K = a [84], then use the
Riemann-Liouville fractional derivative operator, Pﬁ , which is de-

fined in Appendix A. We get
Pﬁ[u(x,t) —u(z,0)] = Lppu(z,t) . (3.1.2)
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This equation can also be written as

u(z,t) — u(z,0) = Diﬁ (Lppu(z,t)) ,0<B<1, (3.1.3)

where D A = JP is the Riemann-Liouville fractional integral opera-

tor Wthh is defined in Appendix A. This operator and its derivative
are important in the theory of continuous time random walk and
fractional calculus. Now by differentiating both sides with respect
to time, we get

d
pr u(z,t) = Pl_ﬂ Lppu(z,t) , (3.1.4)
where
DY — i DA
t dt t )

Equation (3.1.4) represents the generalized (fractional in time) Fokker-
Planck equation (see for examples: [70], [3], [L00] and the references
therein). This special form of the Fokker-Planck equation plays an
important role in the stochastic processes especially when discussing
the continuous time random walk (CTRW) of the diffusion under
the action of external force. For the special case as F'(x) = —bz, this
equation represents the generalized (fractional in time) Ornstein-
Uhlenbeck process or in other words the time-fractional diffusion
equation with central linear drift which has a known solution in the
case B =1 (see Chapter 2).

Now, before going into the details of constructing a solution
formula for the more general equation (3.1.1) with F(z) = —bz,
u(z,0) = 6(x — &), where £ is the starting point of the diffusing
particle, we note that we can calculate the first moment of this pro-
cess (i. e. {(z(t))). For this aim we multiply equation (3.1.1) by z
and integrate over x € R. By using the natural properties, namely
u(z,t) = 0, z%u(z,t) — 0 and 3¢ — 0 as [z| — oo, we get the
initial value problem

th (z(t)) = —bz(t)), 0<B<T,

whose solution is obtained by taking the Laplace transformation to
its both sides (see [37]). Then by inversion, we get

(z(t)) = (x(0))Ez(—bt?). (3.1.5)

Here
n

n=0
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is the Mittag-Leffler function. For B = 1, the Mittag-Leffler function
E5(—bt?) reduces to the exponential function e~®. The asymptotic
expansion of the Mittag-Leffler function will be discussed carefully
in Appendix C.

We organize this chapter as follows. First we present a
discrete method for solving approximately equation (3.1.1), with
several types of F'(z), by solving the difference equation for 0 <
B < 1. Then, we consider and show the convergence of the model
to a stationary state as time ¢ tends to infinity and compare it with
the analytic stationary solution of (3.1.1). Finally the difference
scheme will be re-interpreted as a random walk model that we use
for simulating the particle’s paths.

3.2 The discrete solution of the time-fractional
diffusion with drift

In this section we consider the approximate solution of equation
(3.1.1) with F(z) = —bz obtained by a suitable finite-difference

discretization. As in the previous chapter, we define R = ;L—az, and
restrict the index j to the range (—R,—R+1,—R+2,...,R—2,R—
1, R). Again, we set z; = jh and adjust the spatial step h so that

R € N. We set t,, = nT where n € Ny. We complement equation

(3.1.1) by prescribing the non-negative initial values y](-o) obeying
R
> y§0) =1, and for convenience, all y](-") = 0 for |j| > R. So far,
j=—R

we arrive at the equation

(n) n) (n)
n+1 Y1 — 2y + Yia b n n
D’ y](- =g Tt h]2 ? +ﬁ (xj+1y](-+)1—xj_1y](-_)l)

T *

(3.2.1)
Here the difference operator D is the discretization of the Caputo

time derivative (see Appendix A). For f = 1, equation(3.2.1) is
reduced to the classical diffusion with drift which has been studied
with full details in Chapter 2. For discretizing the Caputo time
derivative, we utilize a backward Griinwald- Letnikov scheme in time
(starting at level ¢ = ¢, 1) which reads

i) n+1 3 y(n+1—k) _ y(_O)
DAyt — 1)k J J 0<B<1. (322
DPy; kz:;( ) 5 5 ,0<B< (3.2.2)
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Observe that )
1, (n+1) _ (n+1) (n)
Dl =L )
Note that in case of sufficient smoothness the scheme(3.2.1) has
order of accuracy O(h% + 7). For simplicity and without loosing
generality, we let
b=a=1,

and introduce the scaling parameter

P I5]
= — < —. 2.

=15, 0<n< s (3.2.3)

Now, solving for y]("+1), we get

n : B . B (n+1-
g = 37 (- 1)k (k yO £ 3 (—1yE ’ W
k=0 k=1
n ,Lth2 . n n ,Uh2 .
+ oy [+ U+ 1] - 2uy™ + o™ [ — -] (324)

Again y(-n+1) represents the probability vector for where to find the

j
particle at the time ¢,,;. It depends on y](.'i)l, y](."), yy}r)l, yj(."fl),. .

and back to y](-o). This model can be interpreted as a random walk
with memory. For convenience, we introduce the following coeffi-

cients -
b= ) (—1)’“(5) n=0,12..., (3.2.5)
k=n+1
and
cr = (—1)F! (g) k=1,2,... . (3.2.6)

Then by = ¢; = B, and all ¢ > 0, b, > 0, > ¢, = 1. In the case
k=1

0 < B <1 (see [39], [40]) we have ¢; = 8 > ¢c2 > ¢3 > --- — 0, and

finally the relation

bt c=1. (3.2.7)
k=1

With the aid of the coefficients b, and c¢; in equation (3.2.4) the

expression
n

D ey 4 by
k=1
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represents the dependence on the past (the memory part) and the
expression
ph? h?

. _ n n ph?
yg('+)1[ﬂ + 7(3 +1)] - 2uyj(- )+ y§,)1 [ — 7(.7 -1,

represents the diffusion part, by one step to the right, one step to
the left or by staying at the same position. For g = 1, all these
coefficients will vanish and we have the natural discretization of the
generalized Ehrenfest model discussed in the previous chapter.

In equation (3.2.4) y(-"+1) represents the probability of finding

J
the position of the particle at the point z; at the time instant ¢, ;.

(n+1)

Therefore y; must be non-negative and the summation of y over

all j € [-R, R| at any time ¢, must give 1. This means that

R R
Spy1 = Z y](-"H) =5, = Z yjn) =1VneN.
j=—R j=—R

We prove this by the induction.

First for n = 0, we use the initial condition for y(®) which satisfies
so = 1 and get

J+1 J=1\ (o
u = (- 209" +p (H R )yﬁ)ﬁ # (1_ R )yﬁ—)l-
(3.2.8)
Now, summing over both sides of equation(3.2.8), we get

R
=y =

i=-R

Second for n > 1, we rewrite equation(3.2.4) in the form
y](n+1) _ bny](-o) +Z Ckyj(n—i—l—k) B 2,uyjn)—|—
k=1

y <1+T> y 4+ u (1— T) g™ (3.2.9)

Summing over all j at both sides and using the relation (3.2.7), we
get s,4+1 = 1. So far, we have proved that our difference scheme is
conservative and non negative inspite of its dependence on the past.
Equation (3.2.9) is consistent the time-fractional diffusion equation
with the following sense. For h — 0 which is equivalent to R — oo,
equation (3.2.9) goes over into equation (3.1.1), for z € R and ¢ > 0.
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3.3 The explicit solution of the diffusion equa-
tion with drift

The explicit scheme of the time-fractional diffusion equation with
central linear drift, equation (3.2.4), is completely different from
the explicit scheme of the diffusion with drift as § = 1, studied in
Chapter 2. The dependence on the past appears in this model for
n > 1. Therefore, the solution is obtained separately at n = 0 and
at n > 1.

For n = 0, we have with y() the first state after the initial state.
By returning back to equation (3.2.8), we find that y](-l) represents
the probability of finding the particle at the point z; at the time
instant ¢;, while being at the points z;_, x;, or z;4; at the time
instant to = 0. This transition is as in a Markov chain because
we have only one past level. Equation(3.2.8) is equivalent to the

equation

ui =19y + Ny + ey (3.3.1)

where the transition probabilities from the time instant ¢y to ¢; are
respectively

J J
/\j=u(1+§),7=(1—2u),pj=u(1—§) ,

Our intention is that equation (3.3.1) should describe a random
walk with sojourn probability yj(-o) of a particle at the point z; at
the instant ¢y. The particle then jumps to one of the points z;_;, z;,
xj41 at the time instant ¢;. The transition probabilities in equation

(3.3.1) should satisfy the essential condition

As in Chapter 2, we have for the column vectors, y*) and y(©@, the
relation
y = pT 4O (3.3.2)

where the matrix P is a stochastic matrix and is defined in (2.3.13).
By using row vectors, we define

(™7 =2 VpeN |z = (20, z(_"})zﬂ, L2y

then we have

N =20p (3.3.3)
It is convenient to write the stochastic matrix P, in the form
P=1+uH ,
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where [ is a (2R + 1) X (2R + 1) unit matrix and H, defined in
(2.3.17),is a (2R + 1) x (2R + 1) matrix having the property that
its rows sum to zero.

Now for n > 1, we have the same transition probabilities p;_; and
Ajt1, as in Chapter 2, from the points z; ; and z;,, respectively to
the point z; as the time proceeds from ¢, to ¢,,; but the transition
probability 4 from the point z; to the same position depends on j3,
i. e.,

7 =(08-2p),
giving
Ajpi+d +pi-1=p6.
This means that the transition from ¢, to ¢,.; is not Markov-like.
Therefore, recalling ¢c; = 3, it is convenient to define the matrix

Q=PI+ upH = (g:5) ,

which has the form

Q=
((B—2u) 24 0
a (B—2p) p(2—g) 0
0 % (B-2p) pw2-%) O
0 u(é;%) (5;2u) %‘
0 p2-5) (B-2p
\ 0 0 24

(3.3.4)

By taking into account the memory part, we rewrite equation (3.2.9)
as

n
) = p 20 4 Z 2R 4 9 (3.3.5)
k=2
Observe that () is a stochastic matrix if and only if c; = 8 =1

3.4 The implicit scheme for solving the time-

fractional diffusion equation with central lin-
ear drift(©-method)

The idea of the #- method is discussed in Chapter 2. The relation
between i and the order of the fractional derivative is governed by
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the the scaling relation given by (3.2.3). We use the 6- method
to predict the future so fast in order to save the computing time.
Again, we solve our model differently, at n = 0, and at n > 1.

For n = 0, we rewrite equation (3.3.3) in the form
2 (I — pbH) = 20 (I + ubH) | (3.4.1)
where § = (1 —4),8 € [0,1]. Solving equation (3.4.1) for the row
vector z(!) gives
2 = 2O (T 4+ ufH).(I — pbH)™ . (3.4.2)
As we have discussed in Chapter 2 the matrix
(I +pfH).(I —ubH) ' =Py |

is a stochastic matrix only for special values of u related to 6. But
here pu is also related to 3

O<p<pB/2 if 6=0,

O<u<yfy i 0<6<1,

0<pu<oo if =1 .

For n > 1, we rewrite equation (3.3.5) in the form

2D = b2 3 e R) o | (3.4.3)
k=1

Then, we apply the 6-method to it , and solve for z("t1). We get

2D = 1p, 2@ 4 chz("“_k) + w0z H|[I—pbH)" .
k=1
(3.4.4)
Here (I — ufH)™* is a non negative matrix and all b, and c; are
non-negative numbers, moreover the relation between b, and c; is
governed by (3.2.7). Finally by using the last conditions governing
i, 8 and B, we get all z(® > 0.

To prove that the row vector z(™ is a probability row vector,

we must also prove that z](.") = 1Vn € N. We prove this by
J

induction.
First for n = 0, as in Chapter 2, the matrix P, is a stochastic
matrix and 7 = {1,...,1}7T is one of its eigenvectors satisfying

(I + pbH).(I - ubH) 'y =10
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Generally for any probability column vector w, we have w > 0 and
w®.n = 1. Now, we know that (I — ufH)™' is an M matrix and P,
is a stochastic matrix. Hence by a suitable choice of the initial row
vector 2(® such that z§0) > 0, for all j € [-R, R], and 205 = 1,
equation (3.4.2) implies (). = 2(0.(Py.n) = 2. = 1.

Second, assuming the relation to be true for n > 1 (i.e. we assume
> z](-n) = 1), we must prove that it is true for n + 1. Multiplying
j

each side of equation(3.4.4) by 7, and using the auxiliary equation
(3.2.7), we get > zj("ﬂ) = 1. So the relation is true for all values

n>0. Asa mat]ter of fact, the implicit scheme allows us to predict
the future faster than the explicit scheme, because p and 7 depend
on each other by the scaling relation given in (3.2.3) and p can be
taken larger and larger as @ is increased from 0 to 1. This property
will be useful in the numerical calculations of the following section.

3.5 Convergence to the stationary discrete solu-
tion for time tending to infinity

For 5 = 1, equation (3.2.9) reduces to the modified Ehrenfest model
( see for example [107], [19], [22], and [92]) which describes the
motion of a particle moving one step to the left, or one step to the
right, or remaining in its position. The matrix representation of this
model is a stochastic matrix with the special property that the limit
of the power matrix P" for n — oo, exists and the elements of the
matrix converge to the binomial distribution. In this case we have
a Markov chain.

For 0 < B < 1, i.e. for the non-Markov chain, we apply the more
general method for calculating the discrete stationary solution of
equation (3.2.9). This is done by omitting the dependence on time
t. To this purpose, we replace all the indices n + 1,0 and n+ 1 — k
by simply n in equation (3.4.3). Then for n — oo, equation (3.4.3)
converges to z.H = 0 which is equivalent to H'.y = 0, and we
accept the column vector y = 27 as the discrete stationary solution.
This equation is valid for 0 < 8 < 1 and H” has an eigenvector y*

R

of eigenvalue zero. Now the vector § = cy* with ¢ =1/ Y y5 is
j=—R

a vector whose elements sum to 1. We form a sequence of numbers

d = {d(t1),d(ts), - - }, where t; <ty < -+ — oco. The number d(¢;)
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is defined as
R
j=—R

The simulation for 0 < 8 < 1 shows that the row vector d approxi-
mates a power function

d(t) = ct™ |

where ¢ and 7y are constants and 7 is called the rate of convergence.
The implicit scheme allows us to calculate the vector d so fast be-
cause the number of steps are less than those of the explicit scheme.

By analogy, we can estimate the convergence, the explicit and the
implicit solution of the model under the action of the other types of
forces defined in Chapter 2. It will be by the same procedure, the
only difference lies in the elements of the matrix H which depend
directly on the structure of the force. This is so because we must

replace the term (x]-ﬂy](ﬁ)l — :cj_ly(")) in equation (3.2.4) by

-1
= (F($j+1)y§1)1 — F(:cj_l)y](-'i)l) and take into account all the other

resulting changes.

3.6 Random walk simulation

We discuss in this section the random walk of the elastically bound
particle (diffusion under the action of the force bz, b > 0), after
replacing the time derivative by the fractional time derivative, to
see the effect of the memory part. To do this, we generate random
numbers € (0,1] and keep in mind the whole past history of the
wandering particle. Its history consists of its positions at the times
to = 0,%t1,--- and up to t,. This means, the path of the particle is
z(t,), z(t1),...,z(t,). The initial position of the particle z(0) = z,
may be any grid point mh inside the interval [—Rh, Rh] and m €
[-R, R|. As we have done in the previous sections, we distinguish
the cases corresponding to n = 0 and n > 1 in the simulation. For
n = 0, the random walk of this case is typically Markov-like. For
n > 1 and as the time proceeds from ¢t = ¢, to t = t,,,1, the sojourn-
probabilities are redistributed according to equation (3.2.9) which
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we rewrite as

n
Y = (1 - Ck) v+ et + enaty® o+ eyt
k=1

. i+1\ =1\ o
2w (1ot (1T o)
(3.6.1)

n

Clearly all the coefficients c1, ¢2, ..., cn, (1 — > ¢), defined in 3.2.6,
k=1
are non-negative. The idea of simulation is analogous to that of

[40]. Assuming the particle sitting at the grid point z; € [—Rh, Rh|
at instant ¢,,n > 1, then its position at the next instant ¢,.; is
obtained as follows. We set

sk=> ¢, k=12_..,n (3.6.2)

and generate a uniformly in [0, 1] distributed random number wu.
Then we test successively into which one of the intervals [0, s1),
[s1,82), [$2,83) ,--.,[8n, 1), u falls. The length of these intervals are
respectively ci,¢s,...,¢, and b, = 1 — s,. We subdivide the first
interval ([0, s;) = [0, ¢1)) into three sub-intervals of lengths);, ¥’ and
p;j where 7' = (¢; — 2p). Now if u € [0, ¢;), we move the particle
from its position z(t,) = z; to the point z;_1, «; or z;;; depending
on whether u is in the subinterval of length A;, v’ or p;, respectively.
If u € [sg_1,s,) with 2 < k < n, we move the particle from its
position z(t,) back to its previous position z(t,;1 ). In the case
u € [sn, 1) we move it back to its initial position z(ty) = z(0). The
sketch of the movements is as follows.
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x(tn—l-l) — x(tn) —h x(tn 1) — x(tn)v(tn—l-l) — x(tn) +h
Pj

X 7

Ck

T (tn-l—l—k)
bn,

z(to)
The sketch of the possible jumps as 0 < 5 < 1

3.7 Numerical results

We display some figures to show the evolution of the diffusion pro-
cess as the time proceeds from ¢ = 1 to ¢ = 10 for different values of
B including 8 = 1 and for different initial conditions.

First: some figures representing the fractional in time diffusion
process under the action of a linear force (i.e. F(z) = —z):

Figures [1-4] correspond to the explicit scheme where y(® =
{0,---,1,---,0}.

Figures [5-8] correspond to the explicit scheme where

1

O =21 ... L_ ... L1
Yy 2R+1° " 2Rf1) " 2R¥1S”

Figures [9-12] correspond to the fully implicit scheme where 3(®) =
{0,---,0,1}.

Figures [13-16] illustrate the convergence of the model where
y©® = {0,---,1,---,0}. In these figures we have plotted log d
against time ¢ and log t against log d.

Figures [17,18] show the approximate stationary solution and the
approximate solution of the model with central linear force F'(z) =
—x.

Second: some figures representing the fractional in time diffusion
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process under the action of a cubic force (i.e. F(z) = —z°):

Figures [19-24] correspond to the implicit scheme where y© =
{0,---,1,---,0}

Figures [25-28] correspond to the implicit scheme where y(®) =
{0,---,0,---,1}.

Figures [29-30] illustrate the convergence of the model for F(z) =
—z% and y©® = {0,---,1,---,0}. We have plotted log d against
time t and log t against log d.

Figures [31,32] show the approximate stationary solution and the

stationary analytic solution of the model for the cubic force F(z) =
—x3.
Finally, figures [33-36] exhibit the simulation of the random walk
and its increments for F(z) = —z and z(0) = 0 for 8 = 1 and
0 < B < 1. In these figures, we have plotted = or Az against the
number of steps n. The results of all these figures are taken for
R = 10.

u=.25,5=.75

-75 -5 -25 0 25 5 75 -75 -5 -25 0 25 5 75

Figure 3.1: ¢© = Figure 3.2: y© =
{0,---,1,---,0} {0,---,1,---,0}
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4=.25,t=10

02 ~

A
0.2 /I \
015
015
01
01
0.05
0.05
-75 -5 -25 0 25 5 75 -75 -5 -25 0 25 5 75
Figure 3.3: ¢y© = Figure 3.4: ¢y =
{0,---,1,---,0} {0,---,1,---,0}
015
015
0.125
0125
01
01
o
0.075
0.05
0.05
0.025
0.025
-5 0 5 10
-5 0 5 10
Figure 3.5: y© = Figure 3.6: ¢y©@ =
2R+1° " ? 3RF1 2R+1° " 7 3RF1
u=.25,t=1
012 TN 0475
o N o
008 j;/ \‘\‘.\\ 0125
/
0 / A\ o
0.075
0.04
005
0.025
-5 ] 5 10 -5 0 5 10

Figure 3.7: y(O) = Figure 3.8: y(o) =
{ﬁ7’21€ﬁ} {ﬁavﬁ}
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-75 -5 -25 0 25 5 75 -75 -5 -25 0 25 5 75

Figure 3.9: y©® = Figure 3.10: y© =
{0,---,0,1} {0,---,0,1}

0.12 0.175
01 0.15
0.125
0.08
01
0.06
0.075
004 0.05
0.02 0.025
-75 -5 -25 0 25 5 75 -75 -5 -25 0 25 5 75
Figure 3.11: ¢© = Figure 3.12: ¢© =
{0,---,0,1} {0,---,0,1}
3 3 3 3
o 4 9:l,ﬁ=z,,u=z oy 4 9=l,,3=z,#=5
-25
-3
-35
Log t
05 1 15 2
Figure 3.13: convergence Figure 3.14: convergence
for F(z) = —=z for F(z) = —=z
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6=1,8 L2
=1.p=" =

o 4 6=1,p=—,u=7 tog >
-16 -16
t
0_18 2 4 6 8 10 _18
-2 Log t
05 15 2
—22 -22
-24 -24
-26 -26
Figure 3.15: convergence Figure 3.16: convergence
for F(z) = —=z for F(z) = —z
y u
h 0.4
0.4
0.3
0.3
0.2 0.2
0.1 0.1
7.6 -5 -25 0 2.5 &5 7.5 -4 2 0 2 2 X

Figure 3.17: approximate
solution

y©

Figure 3.19:
{0,---,1,---,0}

Figure 3.18: stationary so-

lution
=
01 ;’//-\\\\
Figure 3.20: y© =
{0,---,1,---,0}
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Figure 3.21: ¢© = Figure 3.22: ¢© =
{0,---,1,---,0} {0,---,1,---,0}

012
01
0.08

0.06

0.04

0.02

Figure 3.23: ¢© = Figure 3.24: ¢(©
{0,---,1,---,0} {0,---,1,---,0}

01
0.08
0.06

0.04

Figure 3.25: ¢ = Figure 3.26: y(©
{0,---,0,---,1} {0,---,0,---,1}
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t=1,u=—,6=1 t=10,u=—,6=1
2\ 0.08 TN
01 7 N A o
7 . ’ Y
/ \\ [ A
008 / Wy 0.06 s W
\\ v/ \
\ VY
\\\ 4 ll \ \
0.06 W\ & \\
W, 0.04 b/ ;!
\
004 Z AN 7 N
. / NN a \
A / *\
\ 002 ,f \
002 NS Z W
4 "
L
-5 0 5 10 -5 0 5 10

Figure 3.27: ¢© = Figure 3.28: ¢(© =
{0,--+,0,---,1} {0,--+,0,--+,1}

3 3
oy o 021'B=Z'M=E
t
0 2 4 6 8 10 t
-3
-35
-4
Figure 3.29: convergence Figure 3.30: convergence
y u
h 0.4
0.375
0.35 0.3
0.325
0.3 0.2
0. 275
0. 25 0.1
0. 225
755 25 0 25 5 7.5 1 3 -2 -1 0 1 2 3
Figure 3.31: approximate Figure 3.32: stationary so-
solution lution
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u=.25, p=.5

Figure 3.33: discrete ran-
dom walk

Figure 3.35: discrete ran-
dom walk

. u=.25, p=5

Figure 3.34: increments

Ax

5,33
p=5, p=-,

n
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Figure 3.36: increments
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