Introduction

1.1 Scope and introduction

In this thesis we are concerned with the simulation of fractional dif-
fusion processes with and without central drift. We give discretiza-
tions by aid of explicit and implicit difference schemes. Then we
use these discretizations, either for approximating the solution of
the fractional diffusion equations or for the discrete random walks,
obtained by the explicit difference scheme, for which we use the
Monte Carlo method. The diffusion under the action of a central
linear drift is a special case of the diffusion under the action of an
external force. The partial differential equation modelling the mo-
tion of a bound particle under the action of an external force F(x)
is
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where a is the general positive constant of diffusion. In our notation
u(z,t) represents the probability density function. F(z) = —%gf)

where U(z) is a symmetric differentiable potential, strictly increas-
ing for x > 0. We consider U(z) to represent either the quadratic
harmonic oscillator, the quartic harmonic oscillator, or the mixed
quadratic-quartic harmonic oscillator [10]. This equation is consid-
ered as a special form of the classical Fokker-Planck equation (see
for example[86], [84], [82] and [53]) and also as a special form of
the diffusion-convection equation (see for example [105], [110] and
[99]). We distinguish also between the discrete solution of equa-
tion (1.1.1) as F(z) = —z and the discrete generalized Ehrenfest
model described by Vincze [107] and studied by many authors (see
for example [92], [51],[6], [24], [4], and [7]).

We consider another important generalization of equation (1.1.1),
namely we replace the first time derivative by the Caputo fractional
derivative (see Appendix A) in order to obtain the time-fractional
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diffusion with central drift in the form
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where a is the general diffusion constant. If F(z) = —z, we have
the case of linear drift. We find the discrete approximations to the
time-fractional diffusion processes with central drifts by devising the
explicit and implicit difference schemes. We give the convergence of
the discrete solutions as t — oo. Then by the Monte Carlo method
we simulate the random walk of the models for different values of
the time fractional order 5 € (0, 1] [28] and [29]. It is worth to say
that Metzler, Klafter and et al in [70], [71] and [3] refer to equation
(1.1.2) as the fractional Fokker-Planck equation in their work with
the anomalous diffusion and relaxation. See also [50], [2] and [100].
Gorenflo, Mainardi et al [40] have dealt with the discrete random
walk solutions of the space-time fractional diffusion equation. We
show in the treatment of the random walk the effect of the central
drift F(z) which enforces the diffusive particle to go back to the
origin.

Actually the fractional calculus has gained great interest among
mathematicians, physicists, engineers and biologists in recent years.
The increasing popularity of fractional models has made fractional
calculus a field of strong development in the last 30 years. The
approximation of the fractional derivative operators is based on the
discretization by the Griinwald-Letnikov scheme ( see for examples
Oldham & Spanier [79], Miller & Ross [72], Gorenflo & Mainardi
[36], [35], [34], [40] and [27] and recently [62]).

In this thesis we discuss not only the discrete random walk but
also the continuous time random walk (Montroll and Weiss 1965
[77]) for which the abbreviation CTRW is in common use. It is
known that the CTRW can also be considered as a compound re-
newal process[13]. We focus our interest on random walks in which
the probability distributions of the waiting times and jumps have
fat tails characterized by power laws with exponent between 0 and
1 for the waiting times, between 0 and 2 for the jumps [30]. Goren-
flo, Mainardi and et al [65] , [31], [37], [43] and [66] show that by
starting from the relevant Lemmata (of Tauber type) the sojourn
probability density of the random walker satisfies in the limit the
fractional diffusion equation. We use here their successful meth-
ods for simulating the CTRW of fractional diffusion process and,
by using a relevant transformation theorem [5] for the independent
variables we simulate the CTRW of the space-fractional diffusion
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process with central linear drift
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(1.1.3)
where a > 0 representing the diffusion constant and b > 0 repre-
senting the drift constant. We show in the simulation of this model
how the initial position of particle plays an important role and how
the central linear drift drives the diffusive particle towards the ori-
gin. We show that the space and the time scales of the diffusive
particle under the action of central linear drift are compressed by

the transformation theorem, see Section (4.5).

Since the fractional diffusion equation can be considered as a
special case of equation (1.1.1) with F((z) = 0, we prove that the
discrete solution of the space-time fractional diffusion equation tends
in the limit, as the scaling factors of space and time tend to zero,
to the Fourier-Laplace transform of the solution of equation (1.1.1).
Gorenflo & Mainardi have proved the convergence of the discrete
solution to the solution of the space-fractional diffusion equation
[34]. In this thesis we generalize the proof to cover also the space-
time fractional diffusion equation.

1.2 Organization of the thesis

In Chapter 2 we interpret the generalized Ehrenfest model as an ex-
plicit difference scheme and show the equivalence of its discretization
to the discretization of the partial differential equation of diffusion
with central linear drift (1.1.1). We calculate and plot the approx-
imate solutions of this equation. We consider also the approximate
solutions under the action of other forces. The convergence of the
discrete solutions for time tending to infinity is discussed and plot-
ted. The simulation exhibits exponential speed of convergence to
the stationary solution of the discrete model, typical for an ergodic
Markov chain. We simulate also the particle paths by the corre-
sponding discrete random walks of these models.

In Chapter 3 we discuss the discrete solution of the time-fractional
diffusion equation with central drift in a potential well (1.1.2). The
discrete difference scheme shows that the particle remembers all its
history, and this memory is also visible in the sketch of the particle
paths. We calculate and plot the approximate solutions, the conver-
gence for two different types of forces and for different values of the
fractional order. Now the convergence to the stationary solution of
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the discrete model turns out as a power of ¢ with negative exponent,
hinting to a process with memory. We simulate also the path of the
diffusive particle under the action of central linear drift by the aid
of discrete random walks.

In Chapter 4 we give a survey on the theory of continuous time
random walk. Then from the suitable choices of the waiting time
and the jump densities we approximate the space-fractional diffusion
process with central linear drift (1.1.3) through a suitable transfor-
mation of the independent variables of solution of space-fractional
diffusion process without drift.

In Chapter 5 we complete our discussion of the fractional diffu-
sion processes by proving that the discrete solution of these models
tends in the limit as the space-time scaling factors tend to zero to the
Fourier-Laplace transform of the solution of the fractional diffusion
equations. We develop this theory for the time fractional diffusion
equation and for the space-time fractional diffusion equation. Fur-
thermore, we prove the convergence of the discrete solution of the
time-fractional diffusion equation with central linear drift by prov-
ing that the discrete solution satisfies the same ordinary differential
equation in Fourier-Laplace space.

In the Appendices A, B and C we give short surveys of the es-
sentials of the fractional calculus, of stable probability distributions
and of the Mittag-Leffler function, respectively.



