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Jeder groÿe Fortschritt der Menschheit beginnt mit dem Zweifel und
zeigt sich in einem Protest gegen überlieferten Dogmatismus

Gustav von Schmoller

The development of scienti�c thought may once again take us be-
yond the present achievement, but a return to the old narrow and re-
striced scheme is out of the question

Hermann Weyl

We should be on our guard not to overestimate science and scien-
ti�c methods when it is a question of human problems; and we should
not assume that experts are the only ones who have a right to express
themselves on questions a�ecting the organization of society

Albert Einstein

i





Contents

Introduction v

Acknowledgements viii

Chapter 1. General Relativity 1
1. The Einstein Equations 1
2. The Metric Approach 2
3. The Orthonormal Frame Approach 2
4. Example: The Kasner Solution 3
5. Symmetries and Spatially Homogenous Models 3

Chapter 2. Bianchi Spacetimes - Existing Results, Challenges
and Techniques 5

1. The Equations of Wainwright and Hsu 5
1.1. Vacuum Models of Bianchi Class A 6
1.2. The Kasner Map 7
1.3. Eigenvalues in Terms of the Kasner Parameter u 10
2. Bianchi V I

∗

−1/9 12
3. Existing Results in Bianchi IX and Di�culties in Bianchi B 15
4. Dynamical Systems Techniques 16
4.1. Topological Equivalence 16
4.2. Linearization 16
4.3. Counter-Examples 17

Chapter 3. Takens Linearization Theorem for Partially
Hyperbolic Fixed Points 18

1. Sternberg Non-Resonance Conditions 19
2. The Formula for α(k) and β(k) 20
3. The Overall Structure of the Proof 20
4. Proof of Proposition 1 21
4.1. General Idea of the Proof 21
4.2. Usage of Sternberg Non-Resonance Conditions 22
4.3. Choices and De�nitions 22
4.4. Lemma 2.2. 23
4.5. Construction of the Required Coordinate System 24

ii



5. Proof of Proposition 2 25
5.1. General Idea of the Proof 25
5.2. Jet bundles 25
5.3. Metric on the Fibre Bundle 25
5.4. Metric on Rn 26
5.5. Lemma 3.5 26
5.6. End of the Proof of Proposition 2 27
5.7. Proposition 2' 27
6. Proof of Proposition 3 28
6.1. Sketch of Proof 28
6.2. Understanding the form of α(k) and β(k) 28
7. Takens Linearization Theorem for Vector Fields 29
7.1. Partially Hyperbolic Fixed Points 29
7.2. Sternberg Non-Resonance Conditions 30
7.3. The Formula for α(k) and β(k) 30
7.4. The Structure of the Proof 31
7.5. Proposition 1 31
7.6. Proposition 2 31
8. Concluding Remarks 32

Chapter 4. C1- Stable - Manifolds for Periodic Heteroclinic
Chains in Bianchi IX 33

1. Resonances for Periodic Chains in Bianchi IX 37
1.1. In�nite Periodic Continued Fractions 37
1.2. The Case of Bianchi IX 38
1.3. SNC for In�nite Periodic Heteroclinic Chains 39
1.4. Conclusions for Bianchi IX 40
1.5. Uniqueness of the Resonance 40
2. Continued Fraction Expansion for Quadratic Irrationals 41
2.1. Constant Continued fraction 41
2.2. 2-Periodic Continued Fraction Expansion 42
2.3. 3-Periodic Continued Fraction Expansion 42
3. Results on Admissibility of Periodic Heteroclinic Chains in

Bianchi IX 44
3.1. Constant Continued Fraction Development 44
3.2. 2-Periodic Continued Fraction Development 46
3.3. Continued Fraction Development with Higher Periods 48
4. Details on the Proof for Stable Manifolds 52
4.1. Application of Takens Theorem 52
4.2. Local Passage 54
4.3. Global Passage 56
4.4. The Return Map and the Hyperbolic Structure 58

iii



4.5. C1-Stable Manifolds for C1-Hyperbolic Sets 60
4.6. Generalized Stable Manifold Theorem by Hirsch/Pugh 60
4.7. Di�erentiability of the Stable Manifold 62

Chapter 5. Takens Linearization and Combined Linear Local
Passage at the 18-cycle in Bianchi V I

∗

−1/9 63
1. Eigenvalues in Terms of the Kasner Parameter u 66
1.1. General Formulas for Points on the Kasner Circle 66
1.2. Eigenvalues at the 3-Cycle 67
2. The 3-Cycle in Bianchi V I

∗

−1/9 68

2.1. (Non-)Resonance and Takens Linearization 68
2.2. Combined Linear Local Passages 69
3. The 18 Cycles in Bianchi V I

∗

−1/9 71

3.1. Possible Passages in Bianchi V I
∗

−1/9 71
3.2. The Classic 18-Cycle 71
3.3. The Advanced 18-Cycle 72
3.4. (Non-)Resonance and Takens Linearization at the 18-Cycle 72
3.5. Combined Linear Local Passage at the 18-Cycle 72
4. Numerical Simulation 73

Conclusion and Outlook 74

Bibliography 77

Appendix A. Symbolic Computations with Mathematica 80
1. Results on Admissibility of Periodic Heteroclinic Chains in

Bianchi IX 80
1.1. Constant Continued Fraction Expansion 80
1.2. 2-Periodic Continued Fraction Expansion 82
1.3. 3-Periodic Continued Fraction Expansion 83
1.4. Pre-Periodic Sequences 84
2. Results on Non-Resonance-Conditions and CLLP for

Heteroclinic Cycles in Bianchi V I
∗

−1/9 86
2.1. Takens Linearization at the Base Points of the 3-Cycle 86
2.2. Takens Linearization at the Base Points of the 18-Cycle 86
2.3. CLLP for the Classic 18-Cycle 88

iv



Introduction

In General Relativity, the Einstein Equations are used to describe
the geometry of the four-dimensional spacetime. Today, nearly 100
years after their publication by Albert Einstein [8, 9] in 19151, supris-
ingly less is known about the dynamics of these equations towards the
initial singularity, i.e. the "big bang".

Achieving progress on this question is an active area of ongoing re-
search in the �eld of mathematical general relativity, for recent surveys
see [54, 55]. In a broader scope, the general research program could
be called trying to understand "the nature of spacetime singularities",
as Rendall has put it in an earlier survey paper also covering material
on black holes ([40]).

For understanding the approach to the initial singularity, the so-
called "BKL-Conjecture" plays a central role. It is named after Belin-
ski��, Khalatnikov and Lifshitz who pioneered the study of oscillatory
singularities in the Einstein equations in the 1970s (see [29, 3, 4]).

However, the BKL-Conjecture is more a guiding principle how to
understand the approach to the initial singularity than a clearly for-
mulated conjecture, that's why Rendall suggested it should better be
called the "BKL picture" ([40, 41]).

In this picture, the approach to the initial singularity in General
Relativity is generically vacuum dominated, local and oscillatory. The
�rst point means that generically, solutions in a cosmological model
with matter will converge to the vacuum model towards the big bang -
so "matter does not matter" for the approach to the initial singularity.

The "local" part of the BKL picture means that in inhomogeneous
cosmologies the evolution of each spatial point will decouple in back-
wards time. As a result, each spatial point will evolve individually
and independently of its neighbors towards the initial singularity as a
spatially homogeneous model.

1Although he published some core ideas already in 1915 ([8, 9]), the article
"Die Grundlage der Allgemeinen Relativitätstheorie" [10] by Albert Einstein from
1916 is the �rst comprehensive exposition of general relativity
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That's why the spatially homogeneous Bianchi cosmologies play
an important role in understanding generic spacelike singularities, as
they are believed to capture the essential dynamics of more general
solutions. Bianchi models are divided into two groups, labeled as "class
A" and "class B". Historically, most research has concerned oscillatory
Bianchi models of class A. However, oscillatory Bianchi models of class
B play an important role in inhomogenous cosmologies, because of the
following reason:

Arguably the simplest cosmological model where all aspects of the
BKL-picture can be studied in combination is the G2-model, because
it is both inhomogeneous and oscillatory. But G2 does not contain any
oscillatory Bianchi models of class A. That's why it is important also to
study Bianchi models of class B, where the oscillatory Bianchi V I

∗

−1/9

model plays a central role.
In this dissertation, we study oscillatory Bianchi models of both

class A and class B and achieve some new results that we will describe
now.

On the one hand, we are able to show, for the �rst time, that for
admissible periodic heteroclinic chains in Bianchi IX there exisist C1-
stable - manifolds of orbits that follow these chains towards the big
bang. A detailed study of Takens Linearization Theorem and the Non-
Resonance-Conditions leads us to this new result in Bianchi class A.
More precisely, we can show that there are no heteroclinic chains in
Bianchi IX with constant continued fraction development that allow
Takens-Linearization at all of their base points. Geometrically speak-
ing, this excludes "symmetric" heteroclinic chains with the same num-
ber of "bounces" near all of the 3 Taub Points - the result shows that
we have to require some "asymmetry" in the bounces in order to al-
low for Takens Linearization, e.g. by considering admissible 2-periodic
continued fraction developments.

As the second main result of this dissertation, we �nd an example
for a periodic heteroclinic chain in Bianchi V I

∗

−1/9 that allows Takens
Linearization at all base points. It will turn out to be a "18-cycle�, i.e.
involving a heteroclinic chain of 18 di�erent base points at the Kasner
circle. We then show that the Combined Linear Local Passage at the
18-cycle is a contraction. This quali�es the 18-cycle as a candidate for
proving the �rst rigorous convergence theorem in Bianchi V I

∗

−1/9.
The structure of this dissertation is as follows: Chapter 2 puts our

research in the broader context of mathematical General Relativity and
explains the signi�cance of spatially homogeneous models. This is also
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where Bianchi cosmologies of class A and B are de�ned and the relevant
equations are presented.

Chapter 3 reviews existing results in Bianchi models of class A and
describes challenges that occur in models of class B. In recent years, it
has turned out that Dynamical Systems techniques can be very helpful
to prove rigorous theorems about cosmological models. That's why we
brie�y review some relevant tools from non-linear dynamics for the use
in later chapters.

This leads naturally to Chapter 4, which presents Takens Lineariza-
tion Theorem. It has been succesfully applied to Bianchi cosmologies
(see [2]), and will be one of our central tools for our own results. That's
why we also review the structure of the proof of the theorem, especially
to understand the form of the non-resonance-conditions. Those will
play an important role when it comes to linearizing at the base points
of periodic heteroclinic chains.

Chapter 5 presents our main results for Bianchi IX: We show that
there are C1- stable - manifolds for admissible periodic heteroclinic
chains in Bianchi IX. The �rst part of the chapter deals in details with
the question which chains are admissible, while the second part is de-
voted to the proof that after linearizing, a C1- stable - manifold can be
obtained by �nding a suitable set of points that admits a C1-hyperbolic
stucture, which will give the desired result via a graph transform.

In Chapter 6 we deal with Bianchi V I
∗

−1/9. In order to illustrate
our approach, we �rst consider the Combined Linear Local Passages
and Takens Linearization at the 3-cycle in Bianchi V I

∗

−1/9. We show
that the Sternberg Non-Resonance Conditions are not satis�ed for the
3-cycle, but they are satis�ed for the 18-cycle. We then show that the
Combined Linear Local Passage at the 18-cycle is a contraction.

We conclude with an outlook on how to proceed further in studying
Bianchi cosmologies, and also discuss directions for future research in
inhomogeneous (PDE-) cosmological models. This puts our results in
a broader perspective. The appendix contains symbolic and numerical
computations done by Mathematica for examples discussed throughout
the text.

In two recent survey papers ([54, 54]), Uggla reviews recent devel-
opments concerning generic spacelike singularities. One of his conclu-
sions is "that we are only at the beginning of understanding generic
singularities, even though considerable progress has been accomplished
during the last few years" ([54], p.20). Our aim with this dissertation
is to make some contributions to this research program.
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CHAPTER 1

General Relativity

1. The Einstein Equations

We start by presenting the Einstein Equations that are at the core
of General Relativity. They were �rst published by Albert Einstein in
1915 (see [8, 9, 10]). For a modern exposition focussing on analytical
aspects see [43, 41], while physical aspects can be found e.g. in [35].
We consider a 4-dimensional Lorenzian manifoldM , i.e. M is endowed
with a metric g with signature (−,+,+,+). By convention in math-
ematical relativity, we use geometrized units and set 8πG = c = 1,
where c is the speed of light and G the gravitational constant. Then
the Einstein Equations take the following form:

(1) Rab +
1

2
Rgab = Tab

The indicies a, b can be interpreted as "abstract indicies", see [60],
and in this interpretation the Einstein Equations are an equation for
tensor �elds on the manifold M (for the di�erential geometry back-
ground, see e.g. [50] or [12]).

On the left side of the Einstein Equations there are the Ricci cur-
vature tensor Rab, the scalar curvature R and the metric tensor gab
of the spacetime, re�ecting the geometic properties of space. On the
right side of the equations, we have the so-called "stress-energy-tensor"
Tab, representing the matter �eld. A short summary of the resulting
behaviour is given by the following famous quote: "Matter tells space
how to curve, and space tells matter how to move" by J.A. Wheeler (see
e.g. [61], p.235). This statement of "general relativity in a nutshell"
can be interpreted as follows: By the the distribution of matter, the
curvature of space is determined, i.e. "matter tells space how to curve".
On the other hand, the matter particles will move along geodesics that
are adapted to the curvature of the spacetime, i.e. "space tells matter
how to move". More details can be found the now classic works by
Wheeler [35] or Wald [60] .

In order to deal with the Einstein Equations, there are two basic
strategies, which we will describe next.
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2. The Metric Approach

In the metric approach, the unknown of the Einstein Equations is
taken to be the metric tensor gab

1. If we chose local coordinates x1...xn
(with n = 4 in our case for a four dimensional space-time), it holds
that:

(2) [
∂

∂xi
,
∂

∂xi
] = δij

for i, j = 1...4, where δij stands for the Kronecker-Delta and the
square bracket denotes the Lie-bracket for vector-�eld on manifolds
(see [12]).

As an example for the metric approach, we will discuss an explicit
solution of the Einstein Equations called the "Kasner solution" in sec-
tion 4.

3. The Orthonormal Frame Approach

In the The orthonormal frame approach, the unknown of the Ein-
stein Equations is taken to be the commutators2 of a chosen orthonor-
mal frame e1, ..., en that forms a basis of the tangent space of the man-
ifold at each point p ∈ M . In this approach, the metric becomes very
easy, as by our choice, our frame is orthonormal, meaning that it holds
for the metric:

(3) g(ei, ej) = δij

However, now the Lie-bracket of the orthonormal frame elements is
more complicated:

(4) [ei, ej] = γkijek

where we have used the Einstein summation convention of summing
over repeated indicies in the last line. Thus, in this case, we solve
the Einstein Equations for the commutators γkij - in fact the variables
appearing later in the Wainwright-Hsu equations for the Bianchi cos-
mological models (see section 2) are a neat decomposition of these

1to be precise, in the presence of symmetries, the basic variables are the metric
components gab(t) relative to a group-invariant, time-independent frame (see [58],
p.107).

2in the presence of symmetries, we take as basic variables the commutation
functions associated with a group-invariant orthonormal frame, see [58], p.108).
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commutators (for details how to derive the Wainwright-Hsu equations
from the Einstein equations, see the appendix of the paper [42]).

4. Example: The Kasner Solution

In this section, we consider an example of an explicit solution of
the Einstein Equations: For the so-called Kasner solution, the metric
has the following form:

(5) ds2 = −dt2 + t2p1dx2 + t2p2dy2 + t2p3dz2

where t ∈ (0,∞) and x, y and z denote the standard Cartesian co-
ordinates on R3. The constants pi are often called "Kasner exponents"
as they appear in the exponent in equation (5) and they satisfy the
following relations (see e.g. [41]):

3∑
i=1

pi = 1,
3∑
i=1

p2
i = 1

We will later see that the Kasner solution plays an important role in
analysing the general Einstein Equations towards the initial singularity.

5. Symmetries and Spatially Homogenous Models

In this section, we follow [58], chapter 1.2 in order to de�ne spatially
homogenous models. We will also de�ne Bianchi models of class A and
class B.

Symmetries of the spacetime can be understood in the framework of
group actions. This leads to a hierachy of models, where it has turned
out that in order to fully understand one model, it is necessary to go
beyond it and investigate it in the context of more general models.

Let (M, g) be an 4-dimensional Lorenzian manifold as before. The
set of all isometries of (M, g) forms a Lie group Gr, the so-called isom-
etry group of (M, g). We consider the action of Gr onM and make the
following de�nitions:

At �rst, we denote by r := dim(Gr) the dimension of the isometry
group Gr. Secondly, we de�ne s := dim(O(Gr)) as the dimension of
the orbits3 of the isometry group Gr acting on (M, g).

Finally, we denote by d := r − s the di�erence between r and s,
which equals to the dimension of the isotropy subgroup of isometries
that leave the point p �xed. Then we can classify important cosmolog-
ical models according to the following table:

3the orbit O(p) of a point p ∈ M under the group Gr is the set of points into
which p is mapped when all elements of Gr act on p, see [58], p.21.

3



r s d

FLRW 6 3 3
Bianchi 3 3 0
G2 2 2 0

Gowdy 2 2 0

Definition 1.1. (Spatially Homogeneous Cosmological Model) We
call a cosmological model spatially homogeneous if it admits an action
by a group of isometries Gr with spacelike three dimensional orbits (i.e.
s = 3 in the table above).

Definition 1.2. (Bianchi models of class A and B) A Bianchi cos-
mology is a model that admits a three-dimensional group of isometries
Gr acting simply transitively4 on spacelike hypersurfaces (i.e. s = 3 in
the table above, and a simply transitive action on the spacelike group
orbits5).

If Gr is unimodular, the Bianchi model is said to be of class A,
otherwise it is of class B.

The standard model of cosmology is FLRW (see e.g. [58], chapter
2). It is both spatially homogeneous as well as isotropic (the latter
meaning that d = 3). Bianchi models are also spatially homogeneous,
but not isotropic.

The G2 and Gowdy models are inhomogeneous cosmological models
that still have some spatial symmetry, where the di�erence between the
two is that in Gowdy there exists an additional discrete symmetry. This
additional symmetry has important dyamical consequences, as general
G2 models are believed to be oscillatory towards the singularity, while
Gowdy models are known to be not (see e.g. [58] or [41]).

That's why arguably the simplest cosmological model where all as-
pects of the BKL-Conjecture can be studied in combination is the G2-
model, because it is both inhomogeneous and oscillatory. But G2 does
not contain any oscillatory Bianchi models of class A (see e.g. [21]).
Therfore it is important to study also oscillatory Bianchi models of
class B, which means Bianchi V I

∗

−1/9.

4a group acts simply transitively on an orbit if the dimension of the orbit equals
the dimension of the group

5note that there are also the LRS Bianchi models with r = 4, s = 3 and the G4

having a subgroup G3 acting simply transitively on the three dimensional orbits
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CHAPTER 2

Bianchi Spacetimes - Existing Results, Challenges

and Techniques

1. The Equations of Wainwright and Hsu

In the paper [59] by Wainwright and Hsu, a formulation of the
Einstein Equations for Bianchi models is presented that has several
advantages, one of them beeing that it contains all models of Bianchi
class A. Here are the equations, which are used throughout this disser-
tation:

(6)

N ′1 = (q − 4Σ+)N1,

N ′2 = (q + 2Σ+ + 2
√

3Σ−)N2,

N ′3 = (q + 2Σ+ − 2
√

3Σ−)N3,
Σ′+ = (q − 2)Σ+ − 3S+,
Σ′− = (q − 2)Σ− − 3S−.

with constraint

(7) Ω = 1− Σ2
+ − Σ2

− −K
and abbreviations

(8)

q = 2
(
Σ2

+ + Σ2
−
)

+ 1
2
(3γ − 2)Ω,

K = 3
4

(
N2

1 +N2
2 +N2

3 − 2 (N1N2 +N2N3 +N3N1)
)
,

S+ = 1
2

(
(N2 −N3)2 −N1 (2N1 −N2 −N3)

)
,

S− = 1
2

√
3 (N3 −N2) (N1 −N2 −N3) .

The �xed parameter γ is related to the choice of matter model (e.g.
γ = 1 represents dust, whereas γ = 4/3 represents radiation).

The properties of equations above have been studied intensively,
for a recent survey see [17]. The main goal are rigorous results on
the correspondence of iterations of the so-called "Kasner map" f to
the dynamics of nearby trajectories to the Bianchi system (6) with
reversed time, i.e. in the α-limit t → −∞. We will introduce the
necessary background in the rest of this section.

5



Bianchi Class N1 N2 N3

I 0 0 0
II + 0 0
VI0 0 + −
VII0 0 + +
VIII − + +
IX + + +

1.1. Vacuum Models of Bianchi Class A. From now on, we
will restrict ourselves to the vacuum case Ω = 0 . This yields a 4-
dimensional model, as we have �ve variables and one constraint:

Definition 2.1. (Phase Space of the Vacuum Wainwright-Hsu ODEs)

W = {(N1, N2, N3,Σ+,Σ−) | 0 = 1− Σ2
+ − Σ2

− −K}

As we are interested in the dynamics of the Bianchi system (6) with
reversed time, i.e. in the α-limit t → −∞, we will we denote by XW

the vector �eld corresponding to this time direction, for use in later
chapters1. This means XW stands for the vector �eld corresponding to
the right side of (6), multiplied by −1.

When we look at those equations, we observe that if N1 = N2 =
N3 = 0, the vector �eld is zero, as K = 0 and q = 2 in this case.
We denote by K = {N1 = N2 = N3 = 0, Ω = 0} the resulting circle
of equilibria: we obtain a circle because the constraint (7) reduces to
Σ2

+ +Σ2
− = 1. It is called the "Kasner circle", because the points p ∈ K

represent the Kasner solution of the Einstein Equations discussed in
section 4.

In the classi�cation of spatially homogenous models (based on the
classi�cation of 3-dimensional Lie-Algebras by Bianchi [5]), these are
of Bianchi class I. One advantage of the Wainwright-Hsu equations is
that they contain all models of Bianchi class A, with the signs of the
Ni determining the type of Bianchi model, see the table above.

If we allow one of the Ni to be non-zero, the resulting half ellipsoids
are called "Kasner caps": Ck = {Nk > 0, Nl = Nm = 0, Ω = 0} with
{k, l,m} = {1, 2, 3}. They consist of heteroclinic orbits to equilibria
on the Kasner circle and are of Bianchi class II. The projections of
the trajectories of Bianchi class-II vacuum solutions onto the Σ±-plane
yield straight lines connecting two points of the Kasner circle.

1in the paper by Béguin [2], the equations are presented directly with time
direction chosen towards the big bang, but we stick to the form of the equations
used in the classic reference [59], and also in [42, 27].
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These can be constructed geometrically in the following way: for
a point p ∈ K of the Kasner circle, identify the nearest corner of the
circumscribed triangle, and draw the resulting line as illustrated in the
picture below:

Σ+

Σ−

T1

T2

T3

Observe that this works for any p ∈ K except for the three points
where the Kasner circle touches the circumscribed triangle, which we
denote by T1, T2, T3 and refer to them as Taub points.

1.2. The Kasner Map. This leads to the de�nition of the so-
called Kasner map f : K → K. For each point p+ ∈ (K \ {T1, T2, T3})
there exists a Bianchi class-II vacuum heteroclinic orbit H(t) converg-
ing to p+ as t→∞. This orbit is unique up to re�ection (N1, N2, N3) 7→
(−N1,−N2,−N3). Its unique α-limit p− de�nes the image of p+ under
the Kasner map

(9) f(p+) := p−

Including the three �xed points, f(Tk) := Tk, this construction yields
a continuous map, f : K → K. In fact f is a non-uniformly expanding
map and its image f(K) is a double cover of K, which can be seen
directly from the geometric description given above.

For use in later chapters, let us denote by Hp,f(q) the heteroclinic
Bianchi-II-orbit from p to its image point under the Kasner map f(q)
and by HB =

⋃
p∈BHp,f(q) the set of all heterclinic Bianchi-II-orbits

connecting two basepoints in the set B ⊂ K.

7



We will now introduce the so-called Kasner-parameter u, as it is
a convenient way to parametrize the Kasner circle. Let us divide the
Kasner circle into six sectors and label them as follows:

Σ+

Σ−

T1

T2

T3

Q1

Q2

Q3

2

5

13

4 6

The Kasner parameter ranges in [1,∞], where it holds that u =
∞ at the Taub point Ti and u = 1 at the points Qi shown in the
picture. So for each value of u, we get an equivalence class of six points
cooresponding to the p ∈ K in each sector of the Kasner circle (except
for the values u = ∞ and u = 1, where the equivalence class consists
only of three points). Expressed in u, the Kasner map has a very simple
form:

f(u) =

{
u− 1 u ∈ [2,∞]

1
u−1

u ∈ [1, 2]

In the picture below, the dynamics of the Kasner-map is shown: If
you start close to a Taub point (meaning that u is large compared to
1), there are �rst "bounces" around this Taub point as the value of u
is decreased by 1 in each step. Then, after the value of u has fallen
below 2, there is a "excursion" to a di�erent part of the Kasner circle:

8



Σ+

Σ−

T1

T2

T3

There is also an interesting connection to the Kasner solution de-
scribed in section 4. Each sector of the Kasner circle corresponds to
a permutation of the Kasner expontents pi, which can be expressed in
the Kasner parameter u:

Σ+

Σ−

T1

T2

T3

Q1

Q2

Q3

(213)

(312)

(123)(231)

(321) (132)

9



where sector (321) means e.g. that p3 < p2 < p1 which �xes the
formula for each of them. As an example, consider the sector 5 or (312)
(for details see [17], p.8):

p3 =
−u

1 + u+ u2

p1 =
(u+ 1)

1 + u+ u2

p2 =
u(u+ 1)

1 + u+ u2

We will need the formulas above, as they will allow us to express
the eigenvalues of the linearized vector �eld at points of the Kasner
circle in u, a key step for obtaining our results in the later chapters.

1.3. Eigenvalues in Terms of the Kasner Parameter u. When
we linearize the vector �eld corresponding to equations (6) at points of
the Kasner circle, we arrive at the following Matrix:


2− 4Σ+ 0 0 0 0

0 2 + 2Σ+ + 2
√

3Σ− 0 0 0

0 0 2 + 2Σ+ − 2
√

3Σ− 0 0
0 0 0 3(2− γ)Σ2

+ 3(2− γ)Σ+Σ−
0 0 0 3(2− γ)Σ+Σ− 3(2− γ)Σ2

−

 .

and we can compute the following eigenvalues to eigenvectors ∂N1 ,
∂N2 , ∂N3 tangential to the Bianchi class-II vacuum heteroclinics:

µ1 = 2− 4Σ+,

µ2 = 2 + 2Σ+ + 2
√

3Σ−,

µ3 = 2 + 2Σ+ − 2
√

3Σ−

In addition we have the trivial eigenvalue zero to the eigenvector
−Σ−∂Σ+ + Σ+∂Σ− tangential to the Kasner circle K. The �fth eigen-
value µΩ = 3(2−γ) > 0 corresponds to the eigenvector Σ+∂Σ+ +Σ−∂Σ−

transverse to the vacuum boundary {Ω = 0}.
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Now we use that it is possible to express the Σ+/−-variables in terms
of the Kasner exponents pi (see [17], p.7):

Σ+ = −3

2
p1 +

1

2

Σ− = −
√

3

2
(p1 + 2p2 − 1)

Thus, we arrive at the following formulas for the eigenvalues ex-
pressed in u:

(10) (λ1, λ2, λ3) =

(
−6u

1 + u+ u2
,

6(1 + u)

1 + u+ u2
,

6u(1 + u)

1 + u+ u2

)
As it holds that u ∈ [1,∞], we observe that at each point of the

Kasner circle, there is one negative and two positive eigenvalues. But
recall that we are interested in the time-direction t → −∞. The neg-
ative eigenvalue is unstable towards the past, while the two positive
eigenvalues are stable in backwards-time. This means that for our
vector �eld XW (which has the time-direction already reversed, see
beginning of section 1.1) there is one unstable eigenvalue λu and two
stable eigenvalues λs, λss, at a point of the Kasner circle. Away from
the Taub points it also holds that:

|λu| < |λs| < |λss|

Finally, also note that in Bianchi IX, the situation in di�erent sec-
tors of the Kasner-circle only di�ers by a permutation of those 3 for-
mulas for the eigenvalues. This makes it easy to examine the question
of resonances of the eigenvalues, which we are trying to exclude when
linearizing the vector �eld.

However, we will also deal with Bianchi V I
∗

−1/9 later, and there the
situation is more complicated as the formulas for the eigenvalues at
points on the Kasner circle do depend on the sector, so in order to
check for resonances, a lot of cases have to be considered. This will be
done in chapter 5. In the next section, we will introduce the equations
for Bianchi V I

∗

−1/9, which is of class B and not covered by the equations
of Wainwright and Hsu.

11



2. Bianchi V I
∗

−1/9

We now present the equations for Bianchi V I
∗

−1/9, which is the
most general model in Bianchi class B, and has a crucial importance
for inhomogenous cosmologies (see e.g. [21]):

Σ
′

+ = (q − 2)Σ+ + 3Σ2
2 − 2N2

− − 6A2(11)

Σ
′

− = (q − 2)Σ− −
√

3Σ2
2 + 2

√
3Σ2
× − 2

√
3N2
− + 2

√
3A2(12)

Σ
′

× = (q − 2− 2
√

3Σ−)Σ× − 8N−A(13)

Σ
′

2 = (q − 2− 3Σ+ +
√

3Σ−)Σ2(14)

N
′

− = (q + 2Σ+ + 2
√

3Σ−)N− + 6Σ×A(15)

A
′
= (q + 2Σ+)A(16)

Abbreviations:

(17) q = 2Σ2 +
1

2
(3γ − 2)Ω

(18) Σ2 = Σ2
+ + Σ2

− + Σ2
2 + Σ2

×

Constraints:

(19) Ω = 1− Σ2 −N2
− − 4A2

(20) g = (Σ+ +
√

3Σ−)A− Σ×N− = 0

Auxilliary Equations:

(21) Ω
′
= [2q − (3γ − 2)]Ω

(22) g
′
= 2(q + Σ+ − 1)g

12



Note that the auxilliary equations (21) and (22) follow from (11)−(16)
and show the invariance of Ω = 0 and g = 0, where Ω = 0 results in
the vacuum equations.

We de�ne the phase space for vacuum Bianchi V I
∗

−1/9 again by

requiring that the constraints (19) and (20) are satis�ed. This time, we
have six variables and two constraints, yielding again a 4-dimensional
state space for the Vacuum models, as in Bianchi IX before.

Definition 2.2. (Phase Space for Vacuum Bianchi V I
∗

−1/9)

B = {Σ+,Σ−,Σ×,Σ2, N−, A) | 0 = 1− Σ2 −N2
− − 4A2 and g = 0}

The equations have been analysed in [21], we give here only a very
brief overview about the similarities and di�erences of Bianchi V I∗− 1

9

compared to Bianchi IX that are relevant for our own research (see
chapter 5).

When we look at the equations, we observe there is also a Kasner
circle of �xed points: K = {Σ× = Σ2 = N− = A = 0}, leading again to
Σ2

+ + Σ2
− = 1. Similar to Bianchi IX, we can de�ne caps of heteroclinic

orbits connecting points of K, but Bianchi V I∗− 1
9

is less symmetric than

Bianchi IX. The transitions can be illustrated as follows:

N− Σ× Σ2

We have the following caps of heteroclinic orbits:

• CN− = {Σ× = Σ2 = A = 0} , which represent transitions in
the variable N−, i.e. curvature transitions. This means the
Kasner parameter u changes according to the Kasner map as
explained in section 1.2 for Bianchi IX.
• CΣ× = {Σ2 = N− = A = 0}, which represent transitions
in the variable Σx, i.e. a frame transition. This means the
Kasner parameter u is not changed by the transition, it rather
connects two points of K that are in the same equivalence class
with the same u in di�erent sectors

13



• CΣ2 = {Σ× = N− = A = 0} which represent transitions in the
variable in the variable Σ2, also a frame transition.

In addition to the traditional curvature transition in the variable
N− similar to those that also appear in Bianchi class A, we also observe
frame transitions of two types, for the variables Σ× and Σ2. The fact
that the frame transition do not change u can be seen from the fact
that the projections of the heteroclinic orbits on the (Σ+,Σ−)-plane
are parallel lines, and the (inverse) distance to the Taub points (which
is one way to interpret u) stays the same after the transition.

Σ+

Σ−

T1

T2

T3

Similar to what we did in Bianchi IX, we will also �nd expressions
for the eigenvalues of the transition-variables in terms of the Kasner
parameter u. This will be done in chapter 5.
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3. Existing Results in Bianchi IX and Di�culties in Bianchi
B

Historically, the chaotic oscillations in Bianchi models have �rst
been observed in the Bianchi IX model, see [29, 3, 4]. It is also known
under the name "Mixmaster", a term coined by Misner [34]. The �rst
rigorous theorem on the ancient dynamics in Bianchi IX was proved by
Ringström [42], based on earlier results by Rendall [39]. For a recent
survey on the "Facts and Beliefs" concerning the Mixmaster model, see
[17].

One important research question is relating properties of the Kasner
map (which is known to be chaotic, see e.g. the chapter 11 in the book
[58]) to the real dynamics in Bianchi models. This can be seen as mak-
ing the BKL-conjecture rigorous for spatially homogenous spacetimes,
i.e. by proving the "oscillatory" (and possibly also the "vacuum") part
in a case where the model is already "local".

In Bianchi IX, there exist such rigorous convergence results by Lieb-
scher et al [27], Béguin [2], and Reiterer/Trubowitz [38]. For Bianchi
V I0 with a magnetic �eld as matter, there have been recent results by
Liebscher, Rendall and Tschapa [28].

Until today, there exist no rigorous convergence results for Bianchi
V I

∗

−1/9, which is of class B (see chapter 1, section 5). The reason for

this is that Bianchi V I
∗

−1/9 is more di�cult than Bianchi class A. One
example is that in Bianchi IX, the normal hyperbolicity of the Kasner
circle fails only at the three Taub points, while in Bianchi V I

∗

−1/9 this
is true for all of the six points that mark the borders of the sectors
of the Kasner circle de�ned in section 2. Also there are non-unique
heteroclinic chains because of multiple unstable eigenvalues for some
sectors of the Kasner circle, marked in red in the picture below. We
will discuss this matter further in chapter 5.

Σ+

Σ−

T1

T2

T3

15



4. Dynamical Systems Techniques

As we have seen in section 2, the Kasner circle plays an important
role in the Bianchi IX cosmological model. It is a normally hyperbolic
manifold of equilibria, except at three special points, where normal
hyperbolicity fails (this situation can be understood in the framework
of "bifurcation without parameters" and has been studied intensively
by Liebscher [26]). As the �xed points of the Kasner circle are not
hyperbolic due to the trivial eigenvalue zero, many standard tools are
not available.

4.1. Topological Equivalence. In general, linearizing near a �xed
point is a di�cult endavour. If the co-ordinate change is only required
to be C0, then the theorems of Grobman-Hartman (in the hyperbolic
case) and Shoshitahvilii (also in the non-hyperbolic case) provide pow-
erful tools. The theorem of Grobman-Hartman ([13, 14, 16, 15]) is
well-known and can be found in many textbooks on dynamical systems
(e.g. in [1]), but the theorem of Shoshitaishvili is less known, that's
why we include it here:

Theorem. (Shoshitaishvili 1972, 1975 [47, 48]) Let f : Rn →
Rn be a vector-�eld with f(0) = 0. Then it exists a vector �eld g =
g(xc) and a homeomorphism h : Rn → Rn that yields a C0-conjugation
between ẋ = f(x) and

ẋ− = −x−
ẋc = g(xc)

ẋ+ = x+

This means that the dynamics near an equilibrium is topologically
equivalent to the direct product of a standard saddle and the dynamics
in the centre direction.

4.2. Linearization. For a C1-linearization, already in the hyper-
bolic case it is necessary to require certain non-resonance-conditions, as
Sternberg ([51, 52]) has shown: Linearization can fail if the eigenval-
ues are in resonance. As we will later consider the more general case of
non-hyperbolic �xed points (relevant for Bianchi cosmologies) where a
similar but more complicated non-resonance condition will appear (see
section 7.2), we label the condition below as "Hyperbolic Sternberg
Condition", although this is not standard terminology:

16



Definition. (Hyperbolic Sternberg Condition) Consider a hyper-
bolic �xed point p of a vector �eld X in Rn and de�ne that the eigen-
values of the linearization of X at p are in resonance of order m =∑n

i=1mi i� ∃(m1, ...,mn) s.t. mi ∈ N+
0 and 1 ≤ j ≤ n:

h∑
i=1

λimi − λj

{
= 0

∈ ıR

A consequence of such a resonance is that the non-linear term xm

has the same order of magnitude as the linear term xj, opposed to the
usual local dominace of the linear terms. The non-resonance condition
in the non-hyperbollic case will be presented in section 3 that deals
with Takens Linearization Theorem.

4.3. Counter-Examples. An example where linearization fails
has been constructed by Sell [45]:

Theorem. (Sell 1985) Consider the following vector-�eld on R3:

ẋ = 2κ2x

ẏ = −κy + xκzκ(23)

ż = −(2κ2 + 1)z

with a parameter κ ≥ 2. Then it holds that

• the system (23) has a Cκ−1-linearization
• the system (23) does not have a Cκ-linearization.
• the associated linearized system of (23) satis�es a non-resonance-
condition of order (2κ− 1)

This means that the non-resonance conditions are "sharp". For the
case κ = 1, a similar example already appears in [16].

4.3.1. Invariant Manifold Theorems. An alternative to lineariza-
tion is using the invariant manifold theorems, which do not give full
equivalence to the linearized system, but instead look for non-linear ob-
jects analogue to the linear eigenspaces. For example, using the theory
of center-manifolds can provide a considerable reduction of dimension
in the non-hyperbolic case.

In order to prove invariant manifold theorems, there are at least
two options available: Either the approach based on the "Variations-
of-Constants"-formula (see e.g. [57]), or the so-called graph-transform
method. We use the the second option in order to prove our result on
stable manifolds in Bianchi IX in chapter 4. We also comment on how
to prove the di�erentiability of the invariant manifolds in section 4.7.
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CHAPTER 3

Takens Linearization Theorem for Partially

Hyperbolic Fixed Points

This chapter reviews and explains the results of Floris Takens from
his paper [53]. They will be essential tools to prove our main theorems
in the later chapters of this dissertation. At �rst, we deal with Takens
Linearization Theorem for di�eomorphisms, while the analogous the-
orem for vector �elds is the subject of the later part of this chapter.
We will explain key parts of the proof, especially to understand the
the so-called �Sternberg-Non-Resonance-Conditions� and the the form
of α(k) and β(k) (see below) that are the basis of our own results in
the later chapters. The notation stays also close to the one of Takens,
although we slightly change it at some points if necessary for our needs.

A C∞-di�eomorphism ϕ : Rn → Rn with a �xed point ϕ(0) = 0
induces a splitting of the tangent space at the origin T0Rn = Ec ⊕
Es ⊕ Eu with respect to the di�erential dϕ � T0Rn, where the three
eigenspaces stand for the eigenvalues with absolute value equal to one
(center), <1 (stable), and >1 (unstable). We label the dimensions of
these eigenspaces as follows:

c = dim(Ec)

s = dim(Es)

u = dim(Eu)

By a slight abuse of notation, let us label the coordinates of Rn as
(xc, ys, zu), where xc = xc1...x

c
c, y

s = ys1...y
s
s and z

u = zu1 ...z
u
u , where the

upper index is just to remind us for which eigenspace the respective
coordinate stands for.

Definition. (Standard Form of a Di�eomorphism) Let ϕ : Rn →
Rn be a C∞-di�eomorphism with ϕ(0) = 0. We say ϕ is locally in
standard form w.r.t. coordinates (xc, ys, zu) if, for some neighbourhood
of the origin,
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ϕ(xc, ys, zu) = [φ1(xc), ..., φc(x
c),

s∑
i=1

a1i(x
c) · ysi , ...,

s∑
i=1

asi(x
c) · ysi ,

u∑
j=1

b1j(x
c) · zuj , ...,

u∑
j=1

buj(x
c) · zuj ]

where:
(1) all eigenvalues of (∂φi/∂x

c
i) in (xc = 0) have absolute value one

(2) all eigenvalues of the matrix Aij(0) have absolute value < 1
(3) all eigenvalues of the matrix Bij(0) have absolute value > 1

1. Sternberg Non-Resonance Conditions

Takens considers a di�eomorphism ϕ as above, and its linearization
at 0, dϕ(0). He labels the �center-eigenvalues� of dϕ(0) (corresponding
to point (1) above) as {µ1, ..., µc}, and the �hyperbolic eigenvalues� of
dϕ(0) (corresponding to (2) above) as {λ1, ..., λh}, where h := u+ s.

Definition. (Sternberg-l-Conditions)

ϕ satis�es the Sternberg-Conditions of order l (in short the �Sterberg-
l-conditions�) ⇐⇒ the following 2 conditions hold:

(24) |
h∏
i=1

λvii | 6= 1

(25) |λ−1
j ·

h∏
i=1

λvii | 6= 1

∀(v1, ..., vh) s.t. vi ∈ N+
0 with 2 ≤

∑h
i=0 vi ≤ l and 1 ≤ j ≤ h

Theorem. (Takens Linearization Theorem for Partially Hyper-
polic Fixed Points)

Let ϕ : Rn → Rn be a C∞-di�eomorphism with ϕ(0) = 0, and
k ∈ N. If ϕ satis�es the Sternberg-α(k)-Condition, then there exist
Ck coordinates (xc, ys, zu) such that ϕ is locally in standard form with
respect to the coordinates(xc, ys, zu)
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2. The Formula for α(k) and β(k)

Takens uses the following notation for the hyperbolic part {λ1, ..., λh}
of the spectrum of dϕ(0): Sort those numbers λi s.t. it holds |λ1| ≤
|λ2| ≤ ... ≤ |λs| ≤ 1 ≤ |λs+1| ≤ ... ≤ |λh| and label:

• M := |λh|, m := |λs+1|
• N := |λ1|−1, n := |λs|−1

Note that all numbers de�ned above are ≥ 1. Now the number β(k) is
de�ned as the smallest integer s.t. it holds ∀r ≤ k:

N ·M r · n(r−β) < 1

After that, α(k) is de�ned to be the smallest integer s.t. it holds
∀r ≤ β :

M ·N r ·m(r−α) < 1

Note that in fact α = α(k, dϕ(0)) and β = β(k, dϕ(0)), i.e. the numbers
α, β depend on the linearization of the vector �eld at the point where
you want to employ the Takens Theorem.

3. The Overall Structure of the Proof

The proof is split into 3 Propositions:

Proposition 3.1. Let ϕ : Rn → Rn be a C∞-di�eomorphism with
ϕ(0) = 0 satisfying the Sterberg-l-condition. Then, for any integer N,
there is a neighbourhood U of 0 in Rn and CN -coordinates (xc, ys, zu)
such that ϕ � U = Sϕ � U +Rϕ � U and the following holds:

(1) Sϕ � U is in standard form w.r.t. coordinates (xc, ys, zu)
(2) Rϕ � U is zero up to order l along W c = Ec = {ys = zu = 0}
(3) W cu = Ecu = {ys = 0} is invariant under Rϕ � U

Proposition 3.2. Let ϕ : Rn → Rn be a CN -di�eomorphism with
ϕ(0) = 0, and N ≥ α(k). Suppose that ϕ � U = Sϕ � U +Rϕ � U as in
the conclusion of Proposition 1, with respect to coordinates (xc, ys, zu)
and l = α(k). Then there are a Cβ(k)-coordinates (x̃c, ỹs, z̃u) s.t., in a
neighbourhood of 0, we have ϕ � U = S̃ϕ � U + R̃ϕ � U where

(1) S̃ϕ � U is in standard form with respect to coordinates (x̃c, ỹs, z̃u)

(2) R̃ϕ � U is zero up to order β(k) along W cu = Ecu = {ys = 0}

Proposition 3.3. Let ϕ : Rn → Rn be a Cβ(k)-di�eomorphism
with ϕ(0) = 0. Suppose that ϕ � U = S̃ϕ � U + R̃ϕ � U as in the con-
clusion of Proposition 2 with respect to coordinates (xc, ys, zu). Then
there are a Ck-coordinates (x̃c, ỹs, z̃u) such that, in a neighbourhood of
0, such that ϕ is locally in standard form w.r.t (x̃c, ỹs, z̃u).
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The content of Propositions 1-3, can be illustrated by the following
table:

Smoothness afterwards good jet on NRCs ->
good jet to order

Prop1 ∞→ N W c l→ l (�constant�)
Prop2 α→ β W cu α→ β
Prop3 β → k Rn β → k

In the �rst column of the table above, the smoothness of the co-
ordinates before and after the respective proposition is shown, e.g. in
the second row we start with a Cα-Di�eomorphism in the requirements
of Proposition 2, and we will get Cβ-coordinates for the �good jet� on
W cu, which means that Rϕ vanishes up to order β along W cu and we
have to require Non-Resonance-Conditions of order α for this to work
out.

4. Proof of Proposition 1

4.1. General Idea of the Proof. The aim of Proposition 1 is to
�nd a map α conjugating our initial di�eomorphism ϕ and the �stan-
dard form� Sϕ (here on W c, later on the whole Rn), up to order l:

α−1 ◦ ϕ ◦ α = Sϕ

Takens uses (manifolds of) jets as the appropiate setting for theses
�coordinate changes up to order l� are , and we will introduce them
below. He then �lifts� ϕ to the space of jets, at �rst only for the
hyperbolic directions, and observe that a �xed point of the �lifted�
map ϕl means that

[α]l = ϕl([α]l)

The key idea of the proof of Proposition 1 is to consider a center-
manifold W ∗c for an extended ϕ∗l in the space of jets as well as the
projection of W ∗c �down� to the center-manifold of our inital di�eo-
morphism ϕ.

pc : W ∗c → W c

The invariance of W ∗c allows the choice of the desired coordinates,
which will prove Proposition 1.
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4.2. Usage of Sternberg Non-Resonance Conditions. In the
proof of Proposition 1, the Sternberg conditions are used in the follow-
ing form: In the proof, it is necessary to show that a certain map is
hyperbolic, and the relevant eigenvalues are:

• µp ·
∏h

i=1 λ
−vi
i

• λq ·
∏h

i=1 λ
−vi
i

None of these eigenvalues has absolute value one because of the Stern-
berg condition, hence the map under consideration is hyperbolic, which
is an essential step in the proof of Proposition 1.

4.3. Choices and De�nitions. At �rst, Takens chooses coordi-
nates such that the following submanifolds of Rn are invariant for ϕ
(i.e. he �straightens out� the non-linear invariant manifolds locally such
that they coincide with the linear eigenspaces de�ned below, see e.g.
[46]):

W u = Eu = {xc = ys = 0}
W s = Es = {xc = zu = 0}
W c = Ec = {ys = zu = 0}
W cu = Ecu = {ys = 0}
W cs = Ecs = {zu = 0}

Definition. (the spaces Vr and the map ϕr) Let Ṽr be the manifold
of r-jets of embeddings (Rh, 0) → (Rh, 0), where this notation means
that α(0) = 0 for α ∈ Ṽr. Vr is obtained from Ṽr by the following
identi�cations: α1 and α2 ∈ Ṽr are identi�ed in Ṽr if there is a linear
map α : (Rh, 0) → (Rh, 0) such that α1 ◦ α = α2. This induces a
transformation ϕr : Vr → Vr on the jets:

ϕr : Vr → Vr

[α]r → [ϕ ◦ α]r

There is also a natural projection πr : Vr → Vr−1 such that the
following diagram commutes:

Vr
ϕr−−−→ Vryπr yπr

Vr−1
ϕr−1−−−→ Vr−1
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4.4. Lemma 2.2.

Lemma. Under the assumption (as in Proposition 1) that ϕ satis�es
the Sternberg l-condition, there is for each 1 ≤ r ≤ l a unique element
[α]r ∈ Vr such that:

(1) [α]r can be represented by an embedding (Rh, 0) → (Rh, 0)
with image tangent to T s ⊕ T u

(2) [α]r is a hyperbolic �xed point of ϕr

Proof. The proof is done by induction on r. In the induction
step, the eigenvalues mentioned above are calculated, of a modi�ed
map ϕ̄r : π−1([α]r−1)→ π−1([α]r−1), by considering the following basis
of eigenvectors for ϕ̄r (as before, the numbers c, h ∈ N stand for the
dimensions of the center/hyperbolic eigenspaces of ϕ):

B = {vi1,...,ihi , wi1,...,ihj |i = 1...c ; j = 1...h ; , i1, ...iν ≥ 0 ;
h∑
ν=1

iν = r}

where �

• vi1,...,ihi is represented by (w1, ..., wh) 7→ (p1, ..., pc, w1, ..., wh)
with pi = wi11 · ... · w

ih
h and pk = 0 for k 6= i

• ṽi1,...,ihj is represented by (w1, ..., wh) 7→ (0, ..., 0, w1+q1, ..., wh+

qh) with qj = wi11 · ... · w
ih
h and qk = 0 for k 6= j

The formulas above result in the following eigenvalues:

• vi1,...,ihi yields an eigenvalue µi · λ−i11 · ... · λ−ihh

• ṽi1,...,ihj yields an eigenvalue λj · λ−i11 · ... · λ−ihh

, which can be checked directly using the following formula for ϕ̄r([β]) =
ϕ◦β ◦A−ϕ◦ϑ◦A+ϑ for [β] ∈ π−1([α]r−1) and the follwing additional
de�nitions/assumptions:

• (dϕ)0 is �rst assumed to be in diagonal form, meaning that ϕ
can be written as ϕ(xc, ys, zu) = ϕ(x1, ..., xc, y1, ..., ys, z1, ..., zu) =
(µ1x1, ..., µcxc, λ1y1, ..., λhzu)

1

• A : (Rh, 0)→ (Rh, 0) de�ned byA(w1, ..., wh) := (λ−1
1 w1, ..., λ

−1
h wh)

• ϑ : (Rh, 0)→ (Rn, 0) de�ned by ϑ(w1, ..., wh) := (0, ..., 0, w1, ..., wh)

Now the Sternberg Non-Resonance Conditions show that none of the
eigenvalues of ϕ̄r has absolute value one, which yields the hyperbolicity
of ϕ̄r and is the essential step in the proof of the Lemma.

1Later the general case is reduced to the diagonal case by complexifying and
using the Jordan Normal Form Theorem
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4.5. Construction of the Required Coordinate System.

Definition. (the space V ∗r and the map ϕ∗r) Let Ṽ
∗
r be the manifold

of r-jets of embeddings (Rh, 0)→ (Rn,W c), where this notation means
that α(0) ∈ W c for α ∈ Ṽ ∗r . V ∗r is obtained from Ṽ ∗r by the analogous
identi�cation as above. We can extend the map ϕr : Vr → Vr to a map
ϕ∗r de�ned on a neighbourhood of Vr in V ∗r , using the local invariance
of W c under ϕ.

In order to make this precise, Takens considers the following pro-
jections.

Definition. (the projections p and pc) Observe that Vr ⊂ V ∗r and
de�ne p : V ∗r → W c by p(α) := α(0) ∈ W c for α ∈ V ∗r . Note that
p−1(0) = Vr.We de�ne pc as the resctriction of p to W ∗c ⊂ V ∗r de�ned
below: pc := p � W ∗c.

By the Lemma above, there is a hyperbolic �xed point [α]l of ϕl
in Vl. Takens notes that [α]l is also a �xed point for ϕ∗l , but it is not
hyperbolic: the set of eigenvalues for (dϕ∗l )[α]l is the union of the set of
eigenvalues of (dϕl)[α]land the set of eigenvalues of d(ϕ � W c)0. He then
constructs a center-manifold W ∗c for [α]l in V ∗l , and claims that the
projection pc : W ∗c → W c de�ned above is a di�eomorphism restricted
to a small neighbourhood of [α]l, using that [α]l is a hyperbolic �xed
point for the non-center directions. This means that we can de�ne
p−1
c (P ) for P su�ciently close to the origin, obtaining a class of l-jets
of embeddings (Rh, 0) → (Rn, P ), and choose the coordinate system
(xc, ys, zu) such that, for each P ∈ W c, close enough to the origin,
p−1
c (P ) is represented by the a�ne embedding:

(ys, zu) 7→ (xc, ys, zu)

where

P = (xc, 0)

By the local invariance ofW ∗c it follows that also the image ϕ∗l ([α]l)
can be represented as described above. Takens concludes the proof
by noting that this means, for some neighborhood U1 of the origin,
Φ � U1 = SΦ � U1 + R � U1 where SΦ � U1 is in standard form with
respect to coordinates (xc, ys, zu) and R � U1 is zero up to order l along
W c = Ec = {ys = zu = 0}, which proves Proposition 1 (compare [53],
p. 138).
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5. Proof of Proposition 2

Assume that the map ϕ, the coordinates (xc, ys, zu) and the �split-
ting ϕ = Sϕ+Rϕ� are as in the assumptions of Proposition 2.

5.1. General Idea of the Proof. We would like to �nd a map σ
conjugating our initial di�eomorphism ϕ and the �standard form� Sϕ
(here on W cu, later on the whole Rn), i.e. σ−1 ◦ ϕ ◦ σ = Sϕ. The idea
is now to write this in a slightly di�erent way:

σ = ϕ ◦ σ ◦ (Sϕ)−1 := Φ(σ)

and to �nd a suitable setting where Φ is a contraction, yielding
a �xed point which will be our desired change of coordinates. An
appropiate setting for this to work out are Jet bundles, and they are
introduced in the next section.

5.2. Jet bundles.

Definition. (Jet-bundles and Φr) The elements of the Jet-bundle
are equivalence classes, which can be represented by pairs [p, σ]r, where
p ∈ Rn and σ is a Cr-map from a neighbourhood of p to Rn. Then
Takens de�nes the map Φr as follows, inspired by the idea described
above:

Φr : Jr(Rn,Rn) → Jr(Rn,Rn)

[p, σ]r → [Sϕ(p), ϕ ◦ σ ◦ (Sϕ)−1]r

Jr(Rn,Rn) is �bred over Jr−1(Rn,Rn), and πr : Jr(Rn,Rn) →
Jr−1(Rn,Rn) is the projection. The following diagramm commutes:

Jr(Rn,Rn)
Φr−−−→ Jr(Rn,Rn)yπr yπr

Jr−1(Rn,Rn)
Φr−1−−−→ Jr−1(Rn,Rn)

5.3. Metric on the Fibre Bundle. At �rst, Takens de�nes ap-
propriate �ber metrics of πr, in order to be able to talk about con-
vergence in the space of jets. He de�nes a metric ρr([p, σ1]r, [p, σ2])
between two jets [p, σ1] and [p, σ2] in the same �ber of πr, where he
labels the common base point σ(p) := σ1(p) = σ2(p):

ρr([p, σ1]r, [p, σ2]) := lim
a→0

( sup
‖X|=a

(
|σ̂1,2(X)|
|X|r

))
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where

σ̂1,2 : Tp(Rn) → Tσ(p)(Rn)

X → σ̂1,2(X) = exp−1
σ(p) ◦ σ1 ◦ expp(X)− exp−1

σ(p) ◦ σ2 ◦ expp(X)

and expq : Tq(Rn) → Rn stands for the exponential map on mani-
folds.

The norm | · | that appears in the de�nition of ρr([p, σ1]r, [p, σ2]) is
with respect to a speci�c metric on Rn which will be explained in the
next section.

5.4. Metric on Rn. De�ne for p ∈ W cu the following numbers:

M̃p = ||(dϕ)p||
Ñp = ||(d(Sϕ)−1)p||

and

m̃p =

{
for p /∈ W c = ρ(Sϕ(p),W c) · (ρ(p,W c))−1

for p ∈ W c = lim infq∈W cu,q /∈W c,q→p(m̃p)

}
Now recall that it holds ∀r ≤ β:

M ·N r ·m(r−α) < 1

It follows that we can chose a metric on Rn such that (for p = 0 ,
i.e. the origin)

M̃0 · Ñ0
r ·m(r−α)

0 < µ

for some �xed µ and ∀r ≤ β.

5.5. Lemma 3.5. Let Kδ be the closed δ neighbourhood of W c in
W cu, and chose δ so small that ∀p, q, v ∈ Kδ it holds that

M̃p · Ñq
r ·m(r−α)

v < µ

, where µ < 1 stands for the constant that appeard in the previous
section when de�ning our metric on Rn. Let us label ρkp := ρ(p,W c)k

in order to formulate the next Lemma:

Lemma. (3.5 in Takens Paper)
Let [p, σ1] and [p, σ2] be two jets in the same �ber of πr with

p, Sϕ(p), σ1(p), σ2(p) ∈ Kδ but p /∈ W c, and r ≤ β. Then it holds:

ρr(Φr[p, σ1],Φr[p, σ1])·(ρ(Sϕ(p),W c)r−α < µ·ρr([p, σ1]r, [p, σ2])·(ρ(p,W c))r−α
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or

ρr(Φr[p, σ1],Φr[p, σ1]) < µ · ρr([p, σ1]r, [p, σ2]) ·
ρr−αp

ρr−αSϕ(p)

In order to get the desired contraction, we have to get rid of the

factor
ρr−αp

ρr−α
Sϕ(p)

. This will be done in the last section of this chapter, by

de�ning appropriate spaces Fi s.t. Φi : Fi → Fi is a contraction with
respect to an adapted metric ρ̃i on Fi (see Proposition 2'). But �rst
we would like to show how the proof of Proposition 2 is �nished once
this has been done.

5.6. End of the Proof of Proposition 2. Takens �nally proves
Proposition 2 by giving a convergent sequence of �jets of coordinates
alon W cu� the limit of which is invariant under Φ. In order to do
this, he de�nes a sequence {Fi}∞i of Cβ-maps (Rn,W cu) → (Rn,W cu)
inductively as follows: Fo = id, and for a given Fi, the Fi+1 is obtained
from φ ◦ Fi ◦ (Sφ)−1 by omitting the terms of order > β in y1, ..., ys.
Then it holds that:

(1) Fi(x
c, zu) =

∑
f ij1,...,js(x

c, zu) · yj11 · ... · yjss , where the sum is
taken over all (j1, ..., js) with jν ≥ 0 and

∑
jν ≤ β. Note that

f ij1,...,js takes values in Rn, where f i0,0,...,0 takes values in W cu;

(2) the jet of (Φβ)iϑβ in p ∈ W cu can be represented by [p, Fi]β.

By Proposition 2' (see below), {Fi}∞i has a limit which is of the form

F (xc, zu) =
∑

fj1,...,js(x
c, zu) · yj11 · ... · yjss

where the summation is taken over the same (j1, ..., js) as above, but
now each fj1,...,js is only a Cβ−

∑
jν -function. According to Whitney's

extension theorem, there is a Cβ-function F̃ : (Rn,W cu) → (Rn,W cu)
such that, for each p ∈ W cu, [p, F̃ ]β represents the jet of (limi→∞Φi

βϑ
i)

in p. Takens notes that F̃ induces a di�eomorphism from W cu to itself
that can be extended to a di�eomorphism from the whole Rn to itself.
By de�nition, Sϕ and ˜F−1 ◦ ϕ ◦ F̃ have the same β-jet along W cu, so
F̃ de�nes the desired coordinate system, as indicated the beginning of
this chapter, which proves Proposition 2 (compare [53], p. 144).

5.7. Proposition 2'. The appropriate setting for �good coordi-
nates alongW cu up to order β� is the jet bundle Jβ((Rn,W cu), (Rn,W cu))
→ W cu, but this section is formulated slightly more general for any �-
nite order r, because we will have to do a similar step in the proof of
Proposition 3 (see below). That's why Takens considers the bundle
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Πr = πo ◦ ... ◦ πr−1 ◦ πr : Jr((Rn,W cu), (Rn,W cu))→ W cu

To a section of Πr , it is possible to apply the transformation Φr

as follows: If κ : W cu → Jr((Rn,W cu), (Rn,W cu)) is a section of Πr,
then Φrκ is the section which assigns to p ∈ W cu the jet (Φrκ)p :=
Φr(κ(q)), where q := (Sϕ)−1(p). In addition, de�ne the map ϑr :
Jr((Rn,W cu),(Rn,W cu)) by ϑr(p) = [p, id]r for all p ∈ W cu. ϑr is a
cross-section in the bundle Πr.

Proposition. (2') The sequence of sections of Πr, de�ned by
{(Φr)

iϑr}∞i converges to a continious section of Πr for r ≤ β

In the proof of Proposition 2', Takens also uses that Rϕ is zero up
to order α along W c (which is the result of Proposition 1 and the key
assumption in Proposition 2) and the Fibre Contraction Theorem (see
[24], p. 25) as the main technical tool. He then constructs suitable
spaces Fi s.t. Φi : Fi → Fi is a contraction yielding the claimed
convergence.

6. Proof of Proposition 3

6.1. Sketch of Proof. The proof of Proposition 3 is only sketched
in Takes paper, as it is analogous to the proof of Proposition 2. In the
latter, Takens started with the �good jet� alongW c and ended with the
�good jet� along W cu, making essential use of the fact that, in W cu, Φ
was �expanding away� from W c. In order to apply the same method in
obtaining the �good jet� over all of Rn, it is necessary to replace Φ by
Φ−1, which is expanding away from W cu:

This implies that M,m,n,N are replaced by N,n,m,M, which is re-
�ected in the de�nitions of α(k) and β(k), see above. Because in the
proof of Proposition 2, the fact that dΦ � To(W c) has only eigenvalues
of absolute value one was not used, Takens concludes that the analogy
is complete (see [53], p. 144).

6.2. Understanding the form of α(k) and β(k). At �rst, we
recall that α(k) is de�ned to be the smallest integer s.t. it holds ∀r ≤
β :

M ·N r ·m(r−α) < 1

where N,M, n are the �spectral boundaries� of our di�eomorphism
ϕ (see above). This de�nition was used in the proof of Proposition 2,
where similar numbers are de�ned that are closely related (for p /∈ W c):
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M̃p = ||(dϕ)p||
Ñp = ||(d(Sϕ)−1)p||
m̃p = ρ(Sϕ(p),W c) · (ρ(p,W c))−1

When estimating the distance of two image points
ρr(Φr[p, σ1],Φr[p, σ1]) under the map Φr ([p, σ]r) = [Sϕ(p), ϕ ◦ σ ◦
(Sϕ)−1]r, the chain rule yields (for [p, σ1] and [p, σ2] in the same �-
bre of πr and σ1(p) = σ2(p) = q, compare Lemma 3.4 of the Takens
paper [53]):

ρr(Φr[p, σ1],Φr[p, σ1]) ≤ ||(d(Sϕ)−1)Sϕ(p)||r · ||(dϕ)q|| · ρr([p, σ1]r, [p, σ2])

, where ||(dϕ)q|| = sup|X|=1,X∈Tq(Rn)(|dϕ(X)|). The number m̃p

appears in Lemma 3.5 to deal with σ1(p) 6= σ2(p) (but σ1(p), σ2(p) ∈
Kδ, see above), and the the exponent (r−α) becomes clear only in the
end of the proof of Proposition 2' and is related to the de�nition of the
spaces Fi (see [53], p. 143).

The �symmetry� of the de�nitions of α(k) and β(k) comes from
the fact that in the proof of Proposition 3, the numbers M,m,n,N are
replaced by N,n,m,M and the same argument is carried out for Φ−1

instead of Φ.

7. Takens Linearization Theorem for Vector Fields

7.1. Partially Hyperbolic Fixed Points. In a later part of the
paper [53] (p. 144), Floris Takens proves a Linearization Theorem for
Vector �elds - this will be the version of the Theorem that we will apply
to Bianchi cosmologies.

Definition (Standard Form of a Vector �eld). Let X be a vector-
�eld on Rn which is zero at the origin. We say X is locally in standard
form w.r.t. coordinates (xc, ys, zu) ⇐⇒ for some neighbourhood of
the origin,

X =
c∑
i=1

φ(xci)
∂

∂xci
+

s∑
i,j=1

Aij(x
c)ysj

∂

∂ysi
+

u∑
i,j=1

Bij(x
c)zuj

∂

∂zui

where:
(1) all eigenvalues of (∂φi/∂x

c
i) in (xc = 0) have real part zero

(2) all eigenvalues of the matrix Aij(0) have real part < 0
(3) all eigenvalues of the matrix Bij(0) have real part > 0
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Theorem (Floris Takens, 1971). Let X be a C∞-vector�eld on Rn

which is zero at the origin, and k ∈ N. If X satis�es the Sternberg-
α(k)-Condition, then there exist Ck coordinates (xc, ys, zu) such that
X is locally in standard form w.r.t.(xc, ys, zu)

7.2. Sternberg Non-Resonance Conditions2. Consider a vec-
tor�eld X as above, and its linearization at 0, L := DX(0). Let us
label the �center-eigenvalues� of L (corresponding to point (1) above)
as {µ1, ..., µc}, and the �hyperbolic eigenvalues� of L (corresponding to
(2) and (3) above) as {λ1, ..., λh}, where h := s+ u.

Definition (Sternberg Non-Resonance-Conditions of order l). X
satis�es the Sternberg Non-Resonance-Conditions of order l (in short
�SNC of order l�) i� the following two conditions hold:

(26)
h∑
i=1

λimi 6= 0

(27) −λj +
h∑
i=1

λimi 6= 0

∀(m1, ...,mh) s.t. mi ∈ N+
0 with 2 ≤

∑h
i=1mi ≤ l and 1 ≤ j ≤ h

7.3. The Formula for α(k) and β(k). We use the following no-
tation for the hyperbolic part {λ1, ..., λh} of the spectrum of L: Sort
those numbers λi s.t. it holds λ1 ≤ λ2 ≤ ... ≤ λs < 0 < λs+1 ≤ ... ≤ λh
and label:

• M := λh, m := λs+1

• N := −λ1, n := −λs
Note that all numbers de�ned above are ≥ 0. Now, according to the
Takens-Paper, the number β(k) is de�ned as the smallest integer s.t.
it holds ∀r ≤ k:

N + rM + (r − β)n < 0

After that, α(k) is de�ned to be the smallest integer s.t. it holds
∀r ≤ β :

M + rN + (r − α)m < 0

Clearly, if the conditions above are satis�ed for the maximal r = k
resp. r = β, then they hold for all smaller r, too. This results in the
following formulas for α(k) and β(k):

2only for real eigenvalues here, as this is the case relevant for Bianchi models
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β = Ceiling[
N + k(M + n)

n
]

α = Ceiling[
M + β(N +m)

m
]

where a := Ceiling[b] means that a is the smallest integer for which
ia ≥ b. Note that in fact α = α(k, L), i.e. the number α depends on the
linearization of the vector �eld at the point where you want to employ
the Takens Theorem.

7.4. The Structure of the Proof. The proof is split into 2
Propositions, that are the analogue of the Propositions 1 and 2 for
Di�eomorphisms discussed above:

7.5. Proposition 1. There exist coordinates (xc, ys, zu) and vec-
tor�elds SX and RX and a neighbourhood U of the origin s.t. X =
SX +RX on U and the following holds:
(1) SX is in standart form w.r.t. (xc, ys, zu)
(2) RX is zero up to any �nite order along W c = Ec = {ys = zu = 0}
(3) RX is tangent to W cu = Ecu = {ys = 0}

Proving Proposition 1 requires essentially an application of the cen-
termanifold theorem, as done the proof of Proposition 1 for Di�eomor-
phisms.

7.6. Proposition 2. There exist coordinates (xc, ys, zu) and vec-
tor�elds SX and RX and a neighbourhood U of the origin s.t. X =
SX +RX on U and the following holds:
(1) SX is in standart form w.r.t. (xc, ys, zu)
(2) RX is zero up to any �nite order along W cu = Ecu = {ys = 0}

In the proof of Proposition 2 for Di�eomorphisms, we modi�ed Φ
(outside a neighbourhood of the origin) and chose an Euclidean metric ρ
on Rn such that certain inequalities were satis�ed. In order to prove the
above proposition for vector �elds, modify X (outside a neighbourhood
of the origin) such that the time-t-map for the �ow of X has with
respect to ρ the same properties as the modi�ed Φ. That's why we can
"linearize X along W cu = Ecu = {ys = 0} in the zu directions. Takens
concludes the proof by noting that "linearizing in the ys directions can
be done by a procedure completely analogous to the linearization in
the zu directions in ys = 0" ([53], p.145). This argument is similar to
the proof of Proposition 3 for Di�eomorphisms.
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8. Concluding Remarks

The aim of this chapter was to explain key parts of the proof of
Takens Linearization Theorem, especially to understand the �Sternberg
Non-Resonance Conditions� and the the form of α(k) and β(k) that are
the basis of our own results in the later chapters.

However, we did not intend to �ll all the gaps and present a com-
plete proof in all details. In order to do so, a lot more e�ort and a
deep insight into global analysis on manifolds is necessary. One good
reference is the book [6], which also includes an extensive presentation
of the proof for a linearization theorem in the vicinity of arbitrary com-
pact invariant manifolds that is a generalization of Takens Linearization
Theorem (compare [6],p.342). As it is stated in the introduction to [6],
surprisingly enough, the proofs for a rest point are not much easier as
compared with the general case.
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CHAPTER 4

C1- Stable - Manifolds for Periodic Heteroclinic

Chains in Bianchi IX

In this chapter, we prove the following Theorem, which is new and
can be seen as the main result of this dissertation:

Theorem 4.1. There exist C1 - stable - manifolds of co-dimension
one for admissible periodic heteroclinic chains in vacuum Bianchi IX.

Here co-dimension one means the stable manifolds are of dimension
three, as the phase space for vacuum Bianchi IX is four dimensional,
see chapter 2. We will give a detailed description of admissible periodic
chains in section 3 of this chapter, and are able to prove for example:

Theorem 4.2. Let u = [a, b, a, b, ...] be an (in�nite) periodic con-
tinued fraction development with minimal period two s.t. a, b > 1 and
neither a | b nor b | a.

Then there exists a three dimensional C1- stable - manifold of initial
conditions such that the corresponding vacuum Bianchi IX - solutions
converge to the periodic heteroclinic chain generated by u towards the
big bang.

This means e.g. that the Hausdor� distance between the hetero-
clinic orbits that are part of the chain and the respective piece of the
Bianchi IX - solution tends to zero as t→ −∞.

The main point of the proof of Theorems 4.1 and 4.2 is to check the
applicability of the Takens Linearization Theorem for periodic hetero-
clinic chains in Bianchi IX. This is the aim of sections (1)-(3) of this
chapter.

We will then obtain the desired stable manifold via a graph trans-
form for the global return map, which possesses a hyperbolic structure.
This is done in section 4, very similar to the construction by Francois
Béguin in [2].

When combining our results with those by Béguin ([2]), the limit
of the analysis presented here can be formulated as follows, again for
vaccum Bianchi IX:
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Theorem 4.3. (C1 - Stable - Manifolds for Admissible Chains
Keeping a Distance from Taub Points)

Let BT
ε be the set of base points of the Kasner circle that satisfy the

Non-Resonsonance-Conditions in order to allow for Takens Lineraiza-
tion and keep a minimum distance of ε from the Taub Points. Then
∀ε > 0,∀p s.t. {fn(p)} ⊆ BT

ε , there exist C
1 - stable - manifolds W s(p)

with the following properties:

• W s(p) is of co-dimension one and depends continiously on the
base point p in the C1 - topology
• for any point r ∈ W s(p), there is an increasing sequence of
times (tn)n≥0 such that the Hausdor� distance between the
piece of the Bianchi IX - orbit starting from r for the time-
intervall [tn, tn+1] and the heteroclinic orbit Hfn(p),fn+1(p) tends
to 0 for n→∞ (where f stands for the Kasner map)

Now we will sketch how the proof of Theorem 4.1 will work. That's
why we introduce the following de�nition:

Definition 4.4. (C1-Hyperbolic Structure) Let Φ : M → M be a
C1-map on a smooth manifold M . A hyperbolic structure of Φ on a
compact, Φ-invariant subset C ⊂M is a familiy of subspaces {Xp, Yp}
with p ∈ C and Xp, Yp ⊂ TpM s.t. ∀p ∈ C ∃0 < λ < 1:

(1) Splitting: TpM = Xp⊕ Yp , with continuous dependence of Xp

and Yp on the base point p
(2) Invariance: dpΦ(Xp) ⊂ XΦ(p) and dpΦ(Yp) ⊂ YΦ(p)

(3) Contraction/Expansion:
• |dpΦ(v)| < λ|v| for all v ∈ Xp

• |dpΦ(w)| > 1
λ
|w| for all w ∈ Yp

Note that we use the following notation for di�erentials on mani-
folds: If f : M → N is a map between two manifolds, then we denote by
dpf : TpM → Tf(p)N the di�erential at point p between the respective
tangent spaces.

Proof. (Sketch of Proof for Theorem 4.1)
The idea of the proof is to use Takens Linearization Theorem to lin-
earize the vector�eld near the base-points of an admissible periodic
heteroclinic chain. For this it is necessary to check in detail which
resonances must be excluded in order to be able to apply the Takens
Theorem.

In order to prove Theorem 4.1, it is strictly speaking su�cient to
�nd one example of an admissible in�nite periodic heteroclinic chain
that satis�es the necessary conditions to apply the Takens-Linearization
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Theorem at each of its base points. Such examples are u=[7,5,7,5,...]
or u=[3,3,2,3,3,2,...], as can be checked directly (see Appendix 1) , but
we also give a detailed combinatorial description of admissible periodic
chains in section 3.

After this linearization is done, the result follows from combin-
ing the linzearized local passage with the global passage. Applying a
graph-transform (see e.g. [36]), we then obtain the stable manifold.
Our approach can be seen as a combination of the techniques used by
Liebscher et al and Béguin [27, 2]. Before we come to the detailed
proof, let us sketch the main idea here.

We have a choice of sections when we decompose the global return
map into smaller pieces. We use the following decomposition:

• Local Passage (near the Kasner circle): Φloc : Σin → Σout

• Global Passsage (near the heteroclinic orbit): Φglob : Σout →
Σin

We then consider the following global return map:

Φreturn = Φglob ◦ Φloc : Σin → Σin

The hyperbolic structure necessary for the graph transform looks
as follows: The expansion is given by the Kasner map, which is an ex-
panding map acting on the Kasner circle (which is the center direction
of the local passage map) away from the Taub points. The contraction
is given by the hyperbolic directions of the local passage map, which is
a short explicit calculation after the linearization has been done. Ap-
plying the graph transfrom then yields a �xed point in the space of
graphs, which is the desired stable manifold for the heteroclinic chain.
As we worked in a C1-setting, i.e. the Takens-linearization and all
other involved maps are at least C1, the resulting hyperbolic structure
and thus also stable manifold is as well of regularity C1, which proves
the theorem.

�
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K

Σin

Σout

xin

xout

Figure 1. Local passage Φloc.

Figure 1 illustrates the local passage near the Kasner circle. We
see that we come in via the direction of the strong-stable eigenvalue
(indicated by the double arrow towards the equilibrium), while there is
an additional stable direction (single arrow towards the equilibrium) as
well as the outgoing direction (single arrow away from the equilibrium)
and the center direction (i.e. the Kasner circle K of equliibria, indicated
by the additional line without arrows).
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1. Resonances for Periodic Chains in Bianchi IX

We are interested in periodic heteroclinic chains in the Bianchi IX
cosmological model. These can be represented by a Kasner parameter
u ∈ R with an in�nite periodic continued fraction representation, e.g.
u = [a, b, c, a, b, c, ...].

1.1. In�nite Periodic Continued Fractions. From the theory
of continued fractions, we know that it holds:

Theorem. u ∈ R has an in�nite periodic continued fraction rep-
resentation ⇐⇒ u ∈ R is a �quadratic irrational� ⇐⇒ u is a real
but irrational root of a quadratic equation with integer coe�cients, i.e.
∃ : c1, c2, c3 : c1 + c2u+ c3u

2 = 0 (with ci ∈ Z).

Here we are only interested in the direction "⇒", which follows di-
rectly for the general formulas for continued fractions in section 3.3,
see below. The other direction is a bit more elaborate (see e.g. [37]
�19 or [25] �10).

For the argument we will carry out later, it is of crucial impor-
tance that, up to a common scaling factor z ∈ Z, there is exactly one
quadratic equation satis�ed by a quadratic irrational u.

As this is very important when considering the resonances of the
eigenvalues in Bianchi models, we include a proof of this fact here (and
we assume that the ci do not have a common factor because we will be
interested in the smallest possible coe�cients, where this is clear, see
section 1.5):

Lemma 4.5. For a (�xed) quadratic irrational u, let ci ∈ Z, i = 1...3
be s.t. c1 + c2u + c3u

2 = 0 and gcd(ci) = 1, i.e. the ci do not have a
common factor. Now assume that d1 + d2u + d3u

2 = 0 also holds with
di ∈ Z. Then it follows that

∃z : di = z ∗ ci, for (i = 1...3) with z ∈ Z

Proof. Multiplying the equation with coe�cients ci with d1 and
the other one with c1 results in the following two equations:

d1c1 + d1c2u+ d1c3u
2 = 0

c1d1 + c1d2u+ c1d3u
2 = 0

Subtracting the second from the �rst equation leads to
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u(d1c2 − c1d2 + (d1c3 − c1d3)u) = 0(28)

and, as u 6= 0, we conclude that

u =
c1d2 − d1c2

d1c3 − c1d3

if d1c3 − c1d3 6= 0, which leads to a contradiction because u /∈ Q
was assumed.

If, on the other hand, d1c3− c1d3 = 0, it follows from (28) that also
d1c2 − c1d2 = 0, which leads to the conclusion that d1

c1
= d2

c2
= d3

c3
:= z

with z ∈ Z. Note that z ∈ Q would lead to a contradiction because we
assumed that the ci do not have a common factor. �

1.2. The Case of Bianchi IX. In order to check the (SNC) for
the linearized vector�eld at a point on the Kasner circle, observe that
DX(p) is diagonal and that there are three hyperbolic eigenvalues for
all points of the Kasner circle except for the Taub points.

In terms of the Kasner parameter u, the following formulas hold for
those three eigenvalues (see section 2):

(29) (λ1, λ2, λ3) =

(
−6u

1 + u+ u2
,

6(1 + u)

1 + u+ u2
,

6u(1 + u)

1 + u+ u2

)
All 3 hyperbolic eigenvalues are real. A resonance thus means in

this case: ∃k = (k1, k2, k3), ki ∈ Z s.t.

(30) k1λ1 + k2λ2 + k3λ3 = 0

where either all of the ki must have the same sign, or the one of the
ki that has a di�erent sign than the other two must be equal to ±1.
Because this "sign condition" will play an important role later on, let
us make the following de�nition:

Definition. A triple k = (k1, k2, k3), ki ∈ Z satis�es the Reso-
nance Sign Condition (RSC) ⇐⇒ either all of the ki must have the
same sign, or the one of the ki that has a di�erent sign than the other
two must be equal to ±1

Only if a triple ful�ls the RSC, it quali�es as a coe�cient-triple
for a resonance that prevents the application of Takens Linearization
Theorem. This means that if we can show that resonant coe�cients
do not ful�ll the RSC, they do not matter and Takens-Linearization
is still possible. Note that a simple way of showing that the RSC is
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not satis�ed is to show that one coe�cient is strictly bigger than one,
while a di�erent one is strictly less than minus one.

1.3. SNC for In�nite Periodic Heteroclinic Chains. In prepa-
ration for further generalizations to Bianchi-models of class B, this sec-
tion is formulated a bit more general that it would be necessary for
discussing only the case of Bianchi IX. As seen above, the eigenvalues
of the linearized vector�eld in BIX for points of the Kasner circle can
be expressed in the Kasner parameter u:

(31) λi =
li1 + li2u+ li3u

2

1 + u+ u2

Combining (30) and (31), one gets

(32) k1(l11 + l12u+ l13u
2) + k2(l21 + l22u+ l23u

2) + k3(l31 + l32u+ l33u
2) = 0

or, equivalently,

(33) (k1l
1
1 +k2l

2
1 +k3l

3
1)+(k1l

1
2 +k2l

2
2 +k3l

3
2)u+(k1l

1
3 +k2l

2
3 +k3l

3
3)u2 = 0

As discussed above, for in�nite periodic heteroclinic chains, there are
(up to a common scaling factor) unique coe�cients ci ∈ Z s.t.

(34) c1 + c2u+ c3u
2 = 0

Comparing (32) to (33), one sees that (SNC) does not hold if ∃k =
(k1, k2, k3) as above and z ∈ Z s.t.

(35) M ∗

 k1

k2

k3

 = z ∗

 c1

c2

c3


with

M =

 l11 l21 l31
l12 l22 l32
l13 l23 l33


where we will solve (35) for (k1, k2, k3) in order to check the order of
the �rst resonance.
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1.4. Conclusions for Bianchi IX. It can be seen easily that the
formulas (37) imply that for Bianchi IX we have

MBIX =

 0 6 0
−6 6 6
0 0 6

 = 6 ∗

 0 1 0
−1 1 1
0 0 1


and

M−1
BIX =

1

6
∗

 1 −1 1
1 0 0
0 0 1


Observe that we have a choice of the factor z on the right hand side
of (35), and that a choice of z = 6 will result in an integer resonance
with the smallest possible order:

(36)

 k1

k2

k3

 =
1

6
∗

 1 −1 1
1 0 0
0 0 1

 ∗ 6 ∗

 c1

c2

c3

 =

 c1 − c2 + c3

c1

c3


If the entries of the vector on the right hand side of (36) do not have
a common factor, then the �rst resonance will occur at order l :=
|k1|+ |k2|+ |k3| = |c1 − c2 + c3|+ |c1|+ |c3|

1.5. Uniqueness of the Resonance. For the argument we will
carry out later, it is of crucial importance that we �nd the order l of
the �rst resonance, meaning that we can exclude all resonances with
order l̃ < l.

In order to do this, we will need the Lemma 4.5 on the uniquness
of the coe�cients for the quadratic equation for quadratic irrationals.

We claim that if we choose the smallest possible coe�cients ci for
the equation in u (meaning that the ci do not have a common factor),
this will lead to the smallest resonance l := |k1|+ |k2|+ |k3|.

This is true because of the linear dependence of the ki on the ci in
(36), meaning that we can exclude all resonances with order l̃ < l.

40



2. Continued Fraction Expansion for Quadratic Irrationals

We will use the following notation for continued fractions:

u = a0 +
1

a1 + 1
a2+ 1

...

=: [a0, a1, a2, ...]

In this section, we will consider 3 classes of examples, namely u ∈ R
with constant, 2-periodic and 3-periodic continued fraction expansions,
i.e either u = [a, a, ...] or u = [a, b, a, b, ...] or u = [a, b, c, a, b, c, ...] for
a, b, c ∈ N. We also recall from section 2 that the Kasner map has the
following form:

u =

{
u− 1 u ∈ [2,∞]

1
u−1

u ∈ [1, 2]

2.1. Constant Continued fraction. Because of the form of the
Kasner-map, starting with u = [a, a, ...] will result in the following
base-points on the Kasner-circle:

u0 = [a, a, a, ...]

u1 = [a− 1, a, a, ...]

u2 = [a− 2, a, a, ...]

...

ua−1 = [1, a, a, ...]

ua = [a, a, a, ...]

...

That's why we have to check the Non-Resonance-Conditions at all
points with u = [m, a, a, ...] for m = 1...a. Now note that for u =
[m, a, a, ...] it holds that

1

u−m
− a = u−m

which means that

(m2 − am− 1) + (a− 2m)u+ u2 = 0

resulting in a coe�cient vector c1

c2

c3

 =

 m2 − am− 1
a− 2m

1


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Now we can use equation (36) to compute the coe�cients for the
resonance of the eigenvectors (we set s = −1 in order to match the
condition (27)): k1

k2

k3

 = −1 ∗

 c1 − c2 + c3

c1

c3

 =

 −m2 + (a− 2)m+ a
−m2 + am+ 1

−1


2.2. 2-Periodic Continued Fraction Expansion. For

u = [a, b, a, b, ...], we have to check the base-points with u = [m, b, a, b, a, ...]
with m = 1...a and u = [m, a, b, a, b, ...] for m = 1...b. Applying the
same procedure as above, we note that that u satis�es

1
1

u−m − a
− b = u−m & 1

1
u−m−b

− a = u−m

when u = [m, a, b, a, b, ...] and u = [m, b, a, b, a, ...], respectively, and
get the following coe�cient vectors for u: c1

c2

c3

 =

 −am2 + abm+ b
2am− ab
−a

 &

 c1

c2

c3

 =

 −bm2 + abm+ a
2bm− ab
−b


resulting in these coe�cient vectors for the eigenvalues (we set s = 1

this time): k1

k2

k3

 =

 −am2 + (ab− 2a)m+ ab− a+ b
−am2 + abm+ b

−a


and  k1

k2

k3

 =

 −bm2 + (ab− 2b)m+ ab+ a− b
−bm2 + abm+ a

−b


2.3. 3-Periodic Continued Fraction Expansion. In complete

analogy to the computations above, we �nd the following formulas, for
the 3 relevant cases. Note that we show the coe�cient vectors for u
below, and in all three cases we have to compute the coe�cient vectors
for the eigenvalues as done before: k1

k2

k3

 =

 c1 − c2 + c3

c1

c3


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u=[m,b,c,a,...] for m=1...a. c1

c2

c3

 =

 m2 +mc+m2bc− bm− am− ac− abcm− 1
abc+ a+ b− c− 2m− 2mbc

1 + bc


u=[m,c,a,b,...] for m=1...b. c1

c2

c3

 =

 m2 +ma+m2ca− cm− bm− ba− abcm− 1
abc+ b+ c− a− 2m− 2mca

1 + ca


u=[m,a,b,c,...] for m=1...c. c1

c2

c3

 =

 m2 +mb+m2ab− am− cm− cb− abcm− 1
abc+ c+ a− b− 2m− 2mab

1 + ab


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3. Results on Admissibility of Periodic Heteroclinic Chains
in Bianchi IX

In this section, we will concretely check the Sternberg Resonance
Conditions for periodic heteroclinic chains in BIX.

We will prove some general theorems, while more concrete examples
can be found in the Appendix A.

3.1. Constant Continued Fraction Development. We will give
a proof of the fact that there are no in�nite periodic heteroclinic chains
with constant continued fraction development that allow Takens - Lin-
earization at their base points. More geometrically, this excludes �sym-
metric� heteroclinic chains with the same number of �bounces� near all
of the 3 Taub Points - the result shows that we have to require some
�asymmetry� in the bounces in order to allow for Takens-Linearization.
Below, there is an illustration of the heteroclinic chain belonging to
u = [3, 3, ...] which does not allow for Takens-Linearization:

Σ+

Σ−

T1

T2

T3

Theorem 4.6. For any heteroclinic chain with constant continued
fraction development, Takens-Linearization fails at some base point.

Proof. As we have seen above, a periodic heteroclinic chain has
a periodic continued fraction development, leading to a resonance, and
let us call the coe�cients for that resonance k = (k1, k2, k3). The �rst
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thing we have to check is if k satis�es the Resonance Sign Condition
(RSC) de�ned above.

Lemma. For constant continued fraction development, (u = [a, a, ...]),
the coe�cient vector k = (k1, k2, k3) satis�es the Resonance Sign Con-
dition (RSC) at all base points.

Proof. To prove the Lemma, we observe the following when look-
ing at the formulas for constant continued fraction development in sec-
tion 2.1:

• for m = a, it holds that k = (1, a,−1)
• for m = a− 1, k = (−a, 1,−1)
• for 1 ≥ m < a−1 and k = (k1, k2, k3), it holds that k1, k2 > 0,
while k3 = −1

Thus, the RSC are satis�ed in all cases, and the coe�cient vector would
qualify.

�

To prove Theorem 4.6, we have to compare two things:

• the order of the resonance of the eigenvalues at the basepoints,
expressed �rst in the Kasner-parameter (u = [a, a, ...]) and
then directly in a
• the required SNC for C1-stable-manifolds, i.e. α(1) at all base
points

The base points of a in�nite periodic heteroclinic chain with u =
[a, a, ...] are u = [m, a, ...] for m = 1...a. To prove the Theorem, it is
enough to show the violation of the Sternberg Non-Resonance Condi-
tions at one base point. Consider the case m = a − 1 and start with
the formulas for the coe�cient vectors, as computed above: k1

k2

k3

 =

 −m2 + (a− 2)m+ a
−m2 + am+ 1

−1

 =

 1
a
−1


Therefor, it holds that |k| = a+ 2, i.e. we have linear growth of |k|

in a.
On the other hand, re-consider the formulas for the eigenvalues in

BIX:

(37) (λ1, λ2, λ3) =

(
−6u

1 + u+ u2
,

6(1 + u)

1 + u+ u2
,

6u(1 + u)

1 + u+ u2

)
and order them according to magnitude (with the notation from

the SNC's from the Takens-Theorem):
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 N
n

m = M

 =

 |λ1|
|λ2|
|λ3|


Insert in the formulas for α, β and compute:

β = Ceiling[
N + k(M + n)

n
] ≥ u2 + 3u+ 1

u+ 1

α = Ceiling[
M + β(N +m)

m
] ≥ u3 + 5u2 + 8u+ 3

u+ 1

This shows quadratic growth for α in u. In fact, for u = [a −
1, a, ...] = a − 1 + 1

a+ 1

a+ 1
...

, it holds ∀a > 0 : |k| < α(1), i.e. the SNCs

are violated and Takens-Linearization is not possible, which proves the
Theorem. For consistency, also compare to Appendix A, where we used
Mathematica to compute α(1) and |k| for u = [m, a, ...] for m = 1...a
and a = 1...9.

�

3.2. 2-Periodic Continued Fraction Development. In this
section, we will prove the following Theorem:

Theorem 4.7. For admissible heteroclinic chains with 2-periodic
continued fraction development, Takens Linearization is possible at all
base points.

Here, admissible means that the continued fraction developments
has minimal period 2 and the entries are strictly bigger than one (even
after cancelling out a possible common factor). To be precise, we de�ne
an admissible 2-periodic continued fraction development as follows:

Definition 4.8. A 2-periodic u = [a, b, a, b, ...] is called admissible
⇐⇒ a, b > 1 and neither a | b nor b | a.

Note that from the condition above, it follows in particular that a 6=
b, beeing consistent with the results in the section above about constant
contiuned fractions. Two examples of such a heteroclinic chains are
illustrated below, with u=[3,2,3,2,...] and with u=[2,3,2,3,...], which
are 10-cycles (also compare Appendix 1.2):

46



Proof. The Theorem will directly follow from the following Lemma:

Lemma 4.9. For admissible 2-periodic continued fraction develop-
ments, the coe�cient vector k = (k1, k2, k3) violates the Resonance Sign
Condition (RSC) at all base points

Proof. When we look at the formulas for 2-periodic continued
fraction development in section 2.2, we can observe the following:

• for u = [m, a, b, a, b, ...] and m = 1...b, it holds that k3 = −a <
−1 and k2 ≥ b > 1 as bm ≥ m2

• for u = [m, b, a, b, a, ...] and m = 1...a, it holds that k3 = −b <
−1 and k2 ≥ a > 1 as am ≥ m2

This means that the RSC are violated at all base points of the hetero-
clinic chain, and the lemma is proven. Note that we need a, b > 1, and
that if we had a | b or b | a, then coe�cients k1, k2, k3 would have a
common factor we could cancel, leading to an earlier resonance. That's
why we need to restrict to admissible 2-periodic continued fraction de-
velopments as de�ned above.

�

The Lemma shows that, for "sign reasons", the occuring resonaces
are excluded and do not matter for the application of the Takens Theo-
rem. Therefor Takens Linerarization is possible, as claimed in Theorem
4.7.

�
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3.3. Continued Fraction Development with Higher Peri-
ods. The idea behind the proof of Lemma 4.9 can be generalized to
continued fraction developments with higher periods. However, it is
not so easy anymore to �nd conditions that assure in general that the
resulting coe�cients do not have a common factor. We will comment
on this matter further at the end of the section.

At �rst, consider 3-periodic continued fractions. Three examples of
such a heteroclinic chains are illustrated below, with u=[1,1,2,1,1,2,...],
u=[1,2,1,1,2,1,...] and u=[2,1,1,2,1,1,...] which are 8-cycles and ar-
guably the simplest examples of periodic heteroclinic chains where our
method works (this can be checked directly for the concrete examples
above, see Appendix 1.3). They all start in sector 5, and the di�erent
position of the number "2" in the contiued fraction development leads
to bounces around the di�erent Taub points which can be seen in the
pictures below:

Lemma 4.10. Consider a continued fraction development with min-
imal period 3, i.e. with u = [a, b, c, a, b, c, ...] and not a = b = c. Then
the corresponding coe�cient vector k = (k1, k2, k3) violates the Reso-
nance Sign Condition (RSC) at all base points if the ki do not have a
common factor .

Proof. When we look at the formulas for 3-periodic continued
fraction development in section 2.3, we can observe the following:

• for u = [m, b, c, a, b, c, a, ...] and m = 1...a, it holds that k2 =
c1 ≤ −bm− 1 < −1 and k3 = c3 = 1 + bc > 1
• for u = [m, c, a, b, c, a, b, ...] and m = 1...b, it holds that k2 =
c1 ≤ −cm− 1 < −1 and k3 = c3 = 1 + ca > 1
• for u = [m, a, b, c, a, b, c, ...] and m = 1...c, it holds that k2 =
c1 ≤ −am− 1 < −1 and k3 = c3 = 1 + ab > 1

This means that the RSC are violated at all base points of the hetero-
clinic chain if we know that neither k2 | k3 nor k3 | k2. This is true in
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particular if the ki do not have a common factor as we have assumed
for convenience, so Lemma 4.10 is proven.

Note that if we had a = b = c, then coe�cients k1, k2, k3 would
have a common factor, resulting in an earlier resonance as explained
above. Also compare to Appendix 1.3 for a consistency check. �

We now try to generalize the argument above to higher periodic
continued fractions. In order to do this let us make some general de�-
nitions and observations (following [37] �191, compare also [25] �10):

For continued fractions of the form

u = a0 +
1

a1 + 1
a2+ 1

...

=: [a0, a1, a2, ...]

we de�ne the following numbers Ak, Bk recursively:

Ak = Ak−1ak + Ak−2

Bk = Bk−1ak +Bk−2

with A−1 = 1, A−2 = 0 and B−1 = 0, B−2 = 1, leading to A0 = a1,
A1 = a0a1 + 1 and B0 = 1, B1 = a1.

For an (in�nite) continued fraction, we de�ne the �tails� as follows:

ξk := [ak, ak+1, ...]

Then we have the following general recursion formula for convergent
in�nite continued fractions u = [a0, a1, ..., ak−1, ξk] (and k ≥ 0):

u = ξ0 =
Ak−1ξk + Ak−2

Bk−1ξk +Bk−2

, which can be proved by induction.2. Also compare [25] �2 and �3.
Now consider pre-periodic continued fractions with pre-period h

and minimal period p, as made precise in the following de�nition:

Definition. We call u an h-pre-periodic continued fraction with
pre-period h, minimal period p ⇐⇒ u = [a0, ...ah−1, ah, ah+1, ..., ah+p−1]
with aν = aν+p∀ν ≥ h and @p̃ < p s.t. aν = aν+p̃∀ν ≥ h

Note that it also holds that ξν = ξν+p∀ν ≥ h. Thus we can get the
following formulas (set k = h and k = h+ p):

1but note we have a di�erent labelling of the coe�cients as we do not consider
continued fractions with enumerators di�erent from one

2For k = 0, the formula holds by de�nition: ξ0 = A−1ξ0+A−2

B−1ξ0+B−2
= ξ0

1 .
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ξ0 =
Ah−1ξh + Ah−2

Bh−1ξh +Bh−2

and

ξ0 =
Ah+p−1ξh+p + Ah+p−2

Bh+p−1ξh+p +Bh+p−2

=
Ah+p−1ξh + Ah+p−2

Bh+p−1ξh +Bk+p−2

By solving both equations for ξh, we get the following quadratic
equation for ξ0 :

c3ξ
2
0 + c2ξ0 + c1 = 0

with (we abbreviate g = h+ p)

c3 = Bh−2Bg−1 −Bh−1Bg−2

c2 = Bh−1Ag−2 + Ah−1Bg−2 − Ah−2Bg−1 −Bh−2Ag−1

c1 = Ah−2Ag−1 − Ah−1Ag−2

The formulas above specialize to (for h = 0, this corresponds to the
formula for periodic continued fractions without pre-period)

c3 = Bp−1

c2 = Bp−2 − Ap−1

c1 = −Ap−2

and for h = 1 to3

c3 = −Bp−1

c2 = Ap−1 + a0Bp−1 −Bp

c1 = Ap − a0Ap−1

Now we are in a position to state the main aim of this section:

Conjecture 4.11. Let u = [a0, a1, ...] be an (in�nite) periodic con-
tinued fraction with minimal period p ≥ 3. Then the corresponding
heteroclinic chain allows Takens-Linearization at all base points.

Proof. (idea of proof, but note the remark below)
Let u = [a0, a1, ...] be an (in�nite) periodic continued fraction. We need
to show that the NRC's are satis�ed at all base points of the heteroclinic
chain. Because of the form of the Kasner-map, we have to check all

3compare to the formulas for p=1,2,3 presented in section 2.3, as a consistency
check
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Kasner-parameters of the form u = um = [m, a1, a2, ..., ap−1, ap], i.e. it
holds that a0 = m (with 1 ≤ m ≤ ap) and aν = aν+p, but now only
∀ν ≥ 1. From the formulas above (case h = 1) we observe the following
for the corresponding coe�cients of the resonances of the eigenvalues:

k3 = c3 = −Bp−1 < −1

where we need our assumption that p ≥ 3 as B1 = a1 which might
be one, but B2 = a2a1 + 1 which is bigger than one. Also

k2 = c1 = Ap − a0Ap−1 = (ap − a0)Ap−1 + Ap−2 > 1

because we know that a0 = m ≤ ap and A1 = a0a1 + 1 is bigger
than one. That's why the �Resonance Sign Condition� is violated at
all base points, and Takens-Linearization is possible. �

The reason why we don't call the Conjecture above a Theorem is
that we are not able to exclude in general that c1 divides c3 or vice
versa, which is essential for the proof above to work out. We believe it
is possible to prove this in general for most periodic continued fraction
with minimal period p ≥ 3, probably with a small set of exceptions,
but this is an issue for further research.
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4. Details on the Proof for Stable Manifolds

In this section, we complete the proof of Theorem 4.1 by showing
that there is a C1-hyperbolic structure for the return map in Bianchi
IX after linearizing at all base points of a heteroclinic chain. This then
leads to a C1-stable manifold, as claimed.

We procced along the lines and very close to the paper of Béguin [2],
but we adapt the notation to our needs and the situation of a periodic
chain that Béguin does not consider.

Also compare to the papers by Liebscher et al. [27, 28], where they
work in a Lipschitz-setting without linearizing at the Kasner circle.
There, the following return maps are considered

Φreturn
k = Φglob

k ◦ Φloc
k : Σin

k → Σin
k+1

where the index k stands for the base points on the Kasner circle
of the heteroclinic chain, i.e. Φreturn

k maps from one In-section to the
next. It is shown that those maps satisfy the necessary cone conditions
to allow for a graph-transform on Lipschitz-graphs on a subset of Σin

including the origin (which stands for the heteroclinic orbit). This then
leads to the stable manifold result.

However, like Béguin [2], we will use a collection Φreturn
B of these

return maps for all base points of the set B ⊂ K. We then show
that there exists a C1- hyperbolic structure for a suitable subset of the
corresponding In-sections Σin

B . This results in a C1-stable manifold.

4.1. Application of Takens Theorem. Let B = {p1, ..., pn} be
the collection of base points on the Kasner circle of the periodic hetero-
clinic chain we are looking at. Then, as we have chosen an admissible
periodic chain that satis�es the necessary Non-Resonance-Conditions
by assumption, we can chose co-ordinates near each point pk ∈ B such
that the vector �eld has the form described by the Takens Theorem,
i.e. it is essentially linear in a neighbourhood Upk . More precisely, the
application of Takens Linearization Theorem is done in the following
form (compare Béguin, p.10):

Theorem 4.12. Let p ∈ B be any point of the set of admissible
base points B. Then there exists a Takens-Neighbourhood Up of p in
the phase-space of the Wainwright-Hsu ODEs W and a C1-coordinate-
system on Up such that the Wainwright-Hsu vector �eld XW can be
written as

XW (xc, xs, xss, xu) = λs(x
c)xs

∂

∂xs
+ λss(x

c)xss
∂

∂xss
+ λu(x

c)xu
∂

∂xu
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where λss(x
c) < λs(x

c) < 0 < λu(x
c) for all xc.

Proof. A direct application of the Takens-Theorem 7.1 (from chap-
ter 3) gives the existence of a coordinate system (xc, xs1, xs2, xu) in Up
s.t. XW has the following form in these coordinates:

XW (xc, xs1, xs2, xu) = φ(xc)
∂

∂xc
+

2∑
i,j=1

aij(x
c)ysi

∂

∂ysj
+ b(xc)xu

∂

∂xu

For the vector �eld XW in the original coordinates, the set K∩Up is the
local center-manifold in the neighbourhood Up at the point p, and it
consists of equilibria. As the vector �eld above vanishes on K = {xs1 =
xs2 = xu = 0} and nowhere else, it follows that K = K∩Up. This also
means that φ ≡ 0 in the neighbourhood Up, i.e. there is no drift at all in
the center-direction. Now �x {xc = ξ}. As can be seen from the formula
above, the vector �eldXW (xc, xs1, xs2, zu) is linear on the restruction to
this submanifold. A linear change of coordinates then diagonalizes the
2 × 2-matrix (aij)i,j∈{1,2}, as we have 2 distinct real stable eigenvalues
of XW at the point (ξ, 0, 0, 0), and this diagonalization can be done
simultaneously, as eigenvalues and eigendirections depend in a smooth
way on ξ. Label these new coordinates (xc, xs, xss, xu) and observe that
we have found the claimed local form of the vector �eld

XW (xc, xs, xss, xu) = λs(x
c)xs

∂

∂xs
+ λss(x

c)xss
∂

∂xss
+ λu(x

c)xu
∂

∂xu

�

For the rest of the section, we will use the follwing coordinates:
Near the Kasner-circle, we take the coordinates given by the Takens-
Linearization-Theorem, at each base point pk of the heteroclinic chain,
and otherwise, we stick to the coordinates Ni,Σ+/− of the Wainwright-
Hsu-System. The di�erent coordinate systems give rise to the following
metrics: the Riemanian metric gp = dxc∧dxc+dxs∧dxs+dxss∧dxss+
dxu∧dxu = (dxc)2 +(dxs)2 +(dxss)2 +(dxu)2 for the Takes-coordinates
in a neighbourhood Up near a point p of the Kasner circle, and the
Riemanian metric h = dN2

1 + dN2
2 + dN2

3 + dΣ2
+ + dΣ2

−. Later we use
a �global� Riemannian metric adapted to our set of base points B by
de�ning gB such that

(38) gB � Up = gp∀p ∈ B
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xss

xu

xs

xc

Σin

Σout

xin

xout

Figure 2. Local passage Φloc.

For the local passage, which we will consider next, we are entirely in
the neighbourhood Up and can use the �local� metric gp = (dxc)2 +
(dxs)2 + (dxss)2 + (dxu)2 .

4.2. Local Passage. Our next step is to deal with the local pas-
sage near an equilibrium of the Kasner circle K. Figure 2 shows a
graphic illustration of the situation in Bianchi IX - note that we are
in the lucky situation here that the incoming stable eigenvalue is al-
ways stronger that the outgoing unstable eigenvalue, this will change
in BV I− 1

9
that we deal with in chapter 5.

Now we come to the de�nition of the local In- and Out-Sections
illustrated in the picture above: For a point pk ∈ B, we �rst de�ne
the box Vp as Vp = Vp(α, β, ε) := {q = (xcq, x

s
q, x

ss
q , x

u
q ) ∈ Up|0 ≤

xsq, x
ss
q , x

u
q ≤ ε, α ≤ xcq ≤ β} and α, β, ε are chosen so small the box

Vp lies completely inside the Takens-neighbourhood Up. Denote their
union by VB =

⋃n
k=1 Vpk .

Then de�ne the sections by Σin,ss
k := Vpk ∩ {xss = ε} and Σout

k :=
Vpk ∩ {xu = ε}. Finally de�ne the �collections� of sections for the

whole set of base-points B: Σin,s
B =

⋃n
k=1 Σin,s

k ,Σin,ss
B =

⋃n
k=1 Σin,ss

k and

Σout
B =

⋃n
k=1 Σout

k , and �nally Σin
B = Σin,s

B ∪ Σin,ss
B .

We need some more notation before we can introduce the main
theorem of this section. Decompose the tangent spaces of the sections
de�ned above into the parts of the hyperbolic direction (V h, W h), on
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the one hand, and the center-component (V c,W c), on the other hand.
For this, let q ∈ Σin,ss

B and r ∈ Σout
B :

• TqΣin,ss
B = V h

q ⊕ V c
q , where V

h
q = span{ ∂

∂xs
(q), ∂

∂xu
(q)}, i.e.

the additional stable direction and the unstable direction, and
V c
q = span{ ∂

∂xc
(q)}

• TrΣout
B = W h

r ⊕ W c
r , where W

h
r = span{ ∂

∂xss
(r), ∂

∂xs
(r)}, i.e.

the both stable directions, because we are in the out-section,
and W c

r = span{ ∂
∂xc

(r)}
Note that one point of this construction is to �collect� also the tangent
spaces like the other objects before, i.e. to talk about the decomposition
of the tangent bundle of the set Σout

B , which is possible because all object
depend smoothly on the base point:

• TΣout
B = V h ⊕ V c

• TΣout
B = W h ⊕W c

Now we are in the position to state the theorem about the local passage.
Recall that HB stands for the set of all heterclinic Bianchi-II-orbits
connecting base points of the set B (see chapter 2, section 1.2):

Theorem 4.13. Assume that, for all p ∈ B, the vector �eld has
been according brought to the form as in the conclusion of Theorem
4.12. The local passage map Φloc

B : Σin
B → Σout

B is a C1-map that sati�es,
for q ∈ HB ∩ Σin

B :

• Φloc
B contracts super-linearly in the hyperbolic directions, i.e.

dΦloc
B (q)(v) = 0 ∀v ∈ V h

q

• Φloc
B is the identity in the center-direction, i.e.
(1) dΦloc

B (q)(V c
q ) = W c

ΦglobB (q)

(2) ||dΦloc
B (q)(v)||gp = ||v||gp∀v ∈ V c

q

Proof. Let p ∈ B be a point from the set of admissible base points.
Because of Theorem 4.12, the local passage near the Kasner circle Φloc

p

in a neighbourhood Up can be calculated explicitly (with xssin = 1 in Σin
p

and xuout = 1 in Σout
p after approriate scaling):

xsout = eλstloc · xsin = (xuin)−
λs
λu · xsin(39)

xssout = eλsstloc · xssin = (xuin)−
λss
λu(40)

xuin = e−λutloc · xuout(41)

By solving the third equation for the local passage time tloc, one
obtains the following formulas for Φloc

p : Σin
p → Σout

p (when xu > 0):

Φloc
p (xc, xs, 1, xu) = (xc, (xuin)−

λs
λu · xsin, (xuin)−

λss
λu , 1)
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and for xu = 0, we get (when following the heteroclinic orbit)

Φloc
p (xc, xs, 1, 0) = (xc, 0, 0, 1)

As the above equations show, the main point for understanding the
local passage is the relation of the eigenvalues. In Bianchi IX, we know
that it holds (away from the Taub points):

|λu| < |λs| < |λss|
, i.e. the absolute value of the unstable eigenvalue is strictly smaller

than the absolute value of the two stable eigenvalues. This can be seen
from the formulas (37) expressing the eigenvalues in terms of the Kasner
parameter u, see chapter 2, section 1.3). That's why it holds for the
fractions which appear in the exponents of the formulas above:

−λs
λu
,−λss

λu
> 1

and observe that both are necessarily positive because stable and
unstable eigenvalues have opposite signs (note that this is even inde-
pent of the chosen time direction towards/away from the big bang).
This yields the claimed C1-map and the super-linear contraction in the
hyperbolic directions for the map Φloc

p .
As the vector �eld is completely linear in the Takens-neighbourhood,

it trivially holds that xcout = e0 · xcin, i.e. we have not drift and Φloc is
just the identity in the center-direction.

These observations hold for the local passage Φloc
p : Σin

p → Σout
p at

any admissible base point p ∈ B, and therfor also for the collection
Φloc
B : Σin

B → Σout
B . �

4.3. Global Passage. Now we deal with the global passage. For
the proof of the main theorem in this section, we consider two maps
which map from the respective sections onto the Kasner circle by fol-
lowing the heteroclinic orbit (compare [2], p.19):

α : HB ∩ Σout
B :→ K ∩ VB

ω : HB ∩ Σin
B :→ K ∩ VB

where we recall that HB stands for the Bianchi-II-heteroclinics and
VB is the collection of Takens-neighbourhoods (or the boxes, more pre-
cisely) constructed above when dealing with the local passage. At this
point, we recall how we de�ned our global metric gB, see (38). It is com-
posed of the Riemanian metric gp = (dxc)2 + (dxs)2 + (dxss)2 + (dxu)2

for the Takes-coordinates in a neighbourhood Up near a point p ∈ B
of the Kasner circle, and the Riemanian metric h = dN2

1 + dN2
2 +
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dN2
3 + dΣ2

+ + dΣ2
− otherwise. We may assume that both metics co-

incide when restricted to K ∩ Upi , because the local vector �eld has
no center-component at the Kasner circle, i.e. one can replace center
coordinate x by φ(x) for a di�eo φ without changing the vector �eld.

This means that both maps α, ω are local C1-isometries for the
metrics induced by the global metric gB on the sets above, and we will
use this fact in our proof below.

Theorem 4.14. There exits a neighbourhood V of HB∩Σout
B in Σout

B

such that the global passage map

Φglob
B : Σout

B → Σin
B

V → Φglob
B (V)

is a C1-map on V and a di�eomorphism onto its image.
Φglob
B expands in the center direction, i.e. for r ∈ HB ∩ Σout

B , it
satis�es

(1) dΦglob
B (r)(W c

q ) = V c

ΦglobB (r)

(2) ∃κ > 1 : ||dΦglob
B (r)(w)||gB ≥ κ||w||gB∀w ∈ W c

r

Proof. We know that for Ordinary Di�erential Equation with dif-
ferentiable (Ck−)vector �eld, there is a di�erentiable (Ck−)dependence
of the solution on the initial conditions (see e.g. [1]). This means that
in general, for any �time-t-map� of a di�erentiable �ow, for �xed t = t∗

and an open subset U ⊂ Rn of the phase space, we get a di�eomorphism
onto its image:

φt∗ : Rn → Rn

U → φt∗(U)

The Wainwright-Hsu vector �eld XW is polynomial, hence analytic,
that's why its �ow φt(x0) does depend in a di�erential (and even an-
alytic) way on the inital condition. This means that the map Φglob

p :

Σout
p → Σin

f(p) is a C1-map and a di�eomorphism onto its image, as
claimed for the hyperbolic directions. We are left to show the sec-
ond part of the theorem, dealing with the center directions. Now let
q ∈ HB ∩ Σout

B . Then we observe that ω(Φglob(q) = ω(q) = f(α(q),
where f stands for the Kasner map. Because we have shown that both
α and ω are local C1-isometries w.r.t. gB, we are left to prove that

∃κ > 1 : ∀p ∈ B, ∀v ∈ TpK : ||df(p)(v)||g ≥ κ · |v|g
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, which follows directly from the de�nition of the Kasner map, as
we consider a periodic chain which clearly keeps a minimal distance
from the Taub points, where f is not expanding.

These observations hold for the global passage Φglob
p : Σout

p → Σin
f(p)

at any admissible base point p ∈ B, and therfor also for the collection
Φloc
B : Σin

B → Σout
B . �

4.4. The Return Map and the Hyperbolic Structure. As a
consequence, we get the following result:

Theorem 4.15. The return map Φreturn
B = Φglob

B ◦ Φloc
B : Σin

B → Σin
B

is a C1-map that satis�es, for q ∈ HB ∩ Σin
B

• Φreturn
B contracts super-linearly in the hyperbolic directions,

i.e. dΦreturn
B (q)(v) = 0∀v ∈ V h

q

• Φreturn
B expands in the center direction, i.e. ∃κ > 1 :
||dΦreturn

B (q)(v)||gB ≥ κ||v||gB∀v ∈ V c
q

Proof. We recall the main idea behind our construction: We have
shown that for the hyperbolic directions, the local passage is a con-
traction, while the global passsage is a di�eomorphism. Because of
the di�erential dependence of a solution of an ODE on the initial con-
ditions, the passage time for global passage near a heteroclinic orbit
depends in a C1-way on the base point considered. When approaching
the attactor, it remains bounded, while the passage time for the local
passage tends to in�nity. That's why the local passage dominates, and
we get a contraction in the hyperbolic directions. In the center direc-
tion, the local passage is the identity in our local coordinate system,
which yields the claimed expansion when combined with the global
passage which expands the center direction. More formally, we use the
chain rule dΦreturn

B (v) = dΦglob
B (Φloc

B )◦dΦloc
B (v) to get the claims directly

from our theorems above, for q ∈ HB ∩ Σin
B :

dΦreturn
B (q)(v) = 0 ∀v ∈ V h

q

||dΦreturn
B (q)(v)||gB ≥ κ||v||gB∀v ∈ V c

q �

The theorem above means that our return map Φreturn
B has a C1-

hyperbolic structure on the set HB ∩ Σin
B , i.e. that it is a hyperbolic

set. Via Theorem 4.17 (described below), this C1-hyperbolic structure
leads to a C1-stable-manifold.

To make this more precise, consider a point p ∈ B and observe that
the heteroclinic orbit Hp,f(p) intersects Σin

B in exactly one point that
we denote by q. We also note that q ∈ (HB ∩ Σin

B ), i.e. it belongs to
our hyperbolic set. Theorem 4.17 yields a C1-embedded 2-dimensional
stable manifold W s

ε (Φ, q) in Σin
B . And as we know that the orbits of
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the Bianchi IX �ow are transversal to Σin
B , we obtain a 3-dimensional

stable manifold for the base point p on the Kasner circle as claimed
(compare [2], p. 22).

In summary, we arrive at the following theorem, which is equivalent
to Theorem 4.1:

Theorem 4.16. (Stable Manifolds for Points in B)
Let p ∈ B, where B is the set of base points of a periodic heteroclinic

chain that satis�es the Sternberg Non-Resonsonance-Conditions. Then
there exists a three dimensional C1-stable manifold W s(p) of initial
conditions such that the corresponding vacuum Bianchi IX - solutions
converge to the periodic heteroclinic chain towards the big bang.

Combining this with Theorem 4.7 and De�nition 4.8 on the admissi-
bility of 2-periodic continued fraction developments leads immediately
to Theorem 4.2.

Untill now, we have only dealt with periodic heteroclinic chains, as
this was the "missing case" in the paper by Béguin, who was treating
aperiodic chains. When we combine the two results, we can get C1-
stable manifolds for any points p ∈ K that do not contain "forbidden"
base points in the closure of the orbit of p under the Kasner map f ,
i.e. {fn(p)} ⊆ BT

ε . For this we de�ne B
T
ε to be the set of base points

that satis�es the Non-Resonsonance-Conditions in order to allow for
Takens Lineraization and keeps a minimum distance of ε from the Taub
points. This second condition is trivially full�lled for periodic chains
and necessary in order to achive uniform rates of expansion/contraction
for the hyperbolic structure. The reason is that both the expansion of
the Kasner map as well as the contraction of the local passage breaks
down at the Taub points.

We can also elaborate a bit about what it means that solutions
of Bianchi IX converges to a heteroclinic chain towards the big bang.
For example, we can show that the Hausdor� distance between the
heteroclinic orbits that are part of the chain and the respective piece
of the Bianchi IX-orbit tends to zero. This follows from the continuity
of the �ow and the properties of the stable manifold (see [2], p.21).
Thus the limit of the analysis presented here can be formulated as in
Theorem 4.3.
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4.5. C1-Stable Manifolds for C1-Hyperbolic Sets. We have
shown that the global return map admits a C1-hyperbolic structure.
Béguin then uses the following Theorem (see [2], p.18) to prove the exis-
tence of a C1-stable manifold: Theorem 4.17 shows that a C1−Hyperbolic
Structure leads to a C1- stable manifold, where the "index s" of the
hyperbolic set stands for the dimension of the stable subbundle of the
tangen bundle TM (i.e. s = dim(Xp) in the notation of De�nition 4.4).
In addition, the theorem speci�es the dependence of this manifold on
the base point as well as the convergence rate:

Theorem 4.17. Let Φ : M → M be a C1map on a manifold M ,
and C be a compact subset of M which is a hyperbolic set of index s
for the map Φ. Then, for every ε small enough, for every q ∈ C, the
set

W s
ε (Φ, q) := {r ∈M |dist(Φn(r),Φn(q)) ≤ ε for every n ≥ 0}

is a C1embedded s-dimensional disc, tangent to F s
q at q, depending

continuously on q (for the C1topology on the space of embeddings).
Moreover, if µ is a contraction rate for Φ on C, then there exists a
constant κ such that, for every ε small enough, for every q ∈ C and
every r ∈ W s

ε (Φ, q)

distg(Φ
n(r),Φn(q)) ≤ κµn

Béguin names the book [36] by Palis and Takens (page 167) as a
reference for Theorem 4.17. In this section of the Appendix �Hyper-
bolicity: Stable Manifolds and Foliations�, the authors deal with hy-
perbolic sets for endomorphisms, but results are only sketched and no
proofs included. However, there are classic sources for stable manifold
theorems of hyperbolic sets: Partly based on an earlier paper ([22]),
Hirsch and Pugh prove such a theorem in [23], which is a chapter of the
book �Global Analysis� collecting the proceedings a symposium held on
the topic in Berkeley, California, in 1968, and seems to be the �rst time
such a result is proved. We will introduce the theorem by Hirsch/Pugh
below, it can be used instead of 4.17 in order to prove our Theorem
4.16.

4.6. Generalized Stable Manifold Theorem by Hirsch/Pugh.

Theorem. (Generalized Stable Manifold Theorem) Let U be an
open set in a smooth manifold M(dim < ∞) and f : U → M a C1-
map. Let Λ ⊂ U be a compact hyperbolic set and call the invariant
splitting TΛM = E1 ⊕ E2. Then there is a neighbourhood V of Λ, and
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submanifoldsW s(x),W u(x) tangent to E2(x) and E1(x) respectively for
each x ∈ Λ such that

W s(x) = {y ∈ V | lim
n→∞

d(f � V )ny, f � V )nx) = 0}

If f is Ck, so is W s(x), and it depends continously on f in the
Ck-topology. Moreover, W s(x) and its derivatives along W s(x) up to
order k depend continously on x. In addition, there exist numbers
K > 0, λ < 1 such that if x ∈ Λ, z ∈ Wx and n ∈ Z+ then the following
holds:

d(fn(x), fn(z) ≤ Kλn

In [23], the proof of the generalized stable manifold theorem is
outlined as follows:

(1) Let E = E1 × E2 be a Banach space; T : E → E a hyper-
bolic linear map expanding along E1 and contracting along
E2; E(r) ⊂ E the ball of radius r, and f : E(r) → E a Lips-
chitz pertubation of T � E(r). The unstable manifold W for
f will be the graph of a map g : E1(r)→ E2(r) which satis�es
W = f(W ) ∩ E(r). Then the following map Γf is considered
(in a suitable function space G of maps g):

graph[Γf (g)] = E(r) ∩ f(graph[g])

i.e. Γf is the graph transform of g by f . The �xed point g0

of Γf gives the unstable manifold of f - its existence is proved
by the contracting map principle if f is su�ciently close to T
pointwise, and the Lipschitz constant of f−T is small enough.

(2) If f is Ck so is g0, which is proved by induction on k. The
successive approximations Γnf (g) converge Ck to g0 - here the
Fibre Contraction Theorem is used.

(3) Let Γ ⊂ U be a hyperbolic set. LetM be the Banach manifold
of bounded maps Λ→ M , and i ∈ M the inclusion of Λ. Let
U = {h ∈M|h(Λ) ⊂ U}. De�ne f∗ : U →M by

f∗(h) = f ◦ h ◦ f−1

Then f∗has a hyperbolic �xed point at i. By the �rst point,
f∗ hast a stable manifold Ws ⊂ M. For each x ∈ M, de�ne
W s(x) = evx(Ws) = {y ∈ M |y = γ(x) for some γ ∈ Ws}.
This yields a system of stable manifolds for f along Λ

61



Point (1) of the outline above involves a graph-transform of Lipschitz-
graphs (see e.g. [44], and compare also [27, 28], where it is described
in detail how a graph transform can be used to prove Lipschitz-stable-
manifolds in Bianchi models even without linearizing at the Kasner cir-
cle). Point (3) reduces the proof of a stable manifold for a hyperbolic
set to the case of a �xed point, in a suitable chosen in�nite-dimensional
space (compare also [36], p.157).

4.7. Di�erentiability of the Stable Manifold. In step (2) above,
the di�erentiability of the stable manifold is proved by the Fibre Con-
traction Principle (see [23], p.136 or [24], p.25). As the di�erentiability
of the stable manifold is the main point of our Theorem 4.1, we will
comment a bit how this is done. For the invariant section (which will
be the desired stable manifold) to be di�erentiable, it is not enough
to obtain a �bre contraction. One important point is that it may not
contract more along the base space than along the �bres (compare [24],
p.26), otherwise there are examples where there is no di�erentiable in-
variant section (see e.g. [44], p. 435). That's why we need additional
conditions that assure that the contraction on �bres is stronger than
the contraction in the base space to prove a �Cr section Theorem�
([44], p. 436).

An alternative approach is the method of cones (e.g. taken by
Robinson [44], p.185). As above, a stable manifold that is only Lips-
chitz is obtained in a �rst step, and then it is shown that the obtained
manifold is infact Ck if the original map has this smoothness property
([44], p.194).

Finally, the book [49] also contains stable manifold theorems both
for �xed points (chapter 5) and hyperbolic sets (chapter 6), in an ab-
stract setting similar to [23], and also deals with the di�erentiability
question (see [49], p.39).
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CHAPTER 5

Takens Linearization and Combined Linear Local

Passage at the 18-cycle in Bianchi V I
∗

−1/9

In this section, we show how some of the techniques developed in
the chapter before can be applied to Bianchi V I

∗

−1/9, where no rigor-
ous convergence result exists to date. We construct an example for a
periodic heteroclinic chain in Bianchi V I

∗

−1/9 that allows Takens Lin-
earization at all Base points. It will turn out to be a "18-cycle�, i.e.
involving a heteroclinic chain of 18 di�erent base points at the Kasner
circle. We then show that the combined linear local passage at the
18-cycle is a contraction. This quali�es it as a possible candidate for
proving a rigorous convergence theorem in Bianchi V I

∗

−1/9.

The situation in Bianchi V I
∗

−1/9 is more involved than in Bianchi
IX, as there are sectors of the Kasner circle with more than one unstable
eigenvalue (towards the big bang, the time direction we are interested
in). This means that even by starting with the same Kasner-parameter,
one can have di�erent realizations in terms of heteroclinic chains.

If we label the six sectors of the Kasner circle counter-clockwise as it
is often done in Bianchi models (starting in the positive quadrant), this
is true e.g. for sector 5, which is part of the 18-cycle. In the graphics
below, the sectors with multiple unstable eigenvalues are marked in red
color. The di�erent families of heteroclinic orbits in Bianchi V I

∗

−1/9 are

illustrated by the lines in light gray in the background (see chapter 2,
section 2 for details):

Σ+

Σ−

T1

T2

T3

Q1

Q2

Q3

2

5

13

4 6
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We will illustrate this ambiguity that can arise from the same con-
tinued fraction development u = [3, 5, 3, 5, ...] by showing two possible
"18-cycles" (details are discussed in section 3.1):

• the �classic� 18-cycle, with sector sequence 54343-425-43434343-
425, where we go �left� to sector 4 both times in sector 5
• the �advanced� 18-cycle, with sequence 5634342-543434343425,
where we go �rst �right� to sector 6, and the second time �left�
to sector 4

The graphics below shows the "advanced 18 cycle" starting in sector
5. The bounces around the Taub-point can be seen clearly - the blue
color shows the part with 3 bounces, while the purple color exhibits 5
bounces. The label "advanced 18-cylce" means that we �rst follow the
blue part of the heteroclinic chain and then the purple one, re�ecting
our choice of u=[3,5,3,5,...].

Σ+

Σ−

T1

T2

T3

Now we are in a position to state the two main results of this
chapter:

Theorem 5.1. Both the classic and the advanced 18-cycle allow
Takens-Linearization at all base points.

Lemma 5.2. The Combined Linear Local Passage at the classic 18-
cycle is a contraction.

The proof of these results is the aim of this chapter, and we will
now comment a little on how the rest of chapter is organized.
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In order to illustrate our approach, we start by considering the 3-
cycle in Bianchi V I

∗

−1/9, as it is easier to handle and the method we
develop applies also to longer cycles.

First we derive the formulas for the relevant eigenvalues of the lin-
earized vector �eld at the base-points of the 3-cycle in Bianchi V I

∗

−1/9

in terms of the Kasner Parameter u. We then consider the Combined
Linear Local Passages and Takens Linearization at the 3-cycle. We
are able to show that the Sternberg Non-Resonance Conditions are not
satis�ed for the 3-cycle, but they are satis�ed for the 18-cycles.

This means that both the classic and the advanced 18-cycles are
periodic heteroclinic chains in Bianchi V I

∗

−1/9 that allow Takens Lin-
earization at all of their Base points. In addition, we give evidence that
the Combined Linear Local Passage at the classic 18-cycle is a contrac-
tion. This quali�es it as a candidate for proving a rigorous convergence
theorem in Bianchi V I

∗

−1/9.
In order to progress further and turn Lemma 5.2 into a rigorous

convergence theorem, a better understanding of the global passages in
Bianchi V I

∗

−1/9 is necessary. We will comment on possible ideas how
to do this in the section "Conclusion and Outlook".

As the formulas for the eigenvalues at points on the Kasner cir-
cle in Bianchi V I

∗

−1/9 depend on the sector, many cases have to be
checked. That's why we use Mathematica in order to do the necessary
computations for the 18-cycles (see Appendix 2).
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1. Eigenvalues in Terms of the Kasner Parameter u

1.1. General Formulas for Points on the Kasner Circle. At
�rst, we recall that in Bianchi IX, the formula for the eigenvalues of
the linearized vector �eld at points of the Kasner circle have an easy
expression in terms of the Kasner parameter u, compare section 2,
equation (37). In Bianchi IX, the situation in di�erent sectors of the
Kasner-circle only di�ers by a permutation of those 3 formulas for the
eigenvalues (see [17], p.8), which does not matter for the question of
resonances.

But in Bianchi V I
∗

−1/9, the situation is more complicated. Here, the
formulas for the eigenvalues at points on the Kasner circle do depend
on the sector, so in order to check for resonances, a lot of cases have to
be considered. Each sector corresponds to a permutation of the Kasner
expontents pi, where sector (321) means e.g. that p3 < p2 < p1which
�xes the formula for each of them. For this is it important to note that
u ∈ [1,∞]. As an example, consider the sector 5 or (312), compare
section 2):

p3 =
−u

1 + u+ u2

p1 =
(u+ 1)

1 + u+ u2

p2 =
u(u+ 1)

1 + u+ u2

The general formuals for the relevant eigenvalues (i.e. λ×, λ2, λ− cor-
responding to the variables involved in the heteroclinic chain: Σ×, Σ2,
N−, see section 2) in terms of Σ+,Σ−resp. the pi are (see [17], p.7):

Σ+ = −3

2
p1 +

1

2

Σ− = −
√

3

2
(p1 + 2p2 − 1)

λ× = −2
√

3Σ−

λ2 = −3Σ+ +
√

3Σ−

λ− = 2 + 2Σ+ + 2
√

3Σ−
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1.2. Eigenvalues at the 3-Cycle. In the following, we present
the formulas for the sectors that are involved in the 3-cycle with u =

golden mean = 1+
√

5
2

and the sector-sequence �5-1-2-5�. For the other
sectors, similar formulas can be derived analogously (see Appendix 2.2).

Base Point B1 in sector 5, i.e. (312).

λ2 =
3− 3u2

1 + u+ u2

λ× =
6u+ 3u2

1 + u+ u2

λ− =
−6u

1 + u+ u2

Base Point B2 in sector 1, i.e. (123).

λ2 =
−3− 6u

1 + u+ u2

λ× =
3− 3u2

1 + u+ u2

λ− =
6u+ 6u2

1 + u+ u2

Base Point B3 in sector 2, i.e. (213).

λ2 =
3 + 6u

1 + u+ u2

λ× =
−6u− 3u2

1 + u+ u2

λ− =
6u+ 6u2

1 + u+ u2
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2. The 3-Cycle in Bianchi V I
∗

−1/9

2.1. (Non-)Resonance and Takens Linearization. In this sec-
tion, we shortly check the Sternberg-Non-Resonance-Conditions (SNC)
for the 3-cycle in Bianchi V I

∗

−1/9. The procedure necessary to do this
is described in detail in section 1. The parameter-value at the 3-cylce

is u = g = 1+
√

5
2

, which satis�es

1 +
1

u
= u =⇒ 1 + u− u2 = 0

The equation for checking the (SNC) thus reads:

M ∗

 k1

k2

k3

 = z ∗

 1
1
−1


According to the formulas above, we observe that

MB1 =

 3 0 0
0 6 −6
-3 3 0

 ,MB2 =

 −3 3 0
−6 0 6
0 −3 6

 ,MB3 =

 3 0 0
6 −6 6
0 −3 6


, which are all invertible, and give the following results (with z = 6 for
the earliest possible resonance):

kB1 =

 2
0
−1

 , kB2 =

 −2
0
−1

 , kB3 =

 2
0
−1


This means that (SNC) does hold at the Base points of the 3-cycle

up to order 3, which is not enough to allow Takens-Linearization, as the
the order necessary in the Takens-Theorem, named α(1), is bigger than
10 in all of the sectors involved (see Appendix 2.1). That's why Takens
Linearization Theorem may not be employed at the base points of the
3-cycle, and we have to look for a di�erent (longer) cycle. Nevertheless,
we will stick to the 3-cycle in the following chapter in order to illustrate
our method for calculating the Combined Linear Local Passage, as the
method applies to longer cycles as well.
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2.2. Combined Linear Local Passages. In this section, we use
the linearized vector�eld at the base points of the 3-cycle to explicitly
compute the local passages as was done for Bianchi IX before (see
39-41). Be aware that Takens-Linearization is not allowed at the 3-
cycle in Bianchi V I

∗

−1/9, so this is only a formal calculation in this
case to illustrate what we mean by "Combined Local Linear Passage".
Later, for the 18-cycles, the calculation will be justi�ed as Takens-
Linearization is possible there.

The ratio of the relevant Eigenvalues at the Base-points B1,B2,B3

of the 3-cycle (corresponding to the value u = 1+
√

5
2

in the 3 sectors) is
given by the following:

Near B1 = (−1
4
,−
√

15
4

) :

r1 = −λ×
λn

=
u+ 2

2
= 1.8090 > 0

r2 = −λ2

λn
= −u

2 − 1

2u
= −0.5000 < 0

Near B2 = (1+3
√

5
8

,
√

15−
√

3
8

) :

r3 = −λn
λ2

=
2u(u+ 1)

2u+ 1
= 2 > 0

r4 = − λu
λuu

= −λ×
λ2

= −u
2 − 1

2u+ 1
= −0.3820 < 0

Near B3 = (−1
4
,
√

15
4

) :

r5 = − λ2

λ×
=

2u+ 1

u(u+ 2)
= 0.7236 > 0

r6 = −λn
λ×

=
2(u+ 1)

u+ 2
= 1.4472 > 0

We start our combined linear local passage at the In-Section of the
local passage at B1 in sector 5. Thus Σ× is the incoming variable and
we de�ne a := Σin

2 , b := N in
− (the two remaining relevant variables in

the section).
Then we do the calculations for the 3 local passages involved at the

3-cycle near the B1,B2 and B3 as in Bianchi IX before (see 39-41). We
arrive at the following formulas for the combined linear local passage
near the 3-cycle:
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ã = ([br2a]r4br1)r5

b̃ = ([br2a]r4br1)r6(br2a)r3

Taking Logarithms on both sides yields the following:

(
log ã

log b̃

)
= M3−cycle ∗

(
log a
log b

)

with the following matrix M3−cycle:

M3−cycle =

(
r5r4 r5r4r2 + r5r1

r6r4 + r3 r6r4r2 + r6r1 + r3r2

)
As mentioned before, Takens-Linearization is not allowed at the

3-cycle in Bianchi V I
∗

−1/9. However, for the 18-cycles, an analogous
calculation will be justi�ed as Takens-Linearization is possible there.
We will discuss the properties M18−cycle in order to prove Theorem 5.2
in section 3.5.
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3. The 18 Cycles in Bianchi V I
∗

−1/9

3.1. Possible Passages in Bianchi V I
∗

−1/9. When we look at the

di�erent transitions possible in Bianchi V I
∗

−1/9 (see chapter 2, section

2), we are able to understand which sequence of sectors can arise when
solutions converge to their corresponding heteroclinic chains. For the
classi�cation below, we have chosen to put our section always before
the next �Curvature Transition�, i.e. when we leave from sector 4 or 5,
that's why all the passages start and end in one of these sectors:

• Passage A: Sectors 4-3-4
• Passage B1: Sectors 4-2-5
• Passage B2: Sectors 4-2-5-4
• Passage C1: Sectors 5-1-2-5
• Passage C2: Sectors 5-1-2-5-4
• Passage D: Sectors 5-6-3-4
• Passage E: Sectors 5-1-6-3-4

For the 18-cycles discussed below, only a few of the passages will occur,
namely A, B1, B2 and D.

3.2. The Classic 18-Cycle. We now start with u=[3,5,3,5,...] in
Sector 4 and prescribe the follwing dynamics:

u= [3,5,...] [2,5,...] [2,5,...] [1,5,...] [1,5,...] [5,3,...] [5,3,...]
sector 4 3 4 3 4 2 5

u= [5,3,...] [4,3,...] [4,3,...] [3,3,...] [3,3,...] [2,3,...] [2,3,...]
sector 4 3 4 3 4 3 4

u= [1,3,...] [1,3,...] [3,5,...] [3,5,...] [3,5,...] ... ...
sector 3 4 2 5 4 ... ...

This means we have the following sequence of Passages: A A B2 A
A A A B2, and this pattern continues arbitrarily often. This involves
18 global passages, that's why I call it an "18-cycle�.

Observe that both 18-cycles mentioned in the introduction to this
chapter started in sector 5. This was done for illustrative purposes as
there is an ambiguity how to continue in this sector. From now on, we
refer to the �classic 18-cycle� with the sequence of sectors as illustrated
in the table above, which means we have started in sector 4.

Note that we could also derive a di�erent sequence of passages for
the same u, as we have a choice in sector 5 either to go to sector 4 via
a frame transition (as done above) or to go via curvature transition to
sector 6, as done at the �rst transition for the advanced 18-cycle in the
next section.
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3.3. The Advanced 18-Cycle. Now we start with u=[3,5,3,5,...]
in Sector 5 and prescribe the follwing dynamics:

u= [3,5,...] [2,5,...] [2,5,...] [2,5,...] [1,5,...] [1,5,...] [5,3,...]
sector 5 6 3 4 3 4 2

u= [5,3,...] [5,3,...] [4,3,...] [4,3,...] [3,3,...] [3,3,...] [2,3,...]
sector 5 4 3 4 3 4 3

u= [2,3,...] [1,3,...] [1,3,...] [3,5,...] [3,5,...] ... ...
sector 4 3 4 2 5 ... ...

This means we have the following sequence of passages: D A B2 A
A A A B1, which de�nes the "advanced 18-cycle".

3.4. (Non-)Resonance and Takens Linearization at the 18-
Cycle. We now show that both of the 18 cycles are in�nite periodic
heteroclinic chains in Bianchi V I

∗

−1/9 that allows Takens Lineariza-
tion at all of its base points. The Mathematica-output in Appendix
2.2 shows that for u = [3, 5, 3, 5, ...] the Sternberg-Non-Resonance-
Conditions (SNC) are satis�ed, because the α(1) that is necessary for
a C1-linearization at each point is always smaller than the sum of the
absolute value of the coe�cients in the vector k = {k1, k2, k3}. That's
why we can employ the Takens Linearization Theorem for both of the
18-cycles mentioned above, and Theorem 5.1 is proven.

3.5. Combined Linear Local Passage at the 18-Cycle. Our
Results from Mathematica (see Appendix 2.3) indicate that we get the
following matrix for the combined linear local passage of the classic
18-cycle when we apply the same algorithm that we outlined for the
3-cycle in section 2.2:

M18−cycle =

(
267.54 110.78
595.16 247.51

)
=:

(
v1 v2

v3 v4

)
µ1 = 514.49 with Eigenvector v1 = (0.45, 1)

µ2 = 0.5578 with Eigenvector v2 = (−0.41, 1)

This implies that if we start with small positive a,b (i.e. log a, log
b <�< 0), the combined linear local passage will bring us closer to the
origin - this is what we mean by the term "contraction" in Lemma 5.2.
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4. Numerical Simulation

The picture below shows a numerical simulation (with Matlab) of
a periodic heteroclinic chain in Bianchi V I

∗

−1/9, here a 13-cycle. Ac-
cording to the terminology developed above, it would be named the
"advanced" 13 cycle, as both directions are taken from sector 5.

Although a much more detailed numerical analysis is necessary, our
simulation shows that at least there are cases where both directions
are taken from sector 5. Thus this possibility seems to really occur in
the equations, at least numerically there are Bianchi V I

∗

−1/9-solutions
following the "advanced" 13 cycle towards the big bang.

Of course much more e�ort is needed in order to set up the numerics
in an appropriate way instead of just using a built-in Matlab ODE
solver1. One idea could be to use the explicit linear �ow near the
equilibria of the Kasner circle, where most of the time is spent, in
order to achieve a higher precision.

1for producing the picture above, we have used the "ode113" solver, which is
a variable order Adams-Bashforth-Moulton PECE solver (according to the Matlab
documentation [33]). We thank Woei Chet Lim for providing us with some Matlab
code that we used in order to carry out our numerical simulations.
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Conclusion and Outlook

This dissertation deals with the ancient dynamics of the Einstein
Equations, i.e. the dynamics in backwards time towards the big bang.
As mentioned in the introduction, the BKL-picture is belived to cap-
ture the essence of this approach to the initial singularty, but it is not
even a clearly formulated conjecture, not to mention a proven mathe-
matical theorem. However, the aim of mathematically understanding
spacetime singularities and increasing the rigour of the BKL-picture is
a formidable task, to which we have contributed in two ways:

At �rst, we have shown that there are periodic heteroclinic chains
in Bianchi IX for which there exisist C1- Stable - Manifolds of orbits
that follow these chains towards the big bang. This result is new, and
should be compared with the two existing rigorous results on stable
manifolds for orbits of the Kasner map in Bianchi IX: Béguin showed
the existence of C1- stable- manifolds for aperiodic orbits of the Kasner
map ([2]), while Liebscher and co-authors ([27, 28]) showed the exis-
tence of Lipschitz-stable-manifolds for arbitrary orbits of the Kasner
map not accumulating at one of the Taub points (Béguin also had to
demand the latter condition).

Our result signi�cantly extends Béguins results, who had to exclude
all orbits that are perioidic or accumulate on any periodic orbit, a limi-
tation which we were able to overcome. The techniques by Liebscher et
al are able to treat both periodic and aperiodic chains, but yielded only
Lipschitz-manifolds, i.e. the leaves of the foliation have less regularity.

But be aware that even though the stable manifolds constructed by
Béguin and ourselves are C1, this concerns only the regularity of the
leaves of the foliation, and not the dependence on the base point. We
do not get a C1-foliation which would mean a C1-dependece on the base
point, but only a C0-dependence of the (C1-)leaves in the C1-topology.

These aspects play a crucuial role when discussing the genericity of
the foliation-results in BIX, i.e. how generic the set of initial conditions
is both "down on the Kasner circle", as well as in the full space of
trajectories. This involves delicate distinctions between topological vs.
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measure-theoretic genericity, and is subject of current research (for
partial results2, see [38]3).

Secondly, we have also constructed, for the �st time, the 18-cycle as
a relatively simple example for a periodic heteroclinic chain in Bianchi
V I

∗

−1/9 that allows Takens Linearization at all Base points. In addition,
we were able to show that the Combined Linear Local Passage at the
classic 18-cycle is a contraction. This could be seen as a �rst step for
proving a rigorous convergence theorem in Bianchi V I

∗

−1/9.
In order to progress further, a better understanding of the global

passages in Bianchi V I
∗

−1/9 is necessary. This is not an easy task, as
there are less invariant subspaces than in Bianchi IX that restrict the
signs of the heteroclinic orbits, so much more complicated transitions
are possible. A �rst step could be to check in detail which sequence
of signs for the di�erent transitions occurs numerically, leading to a
classi�cation of possible cases. Speculatively, one could think about
the possibility to prove a theorem that for heteroclinic chains with
periodic continued fraction developments and with a clearly de�ned
seqence of signs for the transitions there exist solutions of the Bianchi
V I

∗

−1/9 equations that show this behaviour. But this matter requires
further investigation.

Until now, the application of Dynamical Systems Techniques to
spatially homogeneous cosmological models yielding Ordinary Di�er-
ential Equations has been discussed. However, there has also been
the attempt to apply such techniques to inhomogeneous cosmologies,
yielding Partial Di�erential Equations. The reason is that in a way the
main point4 of the BKL-picture is the question of "locality", asking if

2in [38] it is shown that there are trajectories converging to every formal se-
quence given by a Kasner parameter u with at most polynomially bounded contin-
ued fraction expansion. This covers a set of full measure on the Kasner circle, but
this does not mean that the set of coresponding initial conditions in a neighborhood
of the Kasner circle has full measure. The reason is that there are counterexamples,
i.e. it is possible to construct foliations where a countable set of "leaves" is attached
to a set of base points that has full measure in the base space.

3Uggla comments as follows ([54], p. 11): "[38] uses quite di�erent mathemat-
ical techniques than the other rigorous papers in this area. As a consequence the
results seem to be somewhat controversial in the research community, although the
claims are arguably quite plausible".

4let us again quote the recent survey paper by Uggla on this issue ([54],p.2):
"However, arguably the most central, and controversial, assumption of BKL is their
`locality' conjecture. According to BKL, asymptotic dynamics toward a generic
spacelike singularity in inhomogeneous cosmologies is `local,' in the sense that each
spatial point is assumed to evolve toward the singularity individually and indepen-
dently of its neighbors as a spatially homogeneous model"
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the "complicated" Einstein Equations that are PDEs5 can be approxi-
mated by "simpler/less complicated" ODEs towards the big bang. Un-
til today, mostly numerical and heuristic results exist in inhomogeneous
cosmologies, but very few rigorous mathematical theorems.

In the paper "The past attractor in inhomogeneous cosmologies"
([56]), it is outlined how it could be achieved to make the "local" part of
the BKL-picture more rigorous, compare also [18]. After some results
have been proven in the oscillatory spatially homogeneous setting of
Bianchi IX and in an inhomogeneous, but non-oscillatory setting of
Gowdy-spacetimes (see e.g. [41]), the logical next step seems to be to
consider inhomogeneous oscillatory cosmological models. Arguably the
simplest case is given by the G2-cosmologies, that's why it has received
rising attention in recent years ([11, 30, 32, 7]). However, there is not
a single rigorous convergence theorem comparable to the results that
could be achieved in spatially homogeneous models.

A particular complication in inhomogeneous models is the occur-
rence of spikes, i.e. the formation of spatial structure. Numerical ex-
periments support the conjecture that spikes form the non-local part of
the generalized Mixmaster attractor ([32]). Lim has also found explicit
spike solutions that are compatible with the usual Bianchi II - tran-
sitions, giving rise to a "non-local" version of the mimaster dynamics
involving "spike transitions" ([31]). Recent progress has been achieved
by Heinzle and Uggla, who report more in detail about the role of
the spike solutions as building blocks of such an extended non-local
mixmaster-dynamics ([19]). In addition, they have done a statistical
analysis on the spikes in G2-models ([20]).

A �rst step towards achieving rigorous results in inhomogeneous
oscillatory models could be to investigate the process of spike forma-
tion in G2-models. A good understanding of the underlying spatially
homogeneous model (which is Bianchi V I

∗

−1/9) is probably necessary
for this project, but as Uggla writes in his recent survey: "Unfortu-
nately, there exist no rigorous mathematical results concerning their
past asymptotic dynamics", refering to Bianchi V I

∗

−1/9 ([54], p.11).

In this context, our result in Bianchi V I
∗

−1/9 is an (admittedly small)
step forward. But it is clear that progress in this direction is necessary
in order to increase our understanding of the ancient dynamics of the
Einstein Equations towards the big bang - in order to shed a little more
light on our "tumbling universe" at birth.

5for General Relativity from the viewpoint of Partial Di�erential Equations see
[41, 43]
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APPENDIX A

Symbolic Computations with Mathematica

1. Results on Admissibility of Periodic Heteroclinic Chains
in Bianchi IX

1.1. Constant Continued Fraction Expansion. u=[a,a,...]

For u=[m,a,a,...] and m=1...a, AND a= 1
m= 1 alpha= 16 beta= 4 k1= -1 k2= 1 k3= -1

For u=[m,a,a,...] and m=1...a, AND a= 2
m= 1 alpha= 12 beta= 3 k1= 1 k2= 2 k3= -1
m= 2 alpha= 24 beta= 5 k1= -2 k2= 1 k3= -1

For u=[m,a,a,...] and m=1...a, AND a= 3
m= 1 alpha= 11 beta= 3 k1= 3 k2= 3 k3= -1
m= 2 alpha= 19 beta= 4 k1= 1 k2= 3 k3= -1
m= 3 alpha= 33 beta= 6 k1= -3 k2= 1 k3= -1

For u=[m,a,a,...] and m=1...a, AND a= 4
m= 1 alpha= 11 beta= 3 k1= 5 k2= 4 k3= -1
m= 2 alpha= 18 beta= 4 k1= 4 k2= 5 k3= -1
m= 3 alpha= 28 beta= 5 k1= 1 k2= 4 k3= -1
m= 4 alpha= 45 beta= 7 k1= -4 k2= 1 k3= -1

For u=[m,a,a,...] and m=1...a, AND a= 5
m= 1 alpha= 11 beta= 3 k1= 7 k2= 5 k3= -1
m= 2 alpha= 18 beta= 4 k1= 7 k2= 7 k3= -1
m= 3 alpha= 27 beta= 5 k1= 5 k2= 7 k3= -1
m= 4 alpha= 39 beta= 6 k1= 1 k2= 5 k3= -1
m= 5 alpha= 59 beta= 8 k1= -5 k2= 1 k3= -1

For u=[m,a,a,...] and m=1...a, AND a= 6
m= 1 alpha= 11 beta= 3 k1= 9 k2= 6 k3= -1
m= 2 alpha= 18 beta= 4 k1= 10 k2= 9 k3= -1
m= 3 alpha= 27 beta= 5 k1= 9 k2= 10 k3= -1
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m= 4 alpha= 38 beta= 6 k1= 6 k2= 9 k3= -1
m= 5 alpha= 59 beta= 8 k1= 1 k2= 6 k3= -1
m= 6 alpha= 75 beta= 9 k1= -6 k2= 1 k3= -1

For u=[m,a,a,...] and m=1...a, AND a= 7
m= 1 alpha= 11 beta= 3 k1= 11 k2= 7 k3= -1
m= 2 alpha= 18 beta= 4 k1= 13 k2= 11 k3= -1
m= 3 alpha= 27 beta= 5 k1= 13 k2= 13 k3= -1
m= 4 alpha= 38 beta= 6 k1= 11 k2= 13 k3= -1
m= 5 alpha= 51 beta= 7 k1= 7 k2= 11 k3= -1
m= 6 alpha= 67 beta= 8 k1= 1 k2= 7 k3= -1
m= 7 alpha= 93 beta= 10 k1= -7 k2= 1 k3= -1

For u=[m,a,a,...] and m=1...a, AND a= 8
m= 1 alpha= 11 beta= 3 k1= 13 k2= 8 k3= -1
m= 2 alpha= 18 beta= 4 k1= 16 k2= 13 k3= -1
m= 3 alpha= 27 beta= 5 k1= 17 k2= 16 k3= -1
m= 4 alpha= 38 beta= 6 k1= 16 k2= 17 k3= -1
m= 5 alpha= 51 beta= 7 k1= 13 k2= 16 k3= -1
m= 6 alpha= 66 beta= 8 k1= 8 k2= 13 k3= -1
m= 7 alpha= 84 beta= 9 k1= 1 k2= 8 k3= -1
m= 8 alpha= 113 beta= 11 k1= -8 k2= 1 k3= -1

For u=[m,a,a,...] and m=1...a, AND a= 9
m= 1 alpha= 11 beta= 3 k1= 15 k2= 9 k3= -1
m= 2 alpha= 18 beta= 4 k1= 19 k2= 15 k3= -1
m= 3 alpha= 27 beta= 5 k1= 21 k2= 19 k3= -1
m= 4 alpha= 38 beta= 6 k1= 21 k2= 21 k3= -1
m= 5 alpha= 51 beta= 7 k1= 19 k2= 21 k3= -1
m= 6 alpha= 66 beta= 8 k1= 15 k2= 19 k3= -1
m= 7 alpha= 83 beta= 9 k1= 9 k2= 15 k3= -1
m= 8 alpha= 103 beta= 10 k1= 1 k2= 9 k3= -1
m= 9 alpha= 135 beta= 12 k1= -9 k2= 1 k3= -1
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1.2. 2-Periodic Continued Fraction Expansion. u=[a,b,...]

Now use a= 2 and b= 3

For u=[m,a,b,a,b,...] and m=1...b
m= 1 alpha= 15 beta= 4 k1= 7 k2= 7 k3= -2
m= 2 alpha= 24 beta= 5 k1= 3 k2= 7 k3= -2
m= 3 alpha= 34 beta= 6 k1= -5 k2= 3 k3= -2

For u=[m,b,a,b,a,...] and m=1...a
m= 1 alpha= 11 beta= 3 k1= 2 k2= 5 k3= -3
m= 2 alpha= 19 beta= 4 k1= -7 k2= 2 k3= -3

Now use a= 3 and b= 5

For u=[m,a,b,a,b,...] and m=1...b
m= 1 alpha= 11 beta= 3 k1= 23 k2= 17 k3= -3
m= 2 alpha= 23 beta= 5 k1= 23 k2= 23 k3= -3
m= 3 alpha= 33 beta= 6 k1= 17 k2= 23 k3= -3
m= 4 alpha= 46 beta= 7 k1= 5 k2= 17 k3= -3
m= 5 alpha= 60 beta= 8 k1= -13 k2= 5 k3= -3

For u=[m,b,a,b,a,...] and m=1...a
m= 1 alpha= 11 beta= 3 k1= 13 k2= 13 k3= -5
m= 2 alpha= 18 beta= 4 k1= 3 k2= 13 k3= -5
m= 3 alpha= 27 beta= 5 k1= -17 k2= 3 k3= -5

Now use a= 1 and b= 2

For u=[m,a,b,a,b,...] and m=1...b
m= 1 alpha= 16 beta= 4 k1= 2 k2= 3 k3= -1
m= 2 alpha= 25 beta= 5 k1= -1 k2= 2 k3= -1

For u=[m,b,a,b,a,...] and m=1...a
m= 1 alpha= 12 beta= 3 k1= -3 k2= 1 k3= -2

Now use a= 2 and b= 4

For u=[m,a,b,a,b,...] and m=1...b
m= 1 alpha= 15 beta= 4 k1= 12 k2= 10 k3= -2
m= 2 alpha= 24 beta= 5 k1= 10 k2= 12 k3= -2
m= 3 alpha= 34 beta= 6 k1= 4 k2= 10 k3= -2

82



m= 4 alpha= 47 beta= 7 k1= -6 k2= 4 k3= -2

For u=[m,b,a,b,a,...] and m=1...a
m= 1 alpha= 11 beta= 3 k1= 2 k2= 6 k3= -4
m= 2 alpha= 18 beta= 4 k1= -10 k2= 2 k3= -4

1.3. 3-Periodic Continued Fraction Expansion. u=[a,b,c,...]

Use a= 1 and b= 1 and c=2

For u=[m,b,c,a,...] and m=1...a
m= 1 alpha= 16 beta= 4 k1= 5 k2= -2 k3= 3

For u=[m,c,a,b,...] and m=1...b
m= 1 alpha= 12 beta= 3 k1= 2 k2= -3 k3= 3

For u=[m,a,b,c,...] and m=1...c
m= 1 alpha= 16 beta= 4 k1= -3 k2= -5 k3= 2
m= 2 alpha= 24 beta= 5 k1= 3 k2= -3 k3= 2

Use a= 3 and b= 3 and c=2

For u=[m,b,c,a,...] and m=1...a
m= 1 alpha= 11 beta= 3 k1= -23 k2= -22 k3= 7
m= 2 alpha= 19 beta= 4 k1= -10 k2= -23 k3= 7
m= 3 alpha= 33 beta= 6 k1= 17 k2= -10 k3= 7

For u=[m,c,a,b,...] and m=1...b
m= 1 alpha= 15 beta= 4 k1= -22 k2= -23 k3= 7
m= 2 alpha= 24 beta= 5 k1= -7 k2= -22 k3= 7
m= 3 alpha= 34 beta= 6 k1= 22 k2= -7 k3= 7

For u=[m,a,b,c,...] and m=1...c
m= 1 alpha= 11 beta= 3 k1= -7 k2= -17 k3= 10
m= 2 alpha= 23 beta= 5 k1= 23 k2= -7 k3= 10

Use a=b=c=1 (consistency check):

For u=[m,b,c,a,...] and m=1...a
m= 1 alpha= 16 beta= 4 k1= 2 k2= -2 k3= 2
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For u=[m,c,a,b,...] and m=1...b
m= 1 alpha= 16 beta= 4 k1= 2 k2= -2 k3= 2

For u=[m,a,b,c,...] and m=1...c
m= 1 alpha= 16 beta= 4 k1= 2 k2= -2 k3= 2

Use a=b=c=3 (consistency check):

For u=[m,b,c,a,...] and m=1...a
m= 1 alpha= 11 beta= 3 k1= -30 k2= -30 k3= 10
m= 2 alpha= 19 beta= 4 k1= -10 k2= -30 k3= 10
m= 3 alpha= 33 beta= 6 k1= 30 k2= -10 k3= 10

For u=[m,c,a,b,...] and m=1...b
m= 1 alpha= 11 beta= 3 k1= -30 k2= -30 k3= 10
m= 2 alpha= 19 beta= 4 k1= -10 k2= -30 k3= 10
m= 3 alpha= 33 beta= 6 k1= 30 k2= -10 k3= 10

For u=[m,a,b,c,...] and m=1...c
m= 1 alpha= 11 beta= 3 k1= -30 k2= -30 k3= 10
m= 2 alpha= 19 beta= 4 k1= -10 k2= -30 k3= 10
m= 3 alpha= 33 beta= 6 k1= 30 k2= -10 k3= 10

1.4. Pre-Periodic Sequences. u=[m,b,a,b,a,...] and u=[m,a,b,c,...]

Now use a= 3, b= 2 and M= 5 for u=[m,b,a,b,a,...], m=1...M

m= 1 alpha= 15 beta= 4 k1= 7 k2= 7 k3= -2
m= 2 alpha= 24 beta= 5 k1= 3 k2= 7 k3= -2
m= 3 alpha= 34 beta= 6 k1= -5 k2= 3 k3= -2
m= 4 alpha= 47 beta= 7 k1= -17 k2= -5 k3= -2
m= 5 alpha= 61 beta= 8 k1= -33 k2= -17 k3= -2

Now use a= 1, b= 1 and c= 2 and M= 3 for u=[m,a,b,c,...], m=1...M

m= 1 alpha= 16 beta= 4 k1= -3 k2= -5 k3= 2
m= 2 alpha= 24 beta= 5 k1= 3 k2= -3 k3= 2
m= 3 alpha= 35 beta= 6 k1= 13 k2= 3 k3= 2
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We can summarize our results from Mathematica as follows, where
the smoothness of the coordinate change is set to one (k = 1 in the
Takens Theorem):

• for constant contiued fraction expansions the conditions are
violated in the cases u = [m, a, a, ...] for a = 1...9, so there
is no simple in�nite periodic heteroclinic chain with constant
continued fraction development. We see, for example, in the
case u = [1, 1, ...] of the 3-cycle, it holds that (k1, k2, k3) =
(−1, 1,−1), which means that λ2 = λ1 + λ3, which can be
checked directly and serves as a consistency check.
• for 2-periodic continued fractions like u = [2, 3, 2, 3, ...] or u =

[3, 5, 3, 5, ...], the Resonance Sign Condition (RSC) is violated,
i.e. Takens-Linearization is possible. But note that for this
argument to work, we have to require the coe�cients to be
greater than one, even after cancelling out a possible common
factor. This is illustrated by the examples u = [1, 2, 1, 2, ...]
and u = [2, 4, 2, 4, ...].
• For u = [1, 1, 2, 1, 1, 2, ...], the RSC is also violated, illustrat-
ing the fact that we don't have to require the coe�cients to
be greater than one if the period is greater than two. For
u = [3, 3, 2, 3, 3, 2, ...], the RSC is also violated. However, even
without using this fact, the chain would qualify for Takens Lin-
earization, as the sum of the order of the resonances is always
greater than the required α at all base points.
• We have also included the examples for u = [a, b, c, a, b, c, ...]
with a = b = c = 1 and a = b = c = 3 as consistency check:
the formulas remain correct, but due to a common factor in
the resulting coe�cients, there is an earlier resonance that
we already found in the section on constant contined fraction
expansions.
• the 1-pre-periodic sequences u = [3, 1, 1, 2, 1, 1, 2, ...] and u =

[5, 3, 2, 3, 2, ...] show that if the �rst coe�cientm is bigger than
the ones that follow, it cannot be assured that the NRC's are
met: In the �rst case, this fails for m = 3, in the second case
for m = 4 and m = 5, which means that Takens Linearization
is not possible.
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2. Results on Non-Resonance-Conditions and CLLP for
Heteroclinic Cycles in Bianchi V I

∗

−1/9

2.1. Takens Linearization at the Base Points of the 3-Cycle.
For u=[m,a,a,...] and m=1...a with the following PARAMETERS:
a= 1, k= 1 (k=1 means smoothness is C1)

m= 1
Sektor 1 alpha= 22 beta= 3 k= 2,0,1
Sektor 2 alpha= 14 beta= 5 k= -2,0,1
Sektor 3 alpha= 9 beta= 3 k= 2,4,1
Sektor 4 alpha= 15 beta= 6 k= 2,0,1
Sektor 5 alpha= 16 beta= 3 k= -2,0,1
Sektor 6 alpha= 17 beta= 8 k= 2,4,1

2.2. Takens Linearization at the Base Points of the 18-
Cycle. We �rst give the coe�cient matricies for the eigenvalues in the
other sectors not part of the 3-cycle (see chapter 5, section 1.2):

MS3 =

 0 −3 6
6 −6 6
3 0 0

 ,MS4 =

 −3 3 0
0 6 −6
3 0 0

 ,MS6 =

 0 −3 6
−6 0 6
−3 3 0


For u=[m,a,b,a,b,...] and m=1...b with the following PARAMETERS:
a= 3 b= 5 k= 1 (k=1 means smoothness is C1)

m= 1
Sektor 1 alpha= 34 beta= 3 k= {-46,-80,-37}
Sektor 2 alpha= 11 beta= 4 k= {-34,-80,-37}
Sektor 3 alpha= 8 beta= 3 k= {6,-40,-37}
Sektor 4 alpha= 25 beta= 10 k= {6,-28,-37}
Sektor 5 alpha= 25 beta= 3 k= {-34,-28,-37}
Sektor 6 alpha= 30 beta= 14 k= {-46,-40,-37}
m= 2
Sektor 1 alpha= 15 beta= 3 k= {-46,-92,-43}
Sektor 2 alpha= 17 beta= 6 k= {-46,-92,-43}
Sektor 3 alpha= 13 beta= 4 k= {6,-40,-43}
Sektor 4 alpha= 10 beta= 4 k= {6,-40,-43}
Sektor 5 alpha= 11 beta= 3 k= {-46,-40,-43}
Sektor 6 alpha= 10 beta= 5 k= {-46,-40,-43}
m= 3
Sektor 1 alpha= 16 beta= 3 k= {-34,-80,-37}
Sektor 2 alpha= 22 beta= 8 k= {-46,-80,-37}
Sektor 3 alpha= 15 beta= 4 k= {6,-28,-37}
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Sektor 4 alpha= 12 beta= 4 k= {6,-40,-37}
Sektor 5 alpha= 13 beta= 3 k= {-46,-40,-37}
Sektor 6 alpha= 9 beta= 5 k= {-34,-28,-37}
m= 4
Sektor 1 alpha= 20 beta= 3 k= {-10,-44,-19}
Sektor 2 alpha= 26 beta= 9 k= {-34,-44,-19}
Sektor 3 alpha= 21 beta= 5 k= {6,-4,-19}
Sektor 4 alpha= 14 beta= 4 k= {6,-28,-19}
Sektor 5 alpha= 15 beta= 3 k= {-34,-28,-19}
Sektor 6 alpha= 11 beta= 6 k= {-10,-4,-19}
m= 5
Sektor 1 alpha= 23 beta= 3 k= {26,16,11}
Sektor 2 alpha= 31 beta= 11 k= {-10,16,11}
Sektor 3 alpha= 23 beta= 5 k= {6,32,11}
Sektor 4 alpha= 19 beta= 5 k= {6,-4,11}
Sektor 5 alpha= 17 beta= 3 k= {-10,-4,11}
Sektor 6 alpha= 13 beta= 7 k= {26,32,11}

For u=[m,b,a,b,a,...] and m=1...a with the following
PARAMETERS: a= 3 b= 5 k= 1 (k=1 means smoothness is C1)

m= 1
Sektor 1 alpha= 50 beta= 3 k= {-26,-52,-21}
Sektor 2 alpha= 11 beta= 4 k= {-26,-52,-21}
Sektor 3 alpha= 11 beta= 4 k= {10,-16,-21}
Sektor 4 alpha= 38 beta= 15 k= {10,-16,-21}
Sektor 5 alpha= 37 beta= 3 k= {-26,-16,-21}
Sektor 6 alpha= 47 beta= 21 k= {-26,-16,-21}
m= 2
Sektor 1 alpha= 16 beta= 3 k= {-6,-32,-11}
Sektor 2 alpha= 17 beta= 6 k= {-26,-32,-11}
Sektor 3 alpha= 12 beta= 4 k= {10,4,-11}
Sektor 4 alpha= 10 beta= 4 k= {10,-16,-11}
Sektor 5 alpha= 12 beta= 3 k= {-26,-16,-11}
Sektor 6 alpha= 12 beta= 6 k= {-6,4,-11}
m= 3
Sektor 1 alpha= 16 beta= 3 k= {34,28,19}
Sektor 2 alpha= 20 beta= 7 k= {-6,28,19}
Sektor 3 alpha= 14 beta= 4 k= {10,44,19}
Sektor 4 alpha= 11 beta= 4 k= {10,4,19}
Sektor 5 alpha= 13 beta= 3 k= {-6,4,19}
Sektor 6 alpha= 9 beta= 5 k= {34,44,19}
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2.3. CLLP for the Classic 18-Cycle. The classic 18-cycle has
the sector sequence 4343-425-43434343-425, i.e. we start in sector 4
with u=[3,5,3,5,...] which is around 3.18819:

Sector 4, u= 3.18819
Passage A: GP from Sector 4 to 3. In sector 4, the eigenvalues are:
lc= 1.5418 lt= 1.91557 ln= -1.33278 la= 0.209019
Passage A: GP from Sector 3 to 4. In sector 3, the eigenvalues are:
lc= -2.02211 lt= 3.44689 ln= 2.39822 la= 0.37611
The Eigenvalues are {1.4570,1.0000}
The Eigenvectors are {{0.167325,1.0000},{0,1.0000}}

Sector 4, u= 2.18819
Passage A: GP from Sector 4 to 3. In sector 4, the eigenvalues are:
lc= 2.02211 lt= 1.42478 ln= -1.646 la= 0.37611
Passage A: GP from Sector 3 to 4. In sector 3, the eigenvalues are:
lc= -2.81366 lt= 3.15683 ln= 3.64699 la= 0.833333
The Eigenvalues are {1.8416,1.0000}
The Eigenvectors are {{0.62500,1.0000},{0,1.0000}}

Sector 4, u= 1.18819
Passage B2: GP from Sector 4 to 2.In sector 4,the eigenvalues are:
lc= 2.81366 lt= 0.343171 ln= -1.98032 la= 0.833333
Passage B2: GP from Sector 2 to 5.In sector 2,the eigenvalues are:
lc= -3.37457 lt= 1.00965 ln= 5.82633 la= 2.45176
Passage B2: tGP from Sector 5 to 4.In sector 5,the eigenvalues are:
lc= 3.37457 lt= -2.36492 ln= -0.922814 la= 2.45176
The Eigenvalues are {3.1761,-1.9879}
The Eigenvectors are {{1.01227,1.0000},{-0.239459,1.0000}}

Sector 4, u= 5.31366
Passage A: GP from Sector 4 to 3. In sector 4, the eigenvalues are:
lc= 1.00965 lt= 2.36492 ln= -0.922814 la= 0.0868342
Passage A: GP from Sector 3 to 4. In sector 3, the eigenvalues are:
lc= -1.20737 lt= 3.41557 ln= 1.33278 la= 0.125411
The Eigenvalues are {1.2318,1.0000}
The Eigenvectors are {{0.045618,1.0000},{0,1.0000}}

Sector 4, u= 4.31366
Passage A: GP from Sector 4 to 3. In sector 4, the eigenvalues are:
lc= 1.20737 lt= 2.2082 ln= -1.08196 la= 0.125411
Passage A: GP from Sector 3 to 4. In sector 3, the eigenvalues are:
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lc= -1.49614 lt= 3.45384 ln= 1.6923 la= 0.196156
The Eigenvalues are {1.3018,1.0000}
The Eigenvectors are {{0.075222,1.0000},{0,1.0000}}

Sector 4, u= 3.31366
Passage A: GP from Sector 4 to 3. In sector 4, the eigenvalues are:
lc= 1.49614 lt= 1.9577 ln= -1.29998 la= 0.196156
Passage A: GP from Sector 3 to 4. In sector 3, the eigenvalues are:
lc= -1.94792 lt= 3.45473 ln= 2.29407 la= 0.346154
The Eigenvalues are {1.4322,1.0000}
The Eigenvectors are {{0.150000,1.0000},{0,1.0000}}

Sector 4, u= 2.31366
Passage A: GP from Sector 4 to 3. In sector 4, the eigenvalues are:
lc= 1.94792 lt= 1.50681 ln= -1.60176 la= 0.346154
Passage A: GP from Sector 3 to 4. In sector 3, the eigenvalues are:
lc= -2.69398 lt= 3.23295 ln= 3.43668 la= 0.742693
The Eigenvalues are {1.7612,1.0000}
The Eigenvectors are {{0.49035,1.0000},{0,1.0000}}

Sector 4, u= 1.31366
Passage B2: GP from Sector 4 to 2.In sector 4, the eigenvalues are:
lc= 2.69398 lt= 0.538969 ln= -1.95129 la= 0.742693
Passage B2: GP from Sector 2 to 5.In sector 2, the eigenvalues are:
lc= -3.45737 lt= 1.5418 ln= 5.58196 la= 2.12459
Passage B2: GP from Sector 5 to 4.In sector 5, the eigenvalues are:
lc= 3.45737 lt= -1.91557 ln= -1.33278 la= 2.12459
The Eigenvalues are {2.8062,-1.4925}
The Eigenvectors are {{2.03045,1.0000},{-0.262732,1.0000}}

Sector 4, u= 3.18819
The Eigenvalues are {514.49,0.55783}
The Eigenvectors are {{0.448591,1.0000},{-0.414926,1.0000}}

89



Zusammenfassung: Wir haben gezeigt, dass es für zulässige pe-
riodische heterokline Ketten Lösungen des Bianchi IX kosmologischen
Modells gibt, welche gegen die Kette in Richtung Urknall konvergieren,
genauer eine C1-stabile-Mannigfaltigkeit solcher Lösungen. Des weit-
eren konnten wir die Existenz einer periodischen heteroklinen Kette
im Bianchi V I

∗

−1/9 zeigen, welche die notwendigen Nicht-Resonanz-
Bedingungen erfüllt, um eine Linearisierung mittels des Takens Lin-
earisierungssatzes an allen Basispunkten zuzulassen.

Hiermit erkläre ich, dass ich die vorgelegte Dissertation eigenständig
verfasst und keine anderen als die im Literaturverzeichnis angegebenen
Quellen benutzt habe.

(Johannes Buchner)
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