
Chapter 8

Gaze Control

8.1 Introduction

In the robotics area, visual tracking is an important and difficult problem there-
fore is necessary to have a robust and efficient control algorithm which presents
immunity characteristics to stochastic direction and speed changes of the object
to be tracked. Also is important count with a segmentation algorithm which
be able to tolerate changes in the intensity of light. We describe in this chapter
the implementation of fuzzy controllers based on the fuzzy condensed algo-
rithm. For this thesis we used two fuzzy condensed algorithms running in a
PC to control a robot’s head which tracks a human face. We describe the main
lines of the fuzzy condensed algorithm as well as the LVQ neural networks ar-
chitecture employed and the implementation, the fuzzy condensed controller
performance in comparison to a PID controller and real time results.

Fuzzy logic (as it was explained in the chapter 5) allows partial truths and
multivalue truths. It is therefore especially advantageous for problems which
cannot be easily represented by mathematical modelling because data is either
unavailable, incomplete, or the process is too complex. The real-world lan-
guage used in fuzzy control enables the incorporation of approximate human
logic into computers. Using linguistic modelling, as opposed to mathemati-
cal modelling, greatly simplifies system design and modification. It generally
leads to quicker development cycles, easy programming, and fairly accurate
control. However it is important to underline the fact that fuzzy logic solutions
are usually not aimed at achieving the computational precision of traditional
techniques, but aims at finding acceptable solutions in shorter time.

8.2 Fuzzy condensed control scheme

In this chapter the fuzzy condensed algorithm is used as described in [121](fuzzy
PD) witch consists of only 4 rules and has the structure illustrated in the Fig.
8.1.
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Figure 8.1: Fuzzy-condensed structure

The gains Gu, Ge and Gr are determined by tunning and they correspond
respectively to the output gains, the error and error rate gains. The u∗ is the
defuzzyficated output, that means the “crisp output”.

8.2.1 Fuzzyfication

As is shown in Fig. 8.1, there are two inputs to the controller: error and rate.
The error is defined as:

error = setpoint− y (8.1)

Rate it is defined as it follows:

rate = (ce− pe)/sp (8.2)

Where ce is the current error, pe is the previous error and sp is the sampling
period. Current and previous error, are referred to an error without gain. The
fuzzy controller has a single output, which is used to control the process. The
input and output membership functions for the fuzzy controller are shown in
Fig. 8.2 and Fig. 8.3, respectively. Fig. 8.2 shows that each input has two
linguistic terms. For the error input are: Ge ∗ negative error (en) and Ge ∗
positive error (ep) and for the rate input are: Gr ∗ negative rate (rn) and Gr ∗
positive rate (rp), while the output fuzzy terms are shown in Fig. 8.3 and they
are: Negative output (on), Zero output (oz) and Positive output (op).

As shown in Fig. 8.2, the same function is applied for error and rate but
with different scaling factors: Ge and Gr respectively.

In Fig. 8.2 and Fig. 8.3, H and L are two positive constants to be determined.
For convenience we will take H=L to reduce the number of control parameters
to be determined.

The membership functions for the input variables, error and rate, are de-
fined by the following expressions [3]:

µep =
L + (Ge ∗ error)

2L
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Figure 8.3: Output membership functions
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8.2. FUZZY CONDENSED CONTROL SCHEME

µrp =
L + (Gr ∗ rate)

2L

µen =
L− (Ge ∗ error)

2L

µrn =
L− (Gr ∗ rate)

2L
(8.3)

8.2.2 Fuzzy rules

Since here error will correspond to Ge ∗ error and rate to Gr ∗ rate.
Exist four rules to evaluate the condense fuzzy controller [4]:

R1. If error is ep and rate is rp then output is op

R2. If error is ep and rate is rn then output is oz

R3. If error is en and rate is rp then output is oz

R4. If error is en and rate is rn then output is on

The determination of these rules can be accomplished easily if the system
evolution is analyzed in the different operation points. For example, when the
error and the rate increase (rule 1), it means that the system response decreases
and moves away from the setpoint for this reason is necessary to apply a positive
stimulus that allows to increase the system output. The figure 8.4 shows the
determination of the different rules based on the system response.

8.2.3 Defuzzyfication

The defuzzyfication method used is the gravity center, in this case is:

u =
−H(µR4) + 0(µR2 + µR3) + H(µR1)

µR1 + µR2 + µR3 + µR4
(8.4)

For the fuzzy condensed controller proposed, the input error and rate val-
ues ranges can be represented in 20 input region (IC), like is shown in Fig. 8.5.

If the membership functions are evaluated, the 4 control rules, H=L and the
defuzzyfication is applied in each one of the 20 inputs combinations, then 9
equations can be obtained [123], which can determine the control signal u that
should be applied, depending on the region in which is. In other words, to
implement the fuzzy condensed controller, only will be necessary to know the
region in which the inputs variables are and later evaluate the corresponding
equation for this region. For example the first equation acts in regions IC1,
IC2, IC5, IC6. The figure 8.6 shows the control surface of the fuzzy condensed
controller considering H=L=1.
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Figure 8.4: Determination of the different rules based on the system response.
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Figure 8.5: Input regions
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Figure 8.6: Control surface of the fuzzy condensed controller considering
H=L=1.
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Figure 8.7: Architecture of the color segmentation system

8.3 Architecture of the color segmentation System

The core of the algorithm is a LVQ network whose inputs are connected di-
rectly with the pixel-vector of the image I (in RGB format) and its outputs are
connected directly to the decision function fd, which produces an output of 1
or 0 depending of if the color corresponds to the object to be segmented form-
ing in this way a new vector image I’. The Fig. 8.7 shows a scheme of the
segmentator.

Considering that the LVQ net is configured with N output neurons, then
it would be possible train the competitive net to learn the configuration space
and the color pixels topology, described as the vector p with elements pR , pG
and pB coming from the image. For the supervised training of the linear net,
we suppose that the image I contains an Object O to be segmented, being pO

a pixel corresponding to the object, we train the linear network in such a way
that the class S2 (of this pixel) corresponds to the assigned (in a supervised
way) for the neuron N/2 of the linear network.

The idea is that the color to be segmented is located halfway of the network,
while the similar colors are located in the neighboring neurons. In such a way
that if exists a vector p1 that belongs to the object but for the illumination con-
ditions and noise could be classified in the neighborhood of the neuron N/2.

The classification achieved by the LVQ network gives a vector of elements
categorized by S2 of N elements corresponding to the N classes. Each element
of the S2 vector could have 2 possible values, 1 or 0 and only an element from
each vector could be 1, while the other elements will be 0. Then for the object
to be segmented, the activation of the neurons is concentrated in the middle of
the vector, that is the neurons nearest to the N/2 will have a bigger possibility
to be activated than the other ones corresponding to the color to be segment.

Considering the previous problem is necessary to define a function fd able
to define neuron´s density which will be taken to consider if a pixel corre-
sponds or not to the color to be segmented, this function will be called in this
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Figure 8.8: Decision function model

work decision function. It is possible to formulate many functions which could
solve the decision problem satisfactorily, however the Gaussian function has
been chosen by its well-known properties, although it is possible to use other,
including non-simmetrical distributions. The Fig. 8.8 shows graphically the
function used.

The equation 8.5 shows mathematically this function where g is the number
of the activated neuron, µ is N/2 and σ is the standard deviation. Therefore,
fdhas only a calibration parameter represented by σ which determines the gen-
eralization capacity of the complete system. Thus, if the value of σ is chosen
small enough, the segmentation capacity will be more selective than in the case
of a bigger σ. For the final result the decision function was evaluated with a
threshold of 0.7.

fd(g) =
1√
2πσ

exp

(
− (g − µ)2

2σ2

)
(8.5)

8.4 Implementation

The goal of the robotic head system is to be in permanent contact with the per-
son’s face, to achieved that, a face localization algorithm is used [124], it calcu-
lates the face’s central point, then the controller acts on the difference between
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Axis Ge Gr Gu L
x 2.5 4 0.1 100
y 6 4 0.1 100

Table 8.1: Obtained controller parameters

this point and the image’s central point. The Fig. 8.9a shows the localization
process and Fig. 8.9b the tracking system.

A condensed controller allows real time work for each captured frame, in
this case even to a 30 Hz. The system was implemented with an USB Webcam
with a 352x244 resolution, therefore the central point of the image and also the
fuzzy controller set point is 176 for x and 144 for y. The complete vision and
control system was totally implemented in C++

The robot head (section 6.6) consists of two rc-servo motors to control each
axis movement. The mathematical model for the tracking system was imple-
mented using Simulink as shown in Fig. 8.10, where Ea represents the applied
voltage and Pos the position.

Two fuzzy controllers were implemented and tuned to different dynamic
parameters to control each axis. For violent change-direction movements (when
the position’s rate value was considerably high) the system experimented some
difficulties, which were eliminated implementing a Kalman’s filter allowing
the smooth position’s rate. The controller’s parameters were experimentally
obtained, the Table 1 shows the values.

Diverse tests were realized to prove the controller’s performance, these are
described as follows:

• There were applied movements in x axis (avoiding to make them in y
axis), simulating a “step signal” in x direction. The Fig. 8.11(a) shows
the head’s position, the motor’s signal and the camera’s position for this
case. Fig. 8.11(b) shows the head’s movements map in x axis.

• There were applied movements in y axis (avoiding to make them in x
axis), simulating a “step signal” in y direction. The Fig. 8.12 (a) shows
the head’s position, the motor’s signal and the camera’s position for this
case. Fig. 8.12 (b) shows the head’s movements map in y axis.

• There were applied violent movements in both axes to prove the system’s
robustness. The Fig. 8.13 (a)-(b) shows the head’s position, the motor’s
signal and the camera’s position for this case. Fig. 8.14 shows the head’s
movements map.
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Figure 8.9: (a) Localization process. (b) Tracking System
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Figure 8.10: Tracking system model implemented in Simulink.

8.5 Conclusions

The fuzzy condensed controller showed a better performance compared to the
PID controller. Although the PID controller behavior seems similar to the fuzzy
condensed controller behavior for slow object movements, when the object to
be tracked move faster, the PID controller’s behavior showed a bigger settling-
time, which means: the PID controller was slower to track the object as shown
in the Fig. 8.15 where can also be observe that after an abrupt x axis change
position the system presented extended oscillations, situation that doesn’t hap-
pen with the condensed fuzzy controller as it was shown during the tests ap-
plied for abrupt movements in both axis in Fig. 8.11 to Fig. 8.12.
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Figure 8.11: (a) Movements in x axis. (b) Movements map in x axis
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Figure 8.12: (a) Movements in y axis. (b) Movements map in y axis.
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Figure 8.13: (a) Movements in x axis. (b) Movements map in y axis
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Figure 8.14: Movements map for both axis
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Figure 8.15: PID settling-time

191




