Chapter 5

Neural Networks in Face
Localization

5.1 Introduction

In computer vision applications based on color-segmentation there is a com-
mon problem: the sensitivity to changes in the intensity of light. This is a
result of the inability of some algorithms to tolerate variations presented in the
color hue which correspond, in fact, to the same object.

Jepson, McKenna and Raja [215]-[217] have already discussed color seg-
mentation using Gaussian distributions and mixture models. Isard [218] have
employed color information in particle filtering. Recently, Perez [219] intro-
duced an approach that also uses color histograms and a particle filtering frame-
work for multiple object tracking. The two independently proposed methods
differ in the initialization of the tracker, the model update, the region shape
and the observation of the tracking performance. Bradski [220] modified the
mean-shift algorithm (Camshift) which operates on probability distributions to
track colored objects in video frame sequences. The color image data has to be
represented as a probability distribution; normally it is used color histograms
to accomplish this.

Learning Vector Quantization (LVQ) networks learn to recognize groups of
similar input vectors in such a way that neurons physically near to each other
in the neuron layer respond to similar input vectors. The learning is super-
vised, the inputs vectors into target classes are chosen by the user. In this the-
sis a new color-segmentation algorithm based on LVQ is presented. It involves
neural networks that operate directly on the image pixels with a decision func-
tion.

In comparison, our LVQ algorithm has the advantage of working only with
image pixels, without using any dynamic model or probability distribution,
that which means processing speed and implementation easiness. LVQ algo-
rithm has been applied to spotting and tracking human faces, and shows more
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Figure 5.1: Supervised learning in Neural Networks

robustness than other standard algorithms as Camshift for the same task.

5.2 Neural Networks

Neural networks are composed of simple elements operating in parallel. These
elements are inspired by biological systems. As in nature, the network func-
tion is determined by the connections between elements. We can train a neural
network to perform a particular function by adjusting the values of the con-
nections (W weights) between elements.

Commonly neural networks are adjusted, or trained, so that a particular
input leads to a specific target output. Such a situation is shown in the figure
5.1. There, the network is adjusted, based on a comparison of the output and
the target, until the network output matches the target. Typically many such
input/target pairs are used, in this supervised learning, to train a network.

Batch training of a network proceeds by making weight and bias changes
based on an entire set (batch) of input vectors. Incremental training changes
the weights and biases of a network as needed after presentation of each indi-
vidual input vector. Incremental training is sometimes referred to as on line or
adaptive training.

Neural networks have been trained to perform complex functions in vari-
ous fields of application including pattern recognition, identification, classifi-
cation, speech, vision and control systems.

The supervised training methods are commonly used, but other networks
can be obtained from unsupervised training techniques or from direct design
methods. Unsupervised networks can be used, for instance, to identify groups
of data.
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Figure 5.2: Simple neuron model

5.2.1 Simple neuron model

In a neuron the scalar input p is transmitted through a connection that multi-
plies its strength by the scalar weight w, to form the product wp, again a scalar.
Here the weighted input wp is the only argument of the transfer function f,
which produces the scalar output a. The neuron has too a scalar bias, b. We
may view the bias as simply being added to the product wp as shown by the
summing junction or as shifting the function f to the left by an amount b. The
bias is much like a weight, except that it has a constant input of 1, a represen-
tation of this model is in the figure 5.2.

The transfer function net input n, again a scalar, is the sum of the weighted
input wp and the bias b. This sum is the argument of the transfer function
f. Here f is a transfer function, typically a step function or a sigmoid function
(although exist other), which takes the argument n and produces the output a.

Note that w and b are both adjustable scalar parameters of the neuron. The
central idea of neural networks is that such parameters can be adjusted so that
the network exhibits some desired or interesting behavior. Thus, we can train
the network to do a particular job by adjusting the weight or bias parameters,
or perhaps the network itself will adjust these parameters to achieve some de-
sired end.

5.2.2 Network Architecture.

Two or more of the neurons shown earlier can be combined in a layer, and a
particular network could contain one or more such layers.

A one-layer network with R input elements and S neurons is shown in the
figure 5.3. In this network, each element of the input vector p is connected to
each neuron input through the weight matrix W. The ith neuron has a summer
that gathers its weighted inputs and bias to form its own scalar output n; . The
various n; taken together form an S-element net input vector n. Finally, the
neuron layer outputs form a column vector a. We show the expression for a
at the bottom of the figure. Note that it is common for the number of inputs
to a layer to be different from the number of neurons (i.e., R and S). A layer
is not constrained to have the number of its inputs equal to the number of its
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Figure 5.3: A one-layer network with R input elements and S neurons.

neurons.

The input vector elements enter the network through the weight matrix W.
Note that the row indices on the elements of matrix W indicate the destination
neuron of the weight, and the column indices indicate which source is the input
for that weight. Thus, the indices in say that the strength of the signal from the
second input element fo the first (and only) neuron is w; 2.

The S neuron R input one-layer network also can be drawn in abbreviated
notation as is shown in the figure 5.4. Here p is an R length input vector, W
is an S x R matrix, and a and b are S length vectors. As defined previously,
the neuron layer includes the weight matrix, the multiplication operations, the
bias vector b, the summer, and the transfer function boxes.

A network can have several layers. Each layer has a weight matrix W (al-
though in occasions W lis called IW because is in contact with the inputs of the
net), a bias vector b, and an output vector a. To distinguish between the weight
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Figure 5.4: Abbreviated notation of one-layer network.
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Figure 5.5: Two-layer network.

matrices, output vectors, etc., for each of these layers in the figures, we append
the number of the layer as a superscript to the variable of interest. We can see
the use of this layer notation in the two-layer network shown in the figure 5.5.

5.2.3 Learnig Algorithm.

We define a learning rule as a procedure for modifying the weights and biases
of a network. (This procedure may also be referred to as a training algorithm.)
The learning rule is applied to train the network to perform some particular
task. Learning rules fall into two broad categories: supervised learning, and
unsupervised learning.

In supervised learning, the learning rule is provided with a set of examples
(the training set) of proper network behavior where is an input to the network,
and is the corresponding correct (farget) output. As the inputs are applied to
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the network, the network outputs are compared to the targets. The learning
rule is then used to adjust the weights and biases of the network in order to
move the network outputs closer to the targets.

In unsupervised learning, the weights and biases are modified in response
to network inputs only. There are no target outputs available. Most of these
algorithms perform clustering operations. They categorize the input patterns
into a finite number of classes. This is especially useful in such applications as
vector quantization.

5.3 Competitive Networks

Competitive Networks [77] learn to classify input vectors according to how
they are grouped in the input space. They differ from another networks in
that neighboring neurons learn to recognize neighboring sections of the input
space. Thus, competitive layers learn both the distributions and topology of
the input vectors which they are trained on.

The architecture for a competitive network is shown in Fig. 5.6. The | Ndist|
box in the figure accepts the input vector p and the input weight matrix IW
and produces a vector having S elements. The elements are the negative of the
distances between the input vector p and the vector IW. The net value v of the
competitive layer is computed by finding the negative distance between input
vector p and the weight vector IW and then adding the biases b. If, all biases
are zero, the maximum net input that a neuron can have is 0. This occurs when
the input vector p equals the neuron’s weight vector.

The competitive transfer function C' accepts a net value v and returns neu-

108



5.4. LEARNING VECTOR QUANTIZATION NETWORKS

Winner Winner
4— d=1 ——» < d=2 >

Figure 5.7: Left, one dimensional neighborhood of radius d = 1. Right, neigh-
borhood of radius d = 2.

rons outputs of 0 for all neurons except for the winner, the neuron associated
with the most positive element of the input v. Thus, the winner’s output is 1.

The weights of the winning neuron are adjusted with the Kohonen learning
rule. Supposing that the i*" neuron wins, the elements of the i*” row of the
input weight matrix and all neurons within a certain neighborhood Ni(d) of
the winning neuron are adjusted as shown the Eq.5.1.

AW (g) = TW (g — 1) + a(p(q) — W' (¢ - 1)) (5.1)

Here « is the learning rate and Ni(d) contains the indices for all of the neu-
rons that lie within a radius d of the it winning neuron. Thus, when a vector p
is presented, the weights of the winning neuron and its closest neighbors move
toward p. Consequently, after many presentations, neighboring neurons will
have learned vectors similar to each others. The winning neuron’s weights are
altered proportional to the learning rate. The weights of neurons in its neigh-
borhood are altered proportional to half the learning rate. In this thesis, the
learning rate and the neighborhood distance (used to determine which neurons
are in the winning neuron’s neighborhood) are not altered during training.

To illustrate the concept of neighborhoods, consider the Fig. 5.7. At left is
shown a one dimensional neighborhood of radius d = 1 around neuron 15, at
right is shown a neighborhood of radius d = 2.

These neighborhoods could be written as:

Nis(1) = (14,15,16), Ny5(2) = (13,14,15,16,17)

5.4 Learning Vector Quantization Networks

An LVQ network [78] has first, a competitive layer and second, a linear layer.
The competitive layer learns to classify input vectors like the networks of the
last section. The linear layer transforms the competitive layer’s classes into
target classifications defined by the user. We refer to the classes learned by
the competitive layer as subclasses and the classes of the linear layer as target
classes. Both the competitive and linear layers have one neuron per class.

109



5.5. ARCHITECTURE OF THE COLOR SEGMENTATION SYSTEM

Competitive network

\ Sli

|Ndist|

|
|
|
|
|
|
|
|
! s
\
: Weight vector IW ° C —»
|
|
|
|
|
|
|
|
|
|
|
|

Input vector p

Figure 5.8: Schematic representation of the LVQ net

Thus, the competitive layer can learn S! classes. These, in turn, are com-
bined by the linear layer to form S? target classes. The LVQ network architec-
ture is shown in the Fig. 5.8.

Summarizing, the LVQ network allows to order classes learned by the com-
petitive network in a final vector more appropriate for the color-segmentation.

5.5 Architecture of the color segmentation System

The core of the algorithm is a LVQ network whose inputs are connected di-
rectly with the pixel-vector of the image I (in RGB format) and its outputs are
connected directly to the decision function fq, which produces an output of 1
or 0 depending of if the color corresponds to the object to be segmented form-
ing in this way a new vector image I'. The Fig. 5.9 shows a scheme of the
segmentator.

Considering that the LVQ net is configured with N output neurons, then
it would be possible train the competitive net to learn the configuration space
and the color pixels topology, described as the vector p with elements pr, pg
and pp coming from the image. For the supervised training of the linear net,
we suppose that the image I contains an Object O to be segmented, being po
a pixel corresponding to the object, we train the linear network in such a way
that the class S? (of this pixel) corresponds to the assigned (in a supervised
way) for the neuron N /2 of the linear network.

The idea is that the color to be segmented is located halfway of the network,
while the similar colors are located in the neighboring neurons. In such a way
that if exists a vector p; that belongs to the object but for the illumination con-
ditions and noise could be classified in the neighborhood of the neuron N/2.

The classification achieved by the LVQ network gives a vector of elements
categorized by S? of N elements corresponding to the N classes. Each element
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Figure 5.9: Architecture of the color segmentation system

of the S? vector could have 2 possible values, 1 or 0 and only an element from
each vector could be 1, while the other elements will be 0. Then for the object
to be segmented, the activation of the neurons is concentrated in the middle of
the vector, that is the neurons nearest to the N/2 will have a bigger possibility
to be activated than the other ones corresponding to the color to be segment.

Considering the previous problem is necessary to define a function fgq able
to define neuron’s density which will be taken to consider if a pixel corre-
sponds or not to the color to be segmented, this function will be called in this
thesis decision function. It is possible to formulate many functions which could
solve the decision problem satisfactorily, however the Gaussian function has
been chosen by its well-known properties, although it is possible to use other,
including non-simmetrical distributions. The Fig. 5.10 shows graphically the
function used.

The equation 5.2 shows mathematically this function where g is the number
of the activated neuron, p is N/2 and o is the standard deviation. Therefore,
fq has only a calibration parameter represented by ¢ which determines the
generalization capacity of the complete system. Thus, if the value of o is chosen
small enough, the segmentation capacity will be more selective than in the case
of a bigger ¢. For the final result the decision function was evaluated with a
threshold of 0.7.

fale) = o exp ( - %;é”) (52)

5.6 Implementation
The implementation is divided in two parts, the net training and the segmen-

tator structure.
In the first part, a net of 30 neurons is chosen for the competitive layer and
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Figure 5.10: Decision function model

also for the linear layer, then a frame of the image is taken containing the object
whose color will be segmented, then a pixel corresponding to the color of this
object is chosen and the training of the LVQ net is made it, allowing that the
pixel-class corresponds to the 15" net class (N/2). During the training it is
used a learning rate o of 0.1 and a distance radius Ni(d) of 3. This conditions
make sure that the winner weights are affected in a reason of 0.1 while three
neurons of its neighbors (in both ways) are affected in a reason of 0.05. The
process of training was made using the neural networks toolbox of Matlab.

In the second part(the segmentator implementation), a decision function
with parameters ;¢ =15 and ¢ =3 was added to the net (above) generated by
the training. The complete system was coded in C++ and tested on a PCx86 at
900 MHz with 128 MBytes RAM, operating in real time on an image of 352x288
pixels surrendered by an USB-Webcam.

To inspect the segmentator robustness, it was tested on face localization.
The segmentator gives an image with a value of 1 in those points that belong
to the segmented object while in other cases this is 0. This is caused as a result
that the object to be segmented in this case, will have an appearance of a white
fleck. Thus, to find the object position it will be necessary to calculate the object
centroid (5) through the zero moment (3) and first degree moment order (4).

Moo = » Y I(z,9), (5.3)
E ]
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Figure 5.11: Center coordinates x. and y..

Mo = Z le(m, y), Moy = Z Zy[(a:,y), (5.4)
z oy z oy

_ Mo Yo = Mo
Moo 7 Moo’
where Moo represents the zero degree moment while of My and Mo,

means the first degree moments of x and y respectively, while x. and y. rep-
resent the center coordinates. The Fig. 5.11 shows this process.

(5.5)

Le

5.7 Neuronal Network Creation and Training in Mat-
lab

5.7.1 Creating a NN in Matlab

Competitive layers and self organizing maps can be created with the Matlab
commands newc and newsom, respectively. Also is possible specify different
topologies for the original neuron locations with the Matlab functions gridtop,
hextop or randtop.

In the neural networks toolbox from Matlab, there are four distinct ways to
calculate distances from a particular neuron to its neighbors. Each calculation
method is implemented with a special function.

In this thesis was used the function dist. It calculates the Euclidian distance
from the home neuron to any other neuron.

Suppose that we want to create a network having input vectors with two
elements that fall in the range 0 to 2 and 0 to 1 respectively. Further suppose
that we want to have 10 neurons in a linear manner 1-by-10 network. The code
to obtain this network is:

net=newsom([0 2; O 1],[1,10]);
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5.7.2 Training a NN in Matlab

Learning, in a self-organizing map, occurs for one vector at the time, inde-
pendent of whether the network is trained directly (with the Matlab function
trainr) or wether it is trained adaptively (with the Matlab function ¢trans). In
either case, learnsom is the self-organizing map, weight learning function in
Matlab.

First, the neuron identifies the winning neuron, the weights of the winning
neuron and then the neighboring neurons are moved closer to the input vector
at each learning step using the self-organizing learning map (Matlab function
learnsom). The parameters can to be modified with the values

LP.order_lIr.
LP.order_steps.
LP.tune_nd.

Learning rate, Nummer of steps and neighborhood distance, respectively.
Thus, we can train the network for 100 epochs, a learning rate of 0.5 and
neighborhood distance of 1. The code is:

net.trainParam.epochs=100;
net.trainParam.order_Ir=0.05;
net.trainParam.tune_nd=1;
net=train(net,P);

5.7.3 Creating and training the Linear Layer

Linear layers can be created with the Matlab command newlin. For example,
we can create a network with two elements that be in the range —1 to 1 and
one output, like is show in the followings commands:

net=newlin([-1 1; -1 1], 1);

Linear networks can be trained to perform linear classification with the Matlab
function train. This function applies to each vector a set of input vectors and
calculates the network weights and bias increments due each of the inputs,
according to learnp Matlab function.

5.7.4 Auxiliary Functions

For the image capture the VF'M utility was used, this Matlab-tool captures
images(in RGB format) in a m * n * 3 matrix(been man the dimensions of the
image and the index 3 the corresponding index for R, G and B). This data
matrix is represented in a integer format and it should be converted to a float
point matrix(double). An example code for an image capture is shown.
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vfm Im=vfm (‘grab’,1);

the captured image will be store in Im. Im should be transform for the training
in a data vector of man type (R, G and B color channels) thats is performance
by the next commands:

R=Im(:,:,1);
V=Im(:,:,2);
A=Im(:,:,3);
[m,n]=size(R);
index=0;

for al=1:m
for an=1:n

data=R(al,an);

datal=V(al,an);

data2=A(al,an);

index=index+1,;

VR(index)=data;

VV(index)=datal,;

VA(index)=data2;

end

end

VP=[VR;VV;VA];

VP=double(VP);
Thus, from VP (the training vector) is possible to perform the training. The
following functions sequens make that:

net=newsom([0 255;0 255;0 255],30);

net.trainParam.epochs=500;

net.trainParam.order_Ir=0.1;

net.trainParam.tune_nd=3;

net=train(net,VP);
Ones, that the competitive neuronal network has been trained than it is triv-
ial to find a point and their correct identification in the data vector and then
make able the supervised training of the lineal network(using the Matlab func-

tion learnp). During the training, practically any parameters combination give
good results.
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It is possible that the data obtained by the neuronal network could be inter-

preted as an image. To prevent this, a function was created, this function allows
to modify the vector format to a man image format, the following commands
show that:

index=0;

for al=1:m

for an=1:n
index=index+1;
data=Image(index);
MR(al,an)=data;
end

end

where Image is the data vector obtained by the neural network.

5.8 Conclusions.

In this section the segmentator results obtained in 3 different parts are pre-
sented.
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o In the learning of the LVQ network was proved the net classification ro-

bustness and its capacity to organize topologically, which shows excellent
results, being able to perform the pixel classification of the image even in
critical cases with very few neurons. The Fig. 5.12(a) shows the obtained
classification results from an image, using a LVQ network with only 10
neurons.

The system was tested to track a human head showing very good results.
The system performance proposed in this work compared with some
other algorithms [75,76] was good with the advantage that is computa-
tionally more efficient, being better for applications where it is required,
besides of the object localization, also to perform complex calculations,
for example the dynamics of a robot structure (that could supports the
vision system). The Fig. 5.12 (b). shows a tracked secuence in the final
application.

The influence of the o parameter in the decision function was demon-
strate, and for this case values of ¢ in the interval of 3 at 5 gave good
results. It can also be said that the robustness of the system can improve
if it were possible to implement an algorithm to adapt the o parameter.
In the Fig. 5.13 (a)-(b) shows the results obtained with different values of
o
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(b)

Figure 5.12: (a) Classification performed by a LVQ network with 10 neurons.
(b) Final secuence of the segmentator used for face tracking
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Figure 5.13: Results considering (a) 0 =4 and (b) o = 1.

e The robustness to the illumination changes of the LVQ algorithm was

compared with the standard algorithm Camshift. For the comparison
test, the algorithms were allowed to run until "track failure" to measure
basic tracking performance. The “track loss” definitions used in the com-
parisons were proposed in [221]; a track is determined to be lost when
either the estimate is sufficiently far from the true track (the "norm test")
or the true measurement does falls outside the gate (the "acceptance test")
for five consecutive time steps. The “track-lifetime” is defined as the
time step at which the track was lost; the track lifetimes for the com-
parison were averaged across all trials. The figure 5.14 shows the results
obtained in the comparison. Both algorithms were tested considering 100
luxes as initial point (that is the average illumination of an office), in this
point the average track lifetime is infinite for both. From that initial point
value measurements were made in both directions, showing that the LVQ
algorithm hat a better robustness, particularly in low illuminations.
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Figure 5.14: Results obtained in the comparison LVQ and Camshift.
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