Aus der Klinik für Strahlenheilkunde Campus Virchow Klinikum

der Medizinischen Fakultät der Charité -

Universitätsmedizin Berlin

DISSERTATION

Noninvasive Darstellung der Koronargefäße mit 16-Mehrzeilenspiralcomputertomografie

Zur Erlangung des akademischen Grades

Doctor medicinae (Dr. med.)

vorgelegt der medizinischen Fakultät der Charité -Universitätsmedizin Berlin

von

Mirko Seidel

aus Strausberg

Dekan: Prof. Dr. Martin Paul

Gutachter: 1. Priv.-Doz. Dr. F. Knollmann

2. Prof. Dr. med. R. Erbel

3. Prof. Dr. med. Th. Vogl

Datum der Einreichung: 04. April 2005

Datum der Promotion: 05. Juni 2007

Datum der Zeugnisübergabe: 23.September 2007

Kurzfassung

Zielsetzung

Eine gute Bildqualität ist zur genauen Beurteilung der Koronargefäße entscheidend. Das Ziel dieser Untersuchung war die Einflussfaktoren auf die Bildqualität in der computertomografischen Angiografie (CTA) auf den neuen 16-Mehrzeilengeräten zu evaluieren und ein Ablaufdiagramm zu entwickeln, welches eine effiziente Darstellung der Koronarien in bester Bildqualität ermöglicht.

Material und Methoden

Bei 32 Patienten beiden Geschlechts, mittleres Alter 54 Jahre, wurden im Rahmen von CT-Untersuchungen des Thorax eine CTA der Herzkranzgefäße durchgeführt. Alle Untersuchungen wurden auf einem 16-Mehrzeilen-CT (LightSpeed16, GE Medical Systems) durchgeführt. Die Rohdaten wurden retrospektiv EKG-gebunden in den RR-Intervallen von 0-90% sowie in Einzel-, 2- und 4-Segmentalgorithmen rekonstruiert. Die Bildqualität der einzelnen Segmente der Koronarien (Einteilung nach AHA) wurde in den axialen Bildern, im Volume Rendering (VR) und in der Advanced Vessel Analysis (AVA) von zwei unabhängigen Betrachtern mit Noten von 1 (sehr gut) bis 6 (nicht darstellbar) bewertet. Zur Abschätzung der Interraterreabilität wurde der Wert κ bestimmt.

Ergebnisse

Von insgesamt 41280 Segmenten konnten 32286 Segmente (total: 78,2%, Axial: 90%, VR: 85%, AVA: 60%) dargestellt werden. Die Interraterreabilität war gut (κ = 0,7). Die Herzkranzgefäße wurden mit einer guten Bildqualität (RCA: 2,7; LMA: 1,7; LAD: 2,5; LCX: 3,1; in Noten von 1-6) in nahezu der gesamten Diastole (50-90% RR-Intervall) abgebildet. Die Mehrsektorprotokolle boten gegenüber dem Einsektoralgorithmus keine bessere

Bildqualität.

Schlussfolgerung

Mit 16-Mehrzeilengeräten konnte die CTA weiter verbessert werden. Es empfiehlt sich

eine Rekonstruktion der Rohdatensätze im Einzel-Segmentalgorithmus im RR-Intervall

von 60-80% und. Zur Diagnose sollten zuerst die axialen Schichten beurteilt und

stenotische Bereiche mit den Werkzeugen der AVA nachbearbeitet werden.

Schlagworte

MSCT, CTA, Koronararterien, KHK

4

Abstract

Purpose

For an accurate evaluation of the coronary arteries a good image quality is crucial. Primary objective was to evaluate the influences on the image quality in the computer-tomographed angiography (CTA) and to develop a flow chart, which makes an efficient visualisation of the coronary arteries possible in optimum image quality.

Material and methods

In 32 patients of both genders, with the average age of 54 years, a CTA of the coronary arteries was performed. All investigations were accomplished on a 16-Multi-Slice-CT (LightSpeed16, GE Medical Systems). The raw data sets were reconstructed retrospectively ECG-gated in the RR intervals of 0-90% as well as in Single -, 2 and 4-Segmented-Algorithms. The image quality of the specific segments of the coronary arteries (classification according to the AHA) was assessed of two blinded independent observers in axial slices, in the Volume Rendering (VR) and in the Advanced Vessel Analysis (AVA) with notes of 1 (very well) to 6 (not assessable). The interobserverreability was calculated by κ .

Results

Of altogether 41280 segments, 32286 (78.2%, axial: 90%, VR: 85%, AVA: 60%) segments could be visualized. Within almost the entire diastole (50-90% of the RR-interval) the coronary arteries could be illustrated with good image quality (RCA: 2.7, LMA: 1.7, LAD: 2.5, LCX: 3.1). Multi-Segmented-Algorithms did not provide better image quality in relation to Single-Segmented-Algorithms. Concordance between both MSCT observers was reasonably good (κ value 0.7).

Conclusion

A reconstruction of the raw data sets is recommended in 60-80% of the RR-interval and with Single-Segmented-Algorithms. For evaluation of the coronaries first the axial slices should be reviewed and suspect segments should be further analysed with the tools of the AVA.

Keywords

MSCT, CTA, Coronary Arteries, CAD

Abkürzungsverzeichnis

ACS Acute Coronary Syndrome

AHA American Heart Association

AVA Advanced Vessel Analysis

CAD Coronary Artery Disease

CCS Canadian Cardiovascular Society

CPS Cardiopulmonary Support

CRP C-reaktives Protein

CT Computertomografie

CTA computertomografische Angiografie

DES Drug-eluting Stent

DD Differentialdiagnose

EBT Electron Beam Tomography

EKG Elektrokardiogramm

GE General Electric

Hf Herzfrequenz

IABP Intraaortale Ballonpumpe

i.v. intravenös

KHK koronare Herzkrankheit

kV Kilovolt

LAD Left Anterior Descending Artery

LCX Left Circumflex Artery

LDL Low Density Lipoprotein

LMCA Left Main Coronary Artery

mA Milliampere

MIP Maximum-Intensität-Projektion

MPR Multiplanare Reformatierung

MRT Magnetresonaztomografie

MSCT Multi-Slice-Computed-Tomography

MSCTA Multi-Slice-Computed-Tomographed-Angiography

NaCl Natriumchlorid

NSTEMI Nicht-ST-Streckenhebungsinfarkt

PAI-1 Plasminogen-Aktivator-Inhibitor

PET Positronenemissionstomografie

RCA Right Coronary Artery

SCD Sudden Cardiac Death

STEMI ST-Streckenhebungsinfarkt

SPECT Single-Photon-Emissionscomputertomografie

t-PA Tissue-Plasminogen-Activator

VR Volume Rendering

Inhaltsverzeichnis

1	Einleitung	12
1.1	Die koronare Herzerkrankung (KHK)	14
1.1.1	Definition	14
1.1.2	Epidemiologie	14
1.1.3	Ätiologie	15
1.1.4	Pathogenese	16
1.1.5	Diagnostik	18
1.2	Die Mehrzeilen-Computertomografie (MSCT) des Herzens	20
1.3	Die selektive Koronarangiografie	21
1.4	Vergleich der MSCT mit der invasiven Koronarangiografie	26
1.5	Grenzen der 16-Zeilentechnik	26
2	Zielsetzung	30
3	Material und Methoden	31
3.1	Patientenkollektiv	31
3.2	Medikation	32
3.3	Geräte	33
3.3.1	Funktionsweise des CT	33
3.3.2	Pitch	34
3.3.3	Scanprotokolle	35
3.3.4	Mehrsektorprotokolle und Belichtungszeit	36
3.3.5	Multiplanare Reformatierung	39
3.3.6	Maximum-Intensität-Projektion	39

3.3.7	Volume Rendering	39
3.4	Auswertung	40
3.4.1	Einteilung der Koronararterien	40
3.4.2	Beurteilungskriterien der Bildqualität	42
3.4.3	Statistik	43
4	Ergebnisse	45
4.1	Patientenkollektiv	46
4.1.1	Altersstruktur	46
4.1.2	Herzfrequenz	47
4.2	Der Vergleich Untersucher 1 und Untersucher 2 (Interraterrealibilität)	49
4.3	Nichtdarstellbare Segmente pro Patient	50
4.4	Die Arteria coronaria dextra (RCA)	52
4.5	Die Arteria coronaria sinistra (LMCA)	56
4.6	Der Ramus interventricularis anterior (LAD)	59
4.7	Der Ramus circumflexus (RCX)	63
4.8	Vergleich der Bildqualität in den Mehrsektorprotokollen	67
4.9	Einfluss der Belichtungszeit auf die Bildqualität	68
4.10	Einfluss der Herzfrequenz auf die Bildqualität	70
4.11	Einfluss der Herzfrequenzvariation auf die Bildqualität	70
4.12	Einfluss des Pitch auf die Bildqualität	71
4.13	Vergleich der Bildqualität in den Nachbearbeitungswerkzeugen	72
5	Diskussion	73

5.1	Verteilung der nicht darstellbaren Segmente	73
5.2	Die Interraterreabilität	75
5.3	Bildqualität	76
5.3.1	Bildqualität der einzelnen Koronarien	76
5.3.2	Bildqualität in Abhängigkeit zum RR-Intervall	78
5.3.3	Einfluss der Herzfrequenz auf die Bildqualität	78
5.3.4	Einfluss des Pitchs auf die Bildqualität	80
5.3.5	Einfluss der Belichtungszeit auf die Bildqualität	80
5.4	Vergleich der Nachbearbeitungswerkzeuge	81
5.5	Limitationen dieser Arbeit	82
6	Zusammenfassung	83
6.1	Workflow	86
7	Ein interessanter Fall	87
_iteraturverzeichnis		91

Eidesstattliche Erklärung

Hiermit erkläre ich an Eides statt, dass die vorliegende Arbeit von mir selbst und ohne die unzulässige Hilfe Dritter verfasst wurde. Sie stellt auch in Teilen keine Kopie anderer Arbeiten dar und die benutzten Hilfsmittel sowie die Literatur sind vollständig angegeben.

Berlin, den 09.07.2007

Mirko Seidel

Lebenslauf

Mein Lebenslauf wird aus Datenschutzgründen in der elektronischen Version meiner Arbeit nicht mit veröffentlicht.

Danksagung

Mein besonderer Dank gilt Herrn Prof. Dr. med. Friedrich Knollmann für die Überlassung des Themas, für die gute Betreuung und für die stets hilfreiche Zusammenarbeit. Des Weiteren danke ich der Arbeitsgruppe um Herrn Prof. Dr. med. Friedrich Knollmann für die gute Zusammenarbeit, insbesondere danke ich in diesem Zusammenhang Herrn Dr. med. Christian Grieser. Ich danke allen, die zum Gelingen dieser Arbeit beigetragen haben. Insbesondere gilt hier mein Dank meiner Freundin Anna Maria Emde, die mich stets voll unterstützt hat. Ich danke meiner Mutter, für Ihre Unterstützung während meiner gesamten Ausbildung und für die Revision dieser Arbeit.