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Implementation 
 
In order to be able to assess the proposed conceptual model and framework for 
SWeMPs, a proof of concept system is implemented that demonstrates the core 
functionality of the knowledge-integrated multimedia generation process. This 
implemented system is developed with the Semantic Web in mind and will be used for 
the evaluation of the proposed approach.  
 
 
While the framework of the Semantic Web-enabled Multimedia Presentation 
system has been developed using established design methodologies, it remains 
necessary to build a (skeleton) implementation of the system to act as a ‘proof of 
concept’. This implementation is based on an established software development 
methodology, drawing upon the UML models of a system framework (Figure 4.2) 
and application process (Figure 4.5). In making concrete implementation 
decisions we take care to support integration at every level with the Semantic 
Web.  
 
In this chapter the implementation that has been made within the context of the 
PhD research is explained. The implemented system is used for the evaluation of 
the following chapter. It is to be noted that a full implementation (including the 
extent of stability, scalability or efficiency that would be desired in a piece of 
commercial software) has not been possible within the time frame of this 
research. Rather, a minimal system framework has been produced which is 
sufficient to demonstrate the core functionality of SWeMPs. Where remaining 
aspects of the system have not been implemented, we draw upon the design 
decisions of the previous chapter to infer that requisite functionality would be 
possible. At this stage however, the intention is to show the fundamental 
plausibility of the proposed approach and its value to the Semantic Web and 
multimedia generation task, without attempting to address every possible issue. 
The implementation is available as open source software for further, possibly 
collaborative, ongoing development42.   

 

5.1 Software development methodology 
 
For this implementation, the Rational Unified Process (first introduced in section 
1.5) [Kruchten,2003] is the chosen software development methodology.  
 
As an evaluation of the development activity itself, we mention the best practises 
as captured in RUP. These best practises are drawn from the experience of 
failed software projects and are considered to represent the best means to 
overcome the most common problems that can occur in the development cycle. 

                                                
42 As a project on the SemWebCentral website http://projects.semwebcentral.org/projects/swemps/   



5. Implementation 
 

SWeMPs – a Semantic Web enabled Multimedia Presentation System 93 

The implementation described in this chapter is shown to exhibit each of these 
best practises: 
(1) Develop software iteratively – as has been previously noted (cf. appendices), 

this software development cycle represents a third iteration, and in each cycle 
alterations were made progressively during implementation 

(2) Manage requirements – a set of detailed requirements, drawing upon the 
initial problem statement, inception of a possible approach and consideration 
of prior work (particularly the SRM-IMMPS), has been given in chapter 4.3.1.  

(3) Use a component based architecture – component-based approaches 
produce a system that can be extended, promotes re-use and is intuitively 
understandable. The use of UML (which is object-oriented in nature) and 
particularly a component diagram for the SWeMPs architecture demonstrate 
a core commitment to a component-based approach from the design phase.   

(4) Visually model software – the use of models aid greatly in the understanding 
of a system and hence support its implementation. UML has been used in the 
design of SWeMPs to graphically represent its proposed architecture and the 
multimedia generation process. 

(5) Verify software quality – Quality assurance, while not as requisite in this case 
as would be in a commercial project, is still an aspect that will be taken into 
account in the ongoing development of SWeMPs. The evaluation of the 
skeleton implementation is a first step towards quality assurance. Bug 
tracking and so on as part of the public distribution will encourage continued 
quality in the development.  

(6) Control changes to software – again, the initial implementation is seen as a 
proof of concept and change tracking has not been a major issue. However in 
the continued development of the system this will be included, as shown by 
the establishment of SWeMPs as a CVS-based project.  

 

5.2 The rules-based system 

 
As has been argued in the previous chapter (section 4.3.5), the application will 
be built as a forward-chaining rules-based system.  
 
The most common logic programming paradigm for rules-based systems is 
Prolog (PROgramming in LOGic)[Shapiro,1986]. Prolog is typically used in 
artificial intelligence applications such as natural language interfaces, automated 
reasoning systems and expert systems. It uses a subset of first order logic that is 
restricted to allowing only Horn clauses, that is, clauses of the form 

 
(p and q and … and t) implies u 

 
Notably, the subset of first order logic used by logic programs such as Prolog 
differs from the subset of first order logic used by Description Logics. 
Furthermore, Prolog programs operate according to the Closed World 
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Assumption (anything that can not be proven true is false) while Semantic Web 
approaches such as OWL take the Open World Assumption (anything that can 
not be proven true can not be said to be false). In terms of the realisation of the 
multimedia generation process, this can be seen to be an advantage as while it is 
realistic to expect that knowledge on the Web is always incomplete (given the 
dynamic, constantly changing, open environment of the Web), it is necessary 
within the multimedia generation process to be able at times to say definitely if 
something is to be considered true or false. Likewise, in the Open World it would 
not make sense to complete a sub-process by saying that there is no further 
knowledge on a particular concept as Open World would say that it can never be 
known if there is not some further knowledge to be found. Hence in SWeMPs the 
choice of a Prolog paradigm for the internal knowledge activity has both 
pragmatic and conceptual meaning.  
 
Pragmatically, the Semantic Web is not yet mature enough in the rules layer to 
be able to be applied to expressing the rulebase of the SWeMPs application. 
Rather, Prolog with RDF/OWL extensions allows the use of the much more 
established Logic Programming (LP) paradigm with Semantic Web data. The 
current rules layer of the Semantic Web is under debate, particularly in terms of 
which forms of reasoning should be allowed and trying to maintain compatibility 
with the RDF and OWL layers. The choice can be characterized as being 
between Datalog (LP) approaches, e.g. allowing some forms of closed world 
reasoning, and RDF/OWL compatible (DL) approaches, which semantically are 
difficult to converge and could result in two separate development tracks 
[Horrocks,2005]. A Semantic Web Rules Language (SWRL) has been published 
as a W3C Member submission [Horrocks,2004] which combines OWL Lite/DL 
with Datalog. Hence the closed world approach, which we find useful in a 
semantic application such as SWeMPs, may yet be able to converge with a 
future RDF/OWL compatible Semantic Web rules layer. This activity continues to 
be promoted through the W3C Rule Interchange Format (RIF) Working Group 
[W3C,2006].  
 
Conceptually, we can say that while the Open World Assumption is correct for 
the Semantic Web, the selected knowledge which is made available to the 
SWeMPs rulebase through the knowledge base must be then considered under 
a Closed World Assumption (while the world continues to change out there on 
the Web, in here in the SWeMPs process it is considered frozen at the current 
model of knowledge so that decisions can be made without ambiguity). While 
considering a particular set of knowledge under an Open or Closed World 
Assumption is a matter for the query engine used (and hence closed knowledge 
is modelled in the Prolog working memory and queried through Prolog 
unification, while open knowledge remains in the RDF knowledge base and is 
queried by a Semantic Web reasoner), it also makes a difference in the range of 
logical expressions that are possible, e.g. negation. Hence in SWeMPs care is 
also taken in terms of which knowledge from the (Open World) knowledge base 
is mapped into the (Closed World) working memory where it can be queried 



5. Implementation 
 

SWeMPs – a Semantic Web enabled Multimedia Presentation System 95 

under the Closed World Assumption. One effort to resolve this issue is DLP – 
Description Logic Programming [Grosof,2003] - which defines a common subset 
of logic shared by both Description Logics and Logic Programming and hence 
provides guidelines to mapping between both paradigms.  
 
In Prolog, facts are n-ary predicates – a predicate p with an unlimited number n 
of atoms a applied to it, i.e. p(a1,…,…,n). A rule is in the form 

head :- body 
where head is a single fact, body is one or more facts and the meaning of the 
rule is that if body is true (each fact unifies with a fact in the working memory) 
then the system can infer that the head is also true (i.e. add it as a fact in the 
working memory).  
 
In SWeMPs, we consider the fact base maintained by the rules-based system as 
separate from the knowledge base (i.e. an instantiation of the conceptual model 
introduced in the previous chapter). The former is stored within the rules-based 
system and is expressed in terms of the rules-based systems logical formulism 
(Prolog) and uses concepts which have no explicit formal meaning outside of the 
system. The latter is external to the rules-based system and is expressed in 
terms of its own logical formulism, based on the Semantic Web, and drawing its 
concepts from the SWeMPs conceptual model. The inference engine is the rule 
engine that the application will be built upon, extended by the components 
identified in the framework such as a reasoner to allow for DL-based querying 
upon the knowledge base.  
 
In our case, we use the unification of the fact base with the rules in the system as 
the basic means to trigger actions, in that some facts in the rule body to be 
evaluated are actions upon other components which are true if and only if they 
can be performed without failure. These actions are wrapped in special rules that 
execute API methods on the other, external, components. In other words, the call 
to other components is “disguised” to the rule engine by rules whose body is 
evaluated true if the methods executed on the component return true (do not fail)  
and result in a fact (the rule head) added to the working memory both as a signal 
that the component interaction took place and as a means of carrying the 
interaction results into the rules-based system (in the form of the atoms within the 
fact, given that the Prolog implementation does not restrict atom types). This is 
even though the components operate in a different paradigm (e.g. Semantic Web 
data models for the reasoner, Web Service descriptions for the service planner).  
 
It is an explicit aim of the implementation to support the heuristic solution of 
multimedia presentation goals through declarative programming. That is to say, 
the implemented application must demonstrate an iterative solution to a given 
information request by examining all possible execution routes (with regard to 
knowledge, content and presentation), resolving conflicts (matching rules and 
passing control when rules fail or bottleneck) and concluding with a “best case” 
result. Prolog systems support this in that, given failure in a rule according to one 
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combination of variables, the Prolog interpreter will backtrack (to the last step 
before failure occurs) and try again to evaluate facts with another combination of 
variables (i.e. the interpreter tries all possibilities before giving up). Likewise, it is 
possible to declare rules with the same head and different body: if the evaluation 
of the head fact resolves to false on the basis of one of the rules, the interpreter 
will attempt again using another of the rules.  
 
As we seek a rules-based system which will be able to be integrated with other 
components, a common programming language environment is required that is 
irrespective of the platforms upon which an application may be deployed. Hence, 
while within the system itself and system components logic-based programming 
languages form the underlying implementation model, Java is chosen to function 
as the programmatic “glue” between the otherwise distributed and 
heterogeneous components. Java is seen as a good choice as potential 
component choices are likely to offer Java-based APIs. A logic programming 
environment is required which can incorporate Java calls (to the other 
components), and Prova43 was chosen. Prova is a rules-based scripting system 
using both Prolog and Java constructs to combine imperative and declarative 
programming styles within the Java runtime and with access to all Java 
packages.  
 

5.3 Component implementation 
 
The component-based framework of SWeMPs was illustrated by an UML 
component diagram in Figure 4.3. In this section we consider the concrete 
implementation of the components for the Semantic Web related aspects of the 
system architecture. The aspects of the service planning and multimedia 
modelling are then discussed in some more detail in the following sections.  
 
5.3.1 Ontology creation 
 
The conceptual model needs to be formalised as an ontology and other 
ontologies may need to be prepared for use with the SWeMPs system. While the 
model has already been specified in Description Logic (section 4.4.3), a tool is 
required to realise this specification as an ontology in a Semantic Web language 
such as OWL. Protégé44 is not only one of the best known and well established 
ontology editors in the field but is extended by numerous plug ins to provide 
additional functionality needed or preferred by the SWeMPs framework, including 
OWL/SWRL support (for the Semantic Web interoperability) and (through plug-
ins such as OntoViz) ontology visualisation.  
 
 

                                                
43 http://comas.soi.city.ac.uk/prova/  
44 http://protege.stanford.edu   
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5.3.2 Ontology population 
 
In the SWeMPs framework, a knowledge base is foreseen as the external, 
explicit representation of the knowledge required for a given multimedia 
presentation generation task. The knowledge base consists of instantiations of 
concepts in the SWeMPs ontology. Populating ontologies is a problematic task, 
given the need to identify the instances required together with their properties 
and the possible scale of instances that may exist. 
 
Protégé can be used for the manual creation of individuals based on the 
SWeMPs ontology, though as a tool it is not ideal for this task, especially as one 
would presume that the ontology population could be a task done by non-
ontology experts (as opposed to the ontology creation above). There is work in 
(semi-)automated population strategies which could also be examined to ease 
developer effort, while we also note that SWeMPs is modelled in such a way to 
maximise the re-use of instances from other knowledge sources and to minimise 
the need to instantiate directly a large number of SWeMPs concepts (this will be 
shown more in chapter 6). Hence, for example, instances of services could be 
harvested from a Web service directory or better still, the look-up at the directory 
itself modelled as a single service instance in the knowledge base which is used 
to identify other services meeting the current system processing need.  
 
5.3.3 Ontology storage 
 
SWeMPs will import dynamically external ontologies during the multimedia 
generation process, so the size of the knowledge base being employed by 
SWeMPs can change significantly during its execution. In-memory storage of the 
ontologies being used in SWeMPs can become costly; hence generally some 
sort of persistent back-end is used to provide a storage solution to Semantic Web 
applications.  
 
There is currently a lack of OWL specific storage systems. Rather, an alternative 
storage method could be used (database, database front-end for RDF, RDF 
specific triple store) as long as it can still be integrated with OWL specific 
reasoning capabilities. We look at the possibilities of reasoning tools in the next 
subsection.  
 
Sesame45 is a well known and established RDF(S) front-end to a database 
system (using MySQL). However its API and reasoning capabilities are limited to 
RDF(S)46, and hence without a further development to include OWL level 
functionality can not be considered at this time for SWeMPs. Kowari47 is an 
interesting implementation of a specific RDF triple store, with accompanying 
                                                
45 http://www.openrdf.org:80/  
46 There is an OWL DLP inferencer for Sesame which supports a few OWL constructs in a naïve fashion 
on top of RDF(S).  
47 http://www.kowari.org/  
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improvement in efficiency. The developers state their intention of extending the 
store to support OWL DL, but this work is not yet complete.   
 
Jena48 provides a Java-based framework for interacting with RDF and OWL 
knowledge stored in a RDBMS, and permits OWL level reasoning to be applied 
to that knowledge. The 100% Java approach of Jena makes it appealing for the 
realization of OWL level functionality in SWeMPs, especially as it offers an 
abstracted API for accessing stored knowledge and reasoning over it and leaves 
the actual relational database and reasoner implementation to individual 
developer decisions without forcing an alteration of the Jena code. Additionally, 
examples of Jena integration with the rules-based scripting of Prova are provided 
with the Prova download, showing that these two technologies can be combined 
in the SWeMPs framework.  
 
At this stage of research, a simple Jena approach is taken, storing the knowledge 
base in memory. However it is clear that this implementation approach can be 
extended in future to use a dedicated storage solution and, if the Jena API is not 
available or functionally limited for use with that solution, that another API – 
preferably Java based – could also be used by SWeMPs.  
 
5.3.4 Ontology reasoning 
 
Interacting with knowledge based on an ontology requires access to a reasoner 
component which can proof the consistency of inserted statements and infer new 
facts from the statements present in the knowledge base. In SWeMPs, the 
reasoner will be working with a potentially dynamically changing knowledge base 
and will need to be stable enough to handle reloading of the knowledge base 
(rather than relying on a cached model).  Despite the core importance of 
reasoning in the Semantic Web, current reasoners often demonstrate 
performance problems, particularly regarding scalability. While SWeMPs should 
aim to minimize problems by retaining knowledge in the active knowledge base 
only for the duration of its relevance, current reasoning support with promises of 
stability and scalability do exist.   
 
Instance Store49 is a DL reasoning solution for large numbers of individuals. It 
consists of a backing store (Oracle, MySQL or the 100% Java implemented 
HyperSonic) accessed through JDBC, a reasoner (Racer or FaCT) accessed 
through the DIG interface and an ontology (without instances). More recent 
versions of Instance Store include OWL support, but the major limitation is that it 
performs only “role-free” reasoning over individuals. Hence this work is 
interesting for overcoming future issues of scalability but insufficient for the initial 
realisation of the SWeMPs framework.   
 

                                                
48 http://jena.sourceforge.net/  
49 http://instancestore.sourceforge.net/  
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Jena, which supplies a Semantic Web API that is well defined50, includes a 
dedicated reasoner, but other reasoners which provide more expressive and 
efficient reasoning capabilities can be alternatively plugged into the Jena 
framework. The Jena OWL reasoner is an extension of the existing RDFS 
reasoner, which results in an incomplete OWL based implementation. All OWL 
Lite constructs are covered, with the critical constructs NOT covered in the 
existing reasoner beyond OWL Lite being complementOf, unionOf and oneOf. 
The developers acknowledge stability and scalability problems, and advise 
caution in its use. 
 
While the Jena reasoner is the obvious choice as an initial solution for reasoning 
support given the choice of the Jena API, it is insufficient for a stable system. 
Hence, while the proof of concept system developed for this thesis relies on the 
Jena reasoner, we plan to experiment with other reasoners in the ongoing 
development of SWeMPs.    
 
5.3.5 Ontology query 
 
Access to knowledge in a knowledge base is through queries. An appropriate 
query language is required that can express the form of queries that will be made 
by SWeMPs in deriving a multimedia generation process from the provided 
conceptual model.  
 
In Jena, the query interface to the ontology uses as a query language RDQL 
[Seaborne,2004]. If another reasoner were to be used, the query language could 
also differ – in fact, it is expected that the SPARQL [Prud’hommeaux,2006] 
proposal will establish itself as the ‘official’ RDF query language, at least at the 
W3C. We note that for SWeMPs it is no problem to switch the query language, 
as this is abstracted by the query handling and reasoner components of the 
SWeMPs architecture. For example, ARQ53 has been developed as a SPARQL 
processor for Jena.  
 
RDQL is a SQL-like language which is executed within Jena through a query 
string, where the format of the query is �#�#$%�&�'(#
#�&�)*+,�&-�
)��.+/�&-0�As the form of the query is a single string, the following 
conventions are used to differentiate between types: 

• URI References are enclosed within <…> 
• Free variables are prefixed with ? 
• Bound variables are enclosed within ‘…’ (i.e. they are unified as strings 

even though they may also be integers or other datatypes) 
 

                                                
50 http://jena.sourceforge.net/javadoc/index.html  
53 http://jena.hpl.hp.com/ARQ/  
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We consider the task of passing the request to the SWeMPs rulebase as the task 
of the query handler component and the resolution of that request through 
executing the query – as RDQL or whatever is supported - upon the conceptual 
model as a task realised by a dedicated query rule in the rulebase using the API 
of the reasoner component. The dedicated query rule is discussed in 5.7.1.  
 
The query handler forms the query by binding (or not binding) values, as well as 
their types, to an abstract statement – which, following RDF convention, can be 
seen as a triple of the form <subject, predicate, object>. The statement can be 
understood as the users’ desired information, in that it seeks to state some fact 
about something. It is an information request because some aspect of the 
statement is missing, i.e. the user is missing some part of the desired 
information. The mapping from the expression by the user of which information 
they desire (which would be through some user interface which communicates to 
the query handler of SWeMPs) to this incomplete statement is specific to the 
query handler component used which is implemented to handle input of a certain 
format from the user interface application.   
 
The purpose of the query handler is to determine the binding of values to the 
subject, predicate and object of the abstract statement. The bindings are also 
typed and could be individual values or a set of values54. Sets of values map in 
the LP paradigm to lists. Value types (which would be implementation specific 
from the requesting application) are mapped to Semantic Web concepts and 
passed to the rulebase as URIs55 or datatypes according to the XML Schema 
specification56. Those values that do not receive a binding are left unbound, and 
hence are mapped in the query as variables (which, nevertheless, can be typed). 
In other words, the abstract statement is a means to provide a representation of 
the query that is not query language specific. The rulebase execution takes the 
abstract form of the query as a parameter when called from the query handler 
component. The dedicated query rule within the rulebase performs the further 
mapping of  this abstract form to a concrete form based on which reasoner is 
being used: RDQL or some other query representation (e.g. SPARQL).  
 
It is a fair comment that RDQL, SPARQL et al are ‘RDF’ query languages, 
however this does not make them invalid for querying an OWL ontology as it is 
the reasoner component, if it supports OWL constructs, that determines the 
inferable statements in the knowledge base. These statements, even if they also 
contain OWL, can be modelled in RDF (as OWL can be represented within the 
RDF data model) and hence matched by a RDF query language. 
 
 
 

                                                
54 How the query handler stores internally the set of values is implementation specific 
55 Typed as instances of java.net.URI within the rulebase.  
56 All the principal XML Schema datatypes have natural mappings to Java types. Date and time datatypes 
have Java types defined in the javax.xml.datatype package   
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5.4 Service planner   
 
It has been argued that, for a dynamic process in which it is not possible to 
determine all functional needs in advance, a possible solution is to dynamically 
locate and execute external services, which encapsulate a given functionality, at 
run time when the specific functionality is required. This saves a system 
implementation from needing to explicitly code for every possible functional 
requirement in its lifetime. As an example, a multimedia system may need to 
convert between resource media types. As the possible set of media types 
grows, so the functionality encoded within the system must grow to cover each 
possible conversion possibility. Furthermore, certain conversion tasks may occur 
very rarely and it seems wasteful to have this conversion code explicitly 
maintained within the system. Additionally, the conversion may already have 
been implemented in an existing program and it would be better to simply re-use 
this code. The Web Services infrastructure is focused on providing such 
capabilities by enabling heterogeneous systems to communicate with one 
another regardless of their underlying implementations by defining a 
standardized interface for exchanging messages between them (e.g. calling a 
certain method on the other system, and receiving the response). In particular, 
Web Services focus on realising this infrastructure on the Web, so that any Web 
Service is reachable to any system which is connected to the Internet. To further 
support Web Service usage, a directory service can be invoked to find suitable 
Web Services, QoS considerations can be considered (i.e. availability, response 
time) and communication set up between services through the initial exchange of 
description files (which define the interface to the service, i.e. methods, their 
definitions and the required parameters to be passed and their syntax).  
 
In the current Web Services infrastructure, the directory is encoded in the UDDI 
standard, service descriptions in WSDL and messages exchanged using the 
SOAP format [Curbera,2002]. However, examination of the Web Service 
directory, parsing of the Web Service description and the formulation of the 
SOAP messages is a manual task, in which a developer must write code 
specifically for the service to be called. In the light of the Semantic Web effort to 
define machine-processable data formats, efforts are being made to apply this to 
Web Services, so that their discovery, description and invocation might be 
expressed in a machine-processable form and hence automated in computer 
systems. Semantic Web Services, as the field has become known, is aiming to 
achieve precisely this [McIlraith,2001].  
 
In the implementation, we use OWL-S [Martin,2004] as it is based upon the OWL 
language and has already a number of open source tools for editing, discovery 
and execution which can be used. However, the field is still open – another 
activity, WSMF [Bussler,2002], seems to be more comprehensive in its work and 
it seems likely that rather than result in two competing approaches the two 
groups will converge on a single agreed standard. At present, however, the latter 
work is still evolving so the stable OWL-S 1.1 will be used. Architecturally, it is 
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not a problem to support some future emerging Semantic Web Service standard 
as the specifics of the Semantic Web Service interaction is abstracted from the 
rulebase using the dedicated service rule and service planner component.  
 
OWL-S acts as an upper ontology for creating service descriptions. It consists of 
three key classes, the ServiceProfile – which provides an advertisement of what 
the service does, the ServiceModel – which provides a description of how the 
service works, and the ServiceGrounding – which provides the means to interact 
with the service. These classes can be understood as realising the discovery, 
description and invocation of the service respectively.  
 
The Service Profile provides a means for representing the provider of the service, 
the function of the service and the characteristics of the service. Functionality is 
modelled in two aspects: the information transformation (represented by inputs 
and outputs) and the state change produced by the execution of the service 
(represented by preconditions and effects). This is often expressed together as 
an ‘IOPE’. Inputs and outputs have a parameterType parameter which identifies 
which (OWL) class their values belong to. Preconditions and effects are 
represented as logical expressions which also identify their representation 
language (e.g. SWRL, KIF).  
 
The ServiceModel provides the details for interacting with a service, which is 
viewed as a process. An atomic process expects one message and returns one 
message. A complex process requires the exchange of a set of messages and 
maintains state as the interaction progresses. In SWeMPs, we expect to work 
primarily with atomic processes. The process is defined in terms of IOPE, 
typically in more detail than in the ServiceProfile. 
 
Finally, the ServiceGrounding provides the means for actually exchanging 
messages with a concrete instance of the service. Groundings are based on a 
WSDL service description, which identifies the URL of the service, the syntactic 
form of the messages received and sent by the service, and the datatypes of the 
parameter values. Relations are defined between the OWL-S process and the 
WSDL operation, the OWL-S inputs and outputs and the WSDL message, and 
the OWL-S parameterTypes and the WSDL abstractTypes. In other words, a 
means to translate between the semantic and syntactic views of the service is 
provided.  
 
We implement a three step process (discovery, selection, execution) within a 
dedicated service rule in the rule base, applying backtracking to ensure 
successful service interaction (e.g. after the first discovery step, if the second 
examination step fails because the selected service requires something that can 
not be provided, then the system backtracks to the first step and selects a 
different service and tries again). The service rule interacts with the service 
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planner that is chosen for the SWeMPs implementation, which could be (initially) 
using the OWL-S 1.1 API57.  
 
Considering the operation of the SWeMPs multimedia generation process 
(according to the UML activity diagram in Figure 4.5), there are three cases in 
which the use of external (Web) services is foreseen: 

• Service “look-up for other metadata” 
• Service-based “mapping between ontologies” 
• Service-based “resource adaptation” 

 
The SWeMPs conceptual model supports specifying properties on Services 
which indicate a namespace or media type handling service (i.e. an ontology 
mapping or resource conversion service). This is a form of shorthand for 
regularly requested services to save on the reasoning overhead of querying the 
entire service description (directory). A classification of namespaces and media 
types may be useful for reasoning over these services, e.g. that a namespace is 
partOf another namespace or that a media type is a specialisation of another 
media type. Services which extract knowledge about specific domains could be 
modelled by having the namespace as value of the handles-namespace 
property, and services which support adaptation of specific media types could be 
modelled by having this media type as value of the handles-media-type property. 
However, other cases require the specification of different namespaces or media 
types for the input and output of the service, i.e. mapping between two ontologies 
requires the namespaces of the input and output ontologies; converting 
resources requires the media type that is input to the service as well as the type 
which is output. Hence, we can extend the SWeMPs conceptual model to 
differentiate input and output properties and define a simple methodology for 
service discovery through the values of those properties of a Service in the 
conceptual model: 
 

Service 
type: 

from-media-
type 

to-media-type from-
namespace 

to-
namespace 

Resource 
adaptation 

X X   

Resource 
conversion 

X Y   

Knowledge 
retrieval 

  X X 

Knowledge 
mapping 

  X Y 

 
The service metadata can be examined for the selected services for two reasons: 

1. To determine if a selected service can be executed at all, e.g. to test that 
the preconditions of the service are met; 

                                                
57 http://owl-s-api.projects.semwebcentral.org/   
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2. To determine which service from a number of possibilities is preferably 
executed, e.g. to check the current QoS given for each service. 

 
We illustrate this in Figure 5.1 in terms of a service execution call (the execute 
rule is detailed in section 5.7.2) and the mapping to IOPE in an OWL-S service 
model, using as an example services for resource conversion and adaptation, 
based on an example given in [Jannach,2005]. The KoMMa OWL-S framework 
introduced by [Jannach,2005] is a good example for implementing a SWeMPs 
Web service framework except that it depends on MPEG-7/21 XML syntax 
references for its input and output, rather than the SWeMPs approach of using 
semantic concepts specified by URI and defined in the conceptual model.   
 

 
 

Figure 5.1 Sample integration with Semantic Web Services  
 

The mappings here depend on the service parameters being typed semantically, 
i.e. the parameterType is an URI identifying a concept in the conceptual model 
which is mapped to the intended meaning of the parameters in the execution call. 
For example the MIME types given are mappable to the oldFormat and 
newFormat parameters (typed as swemps:MediaType)  in the first service. As a 
height constraint is also given, a further service has to be called. By semantic 
type equivalence the imageOut output (typed as zyx:Image) of the first service 
can be used as the imageIn input of the second service. Note that in the second 
service extra parameters are given in the input (oldWidth, oldHeight and 
newWidth) that are not in the execution call parameters, so the service rule 

Operation: serviceConversion 
 Input: imageIn, oldFormat, newFormat 
 Output: imageOut 
 Preconditions: image(imageIn), format(oldFormat) 
 Effects: image(imageOut), format(newFormat)  
 

Operation: serviceResize 
Input: imageIn, oldWidth. oldHeight, newWidth, 

newHeight 
 Output: imageOut 

Preconditions: image(imageIn), width(oldWidth),     
height(oldHeight) 
Effects: image(imageOut), width(newWidth), 
height(newHeight), horizontal(newWidth), 
vertical(newHeight)  

 

execute( 
“media-type”, 
image/bmp, 
[image/jpeg, 
image/gif, 
image/png],  
 
[http://…,  
 
[zyx:height, 
400]], 
  
URI) 
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constructs additional queries to extract the necessary additional knowledge (what 
is the width of the original image).  
 
In the final step, the Grounding for the service is retrieved through the service 
metadata and used by the service planner to construct the message to the 
selected service, as well as to correctly parse the service response and pass it 
back to the rule base59.  
 

5.5 Multimedia modeller and formatter  
 
An important issue for SWeMPs is the multimedia model and the multimedia 
modeller component. Fully abstracted from, and yet intractably linked with, the 
rules system the modeller is tasked with supplying the requisite functionality for 
operations between the rulebase and the multimedia model. Like the reasoner 
which connects the rulebase and the conceptual model, that carries with it a set 
of logical processing axioms (based on the knowledge representation it is 
intended to work with, e.g. RDF/OWL), the multimedia modeller must contain the 
set of minimum generic logical processing axioms for building a consistent and 
correct multimedia model. These axioms need to be specified just as logical 
axioms for knowledge representations must be specified. Additionally, the 
modeller needs to be able to deal with two further cases: 

(1) The internal generic axioms for a model (as rules) are applied not only to 
the facts being generated from the rulebase but also to the execution-
specific presentation constraints. These act as an additional input to the 
modeller and must be taken into account when carrying out consistency 
checking. 

(2) The facts inferred by the rulebase for the model are insufficient for a 
multimedia presentation, as they are limited to stating which resources are 
relevant and not how resources are to be presented. This is a domain-
specific issue and hence must be specified for each execution. Like the 
conceptual model, we suppose individual presentation rules can exist for 
different multimedia generation cases. These rules allow for inferring from 
the existence of resources (and their domain-specific properties and 
relations, tested against the conceptual model) to constructs which we 
have called “communicative abstractions” and which represent a set of 
constraints that apply between those resources.  

 
In summary, the multimedia modeller acts like a reasoner upon a multimedia 
model, which follows a different set of axioms than a knowledge representation 

                                                
59 Selection and execution is handled by the service planner implementation, e.g. the OWL-S API, which 
re-uses the Jena toolkit to reason on ServiceParameters and uses the Axis WS package to execute services 
mapped to/from WSDL.  
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model. The multimedia model will contain a set of base constructs like objects, 
space, time and interactivity just like an ontology contains classes, properties, 
instances and literal values. The axioms will define the basic rules for a 
consistent presentation (e.g. that objects must all fit within the space available). 
The modeller accepts resource insertions as input, and builds up in the 
multimedia model a set of facts (determined by resources, their properties and 
relations to other resources). The set of facts is constrained by the consistency 
axioms including the presentation constraints specified in each execution. The 
model incorporates domain-specific constraints inferred from the facts about 
resources and their conceptual representation expressed in the knowledge base. 
When all resources have been inserted and all resulting inferences handled, a 
consistent set of facts which respects all the specified constraints can be 
formatted to a concrete multimedia presentation.    
 
For an implementation, we needed to take into account four aspects of the 
multimedia modeller: 

(1) The application level, e.g. implement as another rules-based environment 
like Prolog/Prova, a Java based application with Java based 
communication, an agent-based system using messaging or a structured 
modelling environment such as building an ontology with rules?  

(2) The abstract model, i.e. the means in which the transitory and dynamically 
built model will be represented within the system. Possibilities include a 
working memory of facts, Java objects, an ontology or a tree-based 
structure like XML. These are themselves based on some abstract 
conceptualisation of a multimedia presentation which must be specified, 
preferably formally.  

(3) A constraints handling component, incorporated as an extension to the 
base application. This uses general axioms and presentation constraints 
to check the consistency of the model being built, and solves the step from 
the looser abstract model to the more definite pre-formatted model. For 
the constraint handling, one could take a constraint logical programming 
(CLP) approach such as ECLiPSe or a constraint handler with a Java API 
such as Cassowary. 

(4) A serialisation component which represents the internally stored definite 
pre-formatted model in some structured form which can be formatted by 
the formatting component into a final format multimedia presentation. With 
the expectation that the formatter could use XSLT to make the 
transformation, the serialisation could be XML based.  

 
At this stage of implementation, we take a simplest-case approach while 
acknowledging that for a multimedia generation system this is a key aspect of the 
work which needs well developed components to handle the inherit complexities 
of multimedia presentation layout, and hence a key area for further development 
in SWeMPs. 
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Normally, the application level is realized in a tool called a “layout manager”. 
Examples of layout managers are GRIDS [Feiner,1988] and LayLab [Graf,1996]. 
Weitzman presents a tool which realizes layouts on the basis of a description 
using relational grammars [Weitzman,1994]. Rather than attempt at this stage an 
integration of this approach with an existing layout manager, SWeMPs will use a 
simple OO-based approach that interfaces with the rules-based system and 
manages the multimedia model in internal memory while interacting with a 
constraint solver to ensure consistency and derive final layout properties. 
However, it is accepted that an eventual integration with a dedicated layout 
manager would provide a more complete solution.  
 
The abstract model must be able to separate the multimedia document from its 
final realization and representation. A number of multimedia document models 
are proposed in the literature, e.g. MATN and MADEUS (see 2.1.2 and 3.2). We 
have based the abstract model on ZyX (see 2.1.2 and [Boll,1999b]), as it defines 
a SMIL-like tree-based structure, which makes it suitable both for formatting into 
SMIL as final format and for representing within a program using a structured 
data model such as XML. Unlike SMIL, it permits media items to be placed in the 
tree without an initial binding to presentation properties (such as spatial and 
temporal positioning) and to group sub-trees into complex media items 
(supporting reference and re-use). It also supports metadata-based selection 
between alternatives in the tree to determine the final form of a presentation.  
 
We use ZyX to define the abstract model’s syntax and semantics, with the 
model’s realization at the application level based on Java methods on a 
ZYXModel (Java) class. For the full formal framework of ZyX see [Boll,1999b]. 
For the implementation, this framework is modelled in OWL using Protégé as the 
ontology editor. Additional properties were associated with the ZyxModel 
(ontology) class to allow for specification of presentation constraints. The ZyX 
ontology and Multimedia Modeller Java classes are packaged with the SWeMPs 
source code60. 
 
In SWeMPs, the abstract model is combined with a constraints handler. The 
constraints handler will resolve the set of constraints expressed in the abstract 
model to a set of satisfiable concrete values which represent the final abstract 
form of the multimedia model prior to formatting (e.g. the actual spatial and 
temporal positioning of media items). The constraints can be expressed in terms 
of the abstract model (ZyX) syntax and mathematical operators. To illustrate how 
constraints are expressed, consider that two images are constrained such as one 
image I is to appear at least 10 pixels to the left of image J (see Figure 5.2). 
Given the properties x to represent the image’s location (measured from the top 
left corner) on the horizontal (x-)axis and w to represent it’s width in pixels, we 
have the constraint: 
 

J.x – I.x > I.w + 10 
                                                
60 http://swemps.projects.semwebcentral.org  
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Figure 5.2 A sample constraint 

 
As the application level is implemented within an OO-based paradigm, we chose 
Cassowary [Badros,2001], which is a Java based implementation, to realize the 
constraint handling. In Cassowary, the constraint example given above would be 
expressed as a ClLinearInequality object such as: 
 

ClLinearInequality(CL.Minus(J.x,I.x),CL.GEQ,CL.Plus(I.w,10)) 
 
We build the ZyX model within the multimedia modeller component (calling 
constructors of ZyX elements given by the ZYXModel class and binding values to 
some of their properties) and refer to that model in the specified Cassowary 
constraints so that the constraint solutions are directly applicable to the bindings 
in the multimedia model. Default constraints can be given for many spatial, 
temporal and interactivity constraints and more complex constraints expressed in 
terms of a set of these default constraints. Thus it is possible to allow application 
developers to specify domain-specific constraints at a high level without requiring 
the generation of Java code.  
 
The communicative abstractions are identified by URI, allowing for a 
decentralised system of definitions in which the use of unique namespaces 
avoids unintentional naming conflicts. Furthermore, the multimedia modeller 
should be extendible, i.e. that sets of communicative abstractions can be loaded 
into it. In our implementation we use Java, so abstractions are expressed as 
Java methods in a Constraints class which specify certain constraints upon two 
resources passed to them as parameters, and a simple text file can be used as 
an index read by the multimedia modeller at initialisation to map communicative 
abstraction URIs to the Java methods available to the modeller implementation. 
 
Upon the conclusion of the model generation, the resulting multimedia model is 
serialized and formatted to the final presentation syntax by the formatter 
component. The formatting could be carried out in any means implemented 
within the formatter though for reasons of interchange and modification we prefer 
declarative to procedural approaches. Hence one possibility is to generate a XML 
file from the multimedia model and perform a XSLT based transformation. we 
consider SVG (in its formats for mobile devices [W3C,2003]) and SMIL 
[W3C,2001] as the main target formats for evaluation of the implementation. 
They are widely accepted (as W3C standard) XML based formats for the 

I J 

J.x I.w �10 I.x 
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representation of 2D multimedia presentations with a number of playback tools 
available.   
 

5.6 Rulebase 
 
The multimedia generation process has been illustrated in Figure 4.5 as an UML 
activity diagram and described in natural language. For the implementation, we 
expand this into a set of rules. These rules would be written in Prova, which 
takes a Prolog syntax with support for referencing Java classes and methods.  
 
However, for illustrating the development of the rulebase in this chapter, we use 
a more accessible graphical notation based on ECA (Event – Condition – Action) 
rules. The ECA graphical notation [Berndtsson,2001] has been developed to aid 
software engineers capture the fundamentals of these rules in an application. It is 
based on modelling ECA rule features in UML statechart diagrams.  A box 
containing the event is connected by an arrow pointing to a box containing the 
action, and the connection is labelled by the condition for the rules execution. In 
the diagrams, the text is written in a form of pseudo-code. FOR statements 
represent loops where the subsequent statements are evaluated against each 
value matching the condition of the FOR statement. The action takes place only if 
the entire condition is met.  
 
Terms used are taken either from the conceptual model, are internal to the 
rulebase (such as Input and Constraints) or refer to components (ConcModel 
represents the SWeMPs conceptual model, hence “exists in ConcModel” means 
a query handled by the reasoner component and MultModel represents the 
abstract multimedia model, hence “inserted in MultModel” means a command 
sent to the multimedia modeller component).  
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Rule 1.  
 

 
 

Figure 5.3 Rule 1 – extracting domains of discourse 
 
The event triggering an initial rule to begin the multimedia generation process is 
the assertion in the working memory of the rulebase of an input, containing a 
query expression provided by the query handler component, a set of presentation 
constraints which are related to the resolution of that input (i.e. details of the user 
which caused the input and the device which generated it) and a reference to an 
instance of the SWeMPs conceptual model (i.e. the knowledge base) which 
defines the specific multimedia generation process to be performed for this 
execution. The query expression contains URI-typed constants or variables 
which represent the subject, predicate and object of RDF triples as well as 
optionally URIs to represent their types. The variables represent the values to be 
found to resolve the query. The presentation constraints could be expressed in 
any suitable constraints model but for implementation we suppose it will be a set 
of RDF triples, each of which expressing an individual constraint. A suitable 
format may be CC/PP [W3C,2004b]. A set of core extension properties used with 
SWeMPs for the presentation constraints, labelled CC/PPx, are presented in 
[Nixon,2005].  
 
Given an abstract query which is expressed as a subject, predicate and 
object, SWeMPs extracts the part of each concrete URI in the query which 
identifies the ontology the term exists in rather than the part which identifies 
the term itself.  Where a XMLNamespace concept exists in the conceptual 
model whose address is equal to the extracted URI, SWeMPs asserts that 
XMLNamespace as a fact in the working memory.  
 
 
 

                                                
62 http://www.dfki.uni-kl.de/frodo/RDFSViz/  

Input(QueryExp); 
Constraints(C1…n); 
ConcModel 

Extract 
domains of 
discourse 

XMLNamespace 
(N1…n) 

For each concept in QueryExp 
 Extract XMLNamespace; 
 XMLNamespace exists in 
ConcModel 
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Rule 2 
 

 
Figure 5.4 Rule 2 – extracting ontologies and metadata 

 
Given that a XML namespace is asserted as a fact in the working memory, query 
the conceptual model for instances of Ontology and Metadata which “have this 
namespace”. The relation has-namespace in the conceptual model is intended to 
signify that the semantic data model involves (to a significant degree) terms 
drawn from the given namespace. That this relation is explicitly given in the 
model allows the developer to determine which sources of knowledge are chosen 
for a certain namespace (i.e. for certain terms which may occur in the query 
expression). Of course, such relations might also be automatically determined by 
parsing the documents themselves.  
 
Where such Ontology and Metadata matches exist they are asserted as facts in 
the working memory. 
 
 
 
 
 
 
 
 
 
 
 
 

XMLNamespace 
(N1…n) 

Extract 
knowledge 
in this 
domain 

Ontology(O1…n); 
Metadata(M1…n) 

For each N 
 (Ontology exists in ConcModel 
OR 
 Metadata exists in ConcModel) 
which 
 has-namespace N 
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Rule 3 
 

 
Figure 5.5 Rule 3 – Adding knowledge to the conceptual model 

 
Given that an ontology or some metadata is asserted as a fact in the working 
memory, a representation of that ontology or metadata should be retrieved by 
selecting an Occurrence of the given concept in the conceptual model and 
resolving the address associated to it. The representation (assuming it is 
consistent with the representation of the conceptual model, otherwise assume a 
transformation of the representation also takes place e.g. through a Service) is 
integrated into the conceptual model and hence is made available for reasoning 
upon.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Ontology(O1…n); 
Metadata(M1…n) 
 

Include 
knowledge 
in model 

ConcModel = 
ConcModel + 
O1…n  + M1…n 
 

For each O or M 
 get Occurrence in ConcModel; 
 resolve address; 
 retrieve representation 
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Rule 4(a,b) 
 

 
 

Figure 5.6 Rule 4a – get query results 
 
Once the conceptual model has been completed with the insertion of 
representations of all the asserted Ontology and Metadata facts in the working 
memory, QueryExp (the query expression introduced as an initial input to the 
system) is evaluated against the model using the reasoner component. As the 
rule diagram above illustrates, two mutually exclusive outcomes are possible 
depending on which condition holds. In the first case, some fact R is found to be 
true for the given QueryExp in the actual conceptual model. The set of facts R1…n 
is asserted in the working memory. However, in the second case, no facts are 
found to be true, i.e. the reasoner returns the value null to the system when it 
makes the query on the conceptual model. In this case, a further condition is 
evaluated (see Rule 4b below) 
 
 
 
 
 
 
 
 
 

ConcModel = 
ConcModel + 
O1…n  + M1…n 
 

Query model 
for 
knowledge 

Result(R1…n) 
 

Seek 
service for 
knowledge 

For QueryExp 
 Nothing is true for QueryExp in    
 ConcModel +  O1…n  + M1…n 

See Rule 4b 

For QueryExp 
 A fact R is true for QueryExp in    
 ConcModel +  O1…n  + M1…n 
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Figure 5.7 Rule 4b – using services to resolve queries dynamically 

 
In this case, since it has been determined that the initial provision of knowledge 
through the conceptual model has not been sufficient (i.e. the set of metadata 
available to provide information about the concepts in the query expression) new 
knowledge and an understanding of that knowledge is sought. In this case, the 
rules are not mutually exclusive but concurrent. Given that most LP 
implementations evaluate rules not concurrently but sequentially allow the rule to 
check both conditions (in LP, we simply ensure the head of the rule is the same). 
While it is clear the upper condition should be evaluated first (as it determines the 
value of M, which is evaluated in the lower condition) it is not necessary to 
provide the upper condition with a higher priority (which, again, may not be 
possible in the logic program) – if the lower condition is evaluated first and fails, 
the system backtracks to the upper condition.  
 
Given the existence of a service which can perform metadata look-up, the system 
executes this service for the concept in the query expression and includes the 
found metadata into the conceptual model (as new Metadata instances which are 
then included through the triggering of Rule 3). The new conceptual model is 
then once again queried (Rule 4a). If the query result set remains null and no 
more metadata is available through the service for inclusion, the remaining 

Find new 
knowledge 
about 
concepts 
 

ConcModel = 
ConcModel + 
M1…n 

 

Map 
unknown 
concepts to 
known 

For a concept C 
 C is in QueryExpr but not in M1…n; 

 Service S performs concept 
mapping; 
 C is mapped to C’1…n where  
  C’1…n is in M1…n 

From Rule 4a 

QueryExpr 
where C �C’1…n 

For a concept in QueryExp 
Service S performs metadata look-up; 
S finds Metadata M about the concept 
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condition is to attempt a mapping from ‘unknown’ concepts to ‘known’. What is 
meant here is that the asserted set of ontologies O1…n represents the description 
of the domains from which the concepts in the conceptual model metadata are 
taken. In other words, for the system to be able to determine that a certain fact in 
some metadata matches the query expression, that query must be expressible 
within that set of ontologies, as the extent of ‘known’ domains which can be 
reasoned about within the system. Note this may involve both the concepts and 
properties related to a known concept within some metadata, as well as the 
concept itself (given the service which looks up metadata has been able to 
reason about the equivalence of concepts itself). Hence given a service which 
can map between ontologies, we execute a mapping from unknown to known 
concepts. This mapping takes the form of C " C’ where C is the concept which 
is not contained in the metadata in the conceptual model. Given that this 
metadata draws from a set of ontologies O1…n, a mapping attempts to find 
equivalences of C within this set and returns these as C’1…n. In the query 
expression instances of C are equated by instances of C’ (e.g. through the 
assertion of OWL sameAs statements in the conceptual model as a simple 
means, or through a semantic matching service for less trivial relations) and the 
query is once again performed. One can understand Rule 4 as an iterative 
process, where knowledge is acquired and mapped in terms of the ‘known’ 
domains until some result set R1…n can be acquired. If no result set can be found, 
the process terminates.  
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Rule 5 
 

 
Figure 5.8 Rule 5 – finding resources for valid subjects 

 
Given that a set of answers to the query expression have been found (note that 
we consider R1…n to be a set of complementary answers, i.e. that SWeMPs 
should try to communicate to the user as much as this set of answers as is 
possible as response to the query), a set of resources must be found that can be 
used to represent those answers. Each R, as a RDF Statement, contains three 
concepts which are understood to be the subject, predicate and object of the 
statement.  
 
Among the metadata M1…n inserted into the conceptual model there is a set of 
resource metadata which is mapped into the SWeMPs model by ontology-
specific mappings (through Rule 4b) that generate Resource instances with 
properties of representing a SWeMPs Subject Y. Where the subject Y is 
equivalent to a concept in R, and the resource metadata Mx describes a resource 
X that swemps:represents Y, then X is asserted as a relevant resource in the 
working memory. Note that X can still be related to its metadata through the 
conceptual model. The representation of Y by X is also asserted in the working 
memory of the system. 
 
 
 
 
 
 
 
 
 
 
 

Result(R1…n) 
Find 
resources to 
show result  

For each R 
 R contains a subject Y 
 Mx is the metadata for a resource 
X 
 Mx states that X represents Y 

Resource(X1…n); 
Representation 
([X1,Y1]… [Xn,Yn]) 
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Rule 6 
 

 
Figure 5.9 Rule 6 – adapting and inserting resources 

 
The purpose of this rule is that for each resource asserted in the working 
memory, it is checked if the presentation constraints specified in the working 
memory are met by that resource in terms of the available metadata. If it can be 
determined that the resource does not meet the presentation constraints then a 
service is executed with the functionality to adapt resources, using as input a 
reference to the resource and the set of presentation constraints which conflict 
with the resource properties as expressed in the metadata. The output of the 
service will be a reference to an adapted copy of the resource.  
 
To illustrate the matter of determining conflict between the presentation 
constraints and the resource properties (which can be understood equally as 
constraints upon its presentation), we assume that both are expressed as 
property-value pairs and take a set theoretical approach. Hence a conflict is seen 
as set non-subsumption – take as an example the case of display formats. In the 
presentation constraints we have: 
 

Check if 
resource can be 
presented 

Insert X and 
P1…n into 
MultModel 

Adapt 
resource for 
presentation 

For X 
 Mx expresses resource properties P1…n 
 P1…n  conflicts with C1…n in [Px…y,Cx…y] 
 Service S performs resource adaptation 
 X is mapped to X’ in that for each Px,Cx 
  Px � P’x  where P’x meets Cx  

Resource(X1…n) 
 

Insert X’ and 
P’1…n into 
MultModel 

For X 
 Mx expresses resource properties P1…n 
 P1…n does not conflict with C1…n 



5. Implementation 
 

SWeMPs – a Semantic Web enabled Multimedia Presentation System 118 

ccppx:formatsSupported {GIF,PNG,JPEG} 
 

and in the resource metadata we find that the resource described 
 

dc:format BMP 
 

Assuming the equivalence of properties (which can be expressed in the 
conceptual model to allow automatic reasoning over both properties as 
equivalent) and using set notation we have (Figure 5.10):  
 

 
Figure 5.10 Set non-membership as test for adaptation  

 
Hence this is seen as a conflict as BMP does not belong to the set Cx and conflict 
resolution is made by transforming the set non-member BMP to a set member 
one-of{GIF, PNG, JPEG}. In terms of the adaptation, this would mean executing 
a service which can take as input the resource in format BMP and return a 
resource in one of the other formats. This has been illustrated in the discussion 
on services in Section 5.4. The final resource and its properties (constraints upon 
its presentation) are inserted into the abstract multimedia model.     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Cx Px 

BMP GIF PNG JPEG 
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Rule 7 
 

 
Figure 5.11 Rule 7 – finalising the abstract multimedia model 

 
The previous rule is iterative in that it does not exit until all resources have been 
handled. The result is that the multimedia model contains a set of resources 
which each have some associated presentation constraints. While the resources 
themselves are assumed to individually conform to the input presentation 
constraints C1…n, these constraints are also included in the model as some apply 
generally to the multimedia document as a whole and not just individual 
resources (e.g. screen size of the user’s display device) upon the initialisation of 
the abstract model within the multimedia modeller. The model is still not yet 
complete for determining the final presentation as the constraints that should 
exist between the resources (as opposed to upon them) must also be 
determined. 
 
The applicable condition here is that for two resources Xa and Xb there is also 
some semantic relation between the concepts they represent and a mapping 
from this relation (or, allowing ontological reasoning, an equivalent relation) to a 
communicative abstraction. The semantic relation can be determined by 
inspecting the conceptual model. The mapping to communicative abstractions 
must also be available to the rulebase from the conceptual model, and is 
introduced through Ontology instances which have relevant namespaces and 
contain SWRL [Horrocks,2004] rules encoded in the RDF/OWL syntax. 
Communicative abstractions should be understandable by the multimedia 
modeller, and hence are best based upon the predefined set of abstractions 
(otherwise the developer will need to extend the Constraints Java class of the 
multimedia modeller to support the newly introduced communicative 
abstractions).  
 
 

MultModel: 
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C1…n 
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multimedia 
model 

MultModel: 
X1…n; P1…n; C1…n 
 

For each Representation [Xa,Ya][Xb,Yb] 
 There is a semantic relation Z[Ya,Yb] 
 There is a mapping Z � Z’ where  
  Z’ is a communicative abstraction 
 Z’ can be represented as a set of  
  presentation constraints P1…n  
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Rule 8 
 

 
Figure 5.12 Rule 8 – formatting the multimedia model 

 
The final abstract multimedia model consists of a set of resources, a set of (unary 
and binary) presentation constraints upon those resources and the input 
presentation constraints upon the multimedia document as a whole. This model 
needs to be solved in terms of finding a single model in which all constraints are 
met when abstract values (e.g. of resource spatial and temporal positioning) are 
mapped into concrete values. This solution model (assuming one exists, if not 
backtracking ensures that the operation of rules is reversed and a new set of 
possibilities is tried which can lead to a solution model) is mapped into a final 
format model through a function F() – which is implemented in the formatter 
component of the SWeMPs architecture. Naturally, the formatter may be able to 
provide a number of formatting functions, which then each describe their result in 
terms of constraints, and the function is selected which preserves all constraints 
upon the solution model. For example, functions may be available to format the 
model to SMIL 1.0 or SMIL 2.0 and if the solution model has the constraint 

 
ccppx:final-format SMIL 1.0 

 
then it follows that the SMIL 1.0 function is selected. 

MultModel’: X1…n; 
P1…n; C1…n 
 

Format 
multimedia 
model 

F(MultModel’) 

For the MultModel’ such that 
  For X1…n each property of X can have 
a  concrete value and every constraint 
on X in P1…n  is met and 
  Every constraint in C1…n is met 
F(MultModel’) is the mapping of 
MultModel’ to a final format  
defined by the function F()  
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5.7 Component APIs 
 
Having determined the components that will be used in the implementation and 
the rules that realise the process in the SWeMPs framework, we add definitions 
of how the rulebase shall interact with those components via a dedicated rule as 
an abstraction of the actual component API, which is accessed within the 
dedicated rule. This is done so that the rulebase (as an implementation of the 
process given in 4.3.4) is not dependant upon components in case their 
implementation changes. In other words, if a component in the framework is 
changed the developer only needs to alter the internal workings of the related 
dedicated rule to use the API of the new component. As long as the dedicated 
rule continues to respect the API defined here for the rulebase, the system will 
continue to operate.  
 
The multimedia generation process foresees five dedicated rules which abstract 
component functions: 
 

Conceptual model query(), include() 
Service space execute() 
Multimedia model insert(), output() 

 
It is important to note that the API given here must not be confused with those of 
object oriented programming languages. In the LP paradigm, no values are 
‘returned’ as these are not methods that belong to any object. Rather as rules 
they are evaluated to true which means a set of valid values are found for all 
variables in the rule body. In that Prolog permits one to place any variable in the 
body also in the head of the rule, there is a means to pass values back from the 
rule into the rulebase. As a simple example, a rule to find the cube of any integer 
could be:   Cube(X,Y) :- X * X = Y. 
 
If somewhere else in the rule base, the fact Cube(2,Y) is given in a rule body,  
then in the evaluation of this rule the variable Y will be bound to the value 4, i.e. 
Cube(2,4) is evaluated to true and no other possible value of Y will evaluate 
the rule to true.  
 
5.7.1 Conceptual model API 
 
query abstracts the lower level implementation of the query interface to a 
conceptual model, and include abstracts the lower level method for importing 
knowledge into the conceptual model.  
 
query(subject, subjectType, predicate, object, 
objectType) 
subject may be of type URI, URISet or variable 
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subjectType may be of type URI, URISet or undefined  
predicate may be of type URI, URISet or variable  
object may be of type URI, URISet, Literal, LiteralSet or variable 
objectType may be of type URI, URISet or undefined  

  
The purpose of the query rule is to pass from the rulebase to the chosen 
reasoning component a query on the conceptual model and to return a set of 
answers to the query. The parameters of the rule reflect the standard triple format 
of knowledge in the Semantic Web (RDF/OWL) – subject, predicate and object - 
while permitting sets of values to enable ‘looser’ query specifications. 
Furthermore as concepts in the Semantic Web are typed, both subject and 
objects can be further restricted when passed as unbound variables (i.e. where 
matching concepts are to be found) by being typed. This restricts query matches 
to concepts of that type or a subtype. The rule translates these parameters into a 
query string and executes a query with the available reasoning component. It 
then organises the results as a set of triples and returns this set to the rule base. 
 
URIs represent concepts in the conceptual model (i.e. a RDF resource). In the 
rulebase these are represented by instances of the java.net.URI class. Literals 
represent a datatype value according to the XML Schema specification. These 
datatypes exist as first class Java objects in the rulebase.  
 
URISet and LiteralSet are a list of URIs or Literals respectively encapsulated into 
a single parameter. In Prova, this is represented through lists (as in Prolog). A list 
contains either URIs or Literals, and not a mix of both.  
 
Variable represents a computational variable whose value will be set as a result 
of the query. That value could be an URI, URISet, and if the variable was the 
object parameter, Literal or LiteralSet. Variables could be typed, which restricts 
the values bound to them to this type (for properties, subproperties will be 
automatically matched). In the case of untyped variables or when the subject or 
object are bound values, the type parameter defaults to ‘_’ which represents a 
variable that does not participate in Prolog unification.  When the subject of the 
query rule is a variable, a subject type can be given. Likewise, when the object is 
a variable, an object type can be given.  
 
In other words, for a fact query(X, Xt, Y, Z, Zt) it shall be evaluate true 
where X and Z respect their types Xt and Zt and as a RDF triple can be matched 
in the queried knowledge base. So if there is query(x,_,y,Z,zt) – x , y and 
zt are bound values - then the variable Z will be bound to all (type-respecting 
according to zt) values in the knowledge base who exist as the object in a 
statement with subject x and predicate y.  

The body of the query rule is dependant on the chosen Semantic Web API and 
reasoner, which in turn determine the query language used and the means of 
executing the query. In the case of RDQL, query strings always SELECT three 
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variables named k_sub, k_prop and k_obj. The reason for this is that the query 
result handling code is written generically, and does not know in advance which 
values are bound or unbound, and hence must be able to specifically reference 
all three variables. A sample RDQL query is given below:  
 

1�#�#$%�2�3���42�3"��"42�3��5�

'(#
#�2�3����6���"	770008�9�� �� :�1�
 

where the predicate is typed as an URI, the object is typed as a literal (string) and 
the subject is left unbound, i.e. should be bound to the response to the query. 
Where types are specified these are added as additional queries (subject rdf:type 
subjectType and/or object rdf:type objectType) which are joined with the first 
query.  
 
include(address) 
address is an URL pointing to a metadata or ontology file  

 
The purpose of the include rule is to assert new facts, not in the rulebase (to do 
this, Prolog has a built-in predicate assert) but in the conceptual model. It does 
this by making a reference to a body of facts to be included (either an ontology or 
metadata instance) and exits successfully in that these facts are added to the 
conceptual model and are henceforth available to the reasoner.  
 
URL shall refer to the location of a collection of facts made in some knowledge 
representation format. To support interoperability, we would expect this format to 
be RDF/OWL (otherwise mediation will need to be included in the process to map 
from other formats). The rule executes the necessary conceptual model-specific 
API for retrieving and adding these facts into the knowledge base. It is assumed 
that this functionality will include a consistency check and an error state if the 
inclusion of the facts has led to some logical inconsistency in the knowledge 
base.  
 
5.7.2 Service space API  
 
execute abstracts the lower level process of discovering a relevant service, 
examining it and invoking it. 
 
execute(srvcDescription, srvcInput, srvcOutput, 
srvcMessage, srvcResult) 
srvcDescription is a string, either having the value “namespace” or “media-
type” 
srvcInput is an URI, either representing the namespace or media-type which 
represents the intended input to the service 
srvcOutput is an URI or URIList, either representing the namespace(s) or 
media-type(s) which represent the permitted output(s) from the service 
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srvcMessage shall be a value which represents what is to be passed to the 
service 
srvcResult shall be a variable which is bound to the result of the service 
execution 

 
The first three parameters form the basis for the discovery of the service, using 
the guideline described in section 5.4. The service message and result type 
depends on the service that was executed: 
 
Resource adaptation or conversion -> 
 
The message is a List with an URI pointing to the original resource which is to be 
adapted or converted, followed by one or more property-value pairs which 
represent the presentation constraints that the resource must be adapted to 
meet. If only an URI is passed, then only conversion takes place.  
The response is an URL pointing to an adapted and/or converted version of the 
resource (either stored in a location accessible to the service, or if the resource 
itself is passed back from the service then the service rule will save that resource 
in a location accessible to the SWeMPs system) 
 
Knowledge extraction ->  
 
The message is an URL which is the URI of the concept for which knowledge is 
missing.  
The response is an URL pointing to a metadata file which contains the RDF-
based information extracted by the service. If the service returns the metadata 
itself, the service rule saves this metadata and returns the metadata location. If 
the service returns the knowledge in some other form, an additional resource 
conversion service can be executed for converting this to RDF/OWL.  
 
Knowledge mapping ->  
 
The message is an URL which is the URI representing a concept for which no 
matching information has been found in the conceptual model and a List of URIs 
representing the ontologies currently referenced in the conceptual model.   
The response will be a List of URLs which represent URIs that are concepts that 
are equivalent to the input URI and are drawn from the ontologies used by the 
metadata in the conceptual model.  
 
If the structure of the parameters passed to the service rule differs from the 
structures of the parameters in the selected service itself, it is the task of the 
service planner to handle data re-structuring.   
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5.7.3 Multimedia model API  
 
insert abstracts the lower level process of adding a resource and its properties 
into the multimedia model. output abstracts the lower level process of executing 
the formatter to translate the multimedia model into a final multimedia 
presentation.  
 
insert(rsrc, rsrcType, rsrcProps) 
rsrc is an URL which locates a representation of a Resource in the conceptual 
model 
rsrcType is a string value, one of “Image”, “Text”, “Animation”, “Audio”, 
“Video” and “Model”.  
rsrcProps is a list of property-value pairs 

  
The insert rule passes to the multimedia modeller the URL of the Resource, its 
type and a set of property-value pairs which identify the characteristics of that 
resource. The type can be determined from the resource metadata, using 
available mappings (the commonest would be mapping from the MIME type, 
given in the metadata either as a string or URI). At a minimum, the resource 
properties need to include the default height and width – if visual, and default 
duration – if continuous. These pairs consist of an URI identifying the property 
according to a classification scheme and either an URI (representing a concept 
from a classification scheme) or a Literal (i.e. a XMLSchema datatype such as a 
string or integer) identifying the value of the property. The use of URIs permits 
reasoning over this data, as SWeMPs imposes no single vocabulary for 
representing resource characteristics/presentation constraints. Rather, Semantic 
Web reasoning can be employed in conjunction with the use of terms from 
RDF/OWL ontologies. Values can also be given as Lists, which indicates either – 
in the case of URIs – a set of complementary values (e.g. a group of font types) 
where the first possible value should be chosen, or – in the case of Literals – 
ranges of permissible values (e.g. pairs of values are interpreted as ‘from … to 
…’). The communicative abstractions are also passed as property-value pairs in 
which the property URI represents the communicative abstraction and the URI 
value the other resource with which this resource is constrained by the given 
communicative abstraction.  
 
When the model is initialised in the rulebase, the insert rule is used to add the 
presentation constraints which apply to all the resources inserted into the model, 
e.g. the total height, width and duration of the multimedia presentation. This is 
done in that the rsrcType is “Model” and the constraints themselves are 
contained in an URL passed by the method and/or a list of property-value pairs.    
 
output(model) 
model is a variable which takes the URL of the resulting model 
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In the output rule, we call the method of the multimedia modeller which 
determines a final form of the multimedia presentation, i.e. allocates valid bound 
values to all free variables in the multimedia model.  The model is then passed to 
the formatter component and formatted according to the given constraints on 
output format and saved as a file whose URL is returned to the system through 
the model variable.  
 

5.8 Conceptual model 
  
In section 4.4, we defined the SWeMPs conceptual model using first the 
formulism of the chosen ontology development methodology (CLASSIC KR 
model) and then SHOIQ Description Logic, which is the core logical formulism of 
the Semantic Web (in OWL-DL). For the implementation, the model is developed 
using the Protégé authoring tool and the OWL plug-in, in order to produce an 
ontology which can be expressed using the OWL language, the de facto standard 
for ontologies on the Semantic Web. 
 
We can check the consistency and coherency of this model once we have 
modelled the ontology in Protégé. The modelling proves to be a relatively 
straightforward task as Protégé’s KR model is frame-based like CLASSIC. The 
Protégé ontology editing tool provides an environment to validate our model, 
visualize it and export it in other formats, which of course includes the Web 
ontology language OWL. 
 
OWL offers an extended set of logical formalisms which can be applied to the 
conceptual model. In the context of building the OWL ontology of the conceptual 
model we made the following design decisions: 
 

• Semantic object is renamed Subject to avoid terminological confusion, as 
in the context of the Semantic Web every construct in an ontology could 
be construed as being a semantic object. Likewise, Semantic object 
metadata is renamed SubjectMetadata. 

 
• URLs are abstracted into the class Occurrence. This is to recognise that in 

the model some same URLs may be related to multiple resources or 
services (e.g. when they locate a database which can return different 
resources) and to support re-use. Furthermore, we differentiate 
occurrences (URLs pointing to retrievable data) from the URIs used to 
identify any ontological construct in the model.  

 
• Service description properties handles-media-type and handles-

namespace are expanded into from-media-type, to-media-type, from-
namespace and to-namespace in order to enable the differentiation of 
input and output and hence define within the model services which convert 
media types or map ontologies (as was discussed in 5.4). 
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• The property has-namespace has as its domain Metadata and Ontology 
instances, and not generally resources, as the namespace is only relevant 
in the process for those types of resource. 

 
• Some remaining properties are changed to apply to the domain of 

Metadata. The property exists-in-domain is applied no longer to the 
Subject but to the Metadata instance and renamed uses-ontology. The 
property has-metadata is altered to take Metadata as its domain (like 
references, which is restricted to the domain of SubjectMetadata and the 
range of Subject) and renamed to describes for the domain of 
ResourceMetadata and range of Resource and defines for the domain of 
ServiceMetadata and range of Service.  

 
• The top level classes Subject, Resource, Service, MediaType, Occurrence 

and XMLNamespace are declared disjoint, i.e. an individual of one class 
can not be the member of another class. This is to explicitly state that 
these concepts are distinct in the model – arguably a resource or service 
could be a subject, but the semantics of these classes – in the domain of 
the multimedia generation process – decides that they are to be 
considered distinct. 

 
The resulting ontology conforms to OWL-DL. That means one can apply DL-
based reasoning to this ontology for subsumption testing and consistency 
checking. It is found that the ontology is valid and consistent. The tests were 
made by the Protégé tool. The ontology is illustrated in Figure 5.13. Its 
visualisation was generated by the RDFSViz tool62.  
 
This conceptual model is an upper level knowledge representation of the domain 
of multimedia generation. It exists at an abstract, high level where multimedia 
generation is modelled in terms of the general process that is carried out and the 
components which exist within that process. For concrete multimedia generation 
tasks, it is clear that a knowledge base instantiated from this model must also be 
extended with ontologies specific to the domain of the multimedia generation 
task. Ontology importing is the act of extending the conceptual model with further 
knowledge models in its instantiation as a knowledge base. Through ontology 
importing, instances in the model can also be specified in terms of the extension 
classes and properties inserted through the imported ontology.  
 
For the multimedia modeller, the ZyX abstract multimedia model [Boll,1999b] was 
also ontologized and the class structure of this ontology is shown in Figure 5.14.  



 

 
 

 
 
 

 
 
 

Figure 5.13 SWeMPs Ontology
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Figure 5.14 ZyX ontology 

5.9 Conclusion 
 
In this chapter, we have moved from the proposal of a framework and conceptual 
model presented in Chapter 4 to a more concrete specification of how the 
SWeMPs system is implemented. We have followed a known and established 
software development approach. We outlined which technologies have been 
considered as best suited for the implementation, defined (abstract) APIs for the 
components that were defined as part of the architecture and elaborated the 
rules which model the multimedia generation process using a Prolog-like syntax. 
Finally we created OWL ontologies to represent the SWeMPs conceptual model 
and the ZyX abstract multimedia model. 


