
5. Implementation

SWeMPs – a Semantic Web enabled Multimedia Presentation System 92

Implementation

In order to be able to assess the proposed conceptual model and framework for
SWeMPs, a proof of concept system is implemented that demonstrates the core
functionality of the knowledge-integrated multimedia generation process. This
implemented system is developed with the Semantic Web in mind and will be used for
the evaluation of the proposed approach.

While the framework of the Semantic Web-enabled Multimedia Presentation
system has been developed using established design methodologies, it remains
necessary to build a (skeleton) implementation of the system to act as a ‘proof of
concept’. This implementation is based on an established software development
methodology, drawing upon the UML models of a system framework (Figure 4.2)
and application process (Figure 4.5). In making concrete implementation
decisions we take care to support integration at every level with the Semantic
Web.

In this chapter the implementation that has been made within the context of the
PhD research is explained. The implemented system is used for the evaluation of
the following chapter. It is to be noted that a full implementation (including the
extent of stability, scalability or efficiency that would be desired in a piece of
commercial software) has not been possible within the time frame of this
research. Rather, a minimal system framework has been produced which is
sufficient to demonstrate the core functionality of SWeMPs. Where remaining
aspects of the system have not been implemented, we draw upon the design
decisions of the previous chapter to infer that requisite functionality would be
possible. At this stage however, the intention is to show the fundamental
plausibility of the proposed approach and its value to the Semantic Web and
multimedia generation task, without attempting to address every possible issue.
The implementation is available as open source software for further, possibly
collaborative, ongoing development42.

5.1 Software development methodology

For this implementation, the Rational Unified Process (first introduced in section
1.5) [Kruchten,2003] is the chosen software development methodology.

As an evaluation of the development activity itself, we mention the best practises
as captured in RUP. These best practises are drawn from the experience of
failed software projects and are considered to represent the best means to
overcome the most common problems that can occur in the development cycle.

42 As a project on the SemWebCentral website http://projects.semwebcentral.org/projects/swemps/

5. Implementation

SWeMPs – a Semantic Web enabled Multimedia Presentation System 93

The implementation described in this chapter is shown to exhibit each of these
best practises:
(1) Develop software iteratively – as has been previously noted (cf. appendices),

this software development cycle represents a third iteration, and in each cycle
alterations were made progressively during implementation

(2) Manage requirements – a set of detailed requirements, drawing upon the
initial problem statement, inception of a possible approach and consideration
of prior work (particularly the SRM-IMMPS), has been given in chapter 4.3.1.

(3) Use a component based architecture – component-based approaches
produce a system that can be extended, promotes re-use and is intuitively
understandable. The use of UML (which is object-oriented in nature) and
particularly a component diagram for the SWeMPs architecture demonstrate
a core commitment to a component-based approach from the design phase.

(4) Visually model software – the use of models aid greatly in the understanding
of a system and hence support its implementation. UML has been used in the
design of SWeMPs to graphically represent its proposed architecture and the
multimedia generation process.

(5) Verify software quality – Quality assurance, while not as requisite in this case
as would be in a commercial project, is still an aspect that will be taken into
account in the ongoing development of SWeMPs. The evaluation of the
skeleton implementation is a first step towards quality assurance. Bug
tracking and so on as part of the public distribution will encourage continued
quality in the development.

(6) Control changes to software – again, the initial implementation is seen as a
proof of concept and change tracking has not been a major issue. However in
the continued development of the system this will be included, as shown by
the establishment of SWeMPs as a CVS-based project.

5.2 The rules-based system

As has been argued in the previous chapter (section 4.3.5), the application will
be built as a forward-chaining rules-based system.

The most common logic programming paradigm for rules-based systems is
Prolog (PROgramming in LOGic)[Shapiro,1986]. Prolog is typically used in
artificial intelligence applications such as natural language interfaces, automated
reasoning systems and expert systems. It uses a subset of first order logic that is
restricted to allowing only Horn clauses, that is, clauses of the form

(p and q and … and t) implies u

Notably, the subset of first order logic used by logic programs such as Prolog
differs from the subset of first order logic used by Description Logics.
Furthermore, Prolog programs operate according to the Closed World

5. Implementation

SWeMPs – a Semantic Web enabled Multimedia Presentation System 94

Assumption (anything that can not be proven true is false) while Semantic Web
approaches such as OWL take the Open World Assumption (anything that can
not be proven true can not be said to be false). In terms of the realisation of the
multimedia generation process, this can be seen to be an advantage as while it is
realistic to expect that knowledge on the Web is always incomplete (given the
dynamic, constantly changing, open environment of the Web), it is necessary
within the multimedia generation process to be able at times to say definitely if
something is to be considered true or false. Likewise, in the Open World it would
not make sense to complete a sub-process by saying that there is no further
knowledge on a particular concept as Open World would say that it can never be
known if there is not some further knowledge to be found. Hence in SWeMPs the
choice of a Prolog paradigm for the internal knowledge activity has both
pragmatic and conceptual meaning.

Pragmatically, the Semantic Web is not yet mature enough in the rules layer to
be able to be applied to expressing the rulebase of the SWeMPs application.
Rather, Prolog with RDF/OWL extensions allows the use of the much more
established Logic Programming (LP) paradigm with Semantic Web data. The
current rules layer of the Semantic Web is under debate, particularly in terms of
which forms of reasoning should be allowed and trying to maintain compatibility
with the RDF and OWL layers. The choice can be characterized as being
between Datalog (LP) approaches, e.g. allowing some forms of closed world
reasoning, and RDF/OWL compatible (DL) approaches, which semantically are
difficult to converge and could result in two separate development tracks
[Horrocks,2005]. A Semantic Web Rules Language (SWRL) has been published
as a W3C Member submission [Horrocks,2004] which combines OWL Lite/DL
with Datalog. Hence the closed world approach, which we find useful in a
semantic application such as SWeMPs, may yet be able to converge with a
future RDF/OWL compatible Semantic Web rules layer. This activity continues to
be promoted through the W3C Rule Interchange Format (RIF) Working Group
[W3C,2006].

Conceptually, we can say that while the Open World Assumption is correct for
the Semantic Web, the selected knowledge which is made available to the
SWeMPs rulebase through the knowledge base must be then considered under
a Closed World Assumption (while the world continues to change out there on
the Web, in here in the SWeMPs process it is considered frozen at the current
model of knowledge so that decisions can be made without ambiguity). While
considering a particular set of knowledge under an Open or Closed World
Assumption is a matter for the query engine used (and hence closed knowledge
is modelled in the Prolog working memory and queried through Prolog
unification, while open knowledge remains in the RDF knowledge base and is
queried by a Semantic Web reasoner), it also makes a difference in the range of
logical expressions that are possible, e.g. negation. Hence in SWeMPs care is
also taken in terms of which knowledge from the (Open World) knowledge base
is mapped into the (Closed World) working memory where it can be queried

5. Implementation

SWeMPs – a Semantic Web enabled Multimedia Presentation System 95

under the Closed World Assumption. One effort to resolve this issue is DLP –
Description Logic Programming [Grosof,2003] - which defines a common subset
of logic shared by both Description Logics and Logic Programming and hence
provides guidelines to mapping between both paradigms.

In Prolog, facts are n-ary predicates – a predicate p with an unlimited number n
of atoms a applied to it, i.e. p(a1,…,…,n). A rule is in the form

head :- body
where head is a single fact, body is one or more facts and the meaning of the
rule is that if body is true (each fact unifies with a fact in the working memory)
then the system can infer that the head is also true (i.e. add it as a fact in the
working memory).

In SWeMPs, we consider the fact base maintained by the rules-based system as
separate from the knowledge base (i.e. an instantiation of the conceptual model
introduced in the previous chapter). The former is stored within the rules-based
system and is expressed in terms of the rules-based systems logical formulism
(Prolog) and uses concepts which have no explicit formal meaning outside of the
system. The latter is external to the rules-based system and is expressed in
terms of its own logical formulism, based on the Semantic Web, and drawing its
concepts from the SWeMPs conceptual model. The inference engine is the rule
engine that the application will be built upon, extended by the components
identified in the framework such as a reasoner to allow for DL-based querying
upon the knowledge base.

In our case, we use the unification of the fact base with the rules in the system as
the basic means to trigger actions, in that some facts in the rule body to be
evaluated are actions upon other components which are true if and only if they
can be performed without failure. These actions are wrapped in special rules that
execute API methods on the other, external, components. In other words, the call
to other components is “disguised” to the rule engine by rules whose body is
evaluated true if the methods executed on the component return true (do not fail)
and result in a fact (the rule head) added to the working memory both as a signal
that the component interaction took place and as a means of carrying the
interaction results into the rules-based system (in the form of the atoms within the
fact, given that the Prolog implementation does not restrict atom types). This is
even though the components operate in a different paradigm (e.g. Semantic Web
data models for the reasoner, Web Service descriptions for the service planner).

It is an explicit aim of the implementation to support the heuristic solution of
multimedia presentation goals through declarative programming. That is to say,
the implemented application must demonstrate an iterative solution to a given
information request by examining all possible execution routes (with regard to
knowledge, content and presentation), resolving conflicts (matching rules and
passing control when rules fail or bottleneck) and concluding with a “best case”
result. Prolog systems support this in that, given failure in a rule according to one

5. Implementation

SWeMPs – a Semantic Web enabled Multimedia Presentation System 96

combination of variables, the Prolog interpreter will backtrack (to the last step
before failure occurs) and try again to evaluate facts with another combination of
variables (i.e. the interpreter tries all possibilities before giving up). Likewise, it is
possible to declare rules with the same head and different body: if the evaluation
of the head fact resolves to false on the basis of one of the rules, the interpreter
will attempt again using another of the rules.

As we seek a rules-based system which will be able to be integrated with other
components, a common programming language environment is required that is
irrespective of the platforms upon which an application may be deployed. Hence,
while within the system itself and system components logic-based programming
languages form the underlying implementation model, Java is chosen to function
as the programmatic “glue” between the otherwise distributed and
heterogeneous components. Java is seen as a good choice as potential
component choices are likely to offer Java-based APIs. A logic programming
environment is required which can incorporate Java calls (to the other
components), and Prova43 was chosen. Prova is a rules-based scripting system
using both Prolog and Java constructs to combine imperative and declarative
programming styles within the Java runtime and with access to all Java
packages.

5.3 Component implementation

The component-based framework of SWeMPs was illustrated by an UML
component diagram in Figure 4.3. In this section we consider the concrete
implementation of the components for the Semantic Web related aspects of the
system architecture. The aspects of the service planning and multimedia
modelling are then discussed in some more detail in the following sections.

5.3.1 Ontology creation

The conceptual model needs to be formalised as an ontology and other
ontologies may need to be prepared for use with the SWeMPs system. While the
model has already been specified in Description Logic (section 4.4.3), a tool is
required to realise this specification as an ontology in a Semantic Web language
such as OWL. Protégé44 is not only one of the best known and well established
ontology editors in the field but is extended by numerous plug ins to provide
additional functionality needed or preferred by the SWeMPs framework, including
OWL/SWRL support (for the Semantic Web interoperability) and (through plug-
ins such as OntoViz) ontology visualisation.

43 http://comas.soi.city.ac.uk/prova/
44 http://protege.stanford.edu

5. Implementation

SWeMPs – a Semantic Web enabled Multimedia Presentation System 97

5.3.2 Ontology population

In the SWeMPs framework, a knowledge base is foreseen as the external,
explicit representation of the knowledge required for a given multimedia
presentation generation task. The knowledge base consists of instantiations of
concepts in the SWeMPs ontology. Populating ontologies is a problematic task,
given the need to identify the instances required together with their properties
and the possible scale of instances that may exist.

Protégé can be used for the manual creation of individuals based on the
SWeMPs ontology, though as a tool it is not ideal for this task, especially as one
would presume that the ontology population could be a task done by non-
ontology experts (as opposed to the ontology creation above). There is work in
(semi-)automated population strategies which could also be examined to ease
developer effort, while we also note that SWeMPs is modelled in such a way to
maximise the re-use of instances from other knowledge sources and to minimise
the need to instantiate directly a large number of SWeMPs concepts (this will be
shown more in chapter 6). Hence, for example, instances of services could be
harvested from a Web service directory or better still, the look-up at the directory
itself modelled as a single service instance in the knowledge base which is used
to identify other services meeting the current system processing need.

5.3.3 Ontology storage

SWeMPs will import dynamically external ontologies during the multimedia
generation process, so the size of the knowledge base being employed by
SWeMPs can change significantly during its execution. In-memory storage of the
ontologies being used in SWeMPs can become costly; hence generally some
sort of persistent back-end is used to provide a storage solution to Semantic Web
applications.

There is currently a lack of OWL specific storage systems. Rather, an alternative
storage method could be used (database, database front-end for RDF, RDF
specific triple store) as long as it can still be integrated with OWL specific
reasoning capabilities. We look at the possibilities of reasoning tools in the next
subsection.

Sesame45 is a well known and established RDF(S) front-end to a database
system (using MySQL). However its API and reasoning capabilities are limited to
RDF(S)46, and hence without a further development to include OWL level
functionality can not be considered at this time for SWeMPs. Kowari47 is an
interesting implementation of a specific RDF triple store, with accompanying

45 http://www.openrdf.org:80/
46 There is an OWL DLP inferencer for Sesame which supports a few OWL constructs in a naïve fashion
on top of RDF(S).
47 http://www.kowari.org/

5. Implementation

SWeMPs – a Semantic Web enabled Multimedia Presentation System 98

improvement in efficiency. The developers state their intention of extending the
store to support OWL DL, but this work is not yet complete.

Jena48 provides a Java-based framework for interacting with RDF and OWL
knowledge stored in a RDBMS, and permits OWL level reasoning to be applied
to that knowledge. The 100% Java approach of Jena makes it appealing for the
realization of OWL level functionality in SWeMPs, especially as it offers an
abstracted API for accessing stored knowledge and reasoning over it and leaves
the actual relational database and reasoner implementation to individual
developer decisions without forcing an alteration of the Jena code. Additionally,
examples of Jena integration with the rules-based scripting of Prova are provided
with the Prova download, showing that these two technologies can be combined
in the SWeMPs framework.

At this stage of research, a simple Jena approach is taken, storing the knowledge
base in memory. However it is clear that this implementation approach can be
extended in future to use a dedicated storage solution and, if the Jena API is not
available or functionally limited for use with that solution, that another API –
preferably Java based – could also be used by SWeMPs.

5.3.4 Ontology reasoning

Interacting with knowledge based on an ontology requires access to a reasoner
component which can proof the consistency of inserted statements and infer new
facts from the statements present in the knowledge base. In SWeMPs, the
reasoner will be working with a potentially dynamically changing knowledge base
and will need to be stable enough to handle reloading of the knowledge base
(rather than relying on a cached model). Despite the core importance of
reasoning in the Semantic Web, current reasoners often demonstrate
performance problems, particularly regarding scalability. While SWeMPs should
aim to minimize problems by retaining knowledge in the active knowledge base
only for the duration of its relevance, current reasoning support with promises of
stability and scalability do exist.

Instance Store49 is a DL reasoning solution for large numbers of individuals. It
consists of a backing store (Oracle, MySQL or the 100% Java implemented
HyperSonic) accessed through JDBC, a reasoner (Racer or FaCT) accessed
through the DIG interface and an ontology (without instances). More recent
versions of Instance Store include OWL support, but the major limitation is that it
performs only “role-free” reasoning over individuals. Hence this work is
interesting for overcoming future issues of scalability but insufficient for the initial
realisation of the SWeMPs framework.

48 http://jena.sourceforge.net/
49 http://instancestore.sourceforge.net/

5. Implementation

SWeMPs – a Semantic Web enabled Multimedia Presentation System 99

Jena, which supplies a Semantic Web API that is well defined50, includes a
dedicated reasoner, but other reasoners which provide more expressive and
efficient reasoning capabilities can be alternatively plugged into the Jena
framework. The Jena OWL reasoner is an extension of the existing RDFS
reasoner, which results in an incomplete OWL based implementation. All OWL
Lite constructs are covered, with the critical constructs NOT covered in the
existing reasoner beyond OWL Lite being complementOf, unionOf and oneOf.
The developers acknowledge stability and scalability problems, and advise
caution in its use.

While the Jena reasoner is the obvious choice as an initial solution for reasoning
support given the choice of the Jena API, it is insufficient for a stable system.
Hence, while the proof of concept system developed for this thesis relies on the
Jena reasoner, we plan to experiment with other reasoners in the ongoing
development of SWeMPs.

5.3.5 Ontology query

Access to knowledge in a knowledge base is through queries. An appropriate
query language is required that can express the form of queries that will be made
by SWeMPs in deriving a multimedia generation process from the provided
conceptual model.

In Jena, the query interface to the ontology uses as a query language RDQL
[Seaborne,2004]. If another reasoner were to be used, the query language could
also differ – in fact, it is expected that the SPARQL [Prud’hommeaux,2006]
proposal will establish itself as the ‘official’ RDF query language, at least at the
W3C. We note that for SWeMPs it is no problem to switch the query language,
as this is abstracted by the query handling and reasoner components of the
SWeMPs architecture. For example, ARQ53 has been developed as a SPARQL
processor for Jena.

RDQL is a SQL-like language which is executed within Jena through a query
string, where the format of the query is �#�#$%�&�'(#
#�&�)*+,�&-�
)��.+/�&-0�As the form of the query is a single string, the following
conventions are used to differentiate between types:

• URI References are enclosed within <…>
• Free variables are prefixed with ?
• Bound variables are enclosed within ‘…’ (i.e. they are unified as strings

even though they may also be integers or other datatypes)

50 http://jena.sourceforge.net/javadoc/index.html
53 http://jena.hpl.hp.com/ARQ/

5. Implementation

SWeMPs – a Semantic Web enabled Multimedia Presentation System 100

We consider the task of passing the request to the SWeMPs rulebase as the task
of the query handler component and the resolution of that request through
executing the query – as RDQL or whatever is supported - upon the conceptual
model as a task realised by a dedicated query rule in the rulebase using the API
of the reasoner component. The dedicated query rule is discussed in 5.7.1.

The query handler forms the query by binding (or not binding) values, as well as
their types, to an abstract statement – which, following RDF convention, can be
seen as a triple of the form <subject, predicate, object>. The statement can be
understood as the users’ desired information, in that it seeks to state some fact
about something. It is an information request because some aspect of the
statement is missing, i.e. the user is missing some part of the desired
information. The mapping from the expression by the user of which information
they desire (which would be through some user interface which communicates to
the query handler of SWeMPs) to this incomplete statement is specific to the
query handler component used which is implemented to handle input of a certain
format from the user interface application.

The purpose of the query handler is to determine the binding of values to the
subject, predicate and object of the abstract statement. The bindings are also
typed and could be individual values or a set of values54. Sets of values map in
the LP paradigm to lists. Value types (which would be implementation specific
from the requesting application) are mapped to Semantic Web concepts and
passed to the rulebase as URIs55 or datatypes according to the XML Schema
specification56. Those values that do not receive a binding are left unbound, and
hence are mapped in the query as variables (which, nevertheless, can be typed).
In other words, the abstract statement is a means to provide a representation of
the query that is not query language specific. The rulebase execution takes the
abstract form of the query as a parameter when called from the query handler
component. The dedicated query rule within the rulebase performs the further
mapping of this abstract form to a concrete form based on which reasoner is
being used: RDQL or some other query representation (e.g. SPARQL).

It is a fair comment that RDQL, SPARQL et al are ‘RDF’ query languages,
however this does not make them invalid for querying an OWL ontology as it is
the reasoner component, if it supports OWL constructs, that determines the
inferable statements in the knowledge base. These statements, even if they also
contain OWL, can be modelled in RDF (as OWL can be represented within the
RDF data model) and hence matched by a RDF query language.

54 How the query handler stores internally the set of values is implementation specific
55 Typed as instances of java.net.URI within the rulebase.
56 All the principal XML Schema datatypes have natural mappings to Java types. Date and time datatypes
have Java types defined in the javax.xml.datatype package

5. Implementation

SWeMPs – a Semantic Web enabled Multimedia Presentation System 101

5.4 Service planner

It has been argued that, for a dynamic process in which it is not possible to
determine all functional needs in advance, a possible solution is to dynamically
locate and execute external services, which encapsulate a given functionality, at
run time when the specific functionality is required. This saves a system
implementation from needing to explicitly code for every possible functional
requirement in its lifetime. As an example, a multimedia system may need to
convert between resource media types. As the possible set of media types
grows, so the functionality encoded within the system must grow to cover each
possible conversion possibility. Furthermore, certain conversion tasks may occur
very rarely and it seems wasteful to have this conversion code explicitly
maintained within the system. Additionally, the conversion may already have
been implemented in an existing program and it would be better to simply re-use
this code. The Web Services infrastructure is focused on providing such
capabilities by enabling heterogeneous systems to communicate with one
another regardless of their underlying implementations by defining a
standardized interface for exchanging messages between them (e.g. calling a
certain method on the other system, and receiving the response). In particular,
Web Services focus on realising this infrastructure on the Web, so that any Web
Service is reachable to any system which is connected to the Internet. To further
support Web Service usage, a directory service can be invoked to find suitable
Web Services, QoS considerations can be considered (i.e. availability, response
time) and communication set up between services through the initial exchange of
description files (which define the interface to the service, i.e. methods, their
definitions and the required parameters to be passed and their syntax).

In the current Web Services infrastructure, the directory is encoded in the UDDI
standard, service descriptions in WSDL and messages exchanged using the
SOAP format [Curbera,2002]. However, examination of the Web Service
directory, parsing of the Web Service description and the formulation of the
SOAP messages is a manual task, in which a developer must write code
specifically for the service to be called. In the light of the Semantic Web effort to
define machine-processable data formats, efforts are being made to apply this to
Web Services, so that their discovery, description and invocation might be
expressed in a machine-processable form and hence automated in computer
systems. Semantic Web Services, as the field has become known, is aiming to
achieve precisely this [McIlraith,2001].

In the implementation, we use OWL-S [Martin,2004] as it is based upon the OWL
language and has already a number of open source tools for editing, discovery
and execution which can be used. However, the field is still open – another
activity, WSMF [Bussler,2002], seems to be more comprehensive in its work and
it seems likely that rather than result in two competing approaches the two
groups will converge on a single agreed standard. At present, however, the latter
work is still evolving so the stable OWL-S 1.1 will be used. Architecturally, it is

5. Implementation

SWeMPs – a Semantic Web enabled Multimedia Presentation System 102

not a problem to support some future emerging Semantic Web Service standard
as the specifics of the Semantic Web Service interaction is abstracted from the
rulebase using the dedicated service rule and service planner component.

OWL-S acts as an upper ontology for creating service descriptions. It consists of
three key classes, the ServiceProfile – which provides an advertisement of what
the service does, the ServiceModel – which provides a description of how the
service works, and the ServiceGrounding – which provides the means to interact
with the service. These classes can be understood as realising the discovery,
description and invocation of the service respectively.

The Service Profile provides a means for representing the provider of the service,
the function of the service and the characteristics of the service. Functionality is
modelled in two aspects: the information transformation (represented by inputs
and outputs) and the state change produced by the execution of the service
(represented by preconditions and effects). This is often expressed together as
an ‘IOPE’. Inputs and outputs have a parameterType parameter which identifies
which (OWL) class their values belong to. Preconditions and effects are
represented as logical expressions which also identify their representation
language (e.g. SWRL, KIF).

The ServiceModel provides the details for interacting with a service, which is
viewed as a process. An atomic process expects one message and returns one
message. A complex process requires the exchange of a set of messages and
maintains state as the interaction progresses. In SWeMPs, we expect to work
primarily with atomic processes. The process is defined in terms of IOPE,
typically in more detail than in the ServiceProfile.

Finally, the ServiceGrounding provides the means for actually exchanging
messages with a concrete instance of the service. Groundings are based on a
WSDL service description, which identifies the URL of the service, the syntactic
form of the messages received and sent by the service, and the datatypes of the
parameter values. Relations are defined between the OWL-S process and the
WSDL operation, the OWL-S inputs and outputs and the WSDL message, and
the OWL-S parameterTypes and the WSDL abstractTypes. In other words, a
means to translate between the semantic and syntactic views of the service is
provided.

We implement a three step process (discovery, selection, execution) within a
dedicated service rule in the rule base, applying backtracking to ensure
successful service interaction (e.g. after the first discovery step, if the second
examination step fails because the selected service requires something that can
not be provided, then the system backtracks to the first step and selects a
different service and tries again). The service rule interacts with the service

5. Implementation

SWeMPs – a Semantic Web enabled Multimedia Presentation System 103

planner that is chosen for the SWeMPs implementation, which could be (initially)
using the OWL-S 1.1 API57.

Considering the operation of the SWeMPs multimedia generation process
(according to the UML activity diagram in Figure 4.5), there are three cases in
which the use of external (Web) services is foreseen:

• Service “look-up for other metadata”
• Service-based “mapping between ontologies”
• Service-based “resource adaptation”

The SWeMPs conceptual model supports specifying properties on Services
which indicate a namespace or media type handling service (i.e. an ontology
mapping or resource conversion service). This is a form of shorthand for
regularly requested services to save on the reasoning overhead of querying the
entire service description (directory). A classification of namespaces and media
types may be useful for reasoning over these services, e.g. that a namespace is
partOf another namespace or that a media type is a specialisation of another
media type. Services which extract knowledge about specific domains could be
modelled by having the namespace as value of the handles-namespace
property, and services which support adaptation of specific media types could be
modelled by having this media type as value of the handles-media-type property.
However, other cases require the specification of different namespaces or media
types for the input and output of the service, i.e. mapping between two ontologies
requires the namespaces of the input and output ontologies; converting
resources requires the media type that is input to the service as well as the type
which is output. Hence, we can extend the SWeMPs conceptual model to
differentiate input and output properties and define a simple methodology for
service discovery through the values of those properties of a Service in the
conceptual model:

Service
type:

from-media-
type

to-media-type from-
namespace

to-
namespace

Resource
adaptation

X X

Resource
conversion

X Y

Knowledge
retrieval

 X X

Knowledge
mapping

 X Y

The service metadata can be examined for the selected services for two reasons:

1. To determine if a selected service can be executed at all, e.g. to test that
the preconditions of the service are met;

57 http://owl-s-api.projects.semwebcentral.org/

5. Implementation

SWeMPs – a Semantic Web enabled Multimedia Presentation System 104

2. To determine which service from a number of possibilities is preferably
executed, e.g. to check the current QoS given for each service.

We illustrate this in Figure 5.1 in terms of a service execution call (the execute
rule is detailed in section 5.7.2) and the mapping to IOPE in an OWL-S service
model, using as an example services for resource conversion and adaptation,
based on an example given in [Jannach,2005]. The KoMMa OWL-S framework
introduced by [Jannach,2005] is a good example for implementing a SWeMPs
Web service framework except that it depends on MPEG-7/21 XML syntax
references for its input and output, rather than the SWeMPs approach of using
semantic concepts specified by URI and defined in the conceptual model.

Figure 5.1 Sample integration with Semantic Web Services

The mappings here depend on the service parameters being typed semantically,
i.e. the parameterType is an URI identifying a concept in the conceptual model
which is mapped to the intended meaning of the parameters in the execution call.
For example the MIME types given are mappable to the oldFormat and
newFormat parameters (typed as swemps:MediaType) in the first service. As a
height constraint is also given, a further service has to be called. By semantic
type equivalence the imageOut output (typed as zyx:Image) of the first service
can be used as the imageIn input of the second service. Note that in the second
service extra parameters are given in the input (oldWidth, oldHeight and
newWidth) that are not in the execution call parameters, so the service rule

Operation: serviceConversion
 Input: imageIn, oldFormat, newFormat
 Output: imageOut
 Preconditions: image(imageIn), format(oldFormat)
 Effects: image(imageOut), format(newFormat)

Operation: serviceResize
Input: imageIn, oldWidth. oldHeight, newWidth,

newHeight
 Output: imageOut

Preconditions: image(imageIn), width(oldWidth),
height(oldHeight)
Effects: image(imageOut), width(newWidth),
height(newHeight), horizontal(newWidth),
vertical(newHeight)

execute(
“media-type”,
image/bmp,
[image/jpeg,
image/gif,
image/png],

[http://…,

[zyx:height,
400]],

URI)

5. Implementation

SWeMPs – a Semantic Web enabled Multimedia Presentation System 105

constructs additional queries to extract the necessary additional knowledge (what
is the width of the original image).

In the final step, the Grounding for the service is retrieved through the service
metadata and used by the service planner to construct the message to the
selected service, as well as to correctly parse the service response and pass it
back to the rule base59.

5.5 Multimedia modeller and formatter

An important issue for SWeMPs is the multimedia model and the multimedia
modeller component. Fully abstracted from, and yet intractably linked with, the
rules system the modeller is tasked with supplying the requisite functionality for
operations between the rulebase and the multimedia model. Like the reasoner
which connects the rulebase and the conceptual model, that carries with it a set
of logical processing axioms (based on the knowledge representation it is
intended to work with, e.g. RDF/OWL), the multimedia modeller must contain the
set of minimum generic logical processing axioms for building a consistent and
correct multimedia model. These axioms need to be specified just as logical
axioms for knowledge representations must be specified. Additionally, the
modeller needs to be able to deal with two further cases:

(1) The internal generic axioms for a model (as rules) are applied not only to
the facts being generated from the rulebase but also to the execution-
specific presentation constraints. These act as an additional input to the
modeller and must be taken into account when carrying out consistency
checking.

(2) The facts inferred by the rulebase for the model are insufficient for a
multimedia presentation, as they are limited to stating which resources are
relevant and not how resources are to be presented. This is a domain-
specific issue and hence must be specified for each execution. Like the
conceptual model, we suppose individual presentation rules can exist for
different multimedia generation cases. These rules allow for inferring from
the existence of resources (and their domain-specific properties and
relations, tested against the conceptual model) to constructs which we
have called “communicative abstractions” and which represent a set of
constraints that apply between those resources.

In summary, the multimedia modeller acts like a reasoner upon a multimedia
model, which follows a different set of axioms than a knowledge representation

59 Selection and execution is handled by the service planner implementation, e.g. the OWL-S API, which
re-uses the Jena toolkit to reason on ServiceParameters and uses the Axis WS package to execute services
mapped to/from WSDL.

5. Implementation

SWeMPs – a Semantic Web enabled Multimedia Presentation System 106

model. The multimedia model will contain a set of base constructs like objects,
space, time and interactivity just like an ontology contains classes, properties,
instances and literal values. The axioms will define the basic rules for a
consistent presentation (e.g. that objects must all fit within the space available).
The modeller accepts resource insertions as input, and builds up in the
multimedia model a set of facts (determined by resources, their properties and
relations to other resources). The set of facts is constrained by the consistency
axioms including the presentation constraints specified in each execution. The
model incorporates domain-specific constraints inferred from the facts about
resources and their conceptual representation expressed in the knowledge base.
When all resources have been inserted and all resulting inferences handled, a
consistent set of facts which respects all the specified constraints can be
formatted to a concrete multimedia presentation.

For an implementation, we needed to take into account four aspects of the
multimedia modeller:

(1) The application level, e.g. implement as another rules-based environment
like Prolog/Prova, a Java based application with Java based
communication, an agent-based system using messaging or a structured
modelling environment such as building an ontology with rules?

(2) The abstract model, i.e. the means in which the transitory and dynamically
built model will be represented within the system. Possibilities include a
working memory of facts, Java objects, an ontology or a tree-based
structure like XML. These are themselves based on some abstract
conceptualisation of a multimedia presentation which must be specified,
preferably formally.

(3) A constraints handling component, incorporated as an extension to the
base application. This uses general axioms and presentation constraints
to check the consistency of the model being built, and solves the step from
the looser abstract model to the more definite pre-formatted model. For
the constraint handling, one could take a constraint logical programming
(CLP) approach such as ECLiPSe or a constraint handler with a Java API
such as Cassowary.

(4) A serialisation component which represents the internally stored definite
pre-formatted model in some structured form which can be formatted by
the formatting component into a final format multimedia presentation. With
the expectation that the formatter could use XSLT to make the
transformation, the serialisation could be XML based.

At this stage of implementation, we take a simplest-case approach while
acknowledging that for a multimedia generation system this is a key aspect of the
work which needs well developed components to handle the inherit complexities
of multimedia presentation layout, and hence a key area for further development
in SWeMPs.

5. Implementation

SWeMPs – a Semantic Web enabled Multimedia Presentation System 107

Normally, the application level is realized in a tool called a “layout manager”.
Examples of layout managers are GRIDS [Feiner,1988] and LayLab [Graf,1996].
Weitzman presents a tool which realizes layouts on the basis of a description
using relational grammars [Weitzman,1994]. Rather than attempt at this stage an
integration of this approach with an existing layout manager, SWeMPs will use a
simple OO-based approach that interfaces with the rules-based system and
manages the multimedia model in internal memory while interacting with a
constraint solver to ensure consistency and derive final layout properties.
However, it is accepted that an eventual integration with a dedicated layout
manager would provide a more complete solution.

The abstract model must be able to separate the multimedia document from its
final realization and representation. A number of multimedia document models
are proposed in the literature, e.g. MATN and MADEUS (see 2.1.2 and 3.2). We
have based the abstract model on ZyX (see 2.1.2 and [Boll,1999b]), as it defines
a SMIL-like tree-based structure, which makes it suitable both for formatting into
SMIL as final format and for representing within a program using a structured
data model such as XML. Unlike SMIL, it permits media items to be placed in the
tree without an initial binding to presentation properties (such as spatial and
temporal positioning) and to group sub-trees into complex media items
(supporting reference and re-use). It also supports metadata-based selection
between alternatives in the tree to determine the final form of a presentation.

We use ZyX to define the abstract model’s syntax and semantics, with the
model’s realization at the application level based on Java methods on a
ZYXModel (Java) class. For the full formal framework of ZyX see [Boll,1999b].
For the implementation, this framework is modelled in OWL using Protégé as the
ontology editor. Additional properties were associated with the ZyxModel
(ontology) class to allow for specification of presentation constraints. The ZyX
ontology and Multimedia Modeller Java classes are packaged with the SWeMPs
source code60.

In SWeMPs, the abstract model is combined with a constraints handler. The
constraints handler will resolve the set of constraints expressed in the abstract
model to a set of satisfiable concrete values which represent the final abstract
form of the multimedia model prior to formatting (e.g. the actual spatial and
temporal positioning of media items). The constraints can be expressed in terms
of the abstract model (ZyX) syntax and mathematical operators. To illustrate how
constraints are expressed, consider that two images are constrained such as one
image I is to appear at least 10 pixels to the left of image J (see Figure 5.2).
Given the properties x to represent the image’s location (measured from the top
left corner) on the horizontal (x-)axis and w to represent it’s width in pixels, we
have the constraint:

J.x – I.x > I.w + 10

60 http://swemps.projects.semwebcentral.org

5. Implementation

SWeMPs – a Semantic Web enabled Multimedia Presentation System 108

Figure 5.2 A sample constraint

As the application level is implemented within an OO-based paradigm, we chose
Cassowary [Badros,2001], which is a Java based implementation, to realize the
constraint handling. In Cassowary, the constraint example given above would be
expressed as a ClLinearInequality object such as:

ClLinearInequality(CL.Minus(J.x,I.x),CL.GEQ,CL.Plus(I.w,10))

We build the ZyX model within the multimedia modeller component (calling
constructors of ZyX elements given by the ZYXModel class and binding values to
some of their properties) and refer to that model in the specified Cassowary
constraints so that the constraint solutions are directly applicable to the bindings
in the multimedia model. Default constraints can be given for many spatial,
temporal and interactivity constraints and more complex constraints expressed in
terms of a set of these default constraints. Thus it is possible to allow application
developers to specify domain-specific constraints at a high level without requiring
the generation of Java code.

The communicative abstractions are identified by URI, allowing for a
decentralised system of definitions in which the use of unique namespaces
avoids unintentional naming conflicts. Furthermore, the multimedia modeller
should be extendible, i.e. that sets of communicative abstractions can be loaded
into it. In our implementation we use Java, so abstractions are expressed as
Java methods in a Constraints class which specify certain constraints upon two
resources passed to them as parameters, and a simple text file can be used as
an index read by the multimedia modeller at initialisation to map communicative
abstraction URIs to the Java methods available to the modeller implementation.

Upon the conclusion of the model generation, the resulting multimedia model is
serialized and formatted to the final presentation syntax by the formatter
component. The formatting could be carried out in any means implemented
within the formatter though for reasons of interchange and modification we prefer
declarative to procedural approaches. Hence one possibility is to generate a XML
file from the multimedia model and perform a XSLT based transformation. we
consider SVG (in its formats for mobile devices [W3C,2003]) and SMIL
[W3C,2001] as the main target formats for evaluation of the implementation.
They are widely accepted (as W3C standard) XML based formats for the

I J

J.x I.w �10 I.x

5. Implementation

SWeMPs – a Semantic Web enabled Multimedia Presentation System 109

representation of 2D multimedia presentations with a number of playback tools
available.

5.6 Rulebase

The multimedia generation process has been illustrated in Figure 4.5 as an UML
activity diagram and described in natural language. For the implementation, we
expand this into a set of rules. These rules would be written in Prova, which
takes a Prolog syntax with support for referencing Java classes and methods.

However, for illustrating the development of the rulebase in this chapter, we use
a more accessible graphical notation based on ECA (Event – Condition – Action)
rules. The ECA graphical notation [Berndtsson,2001] has been developed to aid
software engineers capture the fundamentals of these rules in an application. It is
based on modelling ECA rule features in UML statechart diagrams. A box
containing the event is connected by an arrow pointing to a box containing the
action, and the connection is labelled by the condition for the rules execution. In
the diagrams, the text is written in a form of pseudo-code. FOR statements
represent loops where the subsequent statements are evaluated against each
value matching the condition of the FOR statement. The action takes place only if
the entire condition is met.

Terms used are taken either from the conceptual model, are internal to the
rulebase (such as Input and Constraints) or refer to components (ConcModel
represents the SWeMPs conceptual model, hence “exists in ConcModel” means
a query handled by the reasoner component and MultModel represents the
abstract multimedia model, hence “inserted in MultModel” means a command
sent to the multimedia modeller component).

5. Implementation

SWeMPs – a Semantic Web enabled Multimedia Presentation System 110

Rule 1.

Figure 5.3 Rule 1 – extracting domains of discourse

The event triggering an initial rule to begin the multimedia generation process is
the assertion in the working memory of the rulebase of an input, containing a
query expression provided by the query handler component, a set of presentation
constraints which are related to the resolution of that input (i.e. details of the user
which caused the input and the device which generated it) and a reference to an
instance of the SWeMPs conceptual model (i.e. the knowledge base) which
defines the specific multimedia generation process to be performed for this
execution. The query expression contains URI-typed constants or variables
which represent the subject, predicate and object of RDF triples as well as
optionally URIs to represent their types. The variables represent the values to be
found to resolve the query. The presentation constraints could be expressed in
any suitable constraints model but for implementation we suppose it will be a set
of RDF triples, each of which expressing an individual constraint. A suitable
format may be CC/PP [W3C,2004b]. A set of core extension properties used with
SWeMPs for the presentation constraints, labelled CC/PPx, are presented in
[Nixon,2005].

Given an abstract query which is expressed as a subject, predicate and
object, SWeMPs extracts the part of each concrete URI in the query which
identifies the ontology the term exists in rather than the part which identifies
the term itself. Where a XMLNamespace concept exists in the conceptual
model whose address is equal to the extracted URI, SWeMPs asserts that
XMLNamespace as a fact in the working memory.

62 http://www.dfki.uni-kl.de/frodo/RDFSViz/

Input(QueryExp);
Constraints(C1…n);
ConcModel

Extract
domains of
discourse

XMLNamespace
(N1…n)

For each concept in QueryExp
 Extract XMLNamespace;
 XMLNamespace exists in
ConcModel

5. Implementation

SWeMPs – a Semantic Web enabled Multimedia Presentation System 111

Rule 2

Figure 5.4 Rule 2 – extracting ontologies and metadata

Given that a XML namespace is asserted as a fact in the working memory, query
the conceptual model for instances of Ontology and Metadata which “have this
namespace”. The relation has-namespace in the conceptual model is intended to
signify that the semantic data model involves (to a significant degree) terms
drawn from the given namespace. That this relation is explicitly given in the
model allows the developer to determine which sources of knowledge are chosen
for a certain namespace (i.e. for certain terms which may occur in the query
expression). Of course, such relations might also be automatically determined by
parsing the documents themselves.

Where such Ontology and Metadata matches exist they are asserted as facts in
the working memory.

XMLNamespace
(N1…n)

Extract
knowledge
in this
domain

Ontology(O1…n);
Metadata(M1…n)

For each N
 (Ontology exists in ConcModel
OR
 Metadata exists in ConcModel)
which
 has-namespace N

5. Implementation

SWeMPs – a Semantic Web enabled Multimedia Presentation System 112

Rule 3

Figure 5.5 Rule 3 – Adding knowledge to the conceptual model

Given that an ontology or some metadata is asserted as a fact in the working
memory, a representation of that ontology or metadata should be retrieved by
selecting an Occurrence of the given concept in the conceptual model and
resolving the address associated to it. The representation (assuming it is
consistent with the representation of the conceptual model, otherwise assume a
transformation of the representation also takes place e.g. through a Service) is
integrated into the conceptual model and hence is made available for reasoning
upon.

Ontology(O1…n);
Metadata(M1…n)

Include
knowledge
in model

ConcModel =
ConcModel +
O1…n + M1…n

For each O or M
 get Occurrence in ConcModel;
 resolve address;
 retrieve representation

5. Implementation

SWeMPs – a Semantic Web enabled Multimedia Presentation System 113

Rule 4(a,b)

Figure 5.6 Rule 4a – get query results

Once the conceptual model has been completed with the insertion of
representations of all the asserted Ontology and Metadata facts in the working
memory, QueryExp (the query expression introduced as an initial input to the
system) is evaluated against the model using the reasoner component. As the
rule diagram above illustrates, two mutually exclusive outcomes are possible
depending on which condition holds. In the first case, some fact R is found to be
true for the given QueryExp in the actual conceptual model. The set of facts R1…n
is asserted in the working memory. However, in the second case, no facts are
found to be true, i.e. the reasoner returns the value null to the system when it
makes the query on the conceptual model. In this case, a further condition is
evaluated (see Rule 4b below)

ConcModel =
ConcModel +
O1…n + M1…n

Query model
for
knowledge

Result(R1…n)

Seek
service for
knowledge

For QueryExp
 Nothing is true for QueryExp in
 ConcModel + O1…n + M1…n

See Rule 4b

For QueryExp
 A fact R is true for QueryExp in
 ConcModel + O1…n + M1…n

5. Implementation

SWeMPs – a Semantic Web enabled Multimedia Presentation System 114

Figure 5.7 Rule 4b – using services to resolve queries dynamically

In this case, since it has been determined that the initial provision of knowledge
through the conceptual model has not been sufficient (i.e. the set of metadata
available to provide information about the concepts in the query expression) new
knowledge and an understanding of that knowledge is sought. In this case, the
rules are not mutually exclusive but concurrent. Given that most LP
implementations evaluate rules not concurrently but sequentially allow the rule to
check both conditions (in LP, we simply ensure the head of the rule is the same).
While it is clear the upper condition should be evaluated first (as it determines the
value of M, which is evaluated in the lower condition) it is not necessary to
provide the upper condition with a higher priority (which, again, may not be
possible in the logic program) – if the lower condition is evaluated first and fails,
the system backtracks to the upper condition.

Given the existence of a service which can perform metadata look-up, the system
executes this service for the concept in the query expression and includes the
found metadata into the conceptual model (as new Metadata instances which are
then included through the triggering of Rule 3). The new conceptual model is
then once again queried (Rule 4a). If the query result set remains null and no
more metadata is available through the service for inclusion, the remaining

Find new
knowledge
about
concepts

ConcModel =
ConcModel +
M1…n

Map
unknown
concepts to
known

For a concept C
 C is in QueryExpr but not in M1…n;

 Service S performs concept
mapping;
 C is mapped to C’1…n where
 C’1…n is in M1…n

From Rule 4a

QueryExpr
where C �C’1…n

For a concept in QueryExp
Service S performs metadata look-up;
S finds Metadata M about the concept

5. Implementation

SWeMPs – a Semantic Web enabled Multimedia Presentation System 115

condition is to attempt a mapping from ‘unknown’ concepts to ‘known’. What is
meant here is that the asserted set of ontologies O1…n represents the description
of the domains from which the concepts in the conceptual model metadata are
taken. In other words, for the system to be able to determine that a certain fact in
some metadata matches the query expression, that query must be expressible
within that set of ontologies, as the extent of ‘known’ domains which can be
reasoned about within the system. Note this may involve both the concepts and
properties related to a known concept within some metadata, as well as the
concept itself (given the service which looks up metadata has been able to
reason about the equivalence of concepts itself). Hence given a service which
can map between ontologies, we execute a mapping from unknown to known
concepts. This mapping takes the form of C " C’ where C is the concept which
is not contained in the metadata in the conceptual model. Given that this
metadata draws from a set of ontologies O1…n, a mapping attempts to find
equivalences of C within this set and returns these as C’1…n. In the query
expression instances of C are equated by instances of C’ (e.g. through the
assertion of OWL sameAs statements in the conceptual model as a simple
means, or through a semantic matching service for less trivial relations) and the
query is once again performed. One can understand Rule 4 as an iterative
process, where knowledge is acquired and mapped in terms of the ‘known’
domains until some result set R1…n can be acquired. If no result set can be found,
the process terminates.

5. Implementation

SWeMPs – a Semantic Web enabled Multimedia Presentation System 116

Rule 5

Figure 5.8 Rule 5 – finding resources for valid subjects

Given that a set of answers to the query expression have been found (note that
we consider R1…n to be a set of complementary answers, i.e. that SWeMPs
should try to communicate to the user as much as this set of answers as is
possible as response to the query), a set of resources must be found that can be
used to represent those answers. Each R, as a RDF Statement, contains three
concepts which are understood to be the subject, predicate and object of the
statement.

Among the metadata M1…n inserted into the conceptual model there is a set of
resource metadata which is mapped into the SWeMPs model by ontology-
specific mappings (through Rule 4b) that generate Resource instances with
properties of representing a SWeMPs Subject Y. Where the subject Y is
equivalent to a concept in R, and the resource metadata Mx describes a resource
X that swemps:represents Y, then X is asserted as a relevant resource in the
working memory. Note that X can still be related to its metadata through the
conceptual model. The representation of Y by X is also asserted in the working
memory of the system.

Result(R1…n)
Find
resources to
show result

For each R
 R contains a subject Y
 Mx is the metadata for a resource
X
 Mx states that X represents Y

Resource(X1…n);
Representation
([X1,Y1]… [Xn,Yn])

5. Implementation

SWeMPs – a Semantic Web enabled Multimedia Presentation System 117

Rule 6

Figure 5.9 Rule 6 – adapting and inserting resources

The purpose of this rule is that for each resource asserted in the working
memory, it is checked if the presentation constraints specified in the working
memory are met by that resource in terms of the available metadata. If it can be
determined that the resource does not meet the presentation constraints then a
service is executed with the functionality to adapt resources, using as input a
reference to the resource and the set of presentation constraints which conflict
with the resource properties as expressed in the metadata. The output of the
service will be a reference to an adapted copy of the resource.

To illustrate the matter of determining conflict between the presentation
constraints and the resource properties (which can be understood equally as
constraints upon its presentation), we assume that both are expressed as
property-value pairs and take a set theoretical approach. Hence a conflict is seen
as set non-subsumption – take as an example the case of display formats. In the
presentation constraints we have:

Check if
resource can be
presented

Insert X and
P1…n into
MultModel

Adapt
resource for
presentation

For X
 Mx expresses resource properties P1…n
 P1…n conflicts with C1…n in [Px…y,Cx…y]
 Service S performs resource adaptation
 X is mapped to X’ in that for each Px,Cx
 Px � P’x where P’x meets Cx

Resource(X1…n)

Insert X’ and
P’1…n into
MultModel

For X
 Mx expresses resource properties P1…n
 P1…n does not conflict with C1…n

5. Implementation

SWeMPs – a Semantic Web enabled Multimedia Presentation System 118

ccppx:formatsSupported {GIF,PNG,JPEG}

and in the resource metadata we find that the resource described

dc:format BMP

Assuming the equivalence of properties (which can be expressed in the
conceptual model to allow automatic reasoning over both properties as
equivalent) and using set notation we have (Figure 5.10):

Figure 5.10 Set non-membership as test for adaptation

Hence this is seen as a conflict as BMP does not belong to the set Cx and conflict
resolution is made by transforming the set non-member BMP to a set member
one-of{GIF, PNG, JPEG}. In terms of the adaptation, this would mean executing
a service which can take as input the resource in format BMP and return a
resource in one of the other formats. This has been illustrated in the discussion
on services in Section 5.4. The final resource and its properties (constraints upon
its presentation) are inserted into the abstract multimedia model.

Cx Px

BMP GIF PNG JPEG

5. Implementation

SWeMPs – a Semantic Web enabled Multimedia Presentation System 119

Rule 7

Figure 5.11 Rule 7 – finalising the abstract multimedia model

The previous rule is iterative in that it does not exit until all resources have been
handled. The result is that the multimedia model contains a set of resources
which each have some associated presentation constraints. While the resources
themselves are assumed to individually conform to the input presentation
constraints C1…n, these constraints are also included in the model as some apply
generally to the multimedia document as a whole and not just individual
resources (e.g. screen size of the user’s display device) upon the initialisation of
the abstract model within the multimedia modeller. The model is still not yet
complete for determining the final presentation as the constraints that should
exist between the resources (as opposed to upon them) must also be
determined.

The applicable condition here is that for two resources Xa and Xb there is also
some semantic relation between the concepts they represent and a mapping
from this relation (or, allowing ontological reasoning, an equivalent relation) to a
communicative abstraction. The semantic relation can be determined by
inspecting the conceptual model. The mapping to communicative abstractions
must also be available to the rulebase from the conceptual model, and is
introduced through Ontology instances which have relevant namespaces and
contain SWRL [Horrocks,2004] rules encoded in the RDF/OWL syntax.
Communicative abstractions should be understandable by the multimedia
modeller, and hence are best based upon the predefined set of abstractions
(otherwise the developer will need to extend the Constraints Java class of the
multimedia modeller to support the newly introduced communicative
abstractions).

MultModel:
X1…n; P1…n;

C1…n

Finalise
multimedia
model

MultModel:
X1…n; P1…n; C1…n

For each Representation [Xa,Ya][Xb,Yb]
 There is a semantic relation Z[Ya,Yb]
 There is a mapping Z � Z’ where
 Z’ is a communicative abstraction
 Z’ can be represented as a set of
 presentation constraints P1…n

5. Implementation

SWeMPs – a Semantic Web enabled Multimedia Presentation System 120

Rule 8

Figure 5.12 Rule 8 – formatting the multimedia model

The final abstract multimedia model consists of a set of resources, a set of (unary
and binary) presentation constraints upon those resources and the input
presentation constraints upon the multimedia document as a whole. This model
needs to be solved in terms of finding a single model in which all constraints are
met when abstract values (e.g. of resource spatial and temporal positioning) are
mapped into concrete values. This solution model (assuming one exists, if not
backtracking ensures that the operation of rules is reversed and a new set of
possibilities is tried which can lead to a solution model) is mapped into a final
format model through a function F() – which is implemented in the formatter
component of the SWeMPs architecture. Naturally, the formatter may be able to
provide a number of formatting functions, which then each describe their result in
terms of constraints, and the function is selected which preserves all constraints
upon the solution model. For example, functions may be available to format the
model to SMIL 1.0 or SMIL 2.0 and if the solution model has the constraint

ccppx:final-format SMIL 1.0

then it follows that the SMIL 1.0 function is selected.

MultModel’: X1…n;
P1…n; C1…n

Format
multimedia
model

F(MultModel’)

For the MultModel’ such that
 For X1…n each property of X can have
a concrete value and every constraint
on X in P1…n is met and
 Every constraint in C1…n is met
F(MultModel’) is the mapping of
MultModel’ to a final format
defined by the function F()

5. Implementation

SWeMPs – a Semantic Web enabled Multimedia Presentation System 121

5.7 Component APIs

Having determined the components that will be used in the implementation and
the rules that realise the process in the SWeMPs framework, we add definitions
of how the rulebase shall interact with those components via a dedicated rule as
an abstraction of the actual component API, which is accessed within the
dedicated rule. This is done so that the rulebase (as an implementation of the
process given in 4.3.4) is not dependant upon components in case their
implementation changes. In other words, if a component in the framework is
changed the developer only needs to alter the internal workings of the related
dedicated rule to use the API of the new component. As long as the dedicated
rule continues to respect the API defined here for the rulebase, the system will
continue to operate.

The multimedia generation process foresees five dedicated rules which abstract
component functions:

Conceptual model query(), include()
Service space execute()
Multimedia model insert(), output()

It is important to note that the API given here must not be confused with those of
object oriented programming languages. In the LP paradigm, no values are
‘returned’ as these are not methods that belong to any object. Rather as rules
they are evaluated to true which means a set of valid values are found for all
variables in the rule body. In that Prolog permits one to place any variable in the
body also in the head of the rule, there is a means to pass values back from the
rule into the rulebase. As a simple example, a rule to find the cube of any integer
could be: Cube(X,Y) :- X * X = Y.

If somewhere else in the rule base, the fact Cube(2,Y) is given in a rule body,
then in the evaluation of this rule the variable Y will be bound to the value 4, i.e.
Cube(2,4) is evaluated to true and no other possible value of Y will evaluate
the rule to true.

5.7.1 Conceptual model API

query abstracts the lower level implementation of the query interface to a
conceptual model, and include abstracts the lower level method for importing
knowledge into the conceptual model.

query(subject, subjectType, predicate, object,
objectType)
subject may be of type URI, URISet or variable

5. Implementation

SWeMPs – a Semantic Web enabled Multimedia Presentation System 122

subjectType may be of type URI, URISet or undefined
predicate may be of type URI, URISet or variable
object may be of type URI, URISet, Literal, LiteralSet or variable
objectType may be of type URI, URISet or undefined

The purpose of the query rule is to pass from the rulebase to the chosen
reasoning component a query on the conceptual model and to return a set of
answers to the query. The parameters of the rule reflect the standard triple format
of knowledge in the Semantic Web (RDF/OWL) – subject, predicate and object -
while permitting sets of values to enable ‘looser’ query specifications.
Furthermore as concepts in the Semantic Web are typed, both subject and
objects can be further restricted when passed as unbound variables (i.e. where
matching concepts are to be found) by being typed. This restricts query matches
to concepts of that type or a subtype. The rule translates these parameters into a
query string and executes a query with the available reasoning component. It
then organises the results as a set of triples and returns this set to the rule base.

URIs represent concepts in the conceptual model (i.e. a RDF resource). In the
rulebase these are represented by instances of the java.net.URI class. Literals
represent a datatype value according to the XML Schema specification. These
datatypes exist as first class Java objects in the rulebase.

URISet and LiteralSet are a list of URIs or Literals respectively encapsulated into
a single parameter. In Prova, this is represented through lists (as in Prolog). A list
contains either URIs or Literals, and not a mix of both.

Variable represents a computational variable whose value will be set as a result
of the query. That value could be an URI, URISet, and if the variable was the
object parameter, Literal or LiteralSet. Variables could be typed, which restricts
the values bound to them to this type (for properties, subproperties will be
automatically matched). In the case of untyped variables or when the subject or
object are bound values, the type parameter defaults to ‘_’ which represents a
variable that does not participate in Prolog unification. When the subject of the
query rule is a variable, a subject type can be given. Likewise, when the object is
a variable, an object type can be given.

In other words, for a fact query(X, Xt, Y, Z, Zt) it shall be evaluate true
where X and Z respect their types Xt and Zt and as a RDF triple can be matched
in the queried knowledge base. So if there is query(x,_,y,Z,zt) – x , y and
zt are bound values - then the variable Z will be bound to all (type-respecting
according to zt) values in the knowledge base who exist as the object in a
statement with subject x and predicate y.

The body of the query rule is dependant on the chosen Semantic Web API and
reasoner, which in turn determine the query language used and the means of
executing the query. In the case of RDQL, query strings always SELECT three

5. Implementation

SWeMPs – a Semantic Web enabled Multimedia Presentation System 123

variables named k_sub, k_prop and k_obj. The reason for this is that the query
result handling code is written generically, and does not know in advance which
values are bound or unbound, and hence must be able to specifically reference
all three variables. A sample RDQL query is given below:

1�#�#$%�2�3���42�3"��"42�3��5�

'(#
#�2�3����6���"	770008�9�� �� :�1�

where the predicate is typed as an URI, the object is typed as a literal (string) and
the subject is left unbound, i.e. should be bound to the response to the query.
Where types are specified these are added as additional queries (subject rdf:type
subjectType and/or object rdf:type objectType) which are joined with the first
query.

include(address)
address is an URL pointing to a metadata or ontology file

The purpose of the include rule is to assert new facts, not in the rulebase (to do
this, Prolog has a built-in predicate assert) but in the conceptual model. It does
this by making a reference to a body of facts to be included (either an ontology or
metadata instance) and exits successfully in that these facts are added to the
conceptual model and are henceforth available to the reasoner.

URL shall refer to the location of a collection of facts made in some knowledge
representation format. To support interoperability, we would expect this format to
be RDF/OWL (otherwise mediation will need to be included in the process to map
from other formats). The rule executes the necessary conceptual model-specific
API for retrieving and adding these facts into the knowledge base. It is assumed
that this functionality will include a consistency check and an error state if the
inclusion of the facts has led to some logical inconsistency in the knowledge
base.

5.7.2 Service space API

execute abstracts the lower level process of discovering a relevant service,
examining it and invoking it.

execute(srvcDescription, srvcInput, srvcOutput,
srvcMessage, srvcResult)
srvcDescription is a string, either having the value “namespace” or “media-
type”
srvcInput is an URI, either representing the namespace or media-type which
represents the intended input to the service
srvcOutput is an URI or URIList, either representing the namespace(s) or
media-type(s) which represent the permitted output(s) from the service

5. Implementation

SWeMPs – a Semantic Web enabled Multimedia Presentation System 124

srvcMessage shall be a value which represents what is to be passed to the
service
srvcResult shall be a variable which is bound to the result of the service
execution

The first three parameters form the basis for the discovery of the service, using
the guideline described in section 5.4. The service message and result type
depends on the service that was executed:

Resource adaptation or conversion ->

The message is a List with an URI pointing to the original resource which is to be
adapted or converted, followed by one or more property-value pairs which
represent the presentation constraints that the resource must be adapted to
meet. If only an URI is passed, then only conversion takes place.
The response is an URL pointing to an adapted and/or converted version of the
resource (either stored in a location accessible to the service, or if the resource
itself is passed back from the service then the service rule will save that resource
in a location accessible to the SWeMPs system)

Knowledge extraction ->

The message is an URL which is the URI of the concept for which knowledge is
missing.
The response is an URL pointing to a metadata file which contains the RDF-
based information extracted by the service. If the service returns the metadata
itself, the service rule saves this metadata and returns the metadata location. If
the service returns the knowledge in some other form, an additional resource
conversion service can be executed for converting this to RDF/OWL.

Knowledge mapping ->

The message is an URL which is the URI representing a concept for which no
matching information has been found in the conceptual model and a List of URIs
representing the ontologies currently referenced in the conceptual model.
The response will be a List of URLs which represent URIs that are concepts that
are equivalent to the input URI and are drawn from the ontologies used by the
metadata in the conceptual model.

If the structure of the parameters passed to the service rule differs from the
structures of the parameters in the selected service itself, it is the task of the
service planner to handle data re-structuring.

5. Implementation

SWeMPs – a Semantic Web enabled Multimedia Presentation System 125

5.7.3 Multimedia model API

insert abstracts the lower level process of adding a resource and its properties
into the multimedia model. output abstracts the lower level process of executing
the formatter to translate the multimedia model into a final multimedia
presentation.

insert(rsrc, rsrcType, rsrcProps)
rsrc is an URL which locates a representation of a Resource in the conceptual
model
rsrcType is a string value, one of “Image”, “Text”, “Animation”, “Audio”,
“Video” and “Model”.
rsrcProps is a list of property-value pairs

The insert rule passes to the multimedia modeller the URL of the Resource, its
type and a set of property-value pairs which identify the characteristics of that
resource. The type can be determined from the resource metadata, using
available mappings (the commonest would be mapping from the MIME type,
given in the metadata either as a string or URI). At a minimum, the resource
properties need to include the default height and width – if visual, and default
duration – if continuous. These pairs consist of an URI identifying the property
according to a classification scheme and either an URI (representing a concept
from a classification scheme) or a Literal (i.e. a XMLSchema datatype such as a
string or integer) identifying the value of the property. The use of URIs permits
reasoning over this data, as SWeMPs imposes no single vocabulary for
representing resource characteristics/presentation constraints. Rather, Semantic
Web reasoning can be employed in conjunction with the use of terms from
RDF/OWL ontologies. Values can also be given as Lists, which indicates either –
in the case of URIs – a set of complementary values (e.g. a group of font types)
where the first possible value should be chosen, or – in the case of Literals –
ranges of permissible values (e.g. pairs of values are interpreted as ‘from … to
…’). The communicative abstractions are also passed as property-value pairs in
which the property URI represents the communicative abstraction and the URI
value the other resource with which this resource is constrained by the given
communicative abstraction.

When the model is initialised in the rulebase, the insert rule is used to add the
presentation constraints which apply to all the resources inserted into the model,
e.g. the total height, width and duration of the multimedia presentation. This is
done in that the rsrcType is “Model” and the constraints themselves are
contained in an URL passed by the method and/or a list of property-value pairs.

output(model)
model is a variable which takes the URL of the resulting model

5. Implementation

SWeMPs – a Semantic Web enabled Multimedia Presentation System 126

In the output rule, we call the method of the multimedia modeller which
determines a final form of the multimedia presentation, i.e. allocates valid bound
values to all free variables in the multimedia model. The model is then passed to
the formatter component and formatted according to the given constraints on
output format and saved as a file whose URL is returned to the system through
the model variable.

5.8 Conceptual model

In section 4.4, we defined the SWeMPs conceptual model using first the
formulism of the chosen ontology development methodology (CLASSIC KR
model) and then SHOIQ Description Logic, which is the core logical formulism of
the Semantic Web (in OWL-DL). For the implementation, the model is developed
using the Protégé authoring tool and the OWL plug-in, in order to produce an
ontology which can be expressed using the OWL language, the de facto standard
for ontologies on the Semantic Web.

We can check the consistency and coherency of this model once we have
modelled the ontology in Protégé. The modelling proves to be a relatively
straightforward task as Protégé’s KR model is frame-based like CLASSIC. The
Protégé ontology editing tool provides an environment to validate our model,
visualize it and export it in other formats, which of course includes the Web
ontology language OWL.

OWL offers an extended set of logical formalisms which can be applied to the
conceptual model. In the context of building the OWL ontology of the conceptual
model we made the following design decisions:

• Semantic object is renamed Subject to avoid terminological confusion, as
in the context of the Semantic Web every construct in an ontology could
be construed as being a semantic object. Likewise, Semantic object
metadata is renamed SubjectMetadata.

• URLs are abstracted into the class Occurrence. This is to recognise that in

the model some same URLs may be related to multiple resources or
services (e.g. when they locate a database which can return different
resources) and to support re-use. Furthermore, we differentiate
occurrences (URLs pointing to retrievable data) from the URIs used to
identify any ontological construct in the model.

• Service description properties handles-media-type and handles-

namespace are expanded into from-media-type, to-media-type, from-
namespace and to-namespace in order to enable the differentiation of
input and output and hence define within the model services which convert
media types or map ontologies (as was discussed in 5.4).

5. Implementation

SWeMPs – a Semantic Web enabled Multimedia Presentation System 127

• The property has-namespace has as its domain Metadata and Ontology
instances, and not generally resources, as the namespace is only relevant
in the process for those types of resource.

• Some remaining properties are changed to apply to the domain of

Metadata. The property exists-in-domain is applied no longer to the
Subject but to the Metadata instance and renamed uses-ontology. The
property has-metadata is altered to take Metadata as its domain (like
references, which is restricted to the domain of SubjectMetadata and the
range of Subject) and renamed to describes for the domain of
ResourceMetadata and range of Resource and defines for the domain of
ServiceMetadata and range of Service.

• The top level classes Subject, Resource, Service, MediaType, Occurrence

and XMLNamespace are declared disjoint, i.e. an individual of one class
can not be the member of another class. This is to explicitly state that
these concepts are distinct in the model – arguably a resource or service
could be a subject, but the semantics of these classes – in the domain of
the multimedia generation process – decides that they are to be
considered distinct.

The resulting ontology conforms to OWL-DL. That means one can apply DL-
based reasoning to this ontology for subsumption testing and consistency
checking. It is found that the ontology is valid and consistent. The tests were
made by the Protégé tool. The ontology is illustrated in Figure 5.13. Its
visualisation was generated by the RDFSViz tool62.

This conceptual model is an upper level knowledge representation of the domain
of multimedia generation. It exists at an abstract, high level where multimedia
generation is modelled in terms of the general process that is carried out and the
components which exist within that process. For concrete multimedia generation
tasks, it is clear that a knowledge base instantiated from this model must also be
extended with ontologies specific to the domain of the multimedia generation
task. Ontology importing is the act of extending the conceptual model with further
knowledge models in its instantiation as a knowledge base. Through ontology
importing, instances in the model can also be specified in terms of the extension
classes and properties inserted through the imported ontology.

For the multimedia modeller, the ZyX abstract multimedia model [Boll,1999b] was
also ontologized and the class structure of this ontology is shown in Figure 5.14.

Figure 5.13 SWeMPs Ontology

5. Implementation

SWeMPs – a Semantic Web enabled Multimedia Presentation System 129

Figure 5.14 ZyX ontology

5.9 Conclusion

In this chapter, we have moved from the proposal of a framework and conceptual
model presented in Chapter 4 to a more concrete specification of how the
SWeMPs system is implemented. We have followed a known and established
software development approach. We outlined which technologies have been
considered as best suited for the implementation, defined (abstract) APIs for the
components that were defined as part of the architecture and elaborated the
rules which model the multimedia generation process using a Prolog-like syntax.
Finally we created OWL ontologies to represent the SWeMPs conceptual model
and the ZyX abstract multimedia model.

