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Thesis Outline 
A panel of key transcription factors are the main drivers of the cardiac developmental process and are 

essential for normal cardiac function. However, limited insights have been generated at a systems-

level about how these factors modulate the overall transcription network, how they act in a 

combinatorial manner and moreover how they interplay with epigenetic or environmental factors. To 

tackle these open points, a systems biology approach was chosen such that well-defined high-

throughput experiments were used as a starting point and based on their outcome subsequent 

experiments followed. Gene-focused hypothesis driven laboratory experiments were performed 

generating time-series data to puzzle down a sequence of transcription factor binding, histone 

modification and respective gene transcription. Finally, extracted transcription networks were studied 

and extended based on expression profile disturbances in diseased human hearts. This thesis represents 

the bioinformatics part of this overall project and aimed to provide the best suitable bioinformatic and 

statistical data analysis, predicted new transcription networks and proposed consequent laboratory 

experiments. 

In the course of the study, five essential datasets were generated and analyzed: (a) genome-wide ChIP-

chip data of the cardiac transcription factors Srf, Mef2a, Gata4 and Nkx2.5 in cardiac cell culture, (b) 

microarray gene expression profiles of wildtype and RNAi treated respective cell culture, (c) ChIP-seq 

data for Srf and histone 3 acetylation in cardiac cell culture, (d) time series ChIP-qPCR data of Srf, 

p300 and histone 3 acetylation and methylation in mouse hearts at E18.5, P0.5 and P4.5, and (e) gene 

expression profiles of human diseased hearts. Alongside, a panel of different bioinformatics and 

statistical methods suitable to analyze these datasets were identified. Their advantages and 

disadvantages are discussed and knowledge gained in the course of the project is presented. Finally, 

cardiac transcription networks were predicted based on the wealth of the data which could to a great 

extent be confirmed in respectively designed follow-up experiments. As a final step, the Cardiac 

Regulatory INteraction database (CARIN) was built to integrate data from this project with publicly 

available and relevant datasets as well as cross-species datasets obtained within the European FP6 

project “HeartRepair”. The work presented in this thesis was published in two articles (Molecular 

BioSystems 2008 and PLoS Genetics 2011), one further manuscript is in preparation. 

All analyses described have been performed in the group of Prof. Dr. Silke R. Sperling at the Max 

Planck Institute for Molecular Genetics, Berlin. 
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1. Introduction 

1.1 Regulation of Eukaryotic Gene Transcription 

The process of deciphering genotypic information into phenotypic characteristics is the main purpose 

of eukaryotic cells. Due to the central dogma of molecular biology, genetic information is stored in 

DNA, which is, after transcription into RNA, translated into proteins, which are the main functional 

units of every cell. Thus, a fine-tuned regulation of transcription plays an essential role in the 

maintenance of cellular function. 

Transcription of genomic DNA into mRNA in eukaryotes is performed by RNA polymerase II, a 

complex made up of 12 different proteins. These are recruited to the transcription start site (TSS) by a 

combination of ubiquitously expressed proteins like the TATA-binding protein, which bind to the 

basal promoter, and tissue-specific transcription factors (TFs), that bind to factor specific cis-

regulatory elements called transcription factor binding sites (TFBS) in the promoter regions of genes. 

Based on the binding of activating or repressing proteins, cis-acting elements are classified into 

enhancers (activator-binding) or silencers (repressor-binding). Just recently an additional group of cis-

regulatory elements has been discovered. So-called insulators hinder activating proteins to propagate 

their function on to distant TSS. For a number of TFs their binding site preferences have been 

revealed, most commonly represented using position weights matrices (PWMs). 

In turn, the ability of transcription factors to bind these cis-regulatory elements is highly dependent on 

their accessibility. DNA in the nucleus is highly condensed into a structure called chromatin by the use 

of basic proteins known as histones. Histones are complexes comprising two molecules of H2A, H2B, 

H3 and H4 each, as well as the linker histone H1. 1.75 turns of the DNA double-helix are tightly 

wrapped around the complex, building the nucleosomes.1 A high compaction of the chromatin hinders 

the binding of TFs and therefore silences the transcriptional apparatus. Consequently, changes 

between the condensed (heterochromatin) and open (euchromatin) state are a key epigenetic factor for 

the regulation of gene expression. At least three distinct types of nucleosomal alteration have been 

proposed and proven to influence transcription levels of targeted genes: chromatin remodeling, core 

histone replacement and histone tail modifications. 

An effective way of opening the chromatin structure is the removal or sliding of the histone octamer 

leading to nucleosome depleted regions of DNA. Interestingly, the same complex that forms 

chromatin structure during replication was found to be relevant for its remodeling.2,3 Using ChIP-chip 

experiments in yeast it was shown that there is a positive correlation between the presence of 

nucleosome depleted regions located in the promoter of genes and the rate of gene transcription.3 

However, reports about corresponding nucleosome-free regions in the promoter of human genes are 

contradictory.4,5 Further, bioinformatic studies have shown that in vivo nucleosome positioning is 

guided by the nucleotide sequence of wrapped DNA,6-9 with nucleosome depleted regions mainly 

associated to poly-A/T stretches. In addition, replacement of histone particles by specialized variants 

has been shown to occur in the vicinity of transcribed regions (e.g. H2A.Z and H3.33,10).  

The best-studied nucleosome alterations are histone tail modifications. These post-translational 

modifications can influence the wrapping of DNA around the histone core and thereby lead to an 

altered transcriptional accessibility. More than 70 different histone modification sites are known, 

comprising acetylation, methylation, phosphorylation, ribosylation, sumoylation and ubiquitination11 

and a subset of these is shown in Figure 1. The influence of histone modifications on the accessibility 
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of the wrapped DNA can either be direct (“direct effector model”) or indirect through an effector 

protein/complex (“effector-mediated model”). An example for a direct effect is the neutralization of 

the positively charged histone tails through acetylation. These acetylation marks are set by a group of 

enzymes called histone acetyltransferases (HATs). This neutralization lowers the electrochemical 

coupling between the histone octamer and the wrapped DNA making the DNA more accessible for the 

transcriptional machinery.12 Correspondingly, histone acetylation is tightly linked to an increase in 

transcription level.13 Deacetylation, on the other hand, which is mediated by histone deacetylases 

(HDACs), is associated to a decreased expression level. In contrast, the well-studied SWI/SNF 

complex is an example for a recruited chromatin remodeling complex that actively alters chromatin 

structure through ATP hydrolysis representing the effector-mediated model.14 These complexes might 

be recruited by DNA binding TFs or even through binding of modified histone tails. A possible 

candidate carrying the binding information might be histone tail methylation, which was shown to 

affect transcription level. In contrast to acetylation, methylation is not by itself associated to activated 

expression but seems to have a position-specific regulatory function. Methylation of the lysine at 

amino acid 4 of histone 3 (H3K4) was for instance shown to be associated to chromatin structures that 

allow transcriptional activation.4 In contrast, methylation of lysine 9 at the same histone is thought to 

be linked to heterochromatin formation.15 Furthermore, the degree of methylation of H3K4 was shown 

to be dependent on its genomic position. It decreases continuously from 5’ to 3’ with trimethylation at 

the 5’ end, dimethylation in the middle and monomethylation at the 3’ end.2 The idea that distinct 

patterns of histone modifications can lead to transcriptional activation or repression different from the 

sum of their individual contributions, originally formulated by Strahl and Allis,12 was named the 

“histone code hypothesis” and has since been studied in more detail.16,17  

Another epigenetic regulatory mechanism, which is not analyzed in this study but which is of high 

importance for transcriptional regulation, is DNA methylation. Established by DNA 

methyltransferases, DNA methylation occurs in 60-90% of all mammal CpG sites,19 however, recent 

studies found methylation also at non-CpG sites.20,21 The main exceptions of the overall CpG 

 
Figure 1: Histone tail modifications 
Some of the known histone tail modifications including acetylation (ac), methylation (me), phosphorylation (ph) 
and ubiquitination (ub1). Figure taken from Bhaumik et al.

18 
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methylation are CpG islands in promoter regions, which appear to be mainly unmethylated. While 

CpG islands are associated with a large number of gene promoters, methylated CpG sites in the 

promoters of genes are associated to gene silencing, either through direct inhibition of TF binding or 

more likely by the recruitment of methylated DNA-binding proteins which in turn interact with 

additional proteins such as HDACs.19 In this line, hypermethylation of DNA was found to be tightly 

coupled to heterochromatin formation and vice versa.22 

In addition to the regulation of transcription, cellular abundance of RNA is regulated post-

transcriptionally. RNA binding proteins regulate RNA splicing, RNA processing, nuclear export and 

nuclear degradation. RNA degradation or decay directly influences the amount of mRNA that can be 

transcribed into proteins and its regulation therefore enables a rapid alteration of protein synthesis. 

This area of study has recently gained more importance due to the increasing evidence that post-

transcriptional regulation plays a crucial role in the regulation of gene expression. A recent study by 

Cheadle et al.
24 showed that during T-cell activation 55% of significant changes at the steady-state 

level had no corresponding changes at the transcriptional level, meaning they were the result of RNA 

stability regulation alone. A common way to regulate mRNA decay is the shortening of the poly-A tail 

by specialized exonucleases. This shortening is believed to destabilize the mRNA’s association to cap 

binding complexes, which finally leads to its decay. Although RNA binding proteins may regulate 

post-transcriptionally large amount of the transcriptome, the targeting of a single gene is of special 

interest for the scientific community. Just recently, microRNAs (miRNAs), short RNAs with an 

average length of 22 nucleotides, were found to be important regulators of gene expression. MiRNAs 

 
Figure 2: The miRNA processing pathway 

MiRNA processing, transportation and their post-transcriptional regulatory functions. Figure taken from 
Winter et al.

23 
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bind to mRNAs with complementary sequence in their 3’ untranslated region (UTR), usually resulting 

in gene silencing.25,26 In line with this, genome-wide computational and transcriptome analyses 

showed that the expression of miRNAs is more positively than negatively correlated with that of their 

targets.27 The growing evidence for the high abundance of miRNAs in the cell further suggests that 

miRNAs may themselves be mediators of default repression. 

MiRNAs are often transcribed from their own gene or are part of an mRNA gene’s intron. They are 

transcribed into RNA hairpin loops by RNA polymerase II or III, capped to form pri-miRNAs and 

then spliced by the Drosha protein into pre-miRNAs (Figure 2). After export to the cytoplasm, pre-

miRNAs are cleaved by the Dicer protein into the miRNA/miRNA* duplex. Although each strand of 

the duplex may potentially act as a functional miRNA, only one strand is usually incorporated into the 

RNA-induced silencing complex (RISC). The RISC, which contains a number of argonaute proteins, 

binds to the complimentary mRNA and cleaves it directly or recruits additional proteins to achieve 

translational repression or mRNA deadenylation followed by mRNA decay.28 Current estimations 

predict over 1000 miRNAs in human,29 targeting about 60% of all mammalian genes30 thereby 

repressing hundreds of mRNAs each.31,32 

The genetic, epigenetic and post-transcriptional levels of transcript regulation are closely related. 

Chromatin state directly influences the ability of TFs to bind their binding sites. In turn, the presence 

of certain TFs recruits histone modifying enzymes, which can lead to global and local changes in the 

chromatin state. MiRNAs primarily work at a post-transcriptional level. However, a recent study by 

Tan et al.
33

 demonstrated that a miRNA can also directly influence the transcription of a gene by 

binding to its promoter, potentially coupled to the presence of a specific histone modification. In 

addition, a direct link between miRNAs and chromatin remodeling has been suggested.34,35 

To summarize, eukaryotic gene transcription is controlled by specific transcription factors that lead to 

correct temporal and spatial expression. The activity of these factors is in turn regulated by a cascade 

of transcriptional regulators establishing a hierarchical regulatory scenario with a broad panel of 

interactions which form transcriptional regulatory networks. As a further level of regulation, the 

chromatin status determines the accessibility of transcription factors binding sites, thereby directly 

influencing transcription. Finally, post-transcriptional regulators like miRNAs contribute to a dynamic 

fine-tuning of mRNA abundance.  

 

1.2 Analysis of Transcription Networks 

After years of genomic research and the completion of the human genome project biology has gained a 

vast map containing 20,000–25,000 human genes and an even larger number of functional proteins 

that cooperatively regulate cellular mechanisms. However, even with the knowledge of the full 

genome sequence of human and other higher vertebrates the defining mechanisms are still understood 

to only a little extent. Epigenetics has joined genetics in the ongoing discovery comprising versatile 

means of regulation like the definition of chromatin status by certain histone tail modifications or the 

direct methylation of DNA. Both have been shown to influence gene transcription thereby providing 

additional layers of fine-tuning. And just recently, large parts of the genome which have previously 

been classified as ‘junk’ DNA have become the center of attention revealing additional regulatory 

elements like microRNAs. The analysis of these transcription networks has long been a focus of 

biochemical research, leading to a manifold of experimental techniques that are able to measure 
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regulatory dependencies even in a high-throughput manner. However, while they provide high 

dimensionality the pure amount of data renders a manual analysis impossible. Therefore, bioinformatic 

analysis methods have been developed to identify regulatory networks from experimental data, often 

called ‘reverse-engineering’.36  

In general, three major questions are analyzed: Where and when is a gene (and also the appropriate 

protein) active, which are the regulatory factors that influence gene activation and what is the 

contribution of each of these individual factors to the overall regulation of genes? 

The first technique used to analyze the expression of genes was northern blotting, were RNA extracts 

are loaded onto a gel and then detected using sequence-specific hybridization probes e.g. using 

radioactivity and photo detection. While northern blotting is in general able to detect the expression or 

non-expression of genes and to some extent even the amount of RNA, it has long been replaced by the 

more recent quantitative real-time PCR (qPCR) method. Like northern blotting qPCR detects gene 

expression in a sequence-specific fashion, however, using polymerase chain reaction as the functional 

step enables a more sensitive detection as well as more subtle graduation in how strong the gene is 

expressed. The main disadvantage of both techniques is that dependent on the sequence-specific 

probes in one reaction only one gene can be measured. This disadvantage can in some part be reduced 

by using the help of robots; however, the effort for measuring larger quantities is still more ore less 

linearly related to the number of analyzed genes. Therefore, high-throughput techniques have been 

developed, which are able to screen expression levels of thousands of genes at the same time using a 

single experiment. One of the most popular examples is microarrays, which consist of an arrayed 

series of thousands of microscopic spots of sequence-specific DNA oligonucleotides that are fixed to a 

cover slide. During a microarray experiment, labeled cDNAs derived from RNA will hybridize to 

complementary probes and emit light. The light intensity of each spots is dependent on the amount of 

DNA molecules bound, therefore providing a measure for the gene’s expression. As all spots can be 

measured simultaneously, this leads to many thousands of data points per experiment, enabling a 

simultaneous analysis of all or a large fraction of the genome. More recently, next-generation 

sequencing is replacing microarrays as the standard technique for gene expression determination. 

Using next-generation sequencing the sequences of all RNA molecules in a sample can be sequenced 

in parallel, thereby providing a detailed snapshot of the transcriptome without any pre-design of the 

analyzed sequences but with the possibility to further analyze the sequence of each RNA molecule. 

While the analysis of gene expression tries to answer the first question of gene activity, a further set of 

experimental techniques has been developed which aim to discover the regulators of gene expression, 

namely transcription factors and accompanying histone modifications. The first technique that 

analyzed the binding of proteins to DNA or RNA was the electrophoretic mobility shift assay (often 

called ‘EMSA’). Thereby, proteins are incubated with specific short DNA sequences (e.g. regions 

from a promoter sequence) leading to a ‘shift’ in the resulting gel band when the protein binds to the 

DNA in comparison to the unbound protein. It is easily seen that this technique is not feasible to 

conduct genome-wide analyses, as both the protein and the DNA sequence must be determined 

beforehand. A major step in the analysis of regulatory networks was the invention of the chromatin 

immunoprecipitation (ChIP) technique. In ChIP experiments, proteins are fixed to the DNA, which is 

successively analyzed using either microarrays or next-generation sequencing. The advantage of ChIP 

in comparison to traditional methods like EMSA is the possibility to screen a full genome in one 

experiment without previous knowledge of the occupied DNA sites and the opportunity to perform the 
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experiment in vivo. As starting material cells from cell culture, tissue, primary cells or embryos can be 

used. 

To answer the question of the individual contribution of found regulatory factors a number of 

experimental techniques have been invented. Two popular examples are the overexpression as well as 

the knockdown of genes. To overexpress a protein large quantities of DNA plasmids, which contain 

the DNA sequence of the analyzed protein fused to a potent promoter, are introduced into the cell 

leading to large quantities of the introduced protein. Knockdown experiments on the other hand work 

in the opposite direction by reducing the amount of RNA for a specific protein with the help of RNA 

interference (RNAi). To quantify the resulting consequences on target genes, qPCR, microarrays or 

next-generation sequencing are the usual methods of choice. 

Hand in hand with increasing biological knowledge the mentioned experimental techniques render a 

simultaneous analysis of thousand of genes, their interactions and regulatory implications possible. 

Though, with the advent of these high-throughput techniques the need for the development, 

adjustment and application of reliable bioinformatic tools for their analysis has become an 

indispensable part of today’s laboratory work. Microarrays provided one of the first areas of intense 

bioinformatic research, enabling not only the analysis of significant differences between different 

samples (e.g. healthy and disease tissues) but also the development of tools to cope with the problems 

frequently arising in high-throughput experiments. Commonly, each data measurement and mass data 

in particular is distorted by noise which must be dealt with to allow a reliable and unbiased analysis of 

the data. Therefore, normalization of experimental data as well as the correction for the high number 

of hypothesis test are crucial steps in every high-throughput data analysis. Further, each dataset will 

contain only a limited number of relevant data points, with a large fraction of uninformative data 

regarding the purpose of the analysis. Tools like linear modeling, clustering or the analysis of common 

functional annotations (e.g. Gene Ontology terms) are able to extract important features of the 

underlying datasets. Nowadays the analysis of sequencing data has become more and more important 

as next-generation sequencing is becoming the detection method of choice in many high-throughput 

experimental techniques. It is heavily based on an alignment of the resulting reads to a reference 

genome, which was only made possible with the increasing number of fully sequenced organisms. 

Further, experimental analysis will not be valid in any case, e.g. certain proteins cannot be analyzed 

with ChIP due to unspecific antibodies, and therefore bioinformatic prediction of likely regulators 

states a further important contribution to biochemical research. Finally, due to the high number of 

different experimental techniques and the complexity of the underlying biological mechanisms, an 

eligible analysis should therefore integrate data from not only a single but a multitude of 

heterogeneous sources to gather true understanding. 

 

1.3 Transcription Networks in Cardiac Development and Disease 

1.3.1 The Human Heart 

The heart is the first organ to form and function during embryogenesis and starts to contract after three 

weeks of gestation in human. The heart is responsible for pumping blood throughout the blood vessels 

by repeated, rhythmic contractions. De-oxygenated blood from the body arrives through the venae 

cavae at the right atrium, is transported via the tricuspid valve into the right ventricle and then through 

the pulmonary artery into the lung, where it is re-oxygenated (Figure 3). This oxygenated blood is then 
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transported to the left atrium and through the mitral valve into the left ventricle from where it is 

pumped through the aortic valve to the aorta and further into the body. 

As a correct development is fundamental for the heart’s function, it involves various molecular 

pathways and complex morphogenetic changes with its spatial and temporal orchestration precisely 

controlled by an evolutionary conserved gene program. The mammalian heart comprises a large 

number of different cell types, including cardiomyocytes, smooth muscle cells, endothelial cells, 

valvular cells and cells belonging to the conduction system.37 These cells originate from a set of 

multipotent progenitor cells in the early embryonic heart field, which can be divided into two fields, 

the first heart field (FHF) and the secondary heart field (SHF).38 After the heart is completely 

developed, the left ventricle of the four chambered heart was formed by precursor cells of the FHF, 

while the outflow tract, the right ventricle and most of the atria will have been formed by precursor 

cells of the SHF.39 

Important stages of the development of the mammalian heart are depicted in Figure 4. After two 

weeks of human development, the cardiac crescent is formed, mainly by the cells of the FHF. At 

around day 20, a beating linear heart tube is formed with an inner layer of endocardial cells and an 

outer layer of myocardial cells.41 SHF cells migrate to both ends of this heart tube and start to 

differentiate.42 After four weeks of gestation, the linear tube loops into an S-shape which reflects the 

following heart compartments: the chamber and non-chamber myocardium, the atria, the ventricles, 

the outflow tract, the inflow tract and the atrioventricular canal. Growth of the cardiac chambers is 

achieved by increased cell proliferation during the process of ‘ventricular ballooning’.43 Around day 

32, the final chambers are formed and septated which separates the blood flow into an oxygenated and 

a de-oxygenated system. Simultaneously, primitive valve like structures or ‘cushions’ are formed in 
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Figure 3: Schematic representation of the four-chambered human heart 

Modified figure taken from Zoofari.40 
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the atrioventricular canal and the outflow tract. Finally, at around day 60, the outflow tract is septated 

into the aorta and the pulmonary artery. The human heart is completely developed at around 8 weeks 

of gestation. The cells stop to proliferate and further cardiac growth is mainly achieved by increasing 

the cell size (hypertrophy) rather than cell division and the cardiomyocytes withdraw from the cell 

cycle.44 

 

1.3.2 Regulation of Heart Development 

Cardiogenesis is regulated by a molecular network that comprises regulatory interactions between a 

multitude of transcription factors, their downstream targets and signaling pathways.45 A set of crucial 

and evolutionary conserved transcription factors, comprising Gata4, Mef2 and Nkx2 factors as well as 

the general muscle transcription factor Srf, will be introduced in the following paragraphs. 

Gata4 is one of the earliest expressed transcription factors in developing cardiac cells.46 It belongs to 

the Gata family of zinc finger transcription factors, which all recognize the DNA sequence “GATA”. 

Mutations in this gene have been shown to lead to severe heart malformations. Mice lacking Gata4 

show failure in their ventral morphogenesis and heart tube formation and die before birth.47 

‘Myocyte enhancer factor 2’ (Mef2) proteins are important regulators of cellular differentiation. Mef2 

proteins contain both a MADS-box and a Mef2 DNA-binding domain. Four transcripts of MEF2 exist 

in human (MEF2A, MEF2B, MEF2C and MEF2D), which are all expressed in every stage of the 

developing human heart48 and are essential for the expression of muscle-specific genes in cardiac and 

skeletal muscle.49 Mice lacking Mef2a die within the first weeks of life with a range of severe heart 

malformations. 

The homeobox protein Nkx2.5 is also expressed in the early heart and remains high in the adult 

heart.50 The homologous drosophila gene called ‘tinman’ results in loss of heart formation during 

embryogenesis, suggesting a similarly important function for Nkx2.5 in human heart formation.51 In 

line with this, mice lacking Nkx2.5 show severe defects in heart looping and chamber formation and 

die early during embryonic development.52 

Another MADS family member is the ‘serum response factor’ (Srf), which is an important 

developmental protein, not only in the heart but in a number of tissues and participates in the 

 
Figure 4: Mammalian heart morphogenesis 
The mammalian heart is formed based on the first and secondary heart field (FHF and SHF). The left ventricle 
(LV) of the four chambered heart is formed by the FHF, while the outflow tract (OT), the right ventricle (RV) 
and the left and right atria (LA and RA) are formed by the SHF. The septation of the common outflow tract (OT) 
into the aorta (AO) and the pulmonary artery (PA) occurs during the outflow tract septation. Modified figure 
taken from Bruneau et al.

39 
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regulation of the cell cycle, apoptosis, cell growth and cell differentiation. It binds to the CArG-box 

motif CC(A/T)6GG in the promoters of its targets genes53 and appears to be autoregulatory.54 Srf is 

known to interact with both, positive and negative co-regulators, the most prominent being Myocardin, 

a smooth muscle and cardiac muscle-specific transcriptional coactivator. The interaction of Srf and 

Myocardin is supposed to be the inducing step for smooth muscle differentiation.55 Mice embryos 

lacking Srf die during embryogenesis at the stage of gastrulation.56 

All these factors have been shown to cooperatively regulate individual target genes. For example 

Nkx2.5 physically interacts with Gata4 to synergistically activate a number of downstream target 

genes57 and Gata4 was shown to interact with Mef2,58 Nkx2.559 and Srf.60 In addition, these 

transcription factors were found to regulate each others expression, thereby potentially stabilizing their 

regulatory networks.61  

However, they do not only regulate on the level of direct transcriptional control, but also indirectly by 

influencing the chromatin status of target genes. Mef2 proteins can act as transcriptional activators and 

repressors by interacting with HATs and HDACs. Further, it has been described that Srf recruits the 

HAT p300, possibly in conjunction with its co-factor Myocardin, which then activates target gene 

expression.62 The important function of p300 in heart development is further underlined by knockout 

mice models which show a range of severe cardiac defects.63 The same p300 also acetylates Gata4 

itself, thereby enhancing its activating potential,64 pointing to a high degree of interdependency. 

HDAC4 on the other hand was shown to repress Gata4, Mef2c, Nkx2.5 and Srf depicting the high 

level of interdependency between these two levels of regulation.65 

 

1.3.3 Congenital Heart Disease 

Congenital heart disease (CHD) is the most common birth defect with an estimated incidence of 

around 1% in all live births66 and the cause for a high number of miscarriage and stillbirth.67 The 

defects range from minor or even subclinical defects to complex malformations. The later have the 

potential to be life threatening and are therefore treated by corrective surgery which aims to restore the 

heart function. However, subclinical defects, even if they do not directly interfere with heart function 

initially, can lead to cardiovascular complications in the adult human, such as stroke or heart failure.68 

Almost all parts of the heart can be affected, classifying the disease phenotype into three categories: 

septation defects, left-side obstruction defects and cyanotic heart defects.39 Typical septation defects 

are the atrial septal defect (ASD), the ventricular septal defect (VSD) and the atrioventricular septal 

defect (AVSD). Examples for left-side obstruction defects are the aortic stenosis and an interrupted 

aortic arch. Cyanotic heart defects, or “blue baby syndrome”, are defects which result from the mixing 

of oxygenated and deoxygenated blood and cause a blue skin color. Examples are a transposition of 

the great arteries (TGA), and the persistent ductus arteriosus (PDA). The most common (6%) of all 

cyanotic defects is Tetralogy of Fallot (TOF). TOF is a complex disease and is defined of four distinct 

clinical features: a VSD, right ventricular hypertrophy, which is a thickening of the right ventricular 

walls, right ventricular outflow track obstructions, which is a narrowing at or just below the 

pulmonary valve, and an overriding aorta, an aortic valve of biventricular origin (Figure 5). It 

ultimately leads to cardiac failure with a survival rate of ~60% after four years.69 20-30% of all CHDs 

occur together with other birth defects and as parts of a syndrome, like DiGeorge syndrome or Holt-

Oram syndrome. 
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Using linkage analysis in nonsyndromic families several genes mutated in human CHDs have been 

identified. Among these are ACTC1 (ASD),71 GATA4 (ASD),72 JAG1 (TOF),73 MYH6 (ASD),74 

MYH11 (PDA),75 and ZIC3 (TGA).76 In line with the regulation of heart development by genetic 

pathways, some mutations in different genes were found to result in the same or very similar disease 

phenotype, based on the disturbance of the same specific regulatory pathway. Deletion of either BMP, 

ALK2, ALK3, ALK6 or SMAD were e.g. shown to result in the same cardiac defect.77 Further, a 

genome-wide expression analysis in human conducted by Kaynak et al.
78 revealed genetic changes 

that are correlated with distinct congenital malformations. 

However, in general only a minor fraction of CHDs are the result of monogenic disorders with a clear 

Mendelian inheritance. Instead, most CHDs display variable expressivity and penetrance pointing to a 

multifactorial and multigenetic basis which is in most cases poorly understood. In human and mice 

similar mutations can cause a variety of phenotypes from one family, individual or inbred strain, 

respectively, to another. Heterozygous mutations of NKX2.5 in human can e.g. lead to such diverse 

abnormalities as ASD, VSD, Ebstein’s anomaly of the tricuspid valve, AV block or TOF, either alone 

or in combinations.79 A similar situation exists for the T-box factor TBX5, in which heterozygous 

mutations cause a variety of CHDs in the context of Holt-Oram syndrome.80 In other cases the same 

mutation in two individuals might lead to a disease in one individual, while the other seems to be 

unaffected. Possible explanations for this reduced penetrance are buffering by a second allele or other 

TFs of the cardiac pathway.81,82 Additionally, the disease manifestation may vary due to stochastic 

events of unknown nature or further parameters comprising genetic modifiers and environmental 

influences. For instance, maternal diabetes and obesity have been shown to promote CHDs as well as 

alcohol, anti-depressants, herbicides or infections during early pregnancy.83-85 A valid suggestion is 

therefore, that CHD patients assemble multiple genetic and non-genetic factors which reduce the 

properties of the networks to buffer individual disturbances and finally lead to cardiac malformation.86 

 
Figure 5: Tetralogy of Fallot 

Schematic representation of a normal heart (left) and a heart with the ‘Tetralogy of Fallot’ phenotype (right) 
depicting the four clinical features and the mixture of oxygenated (red) and deoxygenated (blue) blood. Figure 
taken from Ruiz.70 
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Thus, disturbances in genetic pathways might be based on environmental influences, genetic mutations 

or a combination of both.77 

In addition to the multifactorial and multigenetic basis of CHD the symptom severity of cardiac 

defects also depends on the type of mutation. Some missense mutations result in non-functional 

proteins, whereas others may lead to altered properties of unknown nature.87 As an example, certain 

mutations in Tbx5 abolish its binding to DNA88 while others influence collaborations with other 

proteins.89 Secondary adaptation processes are a further factor that obstructs the identification of genes 

causal for CHDs. They have no direct genetic origin but are caused by the need to maintaining the 

heart function during its development.  

This suggests that the regulatory context of TFs plays an important role and their function must be 

viewed in the framework of transcriptional networks, including the interplay between different TFs as 

well as epigenetic factors such as histone modifications or other regulatory factors such as 

microRNAs. However, while single regulatory dependencies have been deeply evaluated the amount 

of current knowledge on overall regulatory networks that drive correct and incorrect heart 

development is still very premature. In the same line, the possibilities to diagnose certain CHD in 

utero as well as advances in surgical techniques have considerably improved life expectances and 

quality for children born with CHD. However, preventing CHD and elucidating their causative factors 

are still major goals.86 Thus, the analysis of transcriptional networks and their disturbances is required 

to discover novel targets for diagnostics and therapeutics. 

 

1.4 Publications 

Several parts of this study have been published. Much of the work described in section 3.1 has been 

published in the paper “The Cardiac Transcription Network Modulated by Gata4, Mef2a, Nkx2.5 and 

Srf, Histone Modifications and MicroRNAs”, PLoS Genetics (in press). The work presented in section 

3.3 has been published in the paper “Prediction of cardiac transcription networks based on molecular 

data and complex clinical phenotypes”, Molecular Biosystems (2008). Further, a manuscript 

containing the work described in section 3.2 with the title “Dynamics of histone modifications and 

transcription factor binding during cardiac maturation in mice” is currently in preparation. The 

CArdiovascular Regulatory INteraction database described in section 3.4 was distributed as the 

dissemination database of the HeartRepair EU project. 
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2. Material and Methods 

Bioinformatic analysis has become a major component in every high-throughput analysis ranging from 

the in vivo monitoring of TFBS to expression changes resulting from perturbations of regulatory 

networks. In the following sections, experimental techniques used to gather these high-throughput 

datasets are highlighted (section 2.1) and the different datasets that were investigated throughout this 

study are described (section 2.2). Finally, the bioinformatic approaches that were used to analyze these 

datasets are depicted in detail (section 2.3).  

 

2.1 Experimental Methods 

This study integrates a number of advanced experimental techniques which have been applied to study 

the cardiac regulatory network. These comprise the qPCR technique which measure amounts of DNA 

or reverse-transcribed mRNA in a sample (section 2.1.1), the monitoring of protein-DNA interaction 

using ChIP (section 2.1.2) either followed by array detection (section 2.1.3) or the more recent next-

generation sequencing (section 2.1.4). In addition, RNAi as a method to specifically reduce the 

amount of specific mRNAs in a cell is described (section 2.1.5).  

 

2.1.1 Quantitative Real-Time-PCR (qPCR) 

Quantitative real-time PCR follows the general principle of polymerase chain reaction which amplifies 

DNA molecules but includes an additional step of target quantification after every cycle of 

amplification. This allows an estimation of the amount of DNA which was initially present in the 

sample. The quantification is commonly done using fluorescent reporter probes (primers) that detect 

only the DNA matching the probe sequence. The emitted light intensity is linearly correlated with the 

amount of amplified DNA in each cycle. To get a reliable estimate for the initial amount of DNA, the 

time point were the fluorescence significantly exceeds the background for the first time (called ‘ct’ or 

‘cp’) is used. 

However, it is uncommon to quantify the absolute amount of sample DNA, as the measured ct/cp 

value is influenced by a number of factors, e.g. the efficiency of the reverse transcriptase. Instead, a 

relative value between the measured DNA sample and an internal control, often a ‘housekeeping’ gene 

with expected stable expression or a reference DNA sample, is used for normalization. As the PCR 

reaction doubles the amount of target DNA in every cycle the formula 

 

relative amount = 
( )samplecontrol ct  ctct 22 −−∆− =    , 

 

where ctcontrol and ctsample refer to the ct value of the control and the target DNA, respectively, is used to 

calculate the relative amount of DNA. This formula is only valid if the efficiency of the PCR is close 

to 2, which must be validated for every experiment. More accurate methods use a statistically more 

stable control, like the geometric mean between a set of housekeeping genes as suggested by 

Vandesompele et al.
90 which was applied in the qPCR analysis of patient data. In addition, every 

qPCR experiment should consist of several replicates to assess statistical variability. 
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2.1.2 Chromatin Immunoprecipitation (ChIP) 

Chromatin immunoprecipitation is a high-throughput experimental technique to screen for genomic 

regions covered by proteins. It consists of several steps which are depicted in Figure 6. The primary 

step in every ChIP experiment is called cross-linking and involves the chemical anchoring of the 

proteins to the DNA, usually achieved via formaldehyde. In this step, whole protein complexes are 

also cross-linked, allowing a measurement of genomic sites for proteins that do not directly bind to 

DNA. After cross-linking, the chromosomal DNA is sheared to fragments of desired size, usually 

using sonication (application of ultrasound). The next step is the enrichment of those DNA samples 

that are bound to the protein of interest. This is performed using antibodies specifically directed 

against the protein in a procedure called immunoprecipitation. All DNA fragments not bound to the 

protein will be washed away, leaving the enriched ‘ChIP sample’. In many experiments, an additional 

sample is prepared which is not immunoprecipitated to measure the experimental background. This 

sample is typically called ‘Input sample’ or ‘Input’ and is required for many bioinformatic ChIP 

analysis algorithms. The last step in the ChIP protocol is a reset of the protein-DNA cross-linking, 

which is called reverse cross-linking, and the purification of the DNA to remove the proteins. If the 

resulting ChIP material is too low, an additional amplification step is required; however, if possible 

this should be avoided due to potential amplification biases. 

Afterwards, the DNA from the resulting ChIP sample must be determined to predict DNA regions of 

protein binding. Depending on the methods to detect the DNA, the ChIP experiment is called ‘ChIP-

chip’/‘ChIP-on-chip’ (ChIP followed by microarray analysis) or ‘ChIP-seq’ (ChIP followed by next-

generation sequencing). In addition, it is possible to use quantitative real-time PCR to determine if 

specifically selected DNA regions are enriched in the ChIP sample in comparison to the Input sample. 

This is sometimes called ‘ChIP-qPCR’. 

 

 
Figure 6: Schematic representation of a chromatin immunoprecipitation (ChIP) experiment 

The part included in the dashed box might be left out in certain ChIP experiments. 
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2.1.3 ChIP Followed by Microarray Analysis (ChIP-chip) 

Depending on the used array several slightly different techniques to measure ChIP enrichment data 

using array analysis have been proposed. However, the most common form uses fluorescence labeling 

(usually the cyanine dyes Cy3 for green and Cy5 for red) of the ChIPed DNA, usually Cy3 for the 

Input and Cy5 for the ChIP sample, and hybridization to a single or multiple microarrays. The 

fluorescence signal is subsequently measured using laser detection and relative intensities between the 

two dyes are then used to determine DNA fragments enriched in the CHIP experiment. Ideally, one or 

multiple arrays represent the entire genome of the organism in form of overlapping fragments (tiling 

array). However, due to the large genome sizes especially of higher vertebrates, those full-genome 

tiling arrays are only available at high monetary costs. Alternatively, custom designed arrays are 

available that span certain regions of interest, e.g. promoters, for a selected number of genes. The 

spacing of the probes on the array as well as the size of the DNA fragments after shearing determines 

the resolution of the identified protein-DNA binding sites. 

Using ChIP-chip experiments large quantities of genomic regions can be analyzed for protein 

abundance, which enables a detailed study of transcriptional regulatory networks. The disadvantage of 

ChIP-chip experiments, however, is the need to design a fixed tiling and to reduce the regions under 

study to those with potential regulatory input which can leave important regions undetected. Further, 

only DNA fragments that are unique in the genome are spotted on the array which misses highly 

repetitive regions, genomic elements which have already been found to contain a number of regulatory 

sites.91,92 In addition, the microarray hybridization is not very sensitive and requires high amounts of 

ChIP material which often entails additional amplification. 

 

2.1.4 ChIP Followed by Next-Generation Sequencing (ChIP-seq) 

Nowadays, next-generation sequencing has replaced microarray hybridization as the common method 

to detect the ChIPed material. A number of next-generation sequencing techniques exist with the most 

popular being the ‘sequencing-by-synthesis’ and the ‘pyrosequencing’ approaches. Sequencing-by-

synthesis, a techniques that is implemented in the ‘Illumina Genome Analyzers’ and which is based on 

the original Sanger sequencing, incorporates a preliminary cluster generation step, where the genomic 

DNA samples are fused to specific adapter sequences, which are then placed randomly on the surface 

of a flow cell. An amplification step increases the number of identical sequences locally generating 

several million of dense clusters of DNA. The sequencing is subsequently performed in cycles using 

labeled dNTPs which hybridize to the DNA one nucleotide per cycle. The last added nucleotide of 

each fragment is identified using laser excitation and image capturing of the emitted fluorescence. The 

process stops after 36 cycles resulting in reads with an exact length of 36 bp, yet, machines with 72 

and more cycles are available. In contrast, pyrosequencing, which is implemented in the ‘Genome 

Sequencer FLX’ by Roche 454 Life Science, is based on detecting the activity of a DNA polymerase 

with another chemiluminescent enzyme. The polymerase adds complementary nucleotides to the DNA 

fragment and emits light dependent on the nucleotide. The sequence of emitted lights is captured by a 

camera and retranslated into reads with a current average length of 250 bp. 

According to recent studies, next-generation sequencing of ChIP material appears to be much more 

sensitive than ChIP-chip.93,94 Further, it removes the need to reduce the examined genomic regions and 

therefore allows a more unbiased analysis of transcriptional networks by measuring also regions that 

are thought unlikely to comprise regulatory protein binding. Though, like ChIP-chip experiments, 
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ChIP-seq might fail to accurately measure protein abundance in repetitive regions as these will in most 

cases result in reads that can be mapped to multiple genomic positions. Extending the lengths of reads 

using more recent sequencing approaches might reduce this problem. 

 

2.1.5 RNA Interference (RNAi) 

ChIP does reveal likely regulators for gene expression if these bind in the proximity to known 

transcriptional start sites. However, it does not reveal whether the TF under study is an activator, a 

repressor or non-functional for a certain target gene. Consequently, to access the genome-wide 

regulatory implications of a TF, it is necessary to couple a ChIP experiment with a transcriptome 

analysis. While measurement of a panel of possible target genes under wildtype conditions can give 

information on the overall effect of the TF on transcription, it doesn’t reveal the effect of the TF for 

each gene individually. To circumvent this lack of information cells can be studied under conditions 

were the TF is inactive or absent. A common experimental method is the knockdown of the TF using 

RNA interference (RNAi). RNAi is a cellular mechanism that is intermingled with the miRNA 

pathway and plays a role in post-transcriptional regulation and defense against viral infections. It uses 

the aforementioned RISC complex (section 1.1) to specifically degrade target mRNA molecules that 

fit to a regulatory double-stranded short interference RNA (siRNA). In siRNA experiments these 

siRNA molecules are artificially introduced into the cell via transfection and lead to the desired 

knockdown of the target transcript. The expression profile of the cell can subsequently be accessed 

using appropriate methods like qPCR for single genes or microarray or next-generation sequencing for 

genome-wide expression analysis. Crucial for every siRNA experiment is the additional measurement 

of a non-specific siRNA (often called ‘siNon’) to assess consequences on the cellular transcription 

profile that are caused by the RNAi experiment itself and not the induced siRNA. 

 

2.2 Analyzed Datasets 

All experiments analyzed in this study were conducted to study individual components of the 

transcriptional regulatory network of the vertebrate heart. The first analysed datasets monitor the 

binding of transcription factors and histone modifications in a steady-state cell culture model using 

ChIP-chip (section 2.2.1) combined with microarray gene expression data of wildtype and 

corresponding siRNA knockdown cells (section 2.2.2). To analyze found regulatory implications in 

more detail, a subset of these experiments was repeated using genome-wide ChIP-seq data of the TF 

Srf an the histone modification H3ac (section 2.2.3). Results were validated and further enhanced 

using ChIP-qPCR experiments measuring the enrichment of a number of regulatory factors in a mouse 

time-series (section 2.2.4). Finally, transcription networks obtained in cell culture and mouse models 

were studied further using qPCR gene expression data from patient with congenital heart disease 

(section 2.2.5). 

All experiments were performed by members of the laboratory of Prof. Dr. Silke Sperling, Max Planck 

Institute for Molecular Genetics, Department Lehrach. 
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2.2.1 ChIP-chip Data for Cardiac TFs and Histone Modifications in Cell Culture 

As an initial step in the study of cardiac regulatory networks the binding of key regulatory 

transcription factors to promoters of target genes was monitored using chromatin immunoprecipitation 

followed by array detection. Experiments were performed using HL-1 cells for the four DNA-binding 

TFs Gata4, Mef2a, Nkx2.5 and Srf, which play pivotal roles for the differentiation, maturation and 

homeostasis of cardiomyocytes. 

The cardiomyocyte cell line HL-1 was used because it is a feasible model to study cardiomyocytes, as 

mRNA as well as miRNA expression profiles are highly comparable to postnatal mouse hearts 

(Pearson correlation coefficient of 0.95, Figure 7 left) and human right ventricle (Pearson correlation 

coefficient of 0.90, Figure 7 right). Each ChIP experiment was performed using four replicates, two 

biological (two independent pools) and two technical. The ChIP materials as well as an Input control 

were subsequently labeled with a fluorescent dye (Cy5 for the ChIP samples and Cy3 for the input 

control) and hybridized to two specifically designed 385 NimbleGen arrays according to NimbleGen 

standard procedure. The design of these two arrays, which was performed by Tammo Krüger, a former 

member of our group, was based on a broad panel of muscle relevant data sources to sufficiently 

represent regulatory sites in enhancer and promoter regions of all known expressed skeletal, smooth 

and cardiac muscle relevant genes in human and mouse (Table 1). The arrays represent 89 Mb of the 

mouse genome mm8 (NCBI m37) associated to 12,625 transcriptional start sites and contained 

740,000 probes with a tiling of 110 bp (50-60 bp gab between the probes). They included conserved 

regions (based on PhastCons95 score threshold of 0.2 – section 2.3.8) within 10 kb upstream, the full 

sequence 2 kb upstream and the first exon and intron of the corresponding transcript. The resulting 

array data consisted of two different measurements per experiment, one for the Input and one for the 

ChIPed material. 

In addition, ChIP-chip data regarding the four histone modifications H3K9K14ac (H3ac), 

H4K5K8K12K16ac (H4ac), H3K4me2 and H3K4me3 was used. These four histone modifications 

were described to promote an open chromatin state,5,96-99 and were previously analyzed in our own 

group also using ChIP-chip techniques and linear modeling.16 

 
Figure 7: Comparing HL-1 cells to human and mouse hearts 

(left) Gene expression levels obtained from HL-1 cells and P0.5 of C57/BL6 mouse heart. (right) Rank-
transformed miRNA expression levels in HL-1 cells and human right ventricle. The Pearson correlation 
coefficients are indicated in the upper left corner. 
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2.2.2 Microarray Expression Data for Wildtype and RNAi Knockdown 

To study if the binding of transcription factors observed in the ChIP experiments would influence the 

expression of associated genes, genome-wide expression array analysis of contracting HL-1 

cardiomyocytes was carried out using Illumina microarrays. All measured transcripts were represented 

by several probes on an array to gain higher statistical power for detecting differential gene 

expression. As the number of probes and measurements exceeded the size of a single array, multiple 

arrays were used. 

First, steady-state expression data of untreated HL-1 cells was measured in two replicates. Then, HL-1 

cells were treated with siRNAs against a single TF, leading to a major reduction of the quantity of 

each TF in each cell. Two different siRNAs per TF were used, each in duplicates, leading to 4 

replicate experiments per TF. Finally, the cells were treated with an unspecific siRNA (siNon) to 

measure any bias introduced by the siRNA treatment itself, again using duplicates. 

 

2.2.3 ChIP-seq Data for Srf and Histone 3 Acetylation in Cell Culture 

In an attempt to confirm and further investigate results obtained from the analysis of the ChIP-chip 

data, additional ChIP experiments were conducted now followed by next-generation sequencing. Two 

independent ChIP samples were profiled. After chromatin immunoprecipitation was performed, DNA 

fragments bound by Srf or modified with H3ac in HL-1 cells were sequenced using the next-

generation single-end sequencing technology of the Illumina Genome Analyzer which sequences reads 

of 36 bp in length using the sequencing-by-synthesis approach. Analysis of the resulting images and 

successive base calling was done using the open source Firecrest and Bustard applications104 (Solexa 

pipeline 1.4.0). The sequencing of the small RNA libraries resulted in 6,967,318 and 8,364,328 

sequence reads obtained in the Srf and H3ac ChIP-seq experiment, respectively. 

 

Source Number of Transcripts 

Key genes of cardiac development  55 
Human chromosome 21 transcripts in Ensembl v26 211 
Manually selected controls  204 
Transcripts expressed in human heart – Kaynak et al.

100 2,546 
Symatlas human atrioventricular node – A/B101 2,399 / 2,399 
Symatlas human cardiac myocytes – A/B101 4,786 / 3,981 
Symatlas human heart – A/B101 3,391 / 3,978 
Symatlas human skeletal muscle – A/B101 1,889 / 1,761 
Symatlas human smooth muscle – A/B101 5,296 / 5,237 
Symatlas mouse heart 1,665 
Symatlas mouse skeletal muscle 1,793 
Transcripts expressed in mouse hearts – Tabibiazar et al.

102 132 
All transcription factors listed in TRANSFAC103 as of Jan 2005 2,236 

Table 1: Sources considered for array design 
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2.2.4 Time Series ChIP-qPCR Data of TFs and Histone Modifications in Mouse 
Hearts 

After the analysis of TF binding and histone modifications was performed in a steady-state cell culture 

model, further experiments were conduct to investigate the impact of histone modification on Srf 

regulated gene expression in more detail in a time series manner. Experiments were performed in 

mouse hearts of three developmental stages, one prenatal stage (E18.5, meaning 18 ½ days after 

fertilization) and two postnatal stages (P0.5 and P4.5, meaning ½ and 4 ½ days after birth). From the 

fetal to the postnatal stage, the heart adapts to the body circulation and cardiomyocytes mature. During 

this process the heart increases in size (Figure 8), the cells elongate, myofibrils align and cell-cell 

contacts become bipolar.105 Srf, the two histone modifications H3ac and H3K4me2 as well as the 

histone acetyltransferase p300, which was proposed to couple Srf-binding to H3ac enrichment, were 

measured using chromatin immunoprecipitation followed by quantitative real-time PCR on a set of 

selected promoter regions. QPCR was used because it allows a sensitive detection of ChIP enrichment 

changes even for the very small tissue amounts that can be gathered from mouse hearts in these early 

stages. Though, using qPCR to detect the amount of ChIPed DNA requires the definition of a 

predefined set of regulatory regions that should be analyzed, as the qPCR reaction depends on 

sequence specific primers. To ensure high comparability to the results gathered in cell culture the 

selection of regions with potential regulatory influence was based on results from the ChIP-chip/seq 

analysis gathered in HL-1 cardiomyocyte cells. The selection process was performed in three steps: 

First, genomic regions containing overlapping ChIP peaks of at least two of H3ac, H3K4me2 and Srf 

were determined (a description of the ChIP peak calling procedure and its application to the ChIP data 

refer is given in sections 2.3.5, 2.3.6 and 3.1.2). Requiring a maximal distance of 500 bp between the 

peaks’ mid points resulted in 2,484 selected regions. The genomic position of each selected region was 

subsequently defined based on the start of the first enclosed peak to the end of the last enclosed peak 

thereby spanning all factors of interest fully (Figure 9). 

In a second step, all selected regions were associated to the most proximal gene if they lay inside the 

transcribed regions or not more than 10 kb upstream using mouse gene annotations from Ensembl106 

(version 55). To reduce the number of selected regions to those interesting for cardiac development 

 
Figure 8: Mouse hearts of three developmental stages 

Three stages of cardiomyocyte maturation around birth. From fetal to the postnatal stage the heart heavily 
increases in size. The pictures are shown by courtesy of Jenny Schlesinger. 
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regions were filtered that could be associated to genes with heart or muscle annotation background 

using a combination of resources including experiments, literature search, OMIM and GO annotation. 

In a third step, additional regions were manually included that were bound by Srf in ChIP-chip/seq and 

were associated to genes which are important for heart and muscle development but failed to be 

automatically annotated (possibly due to insufficient GO annotation) or were found to be interesting 

based on our own publication.107 

After the selection of regulatory regions for the ChIP-qpCR experiment, primer pairs were designed 

that uniquely represent the regions of interest. Therefore, a fixed size window of 500 bp length was 

positioned inside each selected region using the middle of all ChIP H3ac, H3K4me2 and Srf peaks that 

were enclosed in the selected region. If a single 500 bp window did not cover all individual ChIP 

peaks, additional non-overlapping 500 bp regions were introduced manually (Figure 9 B). Using these 

500 bp windows, sequence specific primer pairs were designed and regions without unique primer 

pairs were discarded from the subsequent analysis. This selection process resulted in 191 regions with 

regulatory context in the proximity of heart developmental genes that were bound by histone 

modifications and/or Srf in HL-1 cells. 

Finally, ChIP-qPCR was performed for every selected region with samples of mouse hearts of each 

individual time point (E18.5, P0.5 and P4.5) and each measured TF and histone modification (Srf, 

p300, H3ac and H3K4me2,). To adjust for different initial DNA concentrations, an Input control was 

measured. After the qPCR measurement, replicates with very high standard deviations were inspected 

manually to remove potential outliers and measurements that completely failed in all three replicates 

were excluded from the subsequent analyses. At last, the relative amount of ChIP enrichment in each 

region for each time point and measured TF and histone modification was calculated using the 

measured Input. 

 

Figure 9: Region selection for the ChIP-qPCR measurement 

Two examples of selected regions based on ChIP peaks gathered in HL-1 cells. The selected regions (yellow) 
span all overlapping individual ChIP peaks (blue, green and red for H3ac, H3K4me2 and Srf, respectively). 
Fixed windows of 500 bp length (orange) were positioned in the middle of the ChIP peaks for primer design. 
(A) A single 500 bp primer window was associated with this selected region on chromosome 1. (B) Two primer 
windows were used to span all interesting ChIP peaks associated to this selected region on chromosome 17. 
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2.2.5 qPCR Expression and Phenotype Data of Patients with Congenital Heart 
Disease 

Finally, the relevance of the data obtained using cell culture and mouse hearts were analyzed in human 

hearts. Gene expression was measured for a selected set of cardiac relevant genes using qPCR. As a 

further contribution to the range of this study the additional analysis of breakdowns of cardiac 

transcription networks was studied by integrating a large number of human patients with a panel of 

congenital heart disease supplemented by a control group of healthy individuals. In total 190 human 

cardiac ventricular and atrial tissue samples from patients with different cardiac malformations were 

collected, enabling the selection of a balanced patient population and allowing the separation of 

disease- or tissue-specific expression patterns. All cardiac samples were obtained from the ‘German 

Heart Center’ during cardiac surgery with ethical approval by the institutional review committee and 

informed consensus of the patients or their parents. As the control group healthy human heart samples 

from non-transplanted hearts were taken. To retrieve phenotypic information a clinical 

characterization comprising 250 features of morphological, hemodynamic and therapeutic information 

was collected for every analyzed patient using the d-matrix database108 for detailed analysis and 

visualization. 

To characterize the transcript patterns of the patient samples, a set of 42 genes was selected based on a 

previous genome-wide study by Kaynak et al.
100 as well as literature research. For these genes qPCR 

primers were designed to determine expression levels. Table 2 shows the list of all measured genes 

and their Ensembl Gene IDs in human and mouse. In addition to the 42 genes, four genes with 

expected stable expression in the diseased individuals were measured additionally and the geometric 

mean of the three most consistent genes was calculated for each sample according to the method 

suggested by Vandesompele et al.
90 This mean was then used to calculate relative mRNA amounts and 

the four genes were excluded from subsequent analyses. 

 

2.3 Bioinformatic Methods 

In the previous section the range of different experiments that have been integrated into this study 

were described. In line with this, a number of bioinformatic tools had to be implemented to analyze 

their results and derive meaningful hypothesis for future studies of cardiac transcription networks. In 

the following, these tools are described in detail. A technique frequently applied was linear modeling 

(section 2.3.1), which is a versatile and very flexible tool for the statistical analysis of data. Just as 

important, the normalization methods used to remove biases from the high-throughput datasets 

(section 2.3.2) as well the implemented measures to assess statistical dependency and derive clusters 

of co-expressed genes (section 2.3.3) are described. As most of the analyses include multiple testing 

procedures its correction is explained (section 2.3.4) and the pipelines to derive enriched binding sites 

from ChIP data are elucidated for ChIP-chip (section 2.3.5) and ChIP-seq (section 2.3.6). Finally, 

additional tools that have been applied in this study, like Gene Ontology (GO) term enrichment 

analysis (section 2.3.7), the prediction of transcription factor binding sites either using known PWMs 

(section 2.3.8) or de novo (section 2.3.9) and relational databases (section 2.3.10) are illustrated. If not 

mentioned otherwise, all bioinformatic analyses have been performed using scripts implemented in 

Perl, R109 and the Bioconductor110 packages. 
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Gene Human Ensembl ID 
Mouse 

Homolog 
Mouse Ensembl ID Description 

ACTA1 ENSG00000143632 Acta1 ENSMUSG00000031972 Actin, alpha skeletal muscle 

ATP2A2 ENSG00000174437 Atp2a2 ENSMUSG00000029467 Sarcoplasmic/endoplasmic reticulum 
calcium ATPase 2 

BMP2 ENSG00000125845 Bmp2 ENSMUSG00000027358 Bone morphogenetic protein 2 
precursor 

BMP4 ENSG00000125378 Bmp4 ENSMUSG00000021835 Bone morphogenetic protein 4 
precursor 

CITED2 ENSG00000164442 Cited2 ENSMUSG00000039910 Cbp/p300-interacting transactivator 2 

CPT1B ENSG00000205560 Cpt1b ENSMUSG00000078937 Carnitine O-palmitoyltransferase I, 
muscle isoform 

DPF3 ENSG00000205683 Dpf3 ENSMUSG00000021221 Zinc-finger protein DPF3 

GATA4 ENSG00000136574 Gata4 ENSMUSG00000021944 GATA-binding factor 4 

GATA6 ENSG00000141448 Gata6 ENSMUSG00000005836 GATA-binding factor 6 

HAND1 ENSG00000113196 Hand1 ENSMUSG00000037335 Heart- and neural crest derivatives-
expressed protein 1 

HAND2 ENSG00000164107 Hand2 ENSMUSG00000038193 Heart- and neural crest derivatives-
expressed protein 2 

HEY1 ENSG00000164683 Hey1 ENSMUSG00000040289 Hairy/enhancer-of-split related with 
YRPW motif 1 

HEY2 ENSG00000135547 Hey2 ENSMUSG00000019789 Hairy/enhancer-of-split related with 
YRPW motif 2 

HIF1A ENSG00000100644 Hif1a ENSMUSG00000021109 Hypoxia-inducible factor 1 alpha 

HOP ENSG00000171476 Hopx ENSMUSG00000059325 Homeodomain-only protein 

IRX4 ENSG00000113430 Irx4 ENSMUSG00000021604 Iroquois-class homeodomain protein 

MEF2A ENSG00000068305 Mef2a ENSMUSG00000030557 Myocyte-specific enhancer factor 2A 

MEF2C ENSG00000081189 Mef2c ENSMUSG00000005583 Myocyte-specific enhancer factor 2C 

MYH6 ENSG00000197616 Myh6 ENSMUSG00000040752 Myosin-6 (Myosin heavy chain 6) 

MYH7 ENSG00000092054 Myh7 ENSMUSG00000053093 Myosin-7 (Myosin heavy chain 7) 

MYL2 ENSG00000111245 Myl2 ENSMUSG00000013936 Myosin regulatory light chain 2 

MYL7 ENSG00000106631 Myl7 ENSMUSG00000020469 Myosin regulatory light chain 7 

MYOCD ENSG00000141052 Myocd ENSMUSG00000020542 Myocardin 

NKX2.5 ENSG00000183072 Nkx2.5 ENSMUSG00000015579 Homeobox protein Nkx-2.5 

NPPA ENSG00000175206 Nppa ENSMUSG00000041616 Atrial natriuretic factor precursor 

NR2F1 ENSG00000175745 Nr2f1 ENSMUSG00000069171 COUP transcription factor 1 

NR2F2 ENSG00000185551 Nr2f2 ENSMUSG00000030551 COUP transcription factor 2 

PIPPIN ENSG00000172346 Csdc2 ENSMUSG00000042109 Cold shock domain-containing protein 
C2 

PLOD1 ENSG00000083444 Plod1 ENSMUSG00000019055 Procollagen-lysine,2-oxoglutarate 5-
dioxygenase 1 precursor 

RARA ENSG00000131759 Rara ENSMUSG00000037992 Retinoic acid receptor alpha 

RXRA ENSG00000186350 Rxra ENSMUSG00000015846 Retinoid X receptor alpha 

SMAD4 ENSG00000141646 Smad4 ENSMUSG00000024515 Mothers against decapentaplegic 
homolog 4 

SMAD6 ENSG00000137834 Smad6 ENSMUSG00000036867 Mothers against decapentaplegic 
homolog 6 

SRF ENSG00000112658 Srf ENSMUSG00000015605 Serum response factor 

TAGLN ENSG00000149591 Tagln ENSMUSG00000032085 Transgelin 

TBX20 ENSG00000164532 Tbx20 ENSMUSG00000031965 T-box transcription factor TBX20 

TBX5 ENSG00000089225 Tbx5 ENSMUSG00000018263 T-box transcription factor TBX5 

TGFB2 ENSG00000092969 Tgfb2 ENSMUSG00000039239 Transforming growth factor beta-2 
precursor 

TNNC1 ENSG00000114854 Tnnc1 ENSMUSG00000021909 Troponin C 

TNNI3 ENSG00000129991 Tnni3 ENSMUSG00000035458 Troponin I 

VEGF ENSG00000112715 Vegfa ENSMUSG00000023951 Vascular endothelial growth factor A 
precursor 

ZFPM2 ENSG00000169946 Zfpm2 ENSMUSG00000022306 Zinc finger protein multitype 2 

Table 2: Genes screened in the patient analysis 

Genes selected for the cardiac gene set. Ensembl IDs are based on Ensembl version 48. Assignment of 
homologous mouse genes was taken from Ensembl. 
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2.3.1 Regression Analysis and Linear Modeling 

Linear regression models and analysis of variance (ANOVA) models are powerful statistical tools and 

can be applied to a number of real-world problems including bioinformatics. The aim of any 

regression analysis is the explanation or the modeling of the relationship between a response or 

observed variable Y (e.g. the expression of a gene) and one or more predictive variables X1, ..., Xk (e.g. 

the expression of likely regulators). In this study, linear modeling approaches have been applied to 

study a number of problems, including the prediction of regulators as in the analysis of the regulatory 

impact of p300 and Srf on changes in H3ac enrichment using time-series data (section 3.2.3 to 3.2.5) 

or the differential expression of genes in patients belonging to phenotypic subgroups (section 3.3.4). 

In regression analysis, the data used for the regression is usually present in form of a vector for the 

response variable and a data matrix for the predictive variables like 
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where n is the number of observations. The most general way to model this dependency would be 

 

( ) ε+= kXXXfY ,...,, 21    , 

 

where f is an unknown function and ε represents the individual error or noise that is found in every 

measurement. However, as the real function f could be infinite dimensional, it is unfeasible to estimate 

such a function. Therefore the form of f must be restricted to be able to estimate a model. The linear 

model, one of the most prevalent methods of regression analysis, assumes a linear form of f.  

 

The Linear Model, Linear Regression Models and ANOVA 

Linear models are models of the restricted linear form 

 

εββββ +++++= kkXXXY K22110    , 

 
where β0 to βk are the unknown parameters of the model which are to be estimated. β0 is called the 

intercept, which is introduced to represent a general baseline not accounted by the predictive variables. 

Using a β0 implies an expected value E(ε)=0, as any non-zero expectation for ε would be absorbed in 

β0. By restricting f to this form, the modeling problem is reduced to the estimation of k+1 variables, 

which is a much simpler task. Notice that while the individual parameters β must enter linearly, the 

predicting variables as well as the observed variable do not have to be linear but can be of any form, 

e.g. log-transformed, which makes linear models a powerful tool for regression analysis even of not 

strictly linear systems. 

A different notation for linear models is the matrix form 
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εβ += Xy    , 

 

where ( )T

nyyyY ,,, 21 K= , ( )T

kβββββ ,,, 210 K= , ( )T

nεεεε ,,, 21 K= and 
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with n observations and k predictive variables. The column of ones incorporates the intercept term. As 

an example, the most simple linear model εβ += oy , which predicts y solely by its mean (often 

written as εµ +=y ), can be rewritten as 
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In most cases the response variable is assumed to be continuous, but the predictive variables can either 

be continuous, discrete or even categorical. In case of continuous or discrete predictive variables, the 

model is called a linear regression model while in the case of categorical variables it is called an 

analysis of variance (ANOVA). Depending on the numbers of variables in an ANOVA, it is called a 

one-way, two-way or multiple-way ANOVA. The special case of a one-way ANOVA with only two 

categories for the predictive variable is equivalent to the t-test. 

 

Least Square Estimation 

The basic idea of linear regression is to estimate the β in the regression equation εβ += Xy  that 

bests separates the systematic influences Xβ from the random error ε, for example those β that lead to 

the smallest errors ε. The most popular approach to estimate β, which was also utilized in this study, is 

the least square estimation. It minimizes the sum of the squared errors 
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Inserting the initial regression equation into this sum leads to 

 

( ) ( ) βββββεε XXyXyyXyXy TTTTTT +−=−−= 2    . 
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To find a β that minimizes this function the equation is differentiated in respect to β and set to zero. 

Accordingly, it is the aim to find an estimator β̂ that satisfies 
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These equations, which are often called normal equations, can be solved using several techniques with 

the most popular being the ‘QR factorization’; however, these topics are beyond the scope of this 

thesis (the interested reader might refer e.g. to Björck111). Given an estimated β̂  the response variable 

ŷ  and the residuals ε̂  can then be predicted as 

 

β̂ˆ Xy =   and  yyXy ˆˆˆ −=−= βε    . 

 

Assuming that these residuals are independent and normally distributed it can be shown that the least 

square estimated β̂  is the maximum likelihood estimator.112 Plots of the distribution of the resulting 

residuals are helpful to check these assumptions visually. 

 

Diagnostic Plots 

One of the most important diagnostic plots for a linear model is the residual vs. fitted plot. It plots ε̂  

against ŷ  and should result in a symmetric vertical distribution around zero. Figure 10 A-C shows an 

example of a plot of a valid simple linear regression model (A) and two non-valid models (B and C), 

where B illustrates a variance dependency of the residuals on the fitted value and C illustrates a 

nonlinear dependency. 

Further, a normal distribution of the residuals must be given to assure β̂  to be the best possible 

estimator. To visually inspect this assumption the quantile-quantile or Q-Q-plot of the residuals 

against the normal distribution can be used. A common way to generate this plot is sorting the 

individual residuals nεε ˆ...1̂ and then computing  
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for all { }ni ,...,1∈ , where Φ-1 is the quantile function of the standard normal distribution. Plotting the 

sorted iε̂  against the computed q(i) should result in a straight line if the residuals are normally 

distributed. Figure 10 D-F shows three example Q-Q-plots, one of a valid model (D) and two of non-

valid models (E and F). The consequence of finding (severe) non-normality can be that the least 

square estimate might be non-optimal and other estimation techniques should be used preferable like 

the generalized least square approach or the ridge regression. 
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Goodness of Fit and Significance Testing for Linear Models 

To compare different linear models predicting the same observed variable like done in the analysis of 

correlated enrichment changes in mice hearts, it was of interest how good each individual model fits 

the observed data. In this study, the diagnostic measure R
2 was used, which is also often called 

coefficient of determination or percentage of variance explained. It is defined as 
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where y  is the arithmetic mean of y. It ranges between zero and one, with higher values indicating a 

better model fit. While R2 is a good measure to compare different models an overall minimal value for 

R
2 which separates well from poor models is often hard to establish as different problems and 

dependent variables can lead to quite different expected ranges of R2. 

Further, hypothesis testing can be used to access the significance of a given linear model. In linear 

regression model and ANOVA analyses, two hypothesis tests are usually performed. The first is a 

 

Figure 10: Diagnostic Plots for Linear Models 

(A-C) Residuals vs. fitted values plot. (A) Valid linear model. (B) The size of the residuals depends on the fitted 
values. (C) Non-linear dependency. (D-E) Quantile-Quantile-plots of the residuals against the normal 
distribution. (D) Valid linear model. (E) Exponentially distributed residuals. (F) Uniform distributed residuals. 
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simultaneous test for the significance of any predictive variables and the second is the test for the 

significance of a single predictive variable. 

To test the significance of a full model “Ω : εβ += Xy ” it is compared against the simplest model  

“ω : εβ += oy ”, which describes the response only in terms of its mean. To test if any predictive 

variable is useful to explain the observed variable the null hypothesis 

 

0...: 210 ==== kH βββ  

 

is formulated. This null hypothesis is tested using the differences in the individual sum of squarred 

errors combined using the F statistic112 
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where ΩΩ εε ˆˆ T  is the sum of the squared errors for the full model and ωω εε ˆˆ T  is the sum of the squared 

errors for the simplest model, which is equivalent to ( ) ( )yyyy
T

−− . The F value 1,1 −− nkF  then 

provides the p-value for the test. If the null hypothesis can be rejected the model likely contains valid 

predictors for the response variable. 

Furthermore, it can be tested for each single predictive variable Xi if it has a significant influence on 

the overall prediction of y given it coefficient βi. The appropriate null hypothesis is 

 

0:0 =iH β    . 

 

Again the full model Ω is given as above. In addition, the model “Ω-βi” is defined which is Ω with all 

its predictive variables except βi. To test H0 the same formula to calculate the F value as above is used 

now exchanging ωω εε ˆˆ T  with 
ii

T

ββ εε −Ω−Ω
ˆˆ  and slight changes for the degrees of freedom.  

 

2.3.2 Normalization of Large-scale Data 

In this study, a large number of high-throughput datasets like ChIP-chip or siRNA knockdown 

experiments were analyzed. However, these datasets contain systematic variations and biases that are 

inherent to the experimental process. Sources of these variations are different initial amounts of 

DNA/RNA that were used in each experiment, different efficiencies of the reverse transcription (for 

RNA), different efficiencies in the labeling or the detection process and so on. If not accounted for 

correctly, these biases will significantly impact on the quality of the analysis and can drive any results 

invaluable. Therefore, a key factor in a reasonable bioinformatic analysis is the selection of proper 

methods to correct these systematic effects. This process is called normalization. 

In this thesis, two advanced but inherently different technique to normalize the high-throughput data 

were selected and applied. The first is the variance stabilization normalization (vsn) method for 
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microarray data introduced by Huber et al.113 The second is the qspline normalization approach by 

Workman et al.
114 Both methods were already successfully applied to normalize high-throughput 

datasets.115-117 The two methods differ as qspline is a non-parametric normalization (does not make 

any assumption on the sort of appropriate transformation), while vsn is a parametric normalization. 

Vsn was used as the standard normalization technique in this thesis (e.g. for the normalization of the 

ChIP-chip data), as a parametric solution should in general perform better if its assumptions hold. 

However, as found for the siRNA expression data (section 3.1.1), it can lead to worse results if the 

assumptions do not hold. In this case it was replaced by the non-parametric qspline normalization. 

 

Simple Normalization 

For the following sections a matrix Y is assumed containing measurements of K probes from N 

experiments. For data normalization in general, two tasks arise: the intra- and the inter-experimental 

normalization. The first, which is often named correction instead of normalization, is the task of 

finding and removing trends that are inherent to the data of a single experiment Ni. An example is the 

mean-variance dependency, which will be discussed below. Further, inter-experiment normalization 

refers to the task of manipulating data to make measurements from different experiments comparable. 

A common assumption in normalization methods is that most of the measured data are the same 

between the different experiments and therefore overall attributes of the data distributions like 

quantiles can be used to normalize experimental variations. Common graphical tools to assess the 

similarity of distributions before and after normalization are scatterplots, which are only useful to 

compare two experiments, and boxplots and density plots, which can be used for larger numbers of 

experiments. 

The simplest method to normalize a single measurement nky ,  is to calculate the mean intensity and 

range (difference between the smallest and the biggest value) of every experiment },...,1{ Nn ∈ , 

define a “target” mean and range e.g. using the average of the calculated means/ranges or arbitrarily 

using a mean of 0 and a range of 1 and apply an affine linear transformation of each value in each 

experiment like in 

 

nnkn
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nk yy λα ,, +=    , 

 

where adj

nky ,  is the resulting adjusted value, αn is the linear shift that is needed to adjust the mean 

intensity of the experiment n to the target distribution and λn is the experiment specific scaling 

parameter to adjust the range. However, such a simple transformation will in most cases only be valid 

for very simple datasets. The main reason is that the systematic errors that lead to differences in 

experiments are not linear but their relation is dependent on the signal intensity. A common way to 

visualize this dependency is to plot the differences between the logarithmic intensities versus their sum 

or mean. An example for such a plot, which is often called MA-plot (M for minus and A for add), is 

given in Figure 11 A which was taken from the analysis of the siRNA data performed in this study. It 

is easily seen that the differences between the two experiments is dependent on the signal intensity, 

often resulting in ‘banana’-shaped plots. Such a dependency, if not normalized for, will give rise to 

different powers to detect differences in the experiments, which will be dependent on the individual 
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signal intensity of the probe under study. Therefore, large-scale datasets like microarray experiment 

require more sophisticated normalization approaches like the used vsn and qspline normalization 

explained below. 

Which normalization method to choose for a certain series of experiments is a question that is often 

difficult to answer. In general, one should aim at using the normalization method that leads to the most 

accurately measures with the lowest bias, e.g. which leads to the “correct” set of differentially 

expressed genes. However, in this study and in most cases this correct set is (at least partially) 

unknown and can therefore not be used to determine the right normalization method. Instead, a further 

measure of the quality of normalization, the similarity of replicated experiments, was used. Replicated 

experiments are a valuable selection aid as they should in general only reflect the experimental 

variations and no real differences.  

 

Variance stabilization normalization 

The variance stabilization normalization by Huber et al. is based on a specific model of the 

relationship between the differences or variance of several experiments and their signal intensity. This 

dependency can better be inspected visually for two experiments in a variation of the previously 

introduced MA-plot which shows the difference (M) between measurements versus the rank of their 

sum (Arank). Figure 12 A shows an example based on one of the ChIP-chip experiments analyzed in 

this study. It is easily seen that the variance increases with the intensity. Huber et al.
113 model this 

dependency based on the model for measurement error of gene expression from Rocke and Durbin118 

and divide it into an additive and a multiplicative component assuming the quadratic mean-variance 

dependency 
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Figure 11: Example MA-plot and qspline normalization taken from the siRNA analysis 
Example of an MA-plot (A) before and (B) after qspline normalization. The example is taken from the Gata4 
siRNA expression data normalization (section 3.1.1). 
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where 
kyVar  is the variance of gene k over all experiments n, ky  is its mean and the three parameters 

c1, c2 and c3 parameterize the assumed dependency. Beside the motivation given by Rocke and 

Durbin’s model this form of dependency was shown to be present in many microarray experiments.113 

To make the variance independent of the mean, the general asymptotic variance stabilization 

transformation119 
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is used. Incorporating the previous mean-variance dependency based on the additive and 

multiplicative error model into this variance stabilization transformation, Huber et al. construct an 

areasinus hyperbolicus (arsinh) transformation of the data to stabilize the variance: 

 

( ) ( )byayh += arsinh γ    . 

 

They relate this formula to the above additive/multiplicative error model by  
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Huber et al. interpret this arsinh function as a form of generalized logarithm which is also valid for 

negative values. However, the variance stabilization is per se no method to normalize systematic 

effects between different experiments but only addresses the dependency of the variance on the mean 

intensity in each single experiment. Therefore, the vsn method further incorporates an affine linear 

normalization as described above, gaining  

 

 

Figure 12: Example of MArank-plot and vsn normalization taken from the ChIP-chip analysis 

Example of an MArank-plot (A) before and (B) after vsn normalization. The example is taken from the Srf ChIP-
chip normalization (section 3.1.1). 
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with nn baa α+=  and nn bb λ= . Note that the overall scaling factor γ  was omitted. Finally, the 

parameters an and bn of this variance stabilized normalization needs to be estimated for every 

experiment. To do so, Huber et al. reformulate their normalization in terms of the expected 

independency of the variance from the mean using the linear model 
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where kk µβ =,0  again is the mean of ( )adj

nkn yh ,  and nk ,ε  is the experiment and probe-specific error 

term which should have a constant mean equal to zero and a variance that is equal to the common 

variance. The parameters are then estimated in an iterative way alternating between a least square fit 

based on a subset { }KKk ,...,1ˆˆ ⊂∈  and choosing K̂  as the set of probes with the smallest residues. 

By using only a subset of all probes for the estimation, the method accounts for probes that might 

reflect real differences and should therefore be excluded from the estimation of the normalization 

parameters (for a detailed description of the estimation process refer to Huber et al. 2003120). 

Transforming the data of the different experiments using the estimated parameters and the arsinh 

function will then result in a common mean and scale of all experiments with a variance that is 

independent from the mean as illustrated in Figure 12 B. 

 

Qspline Normalization 

Unlike vsn, the qspline normalization method by Workman et al. is a non-parametric normalization 

technique which tries to fit the distributions of several experiments to a common “target” distribution. 

This common distribution is defined by taking the arithmetic mean ky  of each probe over all N 

experiments. Then, for every experiment n a number of q quantiles points are chosen from this 

common distribution and from the experiment at the same time and a natural cubic spline function is 

interpolated between the experiment and the common distribution using the sampled q points. A spline 

function is a curve fitting function that is defined in a piecewise manner, using polynomials to fit the 

data between two successive points. Special requirements are put on the crossover region between one 

polynomial and the next to ensure smoothness. The resulting spline function is then used to transform 

all probe’s measurements in experiment n to the common distribution. To gain more robust results, the 

spline function interpolation is repeated r times with increasing equidistant offsets from the original q 

quantile points. Finally, the normalized value for a probe k is calculated by the mean over its 

transformed values in all repeats. In this analysis, q was set to 100 and r was set to 5 as suggested in 

the original publications by Workman et al.
114 Applying qspline normalization to a set of experiments 

will center any systematic difference between two experiments on zero. This effect is shown in Figure 

11 B. Therefore, qspline normalization is similar to quantile normalization as both lead to the same 

distribution in all normalized datasets, however qspline makes more relaxed assumptions on the data 

in general and will maintain the individual effects of each experiment.115 

 



 
 

 

2. Material and Methods 

36 

2.3.3 Pairwise Distance Measures and Clustering 

Given large datasets comprising multiple entities (e.g. genes and expression data) it is often desirable 

to measure the amount of dependency between these. Different techniques to determine this 

dependency have been utilized in this study, e.g. to find correlated ChIP enrichment changes in the 

analysis of time series ChIP-qPCR data (section 3.2.2) or to determine genes with highly similar 

expression patterns as performed in the patient analysis (section 3.3.5). 

In the following, a set of entities g is given that have been measured in a number of experiments c. A 

measurement of a specific entity in a specific experiments will be called xi, where gx ∈  and ci ∈ . In 

case of gene expression data, g refers to the set of genes and c could refer to a number of conditions, 

individuals or time-points. The dependency between two entities x and y is then measured by 

calculating a distance metric incorporating the individual measurements xi and yi. 

 

Common Pairwise Distance Measures 

A simple and widely used distance measure is the Euclidean distance 
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between the two entities x and y. However, throughout this study, the Pearson correlation coefficient 
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where yx,  again are the arithmetic means over all xi and yi, will be used, which is more popular 

especially for gene expression data. Spearman’s rank correlation coefficient, which replaces the 

individual values by their ranks, is the non-parametric alternative to the Pearson correlation 

coefficient. Both measure the linear statistical dependence between the two variables and range 

between 1 (correlation) and -1 (anti-correlation) with a zero value implicating no linear dependency. 

They were shown to have high power in the analysis of expression data in a number of species under a 

steady-state.121-123 However, both distance metrics have a major drawback as they measure only linear 

relations between the two expression vectors. This poses no threat as long as only linear relations are 

of importance. However, for its use in the analysis of gene expression data it was demonstrated that 

the Pearson correlation coefficient can be distorted if the expression levels show a non-uniform 

distribution across the expression patterns.124  

 

Mutual Information 

The information theoretic concept of mutual information is a reasonable way to overcome the 

mentioned limitation of linearity As the prediction of genes with common regulators performed in the 
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analysis of gene expression in patient with congenital heart disease (section 3.3.6) was highly 

dependent on the accuracy of the implemented distance measure, mutual information was additionally 

integrated to determine the existence of non-linear dependencies in gene expression data. Mutual 

information was introduced to gene expression analysis to provide a more general measure of 

dependencies in the data, in particular, positive, negative and nonlinear correlations.125 It is a well 

known measure in information theory126 that has been used to analyze gene-expression data in a 

number of studies.124,127-129 The definition of mutual information is based on the Shannon entropy, 

which is defined as 
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where A is a system with N possible states yielding any of the possible values ai with the probability 

P(ai).
126 The joint entropy H(A,B) of two discrete systems A and B is defined analogously 
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where P(ai,bi) denotes the joint probability that system A is in state ai and system B in state bi. If the 

two systems are statistically independent the joint entropy becomes 

 

( ) ( ) ( )BHAHBAH +=,    , 

 

which leads to the definition of the mutual information127 
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The mutual information is strictly positive and becomes zero if no dependency between the two 

systems exists. Using the entropy definition given by Kullback,130 this formula can be rewritten as 
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This definition requires explicit knowledge of the respective probability distributions. However, in 

most cases these are unknown and have to be estimated. The most straightforward and widely used 

approach is to utilize a histogram based technique.124,128 An alternative method, which was proposed 

by Moon et al.
131 is based on kernel density estimation. As it was found to be superior to the histogram 

methods131 it was therefore applied in this study. The method by Moon et al. uses the Gaussian kernel  
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to estimate the one-dimensional probability distributions and 
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to estimate the two-dimensional distribution. Then the mutual information is computed as 
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using an optimal bandwidths h. Following the argumentation of Steuer et al.

127 and assuming that the 

analyzed gene expression measurements are a faithful sample of the underlying probability 

distribution this was further simplified to 
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Mutual information has been used in a number of studies to infer undirected gene networks often 

coupled to a fixed threshold.124,132 The concept was further enhanced by removing indirect edges 

between genes that were part of a regulatory chain by Margolin et al.
133,134

 using the data-processing 

inequality principle. This principle states that, if a gene x regulates another gene y via a gene z, the 

mutual information between x and z is smaller than between either x and y and y and z. While this was 

shown to successfully reconstruct genetic networks135 it provides the possibility to miss important 

interactions, if e.g. gene x is indeed directly regulating gene z or if feed-forward loops, which are 

important motifs in regulatory networks, exist. Another approach to extend the power of mutual 

information which was not used in this study but has been applied to reverse engineer genetic 

networks is the use of conditional mutual information,136,137 where the mutual information between 

gene x and y is calculated conditioned on gene z. 

 

Odds Ratios 

Correlation coefficients and mutual information are often used when the statistical dependency 

between two continuously variables like gene expression should be computed. In the easier case of 

two binary variables, another measure can be used, namely the so-called ‘odds ratio’. In this study, 

odds ratios have been used to determine the statistical dependencies between target genes of TFs in 

ChIP-chip (section 3.1.6) or differentially expressed genes found in the analysis of siRNA data 
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(section 3.1.8). For two binary variables A and B with the probabilities ( )AP  and ( )BP  and their 

complementary probabilities ( )AP−1  and ( )BP−1  their odds ratio is defined as  

 

( )

( )
( )

( )
( )

( ) ( )( )
( ) ( )( )APBP

BPAP

BP

BP

AP

AP

BA
−⋅

−⋅
=

−

−
=

1
1

1

1
, Ratio Odds    . 

 

Odds ratios can be easily derived from a contingency table T 
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They range between 0 and ∞  and are a measure of how more likely ( )AP  is given B and vice versa. 

 

Clustering 

To find co-regulated genes and predict binding sites of common regulators in human, the 

aforementioned Pearson correlation coefficient was implemented and compared to mutual information 

(section 3.3.5 and 3.3.6). However, the calculation of a distance metric is often insufficient to infer co-

regulatory dependencies. The main problem is to define thresholds that separate the distance matrix 

entries into those values that infer regulatory dependencies and those that only reflect background. A 

simple and widely used method to fulfill this task is clustering. Given a matrix of pairwise distances, 

clustering arranges entities into groups with similar measurement profiles.  

In this study, the method selected to cluster gene expression and phenotype annotation vectors was 

hierarchical clustering which is one of the most popular clustering techniques due to the simplicity of 

its concept and no requirement to define the number of cluster a priori. In every step the two most 

similar entities are joined into one entity, the distances between this new entity and all other entities 

are recalculated according to a fixed algorithm (e.g. arithmetic mean or maximum) and the clustering 

progresses to the next cycle until all entities are finally joined. The sequence of joined entities is 

reflected in the cluster dendrogram of distances between the individual sub-entities. If needed, a 

threshold can be used to cut the dendrogram at a specific height producing groups of genes with 

similar expression patterns. Another widely used clustering algorithm, which was not implemented in 

this study, is k-means
138 which partitions the genes into k clusters according to their nearest center. 

Instead of choosing a threshold k-means requires the definition of the number of cluster k a priori 

which can have a very crucial influence on the correctness of the results. More advanced clustering 
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techniques like the self-organizing maps139 or self-organizing tree140 algorithms have been proposed 

that successfully circumvent the selection of a fixed number of clusters. In addition, several clustering 

algorithms have been proposed that do not require all genes to show a high similarity under all 

conditions or time points but only under a subset of these. This technique is usually called bi-

clustering and has been introduced to expression data analysis by Cheng and Church.141 Numerous bi-

clustering algorithms exist,142-145 however, they all require a large number of measurements under 

different conditions or time points which is often not given in biological experiments for higher 

vertebrates.  

 

2.3.4 Correction for Multiple Testing 

Analyzing large-scale biological data like the ChIP-chip or siRNA expression analysis performed in 

this study involves the repeated performance of statistical tests. The main problem of this multiple 

hypothesis testing is an accumulation of the false positive rates of the individual tests which will lead 

to an overall higher chance of falsely rejecting at least one tested null hypothesis thereby increasing 

the chance of false positive discoveries. 

Classical methods to correct for this increase in false positives have tried to ensure a least overall 

significance level by adjusting the individual hypothesis significance levels. The most straightforward 

method proposed was the Bonferroni correction which distributes the overall significance level α 

evenly on all conducted tests by requiring a significance level of at least α/n, where n is the number of 

tests. However, this method and other methods that try to ensure a least overall significance level are 

too conservative especially for the analysis of high-throughput data where the number of tests can 

easily exceed many thousands.146 Applying these classical methods will result in only very low 

numbers of significant tests. Instead, methods that control the false discovery rate (FDR), which is the 

expected proportion of false discoveries among all significant tests, have been introduced for these 

kinds of analyses. The method to control the FDR in this study was originally introduced by 

Benjamini and Hochberg147 for independent p-values in 1995 and was later adapted by Benjamini and 

Yekutieli148 in 2001. 

To ensure that an expected FDR is less than a given δ both the Benjamini-Hochberg and the 

Benjamini-Yekutieli method sorts the P1...Pm p-values resulting from m different hypothesis tests in 

increasing order and then find the largest index ik ∈  where 
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Subsequently, all the hypothesis with p-values smaller or equal to Pk are rejected. The difference 

between the two methods lies in the definition of c(m). While the original Benjamini-Hochberg 

method used c(m)=1, Benjamini and Yekutieli showed that this is only valid for independent p-values. 

Instead they proposed 
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which results in more conservative estimations of the FDR but does not require independency of the p-

values (refer to Benjamini and Hochberg147 and Benjamini and Yekutieli (2001)148 for a detailed 

discussion). As this independency of p-values cannot be guaranteed for the analysis of gene 

transcription networks in general the more conservative approach was used throughout this study. 

Finally, Benjamini-Yekutieli FDR-adjusted p-values P
adj can be computed using the step-wise 

procedure  
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The FDR-adjusted p-value thereby represents the lowest level of FDR, where the appropriate 

hypothesis belongs to the set of rejected hypothesis for the first time.149-151 

 

2.3.5 Analysis of ChIP-chip Data 

To determine binding sites of cardiac regulators, ChIP-chip experiments of several TFs have been 

conducted. However, different from e.g. qPCR gene expression data, ChIP-chip data cannot be 

interpreted in a straight-forward manner but requires a sequence of individual steps to make the results 

interpretable. Most importantly, individual probes that reflect a significant enrichment between the 

ChIPed and the Input measurement must be detected and combined to determine binding sites. The 

pipeline implemented for ChIP-chip peak detection in this study was originally developed in 

collaboration with the group of Dr. Wolfgang Huber of the EMBL in Heidelberg in an analysis of 

histone modification ChIP experiments16 and was later implemented in the R109 package ‘Ringo’ by 

Toedling et al.
152 The pipeline is divided into two steps: the first is the normalization of the array data 

and the second is the actual peak calling. 

 

ChIP-chip data normalization 

As ChIP-chip is based on arrays, normalization of probe intensities is a main issue due to non-specific 

binding of DNA fragments to the probes on the array. If not accounted for, the resulting biases can 

severely deteriorate any subsequent analysis.153 Due to the high similarity, a number of normalization 

techniques have been adapted from gene expression analysis. These include the quantile-based and vsn 

normalizations which have been described in section 2.3.2. 

In this study, the method used to normalize the ChIP-chip array intensities of each channel was vsn as 

visual inspection of MArank-plots revealed a clear variance dependency. After normalization, log-ratio 

enrichment levels for each probe were subsequently calculated by subtraction of log Cy3 (Input) from 

log Cy5 (ChIP sample) for every probe and every ChIP pool. 

As can be seen in Figure 13, normalized ChIP enrichments vary greatly between nearby probes and 

even between replicates, possibly due to the effect that different probes measure the same target DNA 

amount with different efficiencies, caused by different qualities of probe synthesis on the array, probe 

GC content, target cDNA secondary structure, cross-hybridization or other reasons. To cope with this 
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variability, a smoothing approach was used that places a window of size 600 bp (the estimated 

fragment size) centered over each probe position pi and exchanges the original probe level by the 

median of all probe levels (called zi) that falls into that window, thereby summarizing multiple 

measurements per probe through integrating both pools into one value. The resulting “smoothed” 

running mean is shown as a yellow line in Figure 13. 

 

ChIP-chip peak calling 

Several methods have been proposed to detect enriched binding sites from normalized ChIP-chip data. 

In general, they divide into two categories: some require a number of enriched probes inside a local 

area while the other assume a specific shape of probe enrichments. The method implemented for 

ChIP-chip peak calling in this study belongs to the first category. To call a specific probe position 

enriched it was required to have a smoothed probe level that is greater than a threshold t0. In line with 

the finding of Buck et al.
154 that the signals from ChIP-chip experiments are heavily right-tailed with 

the left tail of the distribution very likely resulting from background noise, the threshold was chosen 

according to a null distribution of the smoothed probe levels as follows: the mode m of the distribution 

was calculated and all scores that are lower than m were taken twice, once with their original value zi 

and once as m + (m - zi) thereby “mirroring” the distribution from the left side of the mode to the right 

side. The idea behind this approach is to estimate a random distribution of not enriched probes from 

the probes with the weakest signal. The empirical cumulative distribution function of these mirrored z-

scores then allows to obtain a p-value for comparing each smoothed probe level's height to the null 

distribution. These P-values were corrected for multiple testing using the described Benjamini–

Yekutieli FDR approach150 and probe levels with an FDR smaller than 0.1 were called significantly 

enriched. Significant probe positions that were less than 200 bp (twice the tiling) apart from each other 

are finally combined and regions containing at least 3 such probes are called peaks.  

Alternative approaches that also belong to the first category of ChIP-chip peak calling have been 

proposed by Keles et al. 155 and Cawley et al.,156 which applied t or Wilcoxon rank sum test statistics, 

respectively, to sliding window approaches to find enriched regions. Further, Li et al.
157 and Ji et al.

158 

introduced hidden Markov models to find locally enriched region. An approach of the second category 

has been implemented by Zheng et al.
159 Based on a direct modeling of the DNA fragmentation 

process they assumed that relevant peaks should have a triangular shape when the ChIP-chip signal is 

transformed to log scale. Two recent approaches are hard to classify into one of the two categories. 

Keles160 and Gottardo et al.
161 each use Bayesian hierarchical models to identify TFBS from ChIP-chip 

data. While they both use the superior Bayesian statistical framework, they pose some extra 

requirements on the ChIP-chip data, like multiple replicated experiments or a very sparse distribution 

of peaks, which are not easily fulfilled.162 The peak finding method implemented in this study was 

found to be superior to other implemented methods at the time of the analysis as it was able to 

successively recover a predefined set of 42 known target genes for the respective TFs. 

 

2.3.6 Analysis of ChIP-seq Data 

In addition to the ChIP-chip data, genome-wide ChIP-seq experiments have been analyzed in this 

study. While ChIP-seq in general has many similarities to ChIP-chip the bioinformatic challenges are 

different. The task of analysing ChIP-seq data is divided into three steps: the first is the mapping of the 
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obtained reads to the reference genome, the second is a normalization of read counts to account for 

experimental differences between different sequencing runs and the third is the calling of enriched 

sites or peaks. As only ChIP-seq experiments using a single sequencing run per experiment were 

performed for this study, no normalization of the resulting reads must be performed, leaving the two 

tasks read mapping and peak calling. 

 

Read mapping 

For the task of mapping the obtained reads to the reference genome a panel of read mappers exist 

(e.g. Weese et al.,163 Langmead et al.
164 and Li et al.

165), which often tolerate the occurrence of a 

specified number of errors or even gaps in the alignment. Given the large number of reads that result 

from even a single sequencing experiment, the main basis to choose between the available tools is 

their sensitivity, meaning the number of mapping reads that are missed (if any), and their running 

time. In this study, the approach by Weese et al.
163 was used which is implemented in the RazerS 

 

Figure 13: Two examples of ChIP-chip peak calling  
Promoter regions and probe enrichment for the two gene-TF pairs (A) Acta2 and Srf and (B) Hand2 and Mef2a 
(gene bodies and transcriptional start sites are indicated with gray boxes). Each tick on the y-axis represents a 
probe on the array. Measured enrichments are indicated below for pool 1 (red) and pool 2 (blue). The “running” 
median is indicated by an orange line. Called peak regions are indicated by yellow lines on the y-axis. 
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mapping tool. RazerS was found to be the most sensitive tool for next-generation sequencing 

experiments while maintaining very short running times.163 RazerS supports Hamming and edit 

distance read mapping with configurable sensitivity. It consists of three parts: the filtration parameter 

estimation part, the filtration part and the verification part. 

The filter parameter estimation part is introduced to find the parameters that optimize the running time 

while guaranteeing a user-defined minimal sensitivity for the filtering part. RazerS is well suited for 

the analysis of next-generation read mapping as it directly incorporates the typical position-dependent 

error profile of sequencing reads, as e.g. derived by Dohm et al.,166 which reflects the increasing 

proportion of errors at the end of the reads. 

The filtering part, the step that is most crucial in terms of running time, aims to find positions in the 

reference genome, which are very likely to contain matches to a given read. RaserS implements a q-

gram counting strategy using the q-gram lemma, which states that two sequences of length s with 

Hamming distance h share at least 

 

t = s + 1 − (h + 1)q 

 

common substrings of length q, so-called q-grams or q-hits.167,168 To find likely matching regions, the 

reference genome is scanned linearly for regions with a number of at least t q-hits using a precompiled 

index of overlapping q-grams from all reads. 

The verification part finally scans each region that passed the filter by counting the actual number of 

mismatches between the read and the region (for Hamming distance) or using hardware optimized 

dynamical programming to calculate the edit distance between the two. A true match is a region which 

has an edit or Hamming distance less than the user-defined cut-off. 

After reads have been aligned to the reference genome, it remains to be decided if only reads that can 

uniquely be mapped to the genome or also those with a number of possible positions are taken into 

account. If only uniquely mapped reads are taken into account some true binding sites will be lost 

because they are located in repetitive or duplicated genomic regions. Conversely, allowing multireads 

will likely improve some true signals but risks the danger to create false-positives. For the read 

mapping of next-generation sequencing data throughout the analyses, RazerS was used with the 

simpler Hamming distance mapping approach allowing two mismatches at most and no indels. In 

addition, only those reads that could uniquely be mapped to the genome were retained. 

 

ChIP-seq Peak Calling 

After read mapping and filtering, peak calling aims to identify regions that show significantly more 

reads than what would be expected by chance. Therefore, a key component of ChIP-seq peak calling is 

to understand what level of enrichment is required to distinguish signal from noise. In line with the 

ChIP-chip algorithms, many ChIP-seq peak calling algorithms are based on a sliding window 

approach. If a certain window has a number of reads that exceeds a defined significance threshold, 

then this region is called a peak. Distributions used to call significantly enriched windows are typically 

the Poisson169,170 or negative binomial distribution.94 Some algorithms determine the background 

distribution from a control experiment if available,94,169-172 while others model the background solely 

from the ChIP sample itself.173,174 A number of algorithms further use the strand specificity of resulting 
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reads to shift positive and negative strand reads by a common distance either to increase the statistical 

power of the peak detection169,171,174 or to reduce the number of false-positive peaks subsequently.94 

Due to the difference in the experimental data (intensity of probes versus read counts) a different 

method was applied to call enriched binding sites in ChIP-seq, namely the approach from Ji et al.
94 

(implemented in the CisGenome package) which is suitable to call ChIP peaks for experiments 

without input data. Its main advantage is the use of a negative binomial distribution instead of the 

more frequently used Poisson distribution. Modeling both a Poisson and a negative binomial 

distribution on ChIP-seq Input data from mouse embryonic stem cells and comparing it to the 

observed Input data, Ji et al. showed that the negative binomial distribution is much better suited than 

a Poisson distribution to model the background distribution in the absence of Input data. At the time of 

the analysis, the approach by Ji et al. was the only one that incorporated the negative binomial 

distribution and it was consequently used to call enriched peaks in the ChIP-seq data. 

To call peaks, Ji et al. use a sliding window approach to count the number of reads u in all non-

overlapping windows of a specified length w over the whole genome, yielding a vector u0...umax of 

counts for every u. Their use of the negative binomial distribution is motivated by the Poisson 

distribution, which defines the probability of finding a number of ux reads as 
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While the Poisson distribution assumes a constant rate λ in all genomic loci, Ji et al. drop this 

assumption by defining λ itself to be a random variable. They encourage this by found positive 

correlations between ChIP and Input count data, where windows with higher number of reads in the 

ChIP sample also show higher number of reads in the Input sample, which contradicts with the 

assumption of an overall constant rate λ. Instead they assume λi, the λ of window i, to be distributed 

according to the gamma distribution  
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where ( )αΓ  is the gamma function and ( ) ( )!1−=Γ aα  for positive integers. The gamma-distribution 

itself is locus-independent but leads to randomly sampled λi for each window i. For positive integer 

values as in ChIP-seq count data, exchanging a fixed λ with ( )λγ  is equal to the negative binomial 

distribution 
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To define the background model from the ChIP-seq data the α and β are estimated using counts for 

windows containing no or only a very small number of reads. The observed numbers ui are 
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compared with the expected numbers according to the null model and the ratio between the 

two is used to calculate false discovery rates which are dependent on i. The cut-off for a 

minimal read count per window for the peak calling is then chosen according to a user-

defined maximal FDR and all windows that have a read count that exceeds this threshold are 

called enriched. 

Finally, the applied peak calling procedure incorporates optional post-processing steps which can 

further enhance the peak detection. To precise peak localization, localization boundary refinement can 

be applied, meaning that reads coming from the forward and reverse strand are separated and the 

maxima of the individual strand-specific peaks are used to predict the true boundaries for the enriched 

sites instead of using the fixed window size. Moreover, single-strand filtering can be applied which 

removes peaks that are mostly based on reads from the 5’ direction without corresponding 3’ peaks 

and vice versa. According to Ji et al., both filters will lead to better peak results when compared to no 

post-processing. 

 

2.3.7 Gene Ontology (GO) Term Enrichment Analysis 

In this study, GO term enrichment analysis is used to find specific GO terms that are overrepresented 

in a set of genes (target genes from the ChIP-chip analysis or differentially expressed genes in the 

siRNA knockout) when compared to all analyzed genes. The Gene Ontology177 is an initiative that 

aims to standardize the representation of genes and gene annotations across species and databases. The 

ontology is divided into the three main compartments ‘molecular function’, ‘cellular component’ and 

‘biological process’. The main advantage of using GO is that is has a defined set of terms to represent 

individual annotations and provides a structured form for the relationship between these GO terms. 

This structure consists of a directed acyclic graph where each term is represented as a node and the 

relationship to one or more other terms is represented as directed edges. These relationships are either 

“is_a” or “part_of” relations, with increasing specificity of GO terms that are more distant from the 

 
markedGenes = Ø 
significantNodes = Ø 
dagLevels = get the GO DAG levels list 
for i from max(dagLevels) to 1 
 for u in nodes(dagLevels, i) 
  genes[u] = genes[u]\markedGenes[u] 
  significantNodes[u] = HypergeometricTest(genes[u], significantGenes) 
  if significantNodes[u] ≤ threshold then 
   for x in ancestors(u)  # all nodes on any path from u to the root 
    markedGenes[x] = markedGenes[x] ∪ genes[u] 
   end 

  end 

 end 
end 
return significantNodes 

 
Algorithm 1: GO enrichment analysis algorithm according to Alexa et al.

175
 using a hypergeometric test to 

find significant overrepresentations as suggested by Falcon et al.
176
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root node. Therefore, while a gene is always annotated to the most specific GO term possible, it is 

likewise annotated to all ancestor terms (terms that are on any root from this term to the root term). 

To test overrepresentation for any GO term it would in general be possible to use the hypergeometric 

distribution 
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where N is the total number of analyzed genes (background), whereof n belong to the selected set of 

(e.g. differentially expressed) genes, and g is the number of genes having the tested GO term, whereof 

k belong to the selected gene set. However, this approach is unaware of the inherent hierarchy of the 

GO graph as the significance for a single term does not incorporate the significance of any of its child 

terms. 

Instead, the algorithm proposed by Alexa et al.
175 which implicitly integrates the GO graph structure 

was used to analyze overrepresented GO terms. The procedure is depicted in Algorithm 1. Each GO 

term is thereby investigated bottom up in the graph hierarchy, testing associated genes against the 

background set. Subsequently, genes that have already been marked as significantly associated to a 

GO term are removed from any further tests for all ancestor terms. Instead of using a Fisher’s exact 

test as proposed in the original publication from Alexa et al. the more suitable hypergeometric test 

statistics was utilized as suggested by Falcon et al
176. 

 

2.3.8 Prediction of Transcription Factor Binding Sites (TFBS) 

In the analysis of transcription networks, the determination of true transcriptional regulators and their 

targets is most essential. One approach taken in this study to predict transcriptional regulators and 

thereby infer gene regulatory networks is the prediction of binding sites for transcription factors from 

sequence data. Based on the biochemical process of transcription factor binding to cis-regulatory 

elements in the promoter of their target genes descriptors of the binding behavior for a large number of 

TFs have been gathered.178,179 The most common form to represent TF motifs are position weight 

matrices (PWMs), which represent motifs in a matrix form with one row per symbol a of the alphabet 

{ }T G, C, A,=Α  and one column { }Li ,,2,1 K∈  for each position in a pattern of length L. Each 

combination of symbol and position has a score assigned which typically represents the count or 

frequency iaf , . As a PWM assumes independence between positions in the pattern, the score between 

the PWM and DNA sequence site S of the same length can be calculated as the sum of the individual 

symbol-position combinations. A common graphical representation for a PWM is the ‘sequence logo’ 

supposed by Schneider and Stephens.180 An example for a PWM, its sequence logo and real DNA 

binding sites is given in Figure 14. PWMs can be used to predict the binding of a TF to a promoter 

sequence. Two different methods have been utilized: the MATCH program uses predefined score 

cutoffs to predict individual binding sites for the TF under study while the TRAP approach derives 

affinity-based predictions incorporating whole promoters. Therefore, the two approaches differ 
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greatly. The advantage of TRAP against MATCH is that also contributions from weaker binding sites 

will be integrated, which might fall below the MATCH thresholds. However, the application of 

MATCH is much more straight-forward, if individual binding sites in a given sequence should be 

determined. The TRAP approach, on the other hand, requires multiple sequences to be present as the 

affinity of a single sequence without the knowledge of an overall distribution of sequence affinities is 

meaningless. 

 

MATCH 

The MATCH program from Kel et al.
181 is provided with TRANSFAC.178 For a given PWM, MATCH 

computes the position specific information vector 
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which is closely related to the entropy definition as introduced in section 2.3.3. A normalized and 

information weighted similarity score between the PWM and S is then computed using the formula 

 

Similarity Score(S, PWM)
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Due to the affine linear transformation the score ranges between zero and one. The advantage of 

incorporating the information vector is the more stringent penalization of mismatches in highly 

informative regions and less stringent in uninformative regions. MATCH calculates this similarity 

score for the whole matrix (matrix similarity score) as well as the five most informative positions as 

defined from the information vector (core similarity score). Correspondingly, two different thresholds 

need to be defined and exceeded to predict a TFBS. TRANSFAC provides matrix and core similarity 

thresholds for all of their matrices optimized on a set of biological sequences to reduce the number of 

false positives, false negatives or to minimize the sum of both which makes the MATCH program an 

 

Figure 14: Different representations of a cis-regulatory element 
(A) An example of six sequences corresponding to the -10 region of E. coli promoters. (B) PWM representation 
of the same region using a large number of sequences. The best scoring nucleotide is colored in gray.  
(C) Sequence logo. The example is taken from Bulyk.182 
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appropriate tool for TFBS prediction.181 To search both the forward and the reverse strand MATCH 

scans both strands separately and returns all found matches. 

 

TRAP 

A complementary approach for the prediction of transcriptional regulators was integrated in the 

analysis of cardiac regulatory networks in human, namely, the transcription factor affinity prediction 

(TRAP) by Roider et al.
183 In the same line as the TFBS prediction by MATCH, their model is based 

on the definition of position specific mismatch energies between the TF (which is again represented by 

its PWM) and the sequence site S. However, Roider et al.
183 directly incorporate data about 

background frequencies of nucleotides. They model the mismatch energy ia ,ε  as 
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where b contains the background frequencies obtained for the individual nucleotides and ψ is 

introduced to scale the mismatch energies in units of thermal energy.183 The mismatch energies of a 

whole DNA site εS is again calculated as the sum over the individual mismatch energies ia ,ε  given the 

nucleotide sequence. Based on the model for the fraction of bound sites proposed by Zumdahl,184 

Roider et al. model the affinity F(S) of the TF to S as 
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where they define R0 as the activity of the TF times the site-specific equilibrium constant of the site 

with the highest affinity. Using ChIP experiments, Roider et al. defined optimized values of R0 and ψ. 

However, instead of calculating thresholds which separate true binding sites from unbound sites, the 

individual site specific affinities are summed over whole promoters to gain an overall affinity score 

which can be used to rank promoters in terms of their likeliness to bind a certain TF. 

A main drawback of both approaches and TFBS prediction in general is the low signal-to-noise ratio 

which is commonly present in promoters of genes and which leads to many false-positive predictions. 

This drives the construction of regulatory networks solely based on TFBS prediction unusable. This 

problem is further aggravated by large distances between binding sites and the TSS observed in many 

studies which requires large promoter regions to be scanned. A common way to increase the signal-to-

noise ratio is the use of conservational information. The main idea is that regions with a strong 

regulatory impact are positively selected against mutations. Thereby, regions that show high 

variability between the organism of interest and closely or distantly related species can be excluded 

from the prediction of functional binding sites. Therefore, the use of conservation information was 

integrated into the prediction of TFBS throughout this study. The two ways used to assess the 

sequence conservation are alignments between the sequence of interest and an orthologous sequence 

from a related species as well as the PhastCons score. The latter is based on a phylogenetic hidden 

Markov model which is trained using multiple-species alignments. PhastCons scores for genomic 
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regions were downloaded from the UCSC genome browser.185 However, one has to keep in mind that 

there are many regulatory differences even between closely related species and every approach that 

highly relates on the presence of conservation will not find regulatory sites driving these 

differences.186 Another way to increase the power of TFBS predictions, which was implemented in the 

prediction of regulatory subnetworks based on patient data, is to use a set of promoters of genes which 

are co-expressed and therefore likely co-regulated by common TFs. A TFBS which is predicted in all 

or a high number of these promoters is then a very likely candidate for a common regulator. A third 

approach not taken in this study is to search clusters of elements, which are often referred to as cis-

regulatory modules. This approach is based on the finding that TFs often bind in co-occurrence with a 

specific set of other TFs and was successfully used in a number of studies.187-190  

 

2.3.9 De Novo Motif Prediction 

The prediction of cis-regulatory elements or modules does not per se depend on previously known 

motifs. A number of algorithms have been developed that try to predict these elements a priori from 

sequence data. As earlier publications have suggested that ChIP results can be used to enhance 

existing PWMs, these were further integrated into the analysis of ChIP-chip peaks (section 3.1.5). 

Their implementations rely on different algorithmic techniques like Gibbs sampling or heuristic based 

enumerations of all frequent patterns. As all these tools output a number of likely regulatory elements 

with unknown significance, it has previously been suggested that several of these tools should be used 

in any motif search and that their results should be combined and compared to already known 

motifs.191,192 

To predict TFBSs de novo, three prediction tools were used, namely BioProspector193, AlignACE194 

and Wedder.195 The former two implement a modification of the Gibbs sampler for motif discovery 

originally proposed by Lawrence et al.
196 Based on an input set of sequences which should contain a 

common motif and the expected length of this motif, the Gibbs sampler starts with a random set of 

subsequence positions. In every step, the algorithm samples a new subsequence position for a single 

input sequence using scores based on the frequency matrix derived from all remaining input sequences 

while incorporating a background frequency. The common motif is found when the algorithm 

converges to stable subsequence positions, making it very similar to the Monte Carlo method. The two 

aforementioned algorithms mainly improve the originally proposed implementation by lessening the 

requirement of a single occurrence of the motif in every input sequence and incorporating the reverse 

strand. They mainly differ in the used background model and their strategy to find multiple motifs. 

While AlignACE uses overall GC content as background and iteratively masks subsequences 

belonging to previously found motifs from the next run, BioProspector incorporates a 3rd-order 

Markov model and starts in each run from different points in the initial search space. As an additional 

tool, Weeder was used as it implements a search strategy that is complementary to the two others. 

Weeder first builds a suffix tree197 from all input sequences and then searches for all pattern of a given 

lengths with less than a given number of errors. The search space is reduced by imposing a restriction 

on the number of errors allowed in prefixes of the final patterns. A further tool used was MEME,198 

which performed less convincing such that only few specific motifs were received meanwhile 

requesting a much longer running time than the other tools. Therefore it was removed from the 

analyses. 
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As the different algorithms in general provided similar resulting motifs, these motifs were 

subsequently clustered hierarchically using the ‘Tree’ algorithm provided with the AlignACE package. 

As a measure of distance, the pairwise Pearson correlation coefficient for the six most informative 

positions (explained above for the MATCH tool) was computed between each found motif using the 

‘CompareACE’ tool.194 The resulting clustering was then used to define groups of very similar motifs 

by applying a correlation coefficient cut-off of 0.6 as proposed in the original publication. To find the 

most specific motif in every group each motif was scored using the group specificity score introduced 

for motif finding by Hughes et al.
194 This scores is based on the hypergeometric distribution and is 

used to calculate the probability of finding the observed or a better overlap between the sequences 

used to predict the motif and the total number of sequences from the input and background set that 

contain the motif. The group specificity score has already been used in a large number of 

studies192,199,200 and was shown to successively discriminate real binding sites from background 

noise.201 To finally predict a set of de novo motifs, only the best-scoring motif of each cluster was kept 

and compared to all known TF motifs from TRANSFAC again using the Pearson correlation 

coefficient of the six most informative positions. 

 

2.3.10 Relational Databases 

As a final step to make the results of this study available for other researchers, CARIN, the 

CArdiovascular Regulatory INteraction database was designed and implemented in form of a 

relational database. Relational databases are the most common form of databases today. They are 

based on a relational model for data management, which describes data in forms of relations (tables) 

which have a fixed number of attributes (columns) that are often given a fixed data type (e.g. a string). 

A single entry, called a tuple, is a set of attributes and a single relation consists of many tuples (rows) 

with the same attributes. To link data between several tables of a relational database keys are used, 

which consists of single attributes that are equal in tuples from different tables. Further, each table 

consists of a primary key which uniquely defines a certain tuple. This primary key can consists of a 

single attribute or a set of attributes, which is then called a surrogate. A relational scheme which 

depicts the implemented tables and links is used to visually represent the structure of a relational 

database. 

To manage relational databases and retrieve data, the Structured Query Language (SQL) has been 

established. SQL consists of a fixed number of words to create and remove tables and tuples, pose 

restrictions on attributes and tables, retrieve data from one or multiple tables using keys and so on.  

Software used to facilitate the described functionality including SQL is often called a relational 

database management system (RDBMS) and many such systems have been developed. The CARIN 

database was implemented as an SQLite database.202 SQLite is an embedded RDBMS that stores the 

whole database in one file. The main advantage of using SQLite is that it doesn’t require any database 

installation and has supported database interface (DBI) access provided by all common programming 

languages including the used Perl and R. 
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3. Results 

While a panel of important cardiac regulators has been identified which maintain correct cardiac 

development and function, only little is known about their interaction, their interplay with epigenetic 

and environmental factors or the breakdown of regulatory networks in cardiac disease. This study 

provides a systems-biology approach integrating a number of high-throughput genome-wide cell 

culture experiments with data from mouse heart time series as well as patient with congenital heart 

disease to study the cardiac regulatory network at a systems-level. 

In an initial step, the steady-state regulatory network of four key transcription factors was analyzed 

using several genome-wide high-throughput datasets (section 3.1). First, it was focused on the direct 

downstream targets by evaluating in-vivo DNA-binding sites of the respective factors using ChIP-chip. 

Then, functional consequences of the proposed regulation in knockdown experiments were 

investigated and respective transcription networks were built. To determine the impact of epigenetic 

regulatory factors, the co-occurrence of activating histone modifications with TFBS was analyzed and 

related to the gene expression levels of direct targets. Key findings for the two regulatory factors Srf 

and H3ac were validated using ChIP-seq. The results obtained were subsequently analyzed in a time 

series of in mouse hearts around cardiac maturation (section 3.2). Finally, the relevance of the results 

gathered in cell culture and mouse hearts was analyzed using data from patients with a broad range of 

congenital heart disease and combined with the detection of disease-associated profiles. To prepare the 

ground for future studies, CARIN, the CArdiac Regulatory INteraction database was designed and 

implemented (section 3.4). 

Results obtained in the analysis of the individual datasets will be integrated into the discussion 

(section 4). 

 

3.1 Combinatorial Regulation of Four Transcription Factors and 
Accompanying Histone Modifications 

3.1.1 ChIP-chip Data Normalization and Peak Calling 

The in-vivo binding site data consisted of ChIP enrichment intensities of the four TFs Gata4, Mef2a, 

Nkx2.5 and Srf which were measured by microarray detection. It comprised two independent ChIP 

pools as well as a non-enriched Input sample for each analyzed TF. See section 2.2.1 for a full 

description of the ChIP-chip dataset. The initial steps in the analysis of the ChIP-chip experiments 

were data normalization to remove systematic biases and the appliance of ChIP-chip peak calling. 

 

Normalization of the ChIP-chip Data 

To normalize the ChIP-chip datasets, the variance stabilization normalization113 (vsn, section 2.3.2) 

was used as the inspection of MA and MArank-plots of pairwise unnormalized ChIP-chip data revealed 

a clear variance dependency of the signal intensity (Figure 15). Vsn provides a parametric solution for 

this dependency and simultaneously normalizes systematic biases between experiments. Applying vsn 

significantly reduced the variance dependency and also the ‘banana-shape’ of the MA- plots (Figure 

16). As vsn doesn’t integrate a probe sequence specific normalization, it was checked whether  
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Figure 15: MA (blue) and MArank (black) plots for SRF ChIP-chip data before normalization  
 

 
Figure 16: MA (blue) and MArank (black) plots for SRF ChIP-chip data after vsn normalization  



 
 

 

3. Results 

55 

correlations between the probe intensities of the four analyzed factors exist, which could point to a 

sequence dependent bias. Computing pairwise Pearson correlation coefficients over probe intensities 

no prominent correlation between individual probe intensities for any two TFs was found(Figure 17). 

Further, the correlation between the GC content of probes and their mean probe level was determined. 

Again, only a negligible weak correlation was found (Pearson correlation coefficient of 0.184). 

Finally, log-ratio enrichment levels for each probe were computed by subtracting log Cy3 (Input) from 

log Cy 5 (ChIP sample) for every probe and every ChIP pool, resulting in two enrichment values per 

probe for each TF (one for each pool). 

 

ChIP-chip peak calling 

Using a peak calling algorithm based on an empirically derived distribution of unbound probe 

intensities (section 2.3.5) followed by multiple testing correction using the Benjamini–Yekutieli
148 

procedure (section 2.3.4) to control the false discovery rate, several hundred of binding sites were 

identified for each TF. Thereof, Srf had the most peaks (1,335) followed by Mef2a (999), while the 

binding pattern of Gata4 and Nkx2.5 was more specific with 447 and 383 peaks each, respectively. 

Subsequently, the called ChIP-chip TF peaks were assigned to genes if they lay less than 10 kb 

upstream or inside a gene (gene annotation taken from Ensembl106 version 45) in accordance with the 

definition of the genomic positions represented on the ChIP array. In line with their high number of 

peaks, Srf (1,150) and Mef2a (701) had the most target genes, while lesser targets were found for 

Gata4 (345) and Nkx2.5 (276) The number of peaks and associated target genes is further depicted in 

Table 3. 

 
Figure 17: Correlation between ChIP-chip probe levels of individual TFs  

The heatmap indicates pairwise Pearson correlation coefficients between the enrichment levels of all measured 
probes. The legend on the right depicts the color coding.  

 Gata4 Mef2a Nkx2.5 Srf 

No. of peaks 447 999 383 1,335 

Target genes 345 701 276 1,150 

Table 3: Number of ChIP-chip peaks and related target genes for every TF 
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3.1.2 Positional Distribution of Found ChIP-chip Peaks 

As an initial analysis the genomic binding pattern of the four TF measured in ChIP-chip were 

investigated. Looking at the histogram of distances to the next TSS these binding patterns were found 

to be very similar. Most of the binding sites (76%) reside very close to a TSS in a window of ± 2.5 kb 

(Figure 18). While the found distribution could partially reflect potential biases by assigning only the 

closest TSS or to a lesser extent the design of the ChIP array, the same behavior was found in other 

studies analyzing TF binding behavior, leading to the definition of a core promoter binding 

region.203,204 However, another 24% of TFBS were found between 2.5 kb and 10 kb distant to any 

annotated TSS, showing a uniform localization in these potential enhancer regions. 

 

3.1.3 Gene Ontology Analysis 

To evaluate the reliability of the used ChIP-chip peak calling and to gain insight into the functionality 

of each of the individual factors a Gene Ontology term enrichment analysis was conducted using the 

biological process subtree of terms and applying the algorithmic approach by Alexa et al.
175 as 

described in section 2.3.6. All genes represented on the ChIP array were taken as reference. 

The resulting significant GO terms reflect the importance of all four TFs for heart and muscle 

development, even when compared to the heart/muscle specific background as given by the array 

design. Table 4 to Table 7 show only the most significant GO terms (p-value < 5x10-5) for each ChIP 

experiment. Furthermore, the resulting significant GO terms were highly related to the phenotypes 

reported for the respective transcription factor. For example, the GO terms ‘muscle contraction’ and 

‘heart looping’ are significantly overrepresented among Mef2a and Nkx2.5 targets, respectively, and 

 

 
Figure 18: Positional distribution ChIP peaks  relative to the TSS 

The y-axis shows the number of transcription factor binding sites per transcription factor as bar plots in 2.5 kb 
windows. 
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GO Term GO ID p-value 

heart development  GO:0007507  2.1x10-6 

striated muscle development  GO:0007519  1.9x10-5 

skeletal muscle fiber development  GO:0048741  2.6x10-5 

positive regulation of cell proliferation  GO:0008284  2.9x10-5 

muscle contraction  GO:0006936  4.4x10-5 

Table 4: GO term analysis of genes bound by Gata4 (p<5x10
-5

) 

 
GO Term GO ID p-value 

muscle contraction  GO:0006936  1.0x10-8 

actin cytoskeleton organization and biogenesis  GO:0030036  1.2x10-6 

cytoskeleton organization and biogenesis  GO:0007010  2.4x10-6 

adult heart development  GO:0007512  5.6x10-6 

heart development  GO:0007507  6.8x10-6 

circulation  GO:0008015  7.9x10-6 

cardiac muscle development  GO:0048738  4.5x10-5 

Table 5: GO term analysis of genes bound by Mef2a (p<5x10
-5

) 

 
GO Term GO ID p-value 

heart development  GO:0007507  1.6x10-6 

cardiac inotropy  GO:0002026  6.5x10-5 

cell adhesion  GO:0007155  1.2x10-4 

neural crest cell development  GO:0014032  2.6x10-4 

muscle contraction  GO:0006936  2.8x10-4 

negative regulation of heart contraction  GO:0045822  3.1x10-4 

bone mineralization  GO:0030282  4.1x10-4 

heart looping  GO:0001947  4.1x10-4 

cell motility  GO:0006928  4.3x10-4 

Table 6: GO term analysis of genes bound by Nkx2.5 (p<5x10
-5

) 

 

GO Term GO ID p-value 

biological regulation  GO:0065007  1.7x10-6 

regulation of cellular process  GO:0050794  2.5x10-6 

transcription  GO:0006350  4.9x10-6 

cellular developmental process  GO:0048869  9.1x10-6 

muscle contraction  GO:0006936  1.6x10-5 

regulation of heart contraction  GO:0008016  1.6x10-5 

regulation of metabolic process  GO:0019222  2.0x10-5 

regulation of transcription, DNA-dependent  GO:0006355  3.6x10-5 

regulation of nucleobase, nucleoside, nucleotide and nucleic 

acid metabolic process  

GO:0019219  4.0x10-5 

RNA biosynthetic process  GO:0032774  4.4x10-5 

Table 7: GO term analysis of genes bound by Srf (p<5x10
-5

) 
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both are key features of corresponding knockout mouse models.52,205 This findings support the validity 

of the implemented ChIP-chip peak calling approach. 

 

3.1.4 De Novo Motif Prediction 

To proof the validity of the found peaks and to check whether the ChIP-chip dataset could be used to 

improve existing PWMs, a de novo motif discovery approach was conducted as described in section 

2.3.9. To reduce the amount of sequence potentially unrelated to the TF binding, only the sequence 

±250 bp from each peak’s center was used as input for the prediction. In addition to the found ChIP-

chip peaks, a negative peak set was defined that contained 100 regions represented on the ChIP-array 

that had the smallest standard deviation and a mean of approximately zero. For those algorithms that 

provided the possibility to use a background set to estimate background nucleotide frequencies, this 

negative peak set was used. For each TF the best 10 assembled motifs were collected. Using this 

approach the known motifs for Gata4 and Nkx2.5 could be re-identified as predominant motifs in their 

respective peaks but not for Mef2a and Srf. 

In an attempt to further increase the signal-to-noise ratio in the used peak sequences, masking of 

conserved regions was performed using the full BlastZ alignment between mouse and human that was 

retrieved from Ensembl (mouse assembly NCBI m37, human assembly NCBI 36). In addition to the 

single nucleotide conservation masking provided by the alignment, a 100 bp window was shifted 

along the peaks and windows exceeding 70% of conservation remained unmasked. Using the masked 

peak sequences resulted in the finding of the Mef2a binding motif, but was still not able to detect the 

Srf motif known from TRANSFAC103 (Figure 19). 

 

3.1.5 Binding Site Prediction Using Known Motifs 

After the de novo identification of binding sites was only partially successful, the sequence underlying 

the transcription factor binding sites were analyzed in more detail now directly searching for 

TRANSFAC motifs within the presumably bound sequences ±250 bp of the center of each peak. All 

 

Figure 19: Previously described and de novo motifs from ChIP-chip peaks 
(A-C) Previously described TF matrices taken from TRANSFAC for (A) Gata4, (B) Mef2a and (C) Nkx2.5. 
(D-F) De novo found motifs for (D) Gata4, (E) Mef2a and (F) Nkx2.5. No de novo motif could be identified that 
resembled a TRANSFAC matrix associated to Srf. 
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matrices from TRANSFAC that were associated to the four analyzed factors were searched using the 

TRANSFAC MATCH181 algorithm (section 2.3.8) together with the predefined cut-offs for core and 

matrix similarity to reduce both the type I and type II error levels. The results indicated a high 

percentage of peaks (84-94%, Table 8) with appropriate binding sites for Gata4, Nkx2.5 and Mef2a. 

To identify to which extent the TFBSs are conserved it was investigated how often the predicted 

binding sites occurred in conserved regions. Therefore, two measures of conservation were used, first, 

single base-pair conservation between human and mouse using the full BlastZ alignment between 

mouse and human as described before, and second, conservation between 18 vertebrate species as 

based on PhastCons elements (section 2.3.8) that were retrieved from the UCSC Genome browser.185 

Only 15-31% of Gata4, Nkx2.5 and Mef2a peaks had predicted binding sites which were found to be 

completely conserved between mouse and human and only ~27% lay in conserved regions according 

to PhastCons elements. Thus, by focusing on conserved sequence regions alone, a priori more than 

two-third of potential TFBS would be missed. 

For Srf, the fraction of ChIP-chip binding events that harbored predicted TFBS was very small with 

169 out of 1,335 peaks. In addition, the Srf motif could not be recovered in the de novo approach. As 

both methods rely on Srf PWMs, the lower number of binding sites found with the de novo and 

TRANSFAC motif search approaches might reflect a potentially insufficient representation of the real 

Srf binding. However, Srf is well-known to bind the CArG-box motif CC(A/T)6GG.53 Therefore in a 

last attempt to search for Srf binding sites, a pattern matching approach was conducted to search the 

exact CArG-box pattern in Srf ChIP-chip peaks. Using a very relaxed setup allowing two errors at 

most, the CArG-box motif could be located in 1,063 (~80%) of all peak sequences, thereby providing 

an explanation for the Srf binding observed in ChIP. A further explanation would be Srf-binding to co-

regulators which relaxes the need for the presence of Srf binding sites. Inspecting the result of the de 

novo prediction for binding sites of possible co-regulators resulted in no satisfactory candidates. 

 

3.1.6 Combinatorial Regulation by Multiple Transcription Factors 

The investigated transcription factors are known to co-regulate targets and pairwise physical 

interactions have been described for several of them. Nevertheless, it is unknown how frequently this 

co-binding occurs in vivo. Consequently, the assignment of Gata4, Mef2a, Nkx2.5 and Srf to the same 

gene was investigated. Co-binding was observed in the promoters of 498 genes, whereof 91 target 

genes were bound by all four transcription factors, 121 target genes were bound by three and 286 

target genes were bound by two transcription factors (Figure 20 A). Looking at pair-wise co-binding 

odds ratios (section 2.3.3) were computed from pairwise contingency tables of bound and unbound 

genes (Figure 20 B). Gata4 and Nkx2.5 had the lowest number of targets (345 for Gata4 and 276 for 

Nkx2.5) but were observed to co-bind to 143 genes and were therefore highly correlated. In contrast, 

 Gata4 Mef2a Nkx2.5 Srf 

Total number of peaks 447 999 383 1,335 
Peaks containing predicted TFBS 421 858 323 169 
Predicted TFBS conserved to human 139 148 111 65 
Predicted TFBS conserved according to PhastCons 122 267 103 51 

Table 8: Number of ChIP-chip peaks with predicted TFBS and conservation information 
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although Mef2a and Srf show co-binding at 320 genes, they each have a much higher number of 

targets, leading to a very low odds ratio. 

As all factors but Mef2a and Srf have been described as physically interacting, it was investigated how 

often two or more ChIP-chip enriched loci are observed within a distance of maximally 500 bp 

(Table 9). While this situation frequently occurred for two different TFs (e.g. 226 times for Mef2a and 

Nkx2.5), multiple binding sites for the same TF within 500 bp were comparatively rare (e.g. 22 times 

for Gata4). However, it is likely that many instances of multiple binding of one TF are only detected 

as one enriched locus due to the limited resolution of the array and the long fragment length of the 

ChIP-chip experiment. 

 

3.1.7 Expression Data Normalization 

To assess the functional consequences of transcription factor binding genome-wide expression 

measurements of transcripts were derived using microarrays. The dataset includes transcript 

expression of wildtype HL-1 cell as well as siRNA knockdown of each of the four analyzed TFs and 

two non-specific siRNA (siNon). Experiments were performed in duplicates and the four siRNA 

 
Figure 20: Co-occurrence of Gata4, Mef2a, Nkx2.5 and Srf 

(A) Shown is the combinatorial binding of all four transcription factors to 498 target genes. 91 targets were 
bound by all four factors (black), 121 targets were bound by three (dark gray) and 286 targets were bound by two 
transcription factors (gray). Total numbers of genes bound by only a single TF factor are indicated above the TF. 
(B) Odds ratios of pair-wise contingency table of the occurrences of transcription factor binding sites at one 
gene. Total numbers of pair-wise occurrences are given. The numbers in white boxes represent the total number 
of bound genes for the respective TF. The odds ratio is color coded with red indicating positive and blue 
negative correlation. 

 Srf Nkx2.5 Mef2a Gata4 

Gata4 162 163 232 22 
Mef2a 291 226 21  
Nkx2.5 151 11   
Srf 50    

Table 9: Co-binding of TFs within a maximal distance of 500 bp 
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knockdown experiments were performed using two independent siRNAs for each TF, leading to a 

total of four siRNA expression measurements per TF. See section 2.2.2 for a full description of the 

dataset. 

As suggested by the array manufacturer probes were initially filtered out that showed expression 

values lower than background based on the ‘detection score’ using a number of negative control 

probes that are spotted on each array. This Illumina detection score DetectionS  is defined as 

 
( )

probes negative ofnumber 
signal proberank

=DetectionS    , 

 
where the rank of the probe signal is computed relative to the negative control probes. According to 

the manufacturer’s protocol, only probes with a detection score greater or equal to 0.95 in at least one 

experiment were retained. 

Like for the ChIP-chip data, vsn was used to normalize the individual datasets. However, large 

inconsistencies were found between the two different siRNAs resulting in many insignificant results in 

the subsequent definition of differentially expressed genes. Inspecting Pearson correlation coefficients 

between individual replicates revealed that while the correlation coefficients of the unnormalized 

expression data were in general very high application of vsn frequently resulted in a reduce of the 

correlation between individual replicates (Figure 21 blue line). Concluding that vsn was not applicable 

for this expression dataset an additional non-parametric normalization method was used, namely 

 

Figure 21: Comparing Pearson correlation coefficients of replicates after normalization of expression data 

Shown is the gain in Pearson correlation coefficients after vsn (blue) and qspline (red) normalization compared 
to unnormalized expression data (black line). A negative gain indicates a decrease in the correlation coefficient. 
The gain is given in percent relative to the unnormalized data. SiRNA and replicate number of the individual 
samples are listed below the plot. 
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qspline normalization (section 2.3.2). Applying qspline to the expression data resulted in higher 

correlation coefficients for all replicates (Figure 21 red line) and was therefore used to normalize the 

expression data. Figure 22 shows the resulting boxplots for each measured experiment after qspline 

normalization. 

In contrast to the ChIP array, which had a probe length of 70 nucleotides and was specifically 

designed for this analysis, gene expression measurements were performed using a standard expression 

array with a much smaller probe length of 35 nucleotides. To remove the probe sequence bias 

frequently shown for these expression arrays,206 the median polish algorithm proposed by Tukey207 

and introduced to gene array analysis by Irizarry et al.
208 was applied. Using all measured experiments, 

the algorithm fits for every probe of every transcript the linear model (section 2.3.1) 

 
εββ ++= expressionaffinity probeY    , 

 
where Y is the measured expression and affinity probeβ  and expressionβ  are the coefficients that divide this 

expression into a probe specific effect (the base line expression of each individual probe) and the 

effect of the individual experiments. This polished expression estimate was subsequently used to 

combine the measurements of all probes assigned to the same transcripts. 

 

3.1.8 Transcriptional Consequences of TF Binding 

To analyze whether the investigated transcription factors act mainly as activators or repressors, 

transcripts were first classified into expressed (transcript contains at least one probe with Illumina 

detection score greater or equal to 0.95) and non-expressed (all other) based on untreated cells which 

lead to around 80% of expressed targets for each factor. The median expression levels of all expressed 

 
Figure 22: Normalization of expression data 
Boxplots of Illumina expression values for the individual measured arrays (A) before and (B) after qspline 
normalization. 
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transcripts identified to be TF targets in the ChIP-chip analysis were subsequently compared to the 

median expression levels of all unbound transcripts represented on the ChIP and expression arrays 

(Figure 23). Wilcoxon rank sum tests demonstrated that the distribution of target gene expression 

levels is significantly elevated compared to non targets (p < 0.005) suggesting an overall activating 

function for all four investigated transcription factors. 

Considering the redundant co-binding of the investigated TFs, the functional consequences of a large 

reduction of their individual quantity achieved by siRNA was analyzed. To define which transcripts 

showed a significant alteration in expression levels after the knockdown of each individual TF, the 

limma method developed by Smyth209 was applied. Limma estimates for every gene a linear model 

which predicts the measured gene expression using the performed replicates and different expression 

sources (wildtype and knockdown). The advantage of estimating one linear model for each gene 

instead of a single model for all genes is that a single model would assume a common variance 

whereas multiple models can accommodate different variances. To reveal a more stable inference and 

higher statistical power, especially given the small number of arrays, limma’s empirical Bayes method 

was applied to moderate the standard errors of the estimated log fold changes using the linear model 

fits of all genes. After the estimation, contrasts were used to compute the p-value for the comparison 

wildtype against siRNA knockdown. 

To cope with the multiple testing problem resulting from the high number of statistical tests (one for 

each transcript), p-value correction was performed again applying the Benjamini–Yekutieli procedure. 

Finally, to ensure a low number of false positives, only transcripts that had a FDR-corrected 

p-value < 0.05 in both siRNA-mediated knockdowns when compared to siNon cells were considered 

to be significantly differentially expressed. Table 10 shows the resulting number of differentially up 

and down regulated transcripts after TF knockdown confirming a mainly activating function of all 

measured TFs as 73-90% of the genes were found to be down regulated in the respective knockdown. 

In case of Srf and Mef2a more direct targets than differentially expressed genes were found. This was 

 
Figure 23: Boxplot of expression levels for bound and unbound transcripts. 

Transcripts were grouped according to whether binding of a TF was observed in ChIP-chip (target) or not 
(unbound). Significant differences according to Wilcoxon rank sum p-values are indicated: ***: p < 0.005. 
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most prominent for Mef2a, which had a high number of 701 target genes but its knockdown led to 

only 119 differentially expressed genes. An explanation for this finding is given by the other Mef2 

family members as these are well-known to at least partially take over the function of Mef2a. As a 

direct proof for the performed data analysis a broad panel of differentially expressed genes could be 

confirmed using real-time PCR. 

Analogous to the analysis of common downstream targets based on ChIP, common differentially 

expressed genes were determined and analyzed using pairwise odds ratios (Figure 24). While Mef2a 

has only a very small number of 119 differentially expressed genes in its knockdown, 92 of these 

transcripts are also differentially expressed in the Srf knockdown leading to a very high correlation. In 

contrast, while Nkx2.5 and Gata4 share 347 common differentially expressed genes, both have a much 

higher number of deregulated genes, leading to a very low odds ratio. 

 

3.1.9 Combining ChIP-chip and Knockdown Results 

Finally, the genes differentially expressed in the siRNA knockdown experiments and identified to be 

direct targets in ChIP-chip were combined. Figure 25 A shows the combinatorial regulation of a 

selection of heart and muscle relevant, directly bound and differentially expressed genes, which were 

confirmed using qPCR. This includes genes coding for structural proteins like Actc1, Actn2, Tnnt2, 

Mybpc6, or Myh6; growth factors like Igf1 or apoptosis factors like Casp3. The transcription factor 

Tbx20 represents an example for a gene that is bound and regulated by all four factors. 

 Gata4 Mef2a Nkx2.5 Srf 

Total number of differentially expressed transcripts 621 119 782 519 
Thereof down regulated 446 106 643 468 
Thereof up regulated 175 13 139 51 

Table 10: Number of differentially expressed transcripts in siRNA knockdown for each TF 

 

Figure 24: Functional siRNA induced knockdown of Gata4, Mef2a, Nkx2.5 and Srf 
Odds ratios of pair-wise contingency table of differentially expressed transcripts after siRNA knockdown of the 
respective TF. Total numbers of pair-wise occurrences are given. The numbers in white boxes represent the total 
number of deregulated transcripts. The odds ratio is color coded with red indicating positive and blue negative 
correlation.  
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Analyzing the overlap focusing on the functional role of the respective genes, both datasets were 

found to share the GO terms reflecting heart and muscle development. For example, ‘muscle 

contraction’ and ‘regulation of heart contraction’ are main functional roles for direct Srf as well as the 

respective differentially expressed genes. Interestingly, only a small fraction of direct target genes 

(~10%) was found to be also differentially expressed (Figure 25 B), indicating that many TFBS are 

occupied by TFs that may be bound in a poised state or that additional cofactors maybe lacking. 

Studying the literature revealed a number of different studies showing similar results such that 

changing the level of a factor alters the expression level of only 1-15% of the potential target genes 

and vice versa depending on the transcription factor.210-218  

Based on the frequent co-binding observed in the study of the TF binding patterns, the possibility of a 

combinatorial nature of gene regulation by the four measured TFs was analyzed. Such a combinatorial 

regulatory influence even has the potential to explain the buffering effects found in their individual 

knockdowns. In accordance, genes bound by multiple transcription factors were significantly less 

likely differentially expressed in the siRNA experiments (χ2-test, p < 0.001). Likewise, transcription 

factors having a high number of common binding targets share only a small number of differentially 

expressed genes in siRNA knockdown and vice versa (the correlation shown in Figure 24 is inverse to 

the correlation in Figure 20 B). In addition, binding in a poised state or buffering by epigenetic 

mechanisms such as histone modifications which infer with the accessibility of the DNA should be 

considered. It has to be kept in mind that transcription factor binding depends on binding affinity and 

accessibility of binding sites. The regulatory potential of several factors has been reported to be 

strongly dosage dependent (e.g. Tbx5 and Gata4). Furthermore, a significant proportion of 

differentially expressed genes in RNAi are likely to be regulated in an indirect manner. 

 

Figure 25: Combining ChIP-chip and siRNA knockdown results 

(A) Transcription factor network showing a selection of cardiac relevant genes bound in ChIP-chip and 
significantly differentially expressed in siRNA knockdown experiment of the respective factor. Up and down 
regulation of genes is depicted and occurrence of ChIP binding is marked by color-coded circles. (B) Overlap 
between direct targets as measured by ChIP-chip (shaded circle) and differentially expressed transcripts as found 
in siRNA knockdown (blank circle). 
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3.1.10 Overlap of ChIP-chip Peaks and Modified Histones 

The accessibility of transcription factor binding sites is determined by the degree of DNA packaging 

resulting from different chromatin configurations. In turn, this is strongly influenced by histone tail 

modifications. Therefore, the ChIP-chip and siRNA data was analyzed in the context of co-occurring 

histone marks to explore the influence of histone modifications as an epigenetic mechanism to 

modulate cardiac gene expression. Therefore, data of the four histone modifications H3K9K14ac 

(H3ac), H4K5K8K12K16ac (H4ac), H3K4me2 and H3K4me3 were integrated. These histone 

modifications are known to promote an open chromatin state,5,96-99 and were previously analyzed in 

our own lab also using ChIP-chip techniques and linear modeling.16 

It was investigated to which extent the binding sites of Gata4, Mef2a, Nkx2.5 and Srf occurred at sites 

of histone modifications. As our previous study regarding the histone modifications used a smaller 

array set-up the number of all ChIP-chip peaks was initially reduced to those that were sufficiently 

represented on both arrays. Like for the combinatorial regulation by multiple TFs a histone modified 

sites was assigned to a TF peak if it lies within a distance of maximally 500 bp. To estimate how much 

overlap would be expected in a random situation, each peak was randomly repositioned onto a 

genomic region that was at least to a similar degree represented on both arrays as the original TF peak 

region while keeping the original peak length. The average of the estimated percentages of overlap 

after 100 repeated random associations was between 23% and 38% depending on the histone 

modifications (Table 11). The actual number of peaks that overlap with histone modified sites was 

found to be more than twice as high (65% to 84%), indicating a preferential binding at promoters 

marked by one or more of the investigated histone modifications (Figure 26).  

 
Figure 26: Overlap between histone modified sites and ChIP-chip peaks 

Peaks were only considered if the respective sequences were sufficiently represented on the histone ChIP-chip 
array. 

 Gata4 Mef2a Nkx2.5 Srf 

Total number of TF peaks 287 592 227 734 
% Overlapping 79 80 84 65 
% Expected at random 30 ± 6 32 ± 3 32 ± 5 30 ± 4 

Table 11: Overlap between histone modified sites and ChIP-chip peaks 

The expected percentage is based on a 100-times random distribution of TF peaks on genomic sequences with 
marked histone modified sites. 
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3.1.11 Influence of Histone Modifications on TF Target Gene Regulation 

The high overlap of TFBS with histone modified sites prompted the question whether this co-

occurrence has an influence on transcript level. Therefore, transcripts were categorized into TF targets 

with and without a histone modified site (Figure 27). Using Wilcoxon rank sum test (p < 0.05) to 

compare the mean expression level of transcripts bound solely by the individual TFs and those bound 

by the TF and any histone modified site, it was investigated whether the presence of histone marks had 

an influence on the expression level of target genes. A strong positive dependency was found for three 

of the four TFs, namely, Gata4, Nkx2.5 and Srf, while Mef2a bound target genes were higher 

expressed independent of any of the measured histone modifications.  

To analyze the extent to which each histone modification contributes to this increase, the targets 

showing histone modified sites were further grouped according to the individual modifications. Again 

Wilcoxon rank sum tests were applied to determine significant differences, now against genes showing 

only TF binding without an additional histone modification (Figure 28). Interestingly, although each 

of the TFs and each of the histone modifications were individually found to be associated with higher 

transcript levels, the effect of the combinations differed for each TF. In case of Nkx2.5 (Figure 28 B) 

all four histone modifications were associated to higher transcript levels, each to almost the same 

extent. For Gata4 (Figure 28 A), each of the four histone modifications was significantly associated to 

higher transcript levels except H3K4me3, however, the elevation was most significant for H3ac. In 

case of Srf (Figure 28 D), this effect was even more prominent with a high influence of H3ac and 

much less influence of H3K4me2, H3K4me3 and H4ac. In line with the analysis of any histone 

modification, no single histone modification was found that showed elevated transcription levels of 

Mef2a targets compared to binding without any histone modification (Figure 28 C). 

 

Figure 27: Influence of histone modifications on TF target gene expression 

Binding sites for each TF were categorized into two groups depending on co-occurrence with a histone 
modification in ChIP-chip. Transcripts showing neither TF binding nor histone modified sites were used as a 
reference (Ref). Stars on top of each box indicate significant difference from the reference group. Stars between 
two boxes indicate a significant difference between the two groups. Significance levels are depicted as follows: 
*: p < 0.05; **: p < 0.01; ***: p < 0.001  (Wilcoxon rank sum test). 
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Because a single gene typically shows multiple histone modifications and will therefore belong to 

more than one of the defined groups, analyzing the difference in target gene expression as described 

will result in a biased estimate for the influence of each histone modification as. As for Srf targets the 

influence of H3ac was found to be much more prominent than any other histone modification, it was 

tested if the low activating effect seen for the other histone modifications was merely due to their co-

occurrence with H3ac. Therefore, the influence of each modification was estimated using the linear 

model  

 

εβββββ +++++= H4acH3K4me3H3K4me2H3ac0Y    , 

 

where the observed variable Y was the gene expression of an Srf target, the predictive variables refer 

to the individual histone modifications and 0β  models the expression baseline. As each of the 

predictors is categorical (each histone modification is either absent or present) this linear model is 

equivalent to an ANOVA. After least square estimation of the coefficients, it was tested using F 

statistics whether the full model and each of the individual coefficients was significantly different 

from zero and therefore had a significant influence on the expression of Srf targets. 

 

Figure 28: Influence of individual histone modifications on target gene expression 

Binding sites for each TF were categorized into groups depending on co-occurrence with histone modifications 
in ChIP-chip. Transcripts without co-occurring histone modified sites were used as a reference (TF only). Stars 
on top of each box indicate significant difference from the reference group. Stars between two boxes indicate a 
significant difference between the two groups. Significance levels are depicted as follows: *: p < 0.05; 
**: p < 0.01; ***: p < 0.001 (Wilcoxon rank sum test). 
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Again, the resulting linear model showed an overall significant dependency of Srf target gene 

expression on accompanying histone modifications (p = 7.301x10-5). However, when the individual 

estimates for each histone modification were considered only the influence of H3ac remained 

significant with a p-value of 4.4x10-6 (Table 12). This underlines the influence of co-occurring H3ac 

marks on Srf target gene expression and revealed that the activating effect seen for the other histone 

modifications was only due to their co-occurrence with H3ac. 

 

3.1.12 Read Mapping and Peak Calling for the ChIP-seq Data 

To confirm and further investigate the impact of H3ac on Srf target gene expression, genome-wide 

ChIP followed by next-generation sequencing (ChIP-seq, section 2.2.3) was performed using 

antibodies against both Srf and H3ac in HL-1 cells. The sequencing of the individual ChIP 

experiments resulted in 6,967,318 reads for Srf and 8,364,328 reads for H3ac. These were mapped to 

the mouse reference genome (NCBI m37) using the read mapping tool RazerS163 as described in 

section 2.3.6 allowing at most two mismatches and no indels. The mapping resulted in 4,543,634 

(65.2%) of mappable reads for Srf and 6,141,144 reads (73.4%) for H3ac indicating good 

experimental qualities. The error distribution of reads for both experiments is depicted in Table 13 and 

Figure 29. After the mapping, reads that were assigned to multiple genomic regions were filtered out. 

 Intercept H3ac H3K4me2 H3K4me3 H4ac 

Estimate 8.376 1.035 -0.106 -0.397 -0.223 

p-value < 2x10-16 4.4x10-6 0.633 0.092 0.237 
Table 12: ANOVA estimates and p-values 

The p-values are based on F statistics and reflect the significance of the estimates being different from zero. 

 
Figure 29: Distribution of ChIP-seq read matches 

(A) Srf and (B) H3ac ChIP-seq read were mapped to the mouse reference genome using RazerS. Reads that 
matched without any error (perfect matches, green), with one error (1-error matches, orange) and with two errors 
(2-error matches, blue) were retained, while matches that could not be mapped to the mouse genome 
(unmatched, black) or were of low quality (gray) were discarded. 
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As ChIP-seq data differs greatly from ChIP-chip data (probe intensities versus read counts) a different 

peak calling approach (implemented in the CisGenome software package; section 2.3.6) was applied. 

For the Srf ChIP-seq data the CisGenome software was used with a window size of 100 bp, a step size 

of 25 bp for the sliding and a minimal read count level of 10 resulting in an estimated FDR of 1.6%. 

As histone enriched sites were shown to be broader than transcription factor peaks,16 a window size of 

250 bp, a step size of 50 bp for the sliding and a minimal read count level of 10 was used for the H3ac 

ChIP-seq data, resulting in an estimated FDR of 4.7%. After the peak calling procedure, boundary 

refinement (Srf and H3ac) and single-strand filtering (only H3ac) were applied. After manual 

inspection of individual peaks, no single-strand filtering for the Srf ChIP-seq data was performed. 

Finally, the ChIP-seq approach identified 2,190 and 10,486 peaks for Srf and H3ac, respectively. 

These were associated to 1,902 and 10,689 genes, respectively, using the same criteria as for the ChIP-

chip data. 

 

3.1.13 Analysis of ChIP-seq Results and Comparison to ChIP-chip 

As the ChIP-seq and ChIP-chip approach both aim to measure the same enriched binding sites but use 

different techniques, it was interesting how high the overlap between these two techniques would be. 

 Srf H3ac 

Total number of sequenced read 6,967,318 8,364,328 
Number of low quality read 156,845 (2%) 183,557 (2%) 
Number of perfect matches 4,096,439 (59%) 5,531,016 (66%) 
Number of 1-error matches 350,057 (5%) 487,420 (6%) 
Number of 2-error matches 97,138 (1%) 122,708 (1%) 
Number of unmatched read 2,266,839 (33%) 2,039,627 (24%) 

Number of called peaks 2,190 10,486 

Table 13: Number of ChIP-seq read matches and called peaks 

Reads that matched without any error (perfect matches), with one error (1-error matches) and with two errors  
(2-error matches) were retained while matches that could not be mapped to the mouse genome (unmatched) or 
were of low quality were discarded before the peak calling. Percentages are computed in respect to the total 
number of reads. 

 

Figure 30: Target genes of Srf and H3ac in ChIP-chip and ChIP-seq 

(A+B) Overlap between genes associated to (A) H3ac and (B) Srf peaks in ChIP-chip compared to ChIP-seq. 
Note that the number of analyzed genes was much higher for ChIP-seq. (C) Overlap between Srf and H3ac target 
genes in ChIP-seq. 
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From 3,453 genes that were defined to be associated to histone 3 acetylation peaks in ChIP-chip, 91% 

overlapped with the ChIP-seq data (Figure 30 A). However, for the 1,150 genes associated to ChIP-

chip Srf peaks the overlap was only 19% (Figure 30 B). This low overlap hits a current debate in the 

ChIP community. A comparison for NRSF peaks conducted by Ji et al.
94 showed that only 22% of 

their ChIP-chip peaks overlapped with ChIP-seq peaks but that the overlapping peaks had a much 

higher number of observed motifs than those that occurred only in ChIP-chip or ChIP-seq. 

Schones et al.,93 Alekseyenko et al.219 and Choi et al.220 have addressed this problem further. 

Summarizing their results, the two technologies show a clearly different behavior in terms of 

sensitivity and specificity with potentially additive information content. While ChIP-seq peaks tend to 

form regions that are much sharper than those in ChIP-chip due to its superior resolution, ChIP-chip 

peaks might additionally cover binding events with more moderate significance. This would fit to the 

observation, that the overlap of Srf peaks was much smaller than that of H3ac peaks, as the latter 

exhibit a much stronger signal in the ChIP experiment. Finally most (86%) of the Srf target genes were 

found to have an additional H3ac modified site (Figure 30 C). 

Despite the differences found between Srf target genes in ChIP-chip versus ChIP-seq, analyzing the 

ChIP-seq data in the same way as the ChIP-chip data, a similar synergistic effect of H3ac and Srf 

binding was found when compared to non-bound genes or genes solely bound by either of the two 

(Figure 31 A). The influence of histone 3 acetylation marks was further substantiated by integrating 

the ChIP-seq results with the siRNA knockdown data of Srf in HL-1 cells. In accordance to its mainly 

activating function in wildtype cells, a significant decrease was found in the expression levels of genes 

bound by Srf without any additional H3ac marks. However, this decrease was absent in genes that 

were additionally marked by H3ac pointing to a buffering effect of H3ac on Srf target gene expression 

after reduction of the Srf protein (Figure 31 B). 

 
Figure 31: Confirmation of H3ac depending expression of Srf targets by ChIP-seq 

(A) Boxplots of expression levels of transcripts grouped according to H3ac and/or Srf binding close to the 
transcriptional start site (TSS < 1.5kb). (B) Boxplots of fold changes relative to siNon of down regulated 
transcripts after Srf knockdown grouped according to H3ac and/or Srf binding close to the transcriptional start 
site (TSS < 1.5 kb). (A+B) The resulting p-values are indicated as follows: **: p < 0.01 and *: p < 0.05. Genes 
with neither H3ac nor Srf sites were used as reference. 
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3.2 Time Series Data of Histone Modifications and Transcription Factor 
Binding During Cardiac Maturation 

In an attempt to confirm and further investigate the results gathered in cell culture, Srf and H3ac 

binding and their influence on gene expression was studied in mouse hearts in a time series during 

cardiac maturation at thee developmental stages E18.5, P0.5 and P4.5. In addition, two further 

contributing factors, namely the histone acetyltransferase p300 and the histone tail modification 

H3K4me2, were measured. P300 was previously suggested to be recruited by Srf,62,221 and its 

acetylation efficiency was shown to be correlated to the presence of H3K4 methylation.222 

Due to the low amount of tissue that can be gathered from mouse hearts, qPCR was used to measure 

the ChIP enrichment of the four factors in each stage. However, different to e.g. next-generation 

sequencing, qPCR requires an a priori definition of genomic regions that should be analyzed, like 

TFBS or histone modified sites. This selection of regions with a likely regulatory background, which 

is described in section 2.2.4, was based on the results from the respective ChIP data. In total, 191 

regions were selected and ChIP followed by qPCR was performed for every single region with 

samples of mouse hearts of each individual time point (E18.5, P0.5 and P4.5) and each measured TF 

and histone modification (Srf, p300, H3ac and H3K4me2,) as well as Input DNA in triplicates. 

Finally, the measured Input enrichment was used to calculate relative DNA amounts. 

 

3.2.1 Preliminary Analysis 

As a proof of principle and to check if the heart tissue would reveal ChIP enrichments similar HL-1 

cells, these were compared to P0.5 results (Figure 32). P0.5 was used as HL-1 cells have been 

originated from postnatal right atrium heart cells. Using t-tests it was shown that the mean enrichments 

of regions bound by H3ac, H3K4me2 and Srf in HL-1 were significantly elevated also in mouse 

hearts. This shows that the ChIP-qPCR experiments resulted in valuable results and the heart tissue 

 

Figure 32: Comparison ChIP results gathered in mouse hearts to HL-1 cells 
Boxplots comparing ChIP qPCR enrichment in mouse hearts with regions showing enrichment of Srf, H3ac or 
H3K4me2 using ChIP-chip/seq in HL-1 cells. For each factor the regions that were bound in HL-1 cells also had 
a higher average enrichment. T-test p-values for the difference in mean are indicated in the upper right corner. 
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was sufficiently close to the previously studied HL-1 cells. P300 was not measured in HL-1 and could 

therefore not be compared. 

To study the dynamics of transcriptional regulation, changes between the individual stages were 

analyzed. Consequently, the average enrichment for each factor in each stage was compared and found 

to be different between the three stages (Figure 33 A and Figure 34 A). While these differences closely 

recapitulated findings from a simultaneously performed protein analysis, they would also result in 

general trends in binding strength changes between the stages that would lead to a superficially high 

correlation between changes in the individual factors in any subsequent analysis. To eliminate these 

general trends a linear shift was introduced for each single region and each single factor resulting in 

the same average enrichment in each stage for each (Figure 33 B and Figure 34 B). 

 

 

Figure 33: Barplot of average enrichment over all regions for every factor in every stage 
(A) Unnormalized ChIP enrichments showing distinct trends between the individual stages. 
(B) Measurements after linear shifting which removes the trends. 

 

Figure 34: Boxplot of average enrichment over all regions for H3ac in every stage 
(A) Measurements after ∆CP normalization showing a distinct trend between the individual stages. 
(B) Measurements after linear shifting which removes the trend. 
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3.2.2 Analysis of Correlated Binding Changes 

After combining replicates using the arithmetic mean, log fold changes between mean enrichments in 

the two consecutive stages (P0.5/E18.5 and P4.5/P0.5) were calculated. In addition, each fold change 

was categorized as up, down or unchanged according to a t-test using a significance level of 0.05.  

As a first analysis, scatter plots were used to visualize the level of pairwise correlation between the 

fold changes of individual factors incorporating both time points (Figure 35). High to modest 

correlations were found for all the measured factors, with Pearson correlation coefficients ranging 

from 0.75 to 0.36. To evaluate the statistical significance of the observed correlation coefficients 

empirical p-values were derived using random experiments. As a null model, measurements for one 

factor and time point were randomly assigned to all regions without replacement and fold changes 

were again computed between successive timepoints. This process was repeated 20,000 times storing 

all pairwise correlation coefficients between individual factors. An empirical p-value was derived by 

counting the number of tries were the random correlation coefficient exceeded the true coefficient. 

Figure 36 shows the distribution of Pearson correlation coefficients observed in the random 

experiment in comparison to the correlation coefficients found in the real data. Given the large sample 

size (almost 400 for the analysis of combined timepoints) random correlation coefficients scatter 

between -0.2 and 0.2. Applying a significance level of at least 0.001 all of the analyzed pairings were 

found to show significant correlation, however with different significance levels. 

 

Figure 35: Scatter plot of fold changes between the measured factors (combined time points) 

Blue dots represent measurements with significant change for at least one of the factors according to t-test. Lines 
represent the best linear fit for all measurements. Pearson correlation coefficient over all measurements is 
indicated in the lower right corner. Significance (p-value < 0.001) is indicated by *. 
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The highest correlation coefficient of 0.75 was found between the changes in histone 3 acetylation and 

histone 3 lysine 4 dimethylation. This is in accordance to the high correlation of absolute H3ac and 

H3K4me2 levels found in previous studies from us16 and others.223 In line with this, a recent study 

performed by Wang et al.107,222 suggested that H3K4 methylation might directly facilitate the histone 

acetylation events. The second highest correlation coefficient (0.59) was found between changes in 

H3ac enrichment and p300 followed by p300 and H3K4me2 (0.54). P300 is a known histone 

acetyltransferase and transcriptional co-activator224 and was found to reside in enhancer and promoter 

regions.225,226 While the correlation between changes in p300 and acetylation level was highly 

expected given the function of p300, the correlation between p300 and methylation level is of high 

interest. A possible explanations for this correlation supposed by Pray-Grant et al.227 and Wysocka 

et al.228 is an initial opening of chromatin through recruitment of ATP-dependent chromatin 

remodeling complexes initiated by the presence of histone methylation which then allows p300 to 

bind. Another possible mechanism is the direct recognition of methylated sites by histone acetylation 

complexes (including p300) as suggested by Martin et al.229 

In addition, significant correlation was found between Srf and H3ac (0.48) as well as Srf and 

H3K4me2 (0.481). A possible mechanistic link between these correlated changes in enrichment and 

binding strength, which was previously proposed for smooth muscle cells, is the stabilization of Srf 

binding to the CArG-box DNA motif via Myocardin or some Myocardin related factors that directly 

bind methylated histones (reviewed by McDonald et al.
230). Srf and Myocardin further recruit other 

 
Figure 36: Distribution of Pearson correlation coefficients for real and random data  

Histograms showing the distribution of Pearson correlation coefficients resulting from the random experiments. 
The correlation coefficients observed in the real data are indicated by a red vertical line. Data shown for 
combined time points. 
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transcription factors including p300 which in turn lead to higher acetylation levels. Consistent with 

this model, positive correlation between changes in Srf and p300 could be detected, however with a 

very modest correlation coefficient of 0.36. Looking at the distribution of random correlation 

coefficients, the correlation between Srf and p300 was significant, though, the fact that the observed 

correlation between these two TFs is much weaker than between any of the other measured regulatory 

factors and especially between Srf and H3ac suggests the existence of additional mechanisms of Srf-

triggered acetylation which are independent from p300 binding. 

While the initial analysis of correlation between changes in the individual factors was based on the 

combination of both fold changes, each fold change was further analyzed individually. In general, 

correlation coefficients were higher for changes between E18.5 and P0.5 than between P0.5 and P4.5 

while still remaining significant. This finding can be explained by the fact that fold changes between 

P0.5 and P4.5 were in general lower than between E18.5 and P0.5 pointing to a higher similarity 

between the two postnatal stages than between the prenatal and the postnatal stage. This potentially 

causes a higher influence of experimental noise on the correlation.  

As an exception, the correlation between changes in Srf and p300 was almost completely lost between 

P0.5 and P4.5 (Figure 37) with a very low correlation coefficient of 0.1 and a non-significant 

empirical p-value. An explanation independent from the similarity of the two postembryonic stages, 

would be a diminished regulatory association between Srf and p300 after birth. This could be linked to 

the highly reduced amount of activating histone modifications that was found in the protein level 

analysis correlating to a smaller number of transcribed genes in postembryonic cardiomyocytes.  

 

3.2.3 Single-Factor Qualitative Models (ANOVA) 

To study the inter-dependency between H3ac, Srf and p300 in more detail, linear modeling was 

applied. Based on the Srf target gene activation model by McDonald et al.,231 which places the 

acetylation as the last step in the regulatory chain, linear models of the form 

 
Figure 37: Correlation between Srf and p300 is dependent on the time point 

Scatter plot of fold changes for p300 and Srf between (A) E18.5 and P0.5 and (B) P0.5 and P4.5. Blue dots 
represent measurements with significant changes for at least one of the TFs. Lines represent the best linear fit for 
all measurements. Pearson correlation coefficient over all measurements is indicated in the lower right corner. 
Significance (empirical p-value < 0.001) is indicated by *. 
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εβββ +++= 30003 pSrfacHY  

 

were defined, which predict fold changes of H3ac enrichment by fold changes of p300 and Srf 

enrichment. The H3K4me2 data was excluded as this was shown to be highly correlated with the 

dependant variable H3ac and could therefore obscure the models.  

First, two single-factor ANOVAs were performed using categorized changes in either p300 or Srf as 

the predictor variable (Figure 38 A and B). After estimating coefficients using least square estimation, 

 

Figure 38: Boxplots for single-factor ANOVAs predicting changes in H3ac (combined time points). 

Boxplots illustrating the dependence of changes in H3ac from categorized changes in (A) Srf and (B) p300. The 
number of regions in each group is indicated in brackets. Significance levels indicating difference from zero 
according to the linear model are given above each box, using the following coding: *: p < 0.05 **: p < 0.01 ***: 
p < 0.001. 

 
Figure 39: Quality check of single-factor ANOVA (combined time points) 
Residuals against fitted values for (A) Srf and (B) p300. Q-Q normal plot for (C) Srf and (D) p300. 
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it was tested with F statistics whether each of the individual factors was significantly different from 

zero and has therefore a significant influence on changes in H3ac enrichment. As before, randomized 

experiments were used to derive empirical p-values for the individual models, now using the 

coefficient of determination R2 as the measure for the goodness of fit for each model. An empirical p-

value was determined by the number of random models which yielded a higher R2 than the original 

model. 

In line with the results from the correlation analysis, both models indicated a significant dependency 

of H3ac on the individual TF with an empirical p-value < 5x10-5. Further, the estimated changes in 

H3ac enrichment level for Srf/p300 up and down regulated regions were significantly higher and 

lower than zero, respectively, while the estimate for regions without a significant change, which were 

used as a control group, did not show this difference in either model. The distribution of the residuals 

(Figure 39 A and C) and the normal Q-Q plots (Figure 39 B and D) indicated validity of the linear 

model assumptions for both single-factor ANOVAs.  

As the estimated average change in H3ac for those regions without any significant change in either 

p300 or Srf enrichment was almost zero, it was inspected if these non-changing regions had a general 

preference in their absolute H3ac enrichment levels. Figure 40 A shows the density plot of mean 

enrichment levels for H3ac over all regions. It indicates a bimodal distribution with two peaks that 

correlate with regions of high and low acetylation enrichment. The same two peaks were found in a 

two dimensional density plot for absolute H3ac and p300 enrichment levels (Figure 40 B) but not for 

H3ac and Srf. However, in both plots the two peaks are not well separated and many regions show 

H3ac and p300 enrichment levels between these two extremes making a simple interpretation that is 

only based on these two stages difficult. 

 

 
Figure 40: Distribution of enrichment levels for regions with unchanged H3ac (combined time points) 

Mean enrichment in E18.5 and P0.5 were used as measurements for the absolute enrichment between the 
timepoints (A) One-dimensional density plot for histone 3 acetylation enrichment levels using a bandwidth of 
0.253 and n=227 observations. (B) Two-dimensional density plot for H3ac and p300 enrichment levels. The 
height is indicated using the color key on the right. The two-dimensional density was computed using the kde2d 
function from R’s MASS package.232 
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3.2.4 Two-Factor Qualitative Models (ANOVA) 

After proving the dependency on each factor individually, their regulatory interaction was analyzed in 

more detail. To do so, a two-factor ANOVA was performed using categorized changes in both Srf as 

well as p300 as predictors for changes in H3ac (Figure 41). Again, the model indicated significant 

dependency with an empirical p-value < 5x10-5. Like in the single-factor ANOVA, the estimates for 

the influence of up and down regulation of Srf and p300, which can be found in Table 14, were 

significantly different from zero, with the exception of up regulated Srf regions. The fact that changes 

in both p300 and Srf have a significant influence on H3ac changes rather than p300 alone further 

substantiates the assumption of an additional mechanism of histone 3 acetylation triggered by Srf 

which is independent of p300. Again, the distribution of the residuals (Figure 42 A) and the normal 

Q-Q plots (Figure 42 B) indicated validity of the linear model assumptions for both ANOVAs. 

 

3.2.5 Quantitative Models 

After using categorized changes for the modeling, it was tested if H3ac levels were also quantitatively 

dependent on Srf and p300 levels. In other words, whether stronger changes in any of these two 

factors lead to stronger changes in histone 3 acetylation as suggested by the high pairwise correlations 

 
Figure 41: Boxplot for two-factor ANOVA predicting changes of H3ac from changes in Srf and p300 

(combined time points) 

Boxes are ordered according to the median of the appropriate group. The number of regions with significant 
changes are indicates in brackets below the group name. Unchanged regions are indicated by the term ‘flat’. 

 Intercept p300 up p300 down Srf up Srf down 

Estimate 0.03483 0.12557 -0.32705 0.06896 -0.18069 

p-value 2.23x10-2 1.9x10-3 4.56x10-14 1.84x10-1 1.42x10-4 

Table 14: Estimates and p-values of two-factor ANOVA 

The p-values are based on F statistic and reflect the significance of the estimates difference from zero. All 
estimates are in log space. 
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and which of the two factors was more influential. Therefore, a linear regression model was built again 

using H3ac fold changes as the dependant variable and Srf and p300 fold changes as the predictive 

variables. 

According to both models, absolute changes in H3ac are positively correlated with changes in Srf as 

well as p300 and to a roughly equal extent according to the high similarity in their estimated 

coefficients (Table 15). Like for the ANOVA models, the empirically derived p-value for the 

quantitative model was significant (< 5x10-5) and the distribution of the residuals (Figure 43 A) and 

the normal Q-Q plots (Figure 43 C) indicated validity of the linear model assumptions for both linear 

regression models. In summary, the analysis of the quantitative model revealed that changes in histone 

3 acetylation level were not only qualitatively dependent on changes in Srf and p300 binding level but 

also had a quantitative dependence with correlations between predicted and observed changes around 

0.67 (Figure 43 B). While far from perfect, these correlations demonstrate that changes in the two 

factors Srf and p300 already drive an appreciable fraction of the measured change in histone 3 

 
Figure 42: Quality check of two-factor ANOVA (combined time points) 

Residuals against fitted values for (A) Srf + p300 and (B) Srf + p300 + interaction term. Q-Q normal plots for 
(C) Srf + p300 and (D) Srf + p300 + interaction term. 

 Intercept Srf p300 

Estimate 0.00622 0.31083 0.32681 
p-value 5.68x10-1 5.25x10-12 1.12x10-23 

Table 15: Estimates and p-values of quantitative linear 

The p-values are based on F statistic and reflect the significance of the estimated coefficients being different 
from zero. All estimates are in log space. 
 

 
Figure 43: Quality check of quantitative model (combined time points) 

(A) Residuals against fitted values for the linear model. (B) Model fit against measured values for the linear 
model (C) Q-Q normal plot for the linear model. 
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acetylation levels in the investigated regions. 

3.2.6 Consequences on Gene Expression 

In the estimation of the ANOVA and linear regression models, histone 3 acetylation levels were used 

as the predicted read-out of changes in Srf and p300 level. In a last step, it was analyzed if the 

observed changes also had a functional consequence on gene expression. Therefore, gene expression 

levels for a set of 44 genes associated to one or multiple analyzed regions were measured in the same 

three stages using quantitative real-time PCR and normalized to the housekeeping gene Hprt.90 Like 

for the ChIP measurements, a linear shift was introduced to remove potential trends in the mean 

expression over all measured genes between the three individual stages and log fold changes were 

calculated to measure the effective change between the individual stages. For genes that had multiple 

regions associated, the changes for these regions were combined using the following algorithm for 

each factor and time point comparison individually: At first, changes were categorized into up, down 

and unchanged as described before. In a second step, genes that were associated to both up and down 

regulated regions were discarded from the analysis. Finally, genes which were associated to at least 

one region with a significant change were categorized accordingly and genes associated to only 

unchanged regions were discarded. 

 
Figure 44: Consequences on gene expression 

(A+B) Boxplots illustrating the dependence of changes in expression level from significant changes in 
(A) H3ac and (B) Srf. The number of genes belonging to each group are indicates in brackets below the group 
name. (C-H) Representative examples of variable gene regulation. (C) All transcription factors and histone 
modifications correlate with expression. (D–G) All transcription factors and histone modifications correlate with 
expression with the exception of (D) H3ac, (E) H3K4me2, (F) Srf and (G) p300. (H) Anti-correlation between 
transcription factors and histone modifications and expression. Significance levels according to t-test are 
depicted using the following coding: +: p < 0.1 *: p < 0.05 **: p < 0.01. 
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To determine whether changes in the individual regulatory factors lead to changes in gene expression, 

genes were grouped into those which had a significant up change of the respective factor and those 

which had a significant down change combining the two time point comparisons. Using a t-test 

comparing these two groups, a significant dependency for changes in gene expression on changes in 

H3ac enrichment (p = 0.017) as well as Srf binding (p = 0.03) was detected (Figure 44 A and B). In 

addition, the dependency of gene expression changes was inspected for all measured transcription 

factors and histone modifications manually. While the genes in general showed the proposed 

dependency on binding or enrichment changes, many were found that were regulated by only a subset 

of these (representative examples are shown in Figure 44 C-H). This finding likely indicates a high 

variability of combinatorial regulation between the investigated regulators. However, it should be kept 

in mind that only three consecutive timepoints were measured and therefore important regulatory 

events might have been missed. 

 

3.3 Expression Analysis of Patient Data to Detect Disease-Associated 
Profiles and Predict Cardiac Regulatory Networks 

To evaluate the importance of the results gathered in cell culture and mouse hearts the human cardiac 

regulatory network and its breakdown in heart disease was analyzed. Therefore, gene expression levels 

of a set of 42 genes associated to heart development and function were screened in a large number of 

human patients with a panel of congenital heart disease as well as a group of healthy individuals using 

qPCR. In addition, phenotypic information was incorporated from a clinical characterization 

comprising 250 features of morphological, hemodynamic and therapeutic information, which had been 

collected for every analyzed patient to identify specific molecular portraits for subgroups of patients 

with common phenotypic annotations. 

 

3.3.1 Depicting a Phenotype Ontology 

To compress the complex and partially overlapping disease characteristics present in the clinical 

characterization a phenotype ontology was delineated. Therefore a list of 26 key disease parameters 

including descriptors like ‘interatrial septal defect’ and ‘right ventricular dilation’ in addition to tissue 

type (atrium/ventricle), gender and age was compiled. The continuous parameter age was binarized 

into two levels, young (< 6 years) and old (> 6 years).  

To define groups of patients with similar phenotypes, a hierarchical clustering approach with 

Euclidian distance and complete linkage (section 2.3.3) was carried out using this phenotype ontology 

excluding the annotations for healthy, age and gender. A manual cut-off was applied to the cluster 

dendrogram to finally assign patients to the eight meta-phenotype groups TOF-I to TOF-IV (Tetralogy 

of Fallot), VSD (ventricular septal defect), TGA-PS (transposition of the great arteries, pulmonary 

stenosis), Diverse (heterogeneous phenotypes) and Healthy. The heatmap of the phenotypic 

annotations and the resulting meta-phenotype groups can be found in Figure 45. The cluster TOF-III 

e.g. contains patients characterized by interatrial septal defects as well as stenosis and/or dilation of 

the main pulmonary artery in addition to the classical features of Tetralogy of Fallot, namely an 

interventricular septal defect, overriding aorta, right ventricular hypertrophy and right ventricular 

outflow stenosis (section 1.3.3). 
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3.3.2 Preliminary Expression Data Analysis 

To get an initial overview of the expression data, each expression vector was centered on zero and 

complete linkage hierarchical clustering was applied revealing clear difference between atrial and 

ventricular samples (Figure 46 A). Several of the genes displaying chamber-specific expression have 

already been described in studies of human and mouse myocardium. For example, NPPA, NR2F1, 

MYH6, MYL7 and TAGLN predominate in atria,233 whereas Irx4 and Myl2 are restricted to 

ventricles.234 

In addition, correspondence analysis was carried out. Correspondence analysis is a technique to 

project the high-dimensional space of the original gene/patient matrix into a lower dimensional space 

accounting for the main variance in the data. In that it is similar to principle component analysis, 

however, contrary to this projection method it accounts for the genes in the patient space as well as the 

patients in the gene space at the same time235 which was more desirable for this analysis. Projecting 

the measured data onto two dimensions supported the tissue-specific differences and demonstrated that 

disease and healthy (Figure 46 B) as well as aged and young (Figure 46 C) individuals could be 

distinguished, implicating that the obtained data is biologically meaningful. Subsequent analyses were 

carried out for both cardiac tissues separately, whereof results of the ventricle are illustrated in this 

thesis. 

 
Figure 45: Phenotypes and meta-phenotypes of the analyzed patient 

Shown is a hierarchical clustering of cardiac phenotype criteria and the assignment of patients with similar 
characteristics into meta-phenotype groups of ventricular samples. The phenotype information for gender, age 
and disease state is indicated. Each row represents a single heart sample. The blue line indicates the used cut-off 
for assignment of meta-phenotypes. 
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Figure 46: Preliminary gene expression analysis 

(A) Hierarchical clustering of gene expression levels measured by quantitative real-time PCR in cardiac samples 
from patients with different heart malformations. Each column represents a gene and each row a single cardiac 
sample. Normalized and centered expression levels are color coded in red for up regulated and green for down 
regulated genes. Missing values are depicted in gray. (B+C) Biplot obtained from correspondence analysis. Each 
dot represents a single patient sample color coded by (B) disease state or (C) age. 
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3.3.4 Linear Model to Detect Disease-Associated Profiles 

To identify meta-cluster specific deregulated gene expression, an ANOVA of the form 

 

εβββ +++= − genderagephenotypemetaY  

 

was estimated, where the observed variable Y represents the gene’s expression and βmeta-phenotype is the 

coefficient for each individual patient group sharing the same meta-phenotype. βage was included as 

the coefficient for the two age categories young and old and βgender to determine gender specific 

effects. Both have been shown to influence gene expression in the human heart.78 No intercept term 

was used because each individual expression vector was centered on zero beforehand. One ANOVA 

per gene was estimated using least square estimation and the significance of the individual coefficients 

being different from zero was tested using F statistics. Using a significance level of 0.05 a number of 

genes were found to have significant coefficients for individual meta-phenotype clusters as well as age 

and gender. Figure 47 depicts the resulting genotype to phenotype relations as a bipartite graph, where 

one set of nodes represent the genes (circles) and the other set represents the meta-phenotypes as well 

as gender and age (rectangles). Green and red edges between a gene and a phenotype indicate 

significant down and up regulation, respectively. Interestingly, deregulated genes were found for 

almost all meta-phenotypes, except the cluster Diverse, which contains a mixture of different minor 

 
Figure 47: Phenotype to genotype association 

Network obtained from linear modeling showing significantly deregulated genes in ventricular samples 
associated to meta-phenotypes as well as age and gender (marked as blue rectangles). Genes are depicted as 
circles. Green and red arrows indicate down and up regulated genes, respectively, using a significance level of 
0.05. 
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phenotypes excluding VSD and with regular aortic source from the right ventricle. The other meta-

phenotypes, characterized by distinct and moderate to severe abnormalities, have specific molecular 

portraits, such as TBX20 and MEF2C being up regulated in patients with TOF and main pulmonary 

artery abnormalities (cluster TOF-III), whereas TBX5 was only down regulated in patients with TOF 

and bicuspid pulmonary valve (cluster TOF-II). While some genes are deregulated in several disease 

clusters, others appear to be significantly deregulated in all disease samples, indicated by an opposite 

regulation in the Healthy cluster (e.g. MEF2A is up regulated in all disease meta-phenotypes).  

 

 
Figure 48: Significant correlation of gene expression 

(A) Heatmap of Pearson correlation coefficients and empirical p-values. Computed correlation coefficients are 
depicted by a blue (positive correlation) to red (negative correlation) color scheme. Small gray boxes indicate 
empirical p-values. A missing box indicates an empirical p-value > 1x10-3. (B) Histogram of pairwise Pearson 
correlation coefficients for real and random data. 
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3.3.5 Defining Correlated Gene Groups 

To finally build transcription networks in human, TFBS prediction was applied, focusing on the 

prediction of measured TFs. However, a simple prediction of cis-regulatory elements in the promoters 

of genes very likely results in many false positive due to the low signal-to-noise ratio, obscuring any 

subsequent conclusions. A main step to reduce the number of false positive predictions, the predictive 

power was increased by searching for cis-regulatory elements that are shared between promoters of 

tightly co-expressed and therefore likely co-regulated genes. To find these groups of co-expressed 

genes, the pairwise Pearson correlation coefficient was computed on the expression data over all 

samples in the dataset. Like in the analysis of mouse hearts, random experiments were used to evaluate 

the statistical significance of found correlation coefficients. As a null model, measurements were 

randomly assigned to samples in the according expression vectors without replacement and Pearson 

Cluster Genes contained in cluster   Cluster Genes contained in cluster 

1 NPPA, TGFB2      8 DPF3, VEGF 

   2 NKX2.5, PLOD1, RARA, RXRA, SRF    9 CPT1B, IRX4, MEF2A 

   3 GATA4, NR2F1, NR2F2, TAGLN    10 MYL7, MYOCD 

   4 MYH7, PIPPIN    11 BMP2, BMP4 

   5 HAND2, MEF2C, SMAD4, TBX20    12 ACTA1, MYL2 

   6 GATA6, HAND1, SMAD6    13 ATP2A2, HEY2, MYH6 

   7 TBX5, ZFPM2  

Table 16: Defined correlated gene groups 

 
Figure 49: Defined correlated gene groups 

(A) Cluster dendrogram showing 13 correlated gene groups. Cluster assignment was derived by cutting the 
dendrogram at the 0.001 quantile of the random distribution (Figure 48). The Y-axis indicates cluster distances. 
The resulting correlated gene groups are further depicted in Table 16. (B+C) Example of two correlated gene 
groups showing highly correlated patterns of expression in samples of healthy individuals and patients. Centered 
expression vectors were sorted by defined meta-phenotype.  
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correlation coefficients were computed on the randomized expression vectors. This process was 

repeated 100,000 times and the extent of randomized coefficients exceeding the true coefficient was 

counted. Thereby, an empirical p-value for the measured correlation coefficient of each individual 

gene pair was derived. A detailed overview of measured correlation coefficients and assigned p-values 

is shown in Figure 48. To ensure a high level of significance a minimal empirical p-value of 0.001 was 

required. 

Subsequently, complete linkage hierarchical clustering was performed only on significant correlation 

coefficients, while all non-significant coefficients were set to zero. The 0.001 quantile of the overall 

distribution from the random experiments was used to cut the clustering tree, thus deriving 19 clusters 

with significant similarity in gene expression vectors between individual genes (Figure 49 A). Clusters 

comprising more than one gene were called correlated gene groups (Table 16) and two examples are 

shown in Figure 49 B and C. Centered expression vectors were sorted by the defined meta-phenotype 

and similar expression patterns of genes are clearly revealed in normal and disease tissue samples. The 

transcription factors TBX20 and MEF2C displayed correlated expression patterns (Figure 49 B) and 

strikingly, both are up regulated in patients belonging to the TOF-III cluster as analyzed with the 

linear model. 

 

3.3.6 Comparing Pearson Correlation Coefficient to Mutual Information 

For simplicity, the Pearson correlation coefficient was used to define the correlated gene groups. 

However, different from it’s usage for diagnostic reasons as done e.g. in the correlation analysis of 

ChIP-enrichments in mouse hearts, the prediction of cis-regulatory elements and the subsequent 

construction of regulatory networks heavily relied on the validity of the defined correlated gene 

groups. Therefore, the definition of the right distance measure was a key factor for the analysis. It was 

shown that the Pearson correlation coefficient can be sensitive to noise effects and outliers236 and is 

easily distorted when the expression levels are not uniformly distributed across the expression 

 
Figure 50: Comparing mutual information to Pearson correlation coefficient 
Pearson Correlation coefficients are plotted against mutual information based on kernel density estimation. 
While there is statistical fluctuation between the two measures, no gene pair is found which has high mutual 
information but a nearly zero correlation coefficient. Note the different ranges of the two measures. 
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patterns.124 To determine if any of these effects applies to the definition of correlated gene groups, 

pairwise mutual information was computed for all gene pairs in the dataset using a density derived 

definition (section 2.3.3). Comparing the pairwise mutual information for gene expression vectors to 

the previously computed Pearson correlation coefficients apart from statistical fluctuations an almost 

one-to-one correspondence was found between these two (Figure 50) pointing to no relevant nonlinear 

correlations in the data. Therefore, using the Pearson correlation coefficient to define correlated gene 

groups in this dataset is valid and covers the major fraction of possible dependencies. 

 

3.3.7 Optimized TFBS Prediction using ChIP Data 

The last step for in prediction of regulatory networks was the definition of the optimal prediction 

parameters. The length of promoter sequence as well as the use of conservation information taken for 

TFBS prediction varies among different studies.237-239 To make the TFBS prediction as biologically 

meaningful as possible with regard to these settings, the ChIP-chip data obtained in HL-1 cells for 

Gata4, Mef2a and Nkx2.5 was used to find optimal prediction parameters. Srf was not used for the 

optimization as because of the low agreement found between Srf peaks and Srf TFBS predictions 

using the TRANSFAC240 matrices.  

To find an optimal balance between length of promoter sequence and noise level in the prediction of 

TFBSs different upstream and downstream distances were used as optimization criteria. Based on 

transcription start sites in Ensembl (version 48) and in accordance with the array design of the ChIP-

chip approach, 10 kb upstream and 3 kb downstream of the 42 selected genes were retrieved from 

NCBI human assembly (version 36). For the optimization procedure, upstream distances gradually 

increasing from 200 bp to the full 10 kb and downstream distances from 100 bp to 3 kb were 

considered, representing the range between using only the core promoter and using the full measured 

promoter region in intermediate steps. 

Beside the amount of promoter sequence, the level of conservation was used as optimization criteria. 

To assess conservation of promoter sequences, the full mouse human BlastZ alignment from Ensembl 

(mouse assembly NCBI m37) was used. In addition to the single nucleotide conservation masking 

provided by the alignment, a 100 bp window was shifted along the promoter regions and windows 

exceeding a given percentage of conservation remained unmasked. Thresholds ranging from 0% (no 

Transcription Factor Associated TRANSFAC Matrices 

GATA4 V$GATA4_Q3, V$GATA_Q6 
GATA6 V$GATA6_01, V$GATA_Q6 
HAND1/HAND2 V$EBOX_Q6_01 
HIF1A V$AHRHIF_Q6, V$HIF1_Q3, V$HIF1_Q5 

MEF2A V$AMEF2_Q6, V$MEF2_02, V$MEF2_Q6_01, 
V$HMEF1_Q6, V$MMEF2_Q6 

MEF2C V$MEF2_Q6_01 
NKX2.5 V$NKX25_01, V$NKX25_Q5 
NR2F1/NR2F2 V$COUPTF_Q6, V$COUP_DR1_Q6, V$DR1_Q3 
RARA/RXRA V$DR1_Q3 
SMAD4/SMAD6 V$SMAD_Q6_01 
TBX5 V$TBX5_01, V$TBX5_02 

Table 17: TRANSFAC matrices assigned to TFs present in the dataset. 

Matrices removed in the pre- or post-filtering steps have been excluded. 
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conservation information) to 100% (single base pair conservation) were evaluated in continuous steps 

of 10%. 

Finally, the prediction of cis-regulatory elements was performed using the TRANSFAC MATCH 

algorithm (section 2.3.8). 39 matrices representing known binding patterns for 15 of all 22 

transcription factors from the heart dataset were retrieved from TRANSFAC (version 11.3) together 

with their matrix and core similarity scores optimized to reduce both type I and type II error rates. As a 

pre-filtering step, low quality matrices with a matrix similarity threshold less than 0.8 were excluded, 

thereby reducing the number of matrices to 27 assigned to 15 TFs. In a post-filtering step, another two 

matrices showing a very high number of average predictions per promoter were removed. In total this 

led to 25 matrices associated to 15 TFs which are shown in Table 17. Predictions from matrices 

belonging to the same TF were combined in order to build the basis for the construction of regulatory 

networks. To find the optimal TFBS prediction parameters, the scoring function 

 

peaks all
peaks predicted

prediction all
sprediction true

×=S  

 

was used, which was evaluated on each distance and conservation setting. The score S comprises two 

ratios ranging from 0 to 1 that measure different aspects of the TFBS predictions. The first ratio 

measures the fraction of true amongst all predictions and the second ratio measures the capability of 

predicting a ChIP peak. In accordance with the TFBS prediction performed in the analysis of ChIP-

chip peaks, a prediction was defined as true if it was located not more than 250 bp apart from a 

 
Figure 51: Optimization of TFBS prediction 

Results are shown for the TRANSFAC MATCH algorithm and a subset of promoter settings. The upstream (-) 
and downstream (+) lengths used as promoter are placed below the plot. Triangles indicate the level of 
conservation ranging from 0% to 100%. Dashed horizontal lines mark best 5 scores, values above this score are 
highlighted with black dots. The red diamond highlights the best scoring prediction setting. 
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respective ChIP peak center. Furthermore, peaks were marked as predicted if they had at least one true 

prediction assigned. Predictions as well as peaks were evaluated with respect to the tested promoter 

settings and peaks lying outside of the evaluated promoter regions were excluded. The optimization 

process was performed for all three TFs and the average over the three individual scores (one per TF) 

computed for each setting was reported (Figure 51). 

Studying the individual scoring results, it could be observed that the fraction of true predictions 

decreased with the length of the sequence used, which is in line with the proposed increase in noise 

level. However, binding sites identified by ChIP can be observed at any distance from the transcription 

start site. Further, while the fraction of true predictions could be enhanced by using more stringent 

conservation settings, the amount of TF ChIP peaks predicted heavily dropped at higher conservation 

levels like found in the analysis of TFBS in ChIP-chip peaks. This finding is supported by the 

observation that actual binding sites of TFs might be slightly modified during evolution for example to 

enable adaptation of TF binding.241,242 Using the proposed scoring function which incorporates both 

measures, prediction settings of 1,250 bp upstream and 500 bp downstream together with a 

conservation level of 60% were found to be optimal for the analyzed TFs when using the TRANSFAC 

MATCH algorithm for TFBS prediction. 

 

3.3.8 Predicting Cardiac Regulatory Networks 

Finally, regulatory networks were constructed based on the identified correlated gene groups and the 

optimized transcription factor binding sites prediction representing the underlying regulatory 

dependencies. This resulted in several small subnetworks, which could subsequently be analyzed in 

more detail. For verification the constructed networks were compared with binding data from ChIP-

chip and literature data. Figure 52 displays two graphs representing predicted regulatory subnetworks 

for the correlated gene groups comprising HAND2, MEF2C, SMAD4, TBX20 (Figure 52 A) and 

GATA4, NR2F1, NR2F2, TAGLN (Figure 52 B). 

 
Figure 52: Predicted regulatory networks for two correlated gene groups 

Genes composing a group are marked light blue. Confirmation of predicted binding by literature, ChIP-chip 
and/or TRAP is depicted in colors. Unconfirmed predictions are indicated by dashed lines. 
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For the first group, GATA4 and NKX2.5, which are known to interact with each other, were directly 

predicted to bind all four promoter regions and all except the two bindings to SMAD4 have been 

proposed in literature (Nkx2.5�Mef2c
243,244), found in the ChIP-chip data (Nkx2.5�Hand2/Tbx20, 

Gata4�Tbx20) or both (Gata4�Hand2
245

/Mef2c
246). Interestingly, both TBX20 and MEF2C are 

specifically up regulated in patients belonging to the TOF-II cluster and the prediction approach sheds 

light on potential upstream regulators.  

Concerning the GATA4, NR2F1, NR2F2 and TAGLN correlated gene group, several TFs were found 

that had predicted binding sites in all promoter regions of the four genes. Among them are TBX5, 

GATA6 as well as GATA4 and the two NR2F factors. Identification of the latter three is quite 

remarkable as all three TFs present in this correlated gene group show inter-regulatory interactions 

that could explain the observed correlation. Some connections have already been described in 

literature (Gata6�Gata4
247

/Tagln
248, Gata4�Gata4

247) but no binding was found in our ChIP-chip 

data. However, it should be kept in mind that the ChIP experiments were performed using mouse 

cardiomyocytes (HL-1 cells), whereas the predictions are based on transcription patterns from human 

patient material. 

Finally, in order to substantiate the predicted TF regulations, the transcription factor affinity prediction 

(TRAP; section 2.3.8) algorithm developed by Roider et al.
183 was incorporated. In contrast to TFBS 

prediction of the MATCH algorithm, the provided affinity measure is continuous and allows an easy 

ranking of promoter regions with the highest affinity for each TF matrix. To compare the results 

gathered from the optimized TFBS prediction with TRAP, the 10 promoter regions with the highest 

affinities for each TF were marked as potentially regulated by this TF. 

Applying TRAP to the correlated gene group comprising HAND2, MEF2C, SMAD4 and TBX20, no 

TF was found which had high affinity for all four gene promoter regions. Remarkably, SMAD4 was 

no part of any of the top 10 affinity promoter regions of any TF analyzed, although the SMAD4 

promoter was predicted to be bound by a large fraction of TFs (Figure 52 A). Regarding the results of 

the TFBS prediction, NKX2.5 was assigned by TRAP to two of the remaining three genes, namely 

MEF2C and HAND2 (confirmed by literature and ChIP-chip, respectively), but did not show high 

affinity to TBX20. However, binding of Nkx2.5 to Tbx20 was observed in ChIP-chip. Therefore 

NKX2.5 is very likely a crucial factor for the stated correlation. 

In case of the GATA4, NR2F1, NR2F2 and TAGLN correlated gene group, both GATA4 and GATA6 

appear to have all four gene promoter regions in their top 10 affinity tables. This underlines the results 

of the TFBS prediction in which they also showed binding to all group members. Furthermore, it 

highlights GATA proteins as potential auto-regulatory key factors in the given subnetwork. In 

addition, SMAD6 showed high affinity to three of the four correlated genes, namely NR2F1, NR2F2 

and TAGLN and was predicted to be bound by GATA4 itself, which implies a functional role further 

downstream in the regulatory cascade. 

 

3.4 Implementing the CArdiovascular Regulatory INteraction Database 

The main conclusion that can be drawn from this study is that the construction of transcriptional 

regulatory networks can only be successful if it is based on a range of complementing experiment and 

integrates a multitude of different data sources. The main problem, however, is to gather this data and 

to combine available annotations in a biological meaningful manner. Therefore, as a final step in this 
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study, CARIN, the CArdiovascular Regulatory INteraction database, was implemented. CARIN is a 

program that integrates a database of up-to-date experimental and computationally derived annotations 

relevant for cardiac and muscle genes with a sophisticated user interface that provides an easy and 

comfortable data overview and detailed information for individual genes at the same time. It was 

developed as the dissemination database for the HeartRepair EU project and incorporates data of a 

number of HeartRepair research groups and interlinks these to publicly available databases 

incorporating Ensembl and the Gene Ontology project. 

 

3.4.1 General Purpose 

The previous analyses have revealed that to understand molecular and developmental pathways in 

eukaryotic cells, transcription factors must be viewed within their regulatory context. This includes the 

interplay between transcription factors and co-regulatory elements but also epigenetic factors such as 

histone modifications. Further on, the mere binding of a transcription factor to a gene promoter does 

not imply active control of transcription and therefore knockdown experiments are necessary to 

identify a direct regulatory impact. So far large public datasets comprising all these different aspects of 

transcriptional regulation over whole genomes from higher organisms are still rare. 

In an attempt to make existing data available and interpretable for future studies CARIN, the 

CArdiovascular Regulatory INteraction database, integrates data obtained by members of the EU-

funded project HeartRepair (LSHM-CT-2005-018630) into a common framework. Studied gene 

expression profiles and transcription factor binding events from human, mouse, chicken and zebrafish 

are implemented and provided together with gene associations based on literature mining an 

information resources for cardiovascular regulatory networks. CARIN provides information on a gene-

wise level using the Ensembl106 database as reference. It enables the querying for genes of interest and 

 
Figure 53: Scheme showing the data architecture of the CARIN database and its user interface 



 
 

 

3. Results 

94 

places individual datasets into a broader context. Detailed experimental annotations are provided by 

the contributing groups to allow a well-grounded interpretation of the data. In addition, annotations 

from or links to publicly available databases like Ensembl, the GeneOntology177 consortium or the 

UCSC Genome Browser185 are given. Genes are linked either by studied transcription factors binding 

events or based on information generated by the literature and data mining tools Anni249 and 

STRING250. A high value was set on the visualization aspect. A dynamic network representation has 

been implemented to provide an easy and comfortable data overview and detailed information for 

individual genes at the same time. Further, the system incorporates several features for highlighting 

and filtering genes and interactions, which provides the possibility to focus on specific regulatory 

pathways or fields of interest. 

 

3.4.2 Data Architecture 

CARIN is build of two layers, one comprising the database, which itself is split into several sub-

databases, and the user interface which processes the data from the individual database into a network 

representation and implements features like the possibility to filter or highlight genes of interest and to 

present annotation on a gene-wise level (Figure 53). 

 

 
Figure 54: Relational scheme of the CARIN database 

Outline of the relational database scheme. Tables are grouped according to their data sources: Ensembl (blue), 
single gene experiments (red) and relation experiments (green). Each table with brackets in its name stands for a 
number of tables, one per experiment/species. The relational scheme was drawn using the MySQL Workbench 
program version 5.2. 
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The Database 

CARIN was developed to incorporate gene annotation and regulation data from several data sources 

and was implemented as a relational database (section 2.3.9) with genes as the main entities. To allow 

the integration of different experimental and computational approaches, Ensembl gene IDs were taken 

as a reference to represent individual gene entities. In this way, identifiers of any data source that is 

going to be integrated into CARIN must be mapped to the appropriate Ensembl species database. This 

approach was chosen because Ensembl supplies a reasonably stable and publicly free platform and 

many other databases and companies therefore provide the appropriate Ensembl gene IDs for their 

own identifiers, making a complicated mapping unnecessary for the user. In addition, Ensembl itself 

provides a large number of pre-integrated data sources, like GO annotations or mappings to other free 

databases, and offers a free API-based web-access to all their data, which allows an automatic update 

using appropriate scripts. Further, Ensembl provides a homology mapping between genes from 

different species, which is crucial for the integration of data gathered from different organisms. 

Figure 54 shows the relational database scheme, which is divided into two parts with the main table 

“basic_annotation” as the center. In the left (blue) part, tables comprising gene annotations directly 

retrieved from Ensembl are shown. These comprise the GO term associations and external identifiers. 

In the right (green/red) parts, tables comprising annotations retrieved from experiments conducted 

from any of the HeartRepair project members as well as the Anni and STRING tools are shown. The 

experiments themselves divide into two further groups: One group (green) represents experiments that 

provide annotations for a single gene, e.g. transcriptional profiling of a number of genes under certain 

conditions. The other group (red) represents relations between genes as gathered from ChIP 

experiments or co-occurrence in literature. To make the submission of experiments as easy as possible 

for the HeartRepair contributors a single information sheet which is highly similar to submission 

sheets of the GEO251 and ArrayExpress252 databases was developed to submit experiments of both 

kinds. The information that had to be contributed with each submission is given in Table 18. While 

CARIN in general stores the annotation for all genes from a submitted experiment in its database, only 

those genes that are significant in the submitted experiment according to the contributor are 

represented by the user interface. Due to the fact that the decision of significance is made by the 

contributor and is not decided according to a fixed significance level or based on a fixed statistical 

model, it is possible to integrate data from many different experiments that might be performed under 

many different conditions by making use of the contributor’s knowledge of the individual experiment. 

CARIN was developed to integrate experiments performed in several species, thus a concept to 

exchange data between the different species was needed. In general, two oppositional ways of data 

integration from several species are conceivable: the first approach is to store all annotations using a 

single pre-defined reference species and all annotations must be mapped to gene identifiers of that 

single species. The second approach is to define overall gene entities, which are species-independent, 

and map annotations from any species to these comprehensive identifiers. While the first approach is 

simple and straight-forward, it provides the possibility to loose a high amount of data, if the 

experiment species and the reference species are very dissimilar. It further puts high influence on the 

choice of the reference species as different organisms are more and others are less similar to each other 

regarding their genomic content. The second approach copes with this problem by using identifiers 

that are species independent. However, the definition of reasonable entities is a challenging task as a 

gene in one organism might e.g. been duplicated during evolution, which could lead to two paralogs 

with altered functions in another organism. 
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To benefit from the simplicity of the first model and keep as much data as possible at the same time, 

CARIN implements an approach that lies in between these two models. Instead of using a single 

reference species for the whole database, a single database is build for every individual species with 

submitted experimental annotations. Using the homology mapping from Ensembl, experiments 

performed in other species are then mapped to each reference species in turn, allowing only one-to-one 

homology mappings to ensure the integrity of the database and transferability of knowledge between 

the two species. It is then left to the user to decide which reference species is used in the CARIN 

session in order to maximize the output in accordance to the needs of the analysis. 

 

Experiment Info 

Experiment name Descriptive name for the experiment 
Contributor name + email Contact info of the submitter 
Contributor group Name of the research group 
HeartRepair group HeartRepair contract number 
Description Description of the used experimental model 
Comparison listed

TP
 Conditions that were compared in the experiment 

Reference
TP

 The reference condition 
Tissue type Tissue that was used for the experiment 
Strain

N
 Strain of the organism used in the experiment 

Species Organism used in the experiment 
Treatment

N
 Treatment of the animals used in the experiment 

Experimental design Short description of the experimental design 
Technological design Short description of the technological design 
Array platform

N
 Name of the chip manufacturer 

Chip id
N
 Array version used 

Number of probes
N
 Total number of probes present on the array 

Score details Scale of the score in the data table 
P-value details Statistical model used to calculate the p-values 
Submission date Submission date 
PubMed id

N
 Publications associated to the data 

Array-express/GEO identifier
N
 Public database identifier for the data 

  
Data Matrix  

ID Unique probe identifier 
EntrezGene ID EntrezGene identifier for the measured transcript 
EnsemblTranscript ID Ensembl transcript identifier for the measured transcript 
P-value P-value for the differences between the conditions tested 
Score Fold change difference between the conditions tested 

Significant 
Indication if the transcript is considered to be significantly 
different between the conditions tested (0/1-coding) 

Table 18: Submission fields for the CARIN database 
Experiment submission to CARIN are done using a tabular sheet that is structured into two parts. The 
experiment info contains information for the performed experiment, the contributor and the methods used for 
the analysis. The data matrix contains one row per measured probe and includes resulting scores, p-values and 
the indication of significance. While the submission is based on transcripts, these will later be mapped to genes 
in the CARIN database. N = can be empty; TP = only for transcriptional profiling 
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User Interface 

The user interface is the main part of CARIN. It is structured into two subparts: the network part and 

the gene annotation part (Figure 55). 

The network part represents genes and annotated interactions in form of a network. Nodes represent 

individual genes that appeared to be significant in any of the experiments included in CARIN. Edges 

between these genes reflect regulatory interactions (e.g. binding in ChIP or strong association 

according to literature mining). The used network layout algorithm is an implementation of the radial 

tree layout from Yee et al.
253 and arranges genes around the center node on concentric circles using the 

path length to determine the distance to the center. In this way, genes that are related to the center will 

be displayed in its proximity. Genes not connected to the center node are randomly placed around the 

network and can be hidden to focus only on genes functionally coupled to the center node. In general, 

information is color-coded, with a specific color for every experiment in CARIN. To change the 

appearance of the network, genes can be dragged and the network can be zoomed. Additionally, 

double clicking a gene marks it as the new center node of the network, computes a new network layout 

and changes the information in the gene annotation part. A prefix based search which highlights all 

matching nodes with a specific color allows the user to identify specific genes of interest. Tooltips 

provide short information for genes and connecting edges. 

The gene annotation part comprises all annotations for the current center gene divided into several 

panels. It displays the gene name, Ensembl ID and other Ensembl related information together with all 

 
Figure 55: The CARIN user interface 
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experiments where the gene is marked as significant. In addition, it shows GO terms associated to this 

gene, external identifiers and links to their appropriate online databases. To allow an easy 

interpretation of the results, annotations for all experiments in which the gene was marked as 

significant are listed. 

To focus on specific sub-networks or experiments, the user interface contains two filtering systems. 

The experiment-based filtering allows the definition of gene and interaction filters based on any of the 

submitted experiments. With an active filter only genes or interactions significant in the selected 

experiment are displayed in the network. If several experiments have been selected for filtering, only 

genes or interactions significant in at least one of these are displayed. By default, no interaction filters 

are defined, thereby showing all interactions. Another filtering option is the definition of a reference 

list that contains Ensembl gene IDs of the reference species. If such a reference list is defined, only 

genes part of that list will be displayed. The experiment-based and reference list filtering can be 

combined to define filtering rules of any complexity. In addition to the filtering system, the user 

interface also provides a highlighting system. Similar to the experiment-based filtering, each node and 

each interaction can be colored according to its significance in selected experiments. If a gene or 

interaction is significant in two or more experiments a default color is used. A legend next to the 

network indicates each used filtering and highlighting (left side of Figure 55). 

To export data from the user interface, several export formats were implemented. First, it is possible to 

store the currently visible network as an image file. All the networks shown here have been produced 

using this option. Second, a text file containing a list of Ensembl gene IDs can be exported together 

with their gene names for all genes currently visible in the user interface or to exchange data between 

CARIN and other applications in a readable format. Any highlighting will be included in the file by 

additional columns, one for each experiment, and 0/1-coding for the significance. These text files can 

subsequently be used as reference lists for the user interface. Finally, it is possible to save the currently 

visible graph using the GraphML254 XML language. Edge source definition and any selected gene 

highlighting will be included in the file using individual keys and integer values depicting the coding. 

The application of both filtering systems as well as the highlighting and export properties will be 

demonstrated in the example session described below. 

 

3.4.3 Implementation 

CARIN was implemented as a standalone application and was distributed together with the 

appropriate libraries and reference species databases to all contributors from the HeartRepair project. 

It was implemented in two steps: the first step was creating the database and entering the public and 

experimental annotations. The second step was the implementation of the user interface and its 

connection to the databases. 

 

Relational Database Setup 

Newest gene annotations from Ensembl were gathered using scripts that directly access the 

aforementioned Ensembl web-API. In addition, annotations of submitted experiments were integrated 

into the CARIN database using routines that directly access the submitted sheets. Both scripts were 

implemented in R.109 The communication between the scripts and the SQLite databases was 

established using the RSQLite package from Bioconductor.110 GraphML XML files were subsequently 
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produced from the resulting databases comprising an abstract representation of the resulting regulatory 

network and annotations. 

 

User Interface Implementation 

The implementation of the CARIN user interface was done in Java using the prefuse
255 visualization 

framework which is also implemented in Java. Prefuse supports a number of features for data 

modeling, visualization and user interaction and provides optimized data structures for tables, graphs 

and trees together with a set of layout and visual encoding techniques and support for animation. 

Further, through its modular structure it is easily expandable and adjustable to different visualizations. 

CARIN was implemented using a mixture of classes directly extended from prefuse and completely 

self-developed classes together with a Swing-based graphical user interface. The GraphML XML files 

produced from the individual databases are used to load the network structure into the application, 

while single gene annotations are directly retrieved from the SQLite databases of the reference 

species.  

 

3.4.4 Currently Stored Data 

Currently, CARIN contains 66 experiments performed in four different species, namely human, 

mouse, chicken and zebrafish. All annotations were based on Ensembl version 57. From the 66 

contributed experiments 51 provide annotations for individual genes, like expression restricted to 

certain tissues or regions of the heart, expression changes according to treatment with particular 

substances or the associations to specific congenital heart disease or patient groups retrieved in section 

3.3. Another 15 experiments provide annotations on interactions, like direct binding of a transcription 

factor to the promoter of a target gene as derived by chromatin immunoprecipitation or regulatory 

dependencies as derived from differential expression analysis in knockout or knockdown experiments 

including the experiments analyzed in section 3.1. 

In addition, CARIN contains interactions based on two bioinformatic approaches. The first is the 

STRING (Search Tool for the Retrieval of Interacting Genes/Proteins) database, which was developed 

by Snel et al.
250 in 2000 and has been continuously evolved since then.256-259 STRING is a database 

dedicated to known and predicted protein-protein interactions, including both physical and functional 

interactions. It weights and integrates information from numerous sources, including experimental 

repositories, computational prediction methods and public text collections. STRING integrates 

interaction data for a large number of organisms and transfers information between these organisms 

where applicable.259 The advantage of integrating gene and protein interactions from STRING into 

CARIN was its broader scope incorporating also non-cardiac interactions, which might facilitate the 

uncovering of regulatory associations hitherto unknown in the cardiac field. For CARIN, only 

interactions derived from genomic co-occurrence, co-expression, experimental evidence, literature 

mining and curated databases were integrated that had an association score of more than 0.7, which is 

referred to be a high confidence score threshold by the developers of STRING. Further, CARIN 

integrates interactions from Anni249,260 a literature mining tool that uses concept profiles to find 

associations between genes. A concept profile is a list of concepts like ‘prostate cancer’ which each 

have a specific weight that reflects its level of association to the gene. Given a predefined set of these 

concepts, the weights are computed from Medline abstracts either using automatic concept recognition 
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or manual curation.249 To find associations between gene pairs an association score based on the 

cosine angle between their individual concept profiles is computed. Anni has successfully been used to 

infer functional associations between genes261 and between genes and GO terms.262 For CARIN, only 

associations with an association score higher than 0.05 were incorporated. The score threshold was 

suggested by one of the Anni developers and should provide a good balance between very obvious and 

too far-fetched associations. 

 

3.4.5 Example Session 

In the following, a CARIN example session is presented to demonstrate its features, the integration of 

several experimental datasets and its benefit for the user. The reference species selected for this 

example session was mouse. As a starting point, a filter based on all included ChIP-chip experiments 

analyzed in this study was created. Thus, Figure 56 A shows all genes that are found to have a TF peak 

in their promoter for any of the four analyzed TFs Gata4, Mef2a, Nkx2.5 and Srf. Without an edge 

filter any connecting edge is displayed, leading to a very large network. The T-box protein Tbx20, 

already analyzed in the previous sections, was selected as the center gene and is bound by all four 

factors in ChIP. In addition to the four binding TFs, Figure 56 A shows a number of genes in the 

proximity of Tbx20. These include other T-box proteins which are connected though Anni textmining 

associations (Tbx3, Tbx5, Tbx15) or through differential expression in a respective knockdown 

(Tbx18). Further, Gata5, a co-factor of Tbx20, is associated via STRING textmining associations. 

To narrow the number of interesting genes, the gene list of Figure 56 A was exported into a text file 

using the export function of CARIN. This list is subsequently used to set a reference list filter which 

will display only genes bound by at least one of the four TFs in the network. A filter for genes that are 

differentially expressed in any of the four respective siRNA knockdown experiments generates the 

network in Figure 56 B. All of the genes proximal to Tbx20 in Figure 56 A are lost except the four 

analyzed TFs, as none of them appears to be differentially expressed as well as bound by any of the 

four factors at the same time. 

 

Figure 56: CARIN Example Session (1) 

(A) Full network of all genes with at least one TFBS for Gata4, Mef2a, Nkx2.5 or Srf in ChIP-chip. Tbx20 was 
selected as the center gene. (B) Reduced version of the same network with only genes that are additionally 
differentially expressed in at least one of the respective knockdowns. 
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As the number of edges is still very large, Figure 57 A shows a subnetwork with only those edges that 

represent binding in ChIP-chip. Every gene displays an incoming edge because the ChIP-chip 

experiments were used as the reference list. In line with the results from section 3.1, Nkx2.5 and Gata4 

share most of their targets while Srf appears to be more detached from the other three TFs. Figure 57 

B focuses on regulating interactions instead of promoter binding by showing only edges that represent 

differential expression in the respective knockdown. Now Mef2a is decoupled from Tbx20, because 

Tbx20 was found to be differentially expressed in the knockdown of Gata4, Nkx2.5 and Srf, but not in 

the knockdown of Mef2a. In this way, Figure 57 represents two different networks that combine both 

the ChIP experiments and the siRNA knockdown experiments analyzed in section 3.1. 

Instead of using edges from either ChIP-chip or siRNA experiments, Figure 58 A shows the network 

of genes that are connected to Tbx20 by STRING experiment and database associations (pink edges), 

STRING textmining associations (light blue edges) or both (orange edges) and are in addition 

differentially expressed in any knockdown (filter option) and bound by any of the TFs in ChIP-chip 

(reference gene list option). To focus only on genes coupled to Tbx20, all genes that had no 

connection to Tbx20 were hidden from the network using the appropriate functionality of the user 

interface. The resulting network comprises a much smaller set of 28 genes which could successively 

be analyzed in more detail. The highlighting represents differential expression in the siRNA 

knockdown experiment of Gata4 (green), Mef2a (blue), Nkx2.5 (yellow) and Srf (red) or in multiple 

of these (orange). Interestingly, most of the genes appeared to be differentially expressed in the 

knockdown of Gata4, which is known to physically interact with Tbx20.263 To further investigate the 

regulation by Gata4, Figure 58 B shows the same network with a different highlighting, now 

representing binding by Gata4 in ChIP-chip (light green), differential expression in the Gata4 siRNA 

knockdown (green) or both (orange). Many of the genes including Tbx20 show both properties, 

implying a functional network regulated by Gata4, which could be analyzed in subsequent 

experimental studies. However, it has to be kept in mind that this small network is the result of 

reducing the network of all genes that have  a STRING association path to Tbx20 to those that are 

bound by at least one TF in ChIP-chip and are differentially expressed in at least one siRNA 

knockdown. Removing one of this two filter options would result in much larger networks like the one  

 

Figure 57: CARIN Example Session (2) 

(A) Network from Figure 56 B showing only edges from ChIP-chip experiments. (B) Network from 
Figure 56 B showing only edges representing differential expression in siRNA knockdown. 
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Figure 58: CARIN Example Session (3) 

(A) Network from Figure 57 B showing only STRING experiment and database associations (light blue), 
STRING textmining associations (pink) or both (orange). All genes not connected to Tbx20 have been removed 
from the network. The used highlighting represents differential expression in the knockdown of Gata4 (green), 
Mef2a (blue), Nkx2.5 (yellow), Srf (red) or in multiple knockdowns (orange). (B) The same network now with a 
different highlighting indicating binding by Gata4 in ChIP-chip (light green) or differential expression in Gata4 
knockdown (green) or both (orange). 
 
shown in Figure 59. To demonstrate additional features of the CARIN user interface, Figure 60 A-D 

shows a selection of further example networks. 

 
Figure 59: CARIN Example Session (4) 

Network of genes that are connected to Tbx20 via STRING experiments and database or textmining associations 
and that are differentially expressed in the knockdown of at least one of Gata4, Mef2a, Nkx2.5 and Srf. 
 



 
 

 

3. Results 

103 

 

 
Figure 60: Further CARIN example networks (1) 

(top) Gata4 and Nkx2.5 direct target genes measured using ChIP-on-chip with curved edges. (bottom)  STRING 
and Anni associations for genes differentially expressed in Tbx18 heterozygous knockout.  
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Figure 61: Further CARIN example networks (2) 
(top) Subset of direct Srf targets connected to Gata4 through Anni textmining associations. (bottom) All 
annotated genes and interactions currently available in CARIN. 
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4. Discussion 

This works represents a systematic in vivo analysis of important regulatory factors of the cardiac 

transcription network comprising DNA-binding transcription factors as well as epigenetic regulation 

by histone modifications. Genome-wide binding of the key cardiac transcription factors Gata4, Mef2a, 

Nkx2.5 and Srf was analyzed in conjunction with functional consequences of RNAi mediated 

knockdown of the individual factors in cell culture, leading to new insights into individual binding 

behaviour and function of the analyzed factors. These data were combined with DNA occupancy of 

activating histone modifications, revealing important regulatory dependencies that were confirmed and 

further analysed in a time-series of cardiac maturation in mouse around birth. In a final step, resulting 

transcription networks were studied and extended based on expression profile disturbances in patient 

with congenital heart disease. The study indicates a high complexity of the cardiac regulatory network, 

which is regulated on many levels comprising co-binding of transcription factors as well as the 

importance of accompanying histone modifications for TF target gene activation. This was elucidated 

for Srf and H3ac, which were studied in detail, indicating repeated buffering of the regulatory circuits 

but also high variability on the single gene level. Further, genes previously not shown to be linked to 

congenital heart disease were discovered to have an altered expression profile in a patient sharing 

similar disease phenotypes and functional upstream regulators were predicted. 

In human and mouse ~2,000 transcription factors, more than 100 different modifications of histone 

residues and a large number of post-transcriptional regulators modulate the mRNA profile 

corresponding to 20,000-25,000 genes. A so far unknown fraction of these is important for correct 

heart development and function. Due to a large number of successful studies, major insights have been 

gained into the regulation of the transcriptional process by DNA-binding transcription factors and their 

modulators.264-266 More recently, the roles of histone modifications in establishing and maintaining the 

chromatin status and their function as protein interaction partners have been discovered.107,223,267 

However, we lack data showing the interaction between these levels of regulation. Initial insights were 

obtained by focusing on each level and factor independently. Though, the goal of this thesis was a 

combinatorial analysis of the different regulatory mechanisms that drive correct cardiac gene 

expression. While it was long thought that transcription factors are the main driving force results of 

this study favor a comparable impact with a high degree of interdependency leading to a fine-tuned 

balance. 

Using ChIP-chip, the transcription network driven by Gata4, Mef2a, Nkx2.5 and Srf was investigated. 

While these factors have already been analyzed in other studies, the binding of transcription factors is 

known to be cell type specific and this is the first study that analyzed all these TFs in the same cell 

type. Careful normalizing of the experimental data was performed to remove systematic experimental 

biases using a variance stabilizing normalization method. A peak calling algorithm based on a sliding 

window approach coupled to an empirically derived null distribution was applied to determine 

enriched binding sites for the individual factors in ChIP, revealing a large number of known as well as 

new targets for each factor, yet with large differences in their actual number. These results are in line 

with the current knowledge about the individual factors, e.g. Srf is known to have many targets as it is 

important not only in heart development but also in the general regulation of muscle cells.268 GO term 

enrichment analysis175 incorporating the GO topology revealed good agreement with previous 

knowledge about the individual factors substantiating the implemented approach. For example, targets 

as well as differentially expressed genes of all analyzed factors had a significant overrepresentation for 
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heart and muscle related GO terms, like ‘heart looping’ and ‘cell motility’ for Nkx2.5 targets. 

Strikingly, mice with a partial knockout of Nkx2.5 show missing heart looping initiation52 and reduced 

cell proliferation269. Further, genes annotated to ‘bone mineralization’ were also found significantly 

overrepresented in Nkx2.5 targets, eventually pointing to novel functions of this TF. To study the 

distribution of respective motifs in the found binding sites, ChIP-chip peaks were subsequently 

analyzed. Using both a de novo predictive approach as well as TFBS prediction with known PWMs 

resulted in the successful identification of binding motifs for Gata4, Mef2a and Nkx2.5 but failed to 

identify the TRANSFAC motif of Srf. Conversely, searching ChIP-chip peaks with the known CArG-

box motif CC(A/T)6GG.53 resulted in a large number of positive peaks. It is suggestive that the low 

agreement between the motif search using TRANSFAC PWMs and the CArG-box motif might likely 

be due to an insufficient representation of the real Srf binding pattern by the existing PWMs. Many 

PWMs submitted to TRANSFAC rely on the ‘Systematic Evolution of Ligands by Exponential 

Enrichment’ (SELEX) method,270 which purifies and sequences binding sites of TFs. As the SELEX 

protocol contains very restrictive purification steps, many weaker binding sites will get lost, which 

was already suggested to lead to an insufficient representation of binding sites with intermediate 

affinity.271 

Although physical interaction was shown for several of the analysed factors272,273 only little was 

known about their extent of co-regulative binding in vivo. Therefore, combinatorial binding to the 

same promoter or in a close range was investigated, revealing a large number of common targets and 

binding sites. Figure 62 shows the full network of all bound targets indicating the high degree of 

 

Figure 62: Network of direct targets gathered in ChIP-chip 

The network shows direct targets of Gata4, Mef2a, Nkx2.5 and Srf gathered using ChIP-chip experiments in 
HL-1 cells. The high degree of overlapping targets is clearly revealed. This picture was produced using CARIN 
and later modified to enlarge the analyzed TFs. 
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overlap. Comparing observed to expected number of pairwise targets, a positive correlation of binding 

sites was found for all factors except Srf, which also shared a large absolute number of targets with the 

other factors but was shown to have a more individual binding pattern. Interestingly, the lowest 

correlation (odds ratio ≈ 1/6) was found between Srf and Mef2a and these two factors were shown to 

bind to the same sites in a competitive manner to control gene expression.274 Further, integrating 

binding of all factors simultaneously, a large number of almost 500 genes were shown to be bound by 

two or more of the analyzed factors, whereof 85 genes showed binding sites for all four in a close 

range of less than 500 bp. These results indicated a high degree of complexity and points to a 

cooperative regulation of gene expression. 

To determine the functional consequences of TF binding, siRNA knockdown experiments were 

carried out and compared to wildtype expression using array detection. To remove systematic biases 

the datasets were normalized using a combination of a spline function based on sample quantiles114 

and the median polish algorithm to reduce the sequence bias.208 Differentially expressed genes were 

determined using the limma275 method revealing a mainly but not exclusively activating function of all 

analyzed factors. In line with other studies276-278 it was found that most of the differentially expressed 

genes in the siRNA experiments were indirect targets of the respective transcription factor. Vice versa, 

many direct targets gathered in ChIP-chip did not show significantly altered expression in the 

respective siRNA knockdown. Potential reasons have been widely discussed in the literature.265 The 

most prominent explanations given are TF binding in a poised state,279 insufficient knockdowns280 or 

buffering by redundant paralogs.281 For example, members of the Mef transcription factor family were 

already postulated to buffer each others dysfunction.205,282,283 In line with this, Mef2a was found to 

have the lowest number of differentially expressed genes in its knockdown. As an additional 

explanation, this study suggests a buffering effect by co-regulative binding also of non-paralogs, like 

the four investigates transcription factors. In accordance, those genes that were bound by multiple 

transcription factors in ChIP-chip were found to be significantly less likely differentially expressed in 

their respective siRNA knockdown. Likewise, factors with a high number of common targets showed 

only a low number of commonly differentially expressed genes in their knockdown.  

To explore the influence of histone modifications as an epigenetic mechanism to modulate gene 

expression, the transcription factor binding data was analyzed in the context of co-occurring activating 

histone modification marks of H3ac, H3K4me2, H3K4me3 and H4ac.16 It was found that ~80% of the 

observed transcription factor binding events were additionally marked by one or more of these histone 

modifications, whereas in a randomized situation only 23% are expected to co-occur. These 

observations are consistent with others studies which observed that regulatory binding sites are 

frequently marked by histone modifications.225,284 Consequently it was investigated whether the 

presence of any of these histone modifications had an influence on the expression levels of direct 

target genes and a significant dependency was found for Gata4, Nkx2.5 as well as Srf but not for 

Mef2a. The fact that no positive effect of accompanying histone modifications on gene expression was 

found for Mef2a might correlate with the observation that Mef2a interacts with both HATs as well as 

HDACs, thereby acting as a platform to respond to both positive and negative transcriptional 

signals.285,286 

Using linear modeling techniques, H3ac was revealed as the only of the investigated histone 

modification that modulates Srf target gene activation. Further, using ChIP-seq experiments followed 

by read mapping and peak calling based on a negative binomial distribution, this interaction was 

confirmed in a genome-wide manner. Incorporating results of the siRNA knockdown of Srf, it was 
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shown that Srf target genes additionally marked by H3ac preserved their high expression even after 

the cellular abundance of Srf was diminished, pointing to a buffering effect of the acetylation marks. 

Based on these findings, time-series experiments were designed to analyze the dependency between 

Srf and H3ac. Therefore ChIP-qPCR was performed for preselected regulatory sites gathered from 

mouse heart in three developmental stages of cardiac maturation around birth. In addition to the two 

aforementioned factors, the histone modification H3K4me2 as well as the HAT p300 were screened, 

which both were associated to Srf dependent gene activation in other studies.230,231 After data 

normalization, correlated changes between subsequent stages were investigated, indicating high to 

modest dependencies between the individual factors. While a high correlation between changes in the 

HAT p300 and acetylation level was expected, the link between the other factors is not 

straightforward. Interestingly, the highest correlation was found between changes in H3ac and 

H3K4me2 levels. This supports findings in human CD4+T cells which revealed that histones in 

promoters that showed initial H3K4 methylation were acetylated after treatment with Trichostatin A, 

an HDAC inhibitor, while those promoters that did not had initial H3K4 methylation remained largely 

unacetylated.222 The coupling between the histone tail methylation and acetylation might either be 

achieved through the recruitment of ATP-dependent chromatin remodeling complexes which open the 

chromatin to allow other histone modification enzymes to bind227,228 or by direct H3K4me2 

recognition from histone acetylation complexes.229 It was further suggested that H3K4 methylation of 

nucleosome particles can increase the efficiency of acetylation by p300.287 In line with this, we found 

significant correlation between changes in H3K4me2 and p300 enrichment. 

The coupling of p300 to H3K4me2 and finally to H3ac might likely be established through tissue 

specific transcription factors. Following a recently suggested model by McDonald and Owens,230 gene 

activation by Srf is performed in a step-wise procedure (Figure 63). In order to bind its CArG-box 

motif, initial histone modifications like H3K4me2 and H4ac must be present. H4ac thereby leads to an 

open chromatin state facilitating genomic access while H3K4me2 provides a docking site to the 

Srf/Myocardin complex. Myocardin, one of the most potent co-activator of Srf, belongs to the SAP 

domain family of nuclear proteins and is exclusively expressed in smooth muscle cells and 

cardiomyocytes. The binding of the Srf/Myocardin complex recruits further transcription factors like 

p300 and other members of the basal transcriptional machinery62,221 via the powerful C-term 

transcriptional activation domain. This fully activates the gene expression program. Consistent with 

this model, lower albeit significant correlations were found between changes in Srf enrichment and the 

 

Figure 63: Gene activation by Srf, p300 and histone modifications 

Model for smooth muscle cell (SMC) gene activation according to McDonald and Owens230. H4ac and 
H3K4me2 facilitate the binding of the Srf/Myocardin complex to regulatory CArG boxes. The complex then 
recruits p300, leading to further histone acetylation and active gene expression. 
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two histone modifications. However, the correlation between p300 and Srf, while still remaining 

significant, was the lowest found in this analysis and was even lower than the correlation between Srf 

and H3ac. In addition, linear models that were built to estimate the influence of both Srf as well as 

p300 either in a qualitative or a quantitative way revealed a significant influence for both factors. 

Besides, the correlation between Srf and p300 was completely lost if only the two postnatal stages 

were taken into account. Taken together, these findings contradict with the proposed model of p300 

recruitment by Srf but rather point to the existence of different factors that link Srf-binding to histone 

3 acetylation.  

The observed impact of histone 3 acetylation on the activating potential of transcription factors as 

exemplarily shown for Srf underlines the beneficial effects seen for HDAC inhibitors for a variety of 

disease states.288 Results from this study favor the view that buffering by co-binding transcription 

factors as well as modulation of the histone modification status might be a plausible explanation for 

incomplete penetrance or phenotypic diversity as frequently observed in mouse models with identical 

genetic background or in human disease such as congenital heart disease. Here, a distinct gene 

mutation can lead to a broad portfolio of phenotypes, such as mutations in Cited-2 which lead to 

various cardiac malformations including atrial and ventricular septal defects.289,290 To increase the 

current knowledge about transcription networks and their breakdown in heart disease, gene expression 

data for a selected set of cardiac relevant genes was analyzed in a large number of patients with a 

broad range of congenital heart disease. Using hierarchical clustering to compress the partially 

overlapping phenotype characteristics meta-phenotypic subgroups of patients were defined and linear 

modeling was used to determine phenotype specific gene expression changes. Thereby, specific 

molecular portraits of each meta-phenotype could be revealed with some genes that were specifically 

deregulated in only a single group but also those that were deregulated in more than one meta-

phenotype group. Two promising examples were TBX20 and DPF3, which were both found to be up 

regulated in patients with Tetralogy of Fallot, one of the most common congenital heart disease, which 

has been linked to a number of genetic, epigenetic and environmental disturbances.291 Of these, 

TBX20 was found to be specifically associated to patients with TOF and main pulmonary artery 

abnormalities, while DPF3 was associated to the same cluster but also to patient with TOF and a left-

to-right shunt across the interventricular septum. Based on these findings two follow-up studies were 

conducted by members of our own group investigating TBX20 and DPF3 further (Hammer et al.
292 

and Lange et al.
107). Interestingly, DPF3 was found to be a ‘reader’ of histone modifications and might 

provide a tissue specific anchor of the overall histone remodeling machinery, once more indicating the 

high interdependency between the individual regulatory levels. 

An integrative approach was used to construct human regulatory transcriptional networks based on 

correlated gene expression and optimized prediction of transcription factor binding sites. Groups of 

genes showing a highly correlated expression pattern over all analyzed patients were used to reveal 

likely co-regulated genes. To predict common regulators, cis-regulatory elements present in the 

promoters of all correlated genes were determined using TFBS prediction that was initially optimized 

based on the ChIP-chip dataset to ensure the best agreement with experimental results. Resulting 

transcription networks were confirmed using literature as well as an additional affinity based 

transcription factor prediction. The implemented network prediction approach was able to shed light 

on a regulatory subnetworks driving TBX20 expression, which revealed NKX2.5 and GATA4 as 

potential regulators. TBX20 was not only shown to be associated to TOF in this study but is of 

particular interest as mutations in the TBX20 gene or changes in TBX20 levels are in general 
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associated with severe congenital malformations both in animal models293 and in patients.294 However, 

the regulation of TBX20 was not well known so far and the only described signaling molecule 

upstream of TBX20 is BMP2.295 Yet recently, studies in our own lab could show that TFAP2C, which 

was not analyzed in this study, is a direct regulator of TBX20.292 Identification of NKX2.5 and 

GATA4 as common regulators reveals them as interesting candidate genes to be responsible for the 

transcription pattern of this phenotype cluster. A causative connection is suggestive and mutations in 

both TFs have already been linked to TOF.79,296 Integrating the results with the cell culture 

experiments, Tbx20 was in addition found to be a direct target of Mef2a and Srf in ChIP-chip. Further, 

siRNA knockdown experiments in all four TFs showed significant reduction of Tbx20 mRNA level. 

These results demonstrate that binding by the four factors as found in ChIP-chip and partially 

predicted by the network approach is indeed functional and activates Tbx20 expression. At the same 

time, the integration of the bioinformatic prediction provides an advantage over the use of only the 

ChIP experiments, as further potential modulators of TBX20 expression, like HAND2 and SMAD4 

were revealed, which can now be tested using additional experiments. 

Results of this study highly support a combinatorial nature of transcriptional regulation with a high 

degree of interdependency that is carefully orchestrated to regulate correct temporal and spatial 

expression of every gene to establish cellular function. In addition, as suggested by the performed 

knockdown experiments, these mechanisms are repeatedly buffered to maintain gene expression even 

in the case of disturbed regulators. As an example, Srf target gene activation was shown to be highly 

dependent on histone modifications and strikingly, histone modifying enzymes represent an important 

group of direct downstream targets of Srf as found in ChIP-chip/seq. E.g. the histone demethylases 

containing a Jumonji domain such as Jmjd1c, Jmjd2b, Jmjd3, Jmjd4 and Jmjd5 were all found to be 

direct Srf targets. Finally, transcription factors like DPF3 have the power to ‘read’ single histone 

modifications and suggestively even a histone code, leading to a tissue specific anchoring of the 

epigenetic machinery. Thus, analyzing the influence of individual regulators like transcription factors 

or histone modifications on target gene expression levels in a genome-wide manner can reveal the 

overall influence of each of these factors in general. However, on the single-gene level, a high 

variability in the regulatory dependencies was found. While the four TFs analyzed in ChIP-chip were 

shown to frequently bind together, many target genes exist that are only regulated by a subset of these. 

Further, manual analysis of target genes assigned to region studied in the ChIP-qPCR time series 

revealed highly dynamic sets of regulators that co-operatively work to regulate correct temporal 

transcription. The analysis of these dynamics as well as buffering mechanisms pose a great challenge 

on future analyses of regulatory networks. 

As this study integrated a number of complementary experiments, bioinformatic challenges were 

manifold. One of the most important tasks in the analysis of high-throughput datasets is a careful 

normalization of the data to remove systematic biases. Though, the performance of different 

normalization methods can highly depends on the analyzed dataset.297,298 In this study, this was 

demonstrated for the variance stabilization normalization method, which performed very well for the 

ChIP-chip data but lead to less significant results in the analysis of the siRNA knockdown expression 

data. As this was supposed to be dependent on missed parametric assumptions, it was in that case 

replaced by the non-parametric qspline normalization method, which led to higher agreement between 

replicated experiments and therefore enabled the detection of differentially expressed genes. Further, 

in case of ChIP-chip data, it has been suggested that probe sequence-specific normalization should be 

performed as it is usually done for gene expression microarrays. Johnson et al.
299,300 introduced the 
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first normalization models for ChIP-chip data that incorporated probe sequence composition. More 

recently, Chung et al.
301 showed that the enhanced ability of these methods to detect enriched DNA 

fragments was not based on the sequence dependent normalization but only on their implemented peak 

calling procedure. In line with their finding, no need for an additional sequence-specific normalization 

could be revealed in this study, as no prominent sequence bias could be detected after vsn 

normalization.  

Due to their complex nature, the interpretation of ChIP-chip experiments was one of the most 

demanding bioinformatic challenges. So far, no clearly accepted consensus has been established how 

the ChIP-chip signal of real binding sites has to be distinguished from background, leading to the 

implementation and utilization of many different ChIP-chip peak calling methods today.154,158,299,302-304 

This problem is aggravate by the fact that per se only little true binding sites are known for each 

transcription factor, making empirical benchmarking of different methods very challenging.305 Taking 

advantage of the single-tailed nature of the data, which is caused by specific enrichment but not 

specific depletion of genomic fragments,154 the technique implemented in this study to call 

significantly enriched binding sites was developed hand in hand with the existing experimental data to 

ensure high accuracy of found peaks. Furthermore, results were justified with existing knowledge 

about the individual transcription factors from heart and muscle cells and partially confirmed for 

known target genes using separate experiments. As an substantiating fact, GO term enrichment 

analysis revealed significantly enriched functional annotations of the predicted targets that were in line 

with existing knowledge about the individual factors. In addition to the detection by microarrays, this 

study also incorporated the more recently developed next-generation sequencing technique to detect 

ChIP enrichment. ChIP-seq poses different requirements on its analysis, which rendered a reuse of the 

implemented peak finding implemented for ChIP-chip impossible. Instead, a peak calling algorithms 

tailored to the needs of ChIP-seq data was selected that implements the negative binomial distribution 

as this was shown to be more accurate than earlier approaches.94 Interestingly, while both methods aim 

to measure the same binding sites, large different results of peak positions were found in the 

comparison of Srf ChIP-chip against ChIP-seq data. The reason for this difference, which was not only 

found in this study but also in a number of others, is so far unknown. Yet a number of possible 

explanations have been given in the literature, comprising differences in specificity and sensitivity and 

resolution of techniques.93,94,219,220 Further, it is possible that the differences in detected binding sites 

aren’t based on the different experimental techniques but the algorithmic approaches used for peak 

calling. Though, what disfavours this explanation was the high overlap of 91% that was observed for 

H3ac. Nevertheless, analyzing the ChIP-seq data in the same way as the ChIP-chip data, the same 

overall results were gained. 

To predict regulatory networks in human patient, gene expression analysis was coupled to the 

prediction of cis-regulatory elements. To increase the signal-to-noise ratio frequently found especially 

in the promoters of higher vertebrates,306 the prediction was restrained to tightly correlated and 

therefore likely co-regulated genes, using the Pearson correlation coefficient as the measure of 

statistical dependency. While it has been used in a large number of studies,121-123 Pearson correlation 

measures only the linear dependency between variables and was proposed to miss important non-

linear dependencies present in gene expression data.124 Therefore, mutual information based on density 

estimation131 was implemented as a measure of linear and non-linear dependencies in this study. 

However, comparing mutual information to Pearson correlation revealed no significant fraction of 

non-linear dependencies in the gene expression data. The same result was found in a more general 



 
 

 

4. Discussion 

112 

study comparing these two measures by Steuer et al.
127 Further, the MATCH algorithm was used to 

predict TFBS in the promoter of correlated genes. To derive the best parameters for the prediction 

process, meaning the length of the used promoter as well as the level of conservation, parameter 

optimization was performed incorporating known binding sites from the analyzed ChIP-chip data of 

Gata4, Mef2a and Nkx2.5 and the resulting parameters were applied also for the other TFs. This 

parameter optimization process indicated a promoter length of 1250 bp upstream and 500 bp 

downstream to be a good balance between too long promoters, resulting in a low signal-to-noise level, 

and too short promoters, which would miss important binding sites found in ChIP. Interestingly, the 

length of the optimal downstream region was found to be quite long, indicating a large number of 

binding sites potentially in intronic or even exonic regions. This high number of downstream 

functional elements was also revealed in an analysis performed by the ENCODE consortium.264 In 

addition, the comparison with ChIP-chip peaks revealed that while the use of conservation information 

will highly reduce the sequence’s noise ratio, indicated by a higher fraction of true predictions, 

requiring a to high conservation level will result in the loss of many functional binding sites, as 

revealed by the lower fraction of predicted ChIP peaks. This will especially be true for those sites 

which represent species-specific regulatory elements, as these will not be conserved. The results of the 

parameter optimization process revealed a minimal nucleotide conservation level of 60% in a 100 bp 

window to be the optimal choice for the analyzed dataset. This high variability in TF binding events 

even between very closely related species has been demonstrated in a number of animals, including 

different yeast307 and drosophila308 strains as well as between mouse and human.309 Comparing the 

results from the prediction of single TFBS using MATCH with the affinity-based approach 

implemented in TRAP, a large number of predicted regulatory dependencies were found using both 

tools. This is not surprising, as both methods rely on the same binding motifs and a DNA sites that 

closely resemble the TF binding motif will lead to a prediction in MATCH as well as a high affinity in 

TRAP. Yet, the affinity approach yields the possibility to integrate the contribution of also weak 

binding sites, thereby providing the chance of detecting regulatory implications that will not be visible 

to a threshold based prediction such as MATCH. However, as shown in the case of NKX2-5, which 

had predicted and ChIP-validated regulatory binding sites in the promoters of four highly correlated 

genes but failed to be assigned as a high affinity regulator using TRAP, the highest affinity prediction 

as well as TFBS prediction in general does not always reflect biological binding known from literature 

or identified in ChIP.  

While the approach to build regulatory networks by combining correlated gene expression with TFBS 

prediction has been implemented in a number of studies it is only one of many possible. Another very 

popular method is Bayesian network learning310 for single state analysis or Dynamic Bayesian network 

learning for time-series data.311 They are highly suggestive for modeling of regulatory networks as 

they provide indirect causality between the nodes of the estimated network, which can be translated 

into regulatory dependencies. Though, to reliably estimate the underlying probability density 

distributions of the regulatory network these methods require a large number of data measurements, 

which is limited by the amount of available material especially when analyzing human samples and 

was therefore not suitable for the analysis. Another promising approach for a joined analysis of 

phenotype and genotype data would be biclustering.312 While normal clustering depends on 

exclusively rows or columns, or patients or genes, a biclustering approach simultaneously clusters 

both dimensions. Especially in respect to the mainly overlapping phenotypes of the dataset, 

biclustering would allow a clustering of the underlying genes without a fixed patient phenotype 
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grouping and could lead to the uncovering of further gene regulations, which might have been missed 

due to the hierarchical clustering approach. Indeed, biclustering was used to analyze the dataset. 

However, it was revealed that the small number of 42 genes was insufficient to drive meaningful 

results and the analysis was therefore excluded from this thesis. 

Different to bioinformatic analyses of data of only a single experimental type, e.g. gene expression 

measurements, this study presents an integrative approach incorporating annotations gathered using 

multiple experimental techniques including the screening of in vivo transcription factor binding, gene 

expression measurements in wildtype and knockdown and bioinformatic predictions of regulatory 

dependencies. A number of similar integrative approaches have been published comprising the 

analysis of the mitochondrial proteome,313 the hepatitis C314 and influenza315 viruses, miRNA 

regulatory circuits,316 genetic interactions in yeast317 and E. coli,318 or the prediction of drug targets in 

human319,320 amongst many others. Bioinformatic analysis is most vital for all of these studies. The 

integration of many complementary techniques yields the power to derive more comprehensive 

insights than each experiment individually could do by assaying varying aspects of complex biological 

processes, whether the focus of the study is a single-cell organism like yeast or a highly complex 

organ like the human heart. Thus, a combination of different approaches as done in this study will lead 

to more significant results in the light of biological authenticity. Further, this study presents one of the 

first analyses that investigated combinatorial TF regulation in cardiac transcription networks on a 

genome-wide scale systematically incorporating the influence of histone modifications. However, such 

genome-wide cardiovascular datasets are rare and often hard to relate as they have been gathered using 

different species and different platforms. In an attempt to collect existing datasets, the CArdiovascular 

Regulatory INteraction database was implemented, which has become the dissemination database for 

the EU project ‘HeartRepair’. Given its structure which integrates data gathered using different 

experimental techniques and from different organisms as well as its sophisticated visual user interface, 

which incorporates the possibility to filter and highlight subgroups of genes, it is meant as a 

communication platform for researchers of different fields to conjointly work on questions related to 

heart development, function and disease. 

Yet, a number of questions raised in this study still remain unanswered: given the predicted co-

regulation of the four transcription factors analyzed in the cell culture experiments, it is still unclear 

how they interact and in what quantities this interaction is required for correct gene regulation or if it 

is merely a way to dynamically buffer changes in the enrichment of individual factors. Further, it was 

revealed that most of the analyzed factors require the co-occurrence of additional histone 

modifications, yet only a small number of all known modifications was investigated. In addition, for 

most of the interaction between transcription factor and histone modifications it is unknown how their 

coupling is established and, with the exception of a small fraction of histone modifications, how their 

presence influences gene expression. While results from this study substantiated the supposed 

coupling of Srf and H3ac, the existing model that predicts a coupling through the histone 

acetyltransferase p300 could not be confirmed. Finally, the large number of children born with 

congenital heart disease still poses a severe challenge on today’s research. So far, the correlated 

interaction of factors in transcriptional networks is largely unknown, especially in respect to their 

dynamic behavior given long temporal processes such as development. This lack of knowledge is 

exemplified by the low number of patients with congenital heart disease that carry mutations within 

the few identified causal human genes.321 Given previous genetic studies, it is assumed that most 

congenital heart defects have a multi-genetic and multi-factorial basis with partially overlapping 
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genotypic and phenotypic manifestations. Results from this thesis and other recent studies demonstrate 

that histone modifications are likely contributors to heart disease and must therefore be integrated as 

additional layers of transcriptional regulation.322-325 

To systematically investigate the genetics of congenital heart disease, next-generation sequencing of 

RNA in patients is likely the method of choice. In combination with family studies or population-wide 

sequence variation analysis it provides the basis for high-throughput analyses of expression level and 

sequence mutational causes for heart and other congenital disease. In addition, mRNA sequencing 

allows the identification and quantification of new splice variants. A number of genetic diseases have 

already been linked to incorrect mRNA-processing326 and it has been suggested that at least 15% of all 

single base-pair mutations causing human genetic diseases result in pre-mRNA splicing defects.327 

Some of these mutations can create new splice sites, while others weaken regular splice sites, thereby 

leading to the recognition of nearby pre-existing cryptic splice sites. Further, mutations in exon 

sequences were found that disturb splicing protein binding and lead to an exclusion of the appropriate 

exon from the final mRNA. And just recently, these processes have been further complicated by the 

finding that histone modification can directly regulate alternative splicing of pre-mRNAs.328 

Two other important regulatory mechanisms which influence the abundance of transcripts, namely the 

presence of DNA-methylation sites in promoter regions and the post-transcriptional regulation by 

miRNAs, have not been considered in this analysis. Nevertheless, they were shown to have 

implications on heart development and disease. Especially miRNAs are the topic of many recent 

studies. It has been described that miRNA expression profiles change during cardiac development and 

just recently it has been shown that a considerable amount of proteins are deregulated during heart 

failure by microRNA activation and/or silencing.329 Interestingly, an impressive similarity has been 

found between the miRNA expression patterns occurring in human failing heart and 14-weeks-old 

fetuses, like the up regulation of miR-21, miR-29b and miR-210 and the down regulation of miR-30, 

miR-182 and miR-526.330 Gene expression analysis coupled to miRNA target prediction revealed that 

most up regulated genes were characterized by the presence of a significant number of predicted 

binding sites for down regulated miRNAs and vice versa.329 The expression of miR-1 was shown to 

have an impact on embryo lethality in mice and thus its dysregulation might very likely result in 

congenital heart disease in humans.39 Again, genome-wide miRNA sequencing approaches preferably 

in conjunction with mRNA sequencing might very likely underline this proposed implication. Studies 

correlating these two approaches are recently ongoing in our group. As an interesting fact, new 

chemically engineered oligonucleotides, so-called ‘antagomirs’ have been proven to specifically and 

efficiently silence miRNA in mice, implicating their use as potential therapeutic substances.331,332 In 

addition, histone-modifying enzymes are already utilized as therapeutic substances especially in the 

field of cancer treatment. 

Combining the findings from genome-wide studies, time-series analysis of correlated binding changes 

and the prediction of cardiac regulatory network and disease-associated molecular portraits as done in 

this thesis can therefore suggest novel cardiac regulatory cascades and might even point out strategies 

for therapeutic treatment of pathological cardiac growth, remodeling and heart failure. 
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6. Abbreviations 

 
ANOVA Analysis of variance 

AoArch Aortic arch 

ASDII Atrial septal defect, secundum type 

AVSD Atrioventricular septal defect 

Bpsys Systolic blood pressure 

CHD Congenital heart disease 

ChIP Chromatin immunoprecipitation 

ChIP-chip ChIP followed by array analysis 

ChIP-seq ChIP followed by next-generation sequencing 

DORV Double outlet right ventricle  

E18.5 Embryonic state 18 ½ days after fertilization 

FDR False discovery rate 

GO Gene ontology 

H3ac Acetylation of lysine 9 and 14 on histone 3 

H3K4 Lysin 4 of histone 3 

H3K4me Mono-methylation of lysine 4 on histone 3 

H3K4me2 Di-methylation of lysine 4 on histone 3 

H3K4me3 Tri-methylation of lysine 4 on histone 3 

H4ac Acetylation of lysine 5, 8,12 and 16 on histone 4 

HAT Histone acetyltransferase 

HDAC Histone deacetylase 

HLHS Hypoplastic leaft heart syndrome 

IAS Interatrial septal defect 

Infund Infundibular 

Insuff Insufficiency 

IVS Interventricular septum 

LA Left atrium 

LR Left to right 

LSVC Left superior caval vein present 

LV Left ventricle 

miRNA MicroRNA 

miRNA-seq Next-generation sequencing of miRNAs 

MPA Main pulmonary artery 

P0.5 Postnatal stage ½ days after birth 

P4.5 Postnatal stage 4 ½ days after birth 

PCR Polymerase chain reaction 

PDA Persistent ductus arteriosus 

Perim Perimembranous 

PFO Patent Foramen ovale 
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PHD Plant homeodomain 

PS Pulmonary stenosis 

PV Pulmonary valve 

PWM Position weight matrix 

qPCR Quantitative real-time PCR 

Q-Q plot Quantile-quantile plot 

RA Right atrium 

RISC RNA-induced silencer complex 

RL Right to left 

RNAi RNA interference 

RV Right ventricle 

siRNA Short interference RNA 

Sysgrad Systolic gradient 

TF Transcription factor 

TFBS Transcription factor binding site 

TGA Transposition of the great arteries 

TOF Tetralogy of Fallot 

TSS Transcriptional start site 

UTR Untranslated region 

VSD Ventricular septal defect 
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7. Summary 

This work presents the bioinformatic part of an integrative approach to analyze transcription networks 

taking the vertebrate heart as a model. Bioinformatic analyses of a number of high-throughput 

experiments elucidated regulatory dependencies that drive correct spatial and temporal transcription 

by the interplay between combinatorial transcription factors binding and co-occurring histone 

modifications. Furthermore, key genes were characterized in terms of their association with cardiac 

disease and a database to store and visualize current knowledge in heart and muscle gene regulatory 

associations was implemented. 

The analysis of the four key cardiac transcription factors Gata4, Mef2a, Nkx2.5 and Srf using binding 

site detection by chromatin immunoprecipitation followed by array analysis (ChIP-chip) and 

knockdown of the respective factors using siRNA experiments revealed a high overlap in terms of 

their binding sites as well as their regulated target genes. Interestingly, those genes that had a high 

number of binding factors were less likely to be differentially expressed in the knockdown of the four 

TFs. This finding points to a buffering effect based on combinatorial binding, in which the remaining 

factors stabilize the gene expression even if a single factor is missing. Co-occurrence analysis with 

four activating histone modification revealed that the activating potential of Gata4, Nkx2.5 and Srf 

was highly dependent on the co-occurrence with histone modification marks, while no such 

dependency could be revealed for Mef2a. For Srf, the number of possible interacting histone 

modifications was narrowed down to histone 3 acetylation as the only important factor. This result was 

further substantiated by additional chromatin immunoprecipitation followed by next-generation 

Illumina sequencing (ChIP-seq), which also revealed that the presence of histone 3 acetylation tags 

had a buffering effect on the expression of Srf targets even after knockdown of this TF.  

To gain further insights into Srf-driven gene transcription, the binding of Srf, the acetyltransferase 

p300 and the presence of histone 3 acetylation and histone 3 lysine 4 di-methylation were 

subsequently analyzed in selected regulatory regions in a time-series of mouse hearts around birth 

using chromatin immunoprecipitation followed by real-time qPCR measurements. The analysis 

revealed a high correlation in the enrichments of the individual factors over time. One- and two-factor 

linear models confirmed this correlation and substantiated a link between Srf and histone 3 acetylation 

through p300. However, they also implied so far unknown ways of coupling between these two 

regulatory factors. Changes in the analyzed factors were shown to have a regulatory input on the 

expression levels of nearby genes. 

To investigate the significance of the found regulatory implications, a selected set of 42 genes were 

screened in a cohort of patients with a broad panel of congenital heart disease. Using linear models, 

specific molecular portraits associated to phenotypic subgroups could be identified. Further, using 

correlated expression and prediction of transcription factor binding sites, which was optimized using 

the previously analyzed ChIP datasets, cardiac regulatory networks could be revealed, which were 

verified using a combination of experimental, literature and bioinformatic datasets. 

Finally, the ‘CArdiovascular Regulatory INteraction’ database was implemented, which integrates 

experimental results from several species as well as publicly available annotations and offers a 

sophisticated user interface which provides an easy and comfortable data overview using dynamic 

network representations and detailed information for individual genes at the same time. The database 
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was developed to enable the integrated view of data generated within the European project 

HeartRepair and to promote future research in this field. 

In summary, the presented analyses revealed high complexity of the genetic and epigenetic levels of 

cardiac gene regulatory networks and a high interdependency between these. 
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8. Zusammenfassung 

Die vorliegende Arbeit stellt den bioinformatischen Teil einer integrativen Analyse transkriptioneller 

Netzwerke am Modell des Wirbeltierherzens vor. Mit Hilfe von Datensätzen gewonnen durch 

aktuellste experimentelle Techniken wurden dabei Abhängigkeiten innerhalb der regulierenden 

Netzwerke aufgezeigt. Es wurde das Zusammenspiel von gemeinsamer Bindung von 

Transkriptionsfaktoren (TF) an Genpromotoren und das gleichzeitige Vorkommen von 

Histonmodifikationen näher untersucht. Weitere Schwerpunkt waren die Bestimmung von 

deregulierten Genen in Patienten mit angeborenen Herzfehlern und der Aufbau einer Datenbank zur 

Speicherung und Visualisierung des gegenwärtig vorhandenen Wissens über herz- und 

muskelspezifische Gene und deren Regulation. 

Die Analyse von Chromatin-Immunoprezipitation mit anschließender Mikro-Array-Detektion für die 

Transkriptionsfaktoren Gata4, Mef2a, Nkx2.5 und Srf sowie die Datenanalyse von siRNA-

vermittelten Knockdowns derselben TF ergab eine hohen Zahl an gemeinsamen Bindestellen und 

regulierten Zielgenen. Interessanterweise waren genau die Gene, welche die höchste Zahl an 

Bindestellen für die untersuchten TF aufwiesen, am seltensten im Knockdown der jeweiligen 

Transkriptionsfaktoren differentiell exprimiert. Dies weist auf einen potentiellen Puffereffekt durch 

kombinatorische Bindung mehrerer TF hin. Dabei können Gata4, Mef2a, Nkx2.5 und Srf die 

Expression von Zielgenen auch dann aufrecht erhalten, wenn ein einzelner TF nicht mehr vorhanden 

ist. Die Untersuchung des gemeinsamen Auftretens von TF-Bindestellen und Histonmodifikationen 

verdeutlichte, dass Gata4, Nkx2.5 und Srf ihr aktivierendes Potential nur im Zusammenspiel mit 

Histonmodifikationen entfalten können. Ein vergleichbarer Zusammenhang für Mef2a wurde nicht 

gefunden. Für Srf konnte die Acetylierung von Histone 3 (H3) als einzigen bestimmenden Faktor 

isolieren werden. Weitergehende Chromatin-Immunopräzipitations-Experimente mit anschließender 

Next-Generation-Sequenzierung (ChIP-seq) untermauerten die Ergebnisse und deuteten zudem einen 

Puffereffekt der H3-Acetylierung auf die Expression von Srf-Zielgenen in dessen Knockdown an.  

In einer auf diese Ergebnisse aufbauenden Analyse wurde der Zusammenhang zwischen der Bindung 

von Srf und der Acetyltransferase p300 sowie den zwei Histonmodifikationen H3-Acetylierung und 

H3-Lysin-4-Dimethylierung näher untersucht. Dazu wurden potentiell regulierende DNA-Regionen in 

einer Zeitreihenanalyse von Mauseherzen vor und nach der Geburt durch Chromatin-

Immunopräzipitation gefolgt von quantitativer Real-Time-PCR untersucht. Die Analyse ergab eine 

hohe zeitliche Korrelation der untersuchten Faktoren, die durch den Einsatz linearer Modelle weiter 

untermauert werden konnte. Dabei konnte der bereits vorher bekannte funktionelle Link zwischen 

p300, Srf und H3-Acetylierung bestätigt werden. Zudem ergab die Analyse, dass es potentiell weitere 

von p300 unabhängige regulierende Mechanismen der H3-Acetylierung durch Srf gibt. Schließlich 

konnte gezeigt werden, dass eine Veränderung in der Bindung der untersuchten TF und 

Histonmodifikationen sich auf die Expression benachbarter Gene auswirkt. 

Nachdem die vorangegangenen Untersuchungen sich auf transkriptionelle Netzwerke in Zellkultur und 

Mausherzen fokussierte, wurde abschließend die Expression von 42 ausgewählten Genen in Patienten 

mit verschiedensten angeborenen Herzfehlern untersucht. Dabei konnten phänotypischen Subgruppen 

spezifische molekulare Expressionsmuster zugeordnet werden. Mit Hilfe einer Kombination aus 

korrelierten Expressionprofilen und der Vorhersage von Transkriptionsfaktorbindestellen, die zuvor 

anhand der bereits untersuchten ChIP-Datensätze optimiert worden war, konnten daraufhin 
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transkriptionelle kardiale Regulationsnetzwerke vorhergesagt werden. Diese wurden mit Hilfe von 

mehreren biochemischen, bioinformatischen und Literaturdatensätzen verifiziert. 

Als letzer Teil der Studie wurde die „CArdiovascular Regulatory INteraction“-Datenbank 

implementiert. Diese integriert aktuelle experimentelle Ergebnisse aus verschiedenen Organismen mit 

öffentlich verfügbaren Annotationsdatensätzen. Besonderer Wert wurde hierbei auf die Realisierung 

eines fortgeschrittenen Visualisierungsmoduls gelegt, das sowohl gespeicherte Netzwerke in 

dynamischer Form darstellen kann als auch Informationen für einzelne Gene bereitstellt. Die 

Datenbank soll eine Grundlage schaffen für eine weiterführende Analyse der erarbeiteten Ergebnisse 

sowohl von bioinformatischer als auch von biologischer Seite. 

Zusammengefaßt ergaben die durchgeführten Analysen ein hohes Maß an Komplexität innerhalb der 

genetischen und epigenetischen Ebenen der Genregulation mit vielfachen Verknüpfungen. 
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9. Individual Contributions 

All analyses described in this study have been performed in the group of Prof. Dr. Silke R. Sperling. 

The experiments investigated have been performed by biochemists from the Sperling group, including 

(in alphabetical order) Ilona Dunkel, Jenny J. Fischer, Stefanie Hammer, Martin Lange, Jenny 

Schlesinger, Martje Tönjes and Qin Zhang. To clarify my part in the data analyses I will in the 

following list my individual contributions in detail. 

For the analysis described in section 3.1 of the results chapter, I performed the ChIP-chip peak calling, 

the analysis of found TFBS including the motif discovery, the co-occurrence of TFBS, the analysis of 

the siRNA experiments and the overlap between ChIP-chip and siRNA results together with Jörn 

Tödling and Tammo Krüger. The ChIP-seq mapping and peak calling were performed by Marcel 

Grunert. Together with him I analyzed the overlap between ChIP-chip and ChIP-seq TFBS. I analyzed 

the influence of histone modifications and Srf marks on gene expression.  

For the study of the qPCR time-series data (section 3.2) I selected the regulatory regions and 

performed all of the bioinformatic analysis. 

For the study of patient material (section 3.3) I performed all of the bioinformatic analysis, with the 

exceptions of the initial phenotype analysis, the expression data normalization and the correspondence 

analysis which have been performed by Utz. J. Pape. 

The CARIN database and it’s user interface (section 3.4) were solely implemented by me. Marcel 

Grunert participated in the conception and discussion of the user interface. 

All analysis presented in this thesis have been discussed and supervised by Prof. Dr. Silke R. Sperling. 
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