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1. Introduction
The fast technological and industrial development of the last decades contributes to ever
increasing living standards, but it also results in an increasing energy demand. Since
the early 1980s, the world total energy production has nearly doubled to 5 · 1020 J in
2012, with an increasing trend [4]. Simultaneously, climate change and peak oil raised
awareness for environmental consequences of wasteful use of inefficient energy sources.
Political activists call for a shift towards renewable, efficient and economical means of
transportation and power generation.

A specific challenge in electrical power generation is the variable demand: In Germany,
there currently is a base load of about 45 GW, with peaks going up to as much as 80 GW
[32]. With some renewable energy sources, especially wind turbines, in addition, there
is high volatility in the supply. It is hence necessary to have power sources that may be
quickly en- and disabled to cover peak-demands. Among the conventional technologies,
gas turbines play an important role in this regard: They have comparatively low invest-
ment costs, low emissions, may be powered up and down within minutes, and allow the
use of various fuels. In particular, they admit the use of renewable fuel sources.

The concept of a gas turbine dates back to 1791 [7], but it was not until 1939 that
the available technology allowed economical use on an industrial scale [42, 57]. Steady
advancements in technology have since increased the efficiency of gas turbine systems to
around 40% for single cycle application. It is generally believed nowadays that to obtain
large further increments in efficiency, a conceptual change is required.

The basic principle of a traditional gas turbine is as follows: A compressor, that is, an
array of fan-like airfoils, increases the pressure of air flowing in by reducing its volume.
Fuel is then injected into the air and a stationary flame is established. The hot exhausts
expand through, and thereby drive, a turbine, which is another array of airfoils. Turbine
and compressor are connected by a shaft, so the turbine powers the compressor. By fur-
thermore attaching, e.g., a generator to the shaft, the remainder of the released energy
can be utilized. The system may be modeled and planned as being in steady-state, signif-
icantly simplifying the design process. Transient behaviour is then considered off-design,
and one tries to suppress it.

Researchers from Technische Universität Berlin, Freie Universität Berlin and RWTH
Aachen jointly incorporated CRC 1029, funded by the German Research Foundation
(DFG), in an effort to give up on this design pattern, and instead harness non-steady
characteristics to achieve a large efficiency boost. Among others, alternative, non-steady
thermodynamic cycles are under investigation.

One of them is the Shockless Explosion Combustion (SEC). It offers an increased best-
case efficiency, but comes at the cost of a much more fragile process. It has high demands
on accuracy in terms of when and how much fuel to inject into the burner, and even if
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Figure 1.0.1.: Time series showing the auto-ignition of a stoichiometric methane/oxygen
mixture in atmospheric pressure.

technologically these demands may be fulfilled, it is expected to require feedback control
to remain operational. Subproject A03 has been concerned with the investigation of
the process. The first phase of the project had two distinct foci: The qualification and
quantification of the accuracy demands, and the study of means to meet them. The latter
has been investigated at Technische Universität Berlin in C. Oliver Paschereit’s group by
Bernhard Bobusch, and later Thoralf Reichel. The research yielded promising solutions
to a series of technological challenges. In particular, methods for accurate, efficient and
fast mixing have been investigated. Bernhard Bobusch’s dissertation [15] is centered
around this part of the project. The former focus was pursued by means of a theoretical
and numerical investigation of the process at Freie Universität Berlin, in Rupert Klein’s
group, by the present thesis’s author.

A working SEC involves gas dynamics of combustible gases at temperatures close
to their auto-ignition temperature: The chemical reactions driving combustions have
reaction rates that increase with temperature and simultaneously raise temperature
themselves as they progress. This makes combustion an exponential-like process, where
for low temperatures, essentially no reaction takes place, for high temperatures, reactions
progress very fast, and for intermediate temperatures, the reaction progresses but takes
some time to reach the point where rapid progression may be observed. This point is
called ignition, and for initial temperatures within this intermediate range, one speaks
of auto-ignition. As an example, fig. 1.0.1 shows the auto-ignition of methane (CH4).

From an applied mathematician’s perspective, the simulation of such flows is an inter-
esting challenge: Within a gas that is close to auto-ignition, local errors in temperature
can lead to premature, numerical ignition when they have a positive sign, or prevent
ignition otherwise. Upon auto-ignition, the chemical reaction progresses sufficiently fast
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for steep spatial gradients in temperature and pressure to appear in the model equations,
a system of partial differential equations. These gradients are usually too large for nu-
merical simulations with a reasonable grid resolution to handle. In a commonly used
approximation to the underlying Navier-Stokes equations, namely the Euler equations, the
gradients can even analytically evolve into discontinuities. In numerical mathematics,
shock-capturing methods are a robust means to deal with this situation. These methods
are designed to correctly handle the (near-)discontinuous case even with under-resolved
grids. They introduce some amount of numerical diffusion that smoothens the discontinu-
ities. If this artificial diffusion process mixes different gases, temperature does not remain
constant in general, which is in conflict with the requirement to avoid temperature errors.
A compromise must hence be tailored for simulations of the process.

From an engineering perspective, it is not less of a challenge to work with highly re-
active flows. If small local errors cause problems in simulations, then small inaccuracies
in measurement or control do as well cause problems in the real process. In contrast to
a numerical simulation, which may be repeated over using the exact same conditions
and where the entire system’s state is known at each instant, experimentalists only have
discrete measurements of some variables at hand, and cannot usually reproduce an exper-
iment with the exact same conditions. It is hence mandatory to have a good theoretical
understanding of the process.

During the work on the project, a simulation for qualitative investigation of SEC pro-
cesses has been developed. A focus of the work has been to make the simulation suf-
ficiently robust to allow it to be used by users without deep mathematical knowledge
about the limitations of numerical simulations, and still produce reasonable results — it
already is in active use by several projects investigating the SEC today. This required the
extension and adaptation of existing numerical methods to a suitable thermodynamic
representation of reactive flows and a discussion of the numerical issue introduced above.
To allow to use the tool to make general statements on the process, a model for generic
SEC-suitable fuels has been developed. The simulation and chemistry model have then
been used to estimate requirements on real fuels and to suggest a charging strategy for
the process.

This thesis aims to present all of these results. Due to the interdisciplinary nature of
the project, it deals with many different areas, and it is not expected that readers have
the same level of knowledge in all of them. Short, sometimes simplifying introductions
will hence be given. They will hopefully suffice to follow the line of argumentation at all
times. For in-depth introductions, references to introductory literature will be provided.

Structurally, the thesis is composed as follows: The second chapter is concerned with
fuel choices and modeling, which thematically ranges from the engineering field of re-
action kinetics to mathematical modeling. In the third chapter, numerical methods for
highly reactive flows are developed. The fourth chapter applies the preceding results to
obtain numerical results on the SEC, which thematically is again an engineering-oriented
contribution. In the following, this chapter will introduce the SEC and the various forms
of the equation system used to describe it.

3



1. Introduction

1.1. The Shockless Explosion Combustion
The traditional working principle of a gas turbine has been laid out above. In theoretical
investigations, one approximates the system by idealized thermodynamic power cycles:
They represent the process of converting heat into useful work by a closed path in the
phase space of the system, with the path being composed of actions that are easy to
theoretically grasp. The phase space in thermodynamics stems from the fundamental
relation

dE = T dS − p dV, (1.1.1)

where E is the internal energy of the system, T is temperature, S entropy, p pressure and
V the system’s volume. The relation naturally arises in statistical physics, see, e.g., [49],
or appendix A.1 for a brief summary. The equation is integrable for E, that is, E is a scalar
potential, and any of the two variables may be used to span the system’s phase space.
Here, p and V will be used.

The thermodynamic cycle associated with gas turbines is the Joule cycle. In the left
half of fig. 1.1.1, the cycle is plotted in p/V coordinates. The cycle begins in the bottom
left corner and moves clockwise: In the dimensionless coordinates used for the plot,
the point (1,1) marks atmospheric conditions upon the start of the process. Idealized
compression is an isentropic process, keeping entropy constant, because it is assumed
that the compression is reversible. Under certain restrictions, lines of constant entropy
are lines with pV γ = const, for some constant γ. A steadily burning flame is modeled as
an isobaric process, keeping pressure constant, because it is assumed that energy that
would raise pressure is released on a time scale slower than that of the acoustics which,
in some sense, tries to equilibrate pressure by transporting the released energy away
towards regions of lower pressure. Idealized expansion is isentropic as well. The cycle
is closed by isobaric heat rejection, assuming that the atmosphere is a reservoir with
constant pressure. The area enclosed by the curve is the energy released by the power
cycle. If one could replace the isobaric energy release of a steady flame with an isochoric
process, one taking place at constant volume — as is the case in the right half of fig. 1.1.1
— then the amount of energy that is released increases. This observation motivates the
SEC: It aims to achieve approximate Constant Volume Combustion (CVC) within a gas
turbine.

The straightforward way to achieve constant volume combustion is to constrain the
available volume by physical walls, as is the case in (idealized) internal combustion
engines. In an open system such as a gas turbine, this is not an option. The alternative
is to speed up the combustion: Above, it has been argued that a steady flame may be
modeled as an isobaric process, because the time scale of energy release is slow compared
to the acoustic time scale of energy transport. If energy is released on a comparable or
faster time scale, then the pressure rises despite there being a volume for the gas to
expand into, and in the limit of instantaneous energy release, the combustion process
becomes isochoric.

An obvious limiting factor for the rate at which energy can be released is availabil-
ity of combustible fuel/air mixture. By preparing a volume of premixed fuel/air, into
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Figure 1.1.1.: Non-dimensional pV-diagrams for the Joule cycle of a traditional gas tur-
bine and for the SEC, with the same fuel releasing ∆H = 1 in a perfect
gas with γ = 1.3. The enclosed areas are ∆E = 0.33 for the Joule cycle
and ∆E = 0.39 for the SEC.

which a combustion front can freely propagate, this limitation can be mitigated. Within
such a mixture, various physical processes may govern the propagation of combustion
fronts. The most common one can be observed in a laminar flame, where convection,
especially thermal diffusion and diffusion of reactive, intermediate radical species from
the reaction zone into fresh fuel/air mixture are locally responsible for the propagation
of the flame (see, e.g., [78]). Combustion processes governed by convection are called
deflagrations. Molecular diffusion is far too slow for the combustion to reach the pressure
rising regime. In turbulent flames, turbulent mixing speeds up the process. It especially
wrinkles and enlarges the flame surface area, resulting in faster propagation. As long as
the flame propagates into the unburnt mixture at a subsonic velocity, energy released in
the combustion is still transported away quickly and pressure cannot significantly rise.
If propagation is sonic, however, pressure accumulates at the tip of the flame. Pressure
waves raise temperature, and if the leading wave is strong enough, then the unburnt
mixture no longer ignites due to heat transfer but by auto-ignition due to this pressure
wave. The process is then called a detonation. Energy released from the reaction serves to
sustain the pressure wave’s strength. The leading shock wave has a pressure that is much
higher than the final pressure of a CVC, and the final pressure after the combustion took
place is still very high. A detonation may in this sense be regarded as approximate CVC.
In the form of the Pulse Detonation Combustion (PDC) (see, e.g., [64]) it is also under
investigation in CRC 1029. The PDC has two major drawbacks: The strong shock wave is
undesired. For one, it puts high strain on the materials, for the other, it is associated with
much kinetic energy, and it is not clear how all of it may be harnessed to drive the turbine.
The other drawback is that the strong pressure wave must be created somehow. This
happens through flame acceleration, which in this context is called Deflagration to Deto-
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Figure 1.1.2.: Concept of the SEC process. One full cycle is shown with time in vertical
direction, starting with a homogeneous ignition of the previous charge.

nation Transition (DDT). The part of the volume that is used for the DDT is combusted
with lowered efficiency.

It is possible to have a high propagation velocity and still no leading shock wave: The
mixture must be set up such that an “ignition wave” propagates through it faster than
the shock preceding a detonation would. Ignition then takes place due to this wave, and
any pressure emanating from progressing reactions can only progress into other ignited
parts, but never into completely unburnt fuel. Combustion processes driven by such
an ignition wave and maintaining a certain one-dimensional structure are called weak
detonations. They generally require carefully designed experiments and do not (usually)
occur in nature. One way to obtain a weak detonation is to set up an ignitable mixture
in a tube that is transparent to laser light. The laser must be strong enough to ignite the
mixture and set up such that the beam is guided through the mixture with appropriate
speed. Rather than to induce ignition by external means, a mixture may also be set up
such that it auto-ignites. A spatial gradient in the remaining time until auto-ignition then
generates an ignition wave. The process then approximates a CVC. The limit case of
an infinitely fast ignition wave is called a thermal explosion, and is a true CVC; i.e., the
smaller the gradient is, the better the approximation of a CVC.

The Shockless Explosion Combustion is based on this combustion concept. It incorpo-
rates it into a gas turbine by combining it with an innovative recharging concept: Pressure
waves leaving the combustion tube are partially reflected at the open end. Woodwind
instruments work on the same principle: Pressure waves are partially reflected, and
form a standing wave in the instrument. The player supplies new energy to the wave by
blowing the instrument, and energy leaves the system through the audible part of the
wave that is not reflected. The reflection of a pressure wave from an open end is a low-
pressure wave. Hence, in the SEC, when a pressure wave generated by a pressure-rising
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1.2. The Reactive Euler Equations of Fluid Dynamics

combustion leaves the combustion tube towards a turbine plenum, its reflection creates
a pressure gradient that sucks in fresh air that flushes exhausts from the pipe. Fuel is
injected into this air to create a stratification which leads to approximately homogeneous,
pressure-rising combustion. This creates another pressure wave, and the cycle repeats.
Figure 1.1.2 schematically shows a full cycle of a SEC.

Ideally, the combustion should take place in resonance with the residual pressure
waves. Their strength is then maximized. In thermoacoustics, the Rijke tube [62] is an
example of a device with a related working principle.

1.2. The Reactive Euler Equations of Fluid Dynamics
The mathematical description of fluid dynamics stems from physical conservation prin-
ciples: Consider a fixed control volume V containing a certain amount of matter, repre-
sented by it’s density ρ. In classical physics, mass cannot be created or destroyed, it is a
conserved quantity. Changes to the total mass contained in the volume must hence stem
from flux of mass through the boundaries:

∫

V
ρ dx

�

�

�

�

t1

t0

+

∫ t1

t0

∫

∂ V
ρu · ν dω= 0, (1.2.1)

where u is the velocity field and ν the outward facing surface normal. For sufficiently
smooth data, the divergence theorem and a variational argument allow to rewrite this
as a differential equation:

∂ ρ

∂ t
+∇ · (ρu) = 0. (1.2.2)

This equation is the continuity equation. Equations of this form are said to be in conser-
vation form, because they can be recast in integral form, and admit special numerical
treatment that will be introduced below. The continuity equation holds for any quan-
tity that is passively advected with the flow, such as dye in water, as well. Energy and
momentum are only conserved up to change due to forces. Inclusion of pressure p and
viscous stress forces leads, using the same transformations, to the Navier-Stokes equation

∂ ρu
∂ t
+∇ · (ρu⊗ u+ pId) =∇ · S(µ,∇u), (1.2.3)

where ⊗ is the tensor product, Id the identity tensor, and S a tensor representing the
viscous forces that depends on velocity u and dynamic viscosity µ. For energy, the corre-
sponding formula is

∂ ρE
∂ t

+∇ · (u (ρE + p)) =∇ · (S(µ,∇u)u) , (1.2.4)

except for a heat conduction term that has been left out for the sake of simplicity of
this introduction. There are several important observations to make regarding these
equations:
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If pressure and density are constant, then the Navier-Stokes equation transports veloc-
ity with a speed that corresponds to the velocity field’s value. Regions where velocity is
large are transported faster than slow ones, further increasing velocity as high velocity
regions merge with low velocity ones. A model equation for this phenomenon is Burger’s
equation,

∂ u
∂ t
+
∂

∂ x

�

1
2

u2
�

= d
∂ 2u
∂ x2

. (1.2.5)

See, e.g., [53] for details. It is the simplest example of a system admitting shock wave
formation: If the viscous term (containing second derivatives of u) vanishes (i.e., d = 0),
velocity gradients may steepen until a discontinuity arises. A meaningful solution for the
differential equation does at this point no longer exist. To make sense of this, note that the
natural formulation of the system is the integral equation, which continues to hold even
with discontinuities in the solution. The theorems invoked in the transformation to a
differential equation, however, no longer do. It is in this case necessary to use the integral
formulation to obtain a solution. Interestingly, if d > 0, the viscous term prevents the
velocity gradient from becoming infinite. In fact, the Hopf-Cole transformation allows to
show that the equation is then equivalent to a linear heat equation, with solutions that are
formally C∞(R) for all positive times. While this means that solutions’ gradients remain
finite, it does not prevent them from becoming very large in small spatial regions. If this
happens, numerical solutions may still appear to be discontinuous if the grid resolution
is too coarse to properly resolve them, and one must still revert to the integral laws to
ensure that they are handled correctly.

For gases, the viscosity µ often is very small. The Reynolds number

Re=
ρℓu
µ

(1.2.6)

does for a given domain with characteristic length ℓ give the relative importance of
inertial forces compared to viscous forces. In the context of turbulent combustion, it is
mostly very large. It is hence customary to perform an inviscid approximation and remove
the viscous term from the equations. The resulting set of equations are the Euler equations.
From the analogy to Burger’s equation, it should be clear that the equations admit shocks
and discontinuous solutions. For their investigation, the integral formulation hence plays
an important role.

For more detail on the derivation of the equations, see [48, 54].

1.2.1. The One-Dimensional Reactive Euler Equations
By augmenting the equations with transport equations, like eq. (1.2.2), for different
species, and source terms that describe how chemical reactions transform the species
into another, the equations become the reactive Euler equations. The exact formulation
of the source terms will be given below; for now, they are denoted as Ẏchem. Throughout
most of this thesis, a one-dimensional system will be regarded, under the assumption
that the SEC is realized in a small-diameter duct and flow is cylindrically symmetric. In a
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single spatial dimension, the augmented version of equations (1.2.2), (1.2.3) and (1.2.4)
with vanishing viscosity is given by the following system:

∂

∂ t

⎛

⎜

⎝

ρ

ρu
ρE
ρY

⎞

⎟

⎠
+
∂

∂ x

⎛

⎜

⎝

ρu
ρu2 + p

u (ρE + p)
ρYu

⎞

⎟

⎠
=

⎛

⎜

⎝

0
0
0

ρẎchem

⎞

⎟

⎠
. (1.2.7)

As an abbreviation, the state vector following the time derivative operator will be denoted
by q, and the flux function following the spatial derivative by f (q). This system is closed
by an Equation of State (EOS). Here, the ideal gas law is considered,

p = ρ
R̂
M

T = ρRT, (1.2.8)

ρE =
1
2
ρu2 +ρe, (1.2.9)

e =

∫ T

T0

cv(τ, Y ) dτ+ e0(Y ). (1.2.10)

As before, ρ is mass density, u velocity, e internal and E total specific energy. Y is a vector
of mass fractions with non-negative entries that sum up to one, i.e., the last dimension
in eq. (1.2.7) symbolically stands for arbitrary many dimensions, p is pressure, T tem-
perature, cv specific heat-capacity at constant volume, M the mean molar mass of the
mixture and R̂ the ideal gas constant, R̂ = 8.314 J/mol·K. The specific gas constant R̂/M

will be denoted R. Where needed, the vector of the species’ individual gas constants will
be denoted R⃗, and respectively for other mixture averaged quantities, vector arrows will
be added if the vector of the individual species’ values is meant. Values for cv and M
are available in literature. Since all entries of Y add up to unity, the last one is usually
not written explicitly in numerical calculations, but calculated from the others. e0 is the
energy corresponding to standard heat of formation at T = T0, the energy contained
in the chemical bonds within the molecules, and is also available from literature. It is
numerically advantageous to take the viewpoint that e0 is zero and that instead chemical
reactions release or consume energy, because the formulation then ensures that species
and the energy from their heat of formation cannot “move” separately. e0 will hence
be omitted in discussions of the formula below, and instead, the energy equation ob-
tains a source term representing changes due to the species’ concentrations changing as
reactions progress.1

The special case of constant cv allows to derive the simplified expression

e = cv T =
p

(γ− 1) ·ρ (1.2.11)

1Note that with this choice the energy ρE is no longer the total energy of the system, but the sensible
energy. While the total energy is a conserved quantity, the sensible energy is not. This poses a problem for
finite volume discretizations, which require a conservative formulation of the equation system to ensure
correct signal propagation velocities. However, the discretization of the system in chapter 3 will treat gas
dynamics and the chemical source terms separately using operator spliting, and the gas dynamics part
of the equation conserves the sensible energy as well as the total energy. Thus, the theory still applies.

9



1. Introduction

with isentropic exponent γ = cp/cv, where cp is the specific heat-capacity at constant
pressure. Gases obeying this law are denoted (calorically) perfect gases here. It should be
noted that some authors use a different nomenclature.

If not constant, cv is usually given per species by a set of two fourth order polynomials
interpolated from measurements, each of them valid within a specified range of tempera-
tures. The mixture’s heat capacity is then obtained by mass fraction weighted averaging.
This parametrization was introduced by NASA, and the obtained polynomials are known
as NASA polynomials.

The kinetical source term Ẏchem must be sufficiently smooth and chosen such that the
constraint that the entries of Y add up to unity is not violated. A detailed introduction
to chemical kinetics is given in [16]. Usually, Ẏchem is given by a system of reactions and
associated reaction rates, e.g.,

2 H2 +O2→ 2H2O, (1.2.12)

r = 1.8 · 1013 exp
�

−17614 K
T

�

[H2][O2]
0.5, (1.2.13)

which is a global reaction for hydrogen combustion [55]. This system contains three
species, so Y has three components. If one chooses the order H2, O2 and H2O, then

Ẏchem = r ·
⎛

⎝

−2 MH2−1 MO2

2 MH2O

⎞

⎠ , (1.2.14)

because the reaction produces two water molecules for each two molecules of hydrogen
and single oxygen molecule that it consumes. The masses of the molecules are not
important in this example, suffice it to say that

∑

Ẏchem = 0. If more reactions are
involved, the change rates are calculated from the sums of similar expressions. The
prefactor in r is called an Arrhenius rate, and generally expressed as

A · T B · exp
�

− EA

RT

�

. (1.2.15)

A simple interpretation of the rate law (1.2.13) is that it represents the probability that
two molecules with sufficient energy to react meet: exp (−E/RT) is the Maxwell-Boltzmann
distribution, the probability density for particles to have energy E in a system with temper-
ature T . The factor A and exponent B are empiric. More general reactions and rate laws
exist. One case that will reoccur later are third body reactions in which two molecules
can associate by passing some energy to a third molecule. This process can be pressure
dependent, in which case the reaction rate equation will depend on it as well.

The combination of thermodynamic data of the individual species and reaction rate
equations forms a reaction mechanism.

10



1.2. The Reactive Euler Equations of Fluid Dynamics

1.2.2. Ignition Delay Time and Excitation Time
For the SEC process, two parameters of the chemical kinetics that appear in certain
asymptotic expansions are of special interest. Consider a combustion process described
by a single reaction of the form as in eq. (1.2.15) with B = 0, converting fuel F to
product P, with the gas being described by the perfect gas law with fixed γ. Assume that
the difference in enthalpies of formation of both species is given by ∆Q, that is, that the
reaction releases this amount of energy per reacted amount of fuel. The dynamics of the
process is then described by the equation system

Ẏ = −A · exp
�

− EA

RT

�

Y, (1.2.16)

T = T0 +
∆Q
cv
(Y0 − Y ) . (1.2.17)

For the following derivations, it is convenient to write the system as

Ẏ = −Ã · exp
�

EA

R

�

1− Ti

T

��

Y, (1.2.18)

T = T0 +
∆Q
cv
(Y0 − Y ) , (1.2.19)

with Ã and Ti defined such that both forms are equivalent. The equation system may be
expressed as a single equation for temperature:

Ṫ =
∆Q
cv

�

Ã · exp
�

EA

R

�

1− Ti

T

���

Y0 −
cv

∆Q
(T − T0)

��

. (1.2.20)

The first parameter of interest is the auto-ignition delay time τ. It has been introduced
as the time until ignition in the introduction, see fig. 1.0.1: For large activation energies
E, solutions of the equation remain essentially constant for long times and then rapidly
increase in temperature upon ignition. A careful choice of parameters allows to construct
an asymptotic expansion that breaks down upon ignition, allowing to extract a formula
for the auto-ignition delay time. To this end, introduce

ϵ =
RT0

EATi
(1.2.21)

as a small dimensionless parameter and consider solutions of the form

T = T0 (1+ ϵz) , (1.2.22)

that is, solutions that remain close to the initial temperature T0. By inserting this ansatz
into the exponential factor in eq. (1.2.20) and performing a Taylor expansion of the
function’s argument in ϵ, one obtains

exp
�

EA

R

�

1− Ti

T

��

≈ exp
�

EA

R

�

1− Ti

T0

��

exp z, (1.2.23)
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and

T0ϵż =
∆Q
cv

Ã · exp
�

EA

R

�

1− Ti

T0

���

Y0 −
cv

∆Q
T0ϵz

�

exp z (1.2.24)

for the time evolution of z. This equation may be written as

ż =
∆Q
cv T0

Ã · exp
�

1
ϵ

�

T0

Ti
− 1

���

Y0

ϵ
− cv

∆Q
T0z

�

exp z. (1.2.25)

Define another variable, rescaled in time,

z̃(τ) = z
�

ϵ exp
�

−1
ϵ

�

T0

Ti
− 1

��

τ

�

. (1.2.26)

For this variable,
∂ z̃
∂ τ
=
∆Q
cv T0

Ã
�

Y0 − ϵ
cv

∆Q
T0z

�

exp z. (1.2.27)

For ϵ→ 0, the linear term vanishes and, after back-substitution, the equation becomes
of the form

ż =

�

EATiY0Ã∆Q

Rcv T2
0

exp
�

EA

R

�

1− Ti

T0

��

�

  

=1/τ

exp z (1.2.28)

with solution
z = log

�

− τ

t −τ
�

. (1.2.29)

This solution has a singularity in t = τ, defining the ignition delay time.
The second parameter of importance is the excitation time E : It indicates the time scale

on which energy is released after the ignition delay time has passed. In the SEC, it gives
a measure for acceptable inaccuracies in auto-ignition delay time in a fuel stratification:
If the volume with the fuel stratification ignites too early in a single hotspot, then a long
excitation time gives the neighboring fuel parcels some time to auto-ignite as well, while
a short one might result in a deflagrative or (strongly) detonative combustion. The right
hand side of eq. (1.2.20) attains its maximum, and is in particular analytically solvable
for this maximum:

∂ Ṫ
∂ T
= 0 =⇒ T =

1
2Rcv

�

−EATicv ±
Æ

EATicv (4∆QRY0 + EATicv + 4Rcv)
�

. (1.2.30)

The maximum is attained for the solution with positive sign in front of the square root. To
first order, the time from ignition until the reaction reaches equilibrium is then given by
the quotient of the total temperature increase and the maximal temperature derivative:

E = ∆QY0

cv

1

max Ṫ
(1.2.31)

=
2R∆Q exp

�

EA(−EATi cv−2RTi cv+D)
R(EATi cv−D)

�

A(2RY0∆Q+ EATicv + 2Rcv − D)
with D =

Æ

EATicv (4∆QRY0 + EATicv + 4Rcv).
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1.2. The Reactive Euler Equations of Fluid Dynamics

The expression does not have much practical use, but in comparison to τ serves to show
that most times E ≪ τ. It is only comparable to or larger than τ for either small ∆Q
or small Ti. Fuels with large E that admit larger inaccuracies must hence have more
complex chemistry than may be described by a single, global reaction.

An alternative expression for excitation time may be derived by performing an asymp-
totic expansion as for the auto-ignition delay time, around the point where slightly less
than half of the energy has been released, and solving the solution for a point where
slightly more than half of the energy has been released. The method yields the same
results for the influence of the parameters, and a comparably complex expression for E .

For complex mechanisms, such asymptotic approaches do not work in general. Instead,
definitions that admit numerical evaluation are required. Here, the following definitions
are used:

Auto-ignition delay time The time at which the temperature time-derivative attains
its maximal value.

Excitation time The time it takes for temperature to rise from
�

1
2
+ ξ

�

T0 +
�

1
2
− ξ

�

T∞ (1.2.32)

to
�

1
2
− ξ

�

T0 +
�

1
2
+ ξ

�

T∞, (1.2.33)

with ξ= 0.35.

Both definitions are compatible with the ideas that yielded the two expressions (1.2.28)
and (1.2.31).

1.2.3. Lagrangian Picture
Equation (1.2.7) is a representation of the Euler equations in the Eulerian specification,
where the underlying conservation laws are integrated over a stationary control volume
to derive the equations. It is sometimes useful to instead use control volumes that move
with the fluid, because all fluid properties that are advected but not otherwise changed
by the equations can then be represented exactly. This view on the fluid is called the
Lagrangian specification. In chapter 3 it will be seen that numerical diffusion of different
gases into one another creates numerical difficulties in the Eulerian equations. The La-
grangian formulation avoids them due to this property. Keeping track of particle positions
however is cumbersome, especially as particles enter and leave the numerical domain.
The specification is hence primarily of theoretical interest in the context of this thesis,
and presented for completeness.

The Reynolds transport theorem describes how moving boundaries affect an integral.
It enables the transition between both pictures. The derivation is presented for one
dimension here, but holds in 3D space as well, see, e.g., [61, 77].
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Theorem 1.2.1 (Reynolds Transport Theorem). For any material volume

V (t) = [x0(t), x1(t)] (1.2.34)

and differentiable scalar field Φ

d
dt

∫ x1(t)

x0(t)
Φ dx =

∫ x1(t)

x0(t)

�

∂Φ

∂ t
+
∂ (Φu)
∂ x

�

dx (1.2.35)

holds.

Proof. Let

J =
∂ x(t)
∂ x(0)

(1.2.36)

be the functional determinant of the transformation V (t)→ V (0). Note that

dJ
dt
=
∂ u(t)
∂ x(0)

=
∂ u(t)
∂ x(t)

∂ x(t)
∂ x(0)

= J
∂ u(t)
∂ x(t)

, (1.2.37)

with the convention that dx/dt = u denotes the velocity, as long as that transformation is
sufficiently smooth.

In the following, V (t)→ V (0)→ V (t) is substituted to remove the time dependence
from the integral boundaries. In the intermediate step the order of integral and time
derivative can therefore be exchanged:

d
dt

∫ x1(t)

x0(t)
Φ dx =

d
dt

∫ x1(0)

x0(0)
ΦJ dx (1.2.38)

=

∫ x1(0)

x0(0)

�

dΦ
dt

J +ΦJ
∂ u(t)
∂ x(t)

�

dx (1.2.39)

=

∫ x1(t)

x0(t)

�

dΦ
dt
+Φ

∂ u(t)
∂ x(t)

�

dx (1.2.40)

=

∫ x1(t)

x0(t)

�

∂Φ

∂ t
+
∂ (Φu)
∂ x(t)

�

dx . (1.2.41)

In the last step, it has again been used that in Φ(x(t), t), the time derivative of x(t) is
the velocity u. ■

By using the theorem, e.g., with the physical insight that mass is conserved, one finds
that

0=

∫ x1

x0

ρ dx =

∫ x1

x0

�

∂ ρ

∂ t
+
∂ (ρu)
∂ x

�

dx (1.2.42)
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1.2. The Reactive Euler Equations of Fluid Dynamics

holds for material volumes V (t) = [x0(t), x1(t)], that is, volumes that move such that
they contain the same particles at all times. Since apart from that, V is arbitrary, the
integrand must vanish, giving the first equation from eq. (1.2.7):

∂ ρ

∂ t
+
∂ (ρu)
∂ x

= 0. (1.2.43)

The insight that can be gained from this derivation is that this equation still holds if x
depends on t, especially also if one chooses dx/dt = u with x(0) = x̄ , i.e., the Lagrangian
specification. By this choice, the spatial partial derivative drops from the total differential
of ρ,

dρ =
∂ ρ

∂ x
dx+

∂ ρ

∂ t
dt =

∂ ρ

∂ x
dx− ∂ (ρu)

∂ x
dt =

∂ ρ

∂ x
(dx − u dt)−ρ ∂ u

∂ x
dt, (1.2.44)

and the total time derivative simplifies to

dρ
dt
= −ρ ∂ u

∂ x
. (1.2.45)

A variable transformation can be performed to replace the derivative for the unknown
function x(t) with one for the initial condition x̄ . Denoting ρ at time t = 0 by ρ̄,

∫ x1(0)

x0(0)
ρ̄ d x̄ =

∫ x1(t)

x0(t)
ρ dx =

∫ x1(0)

x0(0)
ρJ d x̄ . (1.2.46)

The left integral is the mass at time 0. The first equation relates this to the mass at time t,
which must be equal, since [x0, x1] is a material volume and mass is conserved. Since the
left and right integrals are taken over the same domain, with the same differential, and
the material volume is again arbitrary, ρ̄ must be equal to ρJ . J is the partial derivative
of a particle’s position x for the initial position x̄ , hence

ρ dx = ρ̄ d x̄ . (1.2.47)

Substitution into eq. (1.2.45) yields

dρ
dt
= −ρ

2

ρ̄0

∂ u
∂ x̄

. (1.2.48)

From here on, x̄ is then used as a coordinate that describes the fluid parcel that has
been at position x̄ at time t = 0. By applying the same reasoning to conservation of
momentum and energy, one gets to the equations

dρ
dt
+
ρ2

ρ̄0

∂ u
∂ x̄
= 0, (1.2.49)

du
dt
+

1
ρ̄0

∂ p
∂ x̄
= 0, (1.2.50)

dE
dt
+

1
ρ̄0

∂ (pu)
∂ x̄

= 0. (1.2.51)
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dA

dω

dx
· α

ν

β·

Figure 1.2.1.: Volume element for the derivation of the quasi one-dimensional equations.
The element is painted blue. The dashed triangle is enlarged on the right
side. It shows that since α = π/2 − β , the surface normal ν and surface
element dω relate to the area element dA via the equation dA= −νx dω.

To get the second and third equation into conservation form, the substitution dh= ρ̄ d x̄
must be applied to arrive at

dρ
dt
+ρ2 ∂ u

∂ h
= 0, (1.2.52)

du
dt
+
∂ p
∂ h
= 0, (1.2.53)

dE
dt
+
∂ (pu)
∂ h

= 0. (1.2.54)

To finally get the first equation into conservation form as well, note that

d
dt

1
ρ
= − 1
ρ2

dρ
dt

. (1.2.55)

Hence, replacing density ρ by the specific volume v = 1/ρ changes the first equation to
the conservation equation

dv
dt
− ∂ u
∂ h
= 0. (1.2.56)

Since these equations are now in conservation form, a standard finite volume framework
(see chapter 3) can be employed to solve them.

1.2.4. Quasi One-Dimensional Flow
The one-dimensional equation eq. (1.2.7) models flow in a cylinder that is symmetric with
respect to the axis. If the cylinder is replaced by a solid of revolution with a sufficiently
smooth boundary curve, then the flow can still be approximated by a one-dimensional
system. The following derivation is based on [76]; it is an iconic derivation, but easy to
understand and conceptionally correct. See [66] for a more thorough disquisition.

In a solid of revolution along the x axis, if symmetry with respect to the axis is assumed,
it suffices to restrict oneself to volume elements of the form

dV = A(x) dx (1.2.57)
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in the evaluation of integrals, where A(x) is the cross-sectional area. This expansion
is used in the integral 3D balance equations, with surface normal ν, surface element
dω, and a control volume V that has the shape of the solid of revolution. For the mass
equation,

0=
∂

∂ t

∫

V
ρ dV +

∫

∂ V
ρu · ν dω (1.2.58)

=
∂

∂ t

∫

V
ρA dx +

∫

∂ V
ρu · ν dω (1.2.59)

=

∫

V

�

∂

∂ t
(ρA) +

∂

∂ x
(ρuA)

�

dx (1.2.60)

=⇒ ∂

∂ t
(ρA) +

∂

∂ x
(ρuA) = 0. (1.2.61)

In the third step, the divergence theorem has been used in x direction; on the perpendic-
ular volume boundary, i.e., the walls, u vanishes in normal direction by the assumption of
rigid wall boundary conditions. The derivation of the energy and species mass advection
equations is analogous, and also yields the same equations as in eq. (1.2.7), but weighted
by the cross sectional area. In the derivation of the momentum equation, the pressure
source term does not vanish at the lateral surface. One is instead left with the equation

∫

V

�

∂

∂ t
(ρuA) +

∂

∂ x

�

ρu2A+ Ap
�

�

dx +

∫

wall

pνx dω= 0. (1.2.62)

Only the x component of ν enters in the last integral because the equation concerns itself
with the conservation of the x component of momentum. Application of the differential
equality from fig. 1.2.1 allows to transform this to

∫

V

�

∂

∂ t
(ρuA) +

∂

∂ x

�

ρu2A+ Ap
�

�

dx −
∫

V
p

dA
dx

dx = 0, (1.2.63)

which finally leads to the quasi one-dimensional reactive Euler equations:

∂

∂ t

⎛

⎜

⎝

ρA
ρAu
ρAE
ρAY

⎞

⎟

⎠

t

+
∂

∂ x

⎛

⎜

⎝

ρuA
ρu2A+ pA

uA(ρE + p)
ρuAY

⎞

⎟

⎠
=

⎛

⎜

⎝

0
0
0

ρAẎchem

⎞

⎟

⎠
+ p

∂

∂ x

⎛

⎜

⎝

0
A
0
0

⎞

⎟

⎠
. (1.2.64)

With the exception of the new source term in the momentum equation, the system is
structurally unchanged. This will be exploited later in the construction of the numerical
solver for SEC calculations, as it allows to include support for axial variations in a program
with very little effort.
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2. Fuel Requirements and Blend
Selection

The SEC relies on accurate control of the auto-ignition delay time: A volume of fuel and
air must be stratified such that it combusts in a weak or developing detonation. The faster
the detonation wave is, the better the approximation of a CVC. If large errors are present
in a stratification, then ignition takes place in a local hotspot, resulting in a deflagrative
combustion. For small errors, there is the possibility that combustion becomes strongly
detonative. The preceding chapter introduced the idea of using a gradient in auto-ignition
delay time in a stratification as a means to obtain a weak detonation. This gradient must
be such that the point where ignition currently takes place moves faster through the
stratification than pressure waves due to the energy release of the reaction do. If the
gradient is too steep, then the propagation of the energy released in the combustion might
couple with the propagation of the auto-ignition wave, resulting in a steepening pressure
wave, until at some point, the local pressure is sufficient to drive a strong detonation.
This mechanism for detonation initiation is called Shock Wave Amplification by Coherent
Energy Release (SWACER) [5, 35, 52]. Both cases, gradients too steep and to shallow,
lead to a loss of homogeneity.

Auto-ignition delay time is usually very sensitive w.r.t. mixture properties. E.g., for
stoichiometric Methane (CH4) in air at 700◦C and 1atm, ignition delay time changes
by 31 ms/K, and by 8.8ms per 1% deviation in equivalence ratio. Spatial gradients in
a stratification that have an order of 1 ms/m suffice to produce the strong detonations
that are to be avoided. Temperature must hence be known with high precision in a SEC.
This is at odds with experimental reality, where controlling temperature in a multi-cycle
combustion test rig to less than a few degrees Celsius is a challenging task. To ease the
requirements on experimental accuracy, guest project A07 of CRC 10291 concerned itself
with the development of a fuel that has only minimal dependence of auto-ignition delay
time on temperature for at least a range of temperatures.

Their ansatz is based on the Negative Temperature Coefficient (NTC) behaviour of
certain fuels: Whereas one would for fuels governed by the Arrhenius law (1.2.15) expect
the auto-ignition delay time to shorten with increasing initial temperature, NTC fuels
have a temperature range where it instead increases. By blending fuels with and without
NTC behaviour, a mixture that has an auto-ignition delay time independent of initial
temperature — at least inside the NTC region of the NTC fuel — can be created.

They eventually suggested to use a mixture of Dimethyl Ether (DME), dihydrogen
(H2) and methane (CH4) as a gaseous fuel mixture, with equal amounts of each fuel as a
rough first estimate [18]. Optimization of the ratio of the different compounds was then

1Prof. Pitsch, Institut für Technische Verbrennung, RWTH Aachen University
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carried out on-site by the thesis’s author, taking experimental constraints into account;
the results will be presented in this chapter.

Another topic of interest is the continued reduction of their reaction mechanism: Igni-
tion chemistry of the resulting fuels is complex, and involves a variety of intermediate
species: While the overall temperature dependence of auto-ignition delay time is small,
this effect is reached through a balance of many concurring reactions, each of which can
have a strong temperature dependence. As will be explained in detail below, a sufficiently
reduced mechanism with a small number of species that retains the (in-)dependence
of auto-ignition delay time on temperature can therefore not be produced by standard,
automated reduction techniques. Instead, detailed chemical kinetics must be used in
simulations, or specialized mechanisms created. Both approaches have been pursued
and will be presented in this chapter.

2.1. Model Reduction for SEC Fuels
The fuel project started its investigation with the reduced DME mechanism by [8], based
on the comprehensive studies from [21, 31]. In [18], they extended this model to include
hydrogen (H2) and methane (CH4) combustion, to a mechanism with initially 259 species.
They then investigated manually some mixtures of said fuels in search of temperature
regions where auto-ignition delay time, for stoichiometric mixtures at 1 bar, 10 bar, and
30bar respectively, does not depend strongly on temperature. Once good candidates
were found, the parameters were then fed into a simulation calculating the ignition
delay time. In an automated optimization process, the species with the lowest impact
on calculated ignition delay time were then successively removed from the mechanism
until the relative error in the calculated auto-ignition delay times reached a threshold
of 1 %. This yielded a smaller mechanism with 83 species. This mechanism was handed
over to the author and has thereupon been further reduced.

First, in collaboration with Liming Cai from RWTH Aachen, the author removed more
intermediate species that are not of importance for the NTC mechanism, but only play a
role in the excitation regime of the reaction, where energy is released. This reduced the
mechanism to 52 species.

The reason for the large number of species in the reduced mechanism lies in the
physical mechanism enabling NTC behaviour: Figure 2.1.1 sketches the main reaction
paths leading from DME to formaldehyde. In the graph, the DME descendants are drawn
as skeletal formulas, with lines corresponding to bonds involving a carbon atom, and
dots representing a missing hydrogen atom, thus a species with an unpaired valence
electron, a radical. E.g., the third species down from the upper left corner is CH3OCOO.
The graph shows three distinct reaction pathways that the combustion can take. The
low temperature branch is the overall fastest, but the reaction branching into the high
temperature branch is faster than the one branching into the low temperature one once
its activation energy is reached. This establishes the NTC behaviour. Since three such
branches exist and at least one intermediate species per high temperature branch is
required to establish the “fast transition into branch, slow progress in branch” behaviour,

20



2.1. Model Reduction for SEC Fuels

O

O
·

O

OO·

·
O

OOH

·OO

O

OOH

HOO

O
·OOH

HOOCH2OCHO + OH ·OCH2OCHO + OH

CH2O + OCHO

CH3· + CH2O

CH2OOCH2 + OH

2 CH2O + OH

+O2, +H, +OH, +HO2

high temperature

low temperature

intermediate temperature

low temperature

Figure 2.1.1.: Schematic reaction pathways of DME. The different paths activate at differ-
ent temperatures, resulting in the NTC behaviour. Each path eventually pro-
duces formaldehyde (CH2O), which reacts further to HCO→ CO→ CO2
in reactions responsible for the primary heat release [21, 31].
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Species peak molar concentration Species peak molar concentration

CH3OCH2O 1.149 · 10−15 CH† 3.523 · 10−07

OCH2OCHO 3.070 · 10−12 CH2OH† 5.930 · 10−07

C2H5O 9.573 · 10−12 C2H†
5 7.603 · 10−07

HOCH2O 1.093 · 10−11 CH3CO†
2 1.184 · 10−06

CH2OCH2O2H 3.919 · 10−11 C2H†
3 1.228 · 10−06

HO2CH2OCHO 1.366 · 10−10 T−CH†
2 3.167 · 10−06

CH3OCH2O2H† 1.646 · 10−10 HCO† 3.444 · 10−06

O2CH2OCH2O2H 2.071 · 10−10 CH2CO† 3.497 · 10−06

CH3OCH2OH 2.492 · 10−09 CH3CHO† 4.769 · 10−06

HOCH2OCO† 6.739 · 10−09 C3H†
8 5.441 · 10−06

OCHO† 3.447 · 10−08 C2H5OH† 1.255 · 10−05

CH3O2H† 4.290 · 10−08 C2H†
2 3.686 · 10−05

C† 1.005 · 10−07 C2H†
6 7.851 · 10−05

C2O† 1.112 · 10−07

·†: Species is QSS in the 33 species mechanism.

Table 2.1.1.: Species with the lowest peak concentrations in the simulation of a homo-
geneous ignition in the SEC process using the 52 species fuel mechanism
provided by RWTH Aachen.

even a toy mechanism qualitatively recreating the reaction paths cannot have less than
7 species — which does not include oxidizer and inert gases yet. The graph does not
include all chain reactions involved, which also add to the number of species.

A technique allowing for further reduction is the Quasi Steady State (QSS) assumption:
If in a reaction chain one product of a relatively slow reaction is the reactant of a relatively
fast reaction, and the other reactants of that fast reaction are available in sufficient
quantity at all times, it is valid to assume that the concentration of the intermediate
species remains small. Since it is small, its variation will not have huge impact on the
calculation, and thus it is furthermore valid to assume that it is in local equilibrium,
i.e., that the time derivative vanishes. The differential equation previously describing
the time evolution of said species becomes an algebraic constraint that can be solved
for the species’ concentration. If this technique is applied to species whose reactions
introduce fast time scales into the system, it can speed up calculation of a numerical
solution considerably.

Tools that semi-automate the application of this technique are contained in Flamemas-
ter [60], a chemical kinetics toolbox that, among others, can be used to convert tabulated
kinetics to a C or Fortran source file for calculating the right hand side of the kinetics
equation (1.2.14). The tool is able to process one QSS assumption at a time, but unable
to resolve the algebraic interdependencies if more than one species is in QSS. Instead,
it outputs formulae that would hold if each species was the only one which is in QSS.
Thus, manual correction is required afterwards.

Since the error tolerance in ignition delay time was already exhausted, QSS could not
be applied by Cai et al. for further reduction. Instead, reduction was performed on-site
in the SEC project using more refined criteria. The author’s approach was as follows:
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Figure 2.1.2.: Dependency graph for the QSS species in the 34 species mechanism. Edges
mark the source vertex as a dependency for the target.

1. A resolved (∆x = 10−4 m) simulation of the homogeneous ignition in a SEC with
the 52 species mechanism provided by the guest project was set up, and maximal
concentrations of all species throughout the combustion evaluated. The species
with the lowest peak values are shown in table 2.1.1.

2. For each species, individually, the QSS assumption was made and the simulation
repeated, with updated initial data to account for changes in ignition delay time.

3. Multiple species for which this simulation still yielded a homogeneous explosion
or at least weak detonation were then assumed to be in QSS at once. To resolve the
algebraic interdependencies, a directed graph of the dependencies was computa-
tionally generated. Dijkstra’s algorithm [23] was then used to derive an evaluation
order for all non-cyclic parts of the graph. The cyclic parts were then solved using a
computer algebra system, and the equations exported to the mechanism’s C source
file generated by Flamemaster.

4. Out of the mechanisms generated in the previous step, the smallest one that still
yielded a homogeneous detonation or at least weak detonation was chosen, having
34 species. Figure 2.1.2 shows the relational graph of this mechanism.

5. The species where the QSS assumption failed to preserve homogeneous ignition
earlier were now removed from this mechanism individually, to assess whether the
assumption would hold in combination with the ones for the other species. This
allowed to assume QSS for C2H6 as well.

The resulting mechanism has 33 species and 245 reactions. In relevant regimes, it speeds
up calculations by a factor of 4.8 compared to the 83 species mechanism on average, and
1.5 compared to the 52 species one. Ignition delay times in the NTC region are shown in
fig. 2.1.3: They deviate by about 10% from the 83 species mechanism’s values, but the
error is qualitatively independent of temperature. Since experimental validation of the
mechanisms for the SEC application has not been performed yet, quantitative predictions

23



2. Fuel Requirements and Blend Selection

750 775 800 825 850 875 900 925 950

Initial temperature [K]

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Ig
ni

ti
on

de
la

y
ti

m
e
τ
[m

s]

Figure 2.1.3.: Ignition delay times in the NTC region for the 83 species (blue) and re-
duced 32 species (green) mechanisms at p = 30bar and stoichiometric
fuel/air mixture.

are not reliable even for the 83 species mechanism. Hence, the resulting mechanism is
considered a good compromise for fast numerical calculations.

Further reduction using automated, online techniques, especially computational sin-
gular perturbation [47], was considered, but ultimately rejected due to the unfavorable
tradeoff between implementation effort and expected computation time savings in 1D
simulations. In 3D, this is worth reconsideration.

2.2. Model for Idealized SEC Fuels
A mechanism with 33 species still means that a 34 dimensional Ordinary Differential
Equation (ODE) system must be solved per computational grid cell. This is sufficient
for quantitative calculations, but unsatisfactory for qualitative investigations, where one
practically “plays” with the system to understand the process, and performs parameter
studies that help understand the influence of the different fuel- and system parameters.
It would be preferable to have a lower dimensional system.

A low-dimensional, global Arrhenius mechanism can be used for numerical simulations,
but then one loses the temperature independence of auto-ignition delay time that is de-
sired for SEC fuels: The exponential nature of chemical reactions stems from a exp(−1/T)
term in the reaction rate and reactions raising the temperature T as they progress. To
make auto-ignition delay time of a single reaction independent of initial temperature
necessarily means to make the reaction rate a constant. Since this obviously is not a good
model for an exponential process anymore, a global mechanism will in general not have
temperature-independent auto-ignition delay time. Numerically, the entire system’s state
is known, so it is possible to work with such fuel models in simulations by optimizing
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2.2. Model for Idealized SEC Fuels

the stratification until the simulation yields a perfectly homogeneous ignition. The result
of such an optimization has no practical implications though, as it will have very high
demands on accuracy. It would hence be preferable to work with a mechanism that fea-
tures the temperature independence, because then simulations give results that are of
interest for real applications with SEC-capable fuels as well.

Such a mechanism has been developed and published by the author in [11]. The
reasoning will be summarized in the following.

2.2.1. Single-Stage Model
If ignition delay time is independent of temperature, a reaction can be modeled using
distinct ignition and excitation phases, governed by different sets of equations. In a
reaction modeled by an Arrhenius ansatz, the reaction rate reduces to a constant if one
assumes that temperature rise during the ignition phase is negligible, making the ignition
process equivalent to an exponential decay. Once the fuel level becomes sufficiently low,
the excitation phase begins. In physical systems with approximately time-independent
ignition delay time, this process is due to concurring reactions branching into different
reaction paths. In the ideal fuel model, a Heaviside function has been multiplied to an
Arrhenius ansatz to qualitatively achieve the same effect for the excitation reaction: The
excitation reaction rate is zero until the concentration of the decaying species falls below a
given threshold. Since decay processes only asymptotically approach zero, one cannot use
vanishing concentration as the activation threshold. Instead, a small, non-zero threshold
has been defined. The reaction parameters of the excitation reaction were chosen such
that once the reaction activates, it does so within its excitation regime, and no extra auto-
ignition delay is added. To prevent numerical extinction, the Heaviside-switched reaction
has been added to the auto-ignition reaction as well, as an alternative reaction path, to
ensure that the decay reaction reaches equilibrium fast once the decaying variable is
below the activation threshold.

Having only these two reactions makes ignition delay completely independent of tem-
perature. This is undesirable, because it also prevents flame and detonation propagation.
What the model should really offer is temperature independence for a certain range of
temperatures, and temperature-dependent reaction rates for temperatures relevant to
the propagation of combustion fronts. Another reaction path has been added to the igni-
tion reaction to overcome this limitation. The reaction parameters were tuned to create
a sharp activation barrier, with an activation energy such that ignition takes place for
temperatures according to [9] to specifically allow detonations: The ZND model, which
will be introduced in section 3.5.7 in detail, predicts the temperatures occurring in det-
onations, and the energy may be chosen such that at these temperatures, the reaction
branch is active. In practice, it suffices to choose a much smaller temperature, e.g., the
upper end of the temperature range where auto-ignition delay time is to be independent
of initial temperature.

Another final Arrhenius reaction path in the ignition reaction completes the mechanism.
It is present to allow to introduce small temperature dependencies into the reaction in
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Term Description Value

Parameters responsible for the temperature-independent ignition delay:
λ Decay rate for the fuel species F , chosen such that F decays from

YF = 1 to YF = ϵ in τ= 1.
− log (ϵ)

ϵ Fuel level below which the excitation reaction activates. 0.2
Parameters modeling behaviour of a specific fuel:
ϑF Arrhenius reaction rate modeling ignition delay above the

temperature-independent region.
2 · 1030 exp (−33/T)

ϑI Arrhenius reaction rate for the heat-releasing reaction. 1096 exp (−3.5/T)
ϑT Arrhenius reaction rate for reintroducing temperature depen-

dence in numerical studies.
case-dependent

∆Q Energy release in the heat-releasing reaction. 2.7cv

Table 2.2.1.: Model parameters in the single-stage ideal fuel model, tuned to combus-
tion of stoichiometric DME in air at 1000K at 8bar. The table has been
reproduced from [11].

numerical experiments. This leads to an overall mechanism

Fuel→ Intermediate rF = (λ+ ϑF +Θ(YF )ϑI + ϑT )YF , (2.2.1)

Intermediate→ Product rI = Θ(YF )ϑI YI . (2.2.2)

Table 2.2.1 gives an overview over the model parameters. Θ is a Heaviside-type function
given by

Θ(x) =

¨

1 if x < ϵ · (1− YP),
0 else.

(2.2.3)

The unusual factor in the Heaviside function is for numerical stability close to boundaries
between fresh fuel and old exhausts, where premature ignition may occur otherwise due
to a property of the chosen numerical scheme that will be discussed in chapter 3: It
artificially smears species interfaces, creating small absolute values of YF at interfaces of
YF and YP , that would lead to premature activation of the second reaction if the factor was
not present. With real fuels, mixing of fuel and air, i.e., decreasing the fuel/air equivalence
ratio, would increase, rather than decrease, ignition delay time. This is therefore indeed
an artifact of the model, and not an issue for the process itself. ϵ > 0 is required because
an exponential decay reaction asymptotically approaches zero, but a finite ignition delay
time is desired instead — the choice of ϵ enters the calculation of the decay rate such
that auto-ignition delay time is always τ= 1 for a reaction that starts with T = 1, YF = 1,
making the choice for a value of ϵ one that is primarily of numerical nature. Here, ϵ = 0.2
has been used.

The other variables used in the model are the mass fractions YF and YI , and

ϑF = AF exp (1− EF/T) (2.2.4)

is a shorthand notation for the non-dimensional Arrhenius rate with parameter index F .
ϑF corresponds to the high-temperature reaction that marks the end of the temperature-
independent region, ϑT is the reaction that allows to introduce a small temperature
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Figure 2.2.1.: Ignition of stoichiometric DME in air at 8bar using the detailed kinetics
model by [18] (dashed) compared to ignition using the single-stage model
derived in section 2.2.1.

dependence into the otherwise independent region, and ϑI is the fast energy releasing
reaction. As the reaction parameters AI = exp(7) and EI = 0.5 have been chosen to
achieve excitation times with a magnitude of 0.01, corresponding to 10µs in dimensional
quantities, that do not depend strongly on temperature, and AF = exp(70) to have a sharp
boundary at EF = 1.1, where quasi instantaneous combustion replaces the order unity
ignition delay. This corresponds to a region of 100 K in which ignition delay times do not
depend on temperature. Reaction (2.2.2) releases an amount of energy of ∆Q = 2.7cv.
These choices make the reaction resemble the ignition behaviour of stoichiometric DME
in air at these conditions. ϑT is initially zero; it will be used with other values in the
numerical experiments of section 4.2.2.

2.2.2. Two-Stage Extension
Figure 2.2.1 shows that the model from the previous section captures the auto-ignition
behaviour well. It does, however, lack the multi-stage ignition that DME exhibits: While
fuels whose ignition can be described by a single, global Arrhenius law release most
of their energy in a singular, very fast event, fuels with multi-stage ignition behaviour
feature multiple ignition and excitation phases following consecutively, each releasing
some of the energy. For the SEC process, this makes a relevant difference, because if the
time between the distinct excitation phases is larger than the acoustic time scale, the
chemical reaction process will interact with thermodynamics, complicating the aim for
homogeneous auto-ignition.

A straight-forward extension of the single-stage model from the previous section, that
simply adds another pair of reactions following the same pattern, allows to include the
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Figure 2.2.2.: Ignition of stoichiometric DME in air at 8bar (dashed) compared to igni-
tion using the two-stage model from section 2.2.2.

first ignition stage:

Fuel→ Radical 1 rF = (λF + ϑF +Θ(YF )ϑR1 + ϑT )YF , (2.2.5)

Radical 1→ Intermediate rR1 = Θ(YF )ϑR1YR1, (2.2.6)

Intermediate→ Radical 2 rI = Θ(YF )(λI + ϑI +Θ(YI)ϑR2)YI , (2.2.7)

Radical 2→ Product rR2 = Θ(YF )Θ(YI)ϑR2YR2. (2.2.8)

This model now has two decay constants, λF and λI , that must be chosen such that the
total ignition delay time remains unchanged, and some fraction of it is spent in the first
ignition stage. 3/4τ has been chosen here. Reaction (2.2.6) releases a fraction of the total
energy. For this value, ∆QR1 = 0.15cv has been chosen. Both values are in accordance
with the first stage of the DME/air ignition from fig. 2.2.1.

The numerical correction factor (1− YP) in the definition of the Heaviside function
(2.2.3) must be individually adjusted to account for the species that occur later into the
reaction.

See fig. 2.2.2 for a comparison between the reaction in this model and an elaborate
DME model from [18]. It is noteworthy that tuning of the model parameters allows to
quantitatively match the dependence of ignition delay time on initial temperature to
the behaviour of their fuel as well, see fig. 2.2.3. Since the aim of the model is to have
temperature-independent auto-ignition delay times, however, the fitted version will not
be used in the following. Numerical results for both models will be presented in sections
4.2.2 and 4.2.3.
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Figure 2.2.3.: Auto-ignition delay time for the fuel blend from [18] at 8 bar (dashed) com-
pared to a fitted version of the two-stage ideal fuel model. Plot reproduced
from [12].

2.3. Fuel Selection for the Atmospheric SEC Test Rig
The investigation by Cai et al. showed that fuels with ideal properties at atmospheric
pressure are not available using only the mentioned compounds. At 1 bar, their suggested
blend has an approximately temperature-independent ignition delay time for tempera-
tures between 713K and 720K, with an absolute ignition delay time of 473ms. With
an estimated average sound speed of 800 m/s, this necessitates a SEC tube that is nearly
190 m long, an obviously impractical value. In contrast, at 30 bar, temperature indepen-
dence is achieved for initial temperatures from 800K to 880K, with absolute values in
the order of 1ms. This facilitates a SEC tube with a length of 0.4m. At atmospheric
pressure, the mixture has further disadvantages that render it undesirable for use in a
SEC: The center of the temperature range with approximately constant ignition delay
time depends strongly on the equivalence ratio Φ. At lean Φ = 0.5, it is at 698K, and
the entire temperature region of independence does not even intersect with the one
for Φ = 1. Since the operating point must be in the temperature-independent region
for all equivalence ratios used in the stratification, this means that the range of usable
equivalence ratios is narrow. In this calculation, it must also be taken into account that
the experiment mixes cold fuel with hot air, making the mixture’s temperature depend
on the equivalence ratio as well. Since lean mixtures contain less fuel, an experiment set
up such that a Φ= 1 mixture reaches, e.g., 716 K would have an even higher temperature
for smaller Φ, narrowing the available range of equivalence ratios even further.

To enable optimization of the fuel under these constraints, a numerical optimization
framework has been created. Its first use was to choose a fuel and operating point for an
experimental setup at Technische Universität Berlin. The experiment’s aim was to obtain
homogeneous auto-ignition in an isolated fashion, without the resonant recharging of a
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SEC. This experiment posed further constraints, that were formulated in collaboration
with the experiment’s designer Bernhard Bobusch2. They are as follows:

• The fuel valve facilitates a flow of 30 kg/h before choking

• A heater is used to pre-heat the air to the temperatures required for auto-ignition
of the mixture. The heater requires a minimal mass flow of 25 kg/h.

• Flow velocities up to Ma= 1 are feasible for the air flow.

• Air can be heated up to 1000K.

• Fuel can be supplied at temperatures between 50◦C, approximately the vaporiza-
tion temperature at atmospheric pressure, and 200◦C, to stay away from tempera-
tures where DME could dissociate and thus auto-oxidize.

• The test tube is to be filled up to 40cm with a fuel/air mixture. Configurations
that allow to fill less than 10cm are unfeasible.

As the optimization goal, the minimization of
�
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dτ
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+
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Φ=Φmin

(2.3.1)

has been chosen. The meaning of the equivalence ratios’ subscripts will become clear
below.

Since the parameter space is high-dimensional and is expected to have many local
optima, an algorithm has been designed to sample the space efficiently:

1. Repeat the following for each N2/O2 ratio in 1, 1.5 and 2, and each DME:H2:CH4
ratio in a [0.5, 5]3 cube sampled by 203 points (with duplicates removed, i.e., 202

effectively), and each equivalence ratio Φ in [0.3, 1] sampled in steps of 0.1.

2. Search for all temperature ranges where ignition delay time depends on temper-
ature by less than 3 ms/K that are at least 5K wide. Repeat the following steps for
all ranges that have been found.

3. Search for the leanest (lower) equivalence ratio Φmin that is smaller than the orig-
inal one but still fulfills the constraint that ignition delay time depends on temper-
ature by less than 3 ms/K in the same temperature range, or a sub-range that is at
least 5K wide.

In this calculation, take into account that a mixture’s temperature will depend on
the equivalence ratio, because fuel and air have different initial temperatures. It is
assumed that mixing is an isenthalpic process. The fuel’s temperature is chosen a
priori and the air temperature calculated such that the temperature of the previous
step is reached for the original equivalence ratio.

2formerly employed at HFI, TU Berlin; currently CEO of FDX Fluid Dynamix
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Figure 2.3.1.: Plot showing the dependence of the ignition delay time on air temperature
in the prospective fuel mixture. The blue line shows ignition delay time for
Φ= 1.0, the green one shows Φ= 0.88 and has been shifted by −57.36 ms
to improve visibility of the dependence on air temperature. The data has
been calculated at atmospheric pressure, with a DME:H2:CH4 mixture with
ratios 1.11:1.50:0.29 preheated to 48◦C. The charging process must occur
at least with 11.5 m/s to fulfill the air flow constraint. In the whole plot
range, dτ/dT < 0.3ms holds.

4. Using both values for Φ, calculate minimal and maximal charging velocities and
check if they violate the flow rate constraints.

The dependence is as follows: Φ determines the amount of substance per volume of
the components in the final fuel/air mixture if temperature and pressure are kept
constant. These amounts must flow through the fuel valve and heater, respectively.
The charging velocity determines how fast this must happen, since the volume of
the desired mixture is given. Hence, constraints on the flow rate through valve and
heater impose limits on the charging velocity.

5. Choose the largest velocity supported by the valve, preheater and requirement that
no more than 40 cm are to be filled with fuel/air mixture. If this velocity violates
the constraint that more than 10 cm are to be filled, reject the configuration.

6. Store the configuration together with the evaluated target functional for future,
manual evaluation.

This produces a list of feasible configurations. It is then sorted by the target functional.
A Newton iteration can finally be used to find a local optimum starting from this value.

Ignition delay times for the winner configuration from this optimization are shown in
2.3.1. The graph shows that the constraint dτ/dT < 0.3 ms is fulfilled.
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Figure 2.3.2.: Plot showing the dependence of the ignition delay time on air temperature
in the prospective DME-only fuel mixture. The blue line shows ignition de-
lay time for Φ= 0.6, the green one shows Φ= 0.5775 and has been shifted
by −17.8ms to improve visibility of the dependence on air temperature.
Conditions are as in fig. 2.3.1.

The mixture has a strong dependence on the composition of the actual fuel, rendering
its production costly compared to a single-component fuel. Additionally, the advantage
in temperature independence over a single-component fuel is not very large. Therefore,
a second run was conducted with DME only. Figure 2.3.2 shows ignition delay time of
the winner configuration for this run.

An optimization for a fuel for the full SEC has not been conducted, but is viable as
well. A new constraint must then be imposed on the minimal ignition delay time τmin:
It determines the minimal time that has to pass after the fuel/air volume has been set
up until the mixture ignites. This time should either be negligibly small or close to a
multiple of the acoustic eigenfrequency if the resonance effect described above is to be
exploited.

2.4. Numerical Methods for the Simulation of Chemical
Kinetics

Solution of chemical kinetics problems involves solving the mass balance ordinary dif-
ferential equation (1.2.14). Depending on the nature of the problem, one of the ther-
modynamic potentials is conserved. In the numerical discretization of the reactive Euler
equations (1.2.7), the domain will be divided into volumes of fixed size. Hence, iso-
choric chemical reactors will be considered here, i.e., energy is conserved. This enters the
problem as an algebraic constraint: Reaction rates depend on temperature and possibly
pressure, which themselves depend on energy by the equation of state (1.2.10), which
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Figure 2.4.1.: Comparison of calculated ignition delay times for chemistry with nearly
discontinuous right hand side using CVODE (green dots) and RADAU solver
(blue line). Both calculations were set up with the same accuracy goals
tolrel = 10−10, tolabs = 10−15.

Testcase CVODE RADAU13 ratio

147 species DME (low prec.) 753 1986 2.64
83 spc. DME/MeOH/EtOH (low prec.) 634 1182 1.86
259 spc. DME/MeOH/EtOH (low prec.) 2208 5637 2.55
GRI 3.0 (low prec.) 331 562 1.70

147 spc. DME (high prec.) 2325 3202 1.38
83 spc. DME/MeOH/EtOH (high prec.) 1790 1656 0.93
259 spc. DME/MeOH/EtOH (high prec.) 6738 8534 1.27
GRI 3.0 (high prec.) 501 739 1.48

147 spc. DME (ultra prec.) 92406 3367 0.04
83 spc. DME/MeOH/EtOH (ultra prec.) 186110 1858 0.01
259 spc. DME/MeOH/EtOH (ultra prec.) 180196 8756 0.05
GRI 3.0 (ultra prec.) 46136 3325 0.07

Calculation of all points in fig. 2.4.1 26986 39279 1.46

Table 2.4.1.: Comparison of CVODE and RADAU solver runtime. Times are given in ms and
each is the quickest of five calculations of the same ignition delay time
calculation problem on a single i7 core (2.1GHz). Low precision means
tolrel = 10−6, tolabs = 10−12, high precision means tolrel = 10−10, tolabs =
10−15, and ultra precision tolrel = 10−13, tolabs = 10−15. The mechanisms
were chosen for their relevance in SEC simulations. CVODE outperforms
RADAU most times, except if very stringent accuracy constraints are imposed.
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depends on the species concentrations, which change as time evolves due to chemical
reaction progress.

In a reaction mechanism, reaction equations like eq. (1.2.15) with various activation
energies are usually present. The equations are hence stiff and demand for implicit
solvers. Large factors preceding the exponential terms make the transition from low to
high reaction rates very steep, hence, adaptive time stepping is preferable as well.

The CVODE code [20] is the de-facto standard for solving such problems. It is used, e.g.,
in the chemical kinetics packages Cantera, Chemkin and Flamemaster. Algorithmically,
its implicit solver relies on Backward Differentiation Formula (BDF) methods. They are
of the form

s
∑

k=0

ak yn+k = hβ f (tn+s, yn+s) (2.4.1)

with ẏ = f (t, y) the problem to solve, tn = nh discrete time, and coefficients ak and
β chosen appropriately to reach order s. In contrast to implicit (collocation) Runge-
Kutta (RK) methods, which conceptually stem from the idea of interpolating the unknown
solution forward in time with intermediate stages between the current and new time level,
BDF methods reuse old time levels to determine a single point in the computational future.
This allows for high orders at low computational cost, but comes at the disadvantage that
they are A-stable only up to order 2. See [37] for a detailed introduction and proof. The
CVODE solver adaptively switches between orders to circumvent this restriction, using
higher order methods as long as the problem is well behaved.

In the mechanisms provided for the prospective SEC fuels, some reactions activate so
steeply that they are numerically perceived as discontinuous jumps in the equation’s right
hand side. The CVODE code has stability issues in such cases, as can be seen in fig. 2.4.1:
It shows random jumps in calculated ignition delay times for a problem where only the
ratio of fuel (a blend of CH3OCH3/CH4/H2 as suggested in [18]) to air was altered. As
per suggestion by Dr. Stephan Gerber3, the Hairer/Wanner implementation of the fully
implicit RADAU II A RK method [37] was investigated as an alternative. It implements
the schemes up to order 13. Figure 2.4.1 also shows the results by this solver: It is able to
produce stable results even for numerically ill-conditioned mechanisms. The downside is
that, as table 2.4.1 shows, CVODE outperforms the RADAU solver unless particularly high
accuracy goals are imposed.

As a compromise, the code introduced in this thesis supports both solvers. The RADAU
solver was used for all calculations in this thesis.

It should be noted that the extrapolation methods suggested by Deuflhard for chemical
kinetics in [22] have been evaluated as well and found unsuitable for this application, due
to the extreme stiffness of the system. Extrapolation methods use a low-order integrator
to repeatedly calculate a solution for the same initial conditions and final time, each
time using smaller sub-steps, and then extrapolate towards infinitely many sub-steps,
gaining a higher convergence order in the process. Spectral deferred correction [25]
instead starts off with a fixed number of sub-steps, interpolates a time-dependent solution
using the sub-steps as nodes, and builds a differential equation for the error of the

3Geophysical Fluid Dynamics group, Freie Universität Berlin

34



2.5. Intermediate Conclusion

solution. This equation is solved using an ODE solver, and the error is subtracted from
the solution obtained before. This procedure is repeated iteratively, until the convergence
order reaches that of the interpolating polynomial. Since an implicit solver may be used,
it is expected that methods of this type perform better than extrapolation methods. Due
to the good performance of the RADAU solver, this conjecture has not been verified. In the
context of splitting methods in section 3.4.2, this topic will be revisited.

2.5. Intermediate Conclusion
Fuels for the SEC process should have a region of temperatures where their auto-ignition
delay time remains essentially constant. Such fuels do not admit small computational
models using traditional techniques from chemical kinetics.

Using a newly developed tool that is able to investigate multiple QSS assumptions at
once, it has nevertheless been possible to obtain a reduced 33 species mechanism for the
fuel mixture suggested for SEC use. The key idea is to use an elementary algorithm from
graph theory to automate the solution of an algebraic system that had to be solved by
hand before. The technique enables automated consideration of all possible QSS assump-
tions where previously, only a handful of well educated guesses could be investigated in
practice.

The solution of problems involving such mechanisms necessitates robust numerical
schemes for stiff problems. The RADAU implementation of Hairer/Wanner has been inves-
tigated as an alternative to the de-facto standard CVODE and found suitable; in particular,
it has been found that the error control of the CVODE code fails in some near-discontinuous
cases that the other solver can still handle.

As an alternative to detailed mechanisms, for qualitative investigations of the process,
a new approach has been devised to model fuels with temperature-independent auto-
ignition delay times. It is considerably simpler and computationally much easier to solve
than its traditional counterpart using plain Arrhenius (and third-body) reactions, and yet
captures the auto-ignition behaviour very well. A variant of the model is able to represent
two-stage ignition behaviour as well.

For atmospheric pressure investigation of homogeneous auto-ignitions, a precursor of
a real SEC, an optimal fuel blend has been determined numerically. For the optimization,
the essential constraints from the experiment have been identified and taken into account.
It has been found that a fuel blend does not perform considerably better than single-
component fuels in this situation, and that the best blends have high accuracy demands on
their composition. Hence, it was eventually decided to use pure DME in the experiment.
A second investigation found the ideal operating point for this fuel.
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3. Numerical Methods for Multi-Species
Gaseous Flow

The simulation of flows with complex chemical kinetics close to their auto-ignition tem-
perature necessitates specialized numerical treatment: Since a wide range of tempera-
tures and large number of species with equally wide ranging heat capacities are involved,
it is not appropriate to approximate the fluid as a perfect gas with fixed heat capacity
ratio γ. Instead, the ideal gas law (1.2.10) must be used.

It is well known that finite volume schemes for imperfect gases can create oscillations
near contact discontinuities separating gases with different compositions (see, e.g., [1,
50, 51]). This effect is in part inevitable, unless one is willing to give up conservation,
and in part due to approximate Riemann solvers miscalculating the jump across the
contact wave — both cases boil down to the fact that an exchange of energy between
two gases with different equations of state results in different changes in temperature
and/or pressure in the two gases. This becomes an issue if the oscillations occur at a
contact discontinuity with a mixture close to auto-ignition on one side. A small error
in temperature can in this case lead to a purely numerical, premature ignition. If, e.g.,
a detonation develops from this hotspot, a large global error results, especially a large
error in the observable if homogeneity of the ignition process is to be assessed.

Several techniques have been created to avoid the issue. In the early 1990s, Karni
suggested in [45] to use a primitive formulation of the equations, with pressure as a
state variable instead of the energy. This shifts the error from the pressure to the energy
field. She then applied a correction to achieve conservation where possible. Abgrall in-
stead stuck with the conservative formulation in [2], and suggested to shift the error
from the pressure field to the mass fractions by adjusting them until the pressures of
both star-states in the Riemann problem (see section 3.1 below) match. In [43], Jenny
et al. investigated a similar direction as Karni: They were able to derive a formula for the
necessary fix in the energy field for mixtures of perfect, γ-law gases, to prevent oscilla-
tions in pressure, and have hence been able to perform the correction in a conservative
framework.

For multi-component flows of immiscible materials, the issue is more severe, because
any numerical mixing leads to an unphysical state. It is state of the art to use a level
set function to track the material interfaces [41]. Fedkiw et al. reused the concept for
gaseous mixtures. They combined it with the idea to calculate two fluxes for each in-
terface and perform an inconservative update where each cell is updated using the flux
that would be the solution if the other had the same composition as the updated cell
[29]. For the conceptual similarity to Ghost cells, they dubbed their method the Ghost
Fluid Method. Such tracking methods are not applicable to reactive flows with detailed
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chemistry, because there are no distinctive interfaces to track if the chemical composition
of the gas can change continuously in space. As a workaround for this limitation, Abgrall
and Karni later suggested in a joint publication [3] that the idea to calculate two fluxes
can also be used independently of the interface tracking, by simply applying it to all cells.

The drawback of such techniques is loss of robustness. All of the above schemes do at
some point either become inconservative or inconsistent, as will be demonstrated below
in section 3.2. Since one of the aims of developing a simulation for the SEC was to have
a code that can be handed to users unfamiliar with such limitations, robustness has been
a major design factor.

This chapter is hence devoted to the development of a suitable numerical scheme for
the robust simulation of the SEC. It starts with the presentation of the solution to the
Riemann problem for ideal gases. Iterating away from the very robust HLLE solver [26,
39] with MUSCL reconstruction [73], it then extends results on perfect gases to ideal gas
flows, and argues how the oscillatory behaviour should be dealt with. Basic familiarity
of the reader with Godunov-type finite volume methods is expected within this chapter.
Appendix A.2 offers a brief introduction to the topic.

3.1. Solution of the Riemann Problem for Ideal Gases
For any given hyperbolic system, the solution to the Riemann problem, that is, the initial-
value problem

q(x)|t=0 =

¨

qℓ if x < 0,

qr if x > 0,
(3.1.1)

is the essential building block for Godunov-type finite volume methods. If it is known, a
numerical scheme can approximate the continuous domain as a series of homogeneously
valued volumes, and obtain the problem’s time evolution by solving the Riemann problem
at each of the interfaces between the volumes and averaging over their solutions at the
new time level.

In literature on numerical methods for fluid dynamics, it is customary that authors
restrain themselves to presenting the perfect, γ-law case when it comes to solving the
Riemann problem. This allows students to quickly grasp the concept, but also hides the
pitfalls associated with more complicated equations of state. See, e.g., Toro’s derivation
in [71]. Here, his disquisition will be generalized to the ideal gas case and presented
together with the necessary building blocks.

3.1.1. Linearization of the Equations
The solution of the Riemann problem starts out with an analysis of the linearization of
the fluid dynamics part of (1.2.7) (i.e., of the Euler equations without chemical source
terms):

∂ q
∂ t
+ A

∂ q
∂ x
= 0, (3.1.2)
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A=

⎛

⎜

⎝

0 1 0 0
−u2 + ∂ p/∂ ρ (3− γ)u γ− 1 ∂ p/∂ ρY

u ∂ p/∂ ρ− uH H − (γ− 1)u2 γu u ∂ p/∂ ρY

−Yu Y 0 u

⎞

⎟

⎠
, (3.1.3)

with

H =
ρE + p
ρ

, (3.1.4)

∂ p
∂ ρ
=
∂

∂ ρ
(ρRT ) (3.1.5)

= RT − RT +
ρR
cv

∂ e
∂ ρ
+ρR

∂ T
∂ cv

�

�

�

�

e=const

∂ cv

∂ ρ
(3.1.6)

= (γ− 1)
1
2

u2 − (γ− 1) e+
∂ T
∂ cv

�

�

�

�

e=const

∂ cv

∂ ρ
(3.1.7)

= (γ− 1)
1
2

u2 − (γ− 1) e− 1
∂ cv/∂ T

cv

ρ
, (3.1.8)

∂ p
∂ ρY

= R⃗T +
∂ T
∂ cv

�

�

�

�

e=const

∂ cv

∂ ρY
(3.1.9)

= R⃗T +
1

∂ cv/∂ T

c⃗v

ρ
. (3.1.10)

Steps (3.1.8) and (3.1.10) are only valid if the heat capacities have a non-zero tempera-
ture derivative. If they do not, the corresponding terms vanish from the equation. As a
reminder, R⃗ is the vector of the species’ specific gas constants, and e⃗ the vector of specific
internal energies. Only one species is shown in A for improved readability. If the matrix
would contain all of them, each entry of R⃗ would contribute to its own column. Note
that to recover the perfect gas case, one has to add up the columns corresponding to the
density and species’ densities. The (γ− 1)e term from the ∂ p/∂ ρ derivative and the R⃗T
term from the ∂ p/∂ ρY derivative then cancel.

3.1.2. Primitive Form of the Equations
To calculate the full eigenstructure of this system, it is convenient to switch to primitive
variables. Here, the equation system reads

∂

∂ t

⎛

⎜

⎝

ρ

u
p
Y

⎞

⎟

⎠
+

⎛

⎜

⎝

u ρ 0 0
0 u 1/ρ 0
0 γp u 0
0 0 0 u

⎞

⎟

⎠

∂

∂ x

⎛

⎜

⎝

ρ

u
p
Y

⎞

⎟

⎠
= 0, (3.1.11)

which has a block structure, with the upper left block being exactly the same as for the
single-component, perfect gas case. Hence, the eigenstructure remains unchanged — see,
e.g., [53] for the primitive form of the gradient matrix in the perfect gas case — but the
u-eigenvalue gains an additional eigenvector per species.
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The structure of the Riemann problem’s solution is therefore as follows: There are 3
distinct eigenvalues, u and u± c, with

c =


√γp
ρ

(3.1.12)

the local sound speed. The u eigenvalue is n-fold, where n is the number of species in
the system. Each wave associated with the u eigenvalue transports one of the species.
The two other eigenvalues correspond to pressure waves, as they do in the single-gas
case. This agrees with the solution structure for mixtures of perfect gases [51].

3.1.3. Riemann Invariants
The primitive form of the equations is furthermore useful to derive the system’s Riemann
invariants. A Riemann invariant is a function of the state that remains unchanged through
smooth waves, and hence useful in determining the solution to the Riemann problem.
To find them, denote a prospective Riemann invariant for the ith wave by Ψ i . Denoting
right eigenvectors of the matrix in eq. (3.1.11) with rn and associated left eigenvectors
with ℓn,

∇Ψ i · ri = 0 (3.1.13)

must hold. Since the eigenvectors form an orthogonal basis, one can write

∇Φi =
∑

j ̸=i

µi
jℓ j , (3.1.14)

to have eq. (3.1.13) automatically fulfilled. It remains to determine µi
j such that the

expression is integrable, i.e., such that Φ exists.
The right eigenvectors of the matrix in eq. (3.1.11) are, written as a single matrix, in

order associated with the u− c, u, u, and u+ c eigenvalues:

⎛

⎜

⎝

−ρ/c 1 0 ρ/c

1 0 0 1
−ρc 0 0 ρc

0 0 1 0

⎞

⎟

⎠
. (3.1.15)

The inverse of this matrix is
⎛

⎜

⎝

0 1/2 −1/2cρ 0
1 0 −1/c2 0
0 0 0 1
0 1/2 1/2cρ 0

⎞

⎟

⎠
. (3.1.16)
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The equations (3.1.14) for the µi
j therefore read:

∇Ψ1 = µ1
2 dρ +µ1

4
1
2

du+
�

µ1
4

1
2cρ
−µ1

2
1
c2

�

dp+µ1
3 dY, (3.1.17)

∇Ψ2 =
�

µ2
1 +µ

2
4

� 1
2

du+
�

µ2
4 −µ2

1

� 1
2cρ

dp+µ2
3 dY, (3.1.18)

∇Ψ3 = µ3
2 dρ +

�

µ3
1 +µ

3
4

� 1
2

du+
�

�

µ3
4 −µ3

1

� 1
2cρ
−µ3

2
1
c2

�

dp, (3.1.19)

∇Ψ4 = µ4
2 dρ +µ3

1
1
2

du+
�

−µ4
1

1
2cρ
−µ4

2
1
c2

�

dp+µ4
3 dY. (3.1.20)

Choices leaving only one differential are obvious solutions: Choose µ1 = µ2 = µ4 = 0,
µ3 = 1 to see that Y is a Riemann invariant for the 1st, 2nd and 4th wave. The choice
µ1 = ±µ4, µ2 = µ3 = 0 yields u and p as invariants of the 2nd and 3rd wave.

The remaining invariants are nontrivial. For any but the 2nd wave, if γ is constant,

dρ − 1
c2

dp = dρ − ρ
γp

dp (3.1.21)

=
ρ

γ

�

γ
dρ
ρ
− dp

p

�

(3.1.22)

= −ρ
γ

d log
�

p
ργ

�

, (3.1.23)

which makes p/ργ a Riemann invariant of these waves; for non-constant γ, such a closed
expression is not available, but the invariant can still be identified as a function of entropy
alone: From the fundamental relation of thermodynamics in its formulation for ideal
gases,

T dS − p dV = 1/γT dS + 1/γV dp (3.1.24)

=⇒ dS = −cv

�

γ
dρ
ρ
− dp

p

�

, (3.1.25)

which is (up to a factor that can be moved into µ) the same differential as in eq. (3.1.22).
For perfect gases, the differential relation from eq. (3.1.22) can be used to derive u±
2c/(γ−1) respectively as another Riemann invariant of the 1st and 4th wave. This result
does not hold for ideal gases, because its derivation requires that a closed expression for
the other invariant (i.e., entropy) is available. What is available though, is the differential
equation

du+
1

cρ
dp = du+



√ 1
γpρ

dp = du+



√ 1
γpρ

γp
ρ

dρ. (3.1.26)

This equation can be integrated to numerically determine, given either pressure or the
velocity, the value of the other variable through a 1-wave or 4-wave.
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x

t

Shock r3Contact r2Rarefaction r1

qℓ q⋆
ℓ q⋆r qr

Figure 3.1.1.: Typical wave structure of the solution to the Riemann problem for the
Euler equations.

3.1.4. Solution Strategy
Since the additional waves due to the individual species’ mass transport coincide with
the central wave, the Riemann problem’s solution structure remains unchanged from
the case of a single, perfect gas: As depicted in fig. 3.1.1, there still is a fan enclosed by
two pressure waves, which can either be shock waves or smooth rarefactions depending
on the problem. A central wave separates two gases at different temperatures but equal
pressure and velocity, only that now also the composition may differ through this wave,
and this wave alone, due to the additional degrees of freedom. It is hence feasible to use
the same solution strategy as [71] suggests to use for perfect gases:

Assume that the pressure inside the fan, p⋆, is given. Consider a shock wave like r3
in the figure. By formulating the Euler equations in a reference frame moving with the
shock, i.e., speed sr3

, such that the time derivatives vanish (in a vicinity of the shock and
for small times), jump conditions for energy and momentum through the shock may be
derived1: The Hugoniot energy equation

1
2
(p⋆ + pr)

�

1
ρ⋆
− 1
ρr

�

+ e⋆r − er = 0 (3.1.27)

can be solved numerically to find the density ρ⋆. The Rayleigh line

p⋆ = pr −ρ2
r

�

ur − sr3

�2
�

1
ρ⋆r
− 1
ρr

�

(3.1.28)

then fixes the wave speed sr3
and central velocity u⋆ = ρr(ur − sr3

)/ρ⋆ + sr3
.

For rarefaction waves like r1, density q⋆
ℓ

and velocity u⋆ can be calculated using rela-
tions (3.1.26) and (3.1.22), by integrating from pℓ to p⋆. Since the rarefaction is smooth,
signal velocities are simply uℓ−cℓ and u⋆−c⋆

ℓ
, respectively at either end of the rarefaction

1Section 3.5.7 features more details on the shock relations in the context of detonation waves.
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fan. Inside, x/t = u− c must hold. Solving this equation and eq. (3.1.26) simultaneously
yields the inner structure of a rarefaction.

Shocks decreasing pressure and rarefactions increasing pressure are not allowed [53,
chapter 14]: One can calculate directly that a pressure decreasing shock would decrease
entropy in violation of the second law of thermodynamics. In a pressure increasing
rarefaction, the star-side of the fan would move outwards faster than the outer end,
which does not make physical sense and leads to discontinuous solutions.

If the star pressure p⋆ is therefore smaller than the pressure on the other side of a
wave, said wave must be a rarefaction, otherwise it is a shock. This allows, given p⋆, to
decide which set of formulae to use to calculate the star states.

By application of the preceding argument, it is possible to calculate for both r1 and r3
the star velocity u⋆ given the pressure p⋆. Since it is known that r2 preserves both velocity
and pressure, the correct pressure can be found by numerically solving for a pressure
that yields the same u⋆ for both waves. The solvability of the equations is discussed in
[53]. The author’s argument is valid for ideal gases as well. In particular, he discusses
the case of vacuum generation inside the fan, which requires special treatment, but is of
no concern here, because the approximate Riemann solver discussed in the next section
is designed to avoid it.

The solution strategy already yields the densities within the star region as well. It
is known that the mass fractions change only through the r2 wave. To complete the
solution of the Riemann problem, only the speed of the central wave sr2

remains to be
determined. As in the perfect gas case, it must be equal to u⋆, since by eq. (3.1.15) the
r2 wave is linearly degenerate and any other value would hence be contradictory.

In summary, the ideal gas case still allows to solve the Riemann problem exactly, but a
numerical realization requires, in most cases, two nested invocations of Newton solvers:
One to solve for p⋆, and another one to obtain u⋆ from the p⋆ candidate for (each of) the
shock wave(s). Compared to the perfect gas case, it is hence considerably more expensive
to obtain an exact solution to the Riemann problem.

3.2. The HLLE Solver in Multi-Species Simulations
The HLLE approximate Riemann solver, named after its inventors Harten, Lax, van Leer
[39] and Einfeldt [26], is based on the idea to reduce the solution to the Riemann problem
to the two outermost waves. If estimates for the speeds of said waves are available,
denoted bℓ and br in the following, then a single intermediate state can be derived
from the conservation law. Only the case bℓ < 0< br is considered, because otherwise,
the exact flux can be obtained easily: If bℓ > 0, then the flow is supersonic and f (ql)
is the exact flux, and if br < 0, then f (qr) is the exact solution. Again, only the fluid
dynamical part of eq. (1.2.7) is considered. Integration of the system over a time step∆t
and a volume ∆x centered at the cell interface for which the Riemann problem is to be
solved, with ∆t assumed to be sufficiently small for the Courant-Friedrichs-Lewy (CFL)
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condition to be fulfilled, yields

q⋆ =
f (qℓ)− f (qr) + brqr − bℓqℓ

br − bℓ
(3.2.1)

for the central state. In a second step, another integral is taken, this time with a volume
that spans half a cell, such that the flux through the cell interface appears in the integral.
The resulting equation can be solved for the flux at the cell interface f ⋆, resulting in the
approximate flux

f ⋆ =
br f (qℓ)− bℓ f (qr) + bℓbr(qr − qℓ)

br − bℓ
. (3.2.2)

Einfeldt showed that good choices for the wave speed estimates are

bℓ =min {uroe − croe, uℓ − β cℓ} , br =max {uroe + croe, ur + β cr} , (3.2.3)

with uroe the Roe average [63]

uroe =
p
ρℓuℓ +

p
ρrurp

ρℓ +
p
ρr

(3.2.4)

and croe the sound speed of the Roe averaged state, for which he has suggested

c2
roe ≈
p
ρℓc

2
ℓ
+pρr c2

rp
ρℓ +
p
ρr

+
p
ρℓ
p
ρr

2
�p
ρℓ +
p
ρr

�2 (ur − uℓ)
2 (3.2.5)

as an approximation for the ideal gas case. β is 1 in the original HLLE scheme [26].
In [28], the authors showed that this scheme is positive for perfect gases, i.e., ensures
that density and pressure remain non-negative (and in this case, in fact, positive). They
furthermore proved that for perfect gases the choice

β =



√γ− 1
2γ

(3.2.6)

suffices to ensure positivity. Smaller choices of β reduce the numerical dissipation near
rarefaction waves and are hence favorable.

3.2.1. Positivity
The positivity result for perfect gases does not readily generalize to the ideal gas case.
For super sonic flow, the HLLE solver yields the exact flux. Therefore, only the case
bℓ < 0< br will be considered.

The update step of the HLLE solver can be interpreted as a convex combination of the
old time level with the q⋆ state within the Riemann solution’s fan. It hence suffices to
show that the q⋆ state is positive (provided that qℓ and qr were) to show overall positivity.
For density, Einfeldt’s proof holds for ideal gases as well: By eq. (3.2.1),

ρ⋆ =
(uℓ − bℓ)ρℓ + (br − ur)ρr

br − bℓ
≥ β cℓρℓ + β crρr

br − bℓ
> 0. (3.2.7)
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This readily generalizes to any advected quantity, as this thesis’ author showed in [10].
Positivity of the mass fractions is hence guaranteed as well.

Positivity of pressure, on the other hand, is not. It suffices to show positivity of internal
specific energy e, since the heat capacity cv is positive, e is a function of T , and the ideal
gas relation p = ρRT holds. By definition,

e⋆ =
(ρE)⋆

ρ⋆
− 1

2

�

(ρu)⋆

ρ⋆

�2

. (3.2.8)

By plugging in the definition of the star states, eq. (3.2.1), one arrives at a lengthy
expression which must be proved non-negative. Since the star state depends on the
flux, pressure enters into this equation, and differences of terms depending on pressure
and terms depending on internal energy must be balanced. For ideal gases, the relation
between energy and pressure has no closed expression, so no closed expression for the
ideal choice of β can be expected — contrary to the perfect gas case, where eq. (3.2.6)
is sharp. It is still possible to establish a bound guaranteeing positivity though: Since

e =

∫

cv dT > T min
T

cv (3.2.9)

holds, and

γ=
cv + R

cv
(3.2.10)

is a decreasing function in cv , equally

e >
p

ρ(γmax − 1)
(3.2.11)

holds. The right hand side of this inequality is the energy equation of a perfect gas with
γ= γmax, for which Einfeldt’s proof holds. The reasoning then is as follows:

It must be shown that eq. (3.2.8) is positive. As in Einfeldt’s proof, define

aℓ = uℓ − bℓ, ar = br − ur . (3.2.12)

Equation (3.2.8) can then be written as

(ρe)⋆ ≥aℓ(ρE)ℓ + uℓpℓ + ar(ρE)r − ur pr −
(arρrur + aℓρℓuℓ + pℓ − pr)

2

2 (arρr + aℓρℓ)
(3.2.13)

≥aℓpℓ + ar pr

γmax − 1
+

1
2

aℓρℓu
2
ℓ + uℓpℓ +

1
2

arρru
2
r − ur pr

− (arρrur + aℓρℓuℓ + pℓ − pr)
2

2 (arρr + aℓρℓ)
. (3.2.14)
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Multiplication by the positive denominator gives

aℓpℓ + ar pr

γmax − 1
(arρr + aℓρℓ) + uℓpℓarρr + uℓpℓaℓρℓ − ur pr arρr − ur pr aℓρℓ

− 1
2
(arρrur)

2 − 1
2
(aℓρℓuℓ)

2 − 1
2
(pℓ − pr)

2 +
1
2

aℓarρℓρr (ur − uℓ)
2

+
1
2

a2
ℓρ

2
ℓu

2
ℓ +

1
2

a2
rρ

2
r u2

r − (pℓ − pr)(arρrur + aℓρℓuℓ) (3.2.15)

=
aℓpℓ + ar pr

γmax − 1
(arρr + aℓρℓ) +

1
2

aℓarρℓρr (ur − uℓ)
2

− (arρr pℓ + aℓρℓpr) (ur − uℓ)−
1
2
(pℓ − pr)

2. (3.2.16)

Expression (3.2.16) is equivalent to the expression Einfeldt arrives at in [28, p. 294, eq.
(A8)] in his perfect gas derivation for two dimensions. He shows that for this expression
to be positive,

a2
ℓ ≥
γmax − 1
2γmax

c̃2
ℓ , a2

r ≥
γmax − 1
2γmax

c̃2
r (3.2.17)

must be fulfilled, with

c̃ =


√γmaxp
ρ
≥


√γp
ρ
= c. (3.2.18)

This makes

β =



√ γmax − 1
2max{γℓ,γr}

(3.2.19)

a viable choice for β in the ideal gas case. If γmax is unknown, a general upper bound
can be used at the cost of higher numerical diffusion, e.g.,

β =



√ 1
2max{γℓ,γr}

(3.2.20)

or even β = 1/2 if γ is not readily available at all, which still is an improvement over the
original choice of β = 1.

3.2.2. Pressure Oscillations at Contact Discontinuities
Consider the Riemann problem

q(x)|t=0 =

¨

(p = p0, u= u0, T = Tℓ, Y = Yℓ) for x < 0,

(p = p0, u= u0, T = Tr , Y = Yr) for x > 0.
(3.2.21)

According to section 3.1, the exact solution to this problem consists of a single contact
wave with velocity u0. Unless the CFL number is chosen such that one time step ad-
vects the wave front exactly one cell ahead, a Godunov type conservative scheme must
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necessarily project the solution within the cell containing the discontinuity down to a
single state by forming the appropriate convex combination of the left and right state.
For convex combinations of states, the following theorem, which has been published in
[10], holds:

Theorem 3.2.1. Let (αi) label the coefficients of a linear combination of states represented
by the conserved quantities. Furthermore assume that the states have a common velocity.

1. The combined state preserves temperature equilibria.

2. For initially equal pressures p0, the combined state has a pressure of

p =
∑

i

αiρiRi T = p0

∑

i

αi
T
Ti

. (3.2.22)

In particular, if the states are in temperature equilibrium and the combination is
convex, the pressure is maintained.

Proof of theorem 3.2.1. Denote the different state variables going into the linear combi-
nation with subscript indexes and use superscript indexes for the different mass fractions
Y j . For the final state, the subscript is omitted. First, assume that Ti = T0 for all states i.
For the internal energy

ρe = ρ

∫ T

cv(τ) dτ= ρ
∑

j

Y j

∫ T

c j
v(τ) dτ=

∑

i

αiρi

∫ T

cv,i(τ) dτ (3.2.23)

holds. Note that the upper integral bound is the final temperature T and not the states’
temperature Ti. Since different velocities are not considered, the internal energy is a
conserved quantity, so

∑

i

αiρi

∫ T

cv,i(τ) dτ=
∑

i

αiρiei (3.2.24)

must hold for any choice of αi . Consequently, the integrals on the left-hand side must be
equal to the corresponding energies ei. Finally, since energy is an injective function of
T , T = T0. For the pressure relations, assume pi = p0 for all i. By applying the ideal gas
law, p = ρRT ,

p =

�

∑

i

αiρi

�

 

R̂
∑

j

1
M j

∑

i αiρiY
j

i
∑

i αiρi

!

T =

 

R̂
∑

j

1
M j

∑

i

αiρiY
j

i

!

T

=

 

R̂
∑

i

∑

j

αiρiX
j
i

Mi

!

T =
∑

i

αiρiRi T =
∑

i

αi pi
T
Ti

. (3.2.25)

In the last equation, R̂ denotes the universal gas constant, X j the mole fractions, M j the
species’ molar masses, and Mi the mean molar mass of the ith state. The expression is
already in the form stated in the theorem. If Ti = T for all i the fraction cancels and the
final claim is established. ■
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From theorem 3.2.1, one immediately sees that a numerical scheme solving the Rie-
mann problem (3.2.21) will in general produce states with pressures deviating from
initial pressure p0, because it diffuses the solution within each cell to a single state by
means of convex combinations.

In [10], a thought experiment shows that this effect is not purely an artifact from
numerical diffusion, but that physical diffusion disturbs pressure equilibria as well: As-
sume that the Riemann problem eq. (3.2.21) is set up in a closed, physical domain, and
choose a coordinate system such that the contact discontinuity is stationary. Thermal and
species diffusion eventually equilibrate the whole volume to a single state. Assume that
the contact discontinuity is located a fraction of α into the volume. Thermodynamics
allows to split the equilibration into two processes: First, each gas isothermally expands
to the whole domain. By Boyle’s law, the final pressures are pℓ = p0α and pr = p0(1−α).
The sum of the partial pressures equals the original pressure p0, as one would expect
from Dalton’s law. In the second step, the temperatures isochorically equilibrate. By the
ideal gas law, ∆pi = ρiRi∆Ti . The pressure remains constant if, and only if,

ρℓRℓ∆Tℓ = −ρrRr∆Tr . (3.2.26)

For the equilibration, on the other hand,

ρℓcv,ℓ(Tℓ) dTℓ = −ρr cv,r(Tr) dTr (3.2.27)

holds. The pressure is therefore in general not maintained, but will change due to thermal
equilibration.

Pressure oscillations and numerical diffusion are hence linked. The question of how
to prevent oscillations while maintaining conservation and consistency therefore boils
down to the question of how to preserve sharp contact discontinuities in Godunov-type
numerical schemes.

This question has been discussed in depth by the community, and it has in particular
been found that lack of numerical diffusion leads to unstable codes [34, 70, 74]. There is
an intuitive explanation for this: As has been stated in the introduction, it is known that
the diffusion term in the Navier-Stokes equations smoothens solutions, which in the first
place allows to consider them as solutions to the differential equation rather than of an
underlying integral equation with a wider solution space. Although this is not generally
proven, existence and uniqueness of strong solutions is a safe working assumption for
the Navier-Stokes equations with non-vanishing viscosity. Gradients in the solution may
however be so steep that coarsely resolved numerical solutions might still appear discon-
tinuous. If the overall timescales allow to neglect diffusion in the whole problem and
the Euler equations are used, then this is no longer a purely numerical issue that can be
resolved using higher resolutions, but solutions can actually become discontinuous, and
are no longer unique. One then has to define the unique, physical solution as the solu-
tion corresponding to that of the Navier-Stokes equations in the vanishing viscosity limit,
and can only state that all solutions of an approximating sequence would (probably) be
smooth. Numerical schemes which at some point of their derivation use differentiability
of the solution — which is the case for all schemes that are of higher than first order
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— do then naturally become unstable, because they assume that a derivative does exist
where it actually does not. For the Euler equations, this accumulates in the following
observation:

By introducing numerical diffusion to the solution of the equations, one no longer solves
the Euler equations, but actually a set of Navier-Stokes equations with a problem–dependent
diffusion coefficient, ensuring that the numerical solutions remain sufficiently smooth.

In [27], Einfeldt states that a related physical insight has been his motivation for the
HLLE(M) solver:

The HLLE solver is based on the assumptions that a shear and contact discon-
tinuity in the Riemann solution is a mathematical inadequate approximation
and must be replaced by a transition layer.

In fact, in combination with the original HLLE paper [26], the calculations from sec-
tion 3.2.1 can be interpreted to serve the purpose of determining how much diffusion
exactly is required for the scheme to be guaranteed to produce stable results. Einfeldt
has been able to produce a sharp bound for perfect gases, this thesis managed to provide
an estimate for ideal gases.

In the context of his HLLE solver, it is hence sensible to accept pressure oscillations in
solutions for eq. (3.2.21), and instead question whether initial data that produces them
is physically reasonable. This is supported by the conclusion of the discussion of pressure
oscillations in [10], where it has been noted that an expansion of eq. (3.2.22) in the
specific gas constants results in

p = p0 +O
�

∑

i

Ri − R

�

, (3.2.28)

i.e., that the oscillations only occur close to contact discontinuities, and weaken when
a contact discontinuity becomes increasingly smeared. A numerical experiment in sec-
tion 3.5.3 will demonstrate this using advection of a contact wave as an example.

In summary, since pressure oscillations can not be removed without loss of robustness,
which has been a major design goal for the SEC solver, and since pressure oscillations
are a self-weakening phenomenon, it has been decided not to address the issue and stick
with the unmodified HLLE solver.

3.2.3. A Note on Larrouturou’s Positivity Correction
In [50], Larrouturou addresses the issue of positivity of mass fractions for Godunov-type
numerical schemes. He shows that the multicomponent Roe solver is not guaranteed to
preserve positivity of the mass fractions and suggests, as a general approach applicable
to any Godunov-type scheme, to enforce the relation

fY (W (0)) = fρ(W (0)) ·
¨

Yℓ if fρ(W (0))> 0,

Yr if fρ(W (0))< 0,
(3.2.29)
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where by W he denotes the solution to the Riemann problem. This relation is valid for
the exact solution to the Riemann problem, and by replacing the numerical species mass
fluxes with fluxes according to this formula, any scheme that preserves density positivity
obviously also preserves positivity of mass fractions.

It has been shown in section 3.2.1 that the HLLE solver already is positivity preserving,
so this issue does not affect the solver. If this fact is not known, however, the similarity of
the HLLE solver to Roe’s solver [26] and Larrouturou’s choice of words make it tempting
to use his approach for the HLLE solver as well.

The author showed in [10] that this makes the pressure oscillation issue worse, and is
hence not advisable for HLL-type solvers: By theorem 3.2.1, the HLLE solver is capable of
maintaining pressure equilibria at stationary contact discontinuities if temperatures and
pressure are equal on both sides of the discontinuity. Larrouturou’s correction replaces
the species (diffusion) flux with upwinding, and since the energy flux is not adjusted
accordingly, the equilibrium is disturbed and pressure oscillations arise as the species
diffuse.

It is the lack of an energy flux adjustment which disturbs (temperature) equilibria, not
the replacement of diffusion with upwinding: Einfeldt, in his stability analysis, writes
the HLLE flux as

1
2
( f (qℓ) + f (qr)−Q (qr − qℓ)) , (3.2.30)

with a suitable numerical viscosity matrix Q, i.e., as a variant of the Lax-Friedrichs method
[53]with reduced numerical diffusion. Using this formulation and applying Larrouturou’s
correction exclusively to the flux average does stabilize stationary contact discontinuities
— but only because the species fluxes vanish anyway. At moving discontinuities, the issue
persists.

Consequently, this argument applies in general to all solvers that do not yield the exact
flux at interfaces: Larrouturou’s correction decouples the fluxes of energy and species,
hence changes how the energy flux affects temperature and pressure, and hence disturbs
temperature equilibria.

3.3. Extension of the HLLEM Solver to Ideal Gases
Using the idea quoted above, namely that contact discontinuities don’t physically exist,
but should be replaced by a transition layer, Einfeldt extended the HLLE solver with a
linear approximation to the contact discontinuity: In his extension, one uses the left
eigenvector of the perfect gas Euler equation’s gradient matrix corresponding to the
contact wave,

ℓ2 =

⎛

⎝

1− γ−1
2

ū2

c̄2

(γ− 1) ū
c̄2

1−γ
c̄2

⎞

⎠ (3.3.1)
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to project the jump (qr − qℓ) onto the corresponding right eigenvector

r2 =

⎛

⎝

1
u

1
2u2

⎞

⎠ , (3.3.2)

and then inserts the wave as a linear growth into the star region, scaled such that the
total growth from left to right inside the region corresponds to the jump through the
approximated wave and aligned such that the total integral over the star region does not
change, i.e., that the conservation law still holds:

ω=

⎧

⎪

⎨

⎪

⎩

qℓ for x/t < bℓ,

q⋆ +δ(x − ūt) (ℓ2 · (qr − qℓ)) r2 for bℓ < x/t < br ,

qr for br < x/t.

(3.3.3)

In the formulae, ū and c̄ are approximations to velocity and sound speed in the star
section based on the numerical signal velocities,

ū=
br + bℓ

2
, (3.3.4)

c̄ =
br − bℓ

2
, (3.3.5)

and δ is a constant for which Einfeldt derived the expression

δ =
1
∆t

1
c̄ + |ū| (3.3.6)

in a stability discussion. Eventually, one arrives at the formula

f ⋆ =
br f (qℓ)− bℓ f (qr) + bℓbr(qr − qℓ)

br − bℓ
− bℓbr

1
2 (c̄ + |ū|) (ℓ2 · (qr − qℓ)) r2 (3.3.7)

for the updated numerical flux. Details of the derivation can be found in [26].
Einfeldt’s argument for the choice of δ does not use specifics of the perfect gas case

and applies to the ideal gas case as well. The projection must however be adapted. The
eigenspace associated with the u eigenvalue of gradient matrix A in conservation form
(eq. (3.3.10)) is spanned by the vectors

⎛

⎜

⎜

⎝

1
u

− 1
γ−1

∂ p/∂ ρ+ u2

0

⎞

⎟

⎟

⎠

and

⎛

⎜

⎜

⎝

1
u
0

1
∂ p/∂ ρY

�− ∂ p/∂ ρ+ u2 (γ− 1)
�

⎞

⎟

⎟

⎠

, (3.3.8)

with corresponding left eigenvectors
⎛

⎜

⎝

u2 −H
−u
1
0

⎞

⎟

⎠
and

⎛

⎜

⎝

−Y
0
0
1

⎞

⎟

⎠
. (3.3.9)
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In both equations (3.3.8) and (3.3.9), the second vector symbolically represents one
vector per species; each one is non-zero in exactly one of the dimensions associated
with the species mass fractions. Since the construction of the HLLEM solver ensures
conservation and the fix does not affect the signal speeds, the primitive formulation
from eq. (3.1.15) may be used as well to calculate the correct projection. This removes
the computational effort of calculating the p derivatives, but requires to convert the
projection to conservation form, which is computationally expensive as well.

In contrast to Einfeldt’s perfect gas variant, the eigenspace depends on the thermo-
dynamic state, not the numerical signal velocities alone. There are two obvious choices
for the state at which to evaluate the eigenvectors: The first option is to use the upwind
state, with the upwinding direction given by the sign of the mass flux in the HLLE solver,
which is already known at the point where this correction is calculated. The other option
is to use q⋆. This does not pose additional calculation overhead, because q⋆ is required
anyway to ensure positivity:

It has been shown in section 3.2.1 that q⋆ is positive, and it is known that a convex
combination of positive states preserves positivity. In general, however, the introduction
of the smeared contact wave into the star region breaks positivity. To retain it, the slope
of the smeared wave must be limited such that the boundaries of the star region in
eq. (3.3.3) remain positive. Since the Y components in eq. (3.3.8) are not available
analytically in general, this must be done numerically.

Either choice offers an improvement over the uncorrected HLLE solver in regions
of smooth flow. At contact discontinuities, however, the scheme suffers from the same
issues as have been discussed in section 3.2.3 on Larrouturou’s correction: Since the
eigenvectors used for the projection in general cannot represent the jump in the internal
energy correctly, the changes in species and energy do not match, and the correction
therefore introduces temperature and pressure oscillations, rendering the straightforward
extension of the HLLEM solver to the ideal gas case impractical for the SEC use case. In
the following, two alternatives will be presented.

3.3.1. HLLEM for the Single-Species Case
An obvious solution to the issue is to use the HLLEM solver only in regions of small
concentration gradients. With this ansatz, under the assumption that small changes in
concentration have negligible effect on the energy, a simplified set of eigenvectors may
be used:

For single component, ideal gas systems, the gradient matrix in the linearization from
eq. (3.3.10) reduces to

A=

⎛

⎝

0 1 0
−u2 + ∂ p/∂ ρ (3− γ)u γ− 1
u ∂ p/∂ ρ− uH H − (γ− 1)u2 γu

⎞

⎠ , (3.3.10)
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with

∂ p/∂ ρ = (γ− 1)
1
2

u2 − (γ− 1) e+ RT. (3.3.11)

Associated with the u eigenvalue are eigenvectors

ℓ2 =

⎛

⎝

−H + u2

−u
1

⎞

⎠ (3.3.12)

and

rr =

⎛

⎝

1
u

u2 − 1
γ−1

∂ p
∂ ρ

⎞

⎠=

⎛

⎝

1
u

1
2u2 + RT

γ−1 − e

⎞

⎠ . (3.3.13)

This is almost the perfect gas case, the only difference is the term

RT − (γ− 1) e (3.3.14)

quantifying how much the equation of state differs from a perfect gas equation.
The considerations for the state at which the eigenvectors should be evaluated that

have been made above apply to this case as well.

3.3.2. Reusing the Perfect Gas HLLEM Solver
The HLLEM-solver variant from section 3.3.1 is valid in regions of smooth concentrations.
In the context of the SEC simulation, it is an option to furthermore assume that in regions
where concentrations are smooth, temperature changes are moderate as well: Steep
temperature changes are associated with either strong pressure waves or under-resolved
auto-ignition waves. The former occur at detonation fronts which are a sign of failure in
SEC simulations anyway, the latter have steep concentration changes as well. Moderate
temperature changes leave the isentropic exponent γ unchanged, and so the perfect gas
case derived by Einfeldt may be used as an approximation: If the difference in γ between
left and right states and q⋆ is small, then the solution to the local Riemann problem is
close to the solution for the perfect gas case. This holds even if the concentrations differ.
Hence, it is feasible to calculate the projection as

ℓ2 ·
⎛

⎝

ρr −ρℓ
(ρu)r − (ρu)ℓ

pr−pℓ
γ⋆−1 +

1
2ρru

2
r − 1

2ρℓu
2
ℓ

⎞

⎠

�

r2
Y ⋆

�

(3.3.15)

with Einfeldt’s eigenvectors ℓ2 and r2 from eq. (3.3.1) and eq. (3.3.2).
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3.4. The Complete SEC Solver
The choice of a suitable integrator for chemical kinetics has been discussed in section 2.4.
A numerical scheme for the fluid dynamics part of the equation has been devised in
this chapter. To combine both into a complete, second-order accurate solver, only minor
details are missing:

3.4.1. Higher Order Reconstruction
The Godunov-type method derived above is a first-order method. To achieve second
order, a MUSCL-Hancock scheme [72, 73] (short for Monotonic Upstream-Centered Scheme
for Conservation Laws) is employed: The zeroth order approximation to the states at
cell boundaries that enter the Riemann problem is replaced by a spatio-temporal linear
interpolation, where time derivatives are evaluated by transforming them to spatial
derivatives using the differential equation. To avoid oscillations near discontinuities, the
slope of the interpolation is limited by comparing adjacent slopes using a limiter. This
ansatz is well established in the community and so only implementation details specific
to the present use case will be presented here. For a thorough introduction, see [71,
chap. 14.4].

Reconstruction variables have been chosen based on the required computational effort:
It is inexpensive to evaluate the energy equation (1.2.10), but a Newton solver is in
general required to solve the inverse relation for temperature. Therefore, the primitive
variables p, u, T and Y are used for reconstruction. Another advantage of this choice
is that measures to prevent oscillations in discontinuous regions affect the temperature
field directly. The temporal derivatives of the primitive variables can be expressed in
terms of spatial derivatives as

∂ p
∂ t
= −RT

�

u
∂ ρ

∂ x
+ρ

∂ u
∂ x

�

+ρR
∂ T
∂ t
+ρT

∂ R
∂ t

, (3.4.1)

∂ u
∂ t
= −u

∂ u
∂ x
− 1
ρ

∂ p
∂ x

, (3.4.2)

∂ T
∂ t
=

1
ρcv

�

−p
∂ u
∂ x
−ρucv

∂ T
∂ x
− 1

2
u
∂ p
∂ x

�

, (3.4.3)

∂ Y
∂ t
= −u

∂ Y
∂ x

, (3.4.4)

with

∂ ρ

∂ x
=

1
RT
∂ p
∂ x
− p

RT2

∂ T
∂ x
−ρM

∑

i

1
Mi

∂ Yi

∂ x
, (3.4.5)

∂ R
∂ t
= R̂

∑

i

1
Mi

∂ Yi

∂ t
. (3.4.6)

The reconstructed slopes are limited using the Monotonized Central-Difference (MC)
limiter (e.g., [53]).
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For higher orders, ENO reconstruction [40] is implemented up to fourth order. ENO is
short for Essentially Non-Oscillatory Scheme. The basic idea of this reconstruction method
is to interpolate using multiple different stencils of varying size, and use the one that
gives the smoothest interpolant.

Since the MC limiter is total variation diminishing, it is likely that positivity is preserved
in the second-order scheme. Still, note that the proof of positivity in section 3.2.1 formally
only holds for the first-order scheme.

3.4.2. Operator Splitting
To integrate the two solvers — one for gas dynamics, one for chemical kinetics — into
a single code, Strang splitting [69] has been employed. This fractional step method
numerically solves differential equations of the form

∂ x
∂ t
= A(x) +B(x) (3.4.7)

by evaluating

xn+1 := ΦA
�

∆t
2

�

ΦB (∆t)ΦA
�

∆t
2

�

xn, (3.4.8)

whereΦA is any second-order accurate numerical scheme solving the subproblem ∂ x/∂ t =
A(x), and ΦB respectively. Strang proved the validity and second-order accuracy of his
approach by Taylor-expanding the solution to the original problem,

x(t) = x(0) + t (A(x) +B(x)) +
t2

2
(∇A(x) +∇B(x)) · (A(x) +B(x)) +O �t3

�

, (3.4.9)

and comparing coefficients with the expansion of his scheme,

xn+1 = Φ
A
�

∆t
2

�

ΦB (∆t)

�

xn +
∆t
2

A(xn) +
∆t2

8
∇A(xn) ·A(xn) +O

�

∆t3
�

�

(3.4.10)

= ΦA
�

∆t
2

�

�

xn +∆t
A(x) + 2B(x)

2
+
∆t2

8
(∇A(x) ·A(x)+

4∇B(x) · (A(x) +B(x))) +O (∆t3)
�

, (3.4.11)

finding that the expressions match to second order.
Derivations of higher order splitting schemes in the literature usually invoke “heavy

machinery”: E.g., [80] uses the Baker–Campbell–Hausdorff formula from Lie algebra
theory, [36] discusses Butcher series trees from the analysis of Runge-Kutta methods. It is
noteworthy that Strang’s simple analysis method can be used to provide further results
as well: By performing Strang’s calculation using variable coefficients, it can be shown
that Strang splitting is the only second-order accurate scheme among all schemes of the
form

xn+1 = Φ
A (α1∆t)ΦB (β1∆t)ΦA (α2∆t) xn. (3.4.12)
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The solution strategy for obtaining the correct values for the coefficients αi and βi is to
work from low to high order, i.e., first fix the coefficients such that the Taylor expansions
of eq. (3.4.9) and eq. (3.4.12) agree to first order, and then use the remaining degree of
freedom to ensure second order accuracy.

The same ansatz works in general for higher orders by Taylor-expanding the ansatz

xn+1 =

� N
∏

i

ΦA (αi∆t)ΦB (βi∆t)

�

xn, (3.4.13)

and successively fixing the coefficients as above. Using a computer algebra system, the
thesis’ author found the coefficients

α1 = 1, β1 = −
1

24
, (3.4.14)

α2 = −
2
3

, β2 =
18
24

, (3.4.15)

α3 =
2
3

, β3 =
7

24
(3.4.16)

for a fourth-order accurate scheme, and the coefficients
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3p2
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+
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3p2
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, (3.4.17)
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, (3.4.18)
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1
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3p2
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2
3

, (3.4.19)

α4 =
2

2
3

12
+

3p2
6
+

1
3

, β4 = 0 (3.4.20)

for a fifth-order accurate scheme. Higher orders contain too many terms to be treated
in this fashion using current hardware. Both schemes involve negative time steps. In
[56], it is shown that this is generally the case for higher order splitting methods, and
that the negative timesteps degrade the scheme’s stability properties. Additionally, while
the methods are formally of high order, the error in practice exceeds the Strang splitting
error unless impractically small time steps are used. Other means to achieve higher order,
such as extrapolation methods [22] or deferred correction methods (e.g., [25]), should
therefore be preferred.

An application of this idea is employed in the 2D/3D extension of the SEC simulation.
It uses operator splitting to solve each dimension separately using the theory developed
above. Following the arguments from this section, extrapolation is employed if higher
than second order in time is desired: The code in each time step first solves the problem
for a full time step ∆t given by the CFL condition. It then solves the same problem again
multiple times, using time steps of at most ∆t/n, with increasing n. The solution is then
extrapolated towards n→∞, which formally gives a higher order approximation. It is
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noteworthy that while this approach is well suited for spatial splitting, splitting of fluid
dynamics and chemical kinetics does not work well with extrapolation due to the explicit
nature of extrapolation and stiffness of most problems from chemical kinetics. Deferred
correction, on the other hand, achieves the higher order by formulating an expression for
the error as an ODE, solving it and then updating the approximation using the error term.
This admits the use of implicit methods and is hence better suited for this application.

3.4.3. Program Flow
The complete algorithm is as follows:

1. Apply problem specific boundary conditions by adding ghost cells.

2. Estimate an appropriate time step size ∆t using the CFL condition and, optionally,
the states’ reaction rates.

3. Invoke the chemical kinetics solver:

a) Solve the energy equation eq. (1.2.10) for temperature using a Newton solver.

b) Advance the chemical kinetics system ∂ Y/∂ t = Ẏchem by ∆t/2 using RADAU15,
as per the argument of section 2.4. The equation system is a Differential
Algebraic System (DAE), conserving the total energy including the enthalpy
of formation e0(Y ). The required temperature change for energy conservation
can be calculated explicitly, resulting in another equation for ∂ T/∂ t.

c) Compute the updated energy using eq. (1.2.10).

d) Compute the updated pressure using the equation of state eq. (1.2.8).

4. (optional) In the quasi-1D case with axial variations as introduced in section 1.2.4,
multiply the stored states by the associated volume’s cross-sectional area and ad-
vance the source-term equation by ∆t/2 using a second-order solver. The required
derivatives are available using the same technique as has been used for reconstruc-
tion in section 3.4.1.

5. For each spatial dimension, with the order of the steps permuted after each time
step to achieve Strang splitting, consider the 1D subproblem and repeat:

a) Reconstruct limited cell boundary states using the spatio-temporal reconstruc-
tion from section 3.4.1.

b) Compute inter-cell fluxes using the ideal-gas HLLEM scheme from section 3.3;
if the selected variant of the scheme requires to know q⋆, then this involves
another computation of the primitive variables using a Newton solver.

c) Update the states to the ∆t time level.

d) (optional) If more than one spatial dimension is present, update the primitive
variables by solving the energy equation eq. (1.2.10).
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6. (optional) If axial variations as introduced in section 1.2.4 are present, advance
the source-term equation by another ∆t/2 step and divide by the cross-sectional
area again.

7. Perform another ∆t/2 time step using the chemical kinetics solver.

Appendix B gives an introduction to the actual implementation, which differs slightly in
detail.

3.5. Validation
To show that the approach is valid, in this section, various test cases are discussed. They
were selected based on the possible issues that have been identified above and should
cover all aspects relevant to one-dimensional SEC simulations.

3.5.1. Shock Tube
For the Riemann problem from section 3.1, an analytical solution is known. Since its
solution is one of the building blocks of the solver, it presents a good test case to eval-
uate the quality of the approximate Riemann solver, reconstruction, and limiting. Sod
introduced this test case in 1978 for perfect gases [68], and it has since become one of
the essential test cases for every numerical scheme in computational fluid dynamics. In
[3], the authors introduced a multi-species variant of the test to demonstrate that their
inconservative scheme for perfect gas mixtures outperforms a Roe solver with Superbee
limiter. They note:

Results by the conservative scheme [..] are oscillatory near the contact, and
while they eventually converge to zero with mesh refinement, they do so
very slowly. Note also that increasing the order of accuracy of the scheme
does not improve the quality of the results of the conservative scheme.

An ideal gas variant of their test case is the Riemann problem

qℓ = (T = 300 K, p = 10bar, Y = N2, u= 0) , (3.5.1)

qr = (T = 345 K, p = 1 bar, Y = Ar, u= 0) . (3.5.2)

At the given temperature, the associated isentropic exponents γ are 1.4 for the Nitrogen
and 1.66 for the Argon. The original test uses 1.4 and 1.6, respectively. The original study
states that 200 grid points and a CFL number of 0.8 were used. Given their results, this
translates to 0.1 ms simulation time at 1 mm grid resolution. Their choice of CFL number
is reused as well, though this choice is not expected to work in general with the present
scheme.

In fig. 3.5.1, it can be seen that the scheme does not exhibit the issues observed in the
other study. This confirms the insight from section 3.2.2: Pressure oscillations naturally
occur at sharp contact discontinuities with shock-capturing schemes. A scheme that
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Figure 3.5.1.: Multi-species shock tube test case with HLLEM solver from section 3.3.1,
MC limiter and MUSCL reconstruction. The blue, solid line is the exact
solution, the data points show the numerical solution.

quickly diffuses the discontinuity introduces less oscillations. The HLLEM solver with
MC limiter does just that. The Roe solver used by the cited study, on the other hand,
tries to maintain the contact wave. The use of the Superbee limiter does even steepen
smeared out regions again [53, sec. 6.9], and thereby ensures that the problem persists.

3.5.2. Moving Contact Wave
The study [3] has a second interesting test case in the light of the discussed pressure
oscillations: They simulate a contact wave separating two gases at different densities
ρℓ = 0.1, ρr = 1, with isentropic exponents γℓ = 1.4, γr = 1.6 and moving right with a
Mach number of M = 0.85 if calculated with respect to the right gas.2

From the discussion of the test case in section 3.2.2 it is to be expected that a simulation
with numerical diffusion creates an initial pressure peak close to

p∞ =
(γℓ − 1)−1 + (γr − 1)−1

2

�

ρℓγℓ +ρrγr

ρℓ +ρr
− 1

�

p0 ≈ 1.45 p0, (3.5.3)

the pressure equilibrium at t =∞ if the system had diffusion. This pressure peak is
expected to quickly diminish into a weak shock. It is the point of this test case to show

2Their description of the test case and their plots do not match. This test case follows their calculation,
not their description.
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Figure 3.5.2.: Multi-species moving contact wave test case with HLLEM solver from sec-
tion 3.3.1, MC limiter and MUSCL reconstruction. The blue, solid line is
the exact solution, the data points show the numerical solution.

that these pressure oscillations, which are of the same magnitude as the ones [3] finds
for conservative solvers at short times and which produce the predicted peak pressure,
do indeed become increasingly negligible for larger times. Hence, the simulation was
conducted for 5 times their simulation time. In fig. 3.5.5, a close-up view on the contact
wave is shown 780 time steps into the simulation. The wave clearly moves with the right
velocity, and while pressure oscillations are still present, they are limited to an acceptable
relative error of 6 ·10−4. As a consequence, a small local velocity error is present as well.

The initial shock (not visible in the plot) does at this point still have a magnitude
of 0.4bar, rendering it the worst source of error. Since it occurs only for discontinuous
initial conditions though, and not if the transition is smooth, it is an acceptable trade-off
to leave it unfixed.

3.5.3. Advection of Smooth Data
To further substantiate the claim that pressure peaks resulting from contact waves as in
section 3.5.2 are small enough to ignore them for the purposes of this solver, consider the
advection problem for three 3000K peaks within a 300K N2 mixture at 1bar pressure.
This temperature difference corresponds to the jump in the previous example. The first
peak has a continuous triangular shape, the center is a discontinuous plateau, where the
largest errors are to be expected, and the third one is a smoothened plateau with contin-
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Figure 3.5.3.: Advection problem for ideal and perfect gases compared after 2000 time
steps.

uous first derivative. Figure 3.5.3 compares the temperature profiles of the simulation
with an ideal gas equation of state and the perfect gas approximation at cfl= 0.5 after
2000 time steps. No qualitative difference can be observed between ideal and perfect
gas case, so the pressure fluctuations in the ideal gas case do indeed not pose a problem.

The asymmetry in the solution comes from an interaction of the contact wave approx-
imation in the HLLEM solver with the MC limiter. If the unmodified HLLE scheme or a
more diffusive limiter like the minmod function is used, then the result is symmetric.
However, the contact wave is smeared just like it would be in the first order scheme, and
such smearing of waves is accepted in the present scheme. The end that is not smeared
does not pose an issue either, because the code disables the correction if the gases differ
too much in their composition and temperature oscillations could occur. The asymmetry
itself is not considered a problem. Still, this phenomenon is worth further investigation,
because if it yields a way to restore symmetry in favor of the solution that is less smeared,
then the resulting scheme would have increased accuracy.

3.5.4. Vacuum Test Case
In section 3.2.1, it has been shown that the ideal-gas HLLEM solver ensures positivity,
and should therefore be able to handle vacuum-generating problems by adding just the
right amount of diffusion for density and pressure to remain positive.
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Figure 3.5.4.: Solution for a Riemann problem generating vacuum. The blue line is the
exact solution, with the dashed vertical line marking the boundary of the
vacuum zone. The green dots are the numerical solution.

In [71], the author describes how to calculate the solution to the vacuum generating
Riemann problem: He proves that a vacuum region cannot be adjacent to a shock. Hence,
the problem must have a two-rarefaction solution. Both rarefaction waves eventually
reach zero pressure towards the center. Using the Riemann invariant (3.1.26), a corre-
sponding velocity can be determined, and this velocity determines the speed with which
the vacuum region expands. For perfect gases, the invariant admits an explicit expression.
Using it, the inequality

2cℓ
γ− 1

+
2cr

γ− 1
≤ ur − uℓ (3.5.4)

can be derived as a condition for a vacuum generating Riemann problem.
For N2 at 800 K and 1 bar, by this formula, a velocity difference of 6310 m/s is sufficient

for vacuum creation. To be on the safe side,

uℓ = −3500 m/s, ur = 3500 m/s (3.5.5)

were chosen here. Figure 3.5.4 shows that the code handles the test case like it would
handle a near-vacuum case, with the velocity field being that of two touching rarefac-
tion fans. The erroneous temperature in the lower right plot is a visible artifact of the
correction term (3.2.19): The correction prevents a numerical vacuum state, and the
accuracy of the choice of γmax determines how close to zero energy a state may be. In
this test case, γmax = 1.7 was used. For γmax = 1.5, Tmin ≈ 50K. The theoretical bound
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Figure 3.5.5.: Pressure streak-plot of forced oscillation in a pipe open at one end. The
left simulation used the original HLLEM solver, the right one the modified,
ideal gas HLLEM variant from section 3.3.2. Both plots share the same
colormap.

for this example is γmax = 1.4005. This choice creates states that are too noisy for the
Newton solver for the temperature/energy relation (1.2.10) though. The temperature
error inside the rarefaction stems from the error at the solution’s center.

3.5.5. Acoustic Test Case
Consider a clarinet, that is, a pipe with an open end and one where oscillations are
enforced. If the excitation occurs at an eigenfrequency of the pipe, a standing wave is
to be expected. If additionally the excitation is sufficiently strong, the jump between
the numerical ghost cell enforcing the boundary condition and the first interior cell is
sufficiently large for projection errors in the HLLEM scheme to be expected. This makes
this a good test case to show the issues of the uncorrected variant of the scheme, and
that the fixes suggested in section 3.3 work.

In the calculation, a 1 m domain with a resolution of 1 cm was set up filled with O2 at
300 K and 1 bar. At its left end, excitation with ±0.1 bar was enforced, starting with the
first eigenmode, with the frequency doubling every 20 ms.

Figure 3.5.5 compares the pressure fields of both simulations. The unmodified scheme
exhibits oscillations at the forced end that significantly weaken the amplitude of the stand-
ing waves. All three of the suggested corrections, i.e., upstream and star-region based
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calculation of ideal-gas eigenvectors and proper perfect gas approximation, qualitatively
produce the right plot without spurious oscillations.

3.5.6. Laval Nozzle Flow
The SEC simulation supports the quasi-1D formulation (1.2.64) of the reactive Euler sys-
tem. A simple test for the adequacy of the operator splitting approach to axial variations
is the simulation of choked flow through a convergent-divergent nozzle: For simplic-
ity of this derivation, consider a gas obeying the perfect gas equation. Assume that a
fixed upstream state with pressure pu and enthalpy hu, a downstream pressure pd , and
cross sectional area A(x) are given. Under the assumption that flow through the duct is
isentropic, [6] derives

M2
d =

2
γ− 1

�

�

pu

pd

�

γ−1
γ − 1

�

, (3.5.6)

ṁ=
γpuMd

p

(γ− 1)hu

�

1+
γ− 1

2
M2

d

�− γ+1
2(γ−1)

Ad (3.5.7)

for the mass flow ṁ. For fixed pu, ṁ approaches a constant value as pd → pc , for a specific
limiting pressure pc > 0. For pressures pd ≤ pc, the mass flow remains constant, and
locally M = 1 at the throat. Such flows are called choked. Behind the throat, the flow
becomes supersonic. As pd further decreases, a stationary shock forms that returns the
flow to subsonic velocities. The author of [6] argues that the total pressure ratio between
up- and downstream must be due to this shock, and that therefore the total pressure
ratio for the shock is known. From this, the local Mach number upstream from the shock
can be obtained using shock relations. Results are available pre-calculated in literature
in the form of Normal shock tables. Via the mass flow equation above, from this the cross
sectional area at the shock can be obtained, and thus its position relative to the throat.

In the simulation, γ = 1.4, pu = 2, pd = 1 and ρu = 0.0077 were used, the density
being the dimensionless pendant to O2’s density at room temperature. The duct geometry
is sketched in fig. 3.5.6. The above formulae predict that under these conditions, the
flow is choked and a normal shock is positioned at x = 1.954. The simulation started off
with p = pd everywhere, and upstream conditions imposed via a fixed-state boundary
condition. The calculation was then run with a resolution of ∆x = 10−2 and cfl = 0.5
until a numerical steady-state was reached. Figure 3.5.6 shows that the steady-state
solution qualitatively agrees with the prediction. M = 1 holds at the throat. The shock is
positioned slightly off, at x = 1.83. This is due to the operator splitting approach favoring
a numerical rather than the exact equilibrium. For cfl= 0.05, it has the correct position.

Qualitative behaviour of axial variations is hence well represented by the implementa-
tion, while to obtain quantitatively good results, small time steps or (splitting) methods
of higher order are required; see section 3.4.2.
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Figure 3.5.6.: Choked flow through a de Laval nozzle.
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3.5.7. ZND Detonations
Detonations are explosions driven by a leading shock wave. They have been introduced in
chapter 1 as a means to approximate CVC. From a theoretical viewpoint, their existence
is justified by the ZND model, named after Yakov Borisovich Zel’dovich [82], John von
Neumann [58], and Werner Döring [24], who independently proposed the model during
World War 2 as an extension to an earlier model by David Chapman and Émile Jouguet.
It enables calculation of the detailed structure of a detonation in a single dimension:
The authors argue that in a coordinate system moving with the shock’s velocity, a stable
detonation is a stationary structure. This structure can be obtained as a solution for the
stationary equations. For any detonation, a downstream state qd for the detonation to
travel into must be given. Furthermore, suppose for now that the shock speed us is known
and define ũ = u− us. By eq. (1.2.7), for stationary solutions in the moving reference
frame,

∂

∂ x
(ρũ) = 0, (3.5.8)

∂

∂ x

�

ρũ2 + p
�

= 0, (3.5.9)

∂

∂ x
(ũ (ρE + p)) = 0, (3.5.10)

∂

∂ x
(ρY ũ) = ρẎchem (3.5.11)

holds. Integration of these steady-state equations between two arbitrary points gives
equations relating admissible jumps in the conserved quantities. In this context, the set
of admissible jumps in momentum is called the Rayleigh line (after John William Strutt,
3rd Baron Rayleigh), which indeed is a line with a slope depending on the shock speed.
The admissible jumps in energy are given by the Hugoniot (after Pierre-Henri Hugoniot).
Two distinct integration bounds are of interest: The jump from the downstream state into
the unreacted, post-shock von Neumann state, and the jump from the downstream state
into the reacted, equilibrium Chapman-Jouguet (CJ) state. Since both conditions must
hold for all flow, the structure of a detonation can be obtained by calculating intersections
between downstream state, Rayleigh line and both Hugoniot curves. Figure 3.5.7 shows
an example of a non-dimensional p/V diagram containing these lines for a detonation
originating in the point (1,1).

Note that the theory and plot do not only explain/contain strong detonations, but also
the structure of a weak detonation that occurs in a SEC: It is the solution with a vanishing
shock, directly connecting initial and equilibrium state through the Rayleigh line.

Computationally, to obtain the structure of a strong detonation, the jump conditions
are only required to obtain the post-shock state qu from qd . From qu, equations (3.5.8)
to (3.5.11) may then be directly integrated towards equilibrium q∞. By translating
back to the original reference frame, one finally obtains initial data which should, up to
translation, be invariant under a numerical simulation of the reactive Euler equations.

A detonation hence poses another good challenge for operator splitting, only this time
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not for integration of the geometric source term, but for integration of the chemical
kinetics source term.

Since flow upstream from qu is smooth, it is convenient to switch to a different coor-
dinate system for determining the initial data. From equations (3.5.8) to (3.5.11), one
can readily derive

∂ ρ

∂ x
=

1
u2

∂ p
∂ x

, (3.5.12)

∂ u
∂ x
= − 1
ρu
∂ p
∂ x

, (3.5.13)

∂ Y
∂ x
= Ẏchem. (3.5.14)

By a lengthy transformation of the energy equation, furthermore,

∂ p
∂ x
=

∑

i

��

ρuTR̂+ ucv pR̂/R2
�

1/M⃗i −ρu
�

h⃗0

�

i

� ∂ Yi
∂ x

ρucv (1/ρ− p/(ρu)2) 1/R− p/(ρu)
, (3.5.15)

with species molar masses vector M⃗ and enthalpies of formation vector h⃗0, i.e., the sum
is taken over all species in the system. The advantage of this formulation is that only two
equations, the one for pressure and the one for the mass fractions, have to be numerically
integrated, while the other variables can be evaluated using the jump conditions.

For the shock speed us, Chapman [19] and Jouguet [44] observed that the shock
conditions impose a lower bound for admissible speeds, below which the conditions
cannot be fulfilled from qd to q∞. This limit velocity is called the CJ detonation velocity
ucj. The existence of a limit velocity is also visible in fig. 3.5.7, if one keeps in mind
that the slope of the Rayleigh line depends on the shock speed: Below a certain slope,
Rayleigh line and equilibrium Hugoniot do not meet anymore. Chapman and Jouguet
argue that ucj must be the “preferred” velocity of detonations. This becomes evident if
one calculates the equilibrium velocity ũ∞ relative to the shock: If u= ucj, the velocity
eventually becomes sonic and therefore isolates the lead shock from pressure waves
emanating from somewhere further upstream. For larger shock speeds, on the other hand,
relative equilibrium velocity is subsonic, and the system decays to the CJ detonation. In
the test case of this section, this condition was used to determine us numerically, by
means of an interval search algorithm solving ũ∞(us) = c∞. More elaborate algorithms
outperforming this simple one exist, see [65]. For more details on ZND theory and the
CJ condition, see, e.g., [30].

For the simulation,

qd = (T = 550 K, p = 7bar, stoichiometric H2 in air) (3.5.16)

was chosen, and the hydrogen combustion model by [17]was used. The code determines
the corresponding CJ velocity as 1992.5 m/s, which is slightly too large. This is due to
error tolerances; with more stringent bounds, it arrives at 1989.4 m/s with an error in
(ũ∞ − c∞) of −37 m/s. Due to the operator splitting, the simulation favors a numerical
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Figure 3.5.8.: Resolved ZND detonation after 20000 time steps. The straight lines show
the predicted, circles the numerical solution.

CJ velocity that lies between the two, traveling with 1990 m/s. This velocity was used in
this test, to allow better comparison between predicted and actual solution.

For reference, NASA’s Chemical Equilibrium with Applications tool, a well tested code
for thermodynamic calculations, determines ucj = 1980 m/s. This is most likely due to
the simulation using a different thermodynamic database than NASA’s tool. E.g., with
Berkeley’s GRI mechanism [67], the code estimates ucj = 1984 m/s.

The simulation was run with a resolution that resolves the leading shock (∆x = 5µm)
for 20000 time steps, corresponding to roughly t = 30µs. Figure 3.5.8 shows excellent
agreement between predicted solution and simulation.

Another validation of the code using detonations has been performed by [38] in a
bachelor’s thesis for the PDC experiment in CRC 1029. The author obtained a detona-
tion by using initial data containing a hotspot and running the simulation until a stable
detonation had formed. He then compared a simulation of the time evolution of the
detonation with the numerical results by [81]. Figure 3.5.9 shows that the propagation
velocity of the detonation is in excellent agreement with the reference data. Individual
emission levels deviate; the author attributes this to the use of a different reaction mech-
anism. Furthermore, [33] used a similar technique to simulate detonations using the
code, with plausible results.
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Figure 3.5.9.: NOx emission in a detonation. Solid lines are from the reference study [81],
data points from the simulation using the SEC code. Figure reproduced
from [38] courtesy of Niclas Hanraths.
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3.6. Intermediate Conclusion
Common literature presents the construction of Riemann solvers for the Euler equations
either for perfect gases, or for the most general equations of state, that cover ideal gases
as a special case, but are conceptually hard to understand. This chapter filled the gap by
giving a rigorous solution for the ideal gas case.

Suitability of the HLLE solver for SEC simulations has been discussed. In particular,
the appearance of unphysical pressure oscillations at contact discontinuities has been
investigated. Earlier publications regarded the oscillations as a numerical artifact that
must be suppressed to obtain better solutions. Here, it has been shown that pressure
oscillations naturally occur in physical diffusion processes. It has been argued that in the
creation of robust solvers, one should not focus on obtaining the exact solution to the
Euler equations, but instead accept and use the fact that due to numerical diffusion one
actually solves a Navier-Stokes equation with unknown but small diffusion coefficient.
Solutions to this equation are sufficiently close to the Euler system’s solution, but also
sufficiently smooth for the numerical scheme to give correct results. The HLLEM solver
is based on this insight. Consequently, any attempt to fix the solver to suppress pressure
oscillations would likely compromise its robustness. Still, contact discontinuities do cre-
ate unphysical pressure oscillations that compromise the solution as well. It has been
argued that the issue is less severe than it first appears: Only true contact discontinuities
create pressure oscillations; smooth transitions do not. It has been shown that pressure
oscillations do diminish quickly if one allows contact discontinuities to diffuse, instead of
trying to maintain them, keeping the overall error small. This result is in striking analogy
with the single-component, perfect gas case, where it is consensus that a compromise be-
tween maintenance of discontinuities and robustness must be found. E.g., [34] showed
that for a broad class of schemes the properties of preservation of stationary contact
discontinuities and positivity are mutually exclusive.

Positivity of the HLLE solver has been established for the ideal gas case, and bounds
for positivity preserving signal velocities have been derived. They are not as sharp as the
ones Einfeldt and Munz found for the perfect gas case, but still an improvement over the
simple choices in the original HLLE publication. Surprisingly, despite widespread use of
the solver, to the author’s knowledge, no earlier publication seems to have been devoted
to this cause. A possible exception is [75], which is only available in Chinese.

The HLLEM solver, which restores an approximation to the contact wave in the Rie-
mann problem, has been extended to the ideal gas case. Several alternative means to
calculate the approximation have been discussed.

The SEC simulation code has been introduced, combining all of the results into a
robust solver. Various test cases proved its ability to handle all situations relevant to SEC
simulations: Smooth multi-component flow, dam-breaking problems and acoustics in the
presence of an ideal-gas EOS. The coupling of fluid dynamics and chemical kinetics has
been validated using a ZND detonation, and the coupling of the system with a geometric
source term using a simulation of choked nozzle flow. In summary, it has been found
that the code is well suited for the present use case.
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4. Multi-Cycle Simulation of the
Shockless Explosion Combustion

The Shockless Explosion Combustion is a thermodynamic cycle for achieving approxi-
mately constant volume combustion in a gas turbine. Its basic principle of operation
has been introduced in section 1.1. This chapter concerns itself with numerical results
on the feasibility and limits of a practical SEC: Can a SEC be achieved at all, and how
close to a thermal explosion may the process be expected to get? Are there distinct limits
for admissible errors in process control that still yield a SEC; that is, are the technical
challenges quantifiable? How far may a real fuel deviate from the ideal model derived
in section 2.2 without rendering the process infeasible in practice?

These questions have been partially addressed in earlier joint publications [10–12, 14,
15, 33, 79]. Advancements in the numerical simulation and understanding of the process
allow to refine some of these results. Others admit significant extension. Parts of the
chapter will hence, in content, reproduce these results.

The chapter furthermore gives preliminary results on promising extensions of the SEC
concept. Before answering any of these questions, the specifics of SEC-simulations using
the code developed in chapter 3 and concepts common to all simulations will be discussed
briefly.

4.1. Numerical Setup
4.1.1. Boundary Conditions
The simulation of the one-dimensional SEC process restricts itself to the simulation of the
flow and combustion after mixing within the combustion tube. It therefore neglects the
question how a mixture of sufficient quality may be obtained, and how pressure waves
can be prevented from travelling upstream into the compressor plenum. It is assumed
that for both questions, answers resulting in perfect efficiency exist, that is, that the
upstream domain boundary behaves like a solid wall for upstream-travelling pressure
waves, and that a given mixture can be instantaneously provided at the inlet.

For practical applications, [13] suggests to use a fluidic diode to restrict upstream
flow, and a fluidic oscillator for mixing. For the diode design used in the associated
experiments, efficiencies are currently known neither for reflection of pressure waves
nor for admission of flow downstream into the tube. Hence, a more elaborate model for
the inlet condition would currently not quantitatively improve the results of the present
study. As for the efficiency of the fluidic oscillator for mixing, blending has been assessed
in [15] and it has been found that excellent quality can be achieved 5cm downstream
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from the inlet. Since a SEC may be realized by omitting charging this region with fuel, i.e.,
stopping the charging process such that upon ignition, the whole stratification travelled
sufficiently far downstream for all fuel to be well mixed, the instantaneous mixing ansatz
is deemed sufficient for the time being.

The actual boundary conditions in simulations are implemented using ghost cells as
follows: If the pressure at the upstream end of the computational domain exceeds a
prescribed compressor plenum pressure, a rigid wall slip condition is applied, i.e., a
ghost cell that is a copy of the first cell with changed sign in the momentum coordinate
is added. The solution to the associated Riemann problem between ghost cell and first
interior cell has zero mass flux through the interface, enforcing the boundary condition.
If pressure is below the prescribed value, the adiabatic expansion of the plenum state to
inner pressure conditions is calculated and used as a ghost cell. Specifically, this means
that pressure is expanded isentropically and total enthalpy is kept constant by converting
excess internal energy into kinetic energy [6]. Blending is modeled by giving the plenum
a time-dependent, instantaneously adjustable mixture composition. The state that is
expanded to inner pressure at the boundary hence depends on time.

At the downstream end, the duct instantaneously opens into another plenum with
fixed pressure. Since the jump in cross-sectional area is discontinuous, the boundary
state cannot be modeled using an adiabatic expansion. Instead, it is assumed that the
velocity in axial direction remains constant, while pressure is still isentropically expanded
to its plenum value: Because at the end of the pipe, pressure can dissipate in all three
spatial directions, only a fraction of the generated momentum points in axial direction,
and vice versa for compression. This reasoning suggests to take between 0 and 1/3 of the
enthalpy difference between inner state and expanded state and convert it into additional
momentum in axial direction.

For validation of the ansatz, a simulation of a typical SEC pressure wave has been
conducted: A tube sealed at the left end was set up to initially have (dimensionless)
pressure p = 2 within its first 40% and pressure p = 1 in the 60% closer to the right end.
For the right end, the expansion boundary condition was used, with a prescribed outer
pressure of p = 1. Pressure and velocity were sampled just upstream from the tube’s end.
A second simulation was then run, this time in 2D, with a sufficiently large plenum (150
cells) attached to the right end of the tube. Figure 4.1.1 shows good qualitative agreement
between both simulations; especially, pressure falls below the initial value at similar
times. The model is thus deemed sufficient for the qualitative investigations at hand.
For quantitative calculations, though, the model might need improvement, especially
because of the different magnitudes of the suction wave.

4.1.2. Fuel Curve Determination
The most important ingredient to any SEC calculation is the determination of a suitable
fuel curve, that is, the amount of fuel that needs to be injected as a function of time.
The goal is to stratify fuel and air in such a way that the whole charge auto-ignites
homogeneously such that auto-ignition delay time τ is at each instant constant within
the charge.
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Figure 4.1.1.: Dimensionless pressure and Mach number at the pipe’s outlet for the sim-
ulation of a pressure wave typical for SEC simulations leaving the tube.
Comparison between 1D model for downstream boundary and a 2D simu-
lation.
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Consider the case where initially, pressure and velocity are constant throughout the
domain, and the overall time until auto-ignition is sufficiently low to neglect diffusion.
Since in ignition processes, pressure remains essentially constant before auto-ignition,
the Euler equations only advect the fuel/air charge without deforming or mixing it.
Until ignition, each point within the fuel stratification may hence be regarded as an
autonomous system whose time evolution is uniquely defined by its initial conditions.
That is,

τ= τ0 − tres, (4.1.1)

with τ0 the initial ignition delay time and tres the individual residence time in the tube.
To create a suitable fuel stratification in this configuration, it suffices to fix a point in
time tign where ignition is desired, and, while setting up the stratification, at each instant
choose τ0 = tign − t.

This raises the question how τ0 may be “chosen”. In general, τ0 = τ0(p, T, Y ). In
practice, these parameters cannot be influenced freely: In the compressor plenum, air
at a given temperature is available, into which an adjustable amount of fuel at another
temperature may be mixed at the inlet. The amount of fuel entering the system hence is
the only available parameter. If the mixing process is modeled as an isenthalpic process,
then T and Y may be calculated given the amount of fuel. In particular, this uniquely
fixes the fuel/air equivalence ratio Φ. Hence, with air and fuel temperatures given, it is
a reasonable choice to regard the auto-ignition delay time as τ0 = τ0(Φ).

Practical limits for the range of Φ impose maximal and minimal ignition delay times
τmax and τmin: For Φ≪ 1, the energy release becomes negligible and ignition delay time
hence meaningless. For Φ > 1, parts of the fuel cannot react due to a lack of oxidizer,
which is obviously undesirable.

Regard the time at which charging starts as t = 0. Then tign may be chosen such that

τmin < tign < τmax. (4.1.2)

The maximal admissible time usable for charging is tign − τmin, and after charging is
completed, it is necessary to wait for ∆t = τmin until ignition. To achieve acoustic
resonance,

tign =
2ℓ
cavg

(4.1.3)

should be chosen, with ℓ the length of the pipe and cavg average sound speed. The fuel
and its temperature must then be selected such that the constraint (4.1.2) is fulfilled.

Obtaining the fuel curve itself is then a matter of inverting the relation between Φ and
τ0: At each instant, the inlet must provide a mixture with

Φ= Φ(τ0) = Φ(tign − t). (4.1.4)

In general, τ0(Φ) and its inverse must be evaluated numerically. How the condition on
Φ translates to mass flows through a fuel valve has been discussed in section 2.3.

The assumption of constant charging velocity and constant pressure does not hold in
practice. Figure 4.1.2 shows how the Mach number at the inlet varies in a dimensionless
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Figure 4.1.2.: Typical Mach numbers while charging a SEC. Data has been sampled 5%
into the tube, from the start of the charging process until ignition.

SEC, using the ideal fuel model derived in section 2.2. If the changes are sufficiently
smooth, then this primarily affects assembly of the mixture: To reach a given equivalence
ratio, fuel mass flow must be adjusted to match a fraction of the air mass flow, which
depends on the charging velocity. As long as the velocity is known, its dependence on
time can easily be included in the calculation. Since the one-dimensional simulation does
not include mixing but instead uses a premixed boundary condition, this issue does not
affect it.

If the changes in velocity are not smooth and in particular strong shocks occur, then
the assumption that each point within the fuel stratification may be regarded as inde-
pendent of the others does no longer hold and the charging strategy fails. In the present
simulations, this is not an issue: Particular strong shocks do only occur if a SEC ignition
fails, and in such situations, the simulation can simply be adjusted to avoid the issue
in the first place. For practical applications, process control must be used to return the
system to working SEC conditions upon failure.

4.2. Results
4.2.1. Atmospheric Single-Shot Ignition
In parallel to its theoretical investigation, the SEC was to be realized in an experiment
at atmospheric pressure and a temperature of about 800 K. It was soon found that fuels
do in this regime have auto-ignition delay times in the order of 100 ms. A resonant SEC
requires that auto-ignition delay time and acoustic timescale have the same order of
magnitude. Since the sound speed is about 500 m/s, an experiment would require a tube
that is at least 25m long. With the contemplated fuel from chapter 2, it would even
have to be 190 m long. This is obviously impractical. It was therefore decided to instead
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4. Multi-Cycle Simulation of the Shockless Explosion Combustion

aim for a single homogeneous auto-ignition in the first experimental investigation: An
air flow is enforced in the test tube, fuel is injected to create a stratification, the flow
is stopped, one waits until the residence time has passed, and then the quality of the
mixture is assessed based on the homogeneity of the auto-ignition.

This experiment is an interesting test case for simulations as well: For real fuels, the
charging concept from section 4.1.2 typically requires some fine-tuning until homogene-
ity is reached. It hence does not suffice to run one simulation, but instead several must
be conducted until a working SEC simulation is established. As has been elaborated in
section 2.1, current prospective SEC fuels come with large mechanisms of at least some
dozens of species. This makes optimization of the stratification in a SEC impractical even
in 1D. While it is possible to reduce the computational burden by choosing a lower reso-
lution, one then also looses the ability to distinguish between partial and full detonation
formation due to the SWACER-mechanism, which is undesirable as well. The simulation
of a single shot allows to assess the critical charging process in an isolated fashion. Also,
it gives insight into the required stratification quality given the prospective fuel and fuel
model.

In [14], the quality of mixtures created using a fluidic mixing device designed for the
SEC has been assessed. In the paper, mixtures of inert fluids were created and mixture
quality assessed in discrete measurement planes downstream from the mixture appara-
tus. The experimental investigation yielded a standard deviation of σ = 2.424 · 10−3

in equivalence ratio on a characteristic length scale of 9.7mm, originating from the
measurement plane placement. A numerical study investigated whether errors of this
magnitude in the fuel/air stratification would still result in a homogeneous combustion
in an experiment at 3 bar pressure. The simulation used the SEC fuel proposed by [18],
which is a blend composed of

CH3OCH3 + 1.1 H2 + 0.8 CH4. (4.2.1)

At the time when the paper was written, the reduced mechanisms discussed in chapter 2
were not yet available, and hence the initial one had to be used. Even the simulation of
a single ignition takes several processor days to compute with it.

Hence, the computation was restricted to the simulation of a few milliseconds before
and after ignition: Assuming a constant charging velocity, chosen such that the maximal
range of possible ignition delay times is used up just as the domain is completely filled
with fuel/air mixture, and neglecting two-stage ignition behaviour for the time being, the
final stratification before ignition may be pre-calculated. By adding stochastic, Gaussian
distributed noise to the equivalence ratio in the stratification at this point and then
running a simulation until ignition, it can be assessed whether the noise suffices to
significantly disturb the homogeneous combustion. The characteristic length scale of the
noise can be incorporated by choosing noise values at discrete intervals and applying
linear interpolation in between.

In the paper, a number of such simulations were conducted, including the case of
extremal noise, that is, high noise values (3σ) with alternating sign on each interpo-
lation node. The study found that extremal 3σ noise levels are too high to ensure a
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homogeneous combustion, but that it remains homogeneous for noise within a 2σ neigh-
bourhood.

Since then, the simulation software, available mechanisms and understanding of the
process have advanced, encouraging to repeat the calculation. The stratification in the
study presented here deviates from the one in the original simulation: It now takes the
equivalence ratio dependence of temperature (discussed in section 2.3) into account,
assuming that air is supplied at 910K and fuel at 200◦C. Furthermore, since the 34
species mechanism from chapter 2 is available nowadays, it is no longer required to pre-
calculate the kinetics until a point close to ignition, and hence it is no longer necessary to
make the assumption that two-stage behaviour is negligible. Two new simulations were
conducted:

The first one is an updated variant of the simulation from the paper. It is assumed that
charging still happens sufficiently fast to be completed before the first stage ignites, i.e.,
that the stratified state can still be pre-calculated analytically, and that the simulation
may be started at this point. The simulation then includes the first ignition stage and its
effects. In this situation, the naïve stratification from section 4.1.2 leads to a detonation
even when no noise is applied. Numerical optimization may however be used to optimize
it to retain homogeneity.

Such an optimized curve has been the basis for the experiment. Noise was added to it
in the fashion described above. Figure 4.2.1 (a) shows that the peak pressure is 20bar
and that the ignition wave moves with 2350 m/s. A CJ-detonation would have 22 bar CJ
pressure and move at 1992 m/s. The leading van Neumann pressure peak would have up
to 45 bar if resolved. The simulation hence shows a weak detonation.

The second simulation considers the case where charging is not sufficiently fast to ig-
nore flow/reaction interaction during first-stage ignition. It assumes a constant charging
velocity of 11.25 m/s, such that upon ignition, exactly 40 cm of the simulation domain are
filled with the stratified mixture. Flow is imposed as a left boundary condition, and fuel
injection is modeled as described in the beginning of the chapter, following the same fuel
curve as above. No perturbation is applied for this test case. When the stratification is
completed, the boundary condition is immediately switched to a rigid wall slip condition.

The first stage ignites after 6ms (≈ 7cm into the tube) and increases pressure by
0.3 bar. Figure 4.2.1 (b) shows a close-up on the second stage ignition of this simulation.
The combustion propagates with about 1500 m/s. It is hence now no longer a weak
detonation, but instead most probably a developing detonation. Also, ignition takes
place nearly 50ms later than predicted. This might be due to the varying temperature
due to the pressure waves from first stage ignition altering the reaction paths and thus
auto-ignition delay times. In any case, the simulation shows that the time-dependent
fuel injection should for multi-stage fuels take the dynamics during the charging process
into account.

4.2.2. Multi-Cycle Simulation with the Single-Stage Ideal Fuel Model
SEC fuels must admit accurate control over auto-ignition delay time even if the conditions
within the combustion tube are only known approximately. One way to achieve this is

77



4. Multi-Cycle Simulation of the Shockless Explosion Combustion

0 20 40

x [cm]

57.8

58.0

58.2

58.4

58.6
t
[m

s]

Pressure [bar] (a)

5.0

7.5

10.0

12.5

15.0

17.5

20.0

0 20 40

x [cm]

57.8

58.0

58.2

58.4

58.6

t
[m

s]

Mach number (a)

0.0

0.2

0.4

0.6

0.8

0 20 40

x [cm]

109.4

109.6

109.8

110.0

110.2

110.4

t
[m

s]

Pressure [bar] (b)

4

6

8

10

12

14

16

18

0 20 40

x [cm]

109.4

109.6

109.8

110.0

110.2

110.4

t
[m

s]

Mach number (b)

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4.2.1.: Ignition of stratified SEC-fuel mixtures. (a) Mixture with extremal 3σ in-
homogeneities in the ideal Φ-stratification assuming that the stratification
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to tailor fuels such that they have the property that their auto-ignition delay time varies
only by few milliseconds over a large range of temperatures. This way, temperature
within the combustion tube does not need to be known exactly, and the problem of
creating a proper stratification reduces to ensuring sufficiently good mixture quality. In
section 2.2, an idealized fuel model for fuels with this property has been introduced:
It features an auto-ignition delay time that is completely independent of temperature
within a given temperature range. In the associated publication [11], several studies
have been performed to assess which general results can be derived from this model
and how much another fuel may deviate from the model’s idealized behaviour without
harming the process. This section reproduces these results.

Unperturbed Simulation

The most straightforward test case is the simulation of a multi-cycle SEC. The charging
concept from section 4.1.2 may be applied to the model from equations (2.2.1)-(2.2.2)
as follows: The decay rate constant

λ= − log (ϵ) (4.2.2)

is given as part of the model. If an auto-ignition delay time of τ ∈ (0,1] is desired, YF
must hence be initially

YF,initial(τ) = ϵ exp (λτ) . (4.2.3)

This means that if fuel is to be injected into the combustion tube at all, then a mass
fraction ratio of

Y = {Intermediate= 1− YF,initial(τ), Fuel= YF,initial(τ)} (4.2.4)

must be set as the instantaneous boundary condition.
For the experiment, the stratification from section 4.1.2 was produced as follows: The

time t0 when the upstream valve opened was recorded. Fuel was injected at each instant
such that

τ= τmax − (t − t0). (4.2.5)

To separate hot exhausts from fresh gas, fuel injection did not start right away, but only
when (t− t0)> tbuffer. tbuffer = 0.5 has experimentally proven to be a robust choice. The
pipe was chosen to have length x = 1. This necessitated to use τmax = 0.77 to ensure
resonant behaviour, given the (computed) average sound speed of 1.7 in the pipe.

Figure 4.2.2 shows streak plots of the simulation. Up to the time resolution of the
plots, ignition is perfectly homogeneous. The different cycles are almost identical, only
the reflection of the pressure wave from the downstream end varies slightly. It is an
interesting observation that the cycle length is ∆t = 1.58≈ 2τ, i.e., close to the second
harmonic of the expected resonance time. The reason for this becomes clear when one
inspects an isolated cycle. The cycle generated by the initial conditions of the simulation,
namely a perfectly homogeneous ignition, which has been stripped from fig. 4.2.2, can
be seen in fig. 4.2.3: The leading pressure wave, originating from the right end of the
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ignited volume, already generates a reflection that is sufficient to initiate charging. A
second strong wave is present in the system, following right behind the first one. The
interaction of the two waves makes the process more complex than predicted by the basic
model. It is noteworthy that this behaviour is weakened if the stratification is such that
the mixture does not ignite homogeneously, but in a unidirectional (weak) detonation.
In the H2-experiment from section 4.2.5, which features weak detonations, it cannot be
observed at all.

Admissible Temperature Dependence

The temperature field in fig. 4.2.2 shows that the temperature in the stratified mixture
fluctuates by about 0.05 before ignition, corresponding to 50 K in dimensional units. This
confirms the assumption that a SEC fuel should have essentially constant auto-ignition
delay times over a range of at least 100K.

The reaction describing the auto-ignition delay time, eq. (2.2.1), has an additional
Arrhenius term ϑT , that was initially set to zero, but present to allow to quantify the notion
of “essentially constant”. By setting AT = 1 to keep the overall temperature dependence
small, and choosing a positive activation energy ET , a non-zero ∂ τ/∂ T gradient may be
added to the chemistry. To observe its effects, the SEC simulation was run repeatedly
with different values for ET , and peak pressure (exemplary at x = 0.01) was measured
for each value. Figure 4.2.4 shows the results. Larger dependencies do indeed lead to
detonations, with a significant pressure rise for ∂ τ/∂ T ≥ 0.4, corresponding to 0.4µs/K

in dimensional quantities. Note that 0.4µs is in the order of the excitation time scale,
which supports the hypothesis from the introduction, stating that its magnitude might
be relevant to the robustness and error tolerance of the process.

Stratification Error Tolerance

The mixture in the experiment has been set up such that right before ignition, ∂ τ/∂ x ≈ 0 in
the stratification. In a real-world scenario, the stratification cannot be expected to be this
good. Instead, it will always have some inhomogeneities. This experiment investigated
the case where ∂ τ/∂ x = const> 0. It is not only the simplest case of inhomogeneities in
this setting that can systematically lead to detonative combustion, but also one that is
closely related to the SWACER mechanism and deflagration to detonation transition. For
general fuels, it has been investigated thoroughly in [35]. The paper establishes a relation
between the auto-ignition delay time gradient’s magnitude and the sound speed in the
unburnt mixture and identifies ranges of the ratio of the two with different combustion
modes: Small ratios lead to weak detonations, intermediate ones to developing detona-
tions, and very large ratios to deflagrative combustion. The present study compared the
results for the ideal fuel model with their findings.

To create a mixture with an approximately constant spatial auto-ignition delay time
gradient, a linear factor was introduced into the fuel curve (4.2.5), such that

τ= τmax − (1+ ξ)t + t0. (4.2.6)
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Figure 4.2.3.: Pressure for an isolated ignition, with initially homogeneous pressure, in
the single-stage ideal fuel model. The red line depicts the time when pres-
sure at the valve drops below plenum pressure, the yellow one ignition.
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Figure 4.2.4.: Dependence of peak pressures in a SEC-ignition on the level of auto-
ignition delay time dependence on initial temperature.
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Figure 4.2.5.: Dependence of peak pressures in a SEC-ignition on the slope of auto-
ignition delay time in the final stratification.

If charging velocity vc is constant, then this results in a ζ= ξ/vc slope in the stratification.
In [11], vc was measured to be vc ≈ 0.471 on average, and it was found that this approach
is sufficient to generate the desired stratification. As in the earlier experiment, multiple
runs of the SEC simulation were carried out with various values for ξ, and the peak value
of the pressure field has been stored for each.

Figure 4.2.5 shows the dependence. The two most striking features are a sharp rise at
ζ= 0.12 and the curve remaining constant for ζ≳ 0.45. Both values are in accordance
with the findings by [35]: They predict detonations to develop as the auto-ignition wave’s
velocity approaches the sound speed in the unburnt mixture. The simulation has c = 1.14,
so ζ = vcc

−1 = 0.41, close to the observed value of 0.45. They also conjecture a lower
bound below which detonations are weak, without giving an explicit formula, but hinting
at a connection to the CJ velocity vc j = 3.84. ζ = vc v−1

c j = 0.12, which is in perfect
accordance with the value from the plot.

This connection is not surprising, given that the experiment is designed to produce
weak detonations and that the slowest existing weak detonation has CJ velocity (see
section 3.5.7).

Excitation Time Scale

It has already been stated that the time scale on which energy is released is of importance
to the error tolerance with regard to perturbations in the auto-ignition delay time strati-
fication. In section 4.2.1, the effect of Gaussian distributed noise has been investigated
for a real fuel. The study on stratification errors regarded small, piecewise linear errors
in auto-ignition delay time. In the present simulation, an extra dimension was added to
the study by furthermore varying the time scale of the excitation reaction.

The rationale is as follows: If there is a hotspot, i.e., a single point in the stratification
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that ignites significantly early, then the combustion will locally increase the pressure. As
this pressure dissipates into the unreacted fuel adjacent to the hotspot, it compresses
it and thus raises temperature. Since the fuel is already very close to auto-ignition, the
pressure rise might suffice to trigger a detonation. There then is a race between the time
that it takes the adjacent fuel to auto-ignite as planned, which would make the hotspot
unproblematic, and the time that it takes for the pressure to locally rise and then dissipate
sufficiently to trigger the adjacent fuel to ignite early. The time scale with which energy
is released, and thus on which pressure rises, is the excitation time scale. The larger it is,
the less likely is a local hotspot to trigger a detonation.

In an experiment, the excitation time scale can be adjusted by altering the activation
energy EI of the excitation reaction (2.2.2). The original SEC simulation was again used,
but a local error was introduced as a region with a discontinuous jump to a lower, variable
ignition delay time. Following the study from section 4.2.1, a width corresponding to
9.7mm was chosen for this region. Again, peak pressure was measured. Figure 4.2.6
shows how it depends on the two degrees of freedom. Compared to the original results
in [11], the simulation featured an increased resolution, allowing to better distinguish
the different regimes: There are sharp boundaries separating excitation times sufficiently
small to cause detonation from those where no detonation occurs, with the bound being
at an excitation time of about 0.005. Pressure still rises to a value higher than it would
in an isochoric combustion for longer excitation times if the hotspot ignites close to the
desired auto-ignition. This is due to an interaction of the pressure wave emanating from
the hotspot and the auto-ignition. For small excitation times, any hotspot that ignites
sufficiently early creates a detonation, but the strongest coupling happens if ∆τ stays
relatively small, i.e., the remaining fuel is very close to auto-ignition.

The 3σ error from the single shot simulation in section 4.2.1 corresponds to a time
span of 0.0185 in dimensionless coordinates. Dimensionless excitation time for the SEC
fuel is 0.002. This region is not resolved in fig. 4.2.6. Figure 4.2.7 shows detailed values
for this excitation time and small values of ∆τ. CJ pressure in the experiment is 12.83,
and the pressure at ∆τ = 0.0185 is 11 in the figure. If one uses the CJ pressure as
a reference to convert to dimensional quantities, then one would expect a pressure
peak of 18.86 bar in the single-shot experiment from section 4.2.1, which is close to the
observed value. Though this value is not very accurate due to the kind of the simulation,
∆τ < 0.005≡ 2ms may be derived as a detonation limit from the plot.

Compressor-to-Turbine Pressure Ratio

If the energy released in a SEC combustion cannot be transported away quick enough,
then a mean pressure gain can be observed at the downstream end of the combustion
tube. This is an issue for all pressure rising combustion processes, and one that the SEC
incorporates by actively utilizing the pressure gradients in its recharging concept. If the
mean pressure ratio between compressor and turbine plenum however becomes too
large, the reflected low-pressure wave can become too weak to recharge the tube.

Again, a repetition of the initial SEC experiment was performed, with varying pressure
in the downstream plenum. Figure 4.2.8 shows the maximal width of a fuel stratification
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Figure 4.2.6.: Dependence of peak pressures in a SEC-ignition on the excitation time and
anticipation time of hotspot that leads to ignition.
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Figure 4.2.7.: Dependence of peak pressures in a SEC-ignition on the strength of a
hotspot with the standard reactions from table 2.2.1.
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Figure 4.2.8.: Influence of turbine to compressor plenum pressure ratio on capability to
maintain a SEC. Compressor output pressure is 1.0.

in each simulation for times between 3 and 10, with the lower time bound being in place
to allow the system to tune itself or fail, if the downstream pressure is too large. The
figure shows that a pressure gain up to about 10% is sustainable.

4.2.3. Multi-Cycle Simulation with the Two-Stage Ideal Fuel Model
The single-stage ideal fuel model that was investigated in section 4.2.2 has been extended
to support the multi-stage ignition of DME and similar fuels in section 2.2.2. The exten-
sion works by inserting another two reactions into the system that convert the product of
the first set of reactions, now dubbed the intermediate fuel, into the final product. This
second reaction again has time-independent auto-ignition delay time.

The extension was published in [11], and a first numerical investigation was performed
in [12]. For the present simulation, the basic test case of section 4.2.2 was repeated,
adjusted to the two-stage model:

The model has two fixed decay rate constants,

λF = − log (ϵ)η−1, (4.2.7)

λI = − log (ϵ) (1−η)−1 , (4.2.8)

where η= 3/4 defines how much of the total auto-ignition delay time τ= 1 is spent in
the first ignition stage. To have an auto-ignition delay time of τ ∈ (1−η, 1], hence,

YF,initial(τ) = ϵ exp (λF (τ−η)) , (4.2.9)

Y = {Radical 1= 1− YF,initial(τ), Fuel= YF,initial(τ)} (4.2.10)
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must be set as the instantaneous boundary condition. For τ ∈ (0, 1−η],

YI ,initial(τ) = ϵ exp (λIτ) , (4.2.11)

Y = {Radical 2= 1− YI ,initial(τ), Intermediate= YI ,initial(τ)} (4.2.12)

must be used.
A direct comparison of the two-stage simulation in fig. 4.2.9 with the single-stage

simulation qualitatively gives the same results, and in detail only the small pressure rise
upon ignition of the first stage shortly before the second stage ignites as a difference.

There are several things worth pointing out about the two-stage model:

• While it is numerically possible to inject fuel arbitrarily close to ignition, a real SEC
fuel has a non-zero minimal auto-ignition delay time. Especially for multi-stage
fuels, while it is numerically possible to inject fuel in a state between first- and
second-stage ignition, this is not possible in a real world scenario.

• The energy release from the first stage must be such that the temperature after first-
stage ignition is below the activation limit of the high-temperature reaction path, or
the second stage will ignite early. In other words, the energy release from the first
stage reduces the effective width of the temperature region where ignition-delay
time is independent of temperature.

• If the energy release from the first stage is sufficient to raise pressure above the
inlet plenum pressure, then charging stops as the first stage ignites. In any case,
ignition of the first stage will slow down the charging process.

• Real fuels have the property that for higher initial pressures η→ 1, but the pressure
rise becomes significant as well. E.g., for DME at 1 bar and 750 K, η= 0.06, and the
pressure rises (in an isochoric combustion) by less than 0.3 bar. At 3 bar, η= 0.1,
and ∆p = 0.3 bar. At 12 bar, η= 0.625 and ∆p = 3 bar. Finally, at 30 bar, η= 0.9
and∆p = 10 bar. Close to the low pressure end of this range, the pressure rise may
be ignored and a stratification computed as if it was not present. This is what has
been done in section 4.2.1. Close to the high pressure end of this range, the time
between first and second stage becomes sufficiently short to ignore, and instead a
stratification may be computed as if first stage ignition was the only ignition event.
In the intermediate range, one must take the two-stage ignition into account, which
justifies why the two-stage model is needed.

Simulations confirm all of these points.
When the two-stage model was introduced in section 2.2.2, a curve was presented that

demonstrates that the fuel can be tuned to have the same (non-constant) auto-ignition
delay time as the fuel blend suggested by [18] for a range of temperatures. In [12], the
computation of a multi-cycle simulation with the tuned model was conducted as well: As
expected, ignition is no longer homogeneous right away for the model with temperature
dependence. Instead, the stratification must be optimized to regain homogeneity.
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4.2.4. Efficiency Limits for the Upstream Boundary Condition
In section 4.2.2, the acceptable pressure gain measured from the upstream to the down-
stream end has been investigated. The test case can be interpreted as a test for the
efficiency of the downstream boundary condition. A similar test is advisable for the
upstream boundary: If a low-pressure wave reaches the boundary, and it is partially
reflected instead of creating a positive velocity, recharging the SEC might fail.

Figure 4.2.10 is an example demonstrating that this might be an issue: It shows the
temperature field of a 2D simulation using the single-stage ideal fuel model, that naïvely
took an under-resolved, zeroth-order representation of the fluidic diode geometry from
[13] and placed it in front of the upstream boundary. The rest of the simulation is un-
changed from the basic simulation carried out in section 4.2.2. All of the plots show the
field after the low-pressure wave reached the upstream end, but before new fuel can be
injected for the second ignition — the amount of fresh air allowed to flow downstream
through the diode does not suffice to flush and thus recharge the tube.1

To quantify how efficient the upstream boundary must be, the basic SEC simulation
was repeatedly conducted until time t = 10 with different efficiencies and pressure rises.
For each run, the mean time from opening of the upstream valve to ignition, and the
mean length of each charge upon ignition was measured. A reduced flow rate means
that it takes longer to create the buffer of fresh air, separating fuel from hot exhausts. To
compensate for this, the buffer time was not fixed, but a flexible buffer was used instead:
In addition to waiting a minimal time of 0.5 after the pressure initially fell below the
inlet pressure, fuel injection was further delayed until the first 15% of the tube had a
temperature below 1.2, i.e., to a temperature within the region where auto-ignition delay
time is temperature-independent. This leads to smaller fractions of the tube being filled
as well.

To ease the modelling effort, the boundary efficiency has been defined as an effi-
ciency for velocity: For an impinging low-pressure wave, the boundary condition from
section 4.1.1 states that the plenum state is isentropically and isenthalpically expanded
to the inner pressure. The enthalpy conservation condition accelerates the flow, which
leads to a change in velocity ∆u. If instead of by ∆u, the velocity only changes by η∆u,
then the boundary condition by definition has an efficiency of η.

Figure 4.2.11 shows both relations. As before, ideal values are ∆t ≈ 1.6 and a mean
normalized charge volume of 0.4. The practically most relevant non-dimensional pressure
rises are between 3 and 5. There, velocity efficiencies of 0.5 are acceptable.

4.2.5. Multi-Cycle Simulation with Real Fuels
In [11], a SEC using H2 as a fuel was simulated to demonstrate that, in theory, the process
may be realized with any fuel. The temperature independence is only required because
a technical realization cannot control temperature sufficiently accurate to work with

1The situation improves if a higher-order approximation to the boundary [46] and higher resolution are
used, but the general problem that recharging fails persists.
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Figure 4.2.10.: Qualitative plot of the temperature field in a 2D SEC with the single-stage
ideal fuel model with∆Q = 10 and the inlet geometry suggested by [13]
at different times in a single cycle. Only blue temperatures are sufficiently
low to allow injection of fresh fuel. In a working SEC cycle, the first image
should already show the second cycle, but in the sequence, all images are
from the first one. The figure serves to show that inlet geometry might
inhibit recharging.
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such reactive fuels. By further optimization of the fuel curve, this section extends the
simulation to one that reliably produces weak detonations.

Hydrogen has been chosen because it is a simple fuel for which small, yet accurate
mechanisms exist. For the simulation a high pressure mechanism with 11 species was
used [17]. The simulation was set up at 30 bar and 1000 K, close to the conditions that
one would expect in a gas turbine. The high temperature is required to obtain auto-
ignition delay times in the order of milliseconds (3.66ms at exactly these conditions),
such that the pipe and hence numerical domain can remain relatively small (4m). A
resolution of 1cm was used. At these conditions, a CJ detonation would travel with
1979 m/s and have a CJ pressure of 150bar.

Temperature was used instead of equivalence ratio to control auto-ignition delay times
in the stratification: In a temperature range between 1000K and 1100K with constant
equivalence ratio Φ = 1, this allows for a greater range of auto-ignition delay times
(∆τ= 3.16 ms) and hence a larger stratification. Since the simulation is under-resolved,
developing detonations cannot be identified easily, and a larger stratification gives them
more time to develop into a CJ detonation which would be identifiable by the high
pressures. Since the code does not feature explicit diffusion terms, and numerically
treats species diffusion and thermal diffusion in the same fashion, using a temperature
stratification is not a simplification: If the process numerically works with temperature
stratifications, then it would work with equivalence ratio stratifications as well.

The fuel curve has been obtained as follows: Auto-ignition delay times were sampled in
150 equidistant points for the given range of initial conditions and a fifth order polynomial
was fitted for T0(τ), initial temperature as a function of desired ignition delay time. An a
posteriori error analysis shows that the interpolated representation is sufficient: If auto-
ignition delay times are sampled for the interpolated temperatures for each of the original
auto-ignition delay times, then the difference of both times has a standard deviation of
σ = 5 · 10−6, which is of the order of excitation time. This has been found sufficient in
section 4.2.2.

The same dynamic air buffer strategy as in section 4.2.4 was used: Fuel injection was
delayed until the first 15% of the tube were flushed with fresh air, independent of how
long this took. A posteriori, from the results below, a fixed buffer of 4ms would have
sufficed as well. The advantage of the dynamic strategy is that if for some reason flush-
ing takes longer than anticipated, while the resonant behaviour is lost, a homogeneous
combustion by auto-ignition is still achieved, with the associated pressure rise. With a
fixed buffer time, if the buffer is not large enough to avoid mixing of hot exhausts and
fresh fuel, combustion is not homogeneous, and in the worst case, the pressure rise is not
sufficient to recharge the tube for the next cycle. The time when injection was started
was recorded and the difference to this point in time denoted∆t. Fuel was then injected
at a temperature

T0(τmax − ξ∆t), (4.2.13)

with a variable parameter ξ. The effects of such a parameter on fuels with temperature-
independent auto-ignition delay have been investigated in section 4.2.2. Here, it allows to
tune the stratification to a point where, reliably, the mixture combusts weakly detonative.
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A value for ξ was obtained from a parameter study, and ξ = 0.6 found to be a good
choice.

Figure 4.2.12 shows the results from the simulation. The cycles repeat smoothly every
12.8 ms, roughly 4τ, as expected for a weakly detonative SEC (see section 4.2.2). Pressure
peaks at 94bar before reflection of the pressure wave at the boundary (133bar upon
reflection), which is above the pressure of an isochoric combustion (83bar), but well
below CJ pressure (150bar). The combustion waves travel with about 2040 m/s. The
process hence features weakly detonative combustion.

4.2.6. Axial Variations of the Tube Diameter
In section 3.5.6 on the simulation of a choked Laval nozzle, it has been shown that and
how axial variations of the tube diameter have an influence on the local Mach number
and pressure. This section is concerned with how they can be utilized to make the SEC
process more robust. Two possible uses were contemplated in the project: The residual
high-pressure wave that moves upstream before ignition can be focused and utilized in
the auto-ignition process. The fuel stratification must then take the impinging wave and
its effect on the ignition process into account. The other use case is to alter the acoustics
within the tube, to make the recharging process more efficient. A well-known setting
where the same principle is used is in the exhaust of two-stroke engines, which typically
have an expansion chamber that reflects a part of the pressure back into the combustion
chamber to increase cycle efficiency.

It is a challenging endeavor to focus the pressure waves such that auto-ignition delay
times are significantly altered: The pressure wave must not become sufficiently high to
ignite the fuel right away, because combustion would not be homogeneous then. Instead,
it must only serve to lower the auto-ignition delay time by a known amount. The strength
of the pressure wave and the time when it arrives at the stratification must then be
known with high precision, whereas a SEC that does not focus pressure waves has a high
tolerance for non-resonant operation. The focus of the investigation was hence laid on
the acoustics altering effect.

The ideal fuel simulation from section 4.2.2 was carried out for multiple axial configu-
rations. Four of them are prototypically shown in fig. 4.2.13: A diverging/converging one,
a converging/diverging nozzle, and a purely diverging and purely converging configura-
tion. The converging parts are limited such that no more than 35% of the cross-sectional
area are blocked: Otherwise, the reflected pressure waves become too strong, and com-
bustion no longer is homogeneous. See fig. 4.2.2 for the reference case with constant
cross-sectional area: There, 30% of the tube are filled in each cycle, pressure peaks at a
dimensionless value of 3.2, and the cycle length is ∆t = 1.58.

In the first test case with a diverging/converging configuration, ignition is no longer
homogeneous. Instead, an impinging pressure wave ignites the mixture. Cycle length is
∆t = 1.7, and about 20% of the tube are filled with fuel upon ignition. The second test
case with the nozzle manages to fill 40% of the tube, and has a cycle length of∆t = 2.25.
In the diverging case, the entire domain up to the diffuser is filled with fuel (60%) upon
ignition and cycle length is ∆t = 1.9. Finally, the purely converging test manages to fill
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30% of the tube and has a cycle length of ∆t = 2.25.
A purely diverging configuration clearly is the most beneficial. It can be used to speed

up recharging and for using larger charges in general, making the process more ro-
bust. The placement of the diverging part at 60% of the tube is optimal in the sense
that placement further downstream does not further increase the volume of the charge
upon ignition. On the contrary, only a smaller charge can then be injected, because the
low-pressure wave that is reflected from the diffuser then needs longer to arrive at the
upstream end. Different area ratios have the expected effect: For ones closer to unity, the
process becomes more like the constant-area one, for ratios closer to infinity, the process
becomes more like it would look like if it was a constant-area simulation with a shorter
pipe.

4.2.7. Fuel Injection at Multiple Axial Positions
Since in a SEC, the acoustic timescale must be comparable to the auto-ignition delay
time, machines in a real-world scenario cannot be arbitrarily large, and sound speeds
are always between 500 m/s and 1000 m/s for relevant temperatures, auto-ignition delay
times will in a realization of the process always be in the order of a few milliseconds. The
stratification must be created within this time, and since it is in a real application created
by controlling the amount of fuel that enters the system, a proportional valve that can be
actuated on time intervals at least one order of magnitude smaller than that must be used.
Such valves are not readily available, and therefore alternatives have been discussed in
the project. A solution that comes with a conceptual change is the idea to inject fuel at
multiple, axially distributed positions. Each of the valves then needs only provide the
fuel for a smaller, partial stratification. This concept has the additional advantage that
shorter auto-ignition delay times are possible, because the fuel does not have to support
a long residence time in the tube to reach its final position within the stratification.

In this section, a preliminary investigation of the concept is presented, with the aim
of showing that it is in principle possible to establish a resonant, pressure gain process.
Injection has been modeled as follows in the investigation: The simulation was formally
extended to two dimensions, but without assigning a momentum coordinate to the second
dimension and without extending the numerical domain into the new dimension. (That
is, a n cell 1D domain becomes a n× 1 cell 2D domain.) Spatial operator splitting was
used, as has been introduced in section 3.4.2. In the split-step solving in new direction,
ghost cells according to a rigid wall slip boundary condition were added everywhere
except at the inlets, where the ghost cell states were determined in the same way as
for the upstream boundary condition in the one-dimensional simulation: A given state
with supply pressure is isentropically, isenthalpically expanded to the pressure within
the tube. Momentum in the new direction was assumed to be zero throughout the flux
computation. After each time step, the resulting momentum pointing in the new direction
was discarded, and the associated kinetic energy was converted to internal energy, i.e.,
to pressure.

The simulation itself has been set up as follows: The process is assumed to take place
with 1 atm surroundings and air being supplied with 1000 K. The boundary conditions in
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Figure 4.2.13.: Different axial variations and their effect on the SEC.
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4.2. Results

the first dimension are the same as in the earlier simulations, but no fuel is injected at the
inlet. The domain is 80cm long, and inlets are placed 5cm, 15cm and 25cm from the
tube’s upstream end. Supply pressure for the injection is 1.1 atm, and pure hydrogen is
injected at 0◦C. Again, the fuel mechanism by [17] was used. Since it is a high pressure
mechanism, the results of this simulation are only of qualitative nature. For this reason,
and because the injection model is quite rough anyway, it was not investigated how fuel
injection influences the local equivalence ratio. Instead, the value of the equivalence
ratio in front of the inlet was directly used to determine whether or not to inject fuel
in each time step. This way, the fuel curve could be supplied directly as a time-series of
equivalence ratios. This series was the same for all inlets and fixed as a function of the
time difference between opening of the upstream valve and simulation time. It has been
determined as before, such that the auto-ignition delay time decreases with advancing
simulation time, and then manually optimized to obtain a qualitatively homogeneous
combustion.

The best way to observe both injection and ignition is in a temperature plot, which
fig. 4.2.14 shows: The triangular low-temperature regions before each ignition show
when and where fuel is injected. Ignition usually occurs almost simultaneously (within a
few µs) in three points. These ignition events appear to lead to developing detonations;
at least, pressure waves with increasing strength emanate from the hotspots. Due to
the small size of each of the three fuel packets, they however cannot fully develop. A
peak pressure of 7bar is reached when waves from adjacent ignitions interact. When
the pressure waves reach the downstream end, they still carry a local pressure of 1.8 bar,
which is sufficient to initiate a recharge.

4.2.8. Multi-Dimensional Multi-Cycle Simulation
To conclude the chapter, a two-dimensional simulation of a SEC is presented. A first
impression of a multi-dimensional SEC process was given in fig. 4.2.10. Here, a simulation
was conducted that does not involve complex geometry. Instead, a simple rectangular
domain was used. The boundary conditions were left unchanged, they have only been
adjusted to the multi-dimensional case: If the average pressure at the upstream end is
below the given compressor pressure, then an expansion of the inlet conditions to inner
pressure is calculated and used as a boundary condition. Only the central 40% in radial
direction were filled with fuel. For one, this is because a real SEC would need a buffer
separating fresh fuel from the hot walls as well, for the other, this allows to observe 2D
effects, which would not be as visible if the full cross-sectional area was filled with fuel.

The simulation used the ideal, single-stage fuel model, a grid resolution of∆x = 10−4,
and a 1.0×0.04 domain in dimensionless quantities. The charging concept was the same
as before.

Figure 4.2.15 shows a typical ignition in this simulation: The process runs as reliable
as before in the 1D examples. There are strong residual pressure waves oscillating in
radial direction though, creating turbulence that disturbs the shape of the charge. With
the ideal fuel model, this effect does however not suffice to significantly disturb the
auto-ignition process: Only a small fraction of the charge at its boundary ignites too late.
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Figure 4.2.14.: Temperatures in a H2-SEC with injection at multiple axial positions. Injec-
tion may be observed through the temperature drop due to the injected
fuel having a lower temperature than the air.
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Figure 4.2.15.: Qualitative plot of a typical ignition in a 2D SEC without geometry.

98



4.3. Intermediate Conclusion

A 3D simulation of the process, using the same concepts, showed the same compli-
cations: Since the process now involves strong pressure waves oscillating between the
tube’s walls, orthogonal to the axial direction, turbulent mixing can no longer be ne-
glected. This is in particular visible in the buffer of fresh air mixing with the exhausts,
necessitating a much larger buffer, which in turn reduces the charge’s size and increases
the cycle length. Starting ignition once the first 30 % of the tube have been cleared proved
to be a good choice for obtaining a reliable process in which the charge is not deformed
strongly anymore. This results in a cycle length of about ∆t = 1.54 and roughly 20 % of
the tube being filled with fuel every cycle.

4.3. Intermediate Conclusion
The chapter started off by posing the questions whether a SEC can be achieved, both
in theory and experiment, and how far from the ideal case one may operate without
running into new problems. Encouraging answers have been given to all of them:

The SEC performs as expected, and its realization is predominantly a technical ques-
tion. Numerically, an optimization of a stratification using (mostly) arbitrary fuels and
operating conditions towards the idealized process is entirely possible.

An ideal fuel has the property that auto-ignition delay times do, over a range of about
100 K, only change on the order of one excitation time per Kelvin. If such a fuel can be
found, then a SEC can very likely be realized, and is surprisingly robust. Multi-stage
ignition must however be taken into account, so a control approach to the creation of
suitable stratifications is still required. Perturbation of ideal fuel stratifications showed
that the accuracy with which the stratification is created should be such that a spatial
gradient in auto-ignition delay times never results in an auto-ignition wave that is slower
than the CJ velocity. In particular, results by Gu et al. [35], quantifying admissible slopes
of such gradients, could be reproduced. A simulation of a SEC using H2, a rather reac-
tive fuel, concluded the one-dimensional process simulations, demonstrating that under
idealized conditions, it is even possible to dispense with the fuel requirements.

The one-dimensional SEC calculations have been extended to multiple space dimen-
sions. It has been shown that, with simple geometries, the performance is comparable to
the 1D process, although turbulence might necessitate larger air buffers separating fresh
fuel and exhaust gases. If complex geometries are present, then the geometry’s effect
must however be taken into account.

Extensions of the concept were preliminarily investigated: Influencing the charging
process using axial variations is possible, but apparently does not come with large benefits.
This assessment might however change once one takes off-design operation, in particular
failed ignitions, into account. Injection of fuel at axially distributed inlets remains a
promising concept: A first investigation produced a quite homogeneous ignition without
any further optimization. It has however been conducted at high air temperatures and
using a very simple injection model. Further studies should be conducted in this regard.
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5. Concluding Remarks
Constant volume combustion in gas turbines is traditionally approximated by means
of detonative combustion. While giving the benefits of (approximate) CVC, detonative
processes pose new challenges: In a PDC, the initiation of a detonation requires a DDT.
The longer the DDT length, the lower the efficiency. On the other hand, to achieve short
DDT lengths, complex obstacles must be introduced into the main air path that require
cooling and reduce mechanical integrity. Detonations generate strong shock waves that
pose further stresses on the materials. They also generate much kinetic energy, and it
is unclear how to convert more than a fraction of that energy to mechanical work in
the turbine. The Rotating Detonation Engine mitigates these problems somewhat by
maintaining a rotating detonation wave, but the principal problems associated with the
strong shock wave remain.

The SEC promises to avoid these problems while still approximating CVC. Its clever
recharging concept on top of that resolves the issue that one might have to charge
against a positive pressure gradient if static pressure builds up at the outlet by utilizing
the combustor as a resonant pipe. In the first phase of CRC 1029, the process has been
investigated for the first time. This thesis contributes to its investigation.

Chapter 1 introduced the SEC as a fragile process with high demands on accuracy in its
realization. It has been argued that the insights that can be gained from its simulation are
crucial to recognizing, understanding and eliminating sources of failure in experiments.

Its active use of controlled auto-ignition is what makes simulations challenging: While
it is mathematically easy to describe an auto-ignition event in a global reaction, resolving
the detailed behaviour and interaction with gas dynamics does in general require exten-
sive models, which makes computations expensive and creates stability issues at contact
interfaces. Large models are especially required for complex fuels, and the decision to
use a fuel with NTC behaviour to remove as much of the temperature dependence as
possible from the problem necessitates the use of such fuels. To allow to perform quick
calculations of qualitative nature, chapter 2 concerned itself with model reduction for
detailed models of SEC capable fuels and introduced completely new models for fuels
with ideal SEC properties: An ideal SEC fuel has an adjustable auto-ignition delay time,
with the adjustable parameter such that auto-ignition delay time is user-controllable but
does not change due to gas dynamics or heat transfer. The two models for such fuels are
based on the insight that if ignition is independent of temperature, it must be governed
by a different physical process than the reaction phase where energy is released; hence,
the description of both processes may be decoupled, and the most efficient one used
for each part. The models perform considerably faster than the ones obtained by tradi-
tional reduction methods while still providing an adequate description of the physical
process in the case of a working SEC. For the description of off-design operation, they
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5. Concluding Remarks

are however inadequate and require adjustment. The chapter furthermore introduced a
technique for obtaining optimal fuel blends for an experimental realization of the SEC,
given a set of possible fuel components, and presented the ideal choices for the case of
an atmospheric, single-shot SEC experiment, which has been conducted at Technische
Universität Berlin.

The simulation of the gas dynamics within a mixture of different, compressible gases is
a challenging task. Not only are the common pitfalls related to systems admitting shock
waves present; in addition, energy transfer between gases obeying different equations
of state can lead to (seemingly) unphysical pressure and temperature fluctuations. In
the worst case, simulations can indeed produce entirely wrong results. The intended
purpose of the present SEC simulations allowed to choose robustness over exactness:
The solver developed in chapter 3 yields reliable results in all situations relevant to SEC
simulations, though it introduces some amount of numerical diffusion to reach this goal.
A benefit of this choice is that the resulting simulation code can, and has been, safely
handed over to inexperienced users, who can use it without having to worry too much
whether the results of their computations are valid. To support the claim of robustness by
more than examples, the chapter gave proofs for the results that lead to the formulation
of the solver. They are extensions of results that other authors gave for perfect gases only.

A benefit of the ideal fuel model is that results obtained from simulations that use it
are valid for all fuels that behave sufficiently close to the model. This allows to use it to
make statements that help to actually find such fuels. Chapter 4 conducted experiments
using it and found several promising results. In particular, the original claim that it would
suffice to find a fuel with nearly temperature-independent auto-ignition delay time over
a range of 100 K has been verified. Numerical experiments using real fuel models showed
that realization of the SEC is primarily a technical question: If the system’s state is known
exactly, then it is possible to calculate a stratification such that even with a reactive fuel
like hydrogen, a reliable SEC can be achieved.

As a result of the aforesaid actions, it is now known that a SEC is realizable from a
theoretical perspective, and a robust simulation code for the investigation of its behaviour
is available. General strategies for determining how fuel should be injected into the
primary air flow and for choosing fuel blends were introduced and can be applied once
a technical realization of the process has progressed sufficiently.

The numerical investigation was concluded with a presentation of preliminary results
on extensions to the concept: By replacing the cylindrical combustion tube with a solid
of revolution, the acoustics within the tube can be influenced to ease recharging. While
this eventually proved unnecessary in the context of the idealized investigation at hand,
this change might become relevant for partial-load settings, where the magnitude of
the pressure waves might otherwise be insufficient for recharging. A multi-dimensional
simulation showed that charges that are not radially symmetric exhibit a more complex
behaviour that necessitates further investigation as well, though the first results look
promising. Fuel injection at multiple axial positions has been simulated using a simple
model for orthogonally connected domains. The same model can furthermore be used to
simulate networks of interconnected 1D domains, as for example a series of SEC tubes
connected to an axisymmetric turbine plenum, which is one of the specified tasks of the
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second phase of CRC 1029.
The most important step from here in the theoretical investigation is however to

develop a concept for initiating the process. Consider a traditional gas turbine using
the Joule cycle at rest. To start the turbine, it does not in general suffice to establish a
flame within the combustion chamber. In the resting system, the pressure ratio is unity,
and therefore the expanding air downstream from the flame cannot exert much force on
the turbine blades. Likely, the force is insufficient to overcome friction. External means
must hence be used to bring the compressor to a speed where the pressure ratio is at
least such that the mechanical work exerted on the turbine suffices to maintain the speed
even if the starting device is disconnected. At this point, the engine can be brought to
full speed by increasing fuel mass flow.

Starting a SEC is more complex. It requires higher initial pressure ratios, because the
compressor outlet temperature must be within the auto-ignition regime. The process
furthermore requires higher velocities, because a stratification must be created within a
short time. The initial idea is to start off with the Joule cycle. In operation, the pressure
ratio already is sufficiently high. To reach the necessary velocities, fuel supply is pulsated
such that a resonant pressure wave establishes within the combustion tube. Once it has
sufficient strength, operation is switched to SEC mode. Whether this concept suffices is
subject to investigation in the project’s second phase as well.

From a theoretical point of view, a solution to this problem will, in combination with
the results from this thesis, provide all the necessary ingredients for building a SEC-based
gas turbine with substantially increased efficiency. The devil however is in the detail:
Many aspects that can be idealized in a mathematical description or calculated from the
data of a simulation in real time require smart engineering when it comes to the process’s
experimental realization. As of now, there are already several open questions, and it is
certain that several more will come up in the future. This will probably require further
theoretical investigation and refinement of the existing models. It will also raise entirely
new theoretical questions.

It is safe to say that the future development of the SEC promises to be exciting.
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A. Overview Over Theoretical
Prerequisites

A.1. Thermodynamics
This section will give a brief introduction into thermodynamics. Most of what is written
here is physical folklore, and the arguments are deliberately made on a basic level to
simplify the presentation. For a thorough introduction, [48, 49] are recommended.

Thermodynamics is the field of physics that concerns itself with the study of heat, tem-
perature and their relation to other physical quantities. It is a very elementary perception
to “feel cold or hot”, and thus, heat as a concept has been known for a long time. A well
known early explanation attempt is Empedocles four-element theory, stating that fire is
one of the elementary elements that every substance is made from. The systematic study
of the physical backgrounds, however, had not been not possible until the advent of vac-
uum pumps around 1650 [59]. They allowed experimentalists to find several empirical
relations:

Robert Boyle found in 1662 that the force exerted by an amount of gas at a constant
temperature T is inversely proportional to its volume V . Force exerted by a volume of
gas is known as Pressure p, measured in Pascal with units N/m2, and the mathematical
expression for the law is

p∝ 1
V

. (A.1.1)

Jacques Charles found in 1787 that if, on the other hand, pressure is kept constant,
a fixed amount of a substance increases in volume as it becomes hotter. Anders Celsius
had already in 1742 introduced the temperature scale that is commonly used today1,
and so Charles was able to formulate his law as

∆V ∝∆T. (A.1.2)

Contrarily to everyday life, in science, it is customary to use Lord Kelvin’s absolute tem-
perature scale, which scales like centigrade, but is shifted such that 0K = −273.15◦C,
which is the lowest possible temperature. Using this scale, the stronger statement V ∝ T
holds.

In parallel to these theoretical investigations, endeavors where taken to create efficient
machines that could convert heat into work. The steam engine is a well-known example;
the first practical one was patented in 1698. It was soon found that not all heat could

1Actually, Celsius introduced the scale such that water boils at 0◦ C and freezes at 100◦ C. It were Jean-Pierre
Christin and Carolus Linnaeus who later independently reversed it.
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be put to use, but that some was inevitably lost. Rudolf Clausius in 1850 introduced the
concept of entropy to quantify the “usefulness” of heat in a system.

The mathematically most satisfactory definition of entropy was only found later, when
statistical physics restated thermodynamics using a derivation from first principles: It
regards thermodynamics as a statistical description of macroscopic effects of an ensemble
of particles obeying (in the simplest case) Newton mechanics. A statistical description
requires a density function, describing how many particles can be found in which position
of the classical phase space. Denote the distribution function by Γ , such that Γ (V ) is the
probability to find a particle in the volume V within the phase space. By Liouville’s
theorem, volumes in phase space do not change their size under time evolution, so Γ (V )
is a conserved property. Since Γ is a probability distribution, Γ (V ⊕U) = Γ (V )Γ (U) holds,
making log Γ an additive function. It is known that in classical mechanics, only energy
and momenta have these properties, and since momentum is already included in the
phase space, log Γ must depend only on energy. For convenience, one now defines

S = kb log Γ , (A.1.3)

where kb is Boltzmann’s constant, and fixes the relation to energy E by defining temper-
ature T as

dE = T dS. (A.1.4)

Further investigations show that these definitions coincide with the earlier definitions of
entropy and temperature.

Equation (A.1.4) holds for a closed system, but in general, a system has surroundings
on which it exerts a force, as Boyle’s law states above. Some energy must be used to
make room for a system in the first place, and must be accounted for as well. By inserting
it into the equation, one arrives at

dE = T dS − p dV. (A.1.5)

This is the fundamental relation of thermodynamics mentioned in the introduction.
Assume that the volume of a thermodynamic system is fixed. The amount of heat

required to change its temperature by one degree may then be defined as

Cv =
�

∂ E
∂ T

�

V=const
=
�

T
∂ S
∂ T

�

V=const
. (A.1.6)

This quantity is named the heat capacity at constant volume.
By means of a Legendre transformation, other energy potentials may be defined, where

other quantities are held constant:

dH = T dS + V dp (A.1.7)

defines the enthalpy H = E + PV of a system, and the heat capacity that arises if p is
held constant, Cp, is called the heat capacity at constant pressure.

If one combines Charles and Boyles observations, the formula

pV = R̃T (A.1.8)
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arises, where R̃ is an unknown, constant proportionality factor. It is called the ideal gas
law. By combining both the ideal gas law and the fundamental relation, the value of R̃
may be determined: In differential form, the ideal gas law is

V dp+ p dV = R̃ dT. (A.1.9)

For the difference of both formulations of the fundamental relation hence

dH − dE = V dp+ p dV = R dT. (A.1.10)

Since the right hand side involves neither pressure nor volume, the heat capacity expres-
sions may be substituted, giving

(Cp − Cv) dT = dH − dE = R dT. (A.1.11)

So R̃= Cp − Cv . Further research shows that

R̃= mR= m
R̂
M
= nkbNa (A.1.12)

where m is the mass in the system, R is the specific gas constant, R̂= 8.314 J/mol·K is the
universal gas constant, M is the mass of one mole of the gas under investigation, n is
the amount (in moles) of particles in the system, kb is again Boltzmann’s constant, and
Na is Avogadro’s constant, defining the unit mole by fixing an amount of particles that
constitute one mole.

In a common simplification, one often assumes that Cp = Cp(T ), allowing to integrate
Cp dT directly. Fluids for which this property holds are called thermally perfect, and for
gases it is often valid to use this approximation. Cp is then measured experimentally at a
fixed pressure, normalized by mass or particle count (which one denotes by using lower
case letters, i.e., cp instead of Cp and e instead of E) and published either tabulated for
various temperatures or as coefficients of an interpolation. Since cv may be calculated
from cp using the relation derived above, all the information that is required to perform
calculations is then given.

It is also customary to retain this normalization and work with mass density ρ instead
of mass, and specific volume 1/ρ instead of volume.

A further simplification is the assumption that the heat capacities are constant. Gases
for which this property holds are called calorically perfect. The approximation usually
holds only if one stays within a small temperature range. If the heat capacities are
constant, then from the ideal gas law a much simpler relation of all quantities may be
derived:

p = ρRT = ρ
�

cp − cv

�

T = ρ
� cp

cv
− 1

�

e. (A.1.13)

One typically defines γ = cp/cv, where γ is called isentropic exponent, and sometimes
speaks of a γ-law gas.

All further thermodynamic relations that are used in the thesis may be derived from
the fundamental relations.
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A.2. Finite Volume Methods
This section gives a short introduction to finite volume schemes. For detailed derivations
including proofs and information on convergence and stability, see [53, 71].

Consider a one-dimensional equation in conservation form,

∂ q
∂ t
+
∂

∂ x
f (q) = 0. (A.2.1)

As has been laid out in the introduction, the natural form for such equations is their
integral formulation, because it expresses directly that a quantity within a volume may
only change due to some flux through the volume’s boundary. It may be obtained by
integrating in space and time over some test-volume [x0, x1]× [t0, t1]:

∫ x1

x0

q dx

�

�

�

�

�

t1

t0

+

∫ t1

t0

f (q) dt

�

�

�

�

�

x1

x0

= 0. (A.2.2)

It is clear that this formulation admits more general solutions, because it does not require
differentiability of the solution q. Now consider how this formulation may be used to
numerically solve the equation system:

Discretize the domain under consideration into intervals

[x0, x1], [x1, x2], . . . [xM−1, xM ]. (A.2.3)

Define by

qm(t) =
1

xm+1 − xm

∫ xm+1

xm

q dx (A.2.4)

the average of q in each test volume and use it as a numerical approximation to q. For a
discrete time step ∆t,

qm(t +∆t) = qm(t)−
1

xm+1 − xm

�

∫ t+∆t

t
f (qm+1/2) dt −

∫ t+∆t

t
f (qm−1/2) dt

�

(A.2.5)

then holds, where qm±1/2 is some intermediate value at the boundary between two in-
tervals that still needs to be defined. If the right hand side integrals can be solved, then
the equation defines a numerical scheme. Such a scheme interpreting the numerical
variables as averages over some volume rather than point values is called a finite volume
scheme.

The question now is how to make sense of the integrals, and of the value of q at the
boundary between two intervals. This gives rise to the study of Riemann problems. Such
problems are initial value problems for (A.2.1) of the form

q(x)|t=0 =

¨

qℓ if x < 0,

qr if x > 0.
(A.2.6)
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Riemann problems are exactly those problems which arise on each of the boundaries
between intervals in the numerical discretization. For the special case of equations which
have a hyperbolic linearization, that is, where∇ f is diagonalizable with real eigenvalues,
the solution consists of several waves originating from x = 0 with finite velocities given
by the eigenvalues of the matrix, each carrying a jump that is given by the associated
eigenvector. Figure 3.1.1 exemplary shows such a wave structure for the Euler equations.

This has several implications: Most importantly, the finite velocity of the waves allows
to choose the time step size ∆t such that the solutions of adjacent interfaces do not
interact. This time step restriction is called the CFL condition. If a general solution
strategy for the Riemann problem is known, one can therefore expect a stable numerical
scheme as long as this condition is fulfilled. Secondly, if ∇ f changes sufficiently slowly
with q, the waves originating from x = 0 will approximately maintain velocity and
the jumps they carry for some time. This allows to regard the solution to the Riemann
problem as a self-similar function in a single variable, q(x/t), i.e., as constant along rays
originating from x = 0 that lie in between the waves. In particular, this means that the
solution in x = 0 is constant, simplifying the integrals in eq. (A.2.5) to a product of the
step size and the flux function evaluated at the solution in x = 0.

The solution of the Riemann problem for the reactive Euler equations is discussed in
section 3.1. Often, it is computationally too expensive to calculate the correct solution,
and so one uses approximate Riemann solvers instead, that simplify the Riemann problem
in some fashion to obtain an approximation to the solution. The HLLE solver introduced
in section 3.2 is such an approximate solver.

The method defined above is exact in time, but only of first order in space. One may
obtain a higher order approximation by, instead of regarding the Riemann problem
qℓ = qm, qr = qm+1 to obtain qm+1/2, using values interpolated from several adjacent cell
averages as input to the Riemann problem. This creates issues close to discontinuities,
where q does not admit an interpolation. They are resolved by detecting such situations
and dynamically switching back to first order. This process is called Limiting. For a first
order, linear approximation, the resulting scheme this is called a MUSCL method. Details
are discussed in section 3.4.1.
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B. Code Documentation
The theoretical foundation of the SEC simulation code has been laid out in chapters 2
and 3. This chapter documents the use of the software, and is intended for its users. To
readers with a background in computer science, the section on the technical background
of some design choices may be of interest. The code can be obtained from http://git.
imp.fu-berlin.de/sfb1029/code1. Installation instructions are given in the repository.

B.1. High-Level Usage
The SEC simulation was developed for MATLAB, with parts of the computation outsourced
to C++ via the MEX interface. Key ingredients to all simulations are the configuration, defin-
ing which flux to use, domain size, boundary conditions, etc., and the state, which is a
contained representation of the entire simulation’s state at each time level. The code
is specialized for solving reactive fluid dynamics, but abstracts away from the equation
of state and chemical kinetics implementation. This abstraction is contained in the con-
figuration, and automatically set if a configuration is initialized through an appropriate
wrapper function. A typical driver script for a simulation looks like this:

config = IgnitionDelayKinetics(); % Initialize a configuration using
% the ideal, single-stage fuel model

config.grid.dx = 1e-3; % Use 1mm grid resolution

% Set up initial conditions. States are column vectors.
reactive_state = config.kineticsif.setTPX(1, 1, 'F:1');
reacted_state = config.kineticsif.setTPX(4.7, 4.7, 'P:1');
config.iv = [ repmat(reactive_state, 1, .4 / config.grid.dx), ...

repmat(reacted_state, 1, .6 / config.grid.dx) ];

% Use a rigid wall slip boundary condition for the left wall;
% the right one defaults to a continuous boundary condition
config.boundary(1).fn = @ReflectingBoundary;

% Run the simulation. Per default, this displays a live plot window,
% and runs until the window is closed. The final state is returned.
rest = RunSimulation(config);

1As of 2016. Should this website be unavailable, contact the author to obtain the code.
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B. Code Documentation

Configuration objects (config) are struct instances. They contain not only settings
regarding the numerics, but also for output/backup control, heatmap generation, plot-
ting and video generation, and so forth. The individual configuration options are listed
and documented in the file lib/BaseConfig.m. The kineticsif substructure contains
function handles to the kinetics implementation. The most important function to end-
users is setTPX, which, given a temperature T, pressure P and volume fraction string X
(in the form “species: amount, species: amount, . . .”), returns a state vector for
these conditions. Boundary conditions are assigned via the boundary structure array, in
the order left, right, top, bottom, front, back, by assigning a function handle to the fn
property. Specific boundary conditions may/might require to assign more properties to
the boundary. Table B.1.1 lists the available boundary conditions, kinetics implementa-
tions and important auxiliary functions. RunSimulation is the main entry point into the
code. It takes a configuration, an optional initial state (rest from an earlier simulation)
and an optional callback that is invoked after each time-step, and which can cancel the
simulation, as arguments.

A rest is a structure object, with time t, grid data data, and further, self-explanatory
fields. The numerical domain is represented as a (multidimensional) array, with vari-
ables for a single state occupying the first dimension, and spatial extent in the following
dimensions. In the first dimension, variables are stored as follows:

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

ρ

ρu⃗
ρE

ρY⃗1...(n−1)
p
T
cp
cv

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(B.1.1)

Named indices stored in config.i and config.v may be used to access these properties
by name; this is also documented in BaseConfig.m.

If FlamemasterKinetics is used, then chemical kinetics are handled by a binary solver,
available as a MEX file. Available mechanisms are the files listed in the mex/flamemaster/
reactor/mechanism folder. If the system has Python available, then a Python module,
pyflamemaster, is compiled together with the MEX file, which can be used to directly use
the mechanisms in 0D isochoric reactors, with a syntax similar to that of the open source
chemical kinetics library Cantera; it is documented separately below.

B.2. Detailed Program Flow and Advanced Features
When a simulation is started using RunSimulation, the function first performs plausibility
checks and initializes a rest state variable if none was given. It then repeatedly invokes
EulerChemTimestep to perform a simulation time step, and afterwards performs the
auxiliary tasks that were specified in the configuration. If config.mpi.enabled is set, it
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Name Use

Kinetics implementations:
FlamemasterKinetics(filename, nDimensions) Access to compiled, ideal gas kinetics mecha-

nisms
IgnitionDelayKinetics(nDimensions) The ideal fuel model from section 2.2.1
PerfectGasKinetics(gamma, nDimensions) An unreactive, perfect EOS gas
TwoStageIgnitionDelayKinetics(nDimensions) The ideal two-stage fuel model from sec-

tion 2.2.2

Boundary conditions:
ContinousBoundary Continuous extension of the domain towards

the boundary
ExpansionBoundary Instantaneous expansion into a fixed size

plenum (see section 4.1.1)
PeriodicBoundary Periodic boundary condition (must be explic-

itly set on both sides)
PressureValveBoundary A valve with fixed supply pressure, acting as

a rectifier (see section 4.1.1)
PressureValveForIgnitionDelayKineticsBoundary As PressureValveBoundary, but already spe-

cialized to provide the ideal fuel curve re-
quired for use with IgnitionDelayKinetics

ReflectingBoundary A rigid wall slip boundary condition

Auxiliary functions:
PostShock(config, downstreamState, shockSpeed) Solve the shock conditions
SetVelocity(states, velocities) Assign velocities to a set of states, altering

kinetic energy accordingly
ZNDInitialData(config, downstreamState) Calculate initial data for a ZND detonation
config.kineticsif.moleFractions(states) Return the volume fractions X for a given set

of states
config.kineticsif.massFractions(states) Return the mass fractions Y for a given set of

states
config.kineticsif.speciesNames() Return the names of the species in the mech-

anism, in order
config.kineticsif.advance(states, 0) Update the primitive variables from the con-

servative variables in a set of states

Table B.1.1.: Kinetics implementations and boundary conditions for the SEC simulation.
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invokes another instance of MATLAB using mpirun to perform the actual calculation in a
parallelized fashion using Message Passing Interface (MPI), and performs the auxiliary
tasks in a callback from the calculation. The domain is, in this case, distributed in equally
sized chunks along the first axis to the different nodes, and the four cells from each
boundary are exchanged between the nodes before each time step. This feature does not
require a license for the parallel computing toolbox, but still one license per node — see
appendix B.4 for information on the implementation.
EulerChemTimestep first calls TimestepSize to obtain the step size for the next time

step. TimestepSize uses the CFL condition from config.cfl, and optionally the reac-
tivity (see config.chem_dt_lim) to limit the step size. It takes boundary conditions into
account, and, if MPI is used, agrees with all nodes on one step size. In even time steps, a
chemistry time step is then taken by calling config.kineticsif.advance(data, dt).
This call also updates primitive variables from the conservative ones. Since it might affect
the CFL condition, it is reevaluated afterwards and a reduced step is taken instead, if
necessary. In odd steps, the chemistry step is performed at the end of the function. This
implements Strang splitting. If axial variations are in place, i.e., a quasi-1D system is
solved, with the cross-sectional areas being provided in config.grid.A, the system is
then transformed into the equation system from section 1.2.4. The code then loops over
all dimensions involved in the system, with the order permuted in each step to achieve
Strang splitting. It first permutes the dimensions such that the dimension in which fluid
dynamics is currently being solved is always the first spatial dimension. Then, boundary
conditions due to the problem’s geometry are assigned: If config.grid.geometry is a
level-set function, then values with positive sign are considered solid. Rigid wall slip
boundary conditions are applied at the boundary. Finally, the actual boundary condi-
tions as defined in config.boundary are applied, a fluid dynamics time step is taken
using EulerTimestep, and all permutations and ghost cells are revoked. After all this has
been done, axial distributed inlets that have been defined in config.lowerBoundary are
applied similarly like they would be in a real 2D simulation; see section 4.2.7 for details.
EulerTimestep is the function responsible for solving the Euler equations. Depending

on the value of config.timestepping, it uses different time marching schemes. The
default is to use explicit Euler steps. It calls Reconstruct to reconstruct function values
at all cell boundaries, and then NumFlux to calculate the numerical fluxes.
Reconstruct performs second order (or, depending on the value of the reconstruc-

tion setting config.reconstruct, higher order ENO) reconstruction in primitive vari-
ables. To obtain conservative state vectors from the primitive variables, the function
config.kineticsif.recSetPUTY is used. It takes pressure, velocity, temperature and
mass fractions as arguments, in a column vector.
NumFlux implements the different numerical flux variants that were discussed in chap-

ter 3, depending on the value of config.flux. Whenever the function value of the
equation’s flux function is needed, Equation is invoked.
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B.2.1. MEX Interface to the Kinetics Solver
The chemical kinetics interface has been constructed with the chemical kinetics tool
Flamemaster [60] in mind. It features a tool called ScanMan, that is able to produce C
source files from mechanism specifications containing the right hand side function of
the chemical reaction system and a function to evaluate the heat capacities, energy and
enthalpy functions. The signatures are as follows:

void ComputeProductionRates(double *cdot, double *w, double *k,
double *c, double *M, double T, double pressure);

void ComputeThermoData(double *h, double *cp, double T, double *s);

Therein, c are the species concentrations, cdot the time derivatives of the concentrations,
and any variables that do not have obvious meaning should hold auxiliary memory for
internal use within the function.

At the core of the kinetics solver is a class named Reactor, which is able to load
shared libraries exporting the two symbols from above and calculate the time evolu-
tion of a 0D isochoric reactor. It does this by using an external ODE solver. Currently,
cvode and radau15 are implemented (see section 2.4), but extension to other solvers
is straight-forward. The reactor class furthermore handles thermodynamics, i.e., calcu-
lation of the thermodynamic variables from one another. The MEX interface wraps the
reactor class with a layer of abstraction, to allow extension with other solvers, and ex-
poses a single call to MATLAB, Flamemasterif, which is called by the functions defined
in FlamemasterKinetics.m.

B.3. PyFlamemaster Interface to the Kinetics Solver
The Reactor class from appendix B.2.1 is exposed to Python via pyflamemaster. In addi-
tion to the reactor interface, which is documented inline using the Python documentation
system, it ships with auxiliary functions useful in the context of SEC calculation. The
following is an example show case for the additional features:

# Initialize a reactor with the 33 species DME mechanism
reactor = pyflamemaster.Reactor("dme_ultimate.so")
reactor.set(T=800, p=1e5, X="CH3OCH3:.33,O2:1,N2:3.76")
# Calculate the auto-ignition delay times for states behind shocks of
# different strength
def tau(V):

r = reactor.clone()
r.setVolumeHugoniot(V) # Move state along Hugoniot
return r.advanceAndFindMaxdT(5.) # Solve up to 5s and return tau

Vs = linspace(0.5 / reactor.getDensity(), 1 / reactor.getDensity(), 50)
taus = map(tau, Vs)
# e.g., plot the results:
plot(Vs, taus)
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pyflamemaster ships with a module sec, which implements the functions required to
perform the fuel blend investigations from section 2.3 on top of it: It allows to calcu-
late states resulting from isenthalpic mixing of fuel and air at different temperatures,
and implements a function that determined excitation times. It furthermore simplifies
investigation of mixtures by automatically determining the exact amount of oxygen re-
quired for a given fuel. Again, its functionality is documented inline using the Python
documentation system.

B.4. Technical Background
This section discusses the most striking technical decisions that were made in the devel-
opment of the code.

B.4.1. Closures in MATLAB
The config variable is passed as a parameter to all functions. The alternative would be
to use a global variable. It is generally considered good practise to avoid them in any
paradigm that advocates encapsulation; in MATLAB, in addition, access to global variables
is around 20% slower on average than if function parameters are used. MATLAB does
not have variable references; any assignment or parameter is always (lazily) copied. So
if one of these functions changes config, then the change does not propagate to the
outside. This is an issue for some kinetics implementations that have parameters. E.g.,
the ideal fuel model has a configurable energy release ∆Q: If they define a parameter
config.DQ, use it in a function defined inline, and return config, then any changes done
by the user afterwards will not propagate back to the earlier use of config. The single
exception to the pass-by-value paradigm are classes deriving from handle. They are
passed by reference. struct does not derive from handle, and is a final class (sealed in
MATLAB terminology), and hence cannot be subclassed to be a handle. A custom object
deriving from handle that allows to mimic a struct exists with the dynamicprops class,
but using it is twice as slow as if parameters are passed by value. The solution to this
issue used in the code is enabled by MATLAB’s decision to allow access to local variables
of the enclosing function to inline functions. Consider the following function definition:

function [ myvar ] = closure_gen()
myvar = struct();
internal_value = 0;
function [ x ] = getter()

x = internal_value;
end
function [ ] = setter(x)

internal_value = x;
end
myvar.set = @setter;
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myvar.get = @getter;
end

The variable internal_value is a local variable of the function, and hence is a different
variable for each invocation of the function. The functions defined inline access the
variable that was defined in the invocation, and since function references are handles,
copies of the structure still return the correct value:

>> a = closure_gen();
>> b = closure_gen();
>> c = a;
>> a.set(12);
>> b.set(24);
>> disp([a.get(), b.get(), c.get()])

12 24 12

B.4.2. MPI Interface to MATLAB
MATLAB has two functions that (de)serialize arbitrary objects into a chunk of memory:
getByteStreamFromArray and getArrayFromByteStream. With a MEX file that calls the
usual MPI functions, this allowed to build a high-level MPI interface for MATLAB, where
code can with simple calls share slices of array between different nodes in a simulation.
Since MATLAB is usually invoked from the desktop, and not through mpirun, the interface
adds a redirection layer: The code that first calls the MPI interface merely tells it to start
other instances of MATLAB using mpirun, run a given function, and optionally periodically
return data to the controlling MATLAB instance. This can be used, e.g., to plot a simulation’s
state.

Data is returned using a UNIX socket between the controller and the MPI rank 0 process.
The rank 0 process must hence run on the same machine as the controlling process. It is
furthermore necessary that all machines have the same endianness and address width,
because no conversion is performed in the interface.

The MPI interface ships with the code and is compiled automatically if a mpicc is
available. The SEC simulation makes use of it if the parameter config.mpi.enabled is
set. It is easy to use it in other scopes as well: The MEX file exposes a single call, mpi.
Subcommands are chosen by specifying a value for the first parameter. If mpi is invoked
without parameters, it displays a description of the different subcommands. There are two
possible ways to use the interface. The preferred one is the one that has been explained
above. Call mpi(1,. . .) to use it. Alternatively, MATLAB may be run directly from mpirun.
In this case, the driver script must initialize MPI by calling [rank, world_size] =
mpi(3). A minimal example would look like this:

function [ ] = test()
% Use MPI to do some number-crunching
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parameter = 1;
data = rand(2000, 2000);

% The command says: Start mpirun with parameter `-np 5' and call
% mpi_driver. Send `parameter' to all nodes, but `data' only to
% rank #0. Use feedback as the feedback function.
mpi(1, '-np 5', @mpi_driver, { parameter }, { data }, @feedback);

function [ ] = mpi_driver(rank, world_size, params, rank_zero_params)
% This function is executed once per rank, each in a different
% process. It could e.g. distribute rank_zero_params from rank #0
% to all other nodes, do some number crunching, and gather the
% data again. This example just sends the rank to rank #0 and
% passes it on to the controller:
if rank == 0

result = [ rank ];
for i = 1:(world_size-1)

result = [ result mpi(6, i) ]; % Receive from rank #i
end
mpi(2, result); % Report to controller

else
mpi(5, 0, rank); % Send the variable `rank' to rank #0

end

function [ ] = feedback(data)
% This will output [ 0, 1, 2, 3, 4 ]
display(data)

The subcommands are documented in mpi’s help output that is displayed if the command
is invoked without parameters.

It should be noted that MATLAB has a Parallel Computation Toolbox that serves the
same goal. It does however try to hide the complexity of parallel computation from the
user by offering parfor as a substitute for for, and tries to automate distribution among
all nodes in the cluster by performing an analysis of the code in the loop. This restricts
the use of several commands within such loops. For users that are already familiar with
MPI, the present approach is clearly more beneficial. Both approaches however require
one MATLAB license per node (not process!), which poses economic limits on possible
parallelization.

B.4.3. MEX Kinetics Interface
Cantera is an open-source kinetics library with an existing MATLAB integration. One
might hence wonder why another interface was written. The reason for this is two-fold:
Cantera internally uses cvode to solve the ODE system associated with the chemistry, but
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separates reactors, i.e., representations of thermochemical state, from the system that is
to be solved. The reason for this is that Cantera allows to solve more complex systems as
well, like networks of reactors or steady 1D problems. Once a reactor enters a system, local
changes to the reactor do not affect the state of the system anymore. As a consequence
from this, whenever a reactor’s state is updated, the system must be updated manually to
reflect the update. Cantera is implemented such that, at this time, cvode is completely
reinitialized, which costs time. By design, when solving the equation system from the
SEC simulation, for each cell, a reactor must be updated, the system be reinitialized,
and then solved. This is slow and cumbersome. The C++ interface to Cantera luckily is
sophisticated enough to work around this though. The other reason for writing a new
interface is that this allows to perform straight-forward, local parallelization through
OpenMP. For simulations on desktop PCs, this gives a huge speed-up.

Originally, the SEC code had a Cantera interface. The Flamemaster interface was
written because the mechanisms created at RWTH Aachen were made available in their
custom format, and writing a new reactor implementation around it was found easier
than writing a reliable converter to Cantera’s format, given that they can produce a
C file containing the entire right hand side of the system. Also, a precompiled, binary
representation of the right hand side of a kinetics mechanism can likely be evaluated
faster than any representation that requires a parser; unless great care is taken with the
latter. Most users of the SEC code use Microsoft Windows, and were unable to compile the
MEX interface on their own. While automatically cross-compiling the custom interface for
various different MATLAB versions was very straight-forward, cross-compiling the Cantera
interface was found a very complex task, and eventually the code was abandoned due
to the high maintenance cost of keeping the compiler infrastructure up and running.
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List of Acronyms
SEC Shockless Explosion Combustion

SWACER Shock Wave Amplification by Coherent Energy Release

NTC Negative Temperature Coefficient

BDF Backward Differentiation Formula

RK Runge-Kutta

DME Dimethyl Ether

QSS Quasi Steady State

CFL Courant-Friedrichs-Lewy

MUSCL Monotonic Upstream-Centered Scheme for Conservation Laws

ENO Essentially Non-Oscillatory Scheme

MC Monotonized Central-Difference

DAE Differential Algebraic System

HLLE An approximate Riemann solver by Harten, Lax, van Leer, and Einfeldt

HLLEM An approximate Riemann solver by Harten, Lax, van Leer, and Einfeldt (with
modifications)

ZND A detonation model by Zel’dovich, von Neumann, and Döring

CJ Chapman-Jouguet

PDC Pulse Detonation Combustion

ODE Ordinary Differential Equation

CVC Constant Volume Combustion

DDT Deflagration to Detonation Transition

EOS Equation of State

MPI Message Passing Interface
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Zusammenfassung
Die stoßfreie, druckerhöhende Verbrennung (shockless explosion combustion, SEC) ist
ein alternativer Betriebsmodus für Gasturbinen. Sie stellt eine Annäherung an eine Gleich-
raumverbrennung mit Aussicht auf eine hohe Effizienzsteigerung dar. Besonders macht
sie dabei der aktive Einsatz schwacher Detonationen: Der Prozess erzeugt eine Schich-
tung von Luft und Treibstoff, die nach einer Weile sequentiell selbstzündet. Im Gegensatz
zu den starken Stoßwellen, die eine Detonation mit sich bringen würde, erzeugt die fol-
gende Verbrennung glatte Druckwellen. In der SEC wird die durch diese Wellen erzeugte
Akustik zum Spülen und Nachladen des Brennrohres verwendet.

Diese Arbeit dokumentiert eine erste, theoretische Untersuchung des Prozesses. Dabei
wird ein Modell sowie dazugehörige numerische Verfahren für seine Simulation vorge-
stellt. Die Arbeit besteht aus drei Teilen:

Der erste Teil beschäftigt sich mit Treibstoffen für den SEC Prozess. Eine SEC erfordert
spezielle Treibstoffe, die die Eigenschaft haben, eine im wesentlichen temperaturunab-
hängige Zündverzugszeit zu besitzen. Als Zündverzugszeit bezeichnet man dabei die Zeit,
die zwischen der Erzeugung eines Treibstoff/Luft-Gemisches bei relativ hohen Tempera-
turen und seiner Selbstzündung vergeht. Treibstoffe mit dieser Eigenschaft besitzen eine
komplexe Reaktionskinetik, die sich mit traditionellen Verfahren nur mit hochdimensio-
nalen Modellen beschreiben lässt. Solche Modelle sind für qualitative Strömungssimula-
tionen ungeeignet. In dieser Arbeit wird daher ein generisches, niedrigdimensionales Mo-
dell für derartige Treibstoffe eingeführt. Das Modell erreicht die Niedrigdimensionalität
dabei, indem der Treibstoff auf das geforderte Verhalten im Fall einer funktionierenden
SEC reduziert wird. Weiterhin werden Ergebnisse rund um die Modellreduktion und
Optimierung eines für die SEC vorgeschlagenen Treibstoffes vorgestellt.

Der zweite Teil der Arbeit entwickelt numerische Verfahren zur Simulation einer SEC.
Zur Beschreibung des strömungsmechanischen Verhaltens des Systems werden dabei die
reaktiven Eulergleichungen verwendet. Da das System verschiedensten Temperaturen
ausgesetzt ist, wird die ideale Gasgleichung mit temperaturabhängigen Wärmekapazitä-
ten verwendet. Um dieses Gleichungssystem mit einem Finite-Volumen-Verfahren lösen
zu können, wird zunächst die Lösung des Riemannproblems für diesen Fall diskutiert.
Daraufhin führt die Arbeit die nötigen Erweiterungen für den HLLEM-Löser ein, um mit
allgemeinen idealen Gasgemischen umgehen zu können. Insbesondere wird die Positi-
vität des sich ergebenden Verfahrens bewiesen. Zusätzlich diskutiert der Teil der Arbeit
das bekannte Problem von Druckschwankungen an Kontaktunstetigkeiten und stellt eine
Verbindung zu einem physikalischen Phänomen her.

Der dritte Teil nutzt das entwickelte numerische Verfahren zusammen mit den Kinetik-
modellen, um die SEC zu simulieren. Es wird zunächst gezeigt, dass eine SEC prinzipiell
machbar ist. Durch weitere Simulationen gelangt der Teil dann zu Abschätzungen, die für
die Suche nach einem SEC-Treibstoff und der experimentellen Realisierung des Prozesses
von Bedeutung sind. Abschließend zeigen einige Simulationen mögliche Erweiterungen
des Konzeptes auf.





Abstract
The shockless explosion combustion (SEC) is a thermodynamic cycle for pressure gain
combustion in gas turbines. It approximates constant volume combustion and promises
a huge efficiency gain over traditional operation. Its use of weak detonations makes it
unique among other processes approximating constant volume combustion: In the pro-
cess, a stratification of fuel/air is created in a combustion tube and brought to sequential
auto-ignition. The resulting combustion yields smooth pressure waves, in contrast to the
strong shock waves in alternatives based on detonations. The SEC incorporates these
waves into a clever recharging concept that utilizes the acoustics within the tube to create
the current required for flushing and refilling the tube.

This thesis documents a first theoretical investigation of the process. In particular, it
establishes models for the process and methods for their numerical simulation. It consists
of three major parts:

The first one is concerned with fuels for the SEC process. A SEC requires specialized
fuels with the property that their auto-ignition delay time, that is, the time that it takes
for the fuel to auto-ignite at high temperatures, is largely independent of temperature.
Such fuels have complex chemistry, and traditional methods from chemical kinetics lead
to high dimensional mathematical descriptions that are expensive to calculate in nu-
merical simulations. This thesis introduces a low-dimensional generic model for such
fuels. The model achieves the low dimensionality by stripping the model fuel from any
off-design behaviour: Rather than to describe the actual chemistry, it only describes the
fuel’s behaviour in the context of a working SEC. Further results concerning SEC fuels
are the model reduction for and optimization of an actual prospective SEC fuel.

The second part is concerned with the creation of a numerical simulation for the
process. The reactive Euler equations are used to describe the fluid dynamics of the
system, and since a variety of temperatures is involved, the ideal gas equation of state
with temperature-dependent heat capacities is used. To be able to solve this equation
system using a finite volume framework, the part discusses the solution of the Riemann
problem in this setting and extends the HLLEM approximate Riemann solver accordingly.
In particular, it is proven that the resulting solver has the positivity property. In addition,
the well-known issue of spurious pressure oscillations close to contact discontinuities is
discussed and linked to a physical phenomenon.

The third part puts numerical code and kinetics models together to perform simulations
of the process. It is shown that a SEC is viable, and several estimates relevant to the
search for suitable fuel blends and the process’s experimental realization are obtained.
Simulations also shed a light on possible extensions of the concept and future work.
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