
Computational
Discrete Morse Theory

Inauguraldissertation

zur Erlangung des akademischen Grades
des Doktors der Naturwissenschaften (Dr. rer. nat.)

eingereicht am Fachbereich Mathematik und Informatik
der Freien Universität Berlin

vorgelegt von

Jan Reininghaus
Zuse-Institut Berlin (ZIB)

Berlin, 2012

Erstgutachterin: Dr. Ingrid Hotz, Zuse Institut Berlin, Germany

Zweitgutachter: Prof. Dr. Thomas Lewiner, PUC Rio, Brazil

Tag der Disputation: 17.02.2012

Abstract

I propose a purely combinatorial framework that allows to extract the ex-
tremal structure of scalar and vector fields defined on discrete manifolds. The
extremal structure of a scalar field consists of critical points and separatrices
– certain tangential curves of the gradient field that connect critical points.
The extremal structure of a vector field additionally includes periodic orbits
– the tangential curves that are closed. These features are of great interest in
many applications since they allow to reduce large data sets to their essential
structure.

One of the biggest challenges for classical numerical algorithms is the dis-
crete nature of the extremal structure which necessitates a lot of binary deci-
sions. Their result therefore strongly depends on computational parameters.
Since Morse theory relates the extremal structure of a generic function to the
topology of the manifold, e.g. by the Poincaré-Hopf Theorem, such numer-
ical methods may thereby compute inadmissible results. Robin Forman has
developed a discrete version of Morse theory. This theory can be seen as a
discretization of the set of admissible extremal structures for a given manifold.

In my thesis I propose a general computational framework for data analy-
sis which is based on Forman’s discrete Morse theory in a graph theoretical
formulation. The basic idea is to define a combinatorial optimization problem
over the set of admissible extremal structures. The result of this framework is
thereby provably consistent with the topology of the domain. Also, the solu-
tion of the optimization problem gives rise to a natural hierarchy of extremal
structures for a given data set. This hierarchy can be used to remove noise
induced extremal structure or to extract its essential extremal structure.

In the context of this unified framework I have developed efficient algo-
rithms and investigated their applicability in 2D for scalar fields [RGH+10],
divergence-free vector fields [RH], general vector fields [RH11, RLH11], and
time-dependent scalar fields [RKWH11].

Subsequently, this framework has been applied for the analysis of fluid
dynamics [KRHH11] and for the computation of a global importance mea-
sure for critical points [RKG+11]. It has also been extended to 3D scalar
fields [GRP+] and employed for a memory efficient computation of persistent
homology [GRWH].

v

Zusammenfassung

Basierend auf Formans diskreter Morse Theorie schlage ich in meiner Doktorarbeit
einen allgemeinen algorithmischen Ansatz zur Datenanalyse in einer graphentheoretis-
chen Formulierung vor. Dieser rein kombinatorische Ansatz erlaubt es, die extremale
Struktur von Skalarfeldern und Vektorfeldern, welche auf diskrete Mannigfaltigkeiten
definiert sind, zu extrahieren. Die extremale Struktur von einem Skalarfeld besteht
aus kritischen Punkten und Separatrizen – bestimmte Tangentialkurven des Gradi-
entenfelds, die die kritischen Punkte verbinden. Die extremale Struktur von Vektor-
feldern beinhaltet zusätzlich periodische Orbits – die geschlossenen Tangentialkurven
des Vektorfelds. Diese Merkmale sind in vielen Anwendungen von großem Interesse,
da sie es ermöglichen, große Datensätze auf ihre essentielle Struktur zu reduzieren.

Eine Herausforderung für klassische numerische Algorithmen stellt die diskrete
Natur der extremalen Struktur dar, welche eine große Zahl von Binärentscheidungen
bedingt. Das Ergebnis solcher Methoden hängt daher stark von der Wahl der Berech-
nungsparameter ab. Die Morse Theorie setzt die extremale Struktur einer generischen
Funktion zu der Topologie der Mannigfaltigkeit in Beziehung, z.B. im Poincaré-
Hopf Theorem. Unter Umständen können klassische numerische Methoden daher
unzulässige Ergebnisse erzeugen. Robin Forman hat eine diskrete Version von der
Morse Theorie entwickelt. Diese Version kann als eine Diskretisierung der zulässigen
extremalen Strukturen einer diskreten Mannigfaltigkeit interpretiert werden.

Die Grundidee meines allgemein algorithmischen Ansatzes zur Datenanalyse ist es,
ein kombinatorisches Optimierungsproblem über die Menge der zulässigen extremalen
Strukturen zu definieren. Das Ergebnis dieses Ansatzes ist daher immer konsistent in
Bezug auf die Topologie von dem Definitionsgebiet. Zusätzlich definiert die Lösung
des Optimierungsproblems eine natürliche Hierarchie der extremalen Struktur des
Datensatzes. Diese Hierarchie kann benutzt werden, um die von eventuell vorhan-
denem Rauschen induzierte extremale Struktur zu entfernen, oder, um ausschließlich
die essentielle extremale Struktur eines Datensatzes zu extrahieren.

Im Kontext dieses allgemeinen Ansatzes wurden effiziente Algorithmen entwickelt
und ihre Anwendbarkeit wurde für zweidimensionale Skalarfelder [RGH+10], diver-
genzfreie Vektorfelder [RH], allgemeine Vektorfelder [RH11, RLH11] und zeitabhängige
Skalarfelder [RKWH11], untersucht.

Die Praxistauglichkeit dieses kombinatorischen Ansatzes zur Datenanalyse wird

weiterhin substantiviert durch Anwendungen in der Fluiddynamik [KRHH11] und

als Ausgangspunkt für ein globales Wichtigkeitsmaß für kritische Punkte [RKG+11].

Zusätzlich wurde dieser Ansatz auf dreidimensionale Skalarfelder erweitert [GRP+]

und diente als Basis für eine Speicherplatz effiziente Berechnung von persistenter

Homologie [GRWH].

vii

Danksagung

Zuerst möchte ich meiner Betreuerin Ingrid Hotz danken. Ingrid, ohne deine
vorbildliche Führung, deine motivierenden Worte und deine Begeisterungsfä-
higkeit würde diese Arbeit so nicht existieren. Ich danke dir für viereinhalb
schöne Jahre, die mich als Wissenschaftler geprägt haben.

I would also like to thank Thomas Lewiner for an extremely thorough and
prompt review of my thesis. Besides being an absolute expert in the field
of this thesis, you are a pleasure to talk to. I look forward to many fruitful
collaborations with you in the future.

David Günther, Jens Kasten und Christian Löwen möchte ich für die vielen
Jahre der Freundschaft und guten Zusammenarbeit danken. Unsere zahlrei-
chen ausgiebigen und anregenden Diskussionen haben die Ergebnisse, die in
dieser Arbeit dokumentiert sind, erst ermöglicht.

Sämtlichen Mitarbeitern der Visualisierungsabteilung des Zuse-Instituts Ber-
lin und insbesondere den Mitarbeitern meiner Arbeitsgruppe, Cornelia Auer,
Andrea Kratz und Valentin Zobel, sowie Alexander Wiebel möchte ich für eine
tolle Arbeitsatmosphäre und die immer vorhandene Hilfsbereitschaft danken.

Ohne meinen Bruder Gerrit hätte ich wohl nie Mathematik studiert. Gerrit,
ich danke dir dafür, mich für die Mathematik begeistert zu haben. Auch danke
ich dir und Annkathrin für eure Hilfe beim Endspurt.

Meine Eltern Regina und Ralf hatten immer ein offenes Ohr für mich. Ich
danke euch für eure unschätzbare Unterstützung.

Glück existiert nur, wenn man es teilt. Mit dir, Nadja, möchte ich mein
Glück teilen. Ich danke Dir für deine Geduld, dein Engagement und deine
aufmunternden Worten und freue mich auf unsere gemeinsame Zukunft. Ich
liebe Dich.

– Jan Reininghaus –

ix

Contents

1 Introduction 1

2 Related Work 5
2.1 Vector fields . 5
2.2 Scalar fields . 6
2.3 Time-dependent scalar fields . 7

3 Mathematical Background 9
3.1 Graph theory . 9
3.2 Algebraic topology . 18
3.3 Discrete Morse theory . 24

4 Computational Discrete Morse Theory 33
4.1 Graph theoretic formulation . 34
4.2 Hierarchical combinatorial vector fields 37
4.3 Generic algorithmic pipeline . 39
4.4 Vector fields . 43
4.5 Gradient fields . 57
4.6 Divergence-free vector fields . 63
4.7 Time-dependent scalar fields . 69

5 Conclusions and Outlook 87

Bibliography 91

List of Figures 101

List of Tables 103

xi

Chapter 1

Introduction

We propose a computational framework to extract the extremal structure of
scalar and vector fields. The extremal structure of a scalar field consists of
critical points and separatrices – the tangential curves of the gradient field that
connect critical points whose index differs by one. The extremal structure of
a vector field additionally includes periodic orbits – the tangential curves of
the vector field that are closed. Examples of extremal structures are shown in
Figures 4.7, 4.10 and 4.11. Many more visualizations of extremal structures
can found in [Wei08].

These structures are of great interest in many applications and have a long
history [Cay59, Max70]. Typically, the critical points are computed by finding
all zeros of the (gradient) vector field. The critical points of a scalar field are
classified into minima, saddles, and maxima by the eigenvalues of its Hessian,
while the critical points of a vector field are classified into sinks, saddles, and
sources by the eigenvalues of its Jacobian. The respective eigenvectors can be
used to compute the separatrices as the solution of a system of autonomous
ordinary differential equations.

This approach to data analysis has to deal with many numerical approxima-
tions, e.g. finite floating point precision. Algorithms based on this numerical
approach therefore usually contain a number of computational parameters.

One of the biggest challenges that such numerical algorithms face is the
discrete nature of the extremal structure which necessitates a lot of binary
decisions. For example, the type of a critical point depends on the sign of the
eigenvalues. The approximative nature of the analytic approach is thereby fur-
ther amplified in the context of these binary decisions, where small errors can
deal to completely different results. Depending on the input data, the result-
ing extremal structure may therefore strongly depend on the computational
parameters and employed numerical procedures.

From a topological point of view this can be quite problematic. Morse the-
ory [Mil63] relates the extremal structure of a generic function to the topology
of its domain, e.g. by the Poincaré-Hopf Theorem, or by the strong Morse

1

1. Introduction

(a) (b)

Figure 1.1 Illustration of two algorithmic challenges. (a) shows a 1D function
with a plateau-like region. From the topological point of view the critical
point in the middle needs to be a maximum since it is located between the
two minima on the left and on the right side. However, depending on the
numerical procedure the determination of its type might be inconsistent. (b)
illustrates a noisy 1D function. Every fluctuation caused by the noise generates
additional minima and maxima.

inequalities. For example, a generic scalar field defined on a torus contains at
least one minimum, two saddle points, and one maximum. The topology of
the domain therefore restricts the set of the admissible extremal structures.

If a (gradient) vector field contains plateau like regions, i.e. regions where
the magnitude is rather small, approximative numerical methods may there-
fore lead to topologically inconsistent results – a small error in an eigenvalue
may flip its sign. This means that extremal structures may be computed that
cannot exist on the given domain. A simple example for this problem can be
given in 1D. Consider an interval containing exactly three critical points as
shown in Figure 1.1a. While it is immediately clear that not all critical points
can be minima, an algorithm that works strictly locally using numerical algo-
rithms may result in such an inconsistent result.

A second problem that often arises is that the data may contain noise.
Depending on its type and quantity, a lot of spurious critical points may be
produced as shown in Figure 1.1b. Due to the significance of this problem in
practice, a lot of work has been done towards robust methods that can deal
with such data, see Chapter 2.

Robin Forman has developed a discrete version of Morse theory [For98a,
For98b] for cell complexes. A gradient or vector field is therein directly en-
coded in the combinatorial structure of the cell complex, and their extremal
structure is defined in a combinatorial fashion. A finite cell complex that rep-
resents the domain of a function can therefore only carry a finite number of
combinatorial (gradient) vector fields, and their respective extremal structure
is always consistent with the topology of the domain.

In a certain sense, discrete Morse theory thereby allows to translate the

2

numerical problem of finding and classifying critical points into a purely com-
binatorial problem. This approach is thereby a good fit for a computational
approach since combinatorial problems can be exactly represented in a com-
puter, whereas numerical approaches have to deal with approximations which
are amplified due to binary decisions, see above.

The basic idea of our computational framework is therefore to find a com-
binatorial (gradient) vector field to represent our input data. Its extremal
structure can then be extracted exactly and is by construction always consis-
tent with the topology of the domain – a generic scalar field defined on a torus
will always have at least one minimum, two saddle points, and one maximum.
This topological consistency greatly improves the robustness of our algorithm.
In some sense it serves as an error correcting code: a single misclassification of
a critical point cannot occur, as this would result in an inadmissible extremal
structure.

For the purpose of data analysis, the computed extremal structure is in
general too complex. This is especially true if one deals with noisy data. One
is therefore interested in a meaningful and consistent simplification of the
extremal structure. Our framework allows for this by computing a hierarchy
of combinatorial (gradient) vector fields that represents the input field. The
user is then able to select an appropriate level of detail to efficiently analyze
the data.

Overall, our combinatorial approach to data analysis has three main advan-
tages compared to the analytic approach:

1. The natural output of this framework is a hierarchy of extremal struc-
tures. The importance of a critical point in this hierarchy is determined
by a value related to the concept of persistence [ELZ02, EH08]. This
allows the user to discriminate between stable and unstable features of
the (gradient) vector field.

2. The resulting extremal structure is always consistent with the topology
of the underlying domain. While this property may seem rather aca-
demic it significantly increases the robustness of the algorithm: a single
critical point cannot be missed or misclassified, as this would affect the
consistency of the result. In a sense, topological consistency serves as
an error correcting code.

3. There are no computational parameters. This enables a fully automatic
analysis of a series of (gradient) vector fields and is essential for the
treatment of time-dependent data. Furthermore, it significantly simpli-
fies the implementation and verification of the algorithms.

While the proposed framework is applicable to (gradient) vector field data
of any dimension, we will often restrict ourselves to 2D manifolds and will only

3

1. Introduction

discuss the applicability and necessary modifications for higher dimensions.

The remainder of this thesis is structured as follows. A small overview
of relevant related work in the context of extremal data analysis is given in
Chapter 2. The necessary mathematical background in graph theory, alge-
braic topology, and Morse theory is introduced in Chapter 3. The main ideas
of this thesis are presented in Chapter 4. It contains a graph theoretic formu-
lation of discrete Morse theory, a general algorithmic pipeline, describes our
hierarchical representation of the extremal structure, and introduces specific
algorithms for vector fields, gradient fields, two dimensional divergence-free
vector fields, and time-dependent scalar fields.

This thesis is concluded in Chapter 5 with some thoughts on the known
shortcomings of our framework, and possible remedies, extensions, and gener-
alizations are discussed.

4

Chapter 2

Related Work

This chapter gives an overview of existing approaches to data analysis using
extremal structures. In contrast to our unified approach, most of these ideas
deal only with one specific type of data. We therefore separate the related
work into the data types of vector fields, scalar fields, and time-dependent
scalar fields.

In general, the use of topological methods for scalar and vector field visual-
ization developed almost independently over the last two decades. Both areas
build on solid mathematical foundations. While methods for vector fields
mostly refer back to Poincaré Index Theory [Mil65], topological scalar field
analysis is based on Morse Theory [Mil63]. For a basic overview over these
theories and their relation we refer to the survey [SG08].

2.1 Vector fields

In the context of vector fields, our notion of the extremal structure of a data set
is usually referred to as the topology of the vector field. This concept was intro-
duced to the visualization community by Helman and Hesselink [HH89]. They
defined the concept of a topological skeleton consisting of critical points and
connecting separatrices to segment the field into regions of topologically equiv-
alent streamline behavior. Algorithms to extract periodic orbits, completing
this topological structure, have been proposed [WS01, TWHS04, CML+07].
A good introduction to the concepts and algorithms of vector field topology
is given in [Wei08].

To improve the applicability of vector field topology, a variety of extensions
like topology tracking, extraction of boundary topology, or extensions to 3D
have been developed. For a rather complete overview of these methods we
refer to the survey paper [LHZP07].

While there are stable numerical algorithms to extract the topological skele-
ton of a vector field, the overall resulting framework [WST+07] has many
computational parameters that may strongly influence the result. To re-

5

2. Related Work

duce the dependence of the algorithms on computational parameters like step
sizes, a combinatorial approach to vector field topology based on Conley in-
dex theory [Con78] has been developed [CML+07, CMLZ08]. In the case of
divergence-free vector fields their algorithm unfortunately encounters many
problems in practice.

The topological skeleton is usually rather complex for real world vector
fields. One is therefore interested in a meaningful simplification of the skeleton
[TSHC01, TSH01, WTS+05, KE07, CML+07].

Since vector field data is often defined in a discrete fashion, a discrete treat-
ment of the differential concepts that are necessary in vector field topology
has been shown to be beneficial in [TLHD03, PP02]. They introduced the
idea that the critical points of a divergence-free vector field coincide with the
extrema of the scalar potential of the point-wise-perpendicular field to the
visualization community. The critical points can therefore be extracted by
reconstructing this scalar potential and extracting its minima, maxima, and
saddle points.

2.2 Scalar fields

In visualization, the extremal structure of a scalar field is often called the
topological skeleton. Scalar field topology developed almost independently
from vector field topology. The main application areas in visualization include
segmentation, transfer function design, and ridge extraction. Due to their
robustness and stability, extraction algorithms that assume piece-wise linear
data sets have been especially successful in this context [EHNP03, GNP+06,
GNPH07].

There are many extraction algorithms [BLW10, KKM05, RWS11, Gyu08,
Lew05, Gyu08, GBPH11, GBHP08] that make use of Forman’s work [For01]
on discrete Morse theory for cell complexes. Rather than choosing a suitable
class of continuous functions, a single number is assigned to each cell of the
complex and all further steps are combinatorial.

Note that the first implementation of Forman’s theory was presented by
Lewiner [Lew05, Lew02, LLT04]. His combinatorial gradient vector fields are
based on the construction of hypergraphs and hyperforests. In contrast to
our computational approach, Lewiner focused on scalar fields, whereas our
definitions and algorithms are also directly applicable to vector fields.

To reduce the often very complex topological structure that is generated by
the above algorithms, a controlled simplification is frequently introduced based
on the mathematically well-founded concept of persistence [ELZ02, EH08].
Due to the simplicity and clarity of this simplification strategy, it has been
widely adopted.

6

2.3. Time-dependent scalar fields

2.3 Time-dependent scalar fields

Many algorithms that track features in time-dependent data have been pro-
posed in many different scientific communities. A lot of this work has been
partially inspired by object tracking methods in the area of computer vision,
see [YJS06] for a survey. In the context of visual data analysis, tracking
approaches can roughly be categorized into three classes depending on the
treatment of the temporal dimension [Pos03].

The first class considers feature tracking as a two-step process: feature ex-
traction for each time slice and then subsequent feature matching by solving a
correspondence. Such methods do not rely on a temporal interpolation. Event
analysis mostly happens implicitly during tracking defined by event functions.
Common tracked features are volumes or areas, boundaries or contours and
points. Correspondence criteria use distance metrics of the domain and the
attribute space, which are in general based on application specific heuristics.

Typical attributes comprise feature size, shape descriptors or texture char-
acteristics [CJR07]. Features are linked, if their distance falls below a given
threshold [SSZC94, RPS99, LBM+06, dLvL01]. Improvements using feature
overlap instead of Euclidean distances are used in [SW97]. A more global
approach is followed in [Ji06] employing a best matching algorithm. Improved
tracking can be achieved by utilizing additional information for motion predic-
tion [RSVP02]. [BSS02] proposes a progressive tracking of isosurfaces using
the isosurface at time t as an initial guess for the next time-step t + 1. An
extension to tracking the entire contour tree using volume overlap has been
proposed in [SB06].

The second class of algorithms considers time as an additional dimension,
treated equally to spatial dimensions. Features are extracted from space-time
directly, thus increasing the dimension of the domain and the features by one.
Tracking is accurate with respect to the chosen temporal interpolation. No
explicit distance metrics for features are needed. Event analysis is mostly a
subsequent step after tracking and is based on well-founded theory.

Methods extracting iso-surfaces in space-time have been proposed in [WB98,
JSW03]. A topological event analysis based on the Reeb-Graph of the surface
resulting from sweeping contours has been performed in [WBD+ar, BWP+10].
The development of topological structures in 2D and 3D flow fields has been
analyzed in [TWSH02, GTS04]. These algorithms consider vector fields com-
posed of space-time cells with linear interpolation, where events are restricted
to cell boundaries. Critical point tracking is thereby reduced to the compu-
tation of entry and exit points for each cell. Similarly, [BP02] introduces an
algorithm to track vortex core lines over time and scale space searching for fea-
tures, represented as parallel vectors, on all boundary cells of the space-time
cell.

While giving accurate results, these methods are sensitive to noisy data and

7

2. Related Work

a high feature density. To reduce the number of extracted features and events,
a common practice is to delete short living features. A combinatorial approach
to track critical points is based on the definition of Jacobi sets [EH04]. It con-
sists of Jacobi edges, which are extracted from a spatial-temporal simplicial
complex assuming a linear interpolant. The decision whether an edge belongs
to the Jacobi curve involves the topological analysis of the lower link of ver-
tices and edges of the simplicial complex. While providing a nice theoretical
framework, the resulting Jacobi curves of real data sets are often very com-
plex and hard to analyze. Based on this work it is also possible to track the
evolution of the Reeb-graph of a scalar function [EHM+08].

The third class of algorithm combines aspects of both above-mentioned
types. They represent the dynamic behavior of features implicitly as stream-
lines of a higher dimensional derived vector field in space-time. Critical points
can then be tracked by computing certain streamlines in this vector field, re-
ferred to as a Feature Flow Field [TS03]. Recently, a combinatorial version of
the Feature Flow Field method has been proposed [KKM08]. This method is
discussed in detail in Section 4.7.1 and provides the mathematical foundation
for our treatment of time-dependent data presented in Section 4.7.2.

8

Chapter 3

Mathematical Background

The goal of this chapter is to introduce the relevant mathematical background
which will be made use of in Chapter 4. We will present some basic ideas and
results from graph theory, algebraic topology, and discrete Morse theory in a
way that assumes very little prior knowledge in these areas.

Note that the presented material does not include any justifications, proofs,
or detailed complexity and correctness analysis of the presented algorithms.
We will instead refer the interested reader to relevant books on these topics
that give a complete and formally correct description of this material. Also,
we will generally only present the relevant special case of a general result to
keep the presentation both brief and focused.

3.1 Graph theory

In this section we introduce some basic notions from graph theory. For a more
general introduction to graph theory that contains proofs and justifications
we refer to [Die97, Sch03].

The required formalism for the algorithms presented in Chapter 4 that
analyze the extremal structure of discrete data sets can be motivated with a
simple example:

Suppose we are given a set of workers and a set of projects. Further suppose
that each worker is able to process some of the projects with a varying degree
of efficiency. Each project can be processed by at most one worker, and each
worker can only work on one project. The goal is now to find an assignment
of workers to projects that maximizes the overall efficiency.

In the following sections, we will briefly present a mathematical model for
this kind of problem and introduce an algorithm that can be used to compute
the optimal assignment of workers to projects efficiently.

9

3. Mathematical Background

3.1.1 Basic definitions

In this section some basic notions and algorithms from graph theory is intro-
duced. We focus on the material that is necessary for the ideas presented in
Chapter 4.

Loosely speaking, a graph is a set of nodes that are connected by a set
of edges. To be more precise, let N denote a finite set and E ⊆ {L ⊆ N :
|L| = 2}, where | · | denotes the size of a set. Then the tuple G = (N,E)
is called a simple graph. Since we will mostly deal with simple graphs, we
will refer to them just as graphs. We will denote the number of nodes |N | by
n, and the number of edges |E| by m. If the nodes of the edges are ordered,
i.e. ~E ⊆ V × V , then D = (N, ~E) is called a directed graph. Examples of
(directed) graphs are shown in Figure 3.1.

a b

c d

(a)

a b

c d

(b)

Figure 3.1 Graphs. (a) a simple graph G = (N,E) with N = {a, b, c, d}
and E = {{a, b}, {c, a}, {c, b}, {c, d}}. (b) a directed graph D = (N, ~E) with
N = {a, b, c, d} and ~E = {(a, b), (a, c), (b, c), (c, d)}

Throughout this thesis, we will often consider certain subsets of a given
graph G = (N,E). We therefore introduce two useful notational shortcuts.
Let P(·) denote the power set. If U ⊆ N is a subset of nodes, then E(U) =
E ∩ P(U) denotes the subset of edges whose nodes are contained in U . If
L ⊆ E denotes a subset of edges, then N(L) =

⋃
e∈L e denotes the subset of

nodes that are part of at least one edge in L.

A path p in a graph is a sequence of unique nodes u0u1 . . . u` such that
{uk, uk+1} ∈ E for k = 0, . . . , ` − 1. A sequence of such nodes u0u1 . . . u`
where u1 . . . u`−1 are unique and u0 = u` is called a cycle. Note that a path
(cycle) can as well be represented by a sequence of edges. We will always
implicitly make use of the applicable representation. Examples of paths and
cycles are shown in Figure 3.2.

The length of a path u0u1 . . . u` is defined as the number of participating
edges: `− 1. A graph is called connected if there is a path connecting each
pair of nodes. Note that most algorithms in graph theory assume without loss
of generality that the graph is connected, since they could as well be applied
to each connected component of the graph individually. In this thesis we will
always implicitly assume that the given graph is connected.

In most algorithms that deal with graphs we need to traverse the graph –
visiting each node once. A simple algorithm that is often used is the breadth

10

3.1. Graph theory

a b

c d

(a)

a b

c d

(b)

Figure 3.2 Paths and cycles. (a) a path abcd. (b) a cycle abca.

first search. The pseudo code of this algorithm is shown in Algorithm 1
using a queue data structure Q with standard push and pop operations. The
input of this algorithm consists of a simple graph G = (N,E) and a start
node s ∈ N . It can be implemented with a running time of O(n + m). An
illustration of the breadth first search algorithm is shown in Figure 3.3.

s b

c d

(a)

s b

c d

(b)

s b

c d

(c)

s b

c d

(d)

s b

c d

(e)

Figure 3.3 Breadth first search algorithm. (a)-(e) illustration of Algorithm 1
– the blue disks represents the content of the set U , while orange shows the
contents of the queue Q.

A simple application of this algorithm is to test a graph for connectedness.
We simply start Algorithm 1 with an arbitrary node of the graph. The graph
is then connected iff U = N at the end of the algorithm.

Note that if one replaces the queue data structure with a stack in Algo-
rithm 1, then the resulting algorithm is called depth first search.

3.1.2 Shortest paths

A common application of graph theory is the computation of distances in
some network modeled as a directed graph D = (N, ~E) with edge weights
ω : ~E → R to represent the cost of traversing an edge. In such a directed edge
weighted graph D = (N, ~E, ω), the weight of a path (or cycle) is defined as
the sum of the weights of the participating edges. The distance of two nodes in

11

3. Mathematical Background

Algorithm 1 Breadth first search

Input: G = (N,E), s ∈ N
1: U ← s
2: Q← s
3: while Q 6= ∅ do
4: u← pop(Q)
5: for all {{u,w} ∈ E : w /∈ U} do
6: U ← U ∪ w
7: push(Q,w)

Algorithm 2 Bellman Ford

Input: D = (N, ~E, ω), s ∈ N
Output: dist : N → R, pred : N → N
1: for all v ∈ N do
2: dist(v)←∞
3: pred(v)← v
4: dist(s)← 0
5: for k = 1 to |N | − 1 do
6: for all (u,w) = e ∈ ~E do
7: if dist(u) + ω(e) < dist(w) then
8: dist(w)← dist(u) + ω(e)
9: pred(w)← u

a weighted graph is then defined as the minimal weight the paths connecting
them.

If the weighted graph does not contain any cycle with negative weight one
can use the Bellman-Ford algorithm [Bel58, For56] to compute the distances
from one node to every other node as shown in Algorithm 2. The input of
this algorithm consists of a weighted directed graph D = (N, ~E, ω) and a start
node s ∈ N . The output consists of the distance function dist : N → R and
a predecessor function pred : N → N . pred(·) can be used to construct a
minimal path from every node v to the start node s by a repeated application
of pred(·) to v. A straightforward analysis reveals that Algorithm 2 has a
running time of O(nm). An illustration of the Bellman-Ford algorithm is
shown in Figure 3.4.

3.1.3 Matchings

The most central notion that is used in Chapter 4 will now be introduced: a
pairwise disjoint subset of edges M ⊆ E of a graph G = (N,E) is called a
matching. The set of all matchings is denoted by M = {L ⊆ E : `1 ∩ `2 =
∅, for all `1 6= `2 ∈ L}. An example of a matching is shown in Figure 3.5.

12

3.1. Graph theory

s

d

3

1

-1

2c

b

(a)

0,s

1,d

3

1

-1

21,c

1,b

(b)

0,s

1,d

3

1

-1

23,s

1,s

(c)

0,s

5,c

3

1

-1

20,b

1,s

(d)

0,s

2,c

3

1

-1

20,b

1,s

(e)

Figure 3.4 Bellman-Ford algorithm. (a) a directed edge weighted graph. (b)-
(e) illustration of Algorithm 2 – the values of the functions dist(·) and pred(·)
are shown adjacent to each node and updates are highlighted in orange.

Given an edge weight function ω, the weight of a matching M is defined
as the sum of weights of the edges contained in M . Given an edge weighted
graph G = (N,E, ω) we can then define the following optimization problem

L = arg max
M∈M

ω(M), (3.1)

i.e., we want to find the matching in G which maximizes the weight function.
This optimization problem is usually referred to as the maximum weighted
matching problem. If there exists a disjoint decomposition N = U ∪̇W of the
nodes of a graph G such that E(U) = E(W) = ∅, then G is called bipartite.
An example of a bipartite graph is shown in Figure 3.5. For graphs with such
a structure (3.1) is called the maximum weighted bipartite matching problem.

a b c

d e f

(a)

a b c

d e f

5
8

6
2 1

(b)

Figure 3.5 Bipartite matchings. (a) the shown graph G = (N,E) is bipartite
since N = U ∪̇W with U = {a, b, c}, W = {d, e, f} and E(U) = E(W) = ∅.
(b) the set of dashed edges M ⊆ E defines a matching in G since no two
dashed edges meet at a node. Its weight ω(M) is 5 + 6 + 1 = 12

The formalism that has been presented so far can be used to formalize
the model optimization problem introduced in the beginning of Section 3.1:

13

3. Mathematical Background

The set of workers and projects are represented as nodes in a graph. The
ability of the workers to process some of the projects with a varying degree
of efficiency can be modeled by weighted edges in this graph. Note that there
are no edges connecting a worker (project) to another worker (project). The
resulting graph is therefore bipartite. The restriction that each project can
be worked on by at most one worker, and each worker can only work on one
project implies that the valid assignments are given by the set of matchings
in this graph. To compute an optimal assignment we therefore need to find
the solution of (3.1).

We will now outline an algorithm that solves such problems. The basic idea
of this method is to compute the sequence

Lk = arg max
M∈M, |M |=k

ω(M). (3.2)

The maximum weight matching is then given by L = arg max ω(Lk). Since
L0 = ∅, it suffices to develop an algorithm that can compute Lk+1 given Lk.
To describe this algorithm we first introduce some useful concepts.

An alternating path in a graph G is defined as a path whose edges alter-
nate with respect to a matching M . If the start and end node of an alternating
path are unmatched, i.e. they are not contained in N(M), then it is called an
augmenting path. The augmenting paths are called ‘augmenting’ because
they can be used to increase the size of a matching: if p is an augmenting path
with respect to a matching M with k edges, then M ∆ p is a matching with
k+ 1 edges. Here and throughout this thesis, ∆ denotes the symmetric differ-
ence operator A∆B = (A ∪ B) \ (A ∩ B). An illustration of an augmenting
path is shown in Figure 3.6.

a b c

d e f

(a)

a b c

d e f

(b)

Figure 3.6 Augmenting path. (a) a bipartite graph G = (N,E) with a match-
ing M ⊆ E (dashed lines). The path p indicated by the blue highlight is an
augmenting path for this matching since its edges alternate between M and
E \M and its start- and endpoint are not covered by M . (b) the augmented
matching M̃ = M ∆ p.

The weight of an augmenting path p = e0e1 . . . ek is defined as the alter-
nating sum of its edge weights, i.e. ω(p) =

∑k
`=0 (−1)`ω(e`). Note that using

this convention we have ω(M ∆ p) = ω(M) + ω(p).

14

3.1. Graph theory

Algorithm 3 Matching induced directed graph

Input: G = (U ∪̇W,E, ω),M ∈M
Output: D = (U ∪̇W ∪̇{s, t}, ~E, ~ω)
1: for all e = {u,w} ∈ E \M,u ∈ U,w ∈W do
2: ~E ← ~E ∪ (u,w)
3: ~ω((u,w))← −ω(e)
4: for all e = {u,w} ∈M,u ∈ U,w ∈W do
5: ~E ← ~E ∪ (w, u)
6: ~ω((w, u))← ω(e)
7: for all u ∈ U \ U(M) do
8: ~E ← ~E ∪ (s, u)
9: ~ω((s, u))← 0

10: for all w ∈W \W (M) do
11: ~E ← ~E ∪ (w, t)
12: ~ω((w, t))← 0

The Hungarian method [Kuh55] now makes use of the fact that we can
increase the size of a maximum weighted matching by augmenting it with the
heaviest augmenting path, i.e.

Lk+1 = Lk ∆ arg max
p∈ALk

ω(p), (3.3)

where AM denotes the set of all augmenting paths in a graph with respect
to a given matching M . We refer to [Sch03] for a proof. Essentially, the
Hungarian method exploits the fact that – in the context of augmenting paths
– the optimization problem (3.2) can be solved in a greedy fashion.

The main task is therefore the computation of arg maxp∈AM
ω(p) for a given

matching M . Such a path can be computed by solving a shortest path problem
which we now describe. We first define a directed graph which is induced by
M and the bipartition N = U ∪̇W using Algorithm 3. We first orient all edges
between U and W according to the matching M and assign an appropriate
weight to them. Then, we insert two auxiliary nodes s, t and edges with
weight 0 that connect them to U and W respectively. An example of this
construction can be seen in Figure 3.7a and Figure 3.7b.

We can now apply the shortest path Algorithm 2 to the directed graph D
with the start node s. An augmenting path of maximum weight can now be
computed by a repeated application of the resulting pred(·) function to the
node t – we only have to remove the auxiliary start and end nodes s and t
from the resulting path. If pred(t) = t, then there is no augmenting path, so
the matching has maximum cardinality and the algorithm is finished since it
has computed the whole sequence (3.2). An illustration of a single iteration
of the Hungarian method is shown in Figure 3.7.

15

3. Mathematical Background

a b c

d e f

5
8

6
2 1

(a)

a
b c

d
e f

-5
8

-6
-2 -1

s

t

0 0

0
0

(b)

0,s
3,d 0,s

-5,a
-3,b -1,c

0,s

-3,e

(c)

a b c

d e f

5
8

6
2 1

(d)

Figure 3.7 Hungarian method. (a)-(d) a single iteration of the Hungarian
method. (a) input: the maximum weight matching containing one edge. (b)
the induced directed graph of the matching of (a) computed with Algorithm 3.
(c) the result of applying the Bellman-Ford algorithm to (b). The interior p of
the shortest path from s to t is shown in blue – it is the heaviest augmenting
path in (a). (d) output: the maximum weight matching with two edges is
given by the symmetric difference of the matching in (a) with the augmenting
path computed in (c).

Note that the Bellman-Ford algorithm only works when there is no cycle
with negative weight. Fortunately, the induced directed graphs generated by
Algorithm 3 do not contain such cycles due to the maximality property of the
matchings (3.2): suppose that the directed graph induced by the matching Lk
would contain a cycle p with negative weight. Considered as an augmenting
path, p has therefore positive weight. Then Lk ∆ p is again a matching with
k edges, and ω(Lk) < ω(Lk ∆ p) in contradiction to the maximality property
of Lk defined in (3.2).

16

3.1. Graph theory

The size of a matching and the length of augmenting paths is bounded by
n, since a node can only be part of one matching edge. The running time
of the Hungarian method – using the Bellman-Ford algorithm – is therefore
given by O(n2m).

Note that it is possible to use Dijkstra’s algorithm [Dij59] to compute the
augmenting path of maximum weight even though the directed graph contains
edges with negative weight. The basic idea is to shift the edge weights with
a potential and maintain it during the augmentation phase. This results in a
total running time of O(n2 log n + nm) using a Fibonacci heap [FT87]. For
more details on this approach we refer to [Sch03].

17

3. Mathematical Background

3.2 Algebraic topology

In this section we will introduce some basic notions from algebraic topology
that will be made use of in Chapter 4. For a more general and formally correct
introduction to algebraic topology that contains proofs and justifications we
refer to [Hat02, Mun84].

The purpose of the presented material is twofold. First, it gives a formal
description of the type of input that is supported in computational discrete
Morse theory. Secondly, it is essential to appreciate the consistency that the
algorithmic approach presented in Chapter 4 offers.

Loosely speaking, topology is concerned with the structure of a shape that
does not depend on its exact form. For example, a donut and a coffee cup are
considered to have the same structure – they can be deformed into each other
without cutting or gluing. In contrast, a torus and a sphere are considered to
be fundamentally different, see Figure 3.8 for an example. In the next section
we give a brief but concise formal description of this idea.

(a) (b)
(c)

Figure 3.8 Surfaces. (a) a sphere. (b) an ellipsoid. (c) a torus. (a) and (b)
are considered to be topologically equivalent since they can be deformed into
each other. In contrast, (c) has a fundamentally different structure compared
to (a) or (b).

3.2.1 Basic definitions

Let P(·) denote the power set. A topological space is a set X together with
a set of its subsets X ⊆ P(X), called open sets, that satisfies

1. ∅ ∈ X and X ∈ X ,

2.
⋃
A∈AA ∈ X for any A ⊆ X ,

3.
⋂
A∈AA ∈ X for any A ⊆ X with |A| <∞.

A common example of a topological space is R. The open sets of R are
often defined as the sets which are unions of open intervals (a, b).

Let (X,X) and (Y,Y) denote topological spaces. A function f : X → Y
is called continuous if the inverse image of any open set is an open set, i.e.

18

3.2. Algebraic topology

f−1(A) ∈ X for any A ∈ Y. Note that when X = Y = R, this definition of
a continuous function coincides with the usual ε− δ condition encountered in
basic calculus classes.

If a continuous function f is one-to-one, onto, and its inverse function f−1

is also continuous, then f is called a homeomorphism. Two topological
spaces X and Y are called homeomorphic iff there exists a homeomorphism
f : X → Y .

Let us consider two simple examples to illustrate these concepts:

1. The set X = (−2, 2) ⊆ R is homeomorphic to the set Y = (−8, 8) via
the homeomorphism x 7→ x3.

2. The set X = (−1, 1) is not homeomorphic to Y = (−2,−1) ∪ (1, 2)
since any continuous function maps connected sets to connected sets.
Since X is connected and Y is not, there cannot exist a homeomorphism
f : X → Y .

One of the central questions in topology is whether two given topological
spaces X and Y are homeomorphic. Unfortunately, this is almost never as easy
as in the preceding two examples – even proving that Rn is not homeomorphic
to Rn+1 is far from trivial.

A common approach to show that two topological spaces are not homeo-
morphic is to make use of topological invariants. A topological invariant is a
property that is preserved under homeomorphisms – if it associates different
values to X and Y then those spaces cannot be homeomorphic. A simple
example of a topological invariant is the number of connected components.
In the following section we will introduce a relatively simple, yet powerful
topological invariant.

3.2.2 Simplicial homology with Z2 coefficients

In this chapter we restrict ourselves to very simple objects to keep the pre-
sented concepts as simple as possible. These objects, called simplicial com-
plexes, arise in many applications like numerical simulations or computer
graphics. While the material introduced below is in principal applicable to
higher dimensions, we will only make use of two dimensional examples since
this simplifies notation drastically.

Note that our presentation of simplicial homology using Z2 coefficients is a
lot less powerful than the standard introduction to homology with coefficients
in Z. The main advantage of our approach lies instead in its simplicity – most
algebraic concepts that usually need to be introduced for standard homology
are not necessary in this degenerate case of homology.

The basic building blocks we want to consider to represent some geometric
object are simplices. Let {v0, . . . , vk} denote a set of points in general position,

19

3. Mathematical Background

i.e. the set of vectors {v1− v0, . . . , vk − v0} is linear independent. The convex
hull of {v0, . . . , vk} is called a k-simplex. Figure 3.9 depicts examples of k-
simplices. We will denote the set of all k-simplices by Sk. For example, S0
consists of all points, S1 of all edges, and S2 of all triangles.

(a) (b)

(c)

Figure 3.9 Simplices. (a) a 0-simplex. (b) a 1-simplex. (c) a 2-simplex.

Note that a k-simplex α is always the convex hull of k + 1 points. The
convex hull of any subset of these points is called a face of α. We denote the
set of all faces of a simplex α by F (α). For example, if α is a triangle, then
F (α) consists of three edges, three points, and the empty set.

A finite set of simplices K =
⋃d
k=0Kk, Kk ⊆ Sk, is now called a d-

dimensional finite simplicial complex if

1. F (α) ⊆ K, for any α ∈ K,

2. α ∩ β ∈ F (α) ∩ F (β), for any α, β ∈ K.

(a)
(b) (c)

Figure 3.10 Simplicial complex. (a)-(c) finite sets of simplices. (a) and (b)
are simplicial complexes. (c) is not a simplicial complex since not all faces of
each simplex are present.

The definition of a simplicial complex is illustrated in Figure 3.10. Common
examples of simplicial complexes that are often encountered in practice are
graphs, as introduced in Section 3.1, triangulations of surfaces, or tetrahedi-
zations of volumetric shapes.

Let Ck denote the power set of Kk. We will now define a boundary op-
erator ∂k that maps an element of Ck to Ck−1. The boundary of a single
k-simplex α is defined as the (k−1) dimensional faces, i.e. ∂kα = F (α)∩Kk−1.
The boundary of a set of k-simplices is now defined using the symmetric dif-
ference operator: ∂k{α0, α1, . . . , α`} = ∂kα0 ∆ ∂kα1 ∆ . . .∆ ∂kα`. Figure 3.11
illustrates this definition of a boundary operator.

20

3.2. Algebraic topology

a
bc

(a)

a
bc

(b)

a
bc

(c)

Figure 3.11 Boundary operator. (a) the boundary of c consists of the 0-
simplices highlighted in blue. (b) the boundary of the 2-simplex a consists of
the 1-simplices highlighted in blue. (c) the boundary of {a, b} consists of the
1-simplices highlighted in blue – the interior 1-simplex drops out due to the
symmetric difference operator.

Since direct calculation shows that for any k-simplex α we have ∂k−1∂kα = ∅
the sequence

C : ∅ ∂d+1−−−−→ Cd
∂d−−−−→ Cd−1

∂d−1−−−−→ . . .
∂1−−−−→ C0

∂0−−−−→ ∅ (3.4)

is called a chain complex. The auxiliary boundary maps ∂d+1 and ∂0 are
defined by ∂d+1∅ = ∅ and ∂0α = ∅ for any simplex α ∈ C0.

Given such a chain complex we can define its homology. Let Zk = ker ∂k =
{α ∈ Ck : ∂kα = ∅} denote the set of k-cycles, and Bk = im ∂k+1 = {α ∈ Ck :
there exists β with ∂k+1β = α} the set of k-boundaries. We now define an
equivalence relation on Zk: x ∼ y iff x∆ y ∈ Bk. The number of non-trivial
equivalence classes in Hk = Zk/ ∼ is called the k-th Betti number bk of K.
When we think of the symmetric difference operator ∆ as a group operation,
we can call Hk the kth homology group of K. For an illustration of the
concept of homology we refer to Figure 3.12.

It can be shown that the homology groups (and subsequently the Betti
numbers) are topological invariants [Hat02]. This implies that if the homol-
ogy groups of two simplicial complexes differ, then the respective topological
spaces cannot be homeomorphic.

For example, let K denote a simplicial complex representing a torus and let
L denote a simplicial complex representing a sphere. Using a small number
of simplices one can manually calculate the Betti numbers of K: (b0 = 1, b1 =
2, b2 = 1), and of L: (b0 = 1, b1 = 0, b2 = 1). As the Betti numbers do not
coincide we know that a sphere and a torus are not homeomorphic.

Since Betti numbers are topological invariants, so is their alternating sum

χ(K) = b0 − b1 + . . .+ (−1)dbd. (3.5)

χ(K) is called Euler characteristic of K. Using basic tools from homolog-
ical algebra [Mun84] one can show that

b0 − b1 + . . .+ (−1)dbd = |K0| − |K1|+ . . .+ (−1)d|Kd|. (3.6)

21

3. Mathematical Background

a
b

(a)
(b)

a

b

(c)

(d)

a

b

(e)

Figure 3.12 Homology. (a) a 1-cycle x ∈ Z1. It is equivalent to the empty
set since x∆ ∅ = x = ∂{a, b} ∈ B1. (b) a 0-cycle. (c) another 0-cycle x. It is
equivalent to the cycle y shown in (b) since x∆ y = ∂{a, b} ∈ B0. (d) a 1-cycle
x. It is not equivalent to the empty set since x∆ ∅ = x /∈ B1. (e) another 1-
cycle y. It is equivalent to the cycle x shown in (d) since x∆ y = ∂{a, b} ∈ B1.

The Euler characteristic is therefore very easy to compute – one just has to
count the different types of simplices in a simplicial complex. Perhaps surpris-
ingly, the Euler characteristic is still a very descriptive topological invariant:
two closed orientable surfaces are homeomorphic iff they have the same Euler
characteristic.

Note that the material presented in this section is in principal applicable to
more general representations of topological spaces than simplicial complexes.
One of the most widely used generalizations is called the regular cell com-
plex. Since a formally correct definition of a regular cell complex is quite
involved we refer the interested reader to standard literature [Hat02] in alge-
braic topology for a precise definition.

For our purposes, it suffices to say that regular cell complexes are struc-
turally similar to simplicial complexes but allow for more general geometric
primitives. Instead of building the complex from k-simplices one makes use
of k-cells, which are primitives homeomorphic to k-balls. A simple example
of a k-cell is thereby a k-simplex. A more complex example of a k-cell is a
k-polytope.

The notion of a cell complex is thereby very general and covers triangu-
lations, quadrangulations, and meshes that consist of prisms. This general-
ization of a simplicial complex is therefore also quite useful in practice since
many meshes are cell complexes but not simplicial complexes. Even if the
original mesh is a simplicial complex we may encounter a cell complex as an

22

3.2. Algebraic topology

auxiliary construct, as in Section 3.3.3 or Section 4.7.

Since the general idea of homology is however already well explained using
simplices, we chose this simple approach to keep the technical overhead at a
minimum. The ideas presented in Section 3.3.2 will follow a similar approach
– we only present the definitions and results for simplicial complexes even
though the results are also valid for regular cell complexes.

23

3. Mathematical Background

3.3 Discrete Morse theory

This section introduces the basic ideas from Forman’s discrete Morse the-
ory [For98b, For98a]. The presented definitions and ideas will be essential
for the main chapter of this thesis in which we will develop a computational
approach to discrete Morse theory and apply it to problems in data analysis.

We begin with a short and informal introduction to smooth Morse the-
ory [Mil63] to motivate the applicability of the discrete approach.

3.3.1 Morse theory

The basic idea in Morse theory [Mil63] is to investigate the relationship of the
critical points of a smooth function f : Ω → R with the topology of Ω. A
point x ∈ Ω is called a critical point of index k iff the gradient of f is zero
at x and the Hessian of f at x has k negative eigenvalues. In two dimensions,
a critical point of index 0 is called a minimum, of index 1 a saddle, and of
index 2 a maximum.

If the determinant of the Hessian at a critical point x is nonzero, then x
is called a non-degenerate critical point. If all critical points of f are non-
degenerate, then f is called a Morse function.

Using these concepts we can now state a special case of one of the main theo-
rems in Morse theory: if the homology groups of the sub-level sets f−1((−∞, a])
and f−1((−∞, b]) of a Morse function f differ, then f−1([a, b]) contains at least
one critical point. This theorem is illustrated for a simple function in Fig-
ure 3.13.

This theorem gives a perhaps surprising relation between topology and anal-
ysis. In fact, the theorem implies that in a discrete setting one can even define
critical points in a purely topological fashion. And since homology groups can
be computed in an algebraic setting this relation is quite useful for computa-
tional purposes.

Not only is Morse theory useful for this alternative definition of a critical
point, it also characterizes the admissible set of critical points of a function
defined on Ω. For example, every Morse function defined on a torus must have
at least four critical points. We will give a precise definition of such topological
constraints on the set critical points in Section 3.3.2 in the discrete setting.

The most fine grained topological invariant we want to discuss, called Morse
homology, requires the notion of the Morse-Smale complex [Sma61] which is
only defined for a certain set of non-degenerate functions. A path p : [0, 1]→ Ω
is called an integral line of f if it is tangential to the gradient field ∇f . An
integral line connecting two critical points of a Morse function whose index
differs by one is called a separatrix. If there are no integral lines connecting
critical points of the same index, then f is called a Morse-Smale function.
Note that if we slightly perturb a non-Morse-Smale function, then the result

24

3.3. Discrete Morse theory

(a)
(b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.13 Morse theory. (a)-(h) the sub-level set F y = f−1((−∞, y]) of a
smooth function f for different values of y visualized using height fields. (a)
F y is the empty set. (b) a component is created. (c) another component is cre-
ated. (d) the two components have merged. (e) a hole is created. (f) another
hole is created. (g) a hole is destroyed. (h) the second hole is destroyed.

will be a Morse-Smale function. In a certain sense, almost all functions are
thereby Morse-Smale.

The Morse-Smale complex associated to a Morse-Smale function can now
be constructed using the critical points and separatrices of f . The details of
this construction are described in the following sections for the discrete case.
A simple example of Morse-Smale complex is depicted in Figure 3.14.

25

3. Mathematical Background

Figure 3.14 Morse-Smale complex. An illustration of the Morse-Smale com-
plex of the smooth function f which is also shown in Figure 3.13. The complex
consists of maxima, saddles and minima (red, yellow and blue spheres), and
separatrices (red and blue lines). It segments the domain into regions of uni-
form gradient flow and has been computed using the algorithms introduced
in Chapter 4.

3.3.2 Discrete Morse functions

As mentioned at the end of Section 3.2.2, we will restrict all definitions to
the simple case of simplicial complexes even though they are applicable to the
more general case of a regular cell complex.

Let K denote a finite d-dimensional simplicial complex and let f denote
a function that assigns each simplex in K a real number. We now define a
special boundary operator ∂f : K → P(K) by

∂fα = {β ∈ ∂α : f(β) ≥ f(α)}.

A function f : K → R is now called a discrete Morse function if for
every α ∈ K we have |∂fα| ≤ 1 and |∂−1f α| = |{β : α ∈ ∂fβ}| ≤ 1. Examples
of discrete Morse functions are shown in Figure 3.15.

If α is a k-simplex with ∂fα = ∂−1f α = ∅, then α is called a critical simplex
of index k. If d = 2 we will call a critical simplex of index 2 a maximum, of
index 1 a saddle, and of index 0 a minimum. Examples of discrete Morse
functions containing critical simplices are shown in Figure 3.15.

Let mk denote the number of critical simplices with index k of a discrete
Morse function f defined on a d-dimensional simplicial complex. A direct
consequence (see Section 3.3.3) of the definition of a discrete Morse function
is that the Poincaré-Hopf equality

m0 −m1 + . . .+ (−1)dmd = χ(K), (3.7)

26

3.3. Discrete Morse theory

3

1
0

2

9104

5

8
7

6

(a)

3

1
0

2

4

9

8

7

10

6

5

(b)

Figure 3.15 Discrete Morse functions. (a)-(b) a simplicial complex K with
two functions f : K → R that satisfy the constraints of a discrete Morse
function. (a) the discrete Morse function contains a single critical simplex of
index 0 (blue square). (b) the discrete Morse function contains three critical
simplices of index 0, 1 and 2 (blue squares).

where χ(K) denotes the Euler characteristic (3.5) of K, is always satisfied.
The alternating sum of critical points is thereby a topological invariant. For
example, if K is a torus, i.e. χ(K) = 0, then the number of saddles of
any discrete Morse function f must always equal the sum of its maxima and
minima.

A more fundamental result concerning the relation of the critical points of
a discrete Morse function with the Betti numbers of the complex is proven
in [For98b]. For any k the strong Morse inequality

mk −mk−1 + . . .+ (−1)km0 ≥ bk − bk−1 + . . .+ (−1)kb0 (3.8)

is always satisfied. For example, if f is a discrete Morse function defined on
a torus (b0 = 1, b1 = 2, b2 = 1), we know that there are always strictly more
saddles than there are minima: m1 −m0 ≥ 2− 1.

Adding the strong Morse inequality for k to the strong Morse inequality
for k − 1 we obtain the weak Morse inequality : mk ≥ bk. For example,
this implies that any discrete Morse function on a torus contains at least two
saddles.

3.3.3 Morse homology with Z2 coefficients

To state the more general results by Forman we need the notion of a gradient
vector field associated to a discrete Morse function f .

The set of pairs Vf = {{α, β} : {β} = ∂fα} is called the combinatorial
gradient field associated to a Morse function f . A combinatorial gradient
field can be intuitively visualized by drawing an arrow from β to α for each
pair contained in Vf as depicted in Figure 3.16. Note that a simplex is critical
iff it is not contained in any pair of Vf .

27

3. Mathematical Background

3

1
0

2

9104

5

8
7

6

(a)
(b)

Figure 3.16 Combinatorial gradient field. A discrete Morse function (a) and
its associated combinatorial gradient field (b). The presence of the critical
simplex in (a) is indicated in (b) by being neither the start nor the end of an
arrow.

Let α0, α1, . . . , α` denote (k + 1)-simplices and let β0, β1, . . . , β` denote k-
simplices. The sequence α0β0α1β1 · · ·α`β` is now called a Vf -path of index k
if β` ∈ ∂α` and {β`, α`+1} ∈ Vf . If both α0 and β` are critical, then a Vf -
path is called a separatrix of index k. Examples of separatrices are depicted
in Figure 3.17.

3

1
0

2

4

9

8

7

10

6

5

(a)
(b)

Figure 3.17 Separatrices. (a) a discrete Morse function with three critical sim-
plices (blue squares). (b) the associated combinatorial gradient field contains
three separatrices (blue lines) connecting the critical simplices.

The separatrices and critical points defined by a combinatorial gradient field
Vf will now be used to define a chain complex associated with Vf . Let CVk
denote the power set of the critical k-simplices. The boundary of a critical k-
simplex is now defined as the set of critical (k−1)-simplices that are connected

to it by an odd number of separatrices. The boundary ∂
Vf
k of a set of critical

k-simplices is now induced by the symmetric difference of the boundaries of

the individual critical k-simplices. One can show that ∂
Vf
k−1∂

Vf
k α = ∅ for any

critical k-simplex α. The sequence

CVf : ∅
∂
Vf
d+1−−−−→ C

Vf
d

∂
Vf
d−−−−→ C

Vf
d−1

∂
Vf
d−1−−−−→ . . .

∂
Vf
1−−−−→ C

Vf
0

∂
Vf
0−−−−→ ∅ (3.9)

28

3.3. Discrete Morse theory

is therefore exact, and defines a chain complex, called Morse-Smale com-
plex and we can use the same construction as in Section 3.2 to define the
homology of this complex, called Morse homology with Z2 coefficients. One
fundamental result of [For98b] is that the homology groups of CVf are isomor-
phic (i.e. in some sense equal) to the homology groups of C as defined in
(3.4).

Note that in general the chain complex CVf does not have the structure of
a simplicial complex. In two dimensions, a maximum may be connected to an
arbitrary number of saddles while the boundary of a triangle always consists
of three edges.

3.3.4 Combinatorial vector fields

One can prove that if α is not critical, then either ∂fα = ∅ or ∂−1f α = ∅ which
implies that Vf is always pairwise disjoint. This fact leads to the following
generalization of combinatorial gradient fields. A pairwise disjoint set of pairs
V = {{α, β} : β ∈ ∂α} is called a combinatorial vector field [For98a]. In
the context of combinatorial vector fields, a simplex α ∈ K is called a critical
simplex if it is not contained in any element of V . Note that this condition is
equivalent to the one in the preceding section when V = Vf for some discrete
Morse function f . The definition of paths and separatrices also carries over in
a straightforward manner by replacing Vf with V in Section 3.3.3.

Using the notion of a combinatorial vector field it is very easy to verify
that the Poincaré-Hopf equality (3.7) is always satisfied for any combinatorial
vector field defined on a d-dimensional simplicial complex K =

⋃d
`=0K`. We

first recall the identity

χ(K) = |K0| − |K1|+ . . .+ (−1)d|Kd|,

mentioned in Section 3.2.2. We can now prove the Poincaré-Hopf equality by
induction [For98a]:

1. The empty combinatorial vector field V = ∅ obviously satisfies (3.7)
since every simplex is critical.

2. When we add an element to V , we remove two critical simplices whose
dimension differs by one. This maintains (3.7).

To state the strong Morse inequalities for the combinational vector field
case we need to define the notion of a closed V -path. Let α0, α1, . . . , αr de-
note (k + 1)-simplices and let β0, β1, . . . , βr denote k-simplices. The sequence
α0β0α1β1 · · ·αrβrα0 is now called a periodic orbit of index k if β` ∈ ∂α`,
{β`, α`+1} ∈ V and {βr, α0} ∈ V . Examples of periodic orbits are depicted
in Figure 3.18.

29

3. Mathematical Background

(a)
(b)

Figure 3.18 Periodic orbits. (a) a combinatorial vector field defined on a
simplicial complex containing a periodic orbit (blue) of index 0. (b) another
combinatorial vector field containing a periodic orbit of index 1.

The strong Morse inequalities proven in [For98a] take on a particularly
simple form in the case of a special class of combinatorial vector fields. A
combinatorial vector field is called Morse-Smale [For98a] if the set of its
periodic orbits is pairwise disjoint.

Let mk denote the number of critical simplices with index k of a combina-
torial Morse-Smale vector field V defined on a simplicial complex K and Ok
the number of its periodic orbits with index k. The strong Morse inequalities
then take on the simple form

Ok +mk −mk−1 + . . .+ (−1)km0 ≥ bk − bk−1 + . . .+ (−1)kb0, (3.10)

where bk denotes the kth Betti number of K.

It is not easy to efficiently check whether a combinatorial vector field is of
type of Morse-Smale since we would need to iterate all its periodic orbits. For-
tunately, there is a large set of simplicial complexes, which are quite common
in practice, where every combinatorial vector field is of type of Morse-Smale.
We call a d-dimensional simplicial complex K manifold-like if each (d− 1)-
simplex α is a face of at most two simplices. In geometric terms this means
that in two dimensions an edge can only be adjacent to at most two triangles.
A common example of this type of complex is a triangulation of a surface.
Figure 3.19 illustrates the definition of a manifold-like simplicial complex.

Using the graph theoretic formulation of discrete Morse theory which will
be introduced in Section 4.1 it is easy to show that every combinatorial vector
field defined on a two dimensional manifold-like simplicial complex is of type
Morse-Smale and thereby satisfies (3.10). For example, a combinatorial vector
field defined on a triangulation of a torus with no critical simplices therefore
contains at least one periodic orbit of index 0 and one periodic orbit of index 1.

We say that a combinatorial vector field V is a combinatorial gradient field if
there exists a discrete Morse function f with Vf = V . Chari shows in [Cha00]
that f exists iff V does not contain any periodic orbits. This result implies

30

3.3. Discrete Morse theory

(a)
(b)

(c)

Figure 3.19 Manifold-like simplicial complex. (a)-(b) simplicial complexes
that are manifold-like. (c) a simplicial complex which is not manifold-like.

that one can just as well define the notion of a combinatorial gradient field in
terms of a combinatorial vector field. We will follow this approach in Chapter 4
since it encompasses both cases.

31

Chapter 4

Computational Discrete Morse Theory

In this chapter a unified framework for the extraction of extremal structures
is presented. This framework is applicable to vector fields, scalar fields,
divergence-free vector fields, and time-dependent scalar fields. We assume
that these fields are defined on a regular cell complex, e.g. a triangulation or
a quadrangulation. This makes our framework extremely flexible and most
data sets encountered in practice can be directly analyzed.

All algorithms are only evaluated with two dimensional data sets. However,
almost all concepts and algorithms are at least in part also applicable to
higher dimensions, see e.g. [GRP+] or [GRWH]. We will discuss potential
obstructions and straightforward extensions in Chapter 5.

The theoretical foundation of this approach is given by discrete Morse theory
as introduced in Section 3.3. This makes the computed extremal structures
provably consistent with the topological invariants of the domain described
in Section 3.2.

All definitions and algorithms are given in a simple graph theoretic notation
introduced in Section 3.1. The advantage of this graph theoretic formulation
is twofold. First, it allows to make use of existing graph theoretic algorithms
such as breadth first search or the Hungarian method. This leverages a lot
of existing knowledge concerning efficient algorithms and compact data struc-
tures. Secondly, it enables a short but concise description of the algorithms
in pseudo code by exploiting the common familiarity of the reader with graph
theoretic notions.

This chapter is structured as follows. Section 4.1 provides a graph theo-
retic formulation of discrete Morse theory and introduces the notation used
throughout this chapter. Section 4.2 introduces and motivates our level-of-
detail like hierarchical representation of the extremal structures. In Section 4.3
a generic algorithmic pipeline is presented that unifies the treatment of the dif-
ferent types of data. Sections 4.4 - 4.7 contain the data type specific algorithms
for vector fields, scalar fields, divergence-free vector fields, and time-dependent
scalar fields and evaluate their usefulness on various data sets.

33

4. Computational Discrete Morse Theory

This framework was implemented as a set of modules in the visualization
and data analysis software Amira [SWH05]. It can be made available to
researchers for evaluation purposes.

4.1 Graph theoretic formulation

We begin with a graph theoretic description of the domain of the data. We
assume that the domain Ω is represented by a d-dimensional regular cell com-
plex, as introduced in Section 3.2.2. All definitions thereby apply also directly
to the simpler but maybe more familiar notion of a simplicial complex.

The basic idea is to construct a graph to represent the regular cell complex
C in a combinatorial setting. The nodes of this graph represent the cells of
C and the edges represent its boundary operator ∂. Furthermore, each node
is labeled with the dimension of the cell that it represents and each edge is
labeled with the minimum of the labels of its nodes. Such a graph of a cell
complex that consists of a single triangle is shown in Figure 4.2a. A more
complex example is shown Figure 4.1.

(a) (b)

Figure 4.1 Cell graph illustration. (a) a cell complex of a torus consisting of
0-cells (blue), 1-cells (yellow), and 2-cells (red). (b) the induced cell graph
of the cell complex consists of nodes (spheres) that represent the cells and
are colored according to the dimension, and edges (white) that represent the
boundary relationship of the cells.

Formally, the cell graph associated to a cell complex C =
⋃d
`=0C`, where

Ck denotes the k-dimensional cells, is a labeled graph GC = (N,E,ϕ, ψ) with

• N =
⋃d
`=0C`,

• E = {{α, β} ⊆ N : β ∈ ∂α},

• ϕ : N → {0, 1, . . . , d}, ϕ(α) 7→ k, where α ∈ Ck,

• ψ : E → {0, 1, . . . , d− 1}, ψ({α, β}) 7→ min (ϕ(α), ϕ(β)).

34

4.1. Graph theoretic formulation

0

0

1

2

0

1

01

(a)

0

1

2

0

1

01

(b)

0

0

1

2

0

1

01

(c)

0

0

1

2

0

1

01

(d)

Figure 4.2 Basic definitions. (a) a combinatorial vector field (dashed) on the
cell graph of a single triangle. The numbers correspond to the dimension of
the represented cells, and matched nodes are drawn solid. (b) a critical point
of index 0. (c) a 0-separatrix. (d) a 0-orbit.

To simplify notation, we will often indicate the label of a node ϕ using a
superscript, i.e. a node v with ϕ(v) = k is referred to by vk. Similarly, we
refer to an edge e with ψ(e) = k by ek. Note that this notion of a cell graph
corresponds to the definition of the Hasse diagram given in [For01, Cha00].

The node labels ϕ and edge labels ψ supply GC with a layered structure –
a cell graph that represents a d-dimensional cell graph consists of d−1 layers.
The `th layer represents the relationship of the cells in C` with the cells in
C`+1. Formally, each layer is a subgraph defined by

Gk,k+1
C = (ϕ−1(k) ∪ ϕ−1(k + 1), ψ−1(k)). (4.1)

The definitions of discrete Morse theory introduced in Section 3.3 will now
be reformulated in the language of graph theory as introduced in Section 3.1.
The main benefit of this reformulation is that the resulting definitions allow
for a straightforward application of algorithms from graph theory for compu-
tational purposes.

Recall that a combinatorial vector field V on a cell complex C is defined
as pairwise disjoint set of pairs V = {{α, β} : β ∈ ∂α}. A combinatorial
vector field can thereby be equivalently defined as a matching M of the set of
matchings M in a cell graph GC . Simple examples illustrating this idea are
shown in Figure 4.2.

A critical cell of index k is characterized in Section 3.3.3 as a k-cell which
is not contained in any pair of the combinatorial vector field V . In graph
theoretic terms, a critical cell α of index k is thereby an unmatched node αk

of a given matching in a cell graph. In the graph theoretic setting we will
sometimes call a critical cell a critical node, or a critical point of the graph.
The definition of a critical cell is illustrated in Figure 4.2b.

The graph theoretic formulation of the notion of a separatrix of index k of a
combinatorial vector field is a little more involved. We first recall the definition
of a V -path given in Section 3.3.3. Let α0, α1, . . . , αm denote (k+ 1)-cells and

35

4. Computational Discrete Morse Theory

let β0, β1, . . . , βm denote k-cells. Then the sequence α0β0α1β1 · · ·αmβm is
called a V -path of index k if β` ∈ ∂α` and {β`, α`+1} ∈ V .

In the graph theoretic setting, a V -path of index k can thereby be defined
as an alternating path in Gk,k+1

C with respect to a matching defined on a cell
graph GC . We will also refer to a V -path of index k as a k-streamline of the
combinatorial vector field.

A separatrix of index k is a V -path of index k whose start and end cell are
critical. The graph theoretic analogue of separatrix of index k is therefore an
augmenting path in Gk,k+1

C , called a k-separatrix of the combinatorial vector
field. Similarly, a periodic orbit of index k can be defined as an alternating
cycle in Gk,k+1

C and is called a k-orbit of the combinatorial vector field. The
definitions of a k-separatrix and a periodic orbit are illustrated in Figure 4.2c
and Figure 4.2d.

Note that the rest of a 0-streamline onwards from a 0-cell β` is completely
determined. First note that due to the definition of a matching, α`+1 is
uniquely determined. And since the path has to be alternating and |∂α`+1| = 2
the next 0-cell is also unique. Several 0-streamlines can therefore only merge.
In the case of a manifold-like cell complex, see Section 3.3.4 for the definition,
the same argument shows that (d − 1)-streamlines can only split since any
(d − 1)-cell β is in the boundary of at most 2 d-cells. This implies that 0-
orbits and (d − 1)-orbits are always pairwise disjoint on a manifold-like cell
complex. It follows directly that all combinatorial vector fields defined on
a two dimensional manifold-like cell complex are therefore of type of Morse-
Smale and (3.10) applies.

Recall that a combinatorial gradient field can be defined as a combinatorial
vector field that does not contain any periodic orbits. The graph theoretic rep-
resentation of a combinatorial gradient field is therefore given by a matching
in a cell graph GC that does not contain any alternating cycle in any subgraph
G`,`+1
C . Such a matching is also called a Morse matching [JP06]. We will

denote the set all Morse matchings byMφ. Examples of Morse matchings are
shown in Figure 4.2abc whereas the matching in Figure 4.2d is not a Morse
matchings.

In the remainder of this chapter we will make use of the conceptual and
notational frameworks from graph theory (matchings and unmatched nodes)
as well as discrete Morse theory (combinatorial vector fields and critical sim-
plices) depending on the given context.

36

4.2. Hierarchical combinatorial vector fields

4.2 Hierarchical combinatorial vector fields

In many cases one is not interested in all the extremal structures of the given
data set. This is especially true when the data contains noise. In such a case
the number of critical points can be huge, and not much insight can be gained
by extracting the extremal structure of the data. In some applications one is
also rather interested in the dominant, or stable, extremal structures of the
data set since only they correspond to the relevant features of the data.

To deal with this problem, we propose to compute a hierarchy of combina-
torial vector fields

V = (V`)`=`0,...,`n with V` ∈M, (4.2)

to represent a given data set. To represent gradient or scalar fields we compute
a sequence of combinatorial gradient fields, i.e. the set of matchings M is
replaced by the set of Morse matchings Mφ in the above definition.

The finest level of this hierarchy V`0 contains all critical points of the data
set, while a coarser level V`k only contains the important critical points of the
data. See Figure 4.3 for an illustration of this idea.

(a) (b)

Figure 4.3 Extremal structures of noisy data. (a) a noisy scalar function. A
fine level of the hierarchy of extremal structures contains a large number of
minima (blue) and maxima (red). (b) a rather coarse level of the hierarchy of
extremal structures contains only the dominant maxima and minima

Our hierarchy of combinatorial vector fields is motivated as follows:

1. The number of unmatched nodes of a matching M in a graph G = (N,E)
is given by |N | − 2|M | since each edge contained in a matching covers
two nodes. The number of critical nodes in a combinatorial vector field
is thereby controlled by its size. The number of edges contained in
combinatorial vector field should therefore increase when we traverse
the hierarchy (4.2), i.e. |Vk+1| = |Vk|+ 1

37

4. Computational Discrete Morse Theory

2. Let c : M → N denote the set of critical nodes of a given combina-
torial vector field. Since we want a hierarchical representation of the
extremal structure, the critical nodes should be nested with respect to
the sequence (4.2), i.e. c(Vk+1) ⊂ c(Vk).

3. When the data set is large, the computation of the combinatorial vector
fields can be costly and take a lot of time. Also, the relevant or interest-
ing hierarchy level may a priori not be known. It is therefore beneficial
if we can compute the hierarchy in a preprocessing step and then allow
the user to iterate through sequence (4.2) interactively. To allow for this
approach, the complete hierarchy needs to have a compact representa-
tion and we need to be able to switch between different hierarchy levels
quickly.

To achieve the above goals we propose to compute a hierarchy that is based
on augmenting paths. Let M denote a matching and p an augmenting path
in this matching. As described in Section 3.1 M ∆ p is then a matching whose
size is increased by one and the unmatched nodes of M ∆ p are contained in
M . A depiction of this idea is shown in Figure 4.4.

0 0

0

0

1

2

1

10 0

0

0

1

2

1

1 0 0

0

0

1

2

1

1

Figure 4.4 Illustration of the hierarchical representation of the extremal struc-
ture using augmenting paths. Given the heaviest matching with two edges
(left) its heaviest augmenting path (middle) is computed. We augment the
matching along this path to get the heaviest matching with three edges (right).

Recall that AM denotes the set of augmenting paths in the matching M . A
sequence of combinatorial vector fields (4.2) with

V` ∆V`+1 ∈ AV` , ` = `0, . . . , `n−1, (4.3)

then satisfies the first two goals stated above.

In fact, it almost always satisfies also the third goal since to store the com-
plete hierarchy we only need to store V`0 and all computed augmenting paths.
In general an augmenting is not space filling and the number of paths corre-
sponds to the number of hierarchy levels we computed. The sequence (4.2)
therefore usually does not require much storage space and allows the user to
browse through all hierarchy levels interactively.

38

4.3. Generic algorithmic pipeline

4.3 Generic algorithmic pipeline

A significant advantage of the graph theoretic formulation of discrete Morse
theory introduced in this chapter is the high level of abstraction of the geomet-
ric representation of the data set. In practice many different types of meshes
are employed to discretize a certain domain. Some examples of the primitives
that make up such meshes are triangles, quadrangles, tetrahedrons, or prisms.
Also the functions defined on the mesh may consist of scalar fields, general
vector fields, or divergence-free vector fields. This section proposes an algo-
rithmic pipeline that unifies the algorithmic treatment of all these different
types of data sets.

The general pipeline for the specific algorithmic approaches described in
Sections 4.4 - 4.6 share the following computational pipeline:

In the remainder of this section we provide a description of the individual
parts of this pipeline and refer to necessary specializations described in detail
in Sections 4.4 - 4.6.

4.3.1 Input data

Our computational framework requires as input a d-dimensional finite regular
cell complex and a scalar or vector valued function f . As mentioned above, the
assumptions that the data consists of a cell complex covers almost all kinds of
geometry encountered in practice. In the subsequent steps of the pipeline we
will assume that f is defined on the 0-cells of the complex. Because we will
later need data values on all cells, we extend f to the higher dimensional cells
by taking the average value of the incident lower dimensional cells.

4.3.2 Weighted cell graph

Using the regular cell complex, we first construct its associated cell graph
G = (N,E) as defined in Section 4.1. A spatial embedding c : N → Rn of G
can be defined using the embedding of the cell complex in Rn. The embedding
of the nodes that represent higher dimensional cells is thereby computed by
taking the average of the coordinates from the incident lower dimensional
cells. Note that this propagation of the coordinates is only sensible for cell
complexes that consist of convex cells – for more general geometries a more
intricate propagation has to be applied to get a sensible spatial embedding of
the graph.

Throughout this thesis we will assume that the cell graph is sparse, i.e.
O(|N |) = O(|E|), and state all complexities of the algorithm using this as-

39

4. Computational Discrete Morse Theory

sumption. Note that almost all meshes employed in practical numerical simu-
lations fulfill this requirement. For example, it is common to design triangu-
lations such that the minimum angle in the mesh is bounded away from zero.
This immediately implies that the associated cell graph is sparse.

We now define the edge weights ω : E → R of this graph. Let ep =
{up, wp+1} denote an edge of the graph. If ep is a matching edge it can be
thought of as an arrow pointing from up to wp+1. We therefore need to assign
a large weight to ep if such an arrow reflects the flow behavior of (the gradient
of) f well. In this thesis, we propose to measure the tangential flow of (the
gradient of) f along ep to achieve this. Using Stokes’ Theorem, the edge
weight ω for scalar input data f is thereby defined by

ω(ep) = f(wp+1)− f(up), (4.4)

whereas in case of vector field data f (assuming linear interpolation), its edge
weight is defined by

ω(ep) =
(
f(wp+1) + f(up)

)
·
(
c(wp+1)− c(up)

)
/2. (4.5)

4.3.3 Matching sequence

We now define the optimization problem that results in a meaningful combi-
natorial representative of our input data f . Large values of the edge weights
ω indicate that the flow behavior of the (gradient) vector field is represented
well by that edge. A matching in the cell graph with high weight therefore
represents the input data well. We therefore propose to compute a combina-
torial vector field to represent f by finding the maximum weight matching in
G

V = arg max
M∈M

ω(M). (4.6)

If we deal with scalar data, i.e. we need to compute a combinatorial gradient
vector field V φ, we simply replace the set of matchingsM by the set of Morse
matchings Mφ. Note that this restriction of the admissible matchings makes
(4.6) an NP-hard problem in general [JP06].

Due to the matching property, the number of critical points is given by
|N | − 2 |V |. We can therefore compute a combinatorial vector field with a
prescribed number of critical points by computing

Vk = arg max
M∈M, |M |=k

ω(M). (4.7)

Let k0 = |V | denote the size of the maximum weight matching, and let
kn = maxk∈N |Vk| denote the size of the heaviest maximum cardinality match-
ing. From a data analysis point of view, Vk0 is a fine grained while Vkn is the
coarsest possible representation of the input data f . A hierarchy of combi-
natorial (gradient) vector fields V can now be defined as the the sequence of
matchings

40

4.3. Generic algorithmic pipeline

V = (Vk)k=k0,...,kn . (4.8)

The main task of our computational framework is to compute the sequence
(4.8) which is described in Sections 4.4 - 4.6.

Note that in the case of Morse matchings, the exact solution to (4.7) can
in general not be represented as a sequence of augmenting paths: computing
a maximum cardinality Morse matching is NP-hard [JP06] while computing
augmenting paths can be done in polynomial time. Being able to represent
the matching sequence as an initial matching and a sequence of augmenting
paths is however essential to enable an interactive analysis of the hierarchical
extremal structure, see Section 4.2.

We will therefore resort to an algorithm in Section 4.5 that only approx-
imates (4.7) but results in a hierarchy that is represented by a sequence of
augmenting paths.

4.3.4 Combinatorial (gradient) vector field

The initial matching V`0 and the sequence of augmenting paths (p`) computed
in the preceding step allows for the reconstruction of an arbitrary element of
the hierarchy of combinatorial vector fields. Each matching can be restored by
iteratively taking the symmetric difference of V`0 with the augmenting paths:
Vk+1 = Vk ∆ pk. Since this operation is quite fast in practice this enables the
user to interactively select a combinatorial (gradient) vector field from the
hierarchy with a prescribed number of critical points.

Alternatively, we can make use of the associated weight of each matching
as an importance measure. The user can set a fraction θ ∈ [0, 1] to select
a combinatorial (gradient) vector field with a weight as close as possible to
ω(Vk0) + θ (ω(Vkn)− ω(Vk0)). This approach can be useful in dealing with
noisy data. Noise induces a very complex extremal structure. The augmenting
paths corresponding to the spurious extremal structure, however, have a very
large weight. Setting θ to a small value therefore removes all spurious extremal
structures while the dominant structure remains unchanged.

Note that the weight difference ω(Vj) − ω(Vj+1) gives us a measure for
the importance of the simplification which is closely related to persistent ho-
mology [EHNP03]. For future reference, we call this difference of matching
weights the weight of cancellation j and assign its value to the critical points it
removes. If we are dealing with gradient vector field data, then this weight dif-
ference corresponds to the difference of the scalar values of the critical points
being canceled. We can therefore make use of (4.8) to remove topological noise
(see Figure 4.6), or to reduce the topological representation of the data to its
dominant structures (see Figure 4.8). This enables a multi-scale topological
analysis of vector fields.

41

4. Computational Discrete Morse Theory

4.3.5 Extremal structure

Given a combinatorial vector field, we can now extract its extremal structure
– the critical points, separatrices, and periodic orbits.

The critical points can be easily extracted since they are simply the un-
matched nodes up of the combinatorial vector field. The classification into
sources, saddles, sinks (or in the scalar case minima, saddles, maxima) is given
by the label p – it can be interpreted as the number of negative eigenvalues
of the Hessian in the smooth case, see Section 3.3.2.

The computation of the separatrices is in general a lot more involved. The
computation of the 0-separatrices is however always quite simple: we only
need to iterate over the all saddles u1 and compute the incident 0-separatrices.
Since 0-streamlines can only merge (see Section 4.1), it suffices to follow the
two alternating paths starting in u1. When the cell complex is manifold-like
the same procedure can be applied to compute the (d− 1)-separatrices. If we
stop this kind of line integration when we reach an already extracted separatrix
the whole computation can be done in linear time – each node of the graph
is only visited a constant number of times. Pseudo code for the extraction of
the separatrices of a saddle in two dimensions is shown in Algorithm 12.

The efficient computation of the k-separatrices with 0 < k < d−1 is however
very challenging [GRP+].

In the vector case, we can also extract the periodic orbits. To compute
the 0-orbits, we first iterate over all 1-nodes of the graph. Given a node
u1, we start the computation of the 0-streamlines that emanate at u1. Each
streamline is continued as long as the following node w1 is not yet labeled, in
which case it is labeled with u1. If the label of w1 equals u1 we add w1 to
a set of seed points. We then iterate over all seed points and compute their
combinatorial stream lines which yields all 0-orbits. Similar to the separatrix
computation, the same procedure can be applied to compute all (d−1)-orbits
if the cell complex is manifold-like. The computation of all 0-orbits and all
(d− 1)-orbits can be implemented in linear time using the above algorithm.

The efficient computation of the k-orbits with 0 < k < d − 1 is an open
problem.

Note that in continuous vector field topology separatrices are sometimes
defined differently - a streamline that connects a saddle with a periodic orbit
is also called a separatrix. While this does not directly correspond to our
definition of separatrices, we can also extract these lines by following the p-
streamlines that emanate from a saddle.

42

4.4. Vector fields

4.4 Vector fields

This section introduces a purely combinatorial approach for the extraction
of the extremal structure of a given vector field. This problem is directly
suitable to the generic algorithmic pipeline described in Section 4.3. The only
algorithm we have to describe is the computation of the sequence of maximum
weighted matchings (4.7).

To do this one can use the Hungarian method introduced in Section 3.1 since
a cell graph is always bipartite. A simple bipartition of the nodes N = U ∪̇W
is given by a partition into the even and odd labeled nodes of the graph.

The main weakness of this approach is its computational complexity of
O(n2 log n), where n denotes the number of nodes in the data set. Even
rather small datasets with 60k nodes take about 30 minutes to compute on
workstation from 2008. The quadratic scaling in the runtime therefore severely
limits the applicability to real world data sets - an application to large higher
dimensional data sets also seems unfeasible using the Hungarian method.

We therefore propose a new algorithm in Section 4.4.1 that can replace
the Hungarian method. This approximative algorithm has a lower empirical
complexity of O(n3/2 log n). It reduces the runtime by several orders of magni-
tude for our data sets, while it produces visually the same results as the exact
algorithm and preserves a certain monotonic behavior of the exact solution.

Almost all computational time of our algorithm is spent solving shortest
path problems with negative weights. As this particular graph problem is
easily parallelizable, we have implemented it in a massively parallel fashion
using CUDA, which reduces the runtime even further.

There is a lot of literature on the approximation of the maximum weighted
matching problem (4.6), see [HD04] for an overview. It is, however, unclear
how one would efficiently extend these algorithms to compute the sequence
of maximal weight matchings (4.7). Also, the graphs described in Section 4.1
have a very specific structure in their connectedness and weights that can be
exploited by a custom algorithm.

The weight of the maximum weight augmenting path decreases as we iter-
atively compute (4.8), see [Sch03]. In the following approximation algorithm
we make sure that this monotonic behavior is preserved.

Note that the monotonicity property of our approximation is necessary
to maintain the relation of our hierarchy to the one computed using persis-
tence [ELZ02]. If we deal with a gradient vector field, then the critical points
should be canceled in an order determined by the difference of their scalar val-
ues. The exact algorithm always cancels the pair of connected critical points
with the smallest scalar difference. Our monotony preserving approximation
algorithm guarantees that the scalar difference of canceled pairs always in-
creases as we simplify the topological skeleton. As can be seen in Figure 4.6,

43

4. Computational Discrete Morse Theory

this property is not only necessary to maintain the relation to persistence, but
it also seems to be sufficient in practice.

4.4.1 Algorithm

The Hungarian method has a computational complexity of O(n2 log n), as it
needs to solve n shortest path problems with positive weights. To reduce this
rather large runtime we propose to approximate the exact solution by aug-
menting the matching along all shortest paths computed when we solve the
shortest path problem. As demonstrated in Section 4.4.2 this leads to a sig-
nificantly reduced overall runtime. More details on the algorithmic realization
of this idea can be found below and the pseudo code is given in Algorithm 5.
We call this step of our algorithm the Predictor phase.

If we continued in this fashion we would generate an approximation of (4.8)
without the monotonic behavior mentioned at the end of Section 4.4. In
practice this may result in a bad approximation (see Figure 4.6, bottom-left)
of the exact solution (see Figure 4.6, top-left). We therefore maintain the
monotonicity of the exact solution which leads to a good approximation (see
Figure 4.6, top-right). To achieve this, we apply a roll-back operation to the
matching sequence which guarantees the monotonic behavior as follows. After
each Predictor phase (see above) of our algorithm, we compute the weight of
the heaviest augmenting path of the current matching Vj . If this weight is
smaller than the weight of the augmenting path that led to Vj we can continue
with the Predictor phase. Otherwise we need to find a matching V`, ` < j
where this property is fulfilled.

The algorithmic realization of this idea is described below and pseudo code
is given in Algorithm 6. For future reference we call this step of our algorithm
the Corrector phase.

For the overall combinatorial predictor-corrector algorithm that produces a
monotone approximation of (4.8) we refer to the pseudo code shown in Algo-
rithm 4. A simple edge weighted graph is used in Figure 4.5 to demonstrate
our predictor-corrector algorithm.

We do not give a detailed computational complexity analysis of our algo-
rithm. It is clear that it is polynomial, but calculating a worst case upper
bound on the degree is not beneficial since it would be overly pessimistic for
such a predictor-corrector algorithm. We can however comment on the empiri-
cal complexity for our test data sets: Section 4.4.2 indicates that our algorithm
has a complexity of O(n3/2 log n) and we can provide some arguments why this
can be expected.

As we augment the matching by all available augmenting paths with each
application of Bellman-Ford, the number of uncovered nodes S \ S(Vj) de-
creases exponentially with respect to the number of shortest path computa-
tions. We therefore only need to compute Bellman-Ford O(log n) often. Let

44

4.4. Vector fields

t denote the length of the longest shortest path in an edge weighted simpli-
cial graph. Then the computational complexity of Bellman-Ford is given by
O(t n). Assuming a two dimensional manifold-like cell graph, the length of
the longest shortest path is bounded in practice by

√
n. The complexity of

Bellman-Ford for this class of graphs can therefore be estimated by O(n3/2).
The total complexity for our approximative algorithm is hence expected to be
O(n3/2 log n), and this conjecture is substantiated in Table 4.1.

Algorithmic Details

We now proceed by giving a detailed and accurate description of our approxi-
mation algorithm for (4.8) motivated in above. To ensure a good reproducibil-
ity of our results this part will be quite technical. The main algorithm is given
in Algorithm 4. The input of this algorithm is the edge weighted simplicial
graph G = (U ∪̇W, L, ω), where U ∪̇W denotes a bipartition of the nodes S
of the graph. For a detailed description of this input data we refer to Section
4.1.

The output of Algorithm 4 consists of an approximation of the heaviest
maximum cardinality matching Vkn and an array of maximum weight aug-
menting paths P . Vkn and P enable us to efficiently reconstruct all matchings
in the sequence (4.8). This is due to the fact the last path stored in P is an
alternating path in Vkn whose endpoints are both matched. We can therefore
reconstruct Vkn−1 by taking the symmetric difference 4 of Vkn with the last
path stored in P . This operation can be interpreted as an inverse augmen-
tation of the matching. Storing the sequence (4.8) in this fashion is much
more efficient than storing the individual matchings. In two dimensions, the

3

3

4 -1

-2

Figure 4.5 Comparison of algorithms for (4.8). A simple edge weighted graph
illustrates the differences between the presented algorithms. The order of
augmenting paths taken by the (exact) Hungarian algorithm is (blue, red,
green) with corresponding weights (4, 2, -1). The approximate algorithm
without the corrector phase chooses (blue, green, red) with corresponding
weights (4, -1, 2). The full predictor-corrector algorithm works as follows:
(blue, green, undo green, red, green) resulting in the monotone sequence of
augmenting path weights (4, 2, -1).

45

4. Computational Discrete Morse Theory

size of an augmenting path is typically in O(
√
n) for our type of graphs (they

are typically not space filling curves) while the size of a single matching is in
O(n).

Algorithm 4 Predictor-Corrector algorithm for (4.8)

Input: G
Output: Vkn , P
1: M ← ∅
2: P ← ∅
3: loop
4: (isFinished, M, P) ← Predict(G, M, P)
5: if isFinished = false then
6: (M, P) ← Correct(G, M, P)
7: else
8: Vkn ← M
9: return (Vkn , P)

We now describe the Predictor phase (Line 4 of Algorithm 4). The pseudo
code for this procedure is given in Algorithm 5. Line 1 calls Algorithm 7
to compute for each node the heaviest augmenting path ending in it. The
paths are stored implicitly via the node attribute .predLink, while the weight
of the augmenting path is stored in the node attribute .distance. For a de-
tailed description of Algorithm 7 see below. Line 2 computes the subset A
of the nodes of partition W that are not covered by the matching and whose
computed distance is finite. Line 8 extracts the augmenting path p that starts
in the last element of A by following the node attribute .predLink through the
graph and then removes the last element of A. Lines 9-12 check if p is still a
valid augmenting path in the graph (the first augmenting path is always valid
but may invalidate subsequent paths), augment the matching M along p by
computing their symmetric difference 4 (see Figure 4.4) and append p to the
list of augmenting paths P.

The Corrector phase (Line 6 of Algorithm 4) is similar to the Predictor
phase described above. Its pseudo code is given in Algorithm 6. The procedure
weight called in Lines 6,7 and 10 computes the weight of a given augmenting
path, i.e. the alternating sum of edge weights.

Almost all computational time of the overall approximation algorithm is
spent in Algorithm 7. We therefore present its pseudo code and some de-
tails on the application specific changes we have introduced compared to the
standard Bellman-Ford shortest path algorithm. The input of Algorithm 7
consists of the edge weighted simplicial graph G = (U ∪̇W, L, ω) and the
current matching M . The output consists of the weight of the heaviest aug-
menting path for each node in the graph stored in .distance, and the respective
augmenting paths stored implicitly in .predLink.

46

4.4. Vector fields

Algorithm 5 Predictor phase

Input: G, M, P
Output: isFinished, M, P
1: (S.distance, S.predLink) ← BellmannFord(G, M)
2: A ← {s ∈W \ S(M): s.distance <∞}
3: A ← sortByDistance(A)
4: if A = ∅ then
5: return (true, M, P)
6: else
7: while A 6= ∅ do
8: p ← getAugmentingPath(S, A.pop())
9: if isValidAugmentingPath(M, p) then

10: M ← M 4 p
11: P.push(p)
12: return (false, M, P)

Algorithm 6 Corrector phase

Input: G, M, P
Output: M, P
1: loop
2: (S.distance, S.predLink) ← BellmannFord(G, M)
3: A ← {s ∈W \ S(M): s.distance <∞}
4: A ← sortByDistance(A)
5: p ← getAugmentingPath(S, A.top())
6: barrier ← weight(G, p)
7: if barrier ≤ weight(G, P.top()) then
8: return (M, P)
9: else

10: while barrier > weight(G, P.top()) do
11: M ← M 4 P.pop()

Lines 1 - 16 initialize all variables so that the main Bellman-Ford loop
computes the output described above. Note that Lines 9 - 15 correspond to
the construction of the directed graph DM described in Section 3.1. Lines 17
- 28 are a variant of Bellman-Ford optimized for the particular class of graphs
we deal with and modified to support an efficient parallelization, see below.
Instead of the while loop with an abort criterion one typically iterates Lines
22 - 25 n times. In the two dimensional case, the longest shortest path is
typically in O(

√
n). It is therefore very beneficial to check whether we can

abort this loop early. This is the purpose of Lines 16 - 18 and 28. Since the
graph is not dense, only a small subset of nodes have to be considered in each
iteration, which is achieved by the Lines 3, 20, 21 and 27.

47

4. Computational Discrete Morse Theory

Algorithm 7 Bellman-Ford matching variant

Input: G, M
Output: S.distance, S.predLink
1: for all s ∈ S do
2: s.predLink ← nil
3: isActive[s] ← true
4: if s ∈ U \ S(M) then
5: s.distance ← 0
6: else
7: s.distance ← ∞
8: ~L← ∅
9: for all ` = {u,w} ∈ L, u ∈ U,w ∈W do

10: if ` ∈M then
11: ~L← ~L ∪ (u,w)
12: ~ω(`)← ω(`)
13: else
14: ~L← ~L ∪ (w, u)
15: ~ω(`)← −ω(`)
16: abort ← false
17: while abort = false do
18: abort ← true
19: for all s ∈ S do
20: if isActive[s] = true then
21: isActive[s] ← false
22: for all ` = (u, s) ∈ ~L do
23: if s.distance > u.distance + ~ω(`) then
24: s.distance ← u.distance + ~ω(`)
25: s.predLink ← `
26: for all ` = (s, w) ∈ ~L do
27: isActive[w] ← true
28: abort ← false

48

4.4. Vector fields

Parallelization

As practically all computational time of Algorithm 4 is spent in the Bellman-
Ford algorithm (Lines 16-28 of Algorithm 7), its efficiency is critical to the
overall runtime. In [HN07] it is shown that an implementation of this shortest
path problem using CUDA can result in a great performance increase. Un-
fortunately we cannot directly make use of this parallel approach to Bellman-
Ford, as we need to know not only the distances, but also the shortest paths
themselves in our application. Including the computation of the shortest paths
via the variable .predLink in the algorithm presented in [HN07] results in a
race condition that leads to invalid results.

We therefore need to formulate Bellman-Ford in a parallel fashion such
that there are no race conditions. This can be achieved by iterating over the
incoming edges (Line 22 of Algorithm 7) for each node of the graph instead of
its outgoing edges as in [HN07]. We can then parallelize the loop in Line 19 of
Algorithm 7 as the write accesses are exclusive for each thread (the Boolean
array isActive and the Boolean variable abort may be written to concurrently
but this does not pose a problem).

4.4.2 Evaluation

This section evaluates the robustness, the approximation quality, and the
performance of our approximation algorithm. To demonstrate its usefulness
we also applied it to two real-world data sets and compare to a continuous
approach to vector field topology.

Robustness and approximation quality

To determine the quality of our approximation algorithm we applied it to a
synthetic data set shown in Figure 4.6. The data set was produced by sampling
the analytic function f : [−1, 1]2 → R

f(x, y) = sin(10x) sin(10 y) e−3 (x
2+y2) (4.9)

on a uniform triangulation with 16k vertices, adding uniform noise of the
range [−0.05, 0.05] to the sub domain [0, 1]× [−1, 1] and taking the gradient.
Note that the spatially varying amount of noise provides a special challenge for
the topological analysis. Figure 4.6 shows a visualization of this triangulated
vector field as a surface line-integral-convolution [MKFI97] (LIC) using the
scalar value of f as the z-coordinate. We then solved (4.8) for this data
set using the (exact) Hungarian method described in Section 3.1 and our
new predictor-corrector algorithm described in this section. To evaluate the
importance of the corrector phase, we also computed (4.8) using only the
predictor phase. The 63 most important critical points, i.e. the critical points
of Vkn−31, are depicted for each algorithm in Figure 4.6.

49

4. Computational Discrete Morse Theory

2680 2700 2720 2740 2760
−10

0

−10
−1

−10
−2

Cancellations

W
ei
gh

t
of

C
an

ce
ll
a
ti
o
n

without corrector phase

with corrector phase

exact

Figure 4.6 Approximation vs. exact method. A synthetic data set, described
in Section 4.4.2, is analyzed using the exact method (top-left), our predictor-
corrector approximation algorithm (top-right), and the predictor-only variant
(bottom-left). The 63 most dominant critical points are shown as blue (sinks),
yellow (saddles), and red (sources) balls. The weights of the last cancellations
are shown for the different algorithms in a semi-logarithmic plot (bottom-
right).

The result of our predictor-corrector approximation algorithm (top-right) is
very similar to the exact result (top-left). The predictor-only result (bottom-
left) however is quite different from the exact result. This bad approximation
behavior of the predictor-only algorithm can also be seen in the weight of
the cancellations depicted in Figure 4.6, bottom-right. The x-axis represents
the pair cancellations, while the y-axis shows the weight of the cancellations.
The proposed predictor-corrector algorithm (blue curve) closely follows the
exact algorithm (red curve) and is monotonically decreasing. In contrast,
the predictor-only algorithm (green curve) is quite different from the exact
algorithm and does not preserve the monotonic behavior of the exact solution.

Applications

Figure 4.7 depicts a surface velocity field of a simulation of blood flow through
a cerebral aneurysm done by the Biofluid Mechanics Lab of the Charité -
Universitätsmedizin Berlin [CCA+05]. The cell graph of the triangulation
consists of 60k nodes. The runtime for the computation of (4.8) using a
simple implementation of the Hungarian method using a Dijkstras shortest
path algorithm with a Fibonacci heap was about 30 minutes on workstation

50

4.4. Vector fields

from 2007.

The critical points in this vector field are stagnation points and thus of
interest for the flow analysis. Our algorithm delivers a hierarchy of extremal
structures which captures the dominant nature of the flow (see Figure 4.7).
The blood enters the aneurysm at the bottom, and leaves it horizontally. This
behavior is found by our algorithm and the global separation on the surface is
extracted (see Figure 4.7c). This reduced flow structure may serve as a basis
when comparing different cerebral aneurysms.

To demonstrate the usefulness of our algorithm we applied it to a real-
world data set from climate research. This data set is a short subset of the
IPCC AR4 climate projections, which were carried out at DKRZ by the Max-
Planck-Institute for Meteorology with the coupled atmosphere-ocean model
ECHAM5/MPI-OM. We have used the 10 meter wind components depicted
by a surface LIC representation in Figure 4.8 using the pressure for the color
values. We sampled this data set on a simplicial graph with about 2.5 million
nodes and solved (4.8) with our combinatorial predictor-corrector algorithm.
The runtime using a CUDA implementation of our algorithm was 4 minutes.
The estimated runtime using the exact Hungarian method described in Sec-
tion 3.1 is about 6 weeks.

The full set of critical points of the initial combinatorial vector field Vk0
without any simplification is shown in Figure 4.8. The critical points in this
figure are scaled by their importance value given by the difference of the
matching weights ω(Vj)− ω(Vj+1), see Section 4.3.4. Note that larger critical
points correspond to strong pressure systems, even though the pressure values
were not employed in the calculation of (4.8). This indicates the physical
relevance of the persistence-like important measure induced by (4.8) for real-
world vector field data.

Comparison

To compare the presented combinatorial approach to vector field topology with
a continuous one [Wei08], we analyzed the climate data set described above
with both approaches. To compare the hierarchy of combinatorial vector fields
to the single continuous extraction result, we selected the combinatorial vector
field with the same number of critical points as the continuous extraction
result. Both sets of critical points are depicted in Figure 4.9, the critical
points extracted by the continuous method shown as black balls, the critical
points computed by the combinatorial algorithm as white balls. Note that
Figure 4.8 only seems to contain fewer critical points as they are scaled by
their importance resulting in critical points that are smaller than a pixel.

As can be seen in Figure 4.9, most critical points of both methods coincide.
The critical points found by the continuous method, that are not included
in the combinatorial result, all appear in flat regions of the vector field, i.e.

51

4. Computational Discrete Morse Theory

(a)

(b)

(c)

Figure 4.7 Vector field from biofluid mechanics. The vector field is visualized
using the streamline seeding technique described in [RPP+09]. The extremal
structures of a) Vk0 , b) Vkn−4 and c) Vkn are shown. Sinks, saddles and sources
are depicted as blue, yellow and red spheres. 0-separatrices and attracting
periodic orbits are depicted as blue lines, while 1-separatrices and repelling
periodic orbits are shown as red lines.

52

4.4. Vector fields

Figure 4.8 Importance measure illustration. The 10 meter wind components
form a data set from climate research are depicted as a surface LIC using the
pressure for the color. The white balls show the critical points computed by the
combinatorial method. The size of the balls is determined by the persistence
like importance measure described in Section 4.3.4. Note that the pressure
is only depicted here to illustrate the physical relevance of the importance
measure.

regions where the magnitude is close to zero. They are therefore not stable
w.r.t. to perturbations of the data and may be considered as noise artifacts.
Also, they may strongly depend on the chosen interpolation.

To describe the differences of our simplification strategy with the existing
continuous extraction algorithms we can make use of the result shown in
Figure 4.6. All existing simplification methods mentioned in Section 2.1 do
not make use of the magnitude of the vector field. Therefore the peaks in the
center of the data set would be given the same importance as the small hill tops

53

4. Computational Discrete Morse Theory

Figure 4.9 Comparison with continuous approach. The 10 meter wind com-
ponents form a data set from climate research are depicted as a surface LIC
using the wind velocity for the color. The black balls show the critical points
of the vector field computed by a continuous method, while the white balls
show an extraction result of the presented combinatorial approach.

near the boundary of the data set. In contrast, the presented combinatorial
approach takes the magnitude of the vector field into account, which results
in the simplification hierarchy shown in Figure 4.6, top. The small hill tops
near the boundary of the data set are canceled at an early stage, while the
peaks in the center are canceled last.

Performance

To measure the performance advantage of our algorithm over the exact al-
gorithm we computed (4.8) for the aneurysm data set, the synthetic data

54

4.4. Vector fields

set (4.9), and four resolutions of a real-world data set from climate research
using the exact Hungarian method described in Section 3.1 and our approx-
imation algorithm. The timings for an Intel Core 2 Duo 3 GHz CPU with a
Nvidia Geforce GTX 260 Core 216 graphics card are given in Table 4.1. To
determine the parallel scalability we computed all data sets with 1 thread, 2
threads, and on the GPU. The CPU version was implemented with OpenMP,
while the GPU version was implemented in CUDA. Due to the extremely long
runtime of the exact method we have not measured its runtime for the larger
data sets.

In theory, Algorithm 4 could have a very large computational complexity -
even an upper bound for the complexity is hard to derive due to the predictor-
corrector interplay. In practice however, our approximation algorithm has an
empirical complexity of O(n3/2 log n) as can be seen in the 1×CPU column of
Table 4.1. The OpenMP implementation shows a near perfect parallel scaling
when going from one thread to two threads. The speed up provided by the
CUDA implementation ranges between 1.5× and 30× - the larger the data set
the bigger the speed up.

Table 4.1 Runtime analysis. (4.8) was computed for various data sets with the
exact Hungarian method and the approximative algorithm using an OpenMP
implementation (CPU) and a CUDA implementation (GPU).

Name #nodes exact 1×CPU 2×CPU GPU

Aneurysm 60k 2360s 12s 6s 4s
Synthetic 97k 6258s 31s 16s 8s
Climate 1 154k 15919s 55s 28s 10s
Climate 2 614k * 569s 284s 52s
Climate 3 2458k * 4982s 2619s 237s
Climate 4 9830k * 37602s 19014s 1220s

4.4.3 Discussion

As demonstrated in Section 4.4.2 the hierarchy of the extremal structure is
maintained by our approximation algorithm. Each point is given an impor-
tance value that indicates its relevance in the overall data set. Since the
approximation algorithm results in a matching sequence, the resulting topo-
logical skeletons are always consistent with the topology of the domain. Also,
our predictor-corrector algorithm does not contain any computational param-
eters.

The main weakness of exact method for the computation of (4.8) is its
large computational runtime. This weakness is alleviated by our algorithm
that reduces the runtime from weeks to minutes for large data sets, see Table

55

4. Computational Discrete Morse Theory

4.1. While this algorithm is only approximative in nature, it produces results
that are visually indistinguishable from the exact solution of (4.8), see Section
4.4.2. The algorithm is also capable of dealing with data sets with varying
amounts of noise, as can be seen in Figure 4.6.

Our predictor-corrector approximation algorithm for (4.8) produces results
that are very close to the exact solution for the graphs we consider. We assume
that this is due to the preservation of the monotony and the special structure
of the cell graph and the symmetries of the edge weights (4.5). From a graph
theoretic point of view it would be interesting to find out whether there are
other classes of graphs where our algorithm for (4.8) produces such good
results.

A possible limitation for the application of our algorithm to other graph
problems is the fact that the Bellman-Ford algorithm does not work when the
graph contains a circle with negative weight [Sch03]. In the exact method
we can use Bellman-Ford due to the maximality property (4.7) of the com-
puted matchings (see Section 3.1). In our approximate setting this maximality
property does not necessarily hold and there may theoretically exist circles of
negative weight. However in all of our experiments we have never encountered
such a case. This may be due to the monotonic behavior of our approximation
or the manifold structure of the graphs. A thorough theoretical investigation
of this empirical observation may be worthwhile.

56

4.5. Gradient fields

4.5 Gradient fields

This section introduces a purely combinatorial approach for the extraction of
the extremal structure of a given scalar (or gradient) field. This problem is
directly suitable to the generic algorithmic pipeline described in Section 4.3.
The only algorithm we have to describe is the computation of the sequence of
maximum weighted matchings (4.7) for the case of Morse matchings Mφ

In contrast to the vector field case, the computation of (4.8) for the scalar
field case Mφ is a lot more involved – in general it is NP-hard [JP06]. We
therefore propose a simple approximation algorithm for this problem that
produces a sequence of augmenting paths. This is essential for a compact
representation of the complete hierarchy of extremal structures.

We approach this problem in the spirit of the Hungarian method. Given a
Morse matching Mφ we want to compute an augmenting path p with maxi-
mum weight such that Mφ ∆ p is again a Morse matching. Loosely speaking,
we compute a greedy approximation of (4.8). This approach is described in
detail below.

For two dimensional manifold-like cell complexes this strategy is very ef-
ficient and easy to implement. In higher dimensions however, this approach
encounters some problems and technical difficulties. We therefore restrict the
presentation and evaluation to the two dimensional manifold-like case and
refer to [GRP+, Bau11] for details on the obstructions in higher dimensions.

4.5.1 Algorithm

The main problem for an algorithmic approach for the basic idea described
above is the computation of the augmenting path p with maximum weight
that results in another Morse matching. Fortunately, we can make use of For-
man’s cancellation theorem [For98b]. This theorem can be interpreted as a
characterization of the set of augmenting paths that maintain the Morse prop-
erty of a given matching. Using the graph theoretic formulation introduced
in Section 4.1 this theorem can be stated as follows:

If two unmatched nodes are connected by exactly one p-separatrix s in a
Morse matching M ∈Mφ, then M 4 s is a Morse matching.

Note that there could possibly exist augmenting paths that maintain the
Morse matching property which are not separatrices. However, we only con-
sider the augmenting paths that are separatrices in our algorithm for two
reasons. First, the computation of the separatrices is efficient and easy to im-
plement, especially in the case of two dimensional manifold-like cell complexes.
Secondly, the algorithm of the separatrix computation from Section 4.3 can
be reused.

The pseudo code for our approximation algorithm is shown in Algorithm 8.
The input consists of the cell Graph G and its edge weights ω. The output

57

4. Computational Discrete Morse Theory

consists of V φ
kn

and a list of augmenting paths. Together, these can be used
to reconstruct an arbitrary element of the sequence (4.8). The subfunction
getMaxUniqueSeparatrix(. . .) returns the unique p-separatrix of maximum
weight of the saddle u1. The 2D manifold structure of the cell graph G implies
that at most four p-streamlines emanate from u1 and that these cannot split.
The subfunction getMaxUniqueSeparatrix(. . .) therefore simply iterates all
(up to four) p-separatrices that start in u1. It then checks for uniqueness
by comparing their end nodes and returns the unique p-separatrix with the
largest weight. If there is no unique p-separatrix at all, then an empty path is
returned with a weight of −∞. Note that there are always two 0-streamlines
emanating from u1 and that these are always 0-separatrices. The 1-streamlines
that emanate from u1 however may end in the boundary of the manifold.

Algorithm 8 MorseMatchingSequence(G,ω)

Output: AugPaths, V φ
kn

1: M ← ∅, AugPaths← ∅, heap← ∅
2: for all u1 ∈ N do
3: (path, weight)← getMaxUniqueSeparatrix(G,ω,M, u1)
4: heap.push(u1, weight)
5: while heap 6= ∅ do
6: (u1, weight)← heap.pop()
7: (path, weight)← getMaxUniqueSeparatrix(G,ω,M, u1)
8: (nextNode, nextWeight)← heap.top()
9: if weight ≥ nextWeight then

10: M ←M 4 path
11: if weight < 0 then
12: AugPaths.push(path)
13: else if −∞ < weight then
14: heap.push(u1, weight)

15: V φ
kn
←M

Line 1 initializes M as the empty matching, the list of augmenting paths
AugPaths, and a priority queue heap. All nodes representing 1-cells are then
inserted into this queue, ordered by the weight of their heaviest unique p-
separatrix, in Lines 2-4. We then iterate over the queue (Line 5), remove the
top element of the heap (Line 6) and compute its heaviest unique p-separatrix
(Line 7). This is necessary, as previous iterations may have affected this
node. We now check whether this p-separatrix is the heaviest of all available
unique p-separatrices. Assuming that augmenting the matching only decreases
the weight returned by getMaxUniqueSeparatrix(. . .), it suffices to check
whether the weight of u1 is larger than the weight of the next element of the
heap (Lines 8-9). If this is the case, we augment the matching M by taking
the symmetric difference of M and path (Line 10) and store the augmenting

58

4.5. Gradient fields

path if its weight is negative (Line 11-12). Otherwise, we reinsert u1 into the
heap with its new weight if it is larger than −∞ (Line 13-14). When the
heap is empty the algorithm terminates and returns an approximation of the
heaviest maximum cardinality Morse matching V φ

kn
.

4.5.2 Evaluation

In this section, we present the resulting hierarchical extremal structure of
Algorithm 8 and measure its performance on several data sets.

Robustness

To illustrate the robustness of our data analysis framework, we applied it to a
synthetic data set depicted as a height field in Figure 4.10. The data set was
produced by sampling the analytic function f : [−1, 1]2 → R

f(x, y) = sin(10x) sin(10 y) e−3 (x
2+y2) (4.10)

on a uniform triangulation with 16k vertices. We then added uniform noise in
the the range of [−0.05, 0.05] to the sub domain [0, 1]× [−1, 1]. We applied our
algorithmic pipeline presented in Section 4.3 to this input data. The runtime
for the computation of (4.8) using Algorithm 8 was less than a second on a
standard workstation from 2008. Figure 4.10 shows the extremal structure
of the initial combinatorial gradient field V φ

k0
, and two elements, V φ

kn−23 and

V φ
kn−11, of the matching sequence (4.8). As can be seen in Figure 4.10a,

V φ
k0

includes the extremal structure induced by the noise. The simplified
combinatorial gradient fields, however, only contain the dominant extremal
structure present in f .

Application

Figure 4.11 illustrates the extraction of extremal lines in curvature fields of
different surfaces. As described in [WG09], each point of a p-separatrix can
be assigned an importance value, called separatrix persistence. The main
idea of separatrix persistence is to measure the strength of monotony breaks
with respect to the sequence of combinatorial gradient vector fields (4.8). For
details how to incorporate this measure into our computational pipeline, we
refer to [WG09].

Separatrix persistence allows to discriminate spurious from dominant ex-
tremal lines. These lines are shown in Figure 4.11. Note that a reduction to
the most dominant extremal parts destroys the connectivity of the extremal
structure.

59

4. Computational Discrete Morse Theory

(a)

(b)

(c)

Figure 4.10 Synthetic noisy scalar field. Extremal structure of a) V φ
k0

, b)

V φ
kn−23 and c) V φ

kn−11. Minima, saddles and maxima are depicted as blue,
yellow and red spheres, while 0-separatrices and 1-separatrices are shown as
blue and red lines.

60

4.5. Gradient fields

Performance

All examples were computed on a workstation containing an Intel Core i7 860
CPU. The total running time for the computation of (4.8) using Algorithm 8
and the computation of separatrix persistence is shown in Table 4.2. The
worst case complexity of Algorithm 8 is O(n3), where n denotes the number
of edges in the triangulation. However, the empirical running time for practical
applications is almost linear. The models are provided by Aim@Shape [Aim].

Surface Model triangles nodes in G edges in G time (sec)

screwdriver 54300 162902 325800 1
dinosaur 112384 337154 674304 2

knot 957408 2872224 5744448 24

Table 4.2 Running time for Algorithm 8 with separatrix persistence [WG09]
computation.

4.5.3 Discussion

The algorithm described in Section 4.5.1 is very simple, fast and delivers good
results for practical data sets. However, its only mathematical guarantee is
given by the provable consistence of the resulting extremal structure with the
topology of the domain. While the resulting critical points seem to be fine,
we have no guarantee of correctness.

To achieve such a correctness guarantee one can make use of the algorithm
proposed by Robins et al. [RWS11] that computes an initial combinatorial
gradient field with a (in a certain sense) provably correct set of critical points.
Their algorithm works for (up to) three dimensional manifold-like cell com-
plexes.

It was recently shown [DLL+10] that our hierarchy of extremal structures is
strongly related to persistent homology if we use the algorithm by Robins et
al. for an initial combinatorial gradient. Note that this result only holds for
two dimensional manifold-like cell complexes – in higher dimensions a counter
example has been published [Bau11].

61

4. Computational Discrete Morse Theory

(a)
(b)

(c)

Figure 4.11 Extremal lines in curvature fields. For all surface models, the first
and second principal curvatures κ1 and κ2 are computed. a), b) and c) show
the most dominant parts of 0-separatrices (blue) in κ1 and 1-separatrices (red)
in κ2. Images included with permission of the authors of [WG09]

62

4.6. Divergence-free vector fields

4.6 Divergence-free vector fields

This section introduces a robust and provably consistent algorithm for the
topological analysis of divergence-free 2D vector fields. Note that divergence-
free vector fields cannot just be treated as general vector fields using the algo-
rithm presented in Section 4.4.1: center-like critical points are stable features
of divergence-free vector fields while they are unstable in the set of general
vector fields.

In the next section we will show that the case of two dimensional divergence-
free vector fields can in fact be treated using the algorithm presented in Sec-
tion 4.5.1. Note that in contrast to the preceding sections, the two dimensional
assumption is crucial in this case.

4.6.1 Theory

This section shows how theorems from classical Morse theory can be applied in
the context of 2D divergence-free vector fields. For completeness, we include
the general theorems of Morse theory presented in Section 3.3 for the two
dimensional case.

Extremal structure of divergence-free vector fields

A 2D vector field v is called divergence-free if ∇ · v = 0. This class of vector
fields often arises in practice, especially in the context of computational fluid
dynamics. For example, the vector field describing the flow of an incompress-
ible fluid, like water, is must be divergence-free. The points at which a vector
field v is zero are called the critical points of v. They can be classified by an
eigenanalysis of the Jacobian Dv at the respective critical point. In the case
of divergence-free 2D vector fields one usually distinguishes two cases [HH89].
If both eigenvalues are real, then the critical point is called a saddle. If both
eigenvalues are imaginary, then the critical point is called a center. Note that
one can classify a center furthermore into clockwise rotating (CW-center) or
counter-clockwise rotating (CCW-center) by considering the Jacobian as a
rotation.

One consequence of the theory that will be presented in this section is that
the classification of centers into CW-centers and CCW-centers is essential
from a topological point of view. One can even argue that this distinction
is as important as differentiating between minima and maxima when dealing
with gradient vector fields.

Morse theory in two dimensions

The critical points of a vector field are often called topological features. One
justification for this point of view is given by Morse theory [Mil63]. Loosely

63

4. Computational Discrete Morse Theory

speaking, Morse theory relates the set of critical points of a vector field to the
topology of the domain. For example, it can be proven that every continuous
vector field on a sphere contains at least one critical point.

To make things more precise we restrict ourselves to gradient vector fields
defined on a closed oriented surface. The ideas presented below work in prin-
cipal also for surfaces with boundary, but the notation becomes more cumber-
some. To keep things simple, we therefore assume that the surface is closed.
We further assume that all critical points are first order, i.e. the Jacobian has
full rank at each critical point. Let c0 denote the number of minima, c1 the
number of saddles, c2 the number of maxima, and g the genus of the surface.
We then have the Poincaré-Hopf theorem

c2 − c1 + c0 = 2− 2g, (4.11)

the weak Morse inequalities

c0 ≥ 1, c1 ≥ 2g, c2 ≥ 1, (4.12)

and the strong Morse inequality

c1 − c0 ≥ 2g − 1. (4.13)

Helmholtz-Hodge decomposition

To apply these theorems from Morse theory to a divergence-free vector field v
we can make use of the Helmholtz-Hodge decomposition [Hel58]. Let ∇×ψ =
(∂yψ, −∂xψ) denote the curl operator in 2D. We then have the orthogonal
decomposition

v = ∇φ+∇× ψ + h. (4.14)

We can thereby uniquely decompose v into an irrotational part∇φ, a solenoidal
part ∇× ψ, and a harmonic part h, i.e. ∆h = 0. Due to the assumption that
the surface is closed, the space of harmonic vector fields coincides with the
space of vector fields with zero divergence and zero curl [Sho09]. Since v is
assumed to be divergence-free we have 0 = ∇·v = ∇·∇φ which implies φ = 0
due to (4.14). The harmonic-free part v̂ = v − h can therefore be expressed
as the curl of a scalar valued function

v̂ = ∇× ψ. (4.15)

Stream function

The function ψ is usually referred to as the stream function [Pan84]. Let
v̂⊥ = (v2,−v1) denote the point-wise perpendicular vector field of v̂ = (v1, v2).
The gradient of the stream function is then given by

∇ψ = v̂⊥. (4.16)

64

4.6. Divergence-free vector fields

Note that v̂ has the same set of critical points as v̂⊥ . The type of its critical
points is however changed: CW-center become minima, and CCW-center be-
come maxima. Since (4.16) shows that v̂⊥ is a gradient vector field, we can use
this identification to see how (4.11)-(4.13) can be applied to the harmonic-free
part of divergence-free 2D vector fields.

Implications

The dimension of the space of harmonic vector fields is given by 2g [Sho09]. A
vector field defined on a surface which is homeomorphic to a sphere is therefore
always harmonic-free, i.e. v̂ = v. Every divergence-free vector field on a sphere
which only contains first order critical points therefore satisfies (4.11)-(4.13).
For example, every such vector field contains at least one CW-center and one
CCW-center.

Due to the practical relevance in Section 4.6.3 we note that every divergence-
free vector field defined on a contractible surface can be written as the curl
of a stream function ψ as shown by the Poincaré-Lemma. For such cases, the
point-wise perpendicular vector field can therefore also be directly interpreted
as the gradient of the stream function.

4.6.2 Algorithm

We now describe how we can apply computational discrete Morse theory to
divergence-free vector fields. Let v denote a divergence-free vector field defined
on an oriented surface S. The first step is to compute the harmonic-free part
v̂ of v. If S is contractible or homeomorphic to a sphere, then v is itself the
curl of a stream function ψ, i.e. v̂ = v . Otherwise, we need to compute the
Helmholtz-Hodge decomposition (4.14) of v to get its harmonic part. To do
this, one can employ the algorithms described in [PPL+10, PP02, TLHD03].

We now make use of the fact that the point-wise perpendicular vector field
v̂⊥ has the same critical points as v̂. Due to (4.15), we know that v̂⊥ is
a gradient vector field. To compute and classify the critical points of the
divergence-free vector field v̂ it therefore suffices to analyze the gradient vector
field v̂⊥.

One approach to analyze the gradient vector field v̂⊥ would be to compute a
scalar valued function ψ such that v̂⊥ = ∇ψ. One can then apply one of the al-
gorithms mentioned in Section 2.2 to extract a consistent set of critical points.
In this section, we instead apply the algorithm proposed in Section 4.5.1 to
directly analyze the gradient vector field v̂⊥ by computing (4.7) for v̂⊥ in the
context of combinatorial gradient fields.

The main benefit of this approach is that it allows us to consider v̂⊥ as
a gradient vector field even if it contains a small amount of curl. This is a
common problem in practice, since a numerical approximation or measurement

65

4. Computational Discrete Morse Theory

of a divergence-free field often contains a small amount of divergence. By
adapting the general approach presented in this chapter, we can directly deal
with such fields with no extra pre-processing steps.

Note that the importance measure for the critical points of a gradient vector
field has a nice physical interpretation in the case of rotated stream functions.
The importance measure is defined by the height difference of a certain pairing
of critical points. The height difference between two points of the stream
function is the same as the amount of flow passing through any line connecting
the two points [Pan84]. This allows us to differentiate between spurious and
structurally important critical points in divergence-free 2D vector fields, as
will be demonstrated in the next section.

4.6.3 Evaluation

The purpose of this section is to evaluate the practical properties of our al-
gorithm and determine the physical relevance of the hierarchy of extremal
structures.

Robustness

To illustrate the robustness of our algorithm with respect to noise, we sampled
the divergence-free vector field

v(x, y) = ∇×
(

sin(6x) sin(6 y) e−3 (x
2+y2)

)
(4.17)

on the domain [−1, 1]2 with a uniform 5122 grid. A LIC image [SH95] of
this divergence-free vector field is shown in Figure 4.12, left. To simulate a
noisy measurement of this vector field, we added uniform noise with a range
of [−1, 1] to this data set. A LIC image of the resulting quasi-divergence-free
vector field is shown in Figure 4.12, right. Since the square is a contractible
domain, we can directly apply the algorithm described in Section 4.6.2 to both
data sets and extracted the 23 most important critical points. As can be seen
in Figure 4.12, our method is able to effectively deal with the noisy data.

Application

To illustrate the physical relevance of the importance measure for the ex-
tracted critical points we consider a model example from computational fluid
dynamics [NSA+08]. Figure 4.13, top, shows a LIC image of a simulation of
the flow behind a circular cylinder – the cylinder is on the left of the shown
data set. Since we are considering only a contractible subset of the data set,
we can directly apply the algorithm described in Section 4.6.2. Note that
due to a uniform sampling of this data set a small amount of divergence was
introduced. The divergence is depicted in Figure 4.13, bottom. The data set
exhibits the well-known Kármán vortex street [Pan84] of alternating clockwise

66

4.6. Divergence-free vector fields

Figure 4.12 A synthetic divergence-free vector field is depicted using a LIC
image colored by magnitude (red = high). The critical points of V φ

kn−11 are
shown. The saddles, CW-centers, and CCW-centers are depicted as yellow,
blue, and red spheres. Left: the original smooth vector field. Right: a noisy
measurement of the field depicted on the left.

and counter-clockwise rotating vortices. This structure is extracted well by
our algorithm. The strength of the vortices decreases the further they are
from the cylinder on the left. This physical property is reflected well by our
importance measure for critical points in divergence-free vector fields.

Performance

The running time of our algorithm is 47 seconds for a surface with one million
vertices using an Intel Core i7 860 CPU with 8GB RAM.

4.6.4 Discussion

We presented an algorithm for the extraction of critical points in 2D divergence-
free vector fields. In contrast to previous work this algorithm is provably
consistent in the sense of Morse theory for divergence-free vector fields as pre-
sented in Section 4.6.1. It also allows for a consistent simplification of the
set of critical points which enables the analysis of noisy data as illustrated in
Figure 4.12. The computed importance measure has a physical relevance as
shown in Figure 4.13, and allows to discriminate between dominant and spu-
rious critical points in a data set. By combinatorially enforcing the gradient
vector field property we are able to directly deal with data sets with only near
zero divergence (see Figure 4.13, bottom).

67

4. Computational Discrete Morse Theory

Figure 4.13 Top: A quasi-divergence-free vector field of the flow behind a
circular cylinder is depicted using a LIC image colored by magnitude. The
saddles, CW-centers, and CCW-centers are depicted as yellow, blue, and red
spheres and are scaled by our importance measure. Bottom: the divergence
of the data set is shown using a colormap (white: zero divergence, red: high
divergence).

The only step of our algorithm that is not combinatorial is the Helmholtz-
Hodge decomposition which is necessary for surfaces of higher genus to get
the harmonic-free part of the vector field. It would therefore be interesting
to investigate the possibility of a purely combinatorial Helmholtz-Hodge de-
composition. Alternatively, one could try to develop a computational discrete
Morse theory for divergence-free vector fields containing a harmonic part.

68

4.7. Time-dependent scalar fields

4.7 Time-dependent scalar fields

Time-dependent scalar data arises in many scientific disciplines. To analyze
such data, the extraction of minima, saddles, and maxima of each individual
time step has been proven useful. These point features of the data are often
called critical points. To understand the dynamic behavior of time-dependent
data, it can be beneficial to analyze the temporal evolution of these critical
points.

To enable an efficient quantification of the temporal evolution of the critical
points, we can track them over time. In this section, we call such a tracked
critical point a critical line of the data. Many different algorithms that extract
critical lines have been proposed, see Section 2.3 for an overview.

For smooth functions, the Feature Flow Field method [TS03] provides a
particularly sound mathematical foundation. Given a smooth time-dependent
scalar field, the critical lines are therein implicitly defined by streamlines in a
higher dimensional derived vector field.

While this method works well for smooth functions, its application to func-
tions that are only continuous is problematic as derivatives have to be com-
puted. To circumvent this problem, derivative free algorithms employing con-
cepts from algebraic topology have been developed recently, see Section 2.3.

The main remaining weakness of the available algorithms is their inabil-
ity to handle noisy data in a meaningful way. Such data usually contains
an overwhelming number of critical lines that hinder meaningful visual data
analysis. To reduce the number of critical lines, one typically smoothes the
data or discards short critical lines. Both approaches can be problematic. A
simple smoothing of the data may remove important critical lines and affect
the spatial position of the critical lines, see Figure 4.18 for an example. Dis-
carding short critical lines may remove an important and stable, but short
lived feature. See Figure 4.21 for an example of such a short but important
critical line.

This section proposes a combinatorial algorithm that is able to track criti-
cal points in noisy data. This robustness is achieved by combining Forman’s
notion of a combinatorial gradient field [For98a] with the notion of persistence
proposed by Edelsbrunner et al. [ELZ02]. Persistence is a well founded impor-
tance measure for critical points. Together, these concepts enable a robust and
consistent combinatorial representation of the gradient of a scalar function.

A definition for a critical line of a sequence of combinatorial gradient fields
was recently proposed by King et al. [KKM08]. The basic idea is similar
to the continuous Feature Flow Field method - a higher dimensional field is
constructed in which the critical lines are given by combinatorial streamlines.
We therefore refer to the higher dimensional field as a Combinatorial Feature
Flow Field in this section. We formalize this concept of critical lines in com-

69

4. Computational Discrete Morse Theory

binatorial gradient fields using a graph theoretic formulation in Section 4.7.1.

Our main contribution is the introduction of the first efficient algorithm
that extracts the critical minima, saddle, and maxima lines in two dimensional
time-dependent scalar fields using Combinatorial Feature Flow Fields.

The efficiency of our algorithm is achieved by pointing out that, at least in
2D, the combinatorial critical lines as defined in [KKM08] can in fact be com-
puted without considering the higher dimensional combinatorial feature flow
field. We provide an informal proof of the equivalence of the original definition
of combinatorial critical lines to our simplified definition in Section 4.7.2.

The proposed algorithm has many valuable properties. It has a reasonable
running time (see Table 4.3) and is naturally formulated in an out-of-core
fashion enabling the analysis of large data sets as only two subsequent time
steps have to be kept in memory. The input consists of a regular cell complex,
so the algorithm can deal with many widely used representations of discrete
data like triangulations, quadrangulations, or a mixture of these. It contains
only one easily-tuned computational parameter, the persistence threshold σ,
used to construct the combinatorial representation of the gradient fields.

Due to the combinatorial nature of our algorithm, we can formulate a nat-
ural spatio-temporal importance measure for the resulting critical lines called
Integrated Persistence (see Section 4.7.1).

4.7.1 Theory

The purpose of this section is to introduce the reader to the main concepts
that build the mathematical foundation for our combinatorial tracking algo-
rithm described in detail in Section 4.7.2. We will also propose a time-aware
importance measure for the tracked critical points that is based on the notion
of persistence below.

To define the notion of a combinatorial feature flow field (CFFF) we rely on
the concept of a combinatorial gradient field (CGF) introduced in Section 3.3.3
in the graph theoretic formulation described in Section 4.1.

When we deal with noisy data, the corresponding CGF contains a huge num-
ber of minima, saddles, and maxima. Fortunately, the theoretical foundation
of CGF [For98b] allows for a consistent removal of these spurious features.
Suppose there is a unique separatrix connecting a saddle to a maximum or
minimum. Reversing this separatrix results in a CGF without this pair of crit-
ical points, see [For01] for an explanation of this property. When we simplify
a CGF using this idea we have to decide on the order of the simplifications.
A well founded order is given by persistence [EH08].

Note that the need for a simplified CGF implies that one cannot make
direct use of the algorithm proposed in [Gyu08] since it computes a simplified
Morse-Smale complex and not a simplified CGF. Reconstructing a CGF from a

70

4.7. Time-dependent scalar fields

Morse-Smale complex is a nontrivial problem, especially in higher dimensions.

To track critical points in noisy data, we compute a CGF with a given
persistence threshold σ. For example, if the noise is in the range [−ε, ε],
then it suffices to compute its CGF with a persistence threshold of σ = 2ε
to remove all noise induced critical points. This means that the resulting
CGF does not contain any pair of uniquely connected critical points whose
difference of scalar values is smaller than σ. For more information on the
connection between discrete Morse theory and persistence simplification we
refer the interested reader to [Bau11].

Combinatorial Feature Flow Fields

Using the combinatorial representation of the gradient fields defined above,
we will now describe the combinatorial feature flow field concept introduced
in [KKM08] that allows us to track critical points in our graph theoretical
framework. This formulation enables an efficient and simple implementation
described in Section 4.7.2.

Given a sequence of combinatorial gradient fields (Vt)t=0,1,2,...,T on a fixed
cell complex C of a 2D manifold we now define the notion of a combinatorial
feature flow field (CFFF) that allows us to track the critical points in (Vt).
For simplicity, we assume T = 1 as the general case follows easily. We first
construct the cell graph of C × [0, 1] using the graph theoretic formulation
introduced in Section 4.1.

For a depiction of a simple example of the rather technical construction
that follows, we refer to Figure 4.14. We start the construction of GC×[0,1]
with three copies G1

C , G
2
C , G

3
C of the cell graph GC . We then add edges to

this graph that connect the corresponding nodes of G1
C with G2

C and G2
C with

G3
C . The label p of each node in G2

C is then increased by one. For example, if
up is a node of the second copy that corresponds to the node w2 of the first
copy, then p = 3.

We can now define the forward tracking field V[0,1], a CGF of GC×[0,1]. We
first use the matching V0 to define a matching in G1

C and G2
C (see Figure 4.14,

middle). For G3
C we use the matching V1. We then add all edges to the

matching of GC×[0,1] that connect a critical point of V0 with a node of G2
C .

Constructing a forward tracking field V[0,T] for the whole sequence of com-
binatorial gradient fields (Vt) can be done iteratively: if we have a forward
tracking field for V[0,k], we get V[0,k+1] as the union of V[0,k] and V[k,k+1]. The
backward tracking field V[T,0] can be defined by reversing the order of the se-
quence (Vt). As proven in [KKM08], the forward tracking field defined above
is indeed a combinatorial gradient field as it does not contain any periodic
orbits. Also, the only critical cells of this CGF are the cells that are critical
in VT .

We are now in a position to give a precise definition of the space-time

71

4. Computational Discrete Morse Theory

u

w

u

w

u

w

Figure 4.14 Combinatorial feature flow fields - basic definitions. Left: Two
subsequent combinatorial gradient fields V0 and V1. Middle: Forward tracking
field V[0,1]. Right: Backward tracking field V[1,0]. The minima (blue) u in V0
and w in V1 are tracked as there is a combinatorial 0-streamline (transparent)
in V[0,1] and a combinatorial 0-streamline in V[1,0] that connect u and w.

relation of critical points in this combinatorial setting. Let up and wp denote
critical points in (Vt). We say up and wp are connected if and only if there
is a combinatorial p-streamline connecting up with wp within V[0,T] and a
combinatorial p-streamline connecting up with wp within V[T,0]. For future
reference, we call the set of lines that connect the critical points of (Vt) the
critical lines of (Vt). Note that in principal this definition allows for splitting
and merging critical saddle lines. While our implementation allows for this
behavior we have not observed any such critical saddle lines in our numerical
experiments.

The presented approach is related to the continuous Feature Flow Field
method [TS03] - both approaches for the tracking of critical points define a
higher dimensional field where the critical points can be tracked by stream-
lines. We therefore refer to the approach presented in this Section as the
Combinatorial Feature Flow Field method (CFFF).

Integrated Persistence

We propose an importance measure for the critical lines of a sequence of
T scalar fields (ft) defined on a 2D manifold. To incorporate the spatial
importance of the critical points that make up the critical line we can make use
of the notion of persistence [ELZ02]. Loosely speaking, persistence measures
the stability of the critical points with respect to perturbations of the data
values. We now define an importance measure for a critical line L as the sum
of the persistence values of the critical points that make up the line divided
by the total number of time steps in the data set T . For future reference we
refer to this measure as Integrated Persistence.

72

4.7. Time-dependent scalar fields

Note that in some sense Integrated Persistence is a spatio-temporal impor-
tance measure. A short, but spatially persistent critical line, is considered as
important as a long critical line with low spatial persistence. Figures 4.19 and
4.21 demonstrate the physical relevance of Integrated Persistence.

4.7.2 Algorithm

In this section, we describe our combinatorial tracking algorithm in detail. We
will first give an overview of the algorithmic pipeline, describing the input,
output and out-of-core approach. We then describe how we can efficiently
track critical points. This section is concluded with a detailed description of
our algorithm including pseudo-code to ensure a good reproducibility of the
results presented in Section 4.7.3.

Overview

Figure 4.15 Computational pipeline of the algorithm described in
Section 4.7.2.

The input of our algorithm consists of a regular cell complex C of a 2D
manifold and a sequence of scalar fields (ft) defined on the 0-cells of C. A
simple example of such input data is a triangulation or a quadrangular mesh
with a sequence of scalar values defined on each vertex. We then compute a
sequence of combinatorial gradient fields (Vt) with persistence threshold σ that
represents the gradient of the input data in a discrete fashion. To deduce an
importance measure for our result we will also require the persistence values
of the critical points contained in (Vt).

A closer inspection of the definition given in Section 4.7.1 reveals that we
can compute all critical lines contained in (Vt) in a streaming fashion - it is
sufficient to compute the critical lines of each consecutive pair of the sequence
(Vt). Due to the combinatorial nature of the critical lines they can easily be
merged afterwards to get the result for the complete data set. The importance
measure for a critical line introduced in Section 4.7.1 can be computed by
adding the persistence values of the critical points contained in the line. See
Figure 4.15 for an overview of the overall algorithm.

73

4. Computational Discrete Morse Theory

Efficient Extraction of Critical Lines in CFFF

As described above, it suffices to track the critical points for each consecutive
pair (Vk, Vk+1) of the sequence of combinatorial gradient fields (Vt). As defined
in Section 4.7.1, a critical point of Vk is connected to a critical point of Vk+1

if and only if there is a combinatorial streamline in the forward tracking field
V[k,k+1] and a combinatorial streamline in the backward tracking field V[k+1,k]

connecting the two points.

The goal is now to define a simple algorithm that finds all pairs of critical
points that satisfy this condition. It will be shown that we actually do not
need to construct the higher dimensional cell graph GC×[0,1]. This signifi-
cantly reduces the runtime, memory consumption, and greatly simplifies the
implementation of our algorithm.

For a depiction of the following argument, we refer to Figure 4.14. We
start with the minima. Let u denote a minimum in Vk. When we iterate the
combinatorial 0-streamlines of the forward tracking field that start in u we see
that there is only a single streamline that ends in a minimum of Vk+1. This is
due to two reasons. First, the structure of the forward tracking field implies
that the only way to reach Vk+1 is to start with the matched edge adjacent
to u. Second, a combinatorial streamline whose first node is not a 1-cell and
whose first edge is matched, is uniquely defined as it cannot split. For an
explanation of this basic property of combinatorial streamlines we refer the
reader to [For01]. The same arguments can be employed to show that there
is only a single streamline connecting a minimum of Vk+1 to a minimum of Vk
in the backward tracking field.

Tracking minima is therefore a rather simple procedure. Given a minimum
u in Vk we find its only possible partner w in Vk+1 by computing the unique
streamline in the forward tracking field that starts in u with a matched edge.
We then compute the unique streamline in the backward tracking field that
starts in w with a matched edge. If this streamline ends in u, then u and w
are connected in the sense of the definition given in Section 4.7.1.

Note that we do not actually need to construct the forward and backward
tracking fields to compute these combinatorial streamlines. It suffices to trace
them in the given pair of CGFs Vk and Vk+1 as can be seen in Figure 4.14.

The maxima can be tracked in the same way, we only have to switch forward
and backward tracking fields: the maxima of Vk+1 have only a single partner
in Vk in the forward tracking field, and the maxima of Vk have only a single
partner in Vk+1 in the backward tracking field.

While tracking minima and maxima has been proven to be rather simple,
tracking of saddles seems to be a very daunting task as the combinatorial 1-
streamlines in the higher dimensional tracking fields may merge and split (see
Figure 4.16). On first sight, it seems that the only way to compute the critical
saddle lines is a brute-force depth-first-search in the tracking fields. However,

74

4.7. Time-dependent scalar fields

u

w

u

w

Figure 4.16 Saddle tracking in CFFF. Left: Two subsequent combinatorial
gradient fields V0 and V1 on three triangles. Right: Forward tracking field
V[0,1]. The saddles (yellow) u in V0 and w in V1 are connected in V[0,1] by
a combinatorial 1-streamline (transparent) that connects the corresponding
nodes. Note that the minima lines (transparent) of the saddle of V0 (bottom-
left) intersect the maxima lines (transparent) of the saddle in V1 (top-left).

a close inspection of the structure of the tracking fields reveals that this is not
actually necessary.

Consider the 1-streamlines of the forward tracking field that start in a saddle
u of Vk and end in a saddle w of Vk+1. If we think of the graph of the forward
tracking field as consisting of three layers (the three copies of GC), we can
observe three properties of these streamlines (see Figure 4.16 for an example):

1. The layer of the nodes of the streamlines only increases and the only
node of the bottom layer is the node in which we start.

2. The section of these streamlines that runs through the second layer
follows the 0-streamlines of Vk that start in u.

3. The section of these streamlines that runs through the third layer follows
the 1-streamlines of Vk+1 and ends in w.

These properties imply that there is a combinatorial 1-streamline in the
forward tracking field that connects u with w if and only if the 0-streamlines
of Vk that start in u intersect the 1-streamlines of Vk+1 that end in w. Simi-
larly, there is a combinatorial 1-streamline in the backward tracking field that
connects w with u if and only if the 0-streamlines of Vk+1 that start in w
intersect the 1-streamlines of Vk that end in u.

Instead of a brute-force search in the higher dimensional cell graph GC×[0,1],
it therefore suffices to intersect the separatrices of u defined by Vk with the
separatrices of w defined by Vk+1 in the low dimensional cell graph GC . This
simplifies the following tracking algorithm significantly.

75

4. Computational Discrete Morse Theory

Algorithm 9 Main CFFF algorithm

Input: C, (ft), T , σ
Output: All critical lines in V[0,T]
1: GC ← constructCellGraph(C)
2: for k = 0 to T − 1 do
3: Vk ← CGF(GC , fk, σ)
4: Vk+1 ← CGF(GC , fk+1, σ)
5: lines ← lines ∪ trackMinMax(GC , Vk, Vk+1)
6: lines ← lines ∪ trackSaddles(GC , Vk, Vk+1)

Implementation

The main algorithm that tracks the critical points of a sequence of discrete
scalar fields (ft) defined on the 0-cells of a cell complex C is given in Algo-
rithm 9. Line 1 constructs the cell graph GC of the cell complex C as defined
in Section 4.1. The CGF subfunction called in Lines 3 and 4 computes a com-
binatorial gradient field with a persistence threshold σ. To do this we first
compute an initial CGF using the algorithm proposed in [RWS11].

It is proven that the resulting CGF contains exactly the critical points
contained in the discrete input data. We can thereby state an estimate for the
precision of our method. Suppose that we sample an analytic function with a
uniform grid whose cells have size h. Furthermore, assume that h is sufficiently
small so that all critical points of the analytic function are represented in the
discrete representation. Then the distance between the exact critical points
and the critical points in the CGF is smaller than h.

To compute the simplified CGF we follow the approach presented in Sec-
tion 4.3. We thereby compute the whole sequence of simplified CGFs, which
has the advantage of allowing the user to quickly select the appropriate sim-
plification threshold σ in a post processing step. For the persistence values,
we employ the matrix reduction algorithm presented in [CSEM06].

Line 5 and 6 extract the critical minima, maxima and saddle lines of the
current pair of CGFs as defined in Section 4.7.1 using the simplified but equiv-
alent definition presented in Section 4.7.2.

To compute the critical lines we need to compute a lot of combinatorial
p-streamlines in a given CGF Vk. The pseudo-code for such a combinatorial
streamline integrator is given in Algorithm 10. Almost all computational
time of the main Algorithm 9 is spent integrating such lines which makes the
performance of this algorithm crucial for the overall runtime. Note that due
to the structure of the cell graph GC and the matching property of Vk, there
cannot exist multiple edges that fulfill the condition in Line 3. Of course,
an actual implementation would not take the complement of the matching in
each iteration (Line 5). One would rather simply switch the if condition in

76

4.7. Time-dependent scalar fields

Algorithm 10 Combinatorial Streamline Integrator: traceLine(...)

Input: GC = (S,L), Vk ⊂ L, u ∈ S, p = 0, 1
Output: Combinatorial p-streamline that starts in u
1: loop
2: Line.append(u)
3: if there exists w: {u,w} = `p ∈ Vk then
4: u ← w
5: Vk ← V c

k

6: else
7: return

Algorithm 11 Min and max tracking algorithm: trackMinMax(...)

Input: GC = (S,L), Vk ⊂ L, Vk+1 ⊂ L
Output: All critical min/max lines in V(k,k+1)

1: for all up /∈ S(Vk) and p 6= 1 do
2: p ← max(0, p− 1)
3: Line ← traceLine(GC , Vk+1, u, p)
4: w ← Line.last()
5: Line ← traceLine(GC , Vk, w, p)
6: if Line.last() = u then
7: MinMaxCritLines.append({u,w})

Line 3.

Using Algorithm 10, we can compute the critical minima and maxima lines
as shown in Algorithm 11. For each minimum or maximum u (Line 1) of the
first CGF Vk, we integrate the corresponding combinatorial p-streamline in
Vk+1 (Line 3). We now take the last point w of this streamline as the start
point of a streamline in Vk (Lines 4, 5). If this streamline comes back to u
(Line 6), we found a critical line in V(k,k+1) and append the pair {u,w} to the
result.

To compute the critical saddle lines, we need to compute the separatrices
of the saddles. A simple method that returns the separatrices of type p of
the saddle u in the CGF Vk is given in Algorithm 12. We iterate over all
adjacent edges ` of the saddle u of the given type p (Line 1) and integrate the
combinatorial p-streamline that starts in the end point w of ` (Line 2). This
line is then appended to the separatrices (Line 3).

Using Algorithm 12, we can now trace the critical saddle lines as shown in
Algorithm 13. Each saddle is appended to the nodes covered by its separatrices
of type 0 (Lines 1-8). We then iterate over each saddle u of Vk (Line 9). The
possible saddle partners for u in Vk+1 are then given as the union of the saddles
in Vk+1 whose separatrices of type 0 are intersected by the separatrices of type
1 of u (Lines 10-13). For each such partner w we then iterate its partners in

77

4. Computational Discrete Morse Theory

Algorithm 12 Separatrix Integrator: traceSeps(...)

Input: GC = (S,L), Vk ⊂ L, u ∈ S, p = 0, 1
Output: All combinatorial p-streamlines that start in saddle u
1: for all {u,w} = `p ∈ L do
2: Line ← traceLine(GC , Vk, w, p)
3: Separatrices.append(Line)

Algorithm 13 Saddle tracking algorithm: trackSaddles(...)

Input: GC = (S,L), Vk ⊂ L, Vk+1 ⊂ L
Output: All critical saddle lines in V(k,k+1)

1: for all u1 /∈ S(Vk) do
2: minLinesu ← traceSeps(GC , Vk, u, 0)
3: for all w ∈ minLinesu do
4: saddlesk[w].append(u)
5: for all u1 /∈ S(Vk+1) do
6: minLinesu ← traceSeps(GC , Vk+1, u, 0)
7: for all w ∈ minLinesu do
8: saddlesk+1[w].append(u)
9: for all u1 /∈ S(Vk) do

10: maxLinesu ← traceSeps(GC , Vk, u, 1)
11: partnersu ← ∅
12: for all w ∈ maxLinesu do
13: partnersu ← partnersu ∪ saddlesk+1[w]
14: for all w ∈ partnersu do
15: maxLinesw ← traceSeps(GC , Vk+1, w, 1)
16: partnersw ← ∅
17: for all v ∈ maxLinesw do
18: partnersw ← partnersw ∪ saddlesk[v]
19: if u ∈ partnersw then
20: SaddleCritLines.append({u,w})

Vk (Lines 14-18). If this set of saddles contains u, we have found a critical
saddle line in V(k,k+1) and append the pair {u,w} to the result.

4.7.3 Evaluation

In this Section, we will evaluate the algorithm presented in Section 4.7.2. We
show its robustness with respect to noise, compare it to the continuous Feature
Flow Field tracking algorithm, and apply it to a real-world data set from
computational fluid dynamics. We conclude the evaluation of our algorithm
with a performance analysis.

78

4.7. Time-dependent scalar fields

Robustness

To demonstrate the ability of our algorithm to deal with noisy data we consider
a synthetic data set. The data values are given by a 2D analytic function
sampled on a uniform 256 × 256 mesh. A height field visualization of this
function is shown in Figure 4.17. This data is then rotated to generate a
sequence of 256 scalar fields (ft) on the uniform mesh. To show the influence
of the noise on the extraction methods we added an increasing amount of noise
to the second half of the sequence (ft).

(a) (b)

(c)

Figure 4.17 Evaluation of noise robustness on a synthetic data set – time
is represented using the z-coordinate. a) critical saddle lines extracted with
the Stable Feature Flow Field method. b) critical saddle lines of the Stable
Feature Flow Field method filtered by line length. c) critical saddle lines
extracted by our method using an appropriate persistence threshold σ.

We then applied the algorithm presented in Section 4.7.2 and the stabilized
continuous Feature Flow Field method [WTGP10] to this data set. Figure 4.17
shows the critical saddle lines extracted by these two algorithms. Due to the

79

4. Computational Discrete Morse Theory

presence of noise, the continuous extraction method results in an overwhelming
number of critical saddle lines. Note that some important lines are interrupted
which implies that they are removed early when we filter the result by line
length. In contrast, our combinatorial algorithm is able to extract all domi-
nant critical saddle lines of this time-dependent data set using a persistence
threshold σ slightly above the range of the noise.

Comparison

We compare our algorithm to the stabilized continuous Feature Flow Field
method [WTGP10] using a data set from fluid dynamics [NSA+08]. The data
set consists of a simulation of the time-dependent flow behind a cylinder. The
data set is given on an adaptive mesh with 108k vertices and 320 time steps.
We analyze the scalar quantity acceleration, a measure for vortex activity in
fluid flows [KHNH10] depicted in Figure 4.19. For the combinatorial method
we set the persistence threshold σ for the computation of the combinatorial
gradient fields to about one percent of the data range.

Figure 4.18 shows the critical lines extracted by both methods in a small
subregion of the data set. The continuous results are shown in the left (orig-
inal data set) and middle column (a smoothed version of the data) while the
combinatorial results are shown in the right column. The three rows show the
critical minima lines (top), saddle lines (middle), and maxima lines (bottom).

Figure 4.18 Comparison between the Stable Feature Flow Field method (left
column) and our combinatorial method (right column) on a subset of the
cylinder flow data set. The middle column depicts the result of the Stable
Feature Flow Field method applied to a pre-smoothed version of the data set.
Top row: critical minima lines. Middle row: critical saddle lines. Bottom row:
critical maxima lines.

In general, both methods extract the correct critical lines in the right half of
the depicted subregion of the data set. Some lines extracted by the continuous
method do contain a very high oscillation. Applying the continuous method
to the smoothed version of the data set removes these oscillations, but also
removes some important critical lines.

80

4.7. Time-dependent scalar fields

Figure 4.19 Evaluation of different filter criteria for critical minima lines (blue)
of the acceleration of a flow dataset. The dominant minima of the acceleration
describe vortex activity of the flow. Top: all extracted critical minima lines
computed by Algorithm 9 without any post processing. Bottom: lines filtered
by length. Continued in Figure 4.20

81

4. Computational Discrete Morse Theory

Figure 4.20 Continued from Figure 4.19. Top: lines filtered by spatial per-
sistence. Bottom: lines filtered by our novel importance measure integrated
persistence. The lines with high integrated persistence correspond to the dom-
inant vortex activity of this data set as shown in [WSTH07].

82

4.7. Time-dependent scalar fields

Application

We applied our method to a scalar data set derived from a flow simulation
[CSD03]. The simulation shows the flow over a cavity from left to right. Due
to the cavity, there is a dominant vortex that separates from the wall after
some time and moves through the cavity to the right side, where it hits the
other wall.

Figure 4.21 Application of our method to a real-world data set from com-
putational fluid dynamics. The data set is the simulation of the flow over
a cavity. The dominant minima of the acceleration of the flow describe the
vortex activity. We extracted the critical minima lines of this data set using
our method. The thickness of these lines is defined by our novel importance
measure integrated persistence. To demonstrate the physical relevance of this
importance measure, path lines are seeded in the vicinity of the most impor-
tant lines. Note that there is a short, but important critical line in this data
set (see close-up). This shows that the length of a critical line by itself is not
a good importance measure in general.

As an indicator for time-dependent vortex structures, we used acceleration,
a scalar quantity whose dominant minima indicate vortex activity [KHNH10,
FKS+10]. Note that in contrast to the zeros of the velocity field, the minima of
the acceleration do not depend on the chosen frame of reference. We computed
the acceleration on the adaptive mesh that was used during the simulation of
the flow consisting of 26k nodes for each of the 690 time steps. For the
combinatorial computation of the critical lines, the persistence threshold σ
was set to about one percent of the data range. Since we are only interested

83

4. Computational Discrete Morse Theory

in the minima of the acceleration, we only show the critical minimal lines
in Figure 4.21. To demonstrate the physical significance of the importance
measure introduced in Section 4.7.1, the thickness of the lines is determined
by Integrated Persistence. The dominant vortices that pass through the cavity
have a high Integrated Persistence. This can be visualized by seeding path
lines in the vicinity of the lines with high Integrated Persistence.

Note that our algorithm has found one critical minima line that is difficult
to observe manually (see zoom-in in Figure 4.21 and consider the color map
therein). This short critical line has a higher Integrated Persistence than
most other critical lines in the data set. By seeding path lines in its vicinity
we observe that this line corresponds to strong vortex activity.

This example shows that it is in general problematic to use line length as
an importance measure for critical lines.

Performance

The performance of our implementation was calculated for all three data sets
used in this section. Table 4.3 contains the running times for a standard
workstation containing two Intel Xeon E5620 CPUs. The table shows the
number of data values given at the vertices of the grid and the number of slices
T for which the critical lines were computed. Tracking the critical points in
the computed CGFs is very fast - for a mesh with approximately one hundred
thousand vertices, only 38 milliseconds are required for each time step.

Dataset #vertices T CGF Pers. CFFF Total

Synthetic 65k 256 77s 67s 5s 149s
Cavity 26k 690 186s 110s 4s 300s

Cylinder 108k 320 368s 96s 12s 476s

Table 4.3 Performance analysis of the CFFF method. For each data set
shown in this section we measured the running time for the computation of
the combinatorial gradient fields (CGF), the computation of the persistence
values (Pers.), and the tracking of the critical points in the resulting sequence
(CFFF).

For comparison, we have also measured the running time of the stable Fea-
ture Flow Field method. Computing the critical lines for the synthetic data
set shown in Figure 4.17 with this method takes 333 seconds compared to the
total running time of 149s using our method. Comparing the running time
for the other data sets is problematic, since they are defined on an adaptive
mesh and the implementation of the Feature Flow Field that is available to
us can only be applied to uniform grids.

84

4.7. Time-dependent scalar fields

Note that the timings for the CGF computation represent the computation
of the full hierarchy of CGFs (4.8). The user can thereby quickly select an
appropriate persistence threshold σ in a post processing step.

4.7.4 Discussion

As shown in Section 4.7.3, our combinatorial algorithm to extract critical lines
of time-dependent two dimensional scalar fields works very well in practice:

1. It effectively handles noisy data, see Figure 4.17.

2. It allows for a physically relevant importance measure for the tracked
critical points, see Figures 4.19 and 4.21.

3. Its extracted features correspond to the results of the Feature Flow Field
method for a smooth data set, see Figure 4.18.

4. It has a practical running time, see Table 4.3.

The robustness of our algorithm with respect to noise is mainly due to the
notion of persistence which allows for a robust computation of a CGF. Unfor-
tunately, using persistence can be problematic if the data contains outliers.
To efficiently deal with such data, an importance measure for critical points
would need to be developed that can address outliers in a sensible way.

Many of the existing tracking algorithms mentioned in Section 2.3 extract
bifurcation points, i.e. the points where a pair of critical points appears or
disappears. The spatial importance of such critical points becomes arbitrarily
small as they approach a bifurcation point, see Figure 4.22.

Due to our focus on noise resilient extraction of critical lines, we do not aim
at a precise computation of bifurcation points in this work. Note that critical
points of course can appear or disappear in our method – we start tracking
them as soon as their spatial importance is high enough to differentiate them
from noise induced critical points.

85

4. Computational Discrete Morse Theory

Figure 4.22 Bifurcation handling in CFFF. Right: a maximum-saddle pair
evolving over time. Left: spatial importance of this pair over time. The pair
is only tracked while the spatial importance is above the threshold σ. For
t < t0 and t1 < t the critical points are considered as noise.

86

Chapter 5

Conclusions and Outlook

The unified framework proposed in Chapter 4 has been shown to be well
suited for two dimensional data of various types in Sections 4.4 - 4.7. We
have shown that it is possible to treat vector fields, scalar fields, divergence-
free vector fields, and time-dependent scalar fields using the generic pipeline
described in Section 4.3.

This pipeline produces extremal structures that are always consistent with
the topology of the domain of the given data set. This mathematical property
is preserved in practice due to the combinatorial nature of the definitions and
algorithms which allow for an exact binary representation. The topological
consistence of the computed result significantly increases the robustness of
our algorithm: a single critical point cannot be missed or misclassified, as this
would make the resulting extremal structure topologically inconsistent.

This combinatorial nature is also a great advantage in practice, since no
computational parameters have to be adjusted for each data set to get the
desired result. This is an essential property for gaining insight through data
analysis since it admits the objective discovery of new features in the data
set. It is also beneficial for the automated analysis of a series of data sets
since it is sometimes not practical to adjust numerical parameters for each
element of the sequence. Also, the running time for a given data set size is
quite predictable.

The concept of a hierarchy of extremal structures is also very useful in
practice. It allows to treat noisy data sets directly and the user can choose
to only extract the dominant features of the data set. In classical approaches,
the data is often explicitly smoothed in a preprocessing step, or indirectly
by robust gradient recovery schemes. This may disturb the true extremal
structure of the data set – new critical points may be created, or existing ones
may be destroyed. In contrast, our approach extracts all extremal structures
and allows the user to remove noise by selecting an appropriate importance
threshold, see e.g. Figure 4.10. It is also possible to restrict the output of our
algorithm to the features with a high importance value. For example, the tiny

87

5. Conclusions and Outlook

feature shown in the zoom-in in Figure 4.21 has a high importance, but would
be quickly destroyed in a smoothing process due to its small spatial extent.

The assumption that the input data is defined on a cell complex is very
general and allows to support most mesh types encountered in practice using
a well defined interface. The clear separation of the mesh type from the data
type allows complex algorithms [GRP+] to be applicable to all mesh types
without any modifications. It also allows to exploit regular structures of the
mesh transparently. For example, in [GRWH] the regular structure of lattices
was heavily exploited to propose a memory efficient algorithm for 3D image
data. While such an implicit representation of a cubical cell complex is quite
involved, it only has to be written once and all algorithms contained in this
thesis can profit from it.

There are two main areas where the existing framework can be improved.

The first area is the extension and evaluation of the existing algorithms to
higher dimensions:

• While the algorithm for vector fields proposed in Section 4.4 is applicable
to any dimension, it is not known how the practical complexity and
the approximation quality of the algorithm would be affected by the
different structure of a high dimensional cell complex. Also, the efficient
computation of the k-orbits with 0 < k < d− 1 is an open problem.

• For scalar valued data, an extension of the algorithm described in Sec-
tion 4.5 to three dimension has been proposed and evaluated in [GRP+].
An algorithm with mathematical guarantees is also available [RWS11].
In contrast, the treatment of even higher dimensional data sets is unclear
and could even be unfeasible due to topological obstructions, see [Bau11,
RWS11].

• The current approach to divergence-free vector fields proposed in Sec-
tion 4.6 is restricted to two dimensions and it is not clear how one would
extent it to higher dimensions. A good starting point for a combinatorial
treatment may consist of combinatorial Novikov-Morse theory [For02].

• The combinatorial feature flow field definition introduced in Section 4.7
for time-dependent scalar fields can be directly extended to higher di-
mensions. The main algorithmic challenge is the efficient extraction of
the critical lines. For two dimensions this is shown in Section 4.7.2. It
is not known whether the same ideas can be applied to track saddles in
higher dimensions.

Tracking minima and maxima in higher dimension however is doable
– a close inspection of the definition of combinatorial critical minima
and maxima lines in higher dimensions reveals that they have the same
combinatorial structure as in two dimension. Given an algorithm that

88

can compute a combinatorial gradient field for a high dimensional data
set we can therefore directly use our algorithm to track its minima and
maxima.

The second area concerns the geometric embedding of the separatrices and
orbits. As can be seen in Figure 4.7, the combinatorial streamlines do not
follow the streamlines of the continuous vector field. In fact, a periodic orbit
with the shape of a circle will always be approximated by an octagon on a
uniform mesh in the combinatorial setting – regardless of the mesh resolution.
While the geometric embedding of the separatrices is fine for many data sets,
see e.g. Figure 4.11, it would be beneficial to have an algorithm whose combi-
natorial separatrices and orbits converge to the analytic ones with increasing
mesh resolution.

Looking for such an algorithm that is still combinatorial, topologically con-
sistent, and parameter-free, is probably a difficult but highly rewarding en-
deavor.

89

Bibliography

[Aim] AimAtShape, http://shapes.aim-at-shape.net/.

[Bau11] Ulrich Bauer, Persistence in discrete morse theory, Ph.D. thesis,
University of Göttingen, 2011.

[Bel58] Richard Bellman, On a routing problem, Quarterly of Applied
Mathematics 16 (1958), no. 1, 87–90.

[BLW10] Ulrich Bauer, Carsten Lange, and Max Wardetzky, Opti-
mal topological simplification of discrete functions on surfaces,
arXiv:1001.1269v2 (2010).

[BP02] Dirk Bauer and Ronald Peikert, Vortex tracking in scale space,
Joint Eurographics — IEEE TCVG Symposium on Visualization,
May 2002, pp. 140–147.

[BSS02] Chandrajit Bajaj, Ariel Shamir, and Bong-Soo Sohn, Progressive
tracking of isosurfaces in time-varying scalar fields, Tech. Report
TR-02-4, CS & TICAM, Department of Computer Sciences &
TICAM, University of Texas Austin, 2002.

[BWP+10] Peer-Timo Bremer, Gunther H. Weber, Valerio Pascucci, Marc
Day, and John B. Bell, Analyzing and tracking burning structures
in lean premixed hydrogen flames, IEEE Transactions on Visual-
ization and Computer Graphics 16 (2010), no. 2, 248–260.

[Cay59] A. Cayley, On contour and slope lines, The London, Edinburg and
Dublin Philosophical Magazine and Journal of Science 18 (1859),
264–268.

[CCA+05] J.R. Cebral, M.A. Castro, S. Appanaboyina, C.M. Putman,
D. Millan, and A.F. Frangi, Efficient pipeline for image-based
patient-specific analysis of cerebral aneurysm hemodynamics:
technique and sensitivity, IEEE transactions on medical imaging
24 (2005), no. 4, 457–467.

[Cha00] Manoj K. Chari, On discrete morse functions and combinatorial
decompositions, Discrete Math. 217 (2000), no. 1-3, 101–113.

91

Bibliography

[CJR07] Jesus Caban, Alark Joshi, and Penny Rheingans, Texture-based
feature tracking for effective time-varying data visualizations,
IEEE Transactions on Visualization and Computer Graphics
(Vis07) 13 (2007), no. 6, 1472–1479.

[CML+07] G. Chen, K. Mischaikow, R.S. Laramee, P. Pilarczyk, and
E. Zhang, Vector field editing and periodic orbit extraction us-
ing morse decomposition, IEEE Transactions in Visualization and
Computer Graphics 13 (2007), 769–785.

[CMLZ08] Guoning Chen, Konstantin Mischaikow, Robert S. Laramee, and
Eugene Zhang, Efficient morse decomposition of vector fields,
IEEE Transaction on Visualization and Computer Graphics 14
(2008), no. 4, 848–862.

[Con78] C. Conley, Isolated invariant sets and the morse index, AMS Con-
ference Board of the Mathematical Sciences Series No. 38 (1978).

[CSD03] Edgar Caraballo, Mo Samimy, and J. DeBonis, Low dimensional
modeling of flow for closed-loop flow control, AIAA Paper 59
(2003).

[CSEM06] David Cohen-Steiner, Herbert Edelsbrunner, and Dmitriy Moro-
zov, Vines and vineyards by updating persistence in linear time,
Proceedings of the twenty-second annual symposium on Compu-
tational geometry (New York, NY, USA), SCG ’06, ACM, 2006,
pp. 119–126.

[Die97] R. Diestel, Graph theory, Springer-Verlag, Heidelberg, Germany,
1997.

[Dij59] Edsger. W. Dijkstra, A note on two problems in connexion with
graphs., Numerische Mathematik 1 (1959), 269–271.

[DLL+10] Tamal K. Dey, K. Li, Chuanjiang Luo, Pawas Ranjan, Is-
sam Safa, and Yusu Wang, Persistent heat signature for pose-
oblivious matching of incomplete models, Comput. Graph. Forum
29 (2010), no. 5, 1545–1554.

[dLvL01] Wim de Leeuw and Robert van Lieres, Chromatin decondensa-
tion: A case study of tracking features in confocal data, VIS ’01:
Proceedings of the conference on Visualization ’01 (Washington,
DC, USA), IEEE Computer Society, 2001, pp. 441–444.

[EH04] Herbert Edelsbrunner and J. Harer, Jacobi sets of multiple Morse
functions, Foundations of Computational Mathematics, Min-
neapolis 2002 (F. Cucker, R. DeVore, P. Olver, and E. Sueli, eds.),
Cambridge Universtiy Press, 2004, pp. 37–57.

92

Bibliography

[EH08] , Persistent homology — a survey, Surveys on Discrete and
Computational Geometry: Twenty Years Later (J. E. Goodman,
J. Pach, and R. Pollack, eds.), vol. 458, AMS Bookstore, 2008,
pp. 257–282.

[EHM+08] Herbert Edelsbrunner, John Harer, Ajith Mascarenhas,
J. Snoeyink, and Valerio Pascucci, Time-varying Reeb graphs
for continuous space-time data, Computation Geometry: Theory
and Applications 41 (2008), no. 3, 149–166.

[EHNP03] Herbert Edelsbrunner, John Harer, Vijay Natarajan, and Valerio
Pascucci, Morse-smale complexes for piecewise linear 3-manifolds,
SCG ’03: Proceedings of the nineteenth annual symposium on
Computational geometry (New York, NY, USA), ACM, 2003,
pp. 361–370.

[ELZ02] H. Edelsbrunner, D. Letscher, and A. Zomorodian, Topological
persistence and simplification, Discrete Computational Geometry
28 (2002), 511–533.

[FKS+10] Raphael Fuchs, Jan Kemmler, Benjamin Schindler, Filip Sadlo,
Helwig Hauser, and Ronald Peikert, Toward a Lagrangian Vector
Field Topology, Computer Graphics Forum 29 (2010), no. 3, 1163–
1172.

[For56] L.R. Ford, Network flow theory, Paper P-923, The RAND Cor-
peration, Santa Moncia, California, August 1956.

[For98a] Robin Forman, Combinatorial vector fields and dynamical sys-
tems, Mathematische Zeitschrift 228 (1998), 629–681.

[For98b] Robin Forman, Morse theory for cell complexes, Advances in
Mathematics 134 (1998), 90–145.

[For01] Robin Forman, A user’s guide to discrete morse theory, Proceed-
ings of the 2001 Internat. Conf. on Formal Power Series and Al-
gebraic Combinatorics, Advances in Applied Mathematics, 2001.

[For02] , Combinatorial novikov-morse theory, International Jour-
nal of Mathematics 13 (2002), 333–368.

[FT87] Michael L. Fredman and Robert Endre Tarjan, Fibonacci heaps
and their uses in improved network optimization algorithms, J.
ACM 34 (1987), 596–615.

[GBHP08] Attila Gyulassy, Peer-Timo Bremer, Bernd Hamann, and Valerio
Pascucci, A practical approach to Morse-Smale complex computa-
tion: scalability and generality, IEEE Transactions on Visualiza-
tion and Computer Graphics 14 (2008), 1619–1626.

93

Bibliography

[GBPH11] Attila Gyulassy, Peer-Timo Bremer, Valerio Pascucci, and Bernd
Hamann, Practical considerations in Morse-Smale complex com-
putation, Topological Methods in Data Analysis and Visualiza-
tion (Valerio Pascucci, Xavier Tricoche, Hans Hagen, and Julien
Tierny, eds.), Mathematics and Visualization, Springer Berlin
Heidelberg, 2011, pp. 67–78.

[GNP+06] Attila Gyulassy, Vijay Natarajan, Valerio Pascucci, Peer-Timo
Bremer, and Bernd Hamann, A topological approach to simplifi-
cation of three-dimensional scalar functions, IEEE Transactions
on Visualization and Computer Graphics 12 (2006), no. 4, 474–
484.

[GNPH07] Attila Gyulassy, Vijay Natarajan, Valerio Pascucci, and Bernd
Hamann, Efficient computation of Morse-Smale complexes for
three-dimensional scalar functions, IEEE Transactions on Visu-
alization and Computer Graphics 13 (2007), 1440–1447.

[GRP+] David Günther, Jan Reininghaus, Steffen Prohaska, Tino
Weinkauf, and Hans-Christian Hege, Efficient computation of
a hierarchy of discrete 3d gradient vector fields, Topological
Methods in Data Analysis and Visualization II (Ronald Peikert,
Hamish Carr, and Helwig Hauser, eds.), Mathematics and Visu-
alization, Springer Berlin Heidelberg, to appear.

[GRWH] David Günther, Jan Reininghaus, Hubert Wagner, and Ingrid
Hotz, Memory-efficient computation of persistent homology for
3d images using discrete morse theory, Proceedings Sibgrapi 2011
– Conference on Graphics, Patterns and Images, to appear.

[GTS04] Christoph Garth, Xavier Tricoche, and Gerik Scheuermann,
Tracking of vector field singularities in unstructured 3d time-
dependent datasets, VIS ’04: Proceedings of the conference on
Visualization ’04 (Washington, DC, USA), IEEE Computer Soci-
ety, 2004, pp. 329–336.

[Gyu08] Attila Gyulassy, Combinatorial construction of morse-smale com-
plexes for data analysis and visualization., Ph.D. thesis, Univer-
sity of California, Davis, 2008.

[Hat02] A. Hatcher, Algebraic topology, Cambridge University Press,
Cambridge, U.K., 2002.

[HD04] S. Hougardy and D.E. Drake, Approximation algorithms for the
weighted matching problem, Oberwolfach Report 28, 2004.

94

Bibliography

[Hel58] Hermann Helmholtz, Über integrale der hydrodynamischen gle-
ichungen, welche den wirbelbewegungen entsprechen, J. Reine
Angew. Math. 55 (1858), 25–55.

[HH89] J. Helman and L. Hesselink, Representation and display of vector
field topology in fluid flow data sets, Computer 22 (1989), no. 8,
27–36.

[HN07] P. Harish and P.J. Narayanan, Accelerating large graph algorithms
on the gpu using cuda, Proc of IEEE International Conference on
High Performance Computing, 2007.

[Ji06] Guangfeng Ji, Feature tracking and viewing for time-varying data
sets, Ph.D. thesis, Ohio State University, Columbus, OH, USA,
2006, Adviser-Shen, Han-Wei.

[JP06] Michael Joswig and Marc E. Pfetsch, Computing optimal Morse
matchings, SIAM J. Discret. Math. 20 (2006), no. 1, 11–25.

[JSW03] Guangfeng Ji, Han-Wei Shen, and Rephael Wenger, Volume track-
ing using higher dimensional isosurfacing, VIS ’03: Proceedings
of the 14th IEEE Visualization 2003 (VIS’03) (Washington, DC,
USA), IEEE Computer Society, 2003, pp. 209–216.

[KE07] Thomas Klein and Thomas Ertl, Scale-space tracking of critical
points in 3d vector fields, Topology-based Methods in Visualiza-
tion (Hans Hagen Helwig Hauser and Holger Theisel, eds.), Math-
ematics and Visualization, Springer Berlin Heidelberg, May 2007,
pp. 35–49.

[KHNH10] J. Kasten, I. Hotz, B.R. Noack, and H.-C. Hege, On the extrac-
tion of long-living features in unsteady fluid flows, Topological
Methods in Data Analysis and Visualization. Theory, Algorithms,
and Applications. (Valerio Pascucci, Xavier Tricoche, Hans Ha-
gen, and Julien Tierny, eds.), Springer, 2010, pp. 115–126.

[KKM05] Henry King, Kevin Knudson, and Neza Mramor, Generating dis-
crete Morse functions from point data, Experimental Mathemat-
ics 14 (2005), no. 4, 435–444.

[KKM08] , Birth and death in discrete morse theory,
arXiv:0808.0051v1 (2008).

[KRHH11] Jens Kasten, Jan Reininghaus, Ingrid Hotz, and Hans-Christian
Hege, Two-dimensional time-dependent vortex regions based on
the acceleration magnitude., IEEE Trans. Vis. Comput. Graph.
17 (2011), no. 12, 2080–2087.

95

Bibliography

[Kuh55] H. Kuhn, The hungarian method for the assignment problem,
Naval Research Logistics Quarterly 2 (1955), 83–97.

[LBM+06] D. Laney, P. T. Bremer, A. Mascarenhas, P. Miller, and V. Pas-
cucci, Understanding the structure of the turbulent mixing layer
in hydrodynamic instabilities, IEEE Transactions on Visualization
and Computer Graphics 12 (2006), no. 5, 1053–1060.

[Lew02] Thomas Lewiner, Constructing discrete morse function, Master’s
thesis, Pontif́ıcia Universidade Católica do Rio de Janeiro, De-
partment of Mathematics, 2002.

[Lew05] , Geometric discrete Morse complexes, Ph.D. thesis, De-
partment of Mathematics, PUC-Rio, 2005, Advised by Hélio
Lopes and Geovan Tavares.

[LHZP07] Robert S. Laramee, Helwig Hauser, Lingxiao Zhao, and Frits H.
Post, Topology-based flow visualization, the state of the art,
Topology-based Methods in Visualization (Hans Hagen Hel-
wig Hauser and Holger Theisel, eds.), Mathematics and Visu-
alization, Springer Berlin Heidelberg, May 2007, pp. 1–19.

[LLT04] Thomas Lewiner, Helio Lopes, and Geovan Tavares, Applications
of forman’s discrete morse theory to topology visualization and
mesh compression, IEEE Transactions on Visualization and Com-
puter Graphics 10 (2004), no. 5, 499–508.

[Max70] J. C. Maxwell, On hills and dales, The London, Edinburg and
Dublin Philosophical Magazine and Journal of Science 40 (1870),
421–425.

[Mil63] John Milnor, Morse theory, Princeton University Press, 1963.

[Mil65] J.W. Milnor, Topology from the differentiable viewpoint, Univ.
Press Virginia, 1965.

[MKFI97] X. Mao, M. Kikukawa, N. Fujeta, and N. Imamiya, Line integral
convolution for 3d surfaces, Visualization in Scientific Computing
’97 (W. Lefer and M. Grave, eds.), Springer, Berlin, 1997, pp. 57–
69.

[Mun84] J. R. Munkres, Elements of algebraic topology, Addison-Wesley,
Redwood City, 1984.

[NSA+08] B. R. Noack, M. Schlegel, B. Ahlborn, G. Mutschke, M.
Morzyński, P. Comte, and G. Tadmor, A finite-time thermody-
namics of unsteady fluid flows, J. Non-Equilibr. Thermodyn. 33
(2008), no. 2, 103–148.

96

Bibliography

[Pan84] R.W. Panton, Incompressible Flow, John Wiley & Sons, New
York, etc., 1984.

[Pos03] Frits H. Post, The state of the art in flow visualization: Feature
extraction and tracking, Computer Graphics Forum (David Duke
and Roberto Scopigno, eds.), vol. 22(4), Blackwell Publishing Inc,
Oxford, UK and Boston, USA, June 2003, pp. 775–792.

[PP02] Konrad Polthier and Eike Preuß, Identifying vector field singular-
ities using a discrete Hodge decomposition, Springer Verlag, 2002,
pp. 112–134.

[PPL+10] Fabiano Petronetto, Afonso Paiva, Marcos Lage, Geovan Tavares,
Hélio Lopes, and Thomas Lewiner, Meshless Helmholtz-Hodge de-
composition, Transactions on Visualization and Computer Graph-
ics 16 (2010), no. 2, 338–342.

[RGH+10] Jan Reininghaus, David Günther, Ingrid Hotz, Steffen Prohaska,
and Hans-Christian Hege, TADD: A computational framework for
data analysis using discrete Morse theory, Mathematical Software
– ICMS 2010 (Komei Fukuda, Joris van der Hoeven, Michael
Joswig, and Nobuki Takayama, eds.), Lecture Notes in Computer
Science, vol. 6327, Springer, 2010, pp. 198–208.

[RH] Jan Reininghaus and Ingrid Hotz, Computational discrete morse
theory for divergence-free 2d vector fields, Topological Methods
in Data Analysis and Visualization II (Ronald Peikert, Hamish
Carr, and Helwig Hauser, eds.), Mathematics and Visualization,
Springer Berlin Heidelberg, to appear.

[RH11] Jan Reininghaus and Ingrid Hotz, Combinatorial 2d vector field
topology extraction and simplification, Topological Methods in
Data Analysis and Visualization (Valerio Pascucci, Xavier Tric-
oche, Hans Hagen, and Julien Tierny, eds.), Mathematics and
Visualization, Springer Berlin Heidelberg, 2011, pp. 103–114.

[RKG+11] Jan Reininghaus, Natallia Kotava, David Guenther, Jens Kasten,
Hans Hagen, and Ingrid Hotz, A scale space based persistence
measure for critical points in 2d scalar fields, IEEE Transactions
on Visualization and Computer Graphics 17 (2011), 2045–2052.

[RKWH11] Jan Reininghaus, Jens Kasten, Tino Weinkauf, and Ingrid Hotz,
Efficient computation of combinatorial feature flow fields, IEEE
Transactions on Visualization and Computer Graphics 99 (2011),
no. PrePrints.

97

Bibliography

[RLH11] Jan Reininghaus, Christian Löwen, and Ingrid Hotz, Fast combi-
natorial vector field topology, IEEE Transactions on Visualization
and Computer Graphics 17 (2011), 1433–1443.

[RPP+09] Olufemi Rosanwo, Christoph Petz, Steffen Prohaska, Ingrid Hotz,
and Hans-Christian Hege, Dual streamline seeding, Proceedings of
the IEEE Pacific Visualization Symposium (Peter Eades, Thomas
Ertl, and Han-Wei Shen, eds.), 2009, pp. 9 – 16.

[RPS99] F. Reinders, F.H. Post, and H.J.W. Spoelder, Attribute-based fea-
ture tracking, Proceedings of EG - IEEE TCVG Symposium on
Visualization ’99, 1999.

[RSVP02] F Reinders, I A Sadarjoen, B Vrolijk, and F H Post, Vortex track-
ing and visualisation in a flow past a tapered cylinder, Computer
Graphics Forum 21 (2002), no. 4, 675–682.

[RWS11] Vanessa Robins, Peter John Wood, and Adrian P. Sheppard,
Theory and algorithms for constructing discrete morse complexes
from grayscale digital images., IEEE Trans. Pattern Anal. Mach.
Intell. 33 (2011), no. 8, 1646–1658.

[SB06] Bong-Soo Sohn and Chandrajit Bajaj, Time-varying contour
topology, IEEE Transactions on Visualization and Computer
Graphics 12 (2006), no. 1, 14–25.

[Sch03] Alexander Schrijver, Combinatorial optimization, Springer, 2003.

[SG08] J.J. Sanchez-Gabites, Dynamical systems and shapes, RACSAM:
Geometry and Topology 102 (2008), 127–159.

[SH95] D. Stalling and H. Hege, Fast and resolution independent line
integral convolution, Proceedings Siggraph ’95 (1995), 249–256,
Los Angeles.

[Sho09] Clayton Shonkwiler, Poincaré duality angles for Riemannian
manifolds with boundary, Tech. Report arXiv:0909.1967, Sep
2009, Comments: 51 pages, 6 figures.

[Sma61] Stephen Smale, On gradient dynamical systems, The Annals of
Mathematics 74 (1961), 199–206.

[SSZC94] Ravi Samtaney, Deborah Silver, Norman Zabusky, and Jim Cao,
Visualizing features and tracking their evolution, Computer 27
(1994), no. 7, 20–27.

[SW97] Deborah Silver and Xin Wang, Tracking and visualizing turbulent
3d features, IEEE Transactions on Visualization and Computer
Graphics 3 (1997), no. 2, 129–141.

98

Bibliography

[SWH05] D. Stalling, M. Westerhoff, and H.-C. Hege, Amira: A highly in-
teractive system for visual data analysis, The Visualization Hand-
book (2005), 749–767.

[TLHD03] Yiying Tong, Santiago Lombeyda, Anil N. Hirani, and Math-
ieu Desbrun, Discrete multiscale vector field decomposition, ACM
Transactions on Graphics (TOG) - Proceedings of ACM SIG-
GRAPH, vol. 22, 2003.

[TS03] Holger Theisel and Hans-Peter Seidel, Feature flow fields, Vis-
Sym ’03: Proceedings of the symposium on Data Visualization
2003 (Aire-la-Ville, Switzerland, Switzerland), Eurographics As-
sociation, 2003, pp. 141–148.

[TSH01] Xavier Tricoche, Gerik Scheuermann, and Hans Hagen, Continu-
ous topology simplification of planar vector fields, VIS ’01: Pro-
ceedings of the conference on Visualization ’01 (Washington, DC,
USA), IEEE Computer Society, 2001, pp. 159–166.

[TSHC01] Xavier Tricoche, Gerik Scheuermann, Hans Hagen, and Stefan
Clauss, Vector and tensor field topology simplification on irreg-
ular grids, VisSym ’01: Proceedings of the symposium on Data
Visualization 2001 (Wien, Austria) (D. Ebert, J. M. Favre, and
R. Peikert, eds.), Springer-Verlag, May 28–30 2001, pp. 107–116.

[TWHS04] Holger Theisel, Tino Weinkauf, Hans-Christian Hege, and Hans-
Peter Seidel, Grid-independent detection of closed stream lines in
2d vector fields, Proceedings of the VMV Conference 2004 (Stan-
ford, USA), November 2004, p. 665.

[TWSH02] Xavier Tricoche, Thomas Wischgoll, Gerik Scheuermann, and
Hans Hagen, Topology tracking for the visualization of time-
dependent two-dimensional flows, Computer & Graphics 26
(2002), 249–257.

[WB98] Chris Weigle and David C. Banks, Extracting iso-valued features
in 4-dimensional scalar fields, VVS ’98: Proceedings of the 1998
IEEE symposium on Volume visualization (New York, NY, USA),
ACM, 1998, pp. 103–110.

[WBD+ar] Gunther Weber, Peer-Timo Bremer, Marcus S. Day, John B.
Bell, and Valerio Pascucci, Feature tracking using reeb graphs,
TopoInVis’09, 2010 to appear.

[Wei08] T. Weinkauf, Extraction of topological structures in 2d and 3d vec-
tor fields, Ph.D. thesis, University Magdeburg and Zuse Institute
Berlin, 2008.

99

Bibliography

[WG09] T. Weinkauf and D. Günther, Separatrix persistence: Extraction
of salient edges on surfaces using topological methods, Computer
Graphics Forum (Proc. SGP ’09) 28 (2009), no. 5, 1519–1528.

[WS01] Thomas Wischgoll and Gerik Scheuermann, Detection and visu-
alization of closed streamlines in planar flows, IEEE Transactions
on Visualization and Computer Graphics 7 (2001), no. 2, 165–172.

[WST+07] T. Weinkauf, J. Sahner, H. Theisel, H.-C. Hege, and H.-P. Sei-
del, A unified feature extraction architecture, Active Flow Control
(R. King, ed.), Notes on Numerical Fluid Mechanics and Multi-
disciplinary Design (NNFM), Springer, 2007, Active Flow Control
2006, Berlin, Germany, September 27 - 29, pp. 119–133.

[WSTH07] T. Weinkauf, J. Sahner, H. Theisel, and H.-C. Hege, Cores of
swirling particle motion in unsteady flows, IEEE Transactions on
Visualization and Computer Graphics (Proceedings Visualization
2007) 13 (2007), no. 6, 1759–1766.

[WTGP10] T. Weinkauf, H. Theisel, A. Van Gelder, and A. Pang, Stable
feature flow fields, IEEE Transactions on Visualization and Com-
puter Graphics (2010), accepted.

[WTS+05] Tino Weinkauf, Holger Theisel, K. Shi, Hans-Christian Hege,
and Hans-Peter Seidel, Extracting higher order critical points and
topological simplification of 3D vector fields, Proc. IEEE Visual-
ization 2005 (Minneapolis, U.S.A.), October 2005, pp. 559–566.

[YJS06] Alper Yilmaz, Omar Javed, and Mubarak Shah, Object tracking:
A survey, ACM Comput. Surv. 38 (2006), no. 4, 13.

100

List of Figures

1.1 Two algorithmic challenges . 2

3.1 Graphs . 10

3.2 Paths and cycles . 11

3.3 Breadth first search algorithm . 11

3.4 Bellman-Ford algorithm . 13

3.5 Bipartite matchings . 13

3.6 Augmenting path . 14

3.7 Hungarian method . 16

3.8 Surfaces . 18

3.9 Simplices . 20

3.10 Simplicial complex . 20

3.11 Boundary operator . 21

3.12 Homology . 22

3.13 Morse theory . 25

3.14 Morse-Smale complex . 26

3.15 Discrete Morse functions . 27

3.16 Combinatorial gradient field . 28

3.17 Separatrices . 28

3.18 Periodic orbits . 30

3.19 Manifold-like simplicial complex 31

4.1 Cell graph . 34

4.2 Basic definitions of graph theoretic discrete Morse theory 35

4.3 Extremal structures of noisy scalar data 37

4.4 Illustration of the hierarchical representation of the extremal struc-
ture using augmenting paths . 38

4.5 Comparison of algorithms for vector fields 45

4.6 Approximation vs. exact vector field method 50

4.7 Vector field from biofluid mechanics 52

4.8 Importance measure illustration for vector field data 53

4.9 Comparison with continuous vector field topology 54

4.10 Synthetic noisy scalar field . 60

4.11 Extremal lines in curvature fields 62

101

List of Figures

4.12 A synthetic divergence-free vector field is depicted using a LIC
image colored by magnitude . 67

4.13 Divergence-free vector field application 68
4.14 Combinatorial feature flow fields 72
4.15 Computational pipeline of CFFF 73
4.16 Illustration of saddle tracking in CFFF 75
4.17 Evaluation of noise robustness in CFFF 79
4.18 Comparison of the Stable Feature Flow Field method and CFFF . 80
4.19 Evaluation of different filter criteria in CFFF, part 1 81
4.20 Evaluation of different filter criteria in CFFF, part 2 82
4.21 Application of CFFF . 83
4.22 Bifurcation handling in CFFF . 86

102

List of Tables

4.1 Running time of the vector field algorithm 55
4.2 Running time of the scalar field algorithm 61
4.3 Running time of the time-dependent scalar field algorithm 84

103

Selbstständigkeitserklärung

Ich erkläre hiermit, dass ich die vorliegende Arbeit ohne unzulässige Hilfe Drit-
ter und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt
habe; die aus fremden Quellen direkt oder indirekt übernommenen Gedanken
sind als solche kenntlich gemacht.

Insbesondere habe ich nicht die Hilfe eines kommerziellen Promotionsber-
aters in Anspruch genommen. Dritte haben von mir weder unmittelbar noch
mittelbar geldwerte Leistungen für Arbeiten erhalten, die im Zusammenhang
mit dem Inhalt der vorgelegten Dissertation stehen.

Die Arbeit wurde bisher weder im Inland noch im Ausland in gleicher oder
ähnlicher Form als Dissertation eingereicht und ist als Ganzes auch noch nicht
veröffentlicht.

Jan Reininghaus
2. Dezember 2011

105

	Introduction
	Related Work
	Vector fields
	Scalar fields
	Time-dependent scalar fields

	Mathematical Background
	Graph theory
	Algebraic topology
	Discrete Morse theory

	Computational Discrete Morse Theory
	Graph theoretic formulation
	Hierarchical combinatorial vector fields
	Generic algorithmic pipeline
	Vector fields
	Gradient fields
	Divergence-free vector fields
	Time-dependent scalar fields

	Conclusions and Outlook
	Bibliography
	List of Figures
	List of Tables

