Aus der Medizinischen Klinik mit Schwerpunkt
Infektiologie und Pneumologie
der Medizinischen Fakultät Charité – Universitätsmedizin Berlin

DISSERTATION

Differentielle Aktivierung des NLRP3-Inflamasoms durch
Pneumolysin

zur Erlangung des akademischen Grades
Doctor medicinae (Dr. med.)

vorgelegt der Medizinischen Fakultät
Charité – Universitätsmedizin Berlin

von
Florence Pache
aus Köln

Datum der Promotion: 05. Dezember 2014
1 Inhaltsverzeichnis

1 Inhaltsverzeichnis ... 2
 1.1 Abbildungsverzeichnis ... 4
 1.2 Tabellenverzeichnis ... 5
 1.3 Abkürzungsverzeichnis .. 6

2 Zusammenfassung ... 8

3 Abstract .. 10

4 Einleitung ... 12
 4.1 Streptococcus pneumoniae .. 12
 4.1.1 Pneumolysin .. 14
 4.2 Angeborene und erworbene Immunität ... 16
 4.3 Rezeptoren der angeborenen Immunität .. 17
 4.3.1 Toll-like Rezeptoren .. 17
 4.3.2 NLRs .. 18
 4.3.3 AIM2 und andere DNA-Rezeptoren .. 23
 4.4 Zytokine .. 24
 4.4.1 IL-1β .. 24
 4.5 Bedeutung der angeborenen Immunität in der Streptococcus pneumoniae-Infektion 25

5 Aufgabenstellung ... 27

6 Methodik ... 28
 6.1 Zellbiologische Methoden .. 28
 6.1.1 Materialien .. 28
 6.1.2 Zellkultur .. 28
 6.1.3 RNA-Interferenz ... 32
 6.2 Mikrobiologische Methoden ... 33
 6.2.1 Bakterienkultur ... 33
 6.2.2 Lagerung und Anzucht ... 34
 6.2.3 Zellstimulation ... 34
 6.2.4 Chemische Inhibitoren ... 35
 6.2.5 Stimulantien ... 35
 6.2.6 Hämolysetest ... 36
 6.3 Molekularbiologische Methoden .. 37
 6.3.1 RNA-Isolierung ... 37
 6.3.2 Reverse Transkription (RT) ... 37
6.3.3 Quantitative PCR ... 37
6.4 Biochemische Methoden .. 38
 6.4.1 Enzyme linked immunosorbend assay (ELISA) 38
 6.4.2 Western blot ... 38
6.5 Statistik ... 41

7 Ergebnisse .. 42
 7.1 Die Pneumokokken-induzierte IL-1β-Ausschüttung in monozytären
 Zellen ist abhängig vom bakteriellen Toxin Pneumolysin 42
 7.2 Die Pneumokokken-induzierte IL-1β-Ausschüttung ist abhängig von
 der Expression eines vollständigen Poren-bildenden Pneumolysins........ 44
 7.3 Nicht-hämolytisches Ply exprimierende Serotyp 1 ST306- und Serotyp 8
 ST53-Pneumokokken stimulieren keine IL-1β-Produktion 47
 7.4 Die IL-1β-Produktion in *S. pneumoniae*-infizierten Zellen ist abhängig
 von TLR2, NLRP3 und dem Adaptermolekül ASC 50
 7.5 Die IL-1β-Produktion in PBMCs nach *S. pneumoniae*-Infektion ist
 abhängig von dem Caspase-1-abhängigen NLRP3-Inflammasom 52
 7.6 Die IL-1β-Produktion in mit Pneumokokken infizierten monozytären
 Zellen ist abhängig von K⁺-Efflux und reaktiven Sauerstoffspezies 54

8 Diskussion .. 56
 8.1 Bedeutung des Pneumolysins in der IL-1β-Produktion durch
 monozytäre Zellen ... 56
 8.2 Die Rolle des NLRP3-Inflammsoms in der *S. pneumoniae*-vermittelten
 IL-1β-Produktion .. 57
 8.3 Die Aktivierung von NLRP3 durch Pneumolysin 60
 8.4 Die Bedeutung von Pneumolysin-Mutanten und verschiedenen
 Pneumokokken-Serotypen in der Aktivierung von NLRP3 und Ausblick ...

9 Literaturverzeichnis ... 67

10 Eidesstattliche Versicherung ... 86
11 Lebenslauf .. 88

12 Publikationsliste ... 90
13 Danksagung .. 91
1.1 Abbildungsverzeichnis

Abbildung 2-1	Zusammenfassender Mechanismus der Ply-induzierten NLRP3-abhängigen IL-1β-Produktion	9
Abbildung 3-1	Resuming figure demonstrating the suggested mechanism of Ply-induced NLRP3-dependent IL-1β production upon infection of macrophages by S. pneumonia	11
Abbildung 4-1:	Domänen-Struktur der Inflammasome	20
Abbildung 4-2	Inflammasome und ihre Stimuli	22
Abbildung 7-1-1	Die Produktion von IL-1β in S. pneumoniae infizierten murinen Makrophagen ist abhängig von Ply	43
Abbildung 7-1-2	Die Produktion von IL-1β in S. pneumoniae infizierten humanen monozytären Zellen ist abhängig von Ply	44
Abbildung 7-2	Vergleich der IL-1β-Produktion nach Stimulation von humanen PBMCs mit aufgereinigtem Ply aus Revertanten	46
Abbildung 7-3-1	Allel 5-Ply exprimierende Serotyp I ST306 Pneumokokken vermitteln keine IL-1β-Produktion in humanen monozytären Zellen	48
Abbildung 7-3-2	In murinen Zellen induziert Allel 5-Ply oder Allel 5-Ply exprimierende Pneumokokken keine IL-1β-Produktion	49
Abbildung 7-4	IL-1β-Produktion in BMMs ist abhängig von TLR2 und vom NLRP3-Inflammasom	51
Abbildung 7-5	Die IL-1β-Produktion in humanen PBMCs mit D39-Pneumokokken ist abhängig vom Caspase-1-enthaltendem NLRP3-Inflammasom	53
Abbildung 7-6	Einfluss des intrazellulären Kalium-Milieus, ROS-Bildung und lysosomaler Ansäuerung auf das Inflammasom in der Pneumokokken-Infektion	55
1.2 Tabellenverzeichnis

<table>
<thead>
<tr>
<th>Tabelle</th>
<th>Titel</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tabelle 4-1</td>
<td>NLRs und assoziierte nicht-mikrobielle Erkrankungen</td>
<td>22</td>
</tr>
<tr>
<td>Tabelle 6-1</td>
<td>Zellen und Bezugsquellen</td>
<td>28</td>
</tr>
<tr>
<td>Tabelle 6-2</td>
<td>Zellkulturmedien</td>
<td>29</td>
</tr>
<tr>
<td>Tabelle 6-3</td>
<td>siRNA Sequenzen</td>
<td>33</td>
</tr>
<tr>
<td>Tabelle 6-4</td>
<td>Bakterienstämmme</td>
<td>33</td>
</tr>
<tr>
<td>Tabelle 6-5</td>
<td>Chemische Inhibitoren</td>
<td>35</td>
</tr>
<tr>
<td>Tabelle 6-6</td>
<td>Pneumolysin</td>
<td>35</td>
</tr>
<tr>
<td>Tabelle 6-7</td>
<td>Reagenzien für Western blot</td>
<td>38</td>
</tr>
<tr>
<td>Tabelle 6-8</td>
<td>Materialien für Western blot</td>
<td>40</td>
</tr>
<tr>
<td>Tabelle 8-1</td>
<td>Pneumolysin und Inflammasom-Aktivität verschiedener Pneumokokken-Stämme</td>
<td>64</td>
</tr>
</tbody>
</table>
Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIM2</td>
<td>Absent in melanoma 2</td>
</tr>
<tr>
<td>ATCC</td>
<td>American Type Culture Collection</td>
</tr>
<tr>
<td>ASC</td>
<td>Apoptosis-associated speck-like protein containing a CARD</td>
</tr>
<tr>
<td>BMDM</td>
<td>Bone marrow-derived mouse macrophage</td>
</tr>
<tr>
<td>CAP</td>
<td>Community-acquired pneumonia</td>
</tr>
<tr>
<td>CAPS</td>
<td>Cryopyrin-associated periodic syndrom</td>
</tr>
<tr>
<td>CARD</td>
<td>Caspase activation and recruitment domain</td>
</tr>
<tr>
<td>CD</td>
<td>Cluster of differentiation</td>
</tr>
<tr>
<td>CDC</td>
<td>Cholesterol-dependent cytolysin</td>
</tr>
<tr>
<td>CSF</td>
<td>Colony stimulating factor</td>
</tr>
<tr>
<td>DAI</td>
<td>DNA-dependent activator of interferon regulatory factors</td>
</tr>
<tr>
<td>DAMP</td>
<td>Danger-associated molecular pattern</td>
</tr>
<tr>
<td>DRK</td>
<td>Deutsches rotes Kreuz</td>
</tr>
<tr>
<td>ELISA</td>
<td>Enzyme-linked immunosorbent assay</td>
</tr>
<tr>
<td>GAPDH</td>
<td>Glyceraldehyd-3-Phosphat-Dehydrogenase</td>
</tr>
<tr>
<td>HIN</td>
<td>hematopoietic interferon-inducible nuclear protein</td>
</tr>
<tr>
<td>IL</td>
<td>Interleukin</td>
</tr>
<tr>
<td>IFN</td>
<td>Interferon</td>
</tr>
<tr>
<td>IPD</td>
<td>Invasive pneumococcal disease</td>
</tr>
<tr>
<td>IRF</td>
<td>Interferon-regulierender Faktor</td>
</tr>
<tr>
<td>KO</td>
<td>Knock-out</td>
</tr>
<tr>
<td>LPS</td>
<td>Lipopolysaccharid</td>
</tr>
<tr>
<td>MyD88</td>
<td>Myloid-differentiation factor 88</td>
</tr>
<tr>
<td>LRR</td>
<td>Leucin-rich repeat</td>
</tr>
<tr>
<td>NFκB</td>
<td>Nuclear transcriptionfactor-κB</td>
</tr>
<tr>
<td>NLR</td>
<td>Nucleotide-binding oligomerization domain-like receptor</td>
</tr>
<tr>
<td>NLRP3</td>
<td>NLR family pyrin domain-containing 3</td>
</tr>
<tr>
<td>NOD</td>
<td>Nucleotide-binding oligomerization domain</td>
</tr>
<tr>
<td>OD</td>
<td>Optische Dichte</td>
</tr>
<tr>
<td>PAMP</td>
<td>Pathogen-associated molecular pattern</td>
</tr>
<tr>
<td>PBMC</td>
<td>Peripheral blood monocyctic cell</td>
</tr>
<tr>
<td>Acronym</td>
<td>Definition</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>PBP</td>
<td>Penicillin-bindendes Protein</td>
</tr>
<tr>
<td>PLY</td>
<td>Pneumolysin</td>
</tr>
<tr>
<td>PRR</td>
<td>Pattern-recognition receptor</td>
</tr>
<tr>
<td>PYD</td>
<td>N-terminal Pyrin</td>
</tr>
<tr>
<td>RPM</td>
<td>Rounds per minute</td>
</tr>
<tr>
<td>SG</td>
<td>Serogruppe</td>
</tr>
<tr>
<td>siRNA</td>
<td>Small interfering RNA</td>
</tr>
<tr>
<td>ST</td>
<td>Sequenz Typ</td>
</tr>
<tr>
<td>TGF</td>
<td>Tumor growth factor</td>
</tr>
<tr>
<td>TIR</td>
<td>Toll-Interleukin-Rezeptor</td>
</tr>
<tr>
<td>TLR</td>
<td>Toll-like Rezeptor</td>
</tr>
<tr>
<td>TNF</td>
<td>Tumor Nekrose Faktor</td>
</tr>
<tr>
<td>TRAM</td>
<td>TRIF-related adaptor molecule</td>
</tr>
<tr>
<td>TRIF</td>
<td>TIR-domain-containing adapter inducing interferon β</td>
</tr>
<tr>
<td>Wt</td>
<td>Wildtyp</td>
</tr>
<tr>
<td>ZBP-1</td>
<td>Z-DNA bindendes Protein-1</td>
</tr>
</tbody>
</table>
2 Zusammenfassung

Am Anfang der Immunantwort gegen Bakterien einschließlich von Pneumokokken steht die Erkennung dieser Bakterien. Erste Zielzellen, die im Rahmen der Pneumokokkeninfektion betroffen sind und für eine frühe Verteidigung des Organismus sorgen, sind Makrophagen. Nachfolgend spielt die Produktion von Zytokinen, unter ihnen IL-1β, eine wichtige Rolle. IL-1β ist Schlüsselzytokin der frühen Immunantwort, verantwortlich für die Aktivierung und Regulation weitere Wirtszellen und Abwehrmechanismen.

In der vorliegenden Arbeit sollte untersucht werden, über welche Mechanismen Makrophagen welche Pneumokokkenbestandteile erkennen, um die wichtige IL-1β-Produktion zu aktivieren. Es konnte gezeigt werden, dass ausschließlich vollständiges, Poren-bildendes Zytotoxin Pneumolysin zu einer Ausschüttung von reifem IL-1β führt. Dabei war unerheblich, ob lebende Bakterien oder aufgereinigtes Pneumolysin verwendet wurden. Wichtig hierbei war außerdem, dass unterschiedliche Ply-Varianten dargebracht wurden, die nach derzeitigem Kenntnisstand eine Besonderheit der Pneumokokken innerhalb der Gruppe der Gram-positiven Bakterien (sehr unterschiedliche immunologische Reaktionen, je nach Ausprägung des Virulenzfaktors Ply) aufzeigt. Auf Seiten des Wirts war für die Prozessierung und Ausschüttung von IL-1β das Vorhandensein des NLRP3-Inflammasoms essentiell. Sowohl die Entstehung radikaler Sauerstoff spezies, als auch Kalium-Efflux aus dem Intrazellularräum, sind mögliche Mechanismen, die für die Ply-abhängige Aktivierung des NLRP3-Inflammasoms ursächlich sein können. Es konnte gezeigt werden, dass die Inhibierung des Proteinkomplexes NLRP3 eine stark verminderte IL-1β-Produktion zur Folge hat, ebenso führt eine Aufhebung des Kaliumgradienten sowie der Inhibierung von ROS-Bildung zu einer Inhibierung der IL-1β-Produktion.

Insgesamt zeigt die Studie, dass dem NLRP3-Inflammasom eine kritische Rolle in der Bildung des pro-inflammatorischen Zytokins IL-1β bei einer Infektion mit S. pneumoniae zukommt und dass die Expression von hämolytischen Pneumolysins auf Seiten des Bakteriums hierfür notwendig ist. Es wird darüber hinaus die Besonderheit in der Pneumokokkeninfektion gezeigt, dass ein
bakterieller Virulenzfaktor-Polymorphismus zu einer veränderten Bakterien-Erkennung durch das angeborene Immunsystem führt.

Die Abbildung 2-1 bietet eine schematische Übersicht über den Mechanismus der IL-1β-Produktion in der Infektion von Makrophagen durch *S. pneumoniae* unter der Zusammenfassung der in dieser Arbeit identifizierten Faktoren.

Abbildung 2-1 Zusammenfassung des Mechanismus der Ply-induzierten NLRP3-abhängigen IL-1β-Produktion in *S. pneumoniae*-infizierten Makrophagen
3 Abstract

Globaly infections with *Streptococcus pneumonia* account for a high mortality and morbidity rate through infectious diseases. Mechanisms of host-pathogen interaction especially routes of pneumococcal recognition via the host’s innate immune system are not well understood. Although different vaccinations against pneumococci are available a general protection against all different pneumococcal serotypes is not given. Furthermore increasing resistency of pneumococci towards antibiotic therapy reveals the urgency of a more complete understanding of the pathogen’s virulence mechanisms and the host’s defense strategy.

For the initiation of the host’s immune response a reliable recognition of pathogens is key. Macrophages play a major role in early recognition of pneumococcal infection and thereby provide a first line of defense. Cytokines, notably IL-1β are produced and secreted subsequently to pathogen recognition. IL-1β is an important cytokine of the early innate immune system. It both induces the activation of the host’s cellular immune response and orchestrates defense mechanisms.

The present dissertation identifies and discusses the key factors of pneumococcal recognition that are used by macrophages in order to activate the production of IL-1β. Important results presented here are the following: The release of mature IL-1β is only stimulated by the complete, pore-forming cytotoxine pneumolysine. In this context, it is irrelevant whether living bacteria or cleaned-up pneumolysin are the triggering factor. Furthermore it has to be noted that different ply variants were used as stimuli. By doing so, it could be demonstrated that pneumococci have a special status within the group of Gram-positive bacteria, with different immunological reactions depending on the polymorphism of the virulence factor ply. For the host, the presence of NLRP3-inflammasome was a necessary factor for the processing and release of IL-1β. The ply-dependent activation of NLRP3 inflammasome turns out to be triggered by the emergence of radical oxygen species, as well as by an efflux of potassium from the intracellular compartment. As a further result, it was demonstrated that the inhibition of the NLRP3 proteine complex provoked a strongly decreased production of IL-1β. Furthermore, the production of IL-1β diminished when the protein complex NLRP3 was inhibited. Upon elimination of the potassium gradient or inhibition of ROS production after pneumococcal stimulation of macrophages IL-1β production was strongly decreased.

As a general result, the dissertation demonstrates that the NLRP3 inflammasome plays an important role for the production of the pro-inflammatory cytokine IL-1β in the context of an infec-
tion with *S. pneumonia* that expresses hemolytic full length pneumolysin. Furthermore, it is demonstrated that in the context of an infection with pneumococci, a bacterial virulence factor polymorphism causes a modified identification of bacteria by the innate immune system.

Finally, figure 3-1 gives a schematic overview over the mechanism of the production of IL-1β in the infection of macrophages with *S. pneumonia*, considering the different relevant factors identified in the present dissertation.

![Diagram](image)

Figure 3-1 Resuming table demonstrating the suggested mechanism of Ply-induced NLRP3-dependent IL-1β production upon infection of macrophages by *S. pneumoniae*
4 Einleitung

4.1 Streptococcus pneumoniae

Schon 1881 von Louis Pasteur und George Steinberg isoliert und 1944 von Oswald T. Avery, Colin M. MacLeod und Maclyn McCarty für Versuche zum Nachweis einer Säure als Träger der Erbinformation genutzt (Avery et al., 1944) gehört *S. pneumoniae* bis heute zu den meist untersuchten Bakterien. Dennoch sind viele Phänomene, unter ihnen vor allem die asymptomatische Kolonisierung und invasive Pneumokokken-Infektion sowie die Funktion einiger Virulenzfaktoren, weiterhin wenig verstanden und die Letalität der Pneumokokkeninfektion ist nach wie vor sehr hoch.
Insgesamt werden circa 30 % der ambulant erworbenen Pneumonien (community acquired pneumonia= CAP) in Deutschland und weltweit durch S. pneumoniae ausgelöst (Pletz et al., 2012). Die Pneumonie stellt in den Industrieländern eine häufige Todesursache dar. In Deutschland liegt die Inzidenz der hospitalisierten CAP-Patienten in den Jahren 2005/2006 bei 2,8 pro 1000 Einwohner und ist vor allem in älteren Patienten mit einer hohen frühen Mortalität vergesellschaftet (Ewig et al., 2009). Weltweit ist sie die dritthäufigste Todesursache, wobei hiervon besonders Kinder unter fünf Jahren betroffen sind: Rund 1,2 Millionen Kinder versterben jährlich an einer Pneumokokkenpneumonie oder einer Pneumokokkensepsis (Kadioglu et al., 2008). In Industriestaaten geht außerdem von der CAP eine hohe sozioökonomische Belastung aus (Pletz et al., 2012). In Deutschland belaufen sich die jährlichen Ausgaben des öffentlichen Gesundheitssystems durch Arztkontakte, Krankheitstage, ambulante und stationäre Behandlung auf eine Höhe von circa 500 Millionen Euro (Welte et al., 2004).

Nach aktueller Datenlage des Verbundes CAPNETZ liegt die geschätzte Gesamthäufigkeit der CAP in Deutschland bei 400.000 bis 600.000, wovon etwa die Hälfte durch Pneumokokken verursacht wird (Marrie et al., 2000, Höffken et al., 2009). Ein Drittel der Patienten müssen im Verlauf einer Pneumonie stationär behandelt werden. Externer Qualitätssicherungsprogrammen zufolge liegt die Letalität hospitalisierter Pneumokokken-Pneumoniepatienten bei etwa 14 % (BQS-Qualitätsreport 2007). Dies zeigt, dass die Morbidität und Mortalität der Pneumonie, insbesondere der Pneumokokkenpneumonie, auch in den Industrielandern hoch ist. Obwohl für die Behandlung der Pneumokokken-assoziierten Erkrankungen verschiedene antibiotische Therapieoptionen zur Verfügung stehen, gewinnt die bakterielle Resistenz gegen Penicillin und Cephalosporine durch Penicillin-bindende Proteine (PBPs) an Bedeutung. Außerdem muss hierbei eine Makrolidresistenzrate von 18 % im Jahr 2007, die über das vergangene Jahrzehnt in Deutschland weiter angestiegen ist, beachtet werden (van der Linden et al., 2008, Höffken et al., 2009).

4.1.1 Pneumolysin

Im Gegensatz zu den meisten anderen Cholesterin-abhängigen porenbildenden Toxinen fehlt dem 53 kDA großen Protein Ply eine sekretorische Sequenz. So wird Ply von Pneumokokken

Strukturell besteht Ply aus 4 Domänen aus insgesamt 471 Aminosäuren. Die Domänen 1-3 können zum porenbildenden Anteil oligomerisieren (Tilley et al., 2005), wobei die Domäne 4 für die Bindung an Cholesterol von Zielzellen verantwortlich ist (Kadioglu et al., 2008).

So ergibt sich durch den Einfluss von Ply insgesamt eine Immunreaktion vor allem durch Komplementaktivierung (Paton et al., 1984), durch Hochregulation von allgemeinen Signaltransduktionswegen, auch bei sublytischen Ply-Konzentrationen (Ratner et al., 2006), sowie durch eine vermehrte Bildung pro-inflammatorischer Zytokine (Shoma et al., 2008). Diese Effekte sollten den Wirt vor einer invasiven Pneumokokkeninfektion schützen, sind allerdings im Falle eines Ungleichgewichts zu Gunsten überschießender pro-inflammatorischer Reaktionen, schädigend für den Wirt (Marriott et al., 2008).

2006). Interessanterweise werden gerade diejenigen Pneumokokken-Serotypen häufig mit invasiven Pneumokokken-Erkrankungen assoziiert (Jefferies et al. 2007; Weinberger et al. 2010), die dieses als Allel 5 Ply bezeichnete nicht-hämolytische Ply exprimieren, darunter Serotyp 1 (Jefferies et al. 2007) sowie Serotyp 8 (Birtles et al. 2005; Berk et al. 1985), die dieses als Allel 5 Ply bezeichnete nicht-hämolytische Ply exprimieren, darunter Serotyp 1 (Jefferies et al., 2007) sowie Serotyp 8 (Birtles et al., 2005; Berk et al., 1985). ST306 ist eine der am häufigsten in invasiven Pneumokokkeninfektionen gefundene Pneumokokke (Harboe et al., 2009). Aber auch innerhalb der Serotypen sind verschiedene Sequenztypen charakterisiert, die jeweils das atypische Allel 5 Ply exprimieren (für Serotyp 1 neben ST306 auch ST228, ST617 und andere; für Serotyp 8 ST53, ST578, ST835, ST1110, ST1722) (Jefferies et al., 2007; Kirkham et al., 2006; Witzenrath et al., 2011).

4.2 Angeborene und erworbene Immunität

Das biologische Abwehrsystem eines Wirtsorganismus gegen Pathogene wird als sein Immunsystem bezeichnet. Es ist für den Wirt essentiell, dass potentiell infektiöse Mikroorganismen (Bakterien, Viren, Pilze und Parasiten) sowie infizierte oder entartete Zellen erkannt und eliminiert werden. Das Immunsystem aller höheren Lebewesen setzt sich aus dem phylogenetisch älteren angeborenen und dem erworbenen Immunsystem zusammen (Hoffmann et al., 1999).

Die erste Linie der Pathogenerkennung erfolgt über Muster-erkennende (Pattern recognition-receptors, PRRs) Keimbahn-kodierte Rezeptoren, die vor allem von Makrophagen, dendritischen Zellen, Epithel- und Endothelzellen und neutrophilen Granulozyten exprimiert werden. Sie erkennen typische, hochkonservierte Pathogen-assozierte Muster (Pathogen-associated molecular patterns, PAMPs) sowie endogene Moleküle, die bei physikalischer Zellschädigung entstehen und als Gefahr-assozierte Muster (Danger-associated molecular patterns, DAMPs) bezeichnet werden (Kawai and Akira, 2011; Matzinger, 2012).

4.3 Rezeptoren der angeborenen Immunität

Als erste Linie der Verteidigung gegen invadierende Pathogene gelten die Keimbahn-kodierten Muster-erkennenden Rezeptoren der angeborenen Immunität (Kawai and Akira, 2011).

4.3.1 Toll-like Rezeptoren

4.3.2 NLRs

Eine weitere wichtige PRR-Familie ist die Familie der *Nod-like receptors* (Nod-ähnliche Rezeptoren, NLRs). NLRs sind im Zytoplasma der Wirtszelle lokalisiert und dienen u.a. der Erkennung von intrazellulären Infektionen sowie von Zellschäden (Franchi et al., 2009). Die Gruppe der humanen NLRs umfasst 23 Proteine, die durch eine gemeinsame Grundstruktur charakterisiert sind:

- C-terminal befindet sich eine LRR-Domäne, die direkt oder indirekt der Ligandenerkennung dient.
- Zentral befindet sich die Namen-gebende Nod-Domäne, die die Rezeptor-Oligomisierung initiiert.
- N-terminal ist die Effektor-Domäne lokalisiert, die die Interaktion mit Signalmolekülen und somit die Signalweiterleitung vermittelt (Franchi et al., 2009).

4.3.2.1 NOD1 und NOD2

Bisher wurden die NLRs NOD1 und NOD2 am besten charakterisiert. Sie gehören mit ihren jeweiligen CARDs zu der Subgruppe der NLRCs und erkennen hochkonservierte Zellwandbestandteile. NOD1 detektiert mesoDAP, ein Zellwandbestandteil gram-negativer Bakterien, wohingegen NOD2 ein Muramyl-Dipeptid (MDP) erkennt, das sowohl in gram-positiven als auch gram-negativen Bakterien vorkommt (Correa et al., 2012).
Nach Signalerkennung durch NOD1 und NOD2 kommt es über CARD-CARD-Interaktion mit der Kinase RIP2 zu einer NFkB-abhängigen Gentranskription.

Es ist bekannt, dass NOD1 und NOD2 eine wichtige Rolle in der Immunantwort auf Infektion durch *Legionella pneumophila* (Berrington et al., 2010), *Listeria monocytogenes* (Opitz et al., 2006, Travassos et al., 2010), *Salamella colitis* (Geddes et al., 2010) sowie *Salmonella enterica serovar Typhimurium* (Le Bourhis et al., 2009) und *Mycobacterium tuberculosis* (Pandey et al., 2009, Brooks et al., 2011) spielen. Die Annahme, dass NLRs grundsätzlich als komplementäres System zu den membranständigen TLRs funktionieren, indem sie ausschließlich Infektionen von Bakterien aufspüren, die sich eine intrazelluläre Nische geschaffen haben, muss nach neuerem Stand der Forschung relativiert werden. Es zeigt sich, dass auch Bakterien, die einem primär extrazellulären Lebenszyklus unterliegen [*Haemophilus influenzae* (Brooks et al., 2011; Lysenko et al., 2007), *Helicobacter pylori* (Watanabe et al., 2010; Viala et al., 2004), *Staphylococcus aureus* (Deshmukh et al., 2009), *Streptococcus pneumoniae* (Opitz et al., 2004)], von NOD1 und/oder NOD2 aufgespürt werden können (Clarke und Weiser, 2011).

4.3.2.2 NLR-Inflammasome

Im Gegensatz zu NOD1 und NOD2 regulieren die NLRs NLRP1, NLRP3, NLRP6 und NLRC4 sowie das HIN200-Molekül AIM2 (siehe unten) die Produktion einiger proinflammatorischer Mediatoren vorrangig posttranslational und nicht auf der Ebene der Transkription (Lamkanfi und Dixit, 2012). Diese Rezeptormoleküle bilden in der Regel zusammen mit dem Adaptermolekül ASC sowie der Caspase-1 zytosolische Multiproteinkomplexe, die als Inflammasome bezeichnet werden (Martinon et al., 2009b). Hierbei ist das jeweilige NLR- bzw. PYHIN-Protein namensgebend. Einen schematischen Überblick hierzu vermittelt Abbildung 2-1.
Abbildung 4-1: Domänen-Struktur der Inflammasomkomponenten

Alle Inflammasome scheinen Caspase-1-abhängig die proteolytische Spaltung inaktiver Pro-Formen von Zytokinen der IL-1-Familie (pro-IL-1β und pro-IL-18) zu vermitteln, um nachfolgend die Freisetzung der aktiven Zytokine zu ermöglichen. Caspase-1 wird ebenfalls, wie auch andere Caspasen, als inaktives Zymogen (Pro-Caspase-1) synthetisiert und anschließend in strenger Regulation durch das Inflammasom proteolytisch in seine heterodimere Form mit je einer p10- und einer p20-Untereinheit gespalten (Martinon et al., 2002). Insgesamt ist die Produktion von IL-1β und IL-18 somit von mindestens zwei Signalen abhängig. Durch Aktivierung von TLRs oder anderen Zytokinrezeptoren kommt es zum priming, d.h. der Expressionssteigerung von z.B. pro-IL-1β sowie von Inflammasomkomponenten, wie z.B. NLRP3 (Bauerfeind, 2009).

Das NLRP1 Inflammasom wird durch das lethal toxine von Bacillus anthracis aktiviert (Averette et al., 2009). Darüber hinaus scheint es möglicherweise in Kooperation mit NOD2 MDP zu erkennen (Bruey et al., 2007).

Das NLRC4 (veraltet: IPAF)-Inflammasom wird durch bakterielles Flagellin (z.B. von von Salmonella typhimurium (Franchi et al., 2006), Listeria monocytogenes (Sauer et al., 2011), Legionella pneumophila (Case et al., 2009), sowie durch einen Bestandteil des Typ III Sekretions-System z.B. von Pseudomonas aeruginosa (Miao et al., 2010; Sutterwala et al., 2007) stimuliert. Hierbei kooperiert NLRC4 mit jeweils einem anderen NLR Molekül, welches die Ligandenerkennung zu vermitteln scheint. So vermittelt NLRC4 zusammen mit NAIP5 die Reaktion auf Flagellin, wohingegen NLRC4 zusammen mit NAIP2 auf ein Molekül des bakteriellen Typ III...
Sekretionsapparats reagiert (Zhao et al., 2011; Kofoed und Vance, 2011). Interessanterweise wurde kürzlich beschrieben, dass das NAIP5/NLRC4-Inflammasome (und möglicherweise auch andere Inflammasome) zusätzlich zur IL-1β- und IL-18-Produktion auch die Ausschüttung von Eikosanoiden regulieren (von Moltke et al., 2013).

Das bisher best-charakterisierte Inflammasom ist das NLRP3-Inflammasom, welches von einer Vielzahl von Erreger- sowie Gefahr (danger)-assozierten Stimuli (DAMPs) aktiviert werden kann. Das NLRP3-Inflammasom reagiert z.B. auf Bakterien, die ein Poren-bildendes Toxin exprimieren (Carlsson et al., 2010; Craven et al., 2009; Harder et al., 2009; Mariathasan et al., 2006; Meixenberger et al., 2010; Muñoz-Planillo et al., 2009). NLRP3 wird außerdem durch nekrotische Zellen bzw. von daraus freigesetzten DAMPs, wie z.B. Harnsäurekristalle, ATP und β-Amyloid stimuliert (Martinon et al., 2006, Duncan et al., 2007, Halle et al., 2008). Außerdem reagiert das NLRP3-Inflammasom auf exogene Moleküle, wie beispielsweise Silikate, Asbestfasern und Aluminiumsalze (Mariathasan et al., 2006; Cassel et al., 2008; Dostert et al., 2008; Eisenbarth et al., 2008; Hornung et al., 2008; Iyer et al., 2009).

Auch andere Inflammasome regulieren Caspase-1 abhängig die Prozessierung von pro-IL-1β und pro-IL-18 zu reifem IL-1β und IL-18. Die Stimulie für ihre Aktivierung sind unterschiedlich und zum Teil noch unvollständig charakterisiert. Für das NLRP6-Inflammasom ist gezeigt worden, dass es für die Konstitution einer ausgewogenen Darmflora notwendig ist, da bei fehlerhafter Expression von NLRP6 ein Überwiegen colitogener Bakterien gezeigt wurde (Elinav et al., 2011). Für NLRP12 wurde eine mögliche Rolle in der Negativregulation von NFκB-Signaling gezeigt (Allen et al., 2012). NLRC5 wurde als Regulator der MHC Klasse I abhängigen Immunantwort beschrieben (Vladimer et al., 2013).
Neben den eben beschriebenen, bisher besser charakterisierten Inflammasomen existieren weite-
re NLRs, die ebenfalls zytosolische Multiproteinkomplexe bilden (Martinon et al., 2009b).

Obgleich viele PRRs, insbesondere die Inflammasom-bildenden Rezeptoren, noch wenig cha-
rakterisiert sind, erschließt sich aus Mutationsanalysen bestimmter Erkrankung und Syndrome ein Teil ihrer Funktion. Einen kleinen Überblick relevanter Pathologien in diesem Zusammen-
hang, die z.T. bereits in experimentellen Mausmodellen Anwendung finden, soll Tabelle 2-1, modifiziert nach Mason et al., (2012), geben (Mason et al., 2012).

Tabelle 4-1 NLRs und assoziierte nicht-mikrobielle Erkrankungen

NLRP1: Neuronale Verletzung, Systemische Sklerose, Vitiligo

NLRP3: Gicht, rheumatoide Arthritis, Cryopyrin-assoziierte periodische Syndrome (Muckle-
Wells-SD, familiäre Kälteurtikaria u.a.), Multiple Sklerose und EAE, kardiovaskulä-
re Erkrankungen, chronisch-obstruktive Lungenenerkrankungen, allergisches Asthma,
Kontaktekzeme, Silikose u.a. pathologische Reaktionen auf eingeatmete Partikel, Morbus Alzheimer, sterile Hepatitis, Adipositas und Insulin-Resistenz, chronisch-entzündliche Darmerkrankung

NLRP5: Neuronale Verletzung
NLRP6: Chronisch-entzündliche Darmerkrankung
NLRP7: Hydatidiforme Mole
NLRP14: Unvollständige Spermatogenese
NAIP: Spinale Muskelatrophie
CIITA: bare lymphocyte syndrome

4.3.3 AIM2 und andere DNA-Rezeptoren

Um potentielle Pathogene durch das Immunsystem effektiv zu erkennen, eigenet sich die Mustererkennung konservierter Moleküle, wie z.B. Nukleinsäuren. Für einige Zeit galt der endosomale Rezeptor TLR9 als einziger Nukleinsäure-erkennende Rezeptor. Aktuell ist vor allem AIM2 (absent in melanoma 2) und cGAS (Ablasser et al., 2013; Wu et al., 2013) Gegenstand der Forschung. Daneben wurden aber noch andere DNA-erkennende Rezeptoren postuliert, unter ihnen DAI (DNA-dependent activator of interferon regulatory factors) (Takaoka et al., 2007; Wang et al., 2008).

AIM2 ist vorwiegend im Zytoplasma lokalisiert. Es gehört zur Familie der HIN200-Proteine, die durch eine Pyrin und eine HIN200-Domäne gekennzeichnet sind (Bürckstümmer et al., 2009). Da es mehrere HIN200-Moleküle zu geben scheint, die als PRR fungieren, hat sich außerdem die Bezeichnung AIM2-like receptor (ALRs) etabliert (Brunette et al., 2012, Keating et al., 2011).

Durch Typ I Interferon scheint die AIM2-Expression induziert zu werden, bei Erkennung von dsDNA aktiviert es Caspase-1 und bildet mittels ASC, das an seine N-terminale PYD-Domäne bindet ein zytosolisches Inflammasom. Das AIM2-Inflammasom nimmt innerhalb der Inflammasome eine Sonderstellung ein, da es als eines der wenigen Inflammasome ihren Liganden direkt (mittels der C-terminalen HIN-Domäne) bindet (Hornung et al., 2009; Bürckstümmer et al., 2009; Fernandes-Alnemri et al., 2009). AIM2 spielt eine essentielle Rolle in der Erkennung von dsDNA und reagiert dadurch auf Infektionen, wie z.B. mit Bakterien wie Francisella tularensis (Jones et al., 2010).
4.4 Zytokine

Für die Initiierung der Immunantwort sowie eine feine Abstimmung der Entzündungsreaktion nach Erkennung eines potentiellen Pathogens werden Zytokine produziert und sezerniert, die für eine lokale und, bei Abgabe in Blut oder andere Körperflüssigkeiten, systemische Reaktion sorgen. Nach ihrer Funktion oder Struktur lassen sie sich in Interleukine (IL), Tumornekrosefaktoren (TNF), Interferone (IFN), Kolonie-stimulierende Faktoren (CSF), sowie Tumorwachstumsfaktoren (TGF) unterteilen. Chemotaktische Zytokine werden häufig als Chemokine bezeichnet (Janeway, 2008).

Insgesamt obliegt ihnen unter anderem die Orchestrierung der angeborenen Immunität, im Wesentlichen sind an einer pro-inflammatorischen Sofortreaktion vor allem die Zytokine IL-1β und TNFα, im schnellen zeitlichen Verlauf auch IL-6, IFNγ und IL-8 und RANTES beteiligt. Von großer Bedeutung in der anti-inflammatorischen Reaktion ist z.B. IL-10. Im Weiteren gibt es bedeutende Verbindungen zur erworbenen Immunität (Janeway und Medzhitov, 2002)

4.4.1 IL-1β

Leukozyten, insbesondere monozytäre Zellen, sind die Hauptquelle für IL-1β. Die Produktion erfolgt in einem mehrschrittigen Prozess, so dass die Synthese und Sekretion dieses hoch potentiellen pro-inflammatorischen Zytokins (auch im Rahmen schwerer systemischer Infektionen sind lediglich IL-1β-Level im Pikogramm-Bereich nachweisbar) eng kontrolliert und auf verschiedenen Ebenen modifiziert werden kann. Wie in Abschnitt 2.3.2.2 beschrieben sind mindestens zwei Signale für die Aktivierung der IL-1β-Produktion notwendig. Zum einen muss z.B. nach TLR oder Zytokinrezeptorstimulation NF-κB-abhängig zunächst die inaktive Vorform des IL-1β, pro-IL-1β gebildet werden. Anschließend wird nach Aktivierung eines Caspase-1 abhängigen Inflammasoms der Übergang in die heterodimere Tetraform der Caspase-1 bewirkt, und es erfolgt eine Caspase-1-abhängige proteolytische Spaltung der pro-Sequenz des IL-1β. In einem letzten
Schritt über bisher noch unvollständig verstandene Prozesse wird das biologisch aktive reife IL-1β (molekulare Masse 17kDa) aus der Zelle sezerniert (Martinon et al., 2009b). Die Erkennung des IL-1β als systemischer Mediator pro-inflammatorischer Prozesse geschieht über den IL-1-Rezeptor (IL-1R), der außer IL-1β auch IL-1α erkennt (Dinarello, 2009). Der IL-1R enthält intrazellulär eine Toll-like-Rezeptor-Domäne (Toll/IL-1-Rezeptor TIR), über die nach Ligandenbindung das Adaptermolekül MyD88 rekrutiert und anschließend der Transkriptionsfaktor NFκB aktiviert wird (ebenda). Außerdem gibt es eine weitere Domäne des IL1-R, eine Immunglobulin-ähnliche Domäne zur Ligandenbindung. IL-1β wirkt sowohl parakrin als auch autokrin.

Da in der inflammatorischen Immunantwort eine fein austarierte Balance gehalten werden muss, gibt es auch den körpereigenen Antagonisten zum pro-inflammatorischen IL-1R, den IL-1-RA, der als neutralisierender Counterpart des IL-1R angesehen werden kann und der nach Bindung des IL-1β keine weitere inflammatorische Reaktion induziert (Wakabayashi et al., 1991).

4.5 Bedeutung der angeborenen Immunität in der *Streptococcus pneumoniae*-Infektion

Produktion (IL-1β, IL-6, KC) und eine Rekrutierung von Neutrophilen zu Folge hatte (Dessing et al., 2009). Gelangt S. p. über Phagozytosemechanismen in das Endosom, werden hier unmethylierte CpG-DNA-Motive über TLR9 erkannt (Albiger et al., 2007). Letiembre sowie Albiger kommen zu dem Schluss, dass durch eine TLR2 und TLR9 vermittelte Reaktion, die Phagozytose von Pneumokokken sowie das intrazelluläre „Killing“ durch Leukozyten verstärkt werden (Letiembre et al., 2005; Albiger et al., 2007). Die in der Lunge ortsständigen Alveolarmakrophagen übernehmen einen wichtigen Anteil an der Phagozytose der eindringenden Bakterien, wobei dies in einem Maus-Pneumoniemodell bereits kontrovers beurteilt wurde (Knapp et al., 2003).

Auf zellulärer Ebene kann die Pneumokokkeninfektion folgendermaßen beschrieben werden:

Nach Stimulation der beschriebenen PRRs, zytosolischer DNA-Sensoren (Koppe et al., 2012) und weiterer, im Ergebnisteil dieser Arbeit beschriebener Rezeptoren der angeborenen Immunität, kommt es zunächst u.a. zur Bildung wichtiger Zytokine der frühen angeborenen Immunantwort, wie IL-1β und TNFα in Alveolarmakrophagen und anderen Zellen (Henriques-Normark und Tuomanen, 2013). Durch diese werden weitere ortsständige Zellen, insbesondere Epithelzellen aktiviert, welche wiederum IL-8, MCP-1 und andere Chemokine produzieren (ebenda). Hierdurch werden neutrophile Granulozyten rekrutiert und im Verlauf der Entzündung kommen Exsudatsmakrophagen hinzu (ebenda).

Insgesamt lässt sich zusammenfassen, dass verschiedene TLRs sowie NOD2 eine NFkB-abhängige Produktion verschiedener inflammatorischer Mediatoren vermitteln. Ein proinflammatorisches Schlüsselzytokin ist hierbei IL-1β, das zur Produktion jedoch eines zweiten Signals bedarf, dessen Aktivator und Rezeptor oder Inflammasom in der Pneumokokkeninfektion noch nicht identifiziert war.
5 Aufgabenstellung

Das angeborene Immunsystem bildet die erste Abwehrlinie gegenüber eindringenden Pathogenen, wie z.B. *S. pneumoniae*. Es erkennt Pneumokokken mit Hilfe von TLRs und anderen PRRs, welche u.a. NFκB-abhängig die Expression und Produktion verschiedener pro-inflammatorischer Zytokine vermitteln. Ein wichtiges pro-inflammatorisches Zytokin der frühen Immunreaktion ist IL-1β. Die Produktion von reifem IL-1β ist neben der Expression abhängig von einem zweiten Inflammasom-abhängigen Regulationsschritt. Dieser Mechanismus sollte in der hier vorliegenden Arbeit charakterisiert werden.

Die vorliegende Dissertation untersucht daher folgende Fragestellungen:

1. Welcher Virulenzfaktor von *S. pneumoniae* ist essentiell für die IL-1β-Produktion in monozytären Zellen?
2. Welches Inflammasom vermittelt die *S. p.*-induzierte IL-1β-Produktion in Makrophagen?
6 Methodik

6.1 Zellbiologische Methoden

6.1.1 Materialien

Die verwendeten Plastikmaterialien stammten von den Firmen Nunc (Wiesbaden), Falcon (Heidelberg), Eppendorf (Hamburg), Greiner (Frickenhausen) und Sigma (Deisenhofen).

6.1.2 Zellkultur

Zellkulturarbeiten wurden unter sterilen Bedingungen an Zellkulturbänken mit laminarer Strömung durchgeführt. Alle Medien bzw. Flüssigkeiten wurden vor Verwendung im Wasserbad auf 37 °C erwärmt, soweit nicht anders angegeben. Verbrauchsmaterialien für die Zellkultur wurden von folgenden Firmen bezogen:

Nunc (Roskilde, Dänemark); Falcon; Becton-Dickinson (Heidelberg).

Alle Grundsubstanzen zur Herstellung von Puffern, Lösungsmitteln sowie weitere Laborchemikalien und Grundsubstanzen zur Zellkultur wurden, soweit nicht anders angegeben, von den Firmen Roth (Karlsruhe), Sigma (Deisenhofen), Life Technologies Ltd (Paisley, UK), PAA (Linz, Österreich); Pharmingen (Hamburg), PAN (Aidenbach), Gibco Life Technologies (Eggenstein) und Boehringer (Mannheim) bezogen.

<table>
<thead>
<tr>
<th>Tabelle 6-1 Zellen und Bezugsquellen</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMMs</td>
</tr>
<tr>
<td>Wildtyp</td>
</tr>
<tr>
<td>NLRP3 knock out</td>
</tr>
<tr>
<td>TLR4 knock out (C57BL/10 ScSn)</td>
</tr>
<tr>
<td>TLR2 knock out (C57BL/10 ScSn)</td>
</tr>
<tr>
<td>ASC knock out</td>
</tr>
<tr>
<td>RAW 264.7</td>
</tr>
<tr>
<td>PBMCs</td>
</tr>
</tbody>
</table>
peripherem Blut (Ursprung Buffy coats)

THP-1 humane monozytäre Zelllinie ACC 16 DSMZ, Braunschweig

Tabelle 6-2 Zellkulturmedien

<table>
<thead>
<tr>
<th>Medien für Zellkultur</th>
<th>Zusammensetzung</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kultivierungsmedium (THP-1, PBMCs)</td>
<td>500 ml RPMI 1640</td>
<td>Gibco®</td>
</tr>
<tr>
<td>L929)</td>
<td>10 % FCS</td>
<td>Gibco®</td>
</tr>
<tr>
<td>Kultivierungsmedium (RAW 246.7)</td>
<td>500 ml RPMI 1640</td>
<td>Gibco®</td>
</tr>
<tr>
<td></td>
<td>10 % FCS</td>
<td>Gibco®</td>
</tr>
<tr>
<td></td>
<td>1 % Glutamin</td>
<td>Gibco®</td>
</tr>
<tr>
<td></td>
<td>1 % Penicillin-Streptomycin</td>
<td>Gibco®</td>
</tr>
<tr>
<td>Kultivierungsmedium (BMMs)</td>
<td>500 ml RPMI 1640</td>
<td>Gibco®</td>
</tr>
<tr>
<td></td>
<td>10 % FCS</td>
<td>Gibco®</td>
</tr>
<tr>
<td></td>
<td>15 % L929 Zellüberstand</td>
<td>Gibco®</td>
</tr>
<tr>
<td>Wachstumsmedium (BMMs)</td>
<td>500 ml RPMI 1640</td>
<td>Gibco®</td>
</tr>
<tr>
<td></td>
<td>20 % FCS</td>
<td>Gibco®</td>
</tr>
<tr>
<td></td>
<td>30 % L929 Zellüberstand</td>
<td>Gibco®</td>
</tr>
<tr>
<td></td>
<td>1 % Penicillin-Streptomycin</td>
<td>Gibco®</td>
</tr>
<tr>
<td>Infektionsmedium</td>
<td>500 ml RPMI 1640</td>
<td>Gibco®</td>
</tr>
<tr>
<td>Einfriermedium (THP-1)</td>
<td>500 ml RPMI 1640</td>
<td>Gibco®</td>
</tr>
<tr>
<td></td>
<td>10 % FCS</td>
<td>Gibco®</td>
</tr>
<tr>
<td></td>
<td>10 % DMSO</td>
<td>Sigma®</td>
</tr>
<tr>
<td>EDTA-Waschpuffer (PBMCs)</td>
<td>500 ml RPMI 1640</td>
<td>Gibco®</td>
</tr>
<tr>
<td></td>
<td>5 % FCS</td>
<td>Gibco®</td>
</tr>
<tr>
<td></td>
<td>0,2 mM EDTA</td>
<td>Roth</td>
</tr>
<tr>
<td>EDTA-Waschpuffer (BMMs)</td>
<td>500 ml Dulbecco’s PBS</td>
<td>PAA</td>
</tr>
<tr>
<td></td>
<td>w/o Ca2+, Mg2+</td>
<td>Roth</td>
</tr>
<tr>
<td></td>
<td>2 mM EDTA</td>
<td>Roth</td>
</tr>
</tbody>
</table>

6.1.2.1 Gewinnung primärer humaner monozytärer Zellen (PBMCs)

Um monozytäre Zellen aus periphervenösem heparinisierstem Blut gesunder Probanden zu gewinnen, wurde eine Dichtegradienten-Zentrifugation durchgeführt, bei der es sich dem Prinzip nach um eine Auftrennung der verschiedenen Zellpopulationen eines Leukozytenfilms nach ihrem spezifischen Gewicht handelt.

Hierfür wurden Buffy coats (DRK Berlin) im Verhältnis 1:1 mit einem EDTA-Waschpuffer vermischt, jeweils 20 ml dieser Mischung auf 20 ml Pancoll (PAN Biotech, Aidenbach) in einem
50 ml Falcon-Gefäß geschichtet, ohne dass sich hierbei die beiden Phasen vermischten und für 25 min bei 800 g, Raumtemperatur, ohne Bremse zentrifugiert. Nach Sammlung der PBMCs wurden diese zur weiteren Aufreinigung in weiteren Waschschritten zuerst mit 50 ml und anschließend mit 25 ml EDTA-Waschpuffer gemischt und jeweils bei 300 g (mit Bremse) zentrifugiert. Das Zellpellet wurde anschließend in 10 ml Waschpuffer aufgenommen, über einen verdünnten Pancoll-Gradienten (10 ml Pancoll mit 1,4 ml PBS) geschichtet und erneut für 25 min, bei 800 g und Raumtemperatur ohne Bremse zentrifugiert. Nach ein bis zwei weiteren Waschschritten (wie zuvor beschrieben, in diesem Falle zur Minimierung des Thrombozytenanteils und subsequenter Verhinderung eines Cytokine bursts nach bakterieller Stimulation im Rahmen des Experiments) wurde der Überstand verworfen und das Zellpellet in 10 ml PBS aufgenommen. Nach Auszählen mit Hilfe einer Neubauer-Zählkammer wurden die gewonnenen PBMCs zur Kultivierung in einer Konzentration von 5 x 10^6 Zellen/ml in RPMI 1640 (supplementiert mit 10 % hitzeinaktiviertem FCS) in 48-/96-Loch-Platten ausgesät und bei 37°C, 5 % CO₂ und 99 % relativer Luftfeuchtigkeit im Inkubator kultiviert.

Für RNA Inhibitionsversuche wurden die gewonnenen PBMCs wie unten beschrieben vor Aus- saat weiterbehandelt.

6.1.2.2 Präparation von Knochenmarksmakrophagen aus Mäusen (BMM)

6.1.2.3 Ausplattieren und Kultivieren der BMMs

Entweder direkt nach Isolierung oder nach Auftauen aus dem Cryostock wurden die BMMs auf zwei 10 cm OPTILUX-Petrischalen aufgeteilt. Hierfür wurde Kultivierungsmedium vorbereitet, die Zellstocks wurden zügig im Wasserbad bei 37°C aufgetaut, anschließend die aufgetaute Zellsuspension in ein leeres 15 ml Falcon-Gefäß gegeben, tropfenweise 10 ml warmen Mediums hinzugefügt (hierbei verdampft unter leichten Schwenkbewegungen das cytotoxische DMSO), für 5 min bei 1000 RPM zentrifugiert, altes Medium abgesaugt und 10 ml neues Kultivierungsmedium hinzugefügt. Nach Aufteilung auf die Kulturschalen (je 5x 10⁶ Zellen/Schale) wurden die Zellen in 10 ml Medium 7 Tage kultiviert.

6.1.2.4 Aussäen der BMMs

Zur Aussaat der BMMs wurden die Überstände der Zellkulturen in 50 ml Falcon-Gefäß überführt, die Zellen mit 7 ml sterillem eiskaltem EDTA-Waschpuffer überschichtet, 5-10 min bei 4°C belassen und anschließend von ihrer Kulturschale abgewaschen. Die abgespülten Zellen wurden zu den bereits gesammelten Überständen in die entsprechenden Gefäße gegeben. Um die letzten Zellen aus den Kulturplatten zu erfassen, wurden diese erneut mit ca. 12 ml eiskaltem Waschpuffer abgespült und die nun gesammelte Suspension bei 1000 RPM für 7 min bei Raumtemperatur zentrifugiert. Anschließend wurde der Überstand abgesaugt, das Zellpellet in 10 ml Wachstumsmedium resuspendiert, die Zellen gepoolt, erneut bei 1000 RPM für 7 min abzentrifugiert, der Überstand abgesaugt und die Zellen in 10 ml Wachstumsmedium aufgenommen, um sie mit Hilfe einer Neubauer Zählkammer auszuzählen. Die Zellsuspension wurde auf eine finale Konzentration von 4 x 10⁵ Zellen/ml eingestellt und zur Infektion nach Protokoll ausgesät.

6.1.2.5 Gewinnung von L929-Überständen

Um ein konditioniertes Medium für die Zucht von BMDMs herzustellen, wird eine Makrophagen-Kolonie-stimulierender Faktor (M-CSF)-Quelle benötigt, die dem Kulturmedium (growth und replating Medium) mittels L929-Zellkulturüberständen zugefügt wird. Hierzu wurde ein Cryostock L929-Zellen aufgetaut, in 10 cm Zellkulturplatten in Zellkulturmedium gegeben und
im Inkubator bis zu ihrer Konfluenz kultiviert, anschließend mit Trypsin/EDTA behandelt, in 10,5 ml Medium resuspendiert und jeweils 2 ml Zellsuspension in eine T175 Zellkulturflasche mit 100 ml RPMI + 10% FCS gegeben. Unter täglicher mikroskopischer Wachstumskontrolle wurden die Zellen kultiviert bis ein konfluenter Zellrasen vorhanden war und anschließend weitere 10 Tage. Nach 10 Tagen wurden die Überstände abgenommen, steril-filtriert und in Falcon-Gefäße zur Lagerung bei -80°C gegeben.

6.1.2.6 Zell-Linie RAW 264.7

Bei der RAW 264.7-Zelllinie handelt es sich um adhäsente Makrophagen, die ursprünglich aus einem murinen Ableson-Leukämie-Virus induziertem Tumor stammen. Zur Kultivierung wurden die Zellen in geeignetem Kulturmedium gehalten und zur Passagierung mit PBS gewaschen und anschließend mit 2,5%iger Trypsinlösung am Boden ihrer Kulturschale bedeckt. Die Lösung inkubierte 3 min bei 37°C, durch Zugabe FCS-haltigen Mediums wurde anschließend die Ablösung der Zellen gestoppt und die Suspension gelöster Zellen bei 1000 RPM für 7 min zentrifugiert. Nach Resuspendierung des entstandenen Zellpellets wurden die L929-Zellen in einer Konzentration von 8 x 10^5 Zellen/ml ausgesät und bis zur Infektion kultiviert.

6.1.2.7 Zelllinie THP-1

Die humane monozytäre Zelllinie THP-1, immortalisiert durch eine akute monozytäre Leukämie wurde in Suspensionskultur in 30 ml FCS-haltigem RPMI-Medium und einer Dichte bis maximal 2 x 10^6 Zellen/ml in T125 Kulturflaschen gehalten. Sie wurden alle 2 bis 3 Tage mit frischem Medium versorgt und regelmäßig im Verhältnis 1:4 passagiert, um optimale Kulturbedingungen zu schaffen. Für Infektionsversuche wurden die THP-1-Zellen in einer Konzentration von 1 x 10^6 Zellen/ml eingesetzt, wobei die Zellen lediglich bis zu ihrer 30. Passage genutzt wurden.

6.1.3 RNA-Interferenz

Um die Rolle einzelner Proteine im Rahmen einer Signalkaskade analysieren zu können, kann durch die Methode des RNA-Silencing spezifisch die Synthese von bestimmten Proteinen durch das Einbringen von small interfering RNA verhindert werden. Hierbei wurden humane PBMCs nach Isolation aus buffy coats mit Hilfe eines Nucleofector™ (Amaxa), den Herstellerangaben für das Human Monocyte Nucleofector™ Kit folgend, unter
Zugabe von 5 µg siRNA je 1 x 10^7 Zellen und Verwendung des Programms Y-01 transfiziert. 72 Stunden nach erfolgreicher Transfektion wurden die PBMCs für Stimulationsversuche verwendet.

6.1.3.1 Small interfering RNAs (siRNAs)

Die verwendeten siRNAs wurden von Ambion® bezogen oder von MWG Biotech synthetisiert.

Tabelle 6-3 siRNA-Sequenzen

<table>
<thead>
<tr>
<th>siRNA</th>
<th>Sequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>control</td>
<td>sense 5'-UUCUCCGAACGUGUCACGUtt</td>
</tr>
<tr>
<td></td>
<td>antisense 5'-ACGUAGACACGUUCGGAGAtt</td>
</tr>
<tr>
<td>NLRP3</td>
<td>sense 5'-GGUGUUGGAUUAGACAACtt</td>
</tr>
<tr>
<td></td>
<td>antisense 5'-GUUGUCUAAUUCCACACCtg</td>
</tr>
</tbody>
</table>

6.2 Mikrobiologische Methoden

6.2.1 Bakterienkultur

Tabelle 6-4 Bakterienstämme

<table>
<thead>
<tr>
<th>Bakterienstamm</th>
<th>Merkmale</th>
<th>Bezugsquelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>D39</td>
<td>Wildtyp Serotyp 2 S. pneumoniae</td>
<td>National Collection of Type</td>
</tr>
<tr>
<td>D39Δply</td>
<td>Isogenetische Pneumolysin negative Mutante PLN-A (Berry et al., 1989)</td>
<td>T. Mitchell, University of Glasgow</td>
</tr>
<tr>
<td>R6x</td>
<td>unbekapselte Serotyp 2 Mutante (Moynet et al., 1980)</td>
<td>S. Hamerschmidt, Universität Greifswald</td>
</tr>
<tr>
<td>R6xΔply</td>
<td>Isogenetische Pneumolysin-negative Mutante</td>
<td>S. Hamerschmidt, Universität Greifswald</td>
</tr>
<tr>
<td>pAHS1</td>
<td>Revertante, exprimiert Ply Domäne 1 bis 3</td>
<td>T. Mitchell, University of Glasgow</td>
</tr>
</tbody>
</table>
6.2.2 Lagerung und Anzucht

Zur Aufbewahrung wurde ein Bakterienstock angelegt und bei -80°C in THY-Medium (30 g Todd-Hewitt-Broth (BD Microbiologie), supplementiert mit 5 g Hefeextrakt (Sigma), Aqua bidest ad 1000 ml) plus 20 % 99 %igem Glycerol (Sigma) gelagert. 16 h vor der Stimulation mit S. pneumoniae wurde der betreffende Stamm auf einer vorgewärmten Columbia-Agarplatte mit 5 % Schafswüsten (BD Mikrobiologie), gegebenenfalls mit 40 µl eines entsprechenden Selektionantibiotikums (D39Δply Erythromycin [1 mg/ml], pAHS1-3 sowie pAHS6 jeweils Erythromycin [1 µg/ml]) vorbehandelt, in einem Verdünnungsausschuss aufgetragen und für 8-10 h in einem Brutschrank bei 37°C, 5 % CO₂ bebrütet. Am nächsten Morgen wurden mit Hilfe eines sterilen Wattestäbchens einzeln stehende Kolonien aufgenommen und in vorgewärmtes THY-Medium (37°C 10 ml, ohne Antibiose) überführt. Es wurde eine OD (optischen Dichte) von 0,045-0,06 eingestellt und die Bakteriensuspensionen erneut im Inkubator bei 37°C, 5 % CO₂ unter mikroaerophilen Bedingungen wachsen gelassen, bis nach 2-3 h das Bakterienwachstum die log-Phase (bei photometrischer Bestimmung OD 0,2-0,4, entspricht 2-4 x 10⁸ Kolonie-bildenden Einheiten/ ml) erreicht hat. In dieser bakteriellen Wachstumsphase haben die Pneumokokken ihre höchste Virulenz zur Infektion der Zellkulturen erreicht.

6.2.3 Zellstimulation

Zur Infektion wurde nach Bestimmung der OD die Bakteriensuspension für 10 Minuten bei 1800 g in einem 50 ml Zentrifugationsröhrchen abzentrifugiert, der Überstand abgesaugt und das Bakterienpellett in RPMI 1640 Medium (Gibco) so resuspendiert, dass eine Konzentration von 1x 10⁸ CFU/ml erreicht wurde. Für die Stimulation wurde die Suspension in 1:10 Verdünnungsschritten auf die zu erreichende Zielkonzentration titriert. Für die Stimulation von BMMs wurde das alte Medium abgesaugt und durch die Bakteriensuspension ersetzt, für die Stimulation der PBMCs wurde das gleiche Volumen einer doppelt konzentrierten Bakteriensuspension zum Zellkulturmedium gegeben.
Je nach Versuchsprotokoll wurde eine halbe Stunde vor Stimulation das Kulturmedium erneuert und ein chemischer Inhibitor hinzugewiesen.
Zum Teil erfolgte die Stimulation nicht durch bakterielle Infektion, sondern durch Zugabe von aufgereinigtem Pneumolysin und dessen trunkierten Formen, entsprechend den Pneumokokken-Revertanten pAHS1-3.

6.2.4 Chemische Inhibitoren

Tabelle 6-5 Chemische Inhibitoren

<table>
<thead>
<tr>
<th>Inhibitor</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>KCl</td>
<td>Merck</td>
</tr>
<tr>
<td>NaCl</td>
<td>Merck</td>
</tr>
<tr>
<td>Z-YVAD-FMK</td>
<td>Alexis® Biochemicals</td>
</tr>
</tbody>
</table>

6.2.5 Stimulantien

Tabelle 6-6 Pneumolysin

<table>
<thead>
<tr>
<th>Pneumolysin</th>
<th>Merkmale</th>
<th>Herkunft</th>
</tr>
</thead>
<tbody>
<tr>
<td>wt Ply</td>
<td>hämolytisch aktiv</td>
<td>aus D39 oder pAHS3 Pneumokokken</td>
</tr>
<tr>
<td>D1-3</td>
<td>enthält die porenbildende Domäne</td>
<td>aus pAHS1 Pneumokokken</td>
</tr>
<tr>
<td>D4</td>
<td>enthält die Cholesterin-bindende Domäne</td>
<td>aus pAHS2 Pneumokokken</td>
</tr>
<tr>
<td>Allel 5 Ply</td>
<td>nicht hämolytisch aktiv</td>
<td>aus Serotyp I Pneumokokken</td>
</tr>
</tbody>
</table>
6.2.6 Hämolysetest

Für die Vorbereitung der Proben wurde entweder 1 µg aufgereinigtes Pneumolysin in 1000 µl PBS gelöst und die Hämolyseseigenschaften des Toxins der verschiedenen Revertanten untersucht oder es wurde ein Pneumokokkenlysat nach folgendem Protokoll hergestellt:

Nach über-Nacht-Kultur der zu untersuchenden Pneumokokkenstämme wurden Kolonien in 20 ml THY-Medium angeimpft und im Inkubator bis zu einer optischen Dichte von 0,5-0,6 wachsen gelassen. Anschließend wurden die Stämme für 18 min bei 4000 x g bei 4°C zentrifugiert, das entstandene Bakterienpellet in 1 ml Lysispuffer (25 mM Tris und 50 mM NaCl zuzüglich je 5 µl Proteinaseinhibitoren Pepstatin, Leupeptin und Antipain) resuspendiert, die Suspension für eine Stunde bei 4°C mit 5 mg/ml Lysozym stehen gelassen und anschließend 4 x 30 sek mittels Ultraschall behandelt. Unter der Annahme, dass eine OD von 0,1 x 10^8 CFU/ml entspricht, wurden für den Versuch, orientiert am geringst konzentrierten Pneumokokkenstamm, in jedem Reaktionsvolumen die angeglichene absolute Menge an Pneumokokkenlysat eingesetzt.

Hierzu wurde in eine 96-Loch-Platte mit U-förmigem Boden 50 µl PBS in jedes Loch vorgegeben, jeweils in die oberste Reihe 50 µl Probe zugefügt. Für jede Probe wurde eine Doppelbestimmung durchgeführt. Mit einer Reihenverdünnung um jeweils 1:2, unter Wechsel der Pipettenspitze nach jeder Verdünnungsstufe und vorsichtigem Durchmischen durch Auf- und Abpipettieren, wurde eine finale Verdünnung der Probe um 1:256 erreicht. Anschließend wurde in jede Reaktionsvertiefung mit vorgelegter Probe 50 µl des 2 %-igen Blutes gegeben, für 30 min im Inkubator und anschließend 30 min bei Raumtemperatur inkubieren gelassen und schließlich
die Platte bei 1100 RPM für 10 min zentrifugiert. Als Endpunkt wurde die 50 %-Lyse genommen und das Ergebnis fotografisch dokumentiert.

6.3 Molekularbiologische Methoden

6.3.1 RNA-Isolierung

\[
\text{OD}_{260} \times 4 = \text{RNA} [\mu g/\mu l]
\]

herangezogen. Zum Ausschluss von Proteinverunreinigung wurde der Quotient OD260 (Absorptionsmaximum RNA) zu OD280 (Absorptionsmaximum Proteine) gebildet, wobei dieser sich bei Vorliegen von reiner RNA in einem Zielbereich von 1,7 und 1,9 befand. Die Lagerung der isolierten RNA erfolgte bei -80°C.

6.3.2 Reverse Transkription (RT)

Die Reverse Transkription von RNA zu cDNA erfolgte bei späterer Verwendung der cDNA für semi-quantitative PCR mit M-MLV Reverse Transcriptase (InvitrogenTM) nach Herstellerprotokoll. Zur reversen Transkription von RNA zu cDNA für einen Einsatz zur quantitativen PCR wurde das High Capacity Reverse Transcription Kit (Applied Biosystems) nach Herstelleranleitung verwendet. Vor Verwendung der cDNA für ihre Analyse mittels qPCR wurden die Proben bei -20°C gelagert und unmittelbar vor der PCR auf 50 µl Gesamtvolumen aufgefüllt.

6.3.3 Quantitative PCR

Um die Genexpression auf der Ebene der mRNA nach Infektion von Zellen und konsekutiver Induktion bzw. Inhibition bestimmter Gene zu analysieren, wurde die quantitative PCR (qPCR) verwendet. Hierfür wurde das 7300 Real Time PCR System genutzt und die cDNA mittels TaqMan® Gene Expression Assays (Applied Biosystems) für NLRP1, NLRP3, NLRP6, NLRP12 und GAPDH amplifiziert. Die mRNA Expression des zu analysierenden Gens wurde mit der mRNA Expression des Haushaltsgens GAPDH (konstitutiv exprimiertes Gen) abgeglichen. Die Probenzusammensetzung war Folgende:
Die einzelnen Ansätze wurden in MicroAmp™ Optical 96-Well Reaction Plates (Applied Biosystems) pipettiert und mit entsprechendem adhäsivem Film verschlossen. Die qPCR lief unter folgenden Bedingungen: 50°C 2 min, 95°C 10 min, 40x (95°C 15 sek, 60°C 1 min) und wurde mittels 7300 System Sequence Detection Software Version 1.4 ausgewertet.

6.4 Biochemische Methoden

6.4.1 Enzyme linked immunosorbend assay (ELISA)

6.4.2 Western blot

Tabelle 6-7 Reagenzien für Western blot

<table>
<thead>
<tr>
<th>Western blot</th>
<th>Zusammensetzung</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phosphoprotein-waschpuffer</td>
<td>5 ml Natriumorthovanadat (200 mM)</td>
<td>Sigma-Aldrich®</td>
</tr>
<tr>
<td></td>
<td>50 ml Natriumpyrophosphat (150 mM)</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td></td>
<td>50 ml Natriumfluorid (1 M)</td>
<td>Sigma-Aldrich®</td>
</tr>
<tr>
<td></td>
<td>ad 500 ml Dulbecco’s PBS w/o Ca2+, Mg2+</td>
<td>Biochrom AG</td>
</tr>
<tr>
<td>Lyse-Puffer</td>
<td>100 µl Tris-HCl (50 mM, pH 7,4)</td>
<td>Sigma-Aldrich®</td>
</tr>
<tr>
<td></td>
<td>1 µl EDTA (250 mM)</td>
<td>Roth</td>
</tr>
<tr>
<td>Komponente</td>
<td>Menge</td>
<td>Hersteller</td>
</tr>
<tr>
<td>------------</td>
<td>-------</td>
<td>------------</td>
</tr>
<tr>
<td>Nonidet™ P-40</td>
<td>50 µl</td>
<td>Sigma-Aldrich®</td>
</tr>
<tr>
<td>PMSF (1 mM)</td>
<td>10 µl</td>
<td>Sigma-Aldrich®</td>
</tr>
<tr>
<td>Antipain, Leupeptin, Pepstatin (10 µg/ml)</td>
<td>je 5 µl</td>
<td>Sigma-Aldrich®</td>
</tr>
<tr>
<td>Phosphoproteinwaschpuffer</td>
<td>833 µl</td>
<td></td>
</tr>
<tr>
<td>Bradford Reagent</td>
<td>20% Bio-Rad Protein Assay</td>
<td>Bio-Rad</td>
</tr>
<tr>
<td>Laemmli-Puffer (4x)</td>
<td>1 ml Tris-HCl (0,5 M, pH 6,8)</td>
<td>Sigma-Aldrich®</td>
</tr>
<tr>
<td>Glycerol</td>
<td>800 µl</td>
<td>Sigma-Aldrich®</td>
</tr>
<tr>
<td>SDS (10% w/v)</td>
<td>16 ml</td>
<td>Serva</td>
</tr>
<tr>
<td>Bromphenolblau (1% w/v)</td>
<td>400 µl</td>
<td>Sigma-Aldrich®</td>
</tr>
<tr>
<td>Antipain, Leupeptin, Pepstatin</td>
<td>je 5 µl</td>
<td>Sigma-Aldrich®</td>
</tr>
<tr>
<td>Laufpuffer</td>
<td>3 g Tris-Base</td>
<td>Sigma-Aldrich®</td>
</tr>
<tr>
<td>Glycin</td>
<td>14,4 g</td>
<td>Merck</td>
</tr>
<tr>
<td>SDS</td>
<td>1 g</td>
<td>Serva</td>
</tr>
<tr>
<td>Blotpuffer</td>
<td>3 g Tris-Base</td>
<td>Sigma-Aldrich®</td>
</tr>
<tr>
<td>Glycin</td>
<td>14,4 g</td>
<td>Merck</td>
</tr>
<tr>
<td>Methanol</td>
<td>200 ml</td>
<td>Merck</td>
</tr>
<tr>
<td>Blöckpuffer</td>
<td>50% Odyssey Blocking Buffer</td>
<td>LI-COR®</td>
</tr>
<tr>
<td>Dulbecco’s PBS w/o Ca²⁺, Mg²⁺</td>
<td>50%</td>
<td>Biochrom AG</td>
</tr>
<tr>
<td>Ponceau S</td>
<td>1 g</td>
<td>Sigma-Aldrich®</td>
</tr>
<tr>
<td>Essigsäure (100%ig)</td>
<td>50 ml</td>
<td>Merck</td>
</tr>
<tr>
<td>Sammelgel</td>
<td>2,5 ml Tris-HCl (0,5 M, pH 6,8)</td>
<td>Sigma-Aldrich®</td>
</tr>
<tr>
<td>SDS (10% w/v)</td>
<td>100 µl</td>
<td>Serva</td>
</tr>
<tr>
<td>Bis-Acrylamid (40% w/v)</td>
<td>1,33 ml</td>
<td>Serva</td>
</tr>
<tr>
<td>TEMED</td>
<td>10 µl</td>
<td>R&D Systems®</td>
</tr>
<tr>
<td>Ammoniumpersulfat (10% w/v)</td>
<td>40 µl</td>
<td>Serva</td>
</tr>
<tr>
<td>Trenngel 16%ig</td>
<td>2,5 ml Tris-HCl (1,5 M, pH 8,8)</td>
<td>Sigma-Aldrich®</td>
</tr>
<tr>
<td>SDS (10% w/v)</td>
<td>100 µl</td>
<td>Serva</td>
</tr>
<tr>
<td>Bis-Acrylamid (40% w/v)</td>
<td>4 ml</td>
<td>Serva</td>
</tr>
<tr>
<td>TEMED</td>
<td>5 µl</td>
<td>R&D Systems®</td>
</tr>
<tr>
<td>Ammoniumpersulfat (10% w/v)</td>
<td>50 µl</td>
<td>Serva</td>
</tr>
<tr>
<td>Trenngel 13%ig</td>
<td>2,5 ml Tris-HCl (1,5 M, pH 8,8)</td>
<td>Sigma-Aldrich®</td>
</tr>
</tbody>
</table>
Nach Infektion von THP-1 Zellen mit Pneumokokken (Vergleich zwischen R6x und R6xΔply) mit 1x 10^6 beziehungsweise 1x 10^7 CFU/ml für 16 h wurden die Zellen einmal mit Phosphoproteinwaschpuffer und anschließend in Gesamtproteinlysepuffer lysiert. Anschließend wurde das Lysat in einer auf 4°C vorgekühlten Zentrifuge für 10 Minuten bei 12000 RPM zentrifugiert und der Gesamtproteingehalt des so gewonnenen Überstandes mittels Bradford-Methode (Bio-Rad Protein Assay: 20% Bio-Rad Protein Assay mit 80% Aqua bidest mischen, 5µl Proteinüberstand zu 995µl des Reagenz in Einmalküvetten und anschließende Messung nach 5 Minuten Inkubationszeit in einem BioPhotometer bei 595nm) ermittelt.

6.5 Statistik

Alle gezeigten Versuche wurden mehrfach erfolgreich durchgeführt. Die statistische Auswertung erfolgte anhand des Student’s t-Tests (gegebenenfalls mit Welch- Korrektur) oder der einfaktoriellen Varianzanalyse (One-way ANOVA) mit Newmann-Keuls post-Test. Unterschiede wurden ab einer Irrtumswahrscheinlichkeit von weniger als 5% (p < 0.05) als signifikant betrachtet und mit einem Stern markiert. Signifikanzen mit p < 0.01 wurden mit zwei Sternen markiert und Signifikanzen mit p < 0.001 mit drei Sternen. Zur Erstellung der Diagramme und für die statistische Auswertung wurde das Programm Graph Pad Prism® Version 4 verwendet. Die Abbildungen von Western blot, semi-quantitativer PCR und quantitativer PCR Analysen zeigen jeweils repräsentative Versuche von wenigstens drei unabhängig voneinander durchgeführten Wiederholungen mit gleichem Ergebnis, es sei denn die Abbildungsunterschrift kennzeichnet anderweitiges Vorgehen.
7 Ergebnisse

Wie aus bisherigen Untersuchungen hervorgeht (Houldworth et al., 1994; Shoma et al., 2008), führt eine Infektion mit \textit{S. pneumoniae} zu einer Caspase-1abhängigen Produktion von IL-1\(\beta\) \textit{in vitro}. Die zugrunde liegenden Mechanismen waren hierbei jedoch weitgehend ungeklärt, auch war zu Beginn der Untersuchungen nicht bekannt, ob ein und ggf. welches Inflammasom mit welchem bakteriellen Faktor funktionell interagiert, um die IL-1\(\beta\)-Produktion in Pneumokokken-infizierten monozytären Zellen zu vermitteln. Daher wurden in dieser Studie die für die IL-1\(\beta\)-Produktion essentiellen Faktoren, sowohl auf Seite des Pathogens als auch auf Seite des Wirts, charakterisiert und die Signaltransduktion in monozytären Zellen analysiert. Die Ergebnisse werden, unter einigen Ergänzungen, dargestellt wie in unserer Veröffentlichung, die auf den Ergebnissen dieser Arbeit sowie zusätzlichen Mausexperimenten beruht (Witzenrath et al., 2011).

7.1 Die Pneumokokken-induzierte IL-1\(\beta\)-Ausschüttung in monozytären Zellen ist abhängig vom bakteriellen Toxin Pneumolysin

Um die Hypothese zu prüfen, dass Inflammasome an der Wirtszellantwort auf eine \textit{S. pneumoniae}-Infektion beteiligt sind wurde zunächst die IL-1\(\beta\)-Produktion als readout für Inflammasomaktivierung gemessen.
Hierfür wurden zunächst murine BMMs mit Wildtyp Serotyp 2 Pneumokokken (D39) oder mit Ply-defizienten D39 Pneumokokken (D39\(\Delta\)ply) infiziert.
Abbildung 7-1-1 Die Produktion von IL-1β in S. pneumoniae-infizierten murinen Makrophagen ist abhängig von Ply

A und B: C57BL/6 BMMs wurden mit D39 Wildtyp oder Ply-defizienten D39 (D39Δply) S. pneumoniae für 6 (A) oder 16 (B) Stunden infiziert. A: Mittels quantitativer RT-PCR wurde die Expression von IL-1β mRNA bestimmt. B: IL-1β-Konzentrationen in Zellüberständen wurden mit einem ELISA quantifiziert. Die dargestellten Ergebnisse repräsentieren den Mittelwert (± SEM) von zwei (A) bzw. drei (B) unabhängigen, in Triplikaten durchgeführten Experimenten. n.d.: nicht detektierbar, MOI: multiplicity of infection (Infektionsdosis).

Zusätzlich sollte auch geprüft werden, ob auch in humanen Zellen IL-1β abhängig von Ply produziert wird. Hierfür wurde der unbekapselte Serotyp 2-Pneumokokkenstamm R6x sowie eine entsprechende Ply-defizierte Mutante eingesetzt. Es wurden frisch isolierte peripheral blood monocytic cells (PBMCs) (Abb. 7-1-2 A und B) und zum Vergleich Kulturen der humanen Monozyten-Zelllinie THP-1 (Abb. 7-1-2 C) für 16 Stunden mit Ply-suffizienten und –defizienten R6x infiziert. Die IL-1β-Produktion wurde mittels ELISA bzw. Western blot getestet. Auch in diesen humanen Zellen bzw. bei Infektion mit kapsellosen Bakterien zeigte sich, dass Pneumokokken abhängig von Ply die IL-1β-Produktion stimulieren. Im Gegensatz dazu waren beide Pneumokokkenstämme in der Lage, die Produktion des Inflammasom-unabhängig produzierten Zytokins IL-8 in gleichem Ausmaß zu induzieren (nicht gezeigte Daten).

Zusammenfassend zeigen diese Versuche, dass die IL-1β-Produktion in der S. pneumoniae-Infektion von murinen und humanen monozytären Zellen abhängig von Ply ist.
Abbildung 7-1-2 Die Produktion von IL-1β in S. pneumoniae-infizierten humanen monozytären Zellen ist abhängig von Ply

A und B: humane PBMCs und adhärente THP-1 Zellen (C) wurden mit R6x Wildtyp oder Ply-defizienten R6x (R6xΔply) S. pneumoniae für 16 Stunden infiziert. Zellfreie Überstände wurden mittels quantitativer ELISA und (C) Western blot auf IL-1β-Konzentrationen untersucht. Die gezeigten ELISA-Daten zeigen Mittelwerte (± SEM) aus drei voneinander unabhängigen in Triplikaten durchgeführten Experimenten bzw. einen repräsentativen Western blot von drei voneinander unabhängig durchgeführten Versuchen. Statistisch signifikante Unterschiede sind mit drei Sternen (p< 0.001) markiert.

7.2 Die Pneumokokken-induzierte IL-1β-Ausschüttung ist abhängig von der Expression eines vollständigen Poren-bildenden Pneumolysins

Um zu überprüfen, welcher Bestandteil von Ply die IL-1β-Produktion vermittelt, wurden weitere Versuche in murinen und humanen monozytären Zellen durchgeführt. Hierbei wurden die Zellen entweder mit vollständigem oder trunkierten, aufgereinigtem Ply aus D39-Wildtyp-Bakterien stimuliert oder mit D39-Bakterienmutanten infiziert, die ein vollständiges oder trunkiertes Ply exprimierten. Bei den Bakterienmutanten handelte es sich um Pneumokokkenrevertanten, die lediglich die eingangs beschriebenen zur Porenbildung notwendigen Domänen 1-3 (D1-3) exprimierten oder ausschließlich die zur Cholesterol-Bindung notwendige Domäne 4 (D4) bildeten.
(s. Tabelle 6-4). Die Stimulation auf subkonfluente Zellkulturen erfolgte mit einer Ply-Konzentration von 0,5 µg/µl.

Die Abbildung 7-2 A zeigt, dass eine Stimulation der humanen Zellen mittels Ply alleine eine robuste IL-1β-Produktion in die Zellüberstände bewirkt. Demgegenüber führt die Stimulation mit trunkierten D1-3- oder D4-Toxinen zu keiner detektierbaren IL-1β-Produktion in den untersuchten Zellen. Hierbei zeigte es sich in den Versuchen als unerheblich, ob Ply dem Kulturmedium zugesetzt wurde oder mittels Transfektionsreagenz Saint PhD in die Zellen transfiziert wurde (Daten nicht gezeigt).

Als nächstes sollte nun nachvollzogen werden, ob sich im Infektionsversuch durch Revertanten auf BMMs und im Hämolysetest mit verschiedenen Serotyp 2-Pneumokokkenlysate die Hypothese bestätigen ließe. Es zeigte sich, dass nur Pneumokokken, die vollständiges, porenbildendes Ply exprimieren, eine IL-1β-Produktion und eine Hämolyse der Erythrozyten als Maß für hämolytische/porenbildende Aktivität stimulieren (Abbildung 7-2 C und D). Anders als die Bildung von IL-1β war die Pneumokokken-stimulierte TNFα-Produktion in BMMs unabhängig von porenbilden Ply (Daten nicht gezeigt).

Zusammenfassend zeigt sich, dass sowohl in humanen als auch murinen Wirtszenen vollständiges, porenbildendes Ply für die Aktivierung einer IL-1β-Produktion notwendig ist.
Abbildung 7-2: Vergleich der IL-1 β-Produktion nach Stimulation von monozytären Zellen mit aufgereinigtem Pneumolysin oder Infektion mit Revertanten sowie Hämolysenkapazität

A: Humane PBMCs wurden mit Wildtyp-Ply oder PLY-Trunkationsvarianten (D1-3 und D4) stimuliert. Die Produktion von IL-1β in den zellfreien Überständen wurde 16 h später mittels eines spezifischen ELISAs untersucht. Die dargestellten Ergebnisse repräsentieren Mittelwerte (± SEM) von drei repräsentativen Experimenten. Statistisch signifikante Unterschiede (p < 0.001) sind mit drei Sternen gekennzeichnet.

B und D: Eine Suspension von 2% humanen Erythrozyten in PBS wurde für insgesamt 60 Minuten mit aufgereinigtem Pneumolysin (B) bzw. Serotyp 2-Pneumokokkenlysat (D) in serieller Verdünnung in 1:2 Schritten inkubiert, begonnen mit einer finalen Konzentration 0,5 µg/ml (B) bzw. 9,8 * 10⁷ CFU/ml, zur Visualisierung abzentrifugiert und unter Bodenbeleuchtung fotografiert. Knopfbildung bedeutet fehlende Hämolysen. Die Abbildung zeigt ein repräsentatives Ergebnis aus drei Versuchen.

7.3 Nicht-hämolytisches Ply exprimierende Serotyp 1 ST306- und Serotyp 8 ST53-Pneumokokken stimulieren keine IL-1β-Produktion

Wie eingangs erwähnt werden gerade Pneumokokken-Serotypen, die ein nicht-hämolytisches Allel 5-Ply exprimieren, insbesondere Serotyp 1 ST305 und Serotyp 8 ST53, häufig bei invasiven Pneumokokkeninfektionen isoliert (Weinberger et al., 2010). Um die hämolytische Aktivität von Serotyp 1 Pneumokokken zu testen, wurden zunächst Hämolysetests mit Lysaten von Wildtyp D39-Pneumokokken im Vergleich zu Serotyp 1-Pneumokokken ST306 sowie mit aufgereinigtem Allel 5-Ply im Vergleich zu Wildtyp-Ply durchgeführt. Dargestellt in Abbildung 7-3-1 A und B zeigte sich lediglich eine geringgradige hämolytische Aktivität von Serotyp 1 Pneumokokken bzw. durch ihr isoliertes Pneumolysin auf humane Erythrozyten.

Die Infektion von PBMCs mit Serotyp 1 ST306-Pneumokokken führte anders als die Infektion mit Serotyp 2 D39-Pneumokokken nicht zur Produktion von IL-1β (Abbildung 7-3-1 C). Hingegen konnte die Produktion des Inflammasom-unabhängigen Zytokins IL-8 durch beide Pneumokokken-Serotypen stimuliert werden (Abbildung 7-3-1 D). Durch die Stimulation von humanen PBMCs mit Allel 5 Pneumolysin im Vergleich zu wt Ply zeigt sich der gleiche Effekt einer robusten IL-1β-Produktion in Abhängigkeit von der hämolytischen Poren-bildenden Aktivität des Ply (Abb. 7-3-1 E).
Abbildung 7-3-1: Allel 5-Ply exprimierende Serotyp 1 ST306-Pneumokokken induzieren keine IL-1β-Produktion in humanen monozytären Zellen

A und B: Humanes Vollblut wurde mit D39 Serotyp 2- oder Serotyp 1 ST306-Pneumokokkenlysat (A) bzw. mit Allel 1-Ply oder Allel 5-Ply inkubiert, um die hämolytischen Fähigkeiten zu testen. C, D und E: Humane PBMCs wurden mit D39- oder ST306-Pneumokokken infiziert (C und D) bzw. mit aufgereinigtem Allel 1- und Allel 5-Ply stimuliert und die zellfreien Überstände nach 16 Stunden mittels ELISA auf IL-1β (C und E) und IL-8 (D) untersucht. Die dargestellten Ergebnisse repräsentieren Mittelwerte (± SEM) von drei repräsentativen Experimenten, in Triplikaten durchgeführt. Statistisch signifikante Unterschiede (p < 0.001) sind mit drei Sternen gekennzeichnet, nicht signifikante Unterschiede mit n.s.

Wie eingangs beschrieben unterscheiden sich nicht nur Pneumokokkenserotypen, sondern es unterliegt auch ein hochkonserviertes bakterielles Protein wie Pneumolysin einer geringen genetisch determinierten Variabilität. Die IL-1β-Produktion nach 16 Stunden Infektion mit Serotyp 1
Pneumokokken ST306 war im Vergleich zur Infektion mit wt Serotyp 2 D39 Pneumokokken mittels ELISA nicht nachweisbar (Abb. 7-3-2 A). Im Weiteren wurden andere Pneumokokken-Serotypen, die ein atypisches Allel 5 Ply exprimieren, auf ihre Fähigkeit, eine IL-1β-Produktion zu induzieren geprüft. Während ST217 (aus Serotyp 1 Pneumokokken, die ein hämolytisch aktives Ply produzieren) dosisabhängig die Produktion einer geringen Menge IL-1β stimulieren konnten, war nach Infektion von BMMs mit ST191 (aus Serotyp 7F Bakterien, die Ply mit geringer hämolytischer Aktivität produzieren) kaum und nach Infektion mit ST53 (aus Serotyp 8 Bakterien mit fehlender hämolytischer Aktivität des Allel 5 Plys) kein IL-1β im Zellüberstand nachweisbar (Abb. 7-3-2 B). Alle drei getesteten Allel 5 Ply-exprimierenden Pneumokokken waren hingegen in der Lage, vergleichbare Mengen von IL-1β mRNA zu induzieren (Abb. 7-3-2 C).

Insgesamt zeigt sich, dass die IL-1β-Produktion in murinen und humanen Zellen davon abhängig ist, dass die Pneumokokken ein hämolytisches, d.h. porenbildendes Ply exprimieren.

Abbildung 7-3-2: In murinen Zellen induzieren Allel 5-Ply oder Allel 5 Ply-exprimierende Pneumokokken keine IL-1β-Produktion

Murine BMMs wurden mit D39- bzw. ST306-Pneumokokken mit einer Infektionsdosis von 0.1 (A) bzw. D39-, ST306-, ST217-, ST191- oder ST53-Pneumokokken mit einer Infektionsdosis von 0.01 und 0.1 infiziert. Nach 16 Stunden wurde IL-1β in zellfreien Überständen mittels ELISA quantifiziert (B). Durch RT-PCR wurde die relative IL-1β mRNA-Expression bestimmt (C). Die dargestellten Ergebnisse repräsentieren Mittelwerte (± SEM) von drei in Triplikaten durchgeführten, repräsentativen Experimenten. Statistisch signifikante Unterschiede (p < 0.001) sind mit drei Sternen gekennzeichnet. N.d., nicht detektierbar.
7.4 Die IL-1β-Produktion in *S. pneumoniae*-infizierten Zellen ist abhängig von TLR2, NLRP3 und dem Adaptermolekül ASC

Als nächstes wurden die Mechanismen auf Seiten der Wirtszelle untersucht, die die IL-1β-Produktion nach Pneumokokkeninfektion vermitteln. Hierfür wurden Knochenmarksmakrophagen verschiedener *knockout* Tiere isoliert und mit D39-Pneumokokken infiziert.

Es zeigte sich, dass TLR2/- BMMs signifikant weniger IL-1β nach Infektion mit D39 produzierten, als Wildtyp-BMMs (Abbildung 7-4 A). Demgegenüber war die Pneumokokken-stimulierte IL-1β-Produktion in TLR4/- BMMs nicht reduziert im Vergleich zu Wildtyp BMMs (ebenda). Im Weiteren zeigte sich, dass die durch *S. pneumoniae* induzierte Produktion von IL-1β vom Vorhandensein des Inflammasom-Adapterproteins ASC abhängig war (Abbildung 7-4 B).

BMMs, die defizient für das Inflammasom-bildene NLR-Protein NLRP3 waren, bildeten nach Infektion mit D39-Pneumokokken nur geringe Mengen an IL-1β (Abb. 7-4 C). Auf die Produktion des Inflammasom-unabhängig produzierten Zytokins TNFα hatte die NLRP3-Defizienz keinen Einfluss (Abb. 7-4 D). Die Abbildung 7-4 E zeigt die Abhängigkeit der IL-1β-Produktion in BMMs sowohl von der Vollständigkeit des Ply als auch vom Vorhandensein des NLRP3-Inflammasoms.

Zusammenfassend zeigen die Ergebnisse, dass die IL-1β-Stimulation in *S. pneumoniae*-infizierten BMMs von einem TLR2-abhängigen und einem NLRP3-abhängigem Signal bestimmt wird.
Abbildung 7-4: Die durch *S. pneumoniae* stimulierten IL-1β-Produktion in BMMs ist abhängig von TLR2 und vom NLRP3-Inflammasom

Murine Wildtyp- oder knockout-BMMs wurden mit D39-Pneumokokken und -Revertanten infiziert. Nach 16 Stunden wurde IL-1β (A-C und E) bzw. TNFα (D) in zellfreien Überständen mittels ELISA quantifiziert. Die dargestellten Ergebnisse repräsentieren Mittelwerte (± SEM) von drei repräsentativen Experimenten, in Triplikaten durchgeführt. Statistisch signifikante Unterschiede (p < 0.001) sind mit drei Sternen gekennzeichnet, nicht signifikante Unterschiede (p>0.05) mit n.s.
7.5 Die IL-1β-Produktion in PBMCs nach *S. pneumoniae*-Infektion ist abhängig von dem Caspase-1-abhängigen NLRP3-Inflammasom

Um in humanen PBMCs die Abhängigkeit der IL-1β-Produktion von NLRP3 zu testen, wurde in frisch isolierte PBMCs mittels Elektroporation (Nucleofection) *small interfering* RNA (siRNA) gegen NLRP3 bzw. *non-silencing* Kontroll-siRNA eingebracht. 72 Stunden nach der Transfektion wurden die Zellen mit D39-Pneumokokken für 16 Stunden infiziert. Die Analyse der NLRP3-mRNA mit Hilfe von qRT-PCR zeigte, dass die Expression von NLRP3 gemindert wurde (Abb. 7-5 A) und dass die IL-1β-Produktion reduziert wurde (Abb. 7-5 B). Im Gegensatz dazu war die Produktion des Inflammasom-unabhängigen Zytokins IL-8 durch die Hemmung von NLRP3 unbeeinflusst (Daten nicht gezeigt).

Das NLRP3-Inflammasom prozessiert abhängig von Caspase-1 pro-IL-1β zu reifem IL-1β (Martinon et al., 2009b). Daher wurde als nächstes getestet, ob die IL-1β-Produktion nach *S. pneumoniae*-Infektion in humanen PBMCs abhängig von Caspase-1 ist. Hierzu wurden PBMCs für 1 h mit dem spezifischen Caspase-1-Inhibitor ZYVAD in einer Konzentration von 10 µM vorbehandelt, anschließend mit D39 infiziert und die Überstände mittels ELISA auf die Produktion von IL-1β hin untersucht. Der Caspase-1-Inhibitor hatte in der eingesetzten Konzentration keinen Einfluss auf das bakterielle Wachstum (Daten nicht gezeigt). Wie in Abbildung 7-5 C gezeigt, wird die durch D39-Infektion hervorgerufene IL-1β-Produktion signifikant durch die Hemmung von Caspase-1 vermindert. Die Produktion des Inflammasom-unabhängigen Zytokins IL-8 wurde durch ZYVAD nicht beeinflusst (Abb. 7-5 D).

Sowohl die Defizienz von NLRP3 in murinen Makrophagen (Abb. 7-4 C) als auch die Expressionshemmung von NLRP3 mittels siRNA in humanen PBMCs (Abb. 7-5 B) reduzierte die Pneumokokken-stimulierte IL-1β-Produktion nicht vollständig. Es wurde deshalb angenommen, dass weitere Inflammasome an der IL-1β-Produktion beteiligt waren. Die Inhibition von NLRP1, NLRP6 und NLRP12 mittels siRNA hatte jedoch keine Verminderung der *S. pneumoniae*-inuzierten IL-1β-Produktion zur Folge (Daten nicht gezeigt).

Zusammengefasst zeigen diese Ergebnisse, dass das NLRP3-Inflammasom die IL-1β-Produktion in Pneumokokken-infizierten PBMCs maßgeblich vermittelt, obwohl wahrscheinlich noch weitere Inflammasome (wahrscheinlich nicht die NLRP1-, NLRP6- und NLRP12-Inflammasome) beteiligt sind.
Abbildung 7-5: Die Pneumokokken-stimulierte IL-1β-Produktion in humanen PBMCs ist abhängig vom NLRP3-Inflammasom

A und B: 72 h nach Transfektion humaner PBMCs mit spezifischer siRNA gegen NLRP3 oder KontrollsiRNA wurden die Zellen für 16 h mit S. pneumoniae D39 [10³ CFU/ml] infiziert. Der knockdown von NLRP3 wurde mittels quantitativer PCR überprüft (A) und gewonnene zellfreie Überstände wurden mittels spezifischer ELISA auf die Produktion von IL-1β (B) untersucht. C und D: Humane PBMCs wurden für eine Stunde mit einem spezifischen Hemmstoff der Caspase-1, Z-YVAD, vorinkubiert, anschließend für 16 Stunden mit 10⁵ CFU/ml D39-Pneumokokken stimuliert. Die Produktion von IL-1β in den zellfreien Überständen wurde mittels eines spezifischen ELISAs untersucht. Die dargestellten Ergebnisse repräsentieren Mittelwerte (± SEM) von zwei repräsentativen Experimenten, in Triplikaten durchgeführt. Statistisch signifikante Unterschiede (p < 0.001) sind mit drei Sternen gekennzeichnet, statistisch nicht signifikante Unterschiede (p>0,05) mit n.s.
7.6 Die IL-1β-Produktion in mit Pneumokokken infizierten monozytären Zellen ist abhängig von K⁺-Efflux und reaktiven Sauerstoffspezies

Aus bisherigen Veröffentlichungen lassen sich unterschiedliche Modelle der Aktivierung des NLRP3-Inflammasoms postulieren. Im Folgenden sollte eine NLRP3-Aktivierung durch K⁺-Efflux aus dem intrazellulären Milieu (Walev et al., 1995; Arlehamn et al., 2010) sowie durch die Entstehung reaktiver Sauerstoffspezies (Cassel et al., 2008; Cruz et al., 2007) zur Testung im verwendeten Pneumokokken-Infektionsmodell überprüft werden.

Im Weiteren wurden die PBMCs für eine Stunde mit einem Hemmstoff von ROS, N-Acetyl-Cystein (NAC), vorinkubiert. Die Zugabe von NAC bewirkte ebenfalls eine signifikante Verminderung der Infektions-abhängigen IL-1β-Produktion, wohingegen das Inflammasom-unabhängig produzierte Zytokin IL-8 von der Zugabe des ROS-Inhibitors unbeeinflusst blieb (Abb. 7-6 B).
Abbildung 7-6: Einfluss von K⁺-Efflux und ROS-Bildung auf die durch Pneumokokken stimulierte IL-1β-Produktion

PBMCs wurden für eine Stunde vorinkubiert in einem 130 mM KCl beziehungsweise NaCl-haltigen (A), und ROS-Inhibitor NAC-haltigen- (B) haltigen Medium, anschließend in Nährmedium ausgesät. Es erfolgte eine 16 stündige Infektion mit D39. Gewonnene zellfreie Überstände wurden mittels eines spezifischen ELISAs auf die Produktion von IL-1β und IL-8 untersucht. Die dargestellten Ergebnisse repräsentieren den Mittelwert (± SEM) von mindestens drei unabhängigen Experimenten, die in Duplikaten durchgeführt wurden. Statistisch signifikante Unterschiede sind mit einem Stern (p<0.05), zwei Sternen (p<0.01) oder drei Sternen (p<0.001) gekennzeichnet, statistisch nicht signifikante Unterschiede mit n.s.
8 Diskussion

Insgesamt stehen einige dieser Daten in Einklang mit einer weiteren Studie, die nach Abschluss der Datenerhebung publiziert wurde. McNeela et al., konnten in dendritischen Zellen ebenfalls zeigen, dass Ply der Schlüsselvirulenzfaktor für die Aktivierung des NLRP3-Inflammasoms in der Pneumokokkeninfektion ist (McNeela et al., 2010).

Die erhobenen Ergebnisse sollen im Folgenden diskutiert und ihre Bedeutung für weitere Forschung näher eingeordnet werden.

8.1 Bedeutung des Pneumolysins in der IL-1β-Produktion durch monozytäre Zellen

Pneumolysin ist ein wichtiger Virulenzfaktor von Pneumokokken (Kardioglu et al., 2008). Durch Ply kann eine Evasion des Komplementsystems erreicht werden, was zu einer verminderten Erkennung von Pneumokokken durch das Immunsystem führt (Quin et al., 2007). Insbesondere vor dem Hintergrund der bedeutenden Rolle des Komplementsystems in der Abwehr von Pneumokokkeninfektionen [vermehrte systemische Pneumokokkeninfektionen mit erhöhter Fatalitätsrate bei Patienten mit Defekten des Komplementsystems (Bruyn et al., 1992), Fähigkeit von Ply C3 zu spalten und hierdurch in vivo die Opsonisierung der Pneumokokken zu verhindern (Rubins et al., 1995)] kommt hierdurch dem Ply eine große Bedeutung zu. Darüberhinaus ist Ply ein wichtiger Faktor für die Invasion in sterile Kompartimente z.B in Lunge und Blut. Ply zerstört im Zusammenspiel mit Wasserstoffperoxid, das durch Pneumokokken gebildet wird, das Alveolarepithel und somit kann ein Ödem im Alveolarraum akkumulieren (Canvin et al., 1995). Z.T wurden Makrophagen als direktes Vehikel der bakteriellen Invasion zusätzlich zur Störung der Integrität von Zellbarrieren gezeigt (Dunstone und Tweten 2012; Keyel et al., 2011). Im Weitere ist eine Ply-abhängige konsekutive Stimulation pro-inflammatorischer Zytokine wie TNF-α,
IL-1β und IL-6 beschrieben, die sowohl als Verstärkungsmechanismus der angeborenen Immunität und damit als Abwehrmechanismus gegen eine disseminierte Pneumokokkeninfektion essentiell sind, andererseits durch eine verstärkte Inflammation auch deletären Charakter für den Wirt haben können (Malley et al., 2003; Shoma et al., 2008). Dem Zytokin IL-1β, erstmals 1977 als endogenes Pyrogen aus PBMCs isoliert worden ist (Dinarello et al., 1977), kommt in der Infektionsabwehr eine bedeutende Rolle zu. So wurde in einem Staphylococcus aureus Sepsis Mäusemodell gezeigt, dass knockout Mäuse, die homozygot defizient für IL-1 Rezeptor α-Kette sind, schneller septisch werden und in Folge der Septikämie versterben (Hultgren et al., 2002). Vor diesem Hintergrund ist nun von besonderem Interesse, von welcher zugrunde liegenden Mechanismus die IL-1β-Produktion in der Pneumokokkeninfektion abhängig ist und dieser wurde daher in der vorliegenden Arbeit eingehend untersucht. Es zeigte sich eine Abhängigkeit der IL-1β-Produktion nach Infektion von monozytären Zellen mit Serotyp 2 Pneumokokken sowohl von der Vollständigkeit (dem Vorhandensein aller vier Domänen) des Ply (Abbildungen aus 7-1 und 7-2) als auch von ihrer Poren-bildenden hämolytischen Aktivität (Abb. 7-2 B und D). Die Induktion der IL-1β-Produktion konnte für murine (Abb. 7-1-1) sowie humane (Abb. 7-1-2) monozytären Zellen gezeigt werden. Hierbei zeigte es sich als unerheblich, ob Ply in aufgereinigter Form dargebracht wurde (Abb. 7-2 A und B) oder durch Infektion mit Ply-suffizienten Pneumokokken (Abb. 7-2 C und D). Ply-Trunkationsformen oder Revertanten-Infektionen, in denen nur einzelne Domänen von Ply exprimiert wurden, stimulierten keine IL-1β-Produktion. An späterer Stelle soll im Diskussionsteil dieser Arbeit die Bedeutung verschiedener Ply-Varianten für die IL-1β-Produktion näher beleuchtet werden.

Zunächst ist interessant, woher die Ply-induzierte IL-1β-Produktion kommt. Bereits für Porenbildende Toxine mehrerer Gram-positiver Bakterien (z.B. S. aureus, S. pyogenes, L. monocytogenes) wurde beschrieben, dass sie NLRP3-Inflammasom-abhängig die Prozessierung und Freisetzung von IL-1β stimulieren (Mariathasan et al., 2006; Meixenberger et al., 2010; Muñoz-Planillo et al., 2009, Craven et al., 2009; Harder et al., 2009). Im Folgenden soll der hierdurch initierte intrazelluläre Erkennungsmechanismus, einschließlich der essentiellen Wirtsfaktoren, näher diskutiert werden.

8.2 Die Rolle des NLRP3-Inflammsoms in der S.pneumoniae-vermittelten IL-1β-Produktion

Aus den Ergebnissen 7-1-1 sowie 7-3-2 B und C geht hervor, dass nach Infektion von Makrophagen mit Serotyp 2-Pneumokokken reifes sezerniertes IL-1β in zellfreien Überständen abhän-
gig von Ply gefunden wurde, IL-1β-mRNA wird hingegen auch in Abwesenheit von Ply in Pneumokokken-stimulierten Zellen gefunden. Dies legt nahe, dass ein Inflammasom, das die Prozessierung von unreifem pro-IL-1β in seine reife Form IL-1β vermittelt, durch Ply aktiviert wird. Da es sich bei der Inflammasom-Aktivierung um einen Caspase-1-vermittelten Mechanismus handelt, wurde zunächst die Hypothese überprüft, dass eine pharmakologische Inhibierung der Caspase-1 in monozytären Zellen die Produktion von reifem sezerniertem IL-1β nach S.p.-Infektion unterbinden könne (7-5). Da sich diese Hypothese für das Inflammasom-abhängige Zytokin IL-1β, nicht jedoch für ein Inflammasom-unabhängig produziertes pro-inflammatorisches Zytokin, IL-8, in humanen PBMCs bestätigte, kann hieraus postuliert werden, dass an dem zu untersuchenden Mechanismus zumindest ein Inflammasom beteiligt ist.

Da in Infektionsversuchen und –Modellen aus eigenen Arbeiten mit Poren-bildenden Toxinen Gram-positiver Bakterien (Meixenberger et al., 2010) und andere (Mariathasan et al., 2006; Muñoz-Planillo et al., 2009, Craven et al., 2009; Harder et al., 2009) eine Abhängigkeit der IL-1β-Produktion vom NLRP3-Inflammasom zeigte, wurde zunächst die Bedeutung eben dieses Inflammasoms in der Pneumokokkeninfektion von monozytären Zellen getestet. In Abhängigkeit von der NLRP3-Expression konnte nach Infektion mit Pneumokokken, die ein vollständiges Poren-bildendes Ply exprimierten, eine robuste Stimulation von IL-1β nachgewiesen werden.

Dennoch war auch in Überständen Pneumokokken infizierter NLRP3-defizienter monozytärer Zellen noch residuelle Mengen IL-1β mittels ELISA messbar (Abb. 7-4 C und E sowie Abb. 7-5 A und B).

Durch knockdown der mRNA für die Inflammasome NLRP1, NLRP6, NLRP12 (nicht gezeigte Daten) und NLRP3 konnte schließlich NLRP3 als wichtiger Bestandteil in der Prozessierung von IL-1β bestätigt werden. Hiernach denkbar ist eine mögliche Restprozessierung von pro-IL-1β zu reifem sezernierten IL-1β nach siRNA-Transfektion in humanen PBMCs, da auch in der RT-PCR zwar ein starker, allerdings nicht vollständiger knockdown von NLRP3 gefunden wurde. Da allerdings murine knockout BMMs ebenfalls in der Lage waren, geringe aber nachweisbare Mengen IL-1β nach S. pneumoniae-Infektion zu produzieren, deuten die Ergebnisse auf einen zusätzlichen, NLRP3-unabhängigen Mechanismus der IL-1β-Produktion hin. Gerade die fast vollständig verminderte IL-1β-Produktion in ASC−/−-BMMs (Abb. 7-4 B) bietet Hinweis auf ein weiteres Inflammasom, das an der IL-1β-Produktion nach Pneumokokkeninfektion beteiligt ist.
und das Adaptermolekül ASC verwendet. Diese Vermutung bestätigte sich kürzlich durch eine Veröffentlichung durch Fang, die eine Rolle des AIM2-Inflammasoms, welches ebenfalls ASC und Caspase-1 beinhaltet, in dendritischen Zellen zeigen konnten (Fang et al., 2011; Koppe et al., 2012).

Nach den vorliegenden in vitro-Versuchen stellte sich die Frage nach einer Relevanz des beschriebenen Mechanismus in vivo. In weiterführenenden Arbeiten der Arbeitsgruppe zeigt sich, dass NLRP3⁻⁺ Mäuse eine erhöhte Anfälligkeit für Pneumokokken-Pneumonien im Vergleich zu Wildtyp-Mäusen aufweisen, mit gleichzeitig vermindert er Produktion der proinflammatorischen Zytokine IL-1β, sowie IL-18, möglicherweise als Folge vermindert er KC- und IFN-γ-Produktion (Witzenrath et al., 2011). Das Leukozytenrekrutment in infiziertem Gewebe zeigte sich unverändert, hingegen war die Durchlässigkeit des Lungengewebes (ermittelt durch einen HSA-Quotienten BAL/Serum) erhöht, so dass sich früh ein Lungenödem entwickeln konnte. Außerdem war das Überleben der Mäuse nach intranasaler Applikation von S. pneumoniae in einem LD20-Versuch, in dem 80 % der wt-Mäuse überlebten, bei NLRP3⁻⁺-Mäusen auf 45 % vermindert und in der Überlebenskurve verstarben die NLRP3⁻⁺-Mäuse zu einem früheren Zeitpunkt (70 % nach 72h) (Witzenrath et al., 2011).

Insgesamt zeigt sich somit, dass das NLRP3-Inflammasom an der protektiven Immunantwort in der Pneumokokken-Pneumonie auch in der Maus beteiligt ist (Witzenrath et al., 2011). Auch die in vivo Daten sind im Einklang mit den Studien von McNeela und Fang (McNeela et al., 2011; Fang et al., 2011). Da sie eine verbleibende IL-1β-Produktion nach Pneumokokkeninfektion in NLRP3⁻⁺ Zellen finden, die hingegen in ASC⁻⁺-Zellen nicht mehr nachweisbar ist, folgern die Autoren, dass mindestens ein redundantes, ASC-enthaltendes Inflammasom in die IL-1β-Produktion mit Pneumokokken involviert sein muss. Möglicherweise ist hieran das ASC-enthaltende Inflammasom AIM2 beteiligt, da dies ebenfalls eine Rolle in der S. pneumoniae-vermittelten IL-1β-Produktion spielt (Fang et al., 2011; Koppe et al., 2012). Entsprechend zeigen ASC⁻⁺-Mäuse eine erhöhte Suszeptibilität gegenüber Pneumokokken-Pneumonien im Vergleich zu wt-Mäusen (Fang et al., 2011).

Aktuell ist noch kontrovers diskutiert, ob das NLRP3-Inflammasom in humanen PBMCs konstitutiv aktiviert ist (Netea et al., 2009). Die in dieser Arbeit vorliegenden Daten stehen in Widerspruch mit der zuvor genannten Forschungsarbeit, da sich eine robuste Freisetzung von reifem sezerniertem IL-1β nur nach Stimulation mit vollständigem porenbildenden Ply zeigte. Diese Ergebnisse stehen im Einklang mit mehreren anderen Forschungsarbeiten zur Aktivierung des NLRP3-Inflammasoms in humanen PBMCs (Vladimer et al., 2013; Witzenrath et al., 2011).
8.3 Die Aktivierung von NLRP3 durch Pneumolysin

NLRP3 kann als das aktuell best-untersuchteste Inflammasom gesehen werden. Zu seiner Aktivierung sind eine Vielzahl verschiedener Stimuli, direkt Pathogen-assoziierte wie auch indirekte Gefahr-assoziierte Molekülstrukturen, bekannt. Nach derzeitigem Kenntnisstand führen sie alle zu einer Endstrecke, die auf 3 verschiedenartige Mechanismen heruntergebrochen werden kann:

a) K⁺-Efflux aus dem Zellinneren,
b) Bildung reaktiver Sauerstoffradikale (ROS),
c) Cathepsin B-Freisetzung aus dem Lysosom für große Moleküle (Muñoz-Planillo et al., 2009; Dostert et al., 2008; Hornung et al., 2008; Pétrilli et al., 2007; Perregaux und Gabel 1994; rezensiert in Lamkanfi und Dixit, 2012). Es sind noch weitere Aktivatoren des NLRP3-Inflammasoms beschrieben, unter ihnen das Anschwellen von Zellen (Lamkanfi und Dixit, 2012), Ca²⁺-Einstrom in Zellen (Lamkanfi und Dixit, 2009) sowie die TRIF-abhängige Erkennung von mikrobiellen RNAs aus Phagosom-Leckage in das Zytosol (Sander et al., 2011). Möglicherweise münden aber auch diese Aktivatoren in einem der aufgeführten Mechanismen a)-c).

Die jeweilige Bedeutung dieser alternativen Endstrecken ist nicht gleichwertig und die unterschiedlichen Mechanismen sollen weiter unten diskutiert werden.

Aufgrund der Ergebnisse aus Abb. 7-6 ist davon auszugehen, dass in der Pneumokokken-Infektion monozytärer Zellen zumindest K⁺-Efflux sowie die Bildung von ROS eine entscheidende Rolle in der Aktivierung des NLRP3-Inflammasoms und subseuerter IL-1β-Produktion spielen.

Durch die hohe Anzahl diverser Stimuli des NLRP3-Inflammasoms und die pro-inflammatorische Konsequenz seiner Aktivierung ist eine besonders engmaschige Kontrolle der Aktivierung von Bedeutung. Im Gegensatz zu anderen NLRs wird Nlpr3 in naiven dendritischen Zellen und Makrophagen nur in geringem Umfang exprimiert. Es ist ein NF-κB-abhängiger priming-Schritt erforderlich, ehe ein zweites Signal TLR-abhängig (durch Exposition der Zellen gegenüber bakteriellen Toxinen, DAMPs oder Kristallen) die Aktivierung des NLRP3-Inflammasoms ermöglicht (Bauernfeind et al., 2009; Lamkanfi und Dixit, 2012).

Für die Aktivierung über K⁺-Efflux ist gezeigt, dass eine Anhebung der extrazellulären K⁺-Konzentration und damit ein vermindelter Konzentrations- und Ladungsgradient über der Zellmembran zu einer Inhibition des NLRP3-Inflammasoms führt (Walev et al., 1995; Pétrilli et al., 2007; Cain et al., 2001; Fink et al., 2008; Arlehamn et al., 2010). Im Verständnis der K⁺-Efflux-vermittelten NLRP3-Aktivierung in Infektionsmechanismen mit Pathogenen oder Stimulation mit Poren-bildenden Toxinen (Dostert et al., 2008; Pétrilli et al., 2007; Mariathasan et al., 2006;

Im Zusammenhang mit der NLRP3-Aktivierung wird neben dem K⁺-Efflux auch die Bildung reaktiver Sauerstoffspezies (ROS) diskutiert. Unabhängig von ihrem Ursprung (mitochondriale ROS wie beschrieben durch Cassel oder durch die zytosolische NADPH-Oxidase der Phagozyten nach Cruz) werden ROS bei einer Vielzahl zellulärer Stressmechanismen freigesetzt (Cassel et al., 2008; Cruz et al., 2007) und fungieren als DAMPs. Nur einige spezifische DAMPs führen konsekutiv zu einer NLRP3-Aktivierung. So verminderte die Hemmung von ROS die NLRP3-vermittelte IL-1β Produktion in Reaktion auf Influenza A Virus (Allen et al., 2009), Hemozoin (Shio et al., 2009), Asbest (Dostert et al., 2008), Siliziumkristalle (Cassel et al., 2008), Aluminiumsalze (Kool et al., 2008) und MSU (Dostert et al., 2008). Allerdings ist mittlerweile gezeigt, dass die Hemmung von ROS, beispielsweise mittels NAC (N-Acetyl-Cystein), oberhalb der NLRP3-Aktivierung, also auf Ebene der NF-κB-Aktivierung geschieht (Bauernfeind et al., 2011). Auch spielt die Quelle des ROS eine Rolle, während für mitochondriales ROS gezeigt ist, dass es NLRP3 aktivieren kann, ist durch Versuche mit Zellen von Patienten mit Mutation der zytosolischen NADPH-Oxidase gezeigt, dass sie nach Stimulation normale Mengen IL-1β produzieren können (Bulua et al., 2012).

Die hier aufgeführten Studien wie auch die durchgeführten Versuche, die eine Rolle für ROS-Bildung in der Pneumolysin-abhängigen IL-1β-Produktion zeigen, wurden mit Hilfe eines Inhibitors durchgeführt. Daher müssen die Ergebnisse sehr differenziert betrachtet werden: auf der einen Seite kommt dem verwendeten Inhibitor NAC eine klinische Rolle zu. Seine anti-inflammatorische Wirkung ist seit langer Zeit bekannt und kann an anderer Stelle detailliert nachgelesen werden (Gillissen et al., 1997). Auf der anderen Seite zeigen Metaanalysen klinischer Studien, dass bei Anwendung von NAC bei vorwiegend inflammatorischen Erkrankungen
wie SIRS oder Sepsis kein Nutzen in Hinblick auf die Mortalität bestünde (Szakmany et al., 2012).

Als weiterer Mechanismus, der zur Aktivierung des NLRP3-Inflammasoms führen kann, zählt möglicherweise die Freisetzung von Cathepsin B. Diese lysosomale Protease wird bei Schädigung des Lysosoms ins Zytoplasma freigesetzt, ein Mechanismus der als gemeinsame Endstrecke einer größeren Anzahl von Stimuli zur Aktivierung des NLRP3-Inflammasoms führt. Beschrieben ist dieser Mechanismus für den Austritt lysosomaler Enzyme aus dem Phagolysosom ins Zytoplasma nach mechanischer Perforation des Phagolysosoms durch große Moleküle z. B. durch Siliziumkristalle (Hornung et al., 2008) und Aluminiumsalze (Sharp et al., 2009; Hornung et al., 2008), durch Toxine wie Tetanolysin O (Chu et al., 2009) oder Listeriolysin (Meixenberger et al., 2011), Pathogene wie Influenza A Virus (Allen et al., 2009), Neisseria gonorrhoeae (Duncan et al., 2009), Shigella flexneri (Willingham et al., 2007), Klebsiella pneumoniae (Willingham et al., 2009), aber auch in komplexen neurologischen Erkrankungen wie M. Alzheimer durch β-Amyloid (Halle et al., 2008), α-Synucleinopathien (Codolo et al., 2013). Interessanterweise ist durch lysosomale Membran-Permeabilisierung unter Cathepsin B-Freisetzung eine besondere Form des Zelltodes beschrieben, die weder direkt mit der NLRP3-abhängigen Pyroptose noch mit Apoptose oder Nekrose einhergeht (Boya und Kroemer, 2008).

Die Ergebnisse der eigenen Versuche mit dem Cathepsin B-Inhibitor CA-074 Me und Stimulation durch Ply lassen keine direkten Rückschlüsse auf die Bedeutung von Cathepsin B in der Ply-vermittelten NLRP3-abhängigen IL-1β-Produktion zu, da der Inhibitor wenig Effekt auf die IL-1β-Produktion hatte (Daten nicht gezeigt). Dies steht im Einklang mit der aktuellen Literatur, die dem Cathepsin-B-vermittelten Mechanismus der NLRP3-Aktivierung eine untergeordnete Rolle zuordnet, wie aus Versuchen mit Cathepsin-B-defizienten Makrophagen und durch die Entdeckung von Cathepsin Redundanzen hervorgeht (Dostert et al., 2009, Tschopp und Schroder 2010).
Eine kürzlich erschienene Forschungsarbeit zeigte, dass innerhalb aller getesteten NLRP3-Aktivatoren K⁺-Efflux, ob primär oder sekundär, der gemeinsame Nenner sei (Muñoz-Planillo et al., 2013).

Insgesamt zeigt sich, dass die Aktivierung des NLRP3-Inflammasoms durch Ply abhängig ist von K⁺-Efflux sowie möglicherweise von der Bildung von ROS.

8.4 Die Bedeutung von Pneumolysin-Mutanten und verschiedenen Pneumokokken-Serotypen in der Aktivierung von NLRP3 und Ausblick

Eine Übersicht der in dieser Arbeit verwendeten *S. pneumoniae*-Stämme, ihrer exprimierten Ply-Varianten und ihrer Fähigkeit zur Inflammasom-Aktivierung, ist in Tabelle 8-1 dargestellt.

<table>
<thead>
<tr>
<th>S. pneumoniae Stamm</th>
<th>PLY Variante</th>
<th>Inflammasom Aktivierung</th>
</tr>
</thead>
<tbody>
<tr>
<td>D39</td>
<td>Allel 1</td>
<td>++</td>
</tr>
<tr>
<td>D39Δply</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>D39plyD1-3</td>
<td>Trunkationsvariante</td>
<td></td>
</tr>
<tr>
<td>D39plyD4</td>
<td>Trunkationsvariante</td>
<td></td>
</tr>
<tr>
<td>D39plyD1-4</td>
<td>Allel 1</td>
<td>++</td>
</tr>
<tr>
<td>R6x</td>
<td>Allel 1</td>
<td>++</td>
</tr>
<tr>
<td>R6xΔply</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Serotyp 1, ST217</td>
<td>Allel 1, 2</td>
<td>++</td>
</tr>
<tr>
<td>Serotyp 1, ST306</td>
<td>Allel 5</td>
<td>-</td>
</tr>
<tr>
<td>Serotyp 7F, ST191</td>
<td>Allel 10</td>
<td>-/+</td>
</tr>
<tr>
<td>Serotyp 8, ST53</td>
<td>Allel 5</td>
<td>-</td>
</tr>
</tbody>
</table>

Insgesamt gibt es deutliche Unterschiede in der Serotypen-Repräsentation nach Altersgruppen und Regionen (Hausdorff et al., 2005). Interessant ist dies für die vorliegende Arbeit aus verschiedenen Aspekten heraus:

Welche Bedeutung hat die Poren-bildende Funktion des Ply für die Pathogenfunktion? Und welche Rolle spielt sie bei der Erkennung der Pneumokokke als Pathogen durch den Wirt?

Wie in dieser Arbeit exemplarisch an Allel 1-Ply aus Serotyp 2 Pneumokokken im Vergleich zu Allel 5-Ply aus Serotyp 1 Pneumokokken gezeigt, unterscheiden sich sowohl die hämolytischen Eigenschaften als auch die Fähigkeit zur Induktion von IL-1β. Die Poren-bildende Funktion des Ply kann als zweiseitiges Schwert betrachtet werden: Zum einen dient die Bindung an Cholesterol-haltige Membranen und die Porenbildung in diesen Membranen dem Zusammenbruch.
von Barrierefunktionen. Andere Pathogene wie z.B. Listerien machen sich diesen Effekt direkt zu Nutze, indem sie der intrazellulären Vakuole, die sie sich selbst zu ihrer Vermehrung schaffen, Löcher zufügen, um anschließend im Zytoplasma wirken zu können (Meixenberger et al., 2010). Bei Pneumokokken als vorwiegend extrazellulärem Pathogen muss davon ausgegangen werden, dass die Poren-bildende Wirkung weniger direkt genutzt wird, aber beispielsweise zur Provokation des Zusammenbruchs von Epithelbarrieren dient (Littmann et al., 2009). Andere wichtige Effekte des Plys wurden bereits an anderer Stelle in der Diskussion dieser Arbeit erwähnt (Komplementaktivierung, sowie Komplementevasion etc.). In einem Review von Clarke und Weiser wird außerdem diskutiert, dass auch diese als streng extrazellulär geltenden Pathogene durchaus einen Weg in das Zellinnere finden und dieses als gesondertes Kompartiment zur Evasion der Wirtsimmunität nutzen können (Clarke und Weiser, 2011).

Weitere Studien sind nötig, um die differenzielle Rolle von Pneumolysin und seine Effekte auf Wirts-Kolonisierung und –Invasion, insbesondere aber auch seine Effekte auf die angeborene Immunität näher zu beleuchten.

Weitere Studien sind nötig, um die differenzielle Rolle von Pneumolysin und seine Effekte auf Wirts-Kolonisierung und –Invasion, insbesondere aber auch seine Effekte auf die angeborene Immunität näher zu beleuchten.
9 Literaturverzeichnis

Infect Immun. 73, 4245-52.

Schroder NW, Morath S, Alexander C, et al. (2003). Lipoteichoic acid (LTA) of *Streptococcus pneumoniae* and *Staphylococcus aureus* activates immune cells via Toll-like receptor (TLR)-2, lipopolysaccharide-binding protein (LBP), and CD14, whereas TLR-4 and MD-2 are not involved. J Biol Chem. 278, 15587-94.

82

10 Eidesstattliche Versicherung

Ich, Florence Pache, versichere an Eides statt durch meine eigenhändige Unterschrift, dass ich die vorgelegte Dissertation mit dem Thema: Differentielle Aktivierung des NLRP3-Inflammasoms durch Pneumolysin selbstständig und ohne nicht offengelegte Hilfe Dritter verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel genutzt habe.

Alle Stellen, die wörtlich oder dem Sinne nach auf Publikationen oder Vorträgen anderer Autoren beruhen, sind als solche in korrekter Zitierung (siehe „Uniform Requirements for Manuscripts (URM)“ des ICMJE -www.icmje.org) kenntlich gemacht. Die Abschnitte zu Methodik (insbesondere praktische Arbeiten, Laborbestimmungen, statistische Aufarbeitung) und Resultaten (insbesondere Abbildungen, Graphiken und Tabellen) entsprechen den URM (s.o) und werden von mir verantwortet.

Meine Anteile an etwaigen Publikationen zu dieser Dissertation entsprechen denen, die in der untenstehenden gemeinsamen Erklärung mit dem Betreuer, angegeben sind. Sämtliche Publikationen, die aus dieser Dissertation hervorgegangen sind und bei denen ich Autor bin, entsprechen den URM (s.o) und werden von mir verantwortet.

Die Bedeutung dieser eidesstattlichen Versicherung und die strafrechtlichen Folgen einer unwahren eidesstattlichen Versicherung (§156,161 des Strafgesetzbuches) sind mir bekannt und bewusst.

Datum Unterschrift

Anteilsersklärung an etwaigen erfolgten Publikationen

Florence Pache hatte folgenden Anteil an den folgenden Publikationen:

Beitrag im Einzelnen (bitte kurz ausführen):

Beitrag im Einzelnen (bitte kurz ausführen):

Unterschrift, Datum und Stempel des betreuenden Hochschullehrers/der betreuenden Hochschullehrerin

Unterschrift des Doktoranden/der Doktorandin
11 Lebenslauf
Mein Lebenslauf wird aus datenschutzrechtlichen Gründen in der elektronischen Version meiner Arbeit nicht veröffentlicht.
12 Publikationsliste

In Revision

13 Danksagung

Meine Danksagung wird aus datenschutzrechtlichen Gründen in der elektronischen Version meiner Arbeit nicht veröffentlicht.