Max-Delbrück-Centrum für Molekulare Medizin Robert-Rössle-Straße 10 13092 Berlin

Dissertation

Der G-Protein-gekoppelte Rezeptor EDG6

Markus Gräler

September 2000

Eingereicht am Fachbereich Biologie, Chemie, Pharmazie der Freien Universität Berlin

Die vorliegende Dissertation wurde in der Zeit von Juni 1997 bis September 2000 in der Arbeitsgruppe von PD Dr. Martin Lipp der Abteilung Tumor- und Immunogenetik des Max-Delbrück-Centrums Berlin-Buch angefertigt.

Hiermit erkläre ich, daß ich die vorliegende Dissertation am Max-Delbrück-Centrum für Molekulare Medizin in Berlin-Buch in der Arbeitsgruppe von PD Dr. Martin Lipp selbständig durchgeführt und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe. Markus Gräler Berlin, im September 2000

- 1. Gutachter: Herr PD Dr. Martin Lipp
- 2. Gutachter: Herr Prof. Dr. Udo Heinemann

Datum der Disputation: 19. Januar 2001

Teile dieser Arbeit wurden veröffentlicht in:

Gräler, M. H., Bernhardt, G. und Lipp, M. (1998): EDG6, a novel G-protein-coupled receptor related to receptors for bioactive lysophospholipids, is specifically expressed in lymphoid tissue. *Genomics*, 53: 164-9.

Gräler, M. H., Bernhardt, G. und Lipp, M. (1999): A lymphoid tissue-specific receptor, EDG6, with potential immune modulatory functions mediated by extracellular lysophospholipids. *Curr Top Microbiol Immunol*, 246: 131-6.

Van Brocklyn, J. R., Gräler, M. H.*, Bernhardt, G., Hobson, J. P., Lipp, M. und Spiegel, S. (2000): Sphingosine-1-phosphate is a ligand for the G protein-coupled receptor EDG-6. *Blood*, 95: 2624-9. (*J.R.V.B. und M.H.G. sind gleichwertige Autoren dieser Studie.)

"Nichts schockiert mich, ich bin Wissenschaftler!"

 $Indiana \ Jones$

Inhaltsverzeichnis

1	Einfi	führung 1					
	1.1	G-Protein-gekoppelte Signalübertragung	1				
		1.1.1 Rezeptoren	1				
		1.1.2 Heterotrimere G-Proteine	5				
		1.1.3 Effektoren	7				
	1.2	Die EDG-Rezeptorfamilie	9				
	1.3	Lysophospholipide	11				
	1.4	Der EDG6-Rezeptor	13				
	1.5	Problemstellung	14				
2	Mat	erial	15				
	2.1	Bakterien	15				
	2.2	Vektoren genomischer DNA-Banken	15				
	2.3	Plasmide	16				
	2.4	RNA und DNA	17				
	2.5	Zellen	18				
	2.6	Mäuse	18				
	2.7	Oligonukleotide	18				
	2.8	Enzyme	20				
	2.9	Chemikalien	20				
	2.10	Antikörper	22				
	2.11	Geräte und sonstige Materialien	22				
3	Met	hoden	25				
	3.1	Bakterienkulturen	25				
		3.1.1 Lagerung und Reaktivierung von Bakterienkulturen	25				

	3.1.2	Plattenkulturen	25
	3.1.3	Flüssigkulturen	26
3.2	Kultu	r von Säugetierzellen	26
	3.2.1	Lagerung und Reaktivierung von Stammkulturen	26
	3.2.2	Kultivierung von Zellinien	27
	3.2.3	Kultivierung und Inaktivierung von embryonalen Fibroblastenzellen $\ .$.	27
	3.2.4	Kultivierung von embryonalen Stammzellen \hdots	28
	3.2.5	Elektroporation und Selektion von embryonalen Stammzellen $\ . \ . \ .$	29
	3.2.6	Isolierung G418-resistenter embryonaler Stammzellklone \hdots	30
	3.2.7	Isolierung und Kultivierung primärer muriner Milzzellen	30
	3.2.8	Zellzahlbestimmung	31
3.3	Protei	in expression in $E. \ coli$	31
	3.3.1	Induktion der Proteinexpression	31
	3.3.2	Bakterienaufschluß	32
	3.3.3	Proteinreinigung durch Affinitätschromatografie	32
3.4	Protei	inexpression in Säugetierzellen	33
	3.4.1	Transfektion von Säugetierzellen	34
	3.4.2	Selektion stabil exprimierender Zellinien	35
	3.4.3	Isolierung membranständiger Proteine	36
3.5	Konze	entrationsbestimmung von Proteinen	36
	3.5.1	Photometrische Konzentrationsbestimmung bei 280nm	36
	3.5.2	Proteinbestimmung nach Bradford	37
3.6	Auftre	ennung von Proteinen in Polyacrylamidgelen	37
	3.6.1	Glycingele	37
	3.6.2	Tricingele	38
	3.6.3	Harnstoffgele	39
3.7	Färbu	ng von Proteingelen	39
	3.7.1	Coomassie-Färbung	39
	3.7.2	Silberfärbung	40
3.8	Trans	fer und Nachweis von Proteinen auf PDVF-Membranen	40
	3.8.1	Transfer nach der Western-Blot-Methode	40
	3.8.2	Immundetektion von Proteinen	41
	3.8.3	Abwaschen gebundener Antikörper	42
3.9	Reinig	gungsmethoden für Nukleinsäuren	42

	3.9.1	Phenolextraktion von Proteinen	42
	3.9.2	Ethanolpräzipitation von DNA und RNA	43
	3.9.3	Abtrennung von Oligonukleotiden in DNA-Präparationen $\ . \ . \ . \ .$	43
3.10	Ampli	fizierung von DNA mittels der Polymerase-Kettenreaktion (PCR) $\ . \ . \ .$	43
	3.10.1	Synthese einzelsträngiger cDNA für die PCR $\hfill \ldots \ldots \ldots \ldots \ldots \ldots$	43
	3.10.2	Amplifizierung von DNA mittels PCR	44
	3.10.3	Amplifizierung von 5'-cDNA-Enden mittels RACE-PCR \hdots	44
3.11	Trenni	nethoden für Nukleinsäuren	45
	3.11.1	DNA-Trennung durch Agarose-Gelelektrophorese	45
	3.11.2	DNA-Trennung durch Polyacrylamid-Harnstoffgele	46
	3.11.3	RNA-Trennung durch Formamid-Agarosegele	47
3.12	Durch	mustern einer Genbank	48
3.13	Transf	er von Nukleinsäuren auf Nitrozellulose- oder Nylonmembranen $\ . \ . \ .$	48
	3.13.1	DNA-Transfer mittels Southern-Blot-Methode	48
	3.13.2	RNA-Transfer mittels Northern-Blot-Methode	49
	3.13.3	Transfer von Phagen-DNA	50
3.14	Spezifi	sche Detektion von Nukleinsäuren durch Hybridisierung	50
	3.14.1	Markierung von DNA-Fragmenten	50
	3.14.2	Hybridisierung von Nukleinsäuren mit markierten DNA-Fragmenten $\ .$	51
	3.14.3	Detektion markierter DNA-Fragmente	53
	3.14.4	Abwaschen hybridisierter Proben	53
3.15	Isolier	ungsmethoden für Nukleinsäuren	54
	3.15.1	Isolierung von DNA-Fragmenten aus Agarosegelen	54
	3.15.2	Isolierung von Plasmid-DNA	54
	3.15.3	Isolierung genomischer DNA	56
3.16	Konze	ntrationsbestimmung von Nukleinsäuren	56
	3.16.1	Photometrische Konzentrationsbestimmung bei 260nm	56
	3.16.2	Konzentrations bestimmung mittels Agarose-Gelelektrophorese $\ldots \ldots \ldots$	56
3.17	Enzym	natische Reaktionen an DNA	57
	3.17.1	Spaltung von DNA durch Restriktionsendonukleasen \ldots \ldots \ldots \ldots	57
	3.17.2	Abspaltung von 5'-Phosphat resten durch alkalische Phosphatase $\ .\ .$	57
	3.17.3	Herstellen von glatten Enden an DNA-Fragmenten	57
	3.17.4	3'-Polyadenylierung von DNA mittels terminaler Transferase $\ \ldots \ \ldots \ \ldots$	57
3.18	Klonie	rung von DNA	58

		3.18.1 Ligation von DNA-Fragmenten	58
		3.18.2 Präparation transformationskompetenter Bakterien	58
		3.18.3 Transformation durch Elektroporation	58
	3.19	Sequenzierung von Plasmid-DNA	59
	3.20	Durchflußzytometrie	59
		3.20.1 Fixierung und Permeabilisierung	59
		3.20.2 Immunfluoreszenzfärbung	60
		3.20.3 Propidiumiodid-Färbung toter Zellen	60
		3.20.4 Analyse	60
	3.21	Immunfluoreszenzfärbung von Säugetierzellen	61
		3.21.1 Kultivierung	61
		3.21.2 Fixierung	61
		3.21.3 Permeabilisierung	61
		3.21.4 Immunfluoreszenzfärbung	61
		3.21.5 Mikroskopie	61
	3.22	Migrationsexperimente	62
	3.23	Luziferase-Assay	62
	3.24	Calcium-Assay	63
	3.25	Datenverarbeitung	63
4	Erge	bnisse	65
	4.1	Identifizierung des murinen EDG6-Rezeptors	65
		4.1.1 Primer-Design	66
		4.1.2 5'-RACE-PCR	67
		4.1.3 Kodierende Sequenz und Homologie	67
	4.2	Herstellung <i>edg6</i> -defizienter Mäuse	67
		4.2.1 Subklonierung der murinen genomischen <i>edg6</i> -DNA	70
		4.2.2 Herstellung des <i>edg6</i> -defizienten Vektorkonstrukts	71
		4.2.3 Generierung homolog rekombinierter embryonaler Stammzellen	72
		4.2.4 Selektion homolog rekombinierter embryonaler Stammzellen	72
		4.2.5 Blastozysten-Injektion und Uterus-Transfer	75
	4.3	RNA-Expression des EDG6-Rezeptors	76
		4.3.1 edg6-mRNA-Expression in humanen Zellinien	76
		4.3.2 <i>edg6</i> -mRNA-Expression in humanen Geweben	77

	4.3.3	$edg6$ -mRNA-Expression in murinen Geweben $\ldots \ldots \ldots \ldots \ldots \ldots$	78
4.4	Genon	nische Lokalisation	78
	4.4.1	Genomische Lokalisation des humanen EDG6-Reze ptors $\ .\ .\ .\ .$.	78
	4.4.2	Genomische Lokalisation des murinen EDG6-Rezeptors $\ldots \ldots \ldots$	80
4.5	Protein	nexpression Epitop-markierter EDG6-Rezeptoren	81
4.6	Herste	llung monoklonaler Antikörper	82
	4.6.1	Generierung rekombinanter Proteine	82
	4.6.2	Generierung stabil EDG6 über exprimierender Rattenzellinien $\ .\ .\ .\ .$	85
	4.6.3	Fusion, Subklonierung und Selektion von Hybridomzellen	86
4.7	Charal	kterisierung monoklonaler Antikörper gegen murinen EDG6-Rezeptor $\ . \ .$	87
	4.7.1	FACS-Analysen überexprimierender Zellinien	88
	4.7.2	FACS-Analysen muriner Zellinien	89
	4.7.3	FACS-Analysen primärer muriner Milzzellen	90
	4.7.4	Western-Blots überexprimierender Zellinien	91
	4.7.5	Western-Blots primärer muriner Gewebeproteine	92
4.8	Identif	izierung des Liganden für EDG6	92
	4.8.1	Herstellung stabil über exprimierender HEK293 und CHO-K1-Zellen $\ .$	93
	4.8.2	Bindung von Sphingosin-1-phosphat an EDG-6	94
4.9	Nachw	eis der G-Protein-Kopplung an EDG6	95
	4.9.1	Vergleich des RNA-Expressionsmusters von EDG6 und G alpha 16 $\ .$	95
	4.9.2	Stimulierungsabhängige G-Protein-Kopplung an EDG6	97
4.10	Signal	transduktion des EDG6-Rezeptors	98
	4.10.1	Aktivierung der MAP-Kinase	98
	4.10.2	Anstieg der intrazellulären Calciumkonzentration	99
	4.10.3	Aktivierung der Phospholipase C	99
4.11	Zellulä	ire Effekte des EDG6-Rezeptors	100
	4.11.1	RhoA-abhängige Veränderungen des Zytoskeletts	101
	4.11.2	Migrationseffekte überexprimierender Jurkat-Zellen	104
4.12	Regula	ation der Oberflächenexpression des EDG6-Rezeptors	108
	4.12.1	Rezeptor internalisierung nach Sphingosin-1-phosphat-Stimulierung \ldots	109
	4.12.2	Stimulierungsabhängige Oberflächenexpression auf CHO-K1-Zellen	110
	4.12.3	Differentielle Oberflächenexpression auf HeLa-Zellen	111
	4.12.4	Oberflächenexpression des N-terminal Epitop-markierten EDG6-Rezeptors	112

5	Disk	ussion	115		
	5.1	Vergleich des murinen und humanen EDG6 Proteins	115		
	5.2	Gewebsspezifische <i>edg6</i> -mRNA-Expression	117		
	5.3	Lokalisation des $edg6$ -Gens	118		
	5.4	Sphingosin-1-phosphat ist ein Ligand von EDG6 $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	119		
	5.5	EDG6 koppelt an G-alpha-i und G-alpha-12/13	120		
	5.6	EDG6 aktiviert die MAP-Kinase und die Phospholipase C \hdots	121		
	5.7	Zytoskelettveränderungen in CHO-K1-Zellen $\hfill \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	122		
	5.8	Pertussistoxin-sensitive Spontan migration von Jurkat-Zellen \hdots	123		
	5.9	Rezeptor internalisierung von EDG6 auf HEK293-Zellen $\ \ldots \ldots \ldots \ldots \ldots$	124		
	5.10	Stimulierungsabhängige Oberflächen expression auf CHO-K1-Zellen $\ .\ .\ .\ .$.	126		
	5.11	Differentieller Oberflächentransport in HeLa-Zellen	128		
	5.12	edg6-defiziente Mäuse als in vivo-Tiermodell	130		
6	Zusa	nmmenfassung	133		
7	Sum	mary	135		
8	Liter	ratur	137		
9	Abkürzungsverzeichnis 14				
10	Dan	ksagung	153		

Abbildungsverzeichnis

1.1	Schlangendiagramm G-Protein-gekoppelter Rezeptoren	2
1.2	Anordnung der sieben Transmembrandomänen	3
1.3	Phylogenetischer Vergleich der EDG-Rezeptoren	14
4.1	cDNA-Vergleich von murinem $edg 6$ und dem Datenbankeintrag AA254425	65
4.2	Ergebnis der 5'-RACE-PCR	66
4.3	Sequenz der murinen $edg6$ -cDNA	68
4.4	Vergleich der Aminosäuresequenzen von EDG-Rezeptoren	69
4.5	PCR der murinen genomischen $edg6$ -Phagenklone	70
4.6	Restriktions analyse des murinen genomischen $edg6$ -Bereiches $\ldots \ldots \ldots \ldots$	71
4.7	Struktur des <i>edg6</i> -defizienten Vektorkonstrukts	72
4.8	Sequenz des 5'-flankierenden genomischen Pst I-Fragments	73
4.9	Übersicht der homologen Rekombination und der PCR-Selektion $\ . \ . \ . \ .$	74
4.10	Southern-Blot selektierter ES-Zellklone	75
4.11	Northern-Blot humaner Zellinien	76
4.12	Dot-Blot mit mRNA humaner Gewebe	77
4.13	Northern-Blot muriner Gewebe	78
4.14	DNA-Sequenzvergleich von humanem $edg6$ und dem D19S120-Marker	79
4.15	DNA-Sequenzvergleich von murinem $edg6$ und dem $Gna15$ -Gen	80
4.16	Sequenzen der myc - und Hämaglutinin-Epitope	81
4.17	FACS-Analysen Epitop-markierter EDG6-Rezeptoren	82
4.18	GST-Fusionsprotein des humanen EDG6-N-Terminus	83
4.19	Hexahistidin-markiertes Protein des murinen N-Terminus	84
4.20	Stabil mit humanem EDG6- myc transfizierte RBL-Zellen	85
4.21	FACS-Analyse mit den fünf positiven anti-murinen-EDG6 Hybridomüberständen	86
4.22	FACS-Analysen mit den drei monoklonalen Antikörpern	88

4.23	FACS-Analysen HA-EDG6-transfizierter Zellen	39
4.24	FACS-Analysen und PCR der 80/1-Zellinie) 0
4.25	FACS-Analysen primärer muriner Milzzellen	<i></i>)1
4.26	Western-Blot der drei monoklonalen Antikörper	<i></i> 92
4.27	Western-Blot mit Membranproteinen primärer muriner Gewebe	93
4.28	Stabil mit humanem EDG6- myc transfizierte HEK293 und CHO-K1-Zellen 9	94
4.29	Radioaktiver Bindungsassay	95
4.30	mRNA-Expressionsvergleich von humanem $edg6$ und $Gna16$	96
4.31	Nachweis der spezifischen G-alpha-Kopplung	97
4.32	Aktivierung der MAP-Kinase	98
4.33	Anstieg der intrazellulären Calciumkonzentration)0
4.34	Aktivierung der Phospholipase C)1
4.35	Untersuchung der Zytoskelettveränderungen)2
4.36	Rho-Abhängigkeit der untersuchten Zytoskelettveränderungen)3
4.37	Stabil mit humanem EDG6- myc transfizierte Jurkat-Zellen)4
4.38	Migration gegen Sphingosin-1-phosphat)5
4.39	Pertussistoxin-abhängige Spontanmigration)6
4.40	Bestimmung der CXCR4-Expression auf Jurkat-Zellklonen)7
4.41	Migration von Jurkat-Zellklonen gegen SDF-1)8
4.42	Rezeptorinternalisierung von murinem EDG6 in HEK293-Zellen)9
4.43	$myc\mbox{-}{\rm Epitop\mbox{-}{\rm F}\ddot{a}rbung}$ von stabil mit EDG6- myc transfizierten CHO-K1-Zellen . . 11	10
4.44	EDG6-Oberflächenexpression auf transfizierten HeLa-Zellen 11	11
4.45	Oberflächen expression des N-terminal-markierten murinen EDG6-Reze ptors $\ .\ .\ .\ 11$	12
4.46	Oberflächen expression des N-terminal-markierten humanen EDG6-Rezeptors $\ $. 11	13
5.1	Modell der möglichen Funktion von EDG6	30

6 Zusammenfassung

In der vorliegenden Arbeit konnte gezeigt werden, daß der aus *in vitro*-differenzierten humanen und murinen dendritischen Zellen isolierte G-Protein-gekoppelte Rezeptor EDG6 auf mRNA-Ebene in hämatopoietischen und lymphatischen Geweben und Zellinien sowie in der Lunge exprimiert wird. Das Expressionsmuster ist in Mensch und Maus identisch und läßt auf eine mögliche Funktion des EDG6-Rezeptors im Immunsystem schließen. Das humane edg6-Gen ist auf Chromosom 19p13.3, das murine Homolog auf Chromosom 10 jeweils hinter dem Gna15/16-Gen lokalisiert. Auf Proteinebene konnte der humane und der murine Rezeptor in der richtigen Orientierung auf der Oberfläche EDG6-transfizierter Zellen nachgewiesen werden. Ferner sind drei monoklonale Antikörper hergestellt worden, die gegen den N-Terminus des murinen EDG6-Rezeptors gerichtet sind und deutliche Signale auf transfizierten Zellen zeigen, auf primären Zellen bislang jedoch keine eindeutigen Ergebnisse liefern.

Die Herstellung verschiedener stabil EDG6 überexprimierender Zellinien ermöglichte Untersuchungen bezüglich des Liganden sowie der G-Protein-Kopplung und der Signaltransduktion von EDG6. Als ein spezifischer Ligand konnte Sphingosin-1-phosphat mit der moderaten Bindungskonstante von 63nM ermittelt werden. Die Stimulierung von EDG6 führt zur Aktivierung von G α i- und G α 12/13-Untereinheiten trimärer G-Proteine. Über die G α i-Untereinheiten werden anschließend die Mitogen-aktivierten Proteinkinasen ERK1/2 sowie die Phospholipase C aktiviert. Ferner führt die Stimulierung des EDG6-Rezeptors zu deutlichen Zytoskelettveränderungen, die sich in einer erhöhten Anzahl peripherer Streßfasern, abgerundeter Zellen und besonders langer Filopodien äußern und vermutlich über G α 12/13 und Rho-GTPase-vermittelte intrazelluläre Signalwege induziert werden. Eine gewisse Pertussistoxin-sensitive und Ligandenunabhängige Basalaktivität des EDG6-Rezeptors ist in EDG6 überexprimierenden Jurkat-Zellen festzustellen, die eine deutlich erhöhte Spontanmigration zeigen. Allerdings lassen die Migrationsexperimente nicht auf eine durch EDG6 induzierte gerichtete Migration schließen.

Versuche bezüglich der Oberflächenexpression des EDG6-Rezeptors deuten auf eine komplexe zellspezifische Regulation des Oberflächentransports hin. In HEK293-Zellen konnte die Interna-

lisierung des EDG6-Rezeptors nach Stimulierung mit Sphingosin-1-phosphat nachgewiesen werden, während EDG6 in CHO-K1-Zellen erst Minuten nach Sphingosin-1-phosphat-Stimulierung und in HeLa-Zellen Minuten nach Zugabe eines unbekannten Hitze-instabilen Serumproteins massiv an die Zelloberfläche transportiert wird. Diese Regulation scheint von einem freien EDG6-N-Terminus abhängig zu sein, da N-terminal Epitop-markierte EDG6-Konstrukte nicht mehr dieser differentiellen Oberflächenregulation in HeLa-Zellen unterliegen und konstitutiv an der Zelloberfläche präsent sind.

Um die *in vivo*-Funktion des EDG6-Rezeptors näher untersuchen zu können, wurde ein embryonaler Stammzellklon zur Generierung *edg6*-defizienter Mäuse hergestellt. Möglicherweise moduliert EDG6 nach Bindung von freigesetztem Sphingosin-1-phosphat in autokriner und parakriner Weise die Immunantwort in Folge einer Stimulierung des Immunsystems, die beispielsweise durch eine Infektion induziert werden könnte.

7 Summary

The present study demonstrates that the G protein-coupled receptor EDG6 isolated from *in vitro* differentiated human and murine dendritic cells is expressed in hematopoietic and lymphoid tissues and cell lines as well as in lung. The mRNA expression pattern is identical in man and mouse and points to a putative function of the EDG6 receptor in the immune system. The human edg6 gene is encoded on chromosome 19p13.3, the murine homolog on chromosome 10. Both genes are located upstream of the of the Gna15/16 gene. The human and murine EDG6 receptors have been detected on the cell surface of transiently transfected cells in the correct orientation. Furthermore, three monoclonal antibodies that are directed against the N-terminus of the murine EDG6 receptor have been generated. They show distinct signals on transiently transfected cell lines, but they lack any specific signal on primary cells so far.

The generation of stably human EDG6 overexpressing cell lines has enabled the investigation of the ligand, the G protein-coupling, and the signal transduction of EDG6. Sphingosine 1-phosphate could be identified as a specific ligand for EDG6 with a moderate binding constant of 63nM. Stimulation of EDG6 leads to the activation of G α i and G α 12/13 subunits of trimeric G proteins. The mitogen-activated protein-kinases ERK1/2 as well as the phospholipase C are subsequently activated in a G α i-dependent manner. Moreover, stimulation of the EDG6 receptor leads to distinct cytoskeleton rearrangements resulting in increasing amounts of peripheral stress fibers, cell rounding and very long filopodia. These effects are induced presumably by G α 12/13 and Rho GTPase-driven signaling pathways. A certain pertussis toxin-sensitive and ligand-independent basal activity of the EDG6 receptor is demonstrable in stably human EDG6 overexpressing Jurkat cells that show a higher degree of spontaneous migration events. However, these experiments do not suggest an EDG6-induced migration towards a sphingosine 1-phosphate stimulus.

Experiments concerning the surface expression of EDG6 indicate a complex cell-specific regulation of the surface transportation. In HEK293 cells the internalization of the EDG6 receptor has been shown after stimulation with sphingosine 1-phosphate. In CHO-K1 cells EDG6

is transported towards the cell surface only several minutes after stimulation with sphingosine 1-phosphate, and in HeLa cells the addition of an unknown heat-instable serum protein is critical for the surface transportation of EDG6. The mentioned regulation seems to be dependent on a free EDG6 N-terminus because N-terminal epitope-tagged EDG6 constructs lack the differential surface regulation in HeLa cells. They are constitutively present on the cell surface.

To further investigate the *in vivo* function of the EDG6 receptor, an embryonic stem cell clone has been generated to establish *edg6*-deficient mice. EDG6 possibly modulates the immunological response in an autocrine or paracrine fashion after binding free sphingosine 1-phosphate. This event may happen after an immunological challenge like an infection.

9 Abkürzungsverzeichnis

Symbole für Aminosäuren

Α	Ala	Alanin	С	Cys	Cystein	D	Asp	Aspartat
E	Glu	Glutamat	F	Phe	Phenylalanin	G	Gly	Glycin
Η	His	Histidin	Ι	Ile	Isoleucin	K	Lys	Lysin
L	Leu	Leucin	Μ	Met	Methionin	N	Asn	Asparagin
Р	Pro	Prolin	Q	Gln	Glutamin	R	Arg	Arginin
S	Ser	Serin	Т	Thr	Threonin	V	Val	Valin
W	Trp	Tryptophan	Y	Tyr	Tyrosin			

Physikalische Maßeinheiten

А	Ampére	Ci	Curie
d	Tag	F	Farad
g	Gramm	g	Erdbeschleunigung
h	Stunde	1	Liter
m Meter		М	Mol pro Liter
min	min Minute		Ohm
sek	sek Sekunde		Enzymeinheit
Upm Umdrehungen pro Minute		V	Volt
pfu Plaque Forming Units,		OD ₆₀₀	optische Dichte bei 600nm
	infektiöse Einheiten		
A ₂₈₀	Absorption bei 280nm	°C	Grad Celsius

Vorangestellte Größenbezeichnungen

f	femto	р	piko
n	nano	μ	mikro
m	milli	k	kilo

Symbole für Nukleotide

A	Adenin	G	Guanin	С	Cytosin			
Т	Thymin	U	Uracil	W	A oder T			
R	A oder G	Y	C oder T	M	A oder C			
K	G oder T	S	C oder G	D	A oder G oder T			
Н	A oder C oder T	В	C oder G oder T	V	A oder C oder G			
N	A oder G oder C oder T							

Sonstige Abkürzungen:

aa	Aminosäuren			
Abb.	Abbildung			
AChR	Acetylcholinrezeptor			
AIDS	acquired immune deficiency syndrome, erworbene Immunschwäche			
APS	Ammoniumperoxodisulfat			
AR	adrenerger Rezeptor			
BAC	bacterial artificial chromosome			
bp	Basenpaare			
BSA	Rinderserumalbumin			
cAMP	zyklisches Adenosin-5'-monophosphat			
СВ	Cannabinoidrezeptor			
CCR	CC-Chemokinrezeptor			
CD	cluster of differentiation			
cDNA	mRNA-komplementäre DNA			
cGMP	zyklisches Guanosin-5'-monophosphat			
CGRP	calcitonin-gene-related protein			
СНО	Chinese hamster ovary (cells)			
CoA	Koenzym A			
Con A	Concanavalin A			
CRLR	calcitonin-receptor-like receptor			
CXCR	CXC-Chemokinrezeptor			
DAG	Diacylglycerin			
ddNTP	(2',3'-Didesoxynukleosid)-5'-triphosphat			
DEPC	Diethylpyrocarbonat			
DIG	Digoxigenin			
DMSO	Dimethylsulfoxid			
DNA	Desoxyribonukleinsäure			
dNTP	(2'-Desoxynukleosid)-5'-triphosphat			
DTT	Dithiotreitol			
edg	endothelial differentiation gene			
EDTA	Ethylendiamintetraessigsäure			
EGFR	epidermal growth factor receptor			
ELISA	enzyme-linked immuno-absorbent assay, enzymatisches Nachweisverfahren			
EMFI	embryonale Fibroblastenzellen			
ERK	extrazellulär Signal-regulierte Kinase			
ES	embryonale Stamm- (Zellen)			
et al.	und andere			

FACS	fluorescence-activated cell scanning, Durchflußzytometrie		
FITC	Fluoreszeinisothiocyanat		
FKS	fötales Kälberserum		
FU	Freie Universität		
GAP	GTPase-aktivierendes Protein		
GAPDH	Glycerinaldehyd-3-phosphat-Dehydrogenase		
GDP	Guaninnukleosid-5'-diphosphat		
GEF	guanine-nucleotide exchange factor, Guaninnukleotid-Austauschfaktor		
GnRHR	gonadotropin-releasing hormone receptor		
GSF	Forschungszentrum für Umwelt und Gesundheit		
GST	Glutathion-S-Transferase		
GTP	Guaninnukleosid-5'-triphosphat		
GPCR	G-Protein-gekoppelter Rezeptor		
GRK	G protein-coupled receptor kinase, GPCR-Kinase		
GUMC	Georgetown University Medical Center		
HA	Hämaglutinin		
HEK	human embryonic kidney (cells)		
HEPES	(2-Hydroxyethyl)-Piperazin-N'-(2-Ethansulfonsäure)		
HUVEC	human umbilical vein endothelial cells		
IGF-1R	insulin-like growth factor receptor		
IP ₃	Inositol-1,4,5-trisphosphat		
IPTG	Isopropyl- β -D-thiogalactopyranosid		
JAK	Janus-Kinase		
JNK	c-Jun N-terminale Kinase		
Kap.	Kapitel		
kb	Kilobasenpaare		
LB	Luria Bertani		
LHR	luteinizing hormone receptor, Hormonrezeptor		
LIF	leukemia inhibitory factor		
LPA	$1-Acyl-2-hydroxy-sn-glycero-3-phosphat, Lysophosphatidyls \ddot{a} ure$		
LPL	Lysophospho- und Lysosphingolipide		
LPS	Lipopolysaccharide		
MAPK	Mitogen-aktivierte Proteinkinase		
MOPS	3-N-Morpholino-propansulfonat		
MOR1	μ -Opioidrezeptor		
mRNA	messenger-RNA		
NBT/BCIP	Nitroblautetrazolium/5-Bromo-4-chloro-3-indolylphosphat		
NTP	Nukleosid-5'-triphosphat		

OGR1	ovarian cancer G protein-coupled receptor 1		
PA	Phosphatidylsäure		
PCR	Polymerase Chain Reaction, Polymerase-Kettenreaktion		
PDGFR	platelet-derived growth factor receptor		
PE	R-Phycoerythrin		
PIPES	Piperazin-1,4-bis(2-ethansulfonsäure)		
PIP ₂	Phosphatidylinositol-4,5-bisphosphat		
PKA	Proteinkinase A		
PKC	Proteinkinase C		
PLA ₂	Phospholipase A ₂		
PLC	Phospholipase C		
PMA	Phorbol-12-myristat-13-acetat		
PTK	Protein-Tyrosin-Kinase		
PVDF	Polyvinylidendifluorid		
PVP	Polyvinylpyrrolidon		
RACE	Rapid Amplification of cDNA Ends,		
	Methode zur Amplifizierung von cDNA-Enden		
RAMP	receptor-activity-modifying protein,		
	Rezeptoraktivität-modifizierendes Protein		
RBL	rat basophilic leukemia (cells)		
RGS	regulator of G protein signaling, G-Protein Regulator		
RNA	Ribonukleinsäure		
RNase	Ribonuklease		
RT	reverse Transkription		
S1P	Sphingosin-1-phosphat		
SDF-1	stromal cell-derived factor-1, CXC-Chemokin		
SDS	Natriumdodecylsulfat		
SPC	Sphingosylphosphorylcholin		
Tab.	Tabelle		
TEMED	N, N, N', N'-Tetramethylenethylendiamin		
TGF	transforming growth factor		
TM	Transmembrandomänen		
TRHR	thyrotropin-releasing hormone receptor		
Tris	2-Amino-2-(hydroxymethyl)-1,3-propandiol		
UV	Ultraviolett		
vzg-1	ventricular zone gene-1		
X-Gal	5-Bromo-4-chloro-3-indolyl- β -D-galactopyranosid		

10 Danksagung

Mein Dank gilt allen, die mir bei der Durchführung meiner Dissertation behilflich waren:

Meinem Doktorvater Dr. Martin Lipp für die Betreuung dieser Arbeit sowie für die großzügige Unterstützung in allen Belangen.

Prof. Dr. Udo Heinemann für die Vertretung dieser Arbeit am Fachbereich Biologie, Chemie, Pharmazie der Freien Universität Berlin sowie für die stete Hilfsbereitschaft, vor allem in Bezug auf das Erstellen von Empfehlungsschreiben.

Dr. Robert Grosse, Dr. Angelika Kusch, Dr. Elisabeth Kremmer, Prof. Dr. Sarah Spiegel und Prof. Dr. Eckhard Wolf für die außerordentlich gelungene und unkomplizierte Zusammenarbeit.

Thilo Mokros, Dr. Uta Höpken und Dr. Gabor Kaba für die bereitwillige Durchsicht der Korrekturfahnen dieser Dissertation und für die vielen Hinweise, die in diese Arbeit eingeflossen sind.

Daniela Keyner und Dagmar Breitfeld, die in ihrer oft selbstlosen Art und mit ihrer unendlichen Hilfsbereitschaft in erheblichem Maße zum Gelingen meiner Promotion beigetragen haben.

Gerd Müller, Philipp Reiterer und Robert Lange als Weggefährten, die den Laboralltag alles andere als eintönig werden ließen und in vielen Situationen mit Rat und Tat zur Seite standen.

Dr. Ralf Burgstahler, Dr. Anita Mattis und Dr. Veniamin Pevzner, die es vor mir "geschafft" haben und mir den richtigen Weg wiesen.

Dr. Günter Bernhardt und Dr. Reinhold Förster für die anregenden Diskussionen und vielen Tips, ohne die diese Arbeit nie zustande gekommen wäre.

All meinen Kollegen, insbesondere Dr. Felix Cifire, Dr. Christian Ried, Frank Jeblonski, Lars Ohl, Steffen Posner, Peter Graßhoff, Carmen Meese, Oliver Mück, Dagmar Meyer, Andreas Schubel, Richard Schabbat, Michael Schulze, Heiko Johnen, Hagen Kulbe und Thomas Schirrmann für ihre großartige Unterstützung.

Helga Benkert für die bewundernswerte bibliothekarische Betreuung in all den Jahren.

Susi und Andrea als verständnisvolle und liebe Berliner Wegbegleiterinnen sowie Bernd und Wolfgang als kompetente Berater und gute Freunde im Münchener Exil.

Sowieso all meinen Freunden auf diesem Erdball, die mir mit ihrer Anwesenheit und ihren Gesprächen die Zeit versüßt und den Leidensweg verkürzt haben.

Lothar und Paule, die ihre Türen trotz meiner regelmäßigen Besuche nie verschlossen haben.

Und ganz besonders meiner Familie, die immer zu mir gehalten hat.

Lebenslauf

Name	<u>Markus</u> Herbert Gräler
Geburtsdatum	22. Juli 1971
Geburtsort	Sassenberg
Eltern	Theodor Gräler und Maria Anna Gräler, geborene Eggert

	Schulbildung	1978 - 1982	Grundschule Sassenberg
		1982 - 1991	Gymnasium Laurentianum Warendorf
		6/1991	Abitur
		7/1991 - 9/1992	Wehrdienst
	Studium	10/1992 - 5/1997	Diplomstudiengang Biochemie an der
			Freien Universität Berlin
		3/1995	Vordiplom
		1/1997 - 5/1997	Diplomarbeit am Max-Delbrück-Centrum Berlin
			unter Anleitung von Dr. Dr. habil. Martin Lipp
			<u>Thema:</u>
			"Identifizierung von Chemokinrezeptoren und
			verwandten Rezeptoren aus dendritischen Zellen"
		5/1997	Diplom
		6/1997 - $9/2000$	Doktorarbeit am Max-Delbrück-Centrum Berlin
			unter Anleitung von Dr. Dr. habil. Martin Lipp
			Thema:
			"Der G-Protein-gekoppelte Rezeptor EDG6"