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Abstract

Topological materials are in the focus of contemporary condensed matter physics, both in
experiment and theory. They are of interest in fundamental research and for prospective
technological applications which range from novel electronic devices to platforms for
quantum computation. While the material class of time-reversal invariant topological
insulators is by now an established research topic, topological gapless materials like Weyl
semimetals have attracted interest only recently. In this thesis we theoretically study
certain aspects of disorder physics in both material classes. By employing the framework
of scattering theory in exact numerical calculations, we are able to circumvent numerous
problems of other frequently used approaches and provide a complementary viewpoint.

In particular, we focused on quantum phase transitions of host materials in disordered
environments. In the case of three dimensional topological insulators we were able to
solidify the generic phase diagram in the presence of disorder by directly calculating the
topological invariants for large tight-binding models. We interpret our results in terms
of a disorder scattering induced renormalization of clean model parameters. In this way,
topological phase transitions established in the clean case can also be driven by disorder..

A different type of imperfection in crystal lattices are dislocation lines. They appear, for
example if a lattice plane of atoms is suddenly terminated within the crystal. The re-
sulting one dimensional lattice defect that terminates only at other defects or surfaces is
ubiquitous in real materials. In topological insulators, however, under certain conditions
such dislocation lines harbor topological zero modes that electronically connect topo-
logical surface states on opposing surfaces. We study the consequences for the overall
electronic structure of these materials.

Weyl nodes are elementary building blocks of Weyl semimetal bandstructures that have
been confirmed first in the T'aAs material class. In this type of topological bandstruc-
tures, disorder scattering causes a novel type of phase transition between a semimetal
and a diffusive phase. This phase transition has no counterpart in clean systems, un-
like in the case of disordered topological insulators. We establish its properties in the
framework of mesoscopic quantum transport and find robust signatures in conductance
and shot noise. Moreover, we contributed to the ongoing efforts to characterize the uni-
versality class of this transition. Namely, a distinguished scaling approach based on our
scattering matrix results allowed for the determination of the critical exponents with
unprecedented precision.






Zusammenfassung

Topologische Materialien stehen im Fokus der aktuellen Forschung zur Physik der kon-
densierten Materie, im Experiment wie auch in der Theorie. Dies gilt sowohl fiir grund-
legende Fragen des Feldes als auch fiir Anwendungen in neuartigen elektronischen Bau-
teilen oder im Bezug auf Plattformen fir zukiinftige Quantencomputer. Wéhrend die
Materialklasse der topologischen Isolatoren mit Zeitumkehrinvarianz ein etabliertes For-
schungsfeld ist, haben neuartige topologische Materialien ohne Bandliicke erst kiirzlich
ein gesteigertes Interesse auf sich gezogen. In dieser Arbeit beschreiben wir bestimm-
te Aspekte von Unordnungsphysik in beiden Materialklassen. Durch Anwendung der
Streutheorie in exakten numerischen Berechnungen kénnen wir einige Probleme anderer
etablierter Methoden umgehen und komplementére Einsichten erzielen.

Ein Schwerpunkt dieser Arbeit besteht in dem Studium von Quantenphaseniibergingen
in ungeordneten topologischen Materialien. Fiir den Fall der dreidimensionalen topologi-
schen Isolatoren konnte das generische Phasendiagramm mit einer neuen, auf der Streu-
matrix basierenden Methode, berechnet werden. Auf Grundlage grofler tight-binding
Modelle konnten frithere Resultate teilweise gestiitzt und andere, umstrittene Vorschlige
verworfen werden. Die Ergebnisse konnten analytisch als unordnungsinduzierte Renor-
mierung der sauberen Modellparameter verstanden werden.

Eine besondere Art von Unordnung in Kristallgittern sind Versetzungslinien. Diese ent-
stehen zum Beispiel, wenn Gitterebenen im Kristall plotzlich terminieren. Das Resultat
ist ein eindimensionaler Gitterdefekt, der bis zur Kristalloberfliche oder anderen Git-
terdefekten propagiert und héaufig in realen Materialien vorkommt. Die besondere Ei-
genschaft solcher Defekte in topologischen Isolatoren ist jedoch das mogliche Auftreten
von topologisch beschiitzten elektronischen Zustédnden, die entlang von Versetzungslinien
propagieren. Diese Zustdnde konnen die topologischen Zustdnde auf den Kristalloberfla-
chen durch das Kristallvolumen hindurch miteinander verbinden. Wir beschreiben die
daraus resultierenden Konsequenzen fiir die elektronische Struktur dieser Materialien.

Weyl-Knoten sind elementare Bausteine in der Bandstruktur von Weyl-Semimetallen, die
kiirzlich experimentell in der TaAs Materialklasse bestitigt wurden. In dieser Art topo-
logischer Bandstrukturen erzwingt die Streuung an einem Unordnungspotential einen
neuartigen Phaseniibergang zwischen einer semimetallischen und einer diffusiven Pha-
se. Im Gegensatz zu den ungeordneten topologischen Isolatoren korrespondiert dieser
Phaseniibergang mit keinem bekannten Phaseniibergang in sauberen Materialien. Wir
etablieren die Eigenschaften dieses neuartigen Phaseniibergangs im Rahmen der meso-
skopischen Quantentransporttheorie, indem wir zeigen, wie sich die verschiedenen Phasen
in Leitwert und Schrotrauschen manifestieren. Des Weiteren liefern wir einen Beitrag
zur Bestimmung der Universalitatsklasse des Phaseniibergangs, insbesondere konnten
die kritischen Exponenten durch Anwendung eines spezialisierten Skalierungsansatzes
auf Basis von Transporteigenschaften mit beispielloser Préazision bestimmt werden.






1 Introduction

1.1 Topological insulators and semimetals

The discovery of the quantum Hall effect in 1980 by von Klitzing and co-workers
[6] marked the beginning of a new era in condensed matter physics. The ground-
breaking observation was that a two-dimensional electron gas subject to a strong
magnetic field in perpendicular direction has a precisely quantized Hall conduc-
tivity o, = ne*/h where n is an integer. From the physical constants in this
value, the quantum nature of the phenomenon was obvious, but its robustness
to, say, sample imperfections could only be understood after the seminal work by
Thouless, Kohmoto, Nightingale and den Nijs [7] who linked o, to the first Chern
number, a topological quantity of the electron wavefunctions in the quantum Hall
state. Halperin showed that the quantum Hall state is accompanied with chi-
ral edge modes at the sample boundaries [8]. Those can be understood in terms
of skipping orbits of quasi-classical electrons moving in a magnetic field as they
bounce off the sample edges. Although the quantum Hall effect and its intricately
correlated fractionalized version [9] remained an active research topic for several
decades, its necessity of a strong external magnetic field to break time-reversal
symmetry placed this quantum state apart as a peculiarity: Most other materials
are either time-reversal symmetric or three dimensional, in both situations the
Chern number vanishes exactly. The requirement of a net magnetic flux for the
quantum Hall state could however be overcome at least in theory by Haldane [10].
In 1988 he showed how a non-zero Chern number can arise even without Landau
levels.

Only in 2005, Kane and Mele realized that the presence of time-reversal symmetry
does not necessarily preclude the possibility of topological states of matter [11, 12].
They studied graphene in the presence of a spin-orbit coupling term and found
a Kramers pair of eigenstates crossing the bulk band gap, see Figure 1.1. Like
Halperin’s chiral edge state in the quantum Hall effect, these states are localized
at the edge and are robust to perturbations of the Hamiltonian that do not close the
bulk gap and respect time-reversal symmetry. These edge states are incarnations of
the "bulk-boundary correspondence’ already discovered in the quantum Hall state:
The topological invariant cannot change unless the bulk gap in the quasiparticle
spectrum is closed, so a topological material cannot neighbor a non-topological
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one without the presence of gapless states at the interface. Kane and Mele also
identified the nature of the topological invariant v for their novel time-reversal
invariant topological insulator, in contrast to the Chern number it can only take
two different values v = 0,1 and is thus called a Z, invariant. The formulation of
the invariant in terms of the bulk wavefunctions will be detailed below. In terms
of edge states, the topological distinction and stability is evident from Figure 1.1
where v counts the parity of the number of Fermi level crossings of an edge state as
k. traverses from 0 to m/a (the remainder of the edge Brillouin zone is related by
time-reversal symmetry). Since the degeneracy of the edge states at k, = m/a is
protected by Kramers degeneracy (a direct consequence of time-reversal invariance
for spinful electrons) an edge state corresponding to a topologically nontrivial bulk
with ¥ = 1 can never be completely pushed out of the gap.

A definition for v inspired from charge pumping concepts in the framework of quan-
tum Hall physics is proposed in reference [13]. Using the antiunitary time-reversal
operator T' = —io, K with o, the second Pauli matrix acting in spin space and K
complex conjugation, one can show that the matrix wp,, (k) = (um (k)| |u,(—k))
build from the Bloch wavefunctions for the n—th band |u,, (k)) is unitary. With T’
being antiunitary, we find that wy,, (k) = —wm,(—k) which we apply at the four
special points in the two dimensional Brillouin zone that are time-reversal invari-
ant, i.e. k =1 with I'; = —I'; + G where G is a reciprocal lattice vector. Thus,
the four matrices wy,,(I';) are antisymmetric. For antisymmetric matrices, we can
define the Pfaffian (Pf(A)? = det(A)) which gives rise to the key quantities

Pflw ()]
det [w (T)]

§; = = +1. (1.1)

Choosing a continuous gauge for |u, (k)) throughout the Brillouin zone, the branch-
cut of the square-root function can be avoided and the Z5 invariant can be com-
puted from the d; at all four time-reversal invariant momenta, (—1)" = IL;4;.

Unfortunately, the proposal about the novel topological state in graphene remained
purely theoretical. The spin orbit coupling considered turned out to be negligible
under experimental conditions. However, soon after Kane and Mele laid out the
concept of a Zy time-reversal invariant insulator, Bernevig, Hughes and Zhang
published a proposal based on a HgTe heterostructure [14]. This proposal was
immedeatly picked up by the Molenkamp group, the quantum well was fabricated
and the conductance was measured [15], see Figure 1.2. It was found that, for
a quantum well thickness larger than the predicted d. = 6.3nm, the longitudinal
conductance was measured to be close to G = 2¢*/h and independent of sample
width, indicating edge state transport. Indeed, each of the two edges of the quan-
tum well sample is expected to harbor an edge dispersion as in Figure 1.1 with
a single ballistic transport channel propagating in each direction. Further, it was
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Figure 1.1: Theoretical prediction of edge states (crossing the bulk energy gap)
for graphene equipped with spin orbit interaction. (Figure taken from reference

[11].)

shown that this conductance could be destroyed by a small magnetic field. Only
much later, the real space structure of the corresponding edge currents has been
mapped out using their magnetic fields or an interference experiment based on the
Josephson effect [16, 17].

Unlike quantum Hall systems, time-reversal invariant topological insulators have a
counterpart in three spatial dimensions. The topological invariants characterizing
the band structure are essentially generalizations of the two dimensional ones and
were established in references [18, 19]. They will be further discussed in the con-
text of dislocation line zero modes in section 2.2. Since in three dimensions, there
are eight instead of four time-reversal invariant momenta, multiple gauge invariant
combinations of the §; are possible: A complete set consists of four independent
Zy invariants, organized as (vg; vy, v, 3). If the invariant vy is non-trivial, the
bandstructure is a ’strong’ topological insulator with Dirac cone dispersions at an
odd number of time-reversal invariant momenta of any surface Brillouin zone. If
v is trivial (but v = (14,14, v3) is non-trivial) the material is termed a 'weak’
topological insulator which can be understood as a stack of two dimensional topo-
logical insulators. In this case, the one dimensional edge states give rise to an
even number of Dirac cones as they hybridize across the two dimensional vertical
boundaries. In contrast, the electronic structure of the surface perpendicular to
the stacking direction is trivially gapped.
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Figure 1.2: Longitudinal conductance for CdT'e/HgTe/CdTe quantum well
structures of different geometries below (I) and above the critical thickness (11,
III, V), plotted versus gate voltage at cryogenic temperature of T = 30mK.
The residual (edge-state) conductance in the topological regime was confirmed
to be G = 2¢?/h for short samples (III, IV) and is decreased when the sample
length in transport direction exceeds the inelastic mean free path (sample II).
(Figure taken from reference [15].)

Following theoretical predictions by Fu and Kane [20], Hsieh and coworkers studied
the putative strong topological insulator alloy BiSb using angle resolved photo
electron spectroscopy (ARPES) to find compelling evidence for two dimensional
Dirac surface states. After that breakthrough, a long list of three dimensional
materials have been confirmed as strong and - more rarely - weak topological
insulators, for a review with emphasis on material science aspects see [21].

We now proceed to topological band touching points in three dimensions. The
simplest model is a two band Bloch Hamiltonian

H (k) = fo (k) + fo (k) o, + f, (k) oy + [. (k) 0, (1.2)

with f; functions of crystal momentum k. A band touching point, i.e. a degener-
acy in Equation 1.2 requires that f, (k), f, (k) and f, (k) vanish simultaneously.
Although it is not guaranteed that there exists such a degeneracy point (at ko)
in the Brillouin zone, if it exists, it cannot be gapped by small perturbations to
Equation 1.2 but merely moves around in the Brillouin zone.
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A particular simple and elementary model of such a band touching point is a Weyl
node, in the isotropic case described by

Hy (k) = hv (kyo, + kyoy + k.0.) + 1 (1.3)

with dispersion

By (k) = ho k2 + k2 + k2 + 41 (1.4)

where v is the Fermi velocity and p the chemical potential. The dispersion in
Equation 1.4 is depicted in Figure 1.3. If © = 0, the Fermi surface is a point
at ko = 0 and materials whose low energy quasiparticles could be described by
Equation 1.3 are accordingly called Weyl semimetals. In the case pu # 0, the
Fermi surface is extended and spherical, the corresponding material is termed a
Weyl metal.! As we show next, the topological properties of Equation 1.3 do not
depend on the position of the Fermi energy.

i

By —

Figure 1.3: Graphical representation of Weyl node dispersion in k-space.
(Adapted from [22].)

The stability argument pertaining to the Weyl point mentioned above can be put
in terms where the similarity to topological insulators is more apparent. The
topological invariants of topological insulators are all based on the notion of a gap
in the band structure which is partially filled. The bandstructure in Equation 1.4
is gapped locally everywhere except at k. If we define a closed surface in k-space
around kg, the band structure on this surface resembles a two dimensional fully

In literature, however, the term Weyl semimetal is used also for the case p ~ 0.

11
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gapped bandstructure (on a sphere, not on a torus, though). We can now calculate
Berry curvature for one of the two bands (say, the low lying band) A,(k) =
—1 (up (k) |V |un(k)) and calculate the Chern flux B,, (k) = Vi x A, (k) as in the
quantum Hall case. It turns out that the Weyl node in Equation 1.3 is a source of
Chern flux
1

plk) = %Vk ‘Bn(k) =6 (k—ko). (1.5)
Based on the similarity between magnetic flux and Chern flux, a Weyl node is
often also called a monopole in the Brillouin zone.

A Weyl node radiates Chern flux in all directions, however in any realistic band
structure, k-space is periodic and a single Weyl node configuration is thus not
possible. This is the essence of the Fermion doubling theorem [23] which says that
in any lattice regularization, Weyl nodes have to come in pairs, sources of Chern
flux have to come with their respective sinks. Indeed, it turns out [24] that the
more general Weyl node Hamiltonian

Hy (k) = >~ hwi (n; - k) 0; + g (ng - k) (1.6)

with n; linearly independent unit vectors has monopole strength sign [n; - (ny X ns).

Now, it is obvious how Weyl nodes can be gapped eventually: Merging two Weyl
nodes with opposite charges will lead to a cancellation of chiral charge and a
gapping of the spectrum. Merging two Weyl nodes with equal charges, however,
will lead to a doubly charged Weyl node that is in general to be stabilized by point
group symmetries of the crystal lattice.

Although not further addressed in the remainder of the thesis, a discussion of
Weyl semimetals without mentioning their characteristic topological surface states
would be incomplete. Consider some ideal Weyl material as in Figure 1.4(a) with
a monopole and anti-monopole Weyl point separated by some finite distance along
k. in the bulk Brillouin zone. Imagine cutting the crystal to expose a surface
perpendicular to the z-direction. Then there exists a Fermi arc separating occupied
and empty surface states in the surface Brillouin zone. The Fermi arcs connect
projections of Weyl points to the surface and are highly unusual since any generic
two dimensional material will have closed lines as Fermi surfaces. In contrast,
the closing of the Weyl metal’s Fermi surface takes place on the opposite crystal
surface by virtue of the other Fermi arc.

Let us explore how the appearance of these surface states can be explained. Since
translational symmetry in the slab geometry in Figure 1.4(a) is preserved along x-
and y-direction, all states in system can be labeled by k,,. Let us fix k,, so that
Y(x,y,2) = e**f,_(y,z). Then the Hamiltonian reduces to a two dimensional one

12



with parameter k,,

Hkxka(yv Z) :5ka(y7z) (17)

which describes a two dimensional system with a boundary at, say z = 0. If two
slices labeled by k;1, kz2 have a Weyl point in between, k1 < Ky wey < kg2, then
their Chern number differs by one. If the Chern number was trivial for k., it will
be nontrivial for k,o. This means that in this case, there is a gapless quantum Hall
edge state at one edge momentum, k,. The union of these one dimensional edge
states at the points (k,, k) in the surface Brillouin zone over all k, in between the
Weyl points constitutes the Fermi arc.

Not surprisingly, these peculiar surface Fermi arcs were among the first signatures
looked for in Weyl material candidates. Weyl nodes have been first proposed as
effective low energy theory for the dispersion in magnetically ordered pyrochlore iri-
date materials by Wan et al. [25]. Experimental realization was achieved in differ-
ent (non-magnetic) materials, however. In short succession, Weyl nodes and Fermi
arcs have been found using the ARPES technique in various material systems, the
most prominent being TaAs, NbAs, TaP and NbP [26, 27, 28, 29, 30, 31]. It
should be mentioned that bulk Weyl nodes have also been realized in inversion
breaking photonic crystal bandstructures [32].

All standard Weyl node materials break inversion symmetry in their crystalline
structure. Along with the time-reversal symmetry in non-magnetic materials, the
presence of inversion symmetry enforces a fourfold degeneracy of band touching
points and thus prevents the occurrence of doubly degenerate Weyl nodes. Such
four fold degenerate Dirac nodes have been shown to exist for example in C'dzAss
and NasBi [33, 34].

1.2 Elements of scattering theory

The notions of band topology or topological band touching points assume trans-
lational invariant and thus infinite systems. Such systems can be described us-
ing Fourier transformation and their topological properties are usually discussed
in terms of the Eigenstates and Eigenenergies of Bloch Hamiltonians H (k) =
e~ T [T where H is a Hamiltonian with a spatially periodic potential. We
have already described the consequences of a transition to finite systems where a
topological nontrivial bulk gives rise to topologically protected states that exist
only at the boundary of the system. Both, in the cases of (three-dimensional)
topological insulators and semimetals, these boundary states have been observed
in experiment using photo-emission spectroscopy.

13
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Figure 1.4: Fermi arcs as topological surface states of Weyl metals, explained in
terms of chiral edge states of two dimensional slices through the Brillouin zone
(a) and a pair of them in horseshoe like form as observed in ARPES data from
TaAs (b). (Figures taken from [24] and [27], respectively.)

Many powerful experimental techniques however rely on coupling to the finite
system using physical contacts instead of using the radiation field as in ARPES.
Moreover, in theoretical studies as well, the opening of the system by attaching
leads as in Figure 1.5 is a valuable starting point. Under a few realistic assumptions
to be detailed below, the scattering matrix S can be defined. It contains a plethora
of information (and in some sense replaces the wavefunction ) that can be directly
connected to experimental observables or used to study fundamental theoretical
aspects of the underlying system.

In the following we briefly introduce the scattering matrix in some generality, show
how it can be computed for a given system with leads in scenarios relevant in the
later sections of this thesis and finally explain how to extract useful information
from it. Parts of the following exposition are based on references [35, 36].

Definition of scattering matrix Let us consider a finite sample of interest con-
nected to a left and right lead. The system is assumed to be quantum coherent,
described by the Schrodinger equation with Hamiltonian H. In practice this re-
quirement can be met by the use of small and cold samples. Let the left and
right lead be described by Hamiltonian Hy, g, respectively. Beyond coherence, we
assume they are connected in a reflection-less manner to reservoirs that serve to

14
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Figure 1.5: Definition of the scattering matrix S using propagating lead eigen-
states at energy E. The leads are strongly coupled to reservoirs which control
the electron distribution.

thermalize electrons in the leads. We emphasize that scattering theory in the form
used in this thesis requires a non-interacting single particle setting. In experiment,
such a description if often justified by Landau’s Fermi liquid theory.

We are looking for eigenstates of the system in Figure 1.5 at energy E using the
ansatz

Yon Lyt (x) + Loty (r),  (re L),
1/) (I‘) = wM (I') ) (I‘ € M) ) (18)
o RYUR, (r) + BB, (1), (re R),

where we suppressed energy subscripts, used wiﬁ’;m and 1/13;’3“ as eigenstates of
Hy, r, respectively, at energy F normalized to unit probability current pointing
towards (in) or away from (out) the sample region. The complex numbers L°ut
and R™°" are expansion coefficients in the chosen set of lead basis states and the
function 1y (r) solves the Schrodinger equation for Hamiltonian H and energy
E. The solution (Equation 1.8) has to obey the usual continuity conditions at the
L/M and M/R interfaces, so vy, will depend on L™ and R™°" in a complicated
fashion. Before we show how we can determine 1, and the expansion coefficients
in the next section, we define the scattering matrix S as the linear transformation
that relates a particular configuration of incoming lead modes to outgoing ones,

Rout t 7“’ Lin
(Fo)=(0 o) (5 ) (1.9
n n

=S
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Current conservation implies the relation |Ro™|* + |Lewt|* = |R®|* + |L®|* which
means that S is a unitary matrix, ST = S~1.

A practical way to calculate scattering matrices for complex systems is to con-
catenate known scattering matrices of subsystems. In the case of two subsystems
with scattering matrices S; and Ss, the scattering matrix of the composite system
So1 = Sy ® Sp reads

o thtl T‘é + tQRTllté
Sor = ( rio R 1 (14 R (1.10)

where R = ﬁ Further subsystem scattering matrices could be concatenated
1
iteratively. We will make use of Equation 1.10 in chapter 3.

Quantum transport properties from scattering matrix We now assume the
presence of a particular incoming state, say in channel 72 from the left. The scatter-
ing matrix can be used to find the resulting scattering state by using Equation 1.8
and Equation 1.9,

1 (1) + X st (v), (re L),
Yra (r) = by (r), (re M), (1.11)
2t (), (reR).

We can now ask how much of the (unit) probability current impinging from the
left in mode 7 will be transmitted to the right lead (third line), the result, as read
off from the third line is Y, |tW~L|2 )

More generally, we are interested in a formula that relates the electronic conduc-
tance G = I/V (with [ electrical current and V' voltage bias between leads) to the
scattering matrix. Following our initial assumptions about the role of the leads
as reservoirs, all electrons coming from lead o« = L, R have a Fermi-Dirac energy
distribution characterized by chemical potential p,, fo (E) until they thermalize
in the same or opposite reservoir. The electric current in the right lead due to
the states impinging from the left lead (like ¢1;) in an energy interval dE can be
obtained by multiplying their transmission probabilities [t't]; with their density

of states ig—g, the occupation probability fr, (F), their group velocity v = %%
and electron charge —e. An energy integral leads to
I —— / dE % S Fo (B) tyl
e
— —/dE L (B)Tr tt'] . (1.12)

16



A similar equation holds for the current contribution of scattering states impinging
from the right lead. Their contribution to the total current in the right lead
however depends on the backscattering probability [r''r']55 of the impinging wave-
packets and is proportional to —1 + [r''r']55 which by unitarity of S is equal to
—[t'"¢']75. The total current in the right lead (and - due to current conservation -
in every crosssection) then is

I=— / dE% (f2(B)Tr [t#1] — fa (B) Tr [£11]) (1.13)

and the unitarity of S ensures T'r {ttq =Tr [t’ t’q. A finite voltage bias V' across
the sample is build in by demanding pugr = —eV + . We finally have, with the
assumption that the energy dependence of ¢t can be omitted over a small range eV’

and a Taylor expansion ng (E — up) —np (E — up —eV) ~ — (—€V) 6;—5,

I==1r [t] [ 4B (. (B) - f(B)

= ~Tr [t] /dEz (e (B —pr) = np (B — pp — eV))

= Ve;Tr [tt1] (1.14)
from which we obtain the Landauer formula,
o2
G=Tr tt1]. (1.15)

Since the electron wavepackets are transmitted with finite transmission probability,
the time dependent current /(¢) fluctuates around the mean value I = GV as given
by Equation 1.15. The ratio of the shot noise power S to 2el, also known as the
Fano factor, can be shown [37] to be conveniently expressed from the scattering
matrix as

F= 251 =T [t (1 — eth)] /77 [] (1.16)

Calculation of scattering matrices There exist various methods to calculate
scattering matrices for concrete system and lead combinations. In general, the
task to determine the linear dependencies between the coefficients L™ and RO
from Equation 1.8 respecting boundary conditions can be either performed numer-
ically, or, in simple cases, analytically. Often, a recursive scheme employing the
concatenation formula (Equation 1.10) can be used. In the following we present
the principles behind a numerical scheme used in chapter 2 and show the analytic
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approach exemplified for the case of a Weyl node Hamiltonian as further studied
in chapter 3.

Often, one is interested in scattering matrices for systems and leads defined as
tight-binding models described in the basis of localized orbitals created by clT ,

H = ZHZ‘jC;er (117)
1’7]

which can be further divided in an arbitrary hermitian sample Hamiltonian ma-
trix Hg and one (or several) translational invariant lead parts, made of unit cell
Hamiltonian H; and lead hopping V;. The sample is coupled to the lead using
the hopping Vig, in summary

Vi E
g—| Vi Ho Vi = ZL% : (1.18)
Vi Hp Vi 511

VLTS HS wS

where we combined multiple leads to a single lead with disjoint sections. The
software package KWANT [38] is dedicated to the creation and solution of scat-
tering problems defined as in Equation 1.18. Due to Bloch’s theorem for peri-
odic systems, the eigenstates in the lead have the form ¢,(j) = (\,)?x, where
(H L+ VAt + VLT/\n) Xn = FEx,. From the normalization requirement, only
|[An] < 1 is permissible: For |\,| < 1 the states are evanescent (decaying away
from the sample), for |A,| = 1, the states are propagating with wavevector k,
defined as A\, = e**». As mentioned above, the propagating modes are normalized
to carry unit particle current: With v = & = —i[H,z] in units with 7 = 1 and
rT=73; c}cj - 7 in the tight-binding basis, this yields

2Im (¢ (j — V|Vl (7 — 1)) = £1 (1.19)

for incoming (+) and outgoing (-) modes. With these preparations, the scattering
state for incoming channel n reads

Ya(i) = 6 (0) + D Sundi (1) + 3 Spnd}y (4) (1.20)

and for system 1,(0) = ¢. The latter is obtained numerically along with the
scattering matrix S,,, by inserting Equation 1.20 in the Schrodinger Equation
H,, = Ev, with H from Equation 1.18.
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The continuum Hamiltonian of a single Weyl node,
Hy = hvo - k, (1.21)

lacks a lattice regularization in terms of a tight-binding model due to the Fermion
doubling theorem [23]. Therefore, the above numerical scheme to calculate the
scattering matrix does not apply. Fortunately, it is possible to analytically calcu-
late the scattering matrix [39, 3] by generalizing a procedure previously devised for
two dimensional Dirac cones in reference [40]. We consider a setup as depicted in
Figure 1.6 where the leads at x < 0 and = > L are realized as highly doped Weyl
nodes with large chemical potential eV*>°. We assume the width of the structure
to be W in y- and z-direction and apply periodic boundary conditions.

V =y V=0 V=V

left lead sample right lead
E 5 s |
eVt
0- X
r =20 xr =1L

Figure 1.6: Quantum transport setup for a clean Weyl node Hy. The leads are
realized as highly doped Weyl nodes. The scattering matrix can be calculated
from the matching conditions of the piecewise eigenstates at the boundaries
x =0 and x = L. The dispersion relations in the lower section of the figure are
shown for k, ., = 0.

To solve the scattering problem for
H = Hy+ €V (2) (1.22)

we make a plane wave Ansatz for the wavefunctions in the three regions = < 0,
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0 <z < L, L <xin which we find

By = £ho\Jk2 + k2 + k2 + ¢V, (1.23)

aer [ Ko+ (Ex —eV) /R
Y oc e ( (k:JriZ‘y)/ v)’ (1.24)

where the signs denote conduction and valence band, respectively and V' = V=
in the leads while V' = 0 in the sample region. We consider transport at the
Fermi energy E = 0. In the leads, only propagating modes are possible with

valence band wavevectors +k, € R where k, = \/ eV /hw)® — k2 — k2

2, while in
the sample region with energy at the nodal point, evanescent modes are allowed,
thus k, can be as well imaginary and will be labeled by +k, where k, = i, [k2 + k2.
The remaining task is to match the piecewise solution at the interfaces. Since the
(time-independent) Schrédinger equation for the Weyl node Hamiltonian is of first
order only, it is sufficient to demand continuity of the wavefunction. Moreover,
since the entire problem is translationally invariant in the transverse direction, the
transversal wavenumbers k, . are good quantum numbers that will not be mixed
by the scattering matrix.

We fix k, , to arbitrary values allowed by the boundary conditions (k, . = 2mn, /W,
ny,. € Z) and start with assuming an incoming state (with wavevector —k,) from
the left. The scattering wavefunction reads

' k,—eV ‘/hv eiker | _r k, — eV‘ /hv bt g <
N —ky + ik, vN kg + ik,
k. = k. =
V=<« . , e~thar 13 ) etha® 0<z <L
—ky + ik, ke + ik,
L e €V°<"/hv e~ te(z—L) cx > L
N —ky + ik,
(1.25)

where the transversal plane wave part has been suppressed, N = (k, — eV°°)2 +
|—ky + ik,|” is a normalization factor and v = 1/h - OE/0k,. Continuity of the
wavefunction at x = 0 and x = L yields four equations for the unknowns «, 3, r
and t. Their solution for the transmission amplitude ¢ reads

t= ! (1.26)

o [ 7]+

\/ (eV® [hv)2+kZ+k?
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which in the highly doped lead limit V> — oo yields

t = cosh [\/k2 + k2L] (1.27)

Similarly, solving for r in the highly doped lead limit, we obtain

(ky + ik )tanh || /k2 + k2L]

N . (1.28)

The scattering matrix elements t" and r’ for backward transmission can be calcu-
lated from a scattering wavefunction with a lead state impinging on the sample
from the right.

Finally, we calculate the conductance from Equation 1.15 where we apply 3=, —
¥ [ dg, valid for W/L > 1,

2 2L

_62<W

~ h\2r

2 00
) / 2mqdq cosh™ [Lq] ,
h 0
e2W?2In?2

T h L2 27
2 1172
e W
~ 0.11 X ——. 1.29
E (1.29)
The inverse proportionality to L? can be seen as one of the characteristic and
peculiar signatures of Weyl nodes in quantum transport. For the Fano factor, we

obtain from Equation 1.16 in a similar fashion a size-independent value

F=1/3+(6In2)"' =0.574. (1.30)

1.3 Analytical and numerical methods for disordered
systems

It is evident that the model Hamiltonians for topological insulators and semimetals
as described above can only be a crude approximation to a realistic description of
a material. Besides the inclusion of electron-electron interactions, realistic models
should account for disorder due to the fact that experimental materials are never
perfectly clean and periodic, but contain foreign atoms, vacancies, dislocations
etc. In this thesis, we are particularly concerned with disorder effects in topologi-
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cal insulators and semimetals and disregard electron-electron interactions. While
disorder effects in normal metals are both well understood (scattering Bloch waves
into each other, leading to a finite conductivity and, eventually Anderson localiza-
tion), the effects of disorder in topological insulators and semimetals promise an
even richer phenomenology.

In the case of topological insulators, it is evident that strong on-site disorder
must render the system topologically trivial. This can be seen from the similarity
between an atomic insulator and the tendency of disorder to create localized,
independent states. Thus, one can expect disorder to drive topological phase
transitions at some intermediate disorder strengths. In contrast, certain dislocation
lines in topological insulators with nontrivial weak indices can be shown to host
topological zero energy states propagating along the defect. The discussion of
the precise conditions for and the underlying physics of dislocation line modes is
relegated to section 2.2.

For semimetals, the density of states can vanish at the nodal energy. Disorder
can be naively expected to flatten the density of states and in particular also to
create states at the nodal energy. Thus, it is a nontrivial question if characteristic
properties of clean semimetals hinging of the vanishing density of states survive
in the presence of disorder. Moreover, one can expect that topological semimetal
bandstructures have a peculiar behavior for strong disorder where their intrinsic
Berry phase should ensure protection from localization.

Before dwelling on the above questions in chapter 2 and chapter 3 we will intro-
duce disorder models widely used in this thesis and present methods to analyze
disordered systems theoretically. We follow reference [41].

Disorder models In this thesis, besides the dislocations mentioned earlier, we are
mainly concerned with quenched, static disorder that can be described by a three
dimensional potential profile V (r). In chapter 2 we will generalize this assumption
by allowing also disorder types that cause spin- and orbital dependent scattering.
The microscopic details and origin of the disorder potential are not discussed in this
thesis since they are poorly understood for the materials in question. We further
disregard any more complicated disorder types, for example magnetic impurities
that are dynamic in the sense that their internal state can change and interact
with degrees of freedom in the host material. We emphasize that static disorder
leads to elastic (i.e. energy conserving) scattering only.

The actual potential profile in a sample is beyond the experimentalists control
or knowledge. Likewise, it is as hope- as meaningless for analytical calcula-
tions to obtain results for a specific disorder profile V' (r). In contrast, regard-
ing the disorder profile as a random variable with a given probability weight
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function P [V (r)] allows for analytical progress: Disorder averaged observables
(O)ys = [PV (r)]Ovpy [with Oy the observable for a specific 'realization’
V' (r)] and fluctuations can often be calculated. This seems sound for comparisons
to experimental conditions in which either a large number of disordered samples is
measured or V' (r) can be repeatedly changed (i.e. by heating cycles). Even more
fortunate, many physical observables are self-averaging, meaning that taking the
thermodynamic limit in using large samples is equivalent to disorder averaging. In
numerical simulations, which are of course capable of calculating results for spe-
cific realizations V' (r), the disorder average is implemented explicitly by averaging
results for randomly generated V' (r) with the weight function.

A probability distribution P [V (r)] can be described by its cumulants. It turns
out that the Gaussian model is both realistic and simple to analyze,

PV (r)] o exp <— / drde’V(r)K ' (r — 1)V (r')) : (1.31)
Only the second cumulant is non-zero,
(VW () = K (r ) (1.32)

and K (r) is the disorder correlation function, in analytical treatments often ap-
proximated by a Dirac-delta function. A convenient choice for the disorder corre-
lator in the numerical approach to the Weyl node Hamiltonian Hy = hvo -k which
we use throughout chapter 3 is

K (hv)? =2
3¢ X

V2 &2

The disorder correlation length £ sets a lengthscale for the disordered Hamiltonian

(note that Hy alone has no intrinsic scale) and the dimensionless parameter K is a
measure for the disorder strength as we can see from K = m [dr (V(£)V(r)) .-

(V()V()) g = (1.33)

A disorder potential obeying Equation 1.33 in a finite volume 2 can be conve-
niently created in reciprocal space where we assign for each of the discrete k-
vectors

V(k) = VK& (A +i- By) V202 e FE/A (1.34)

with Ay and By random numbers drawn from a Gaussian distribution with variance
o? and mean p = 0.

In chapter 2, where we consider tight-binding models, it is convenient to specify
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disorder in the local basis by

V=Y Vide (1.35)

where V; are uncorrelated from site to site and are randomly drawn from the

interval [—WW/2, W/2], thus (V;),,, = 0 and (V;V}) .. = 6;;W?/12.

Disorder in the scattering matrix method We now discuss how transport prop-
erties of disordered systems can be analyzed using scattering theory. In a tight-
binding model, disorder as in Equation 1.35 can be straight forwardly incorporated
in the scheme around Equation 1.18. The situation for continuum models like the
Weyl node Hamiltonian with smoothly defined disorder as in Equation 1.33 calls
for a more refined treatment as summarized in Figure 1.7. In a first step, the
smooth disorder potential V' (z,y, z) is approximated by equidistant slices stacked
in transport direction (z-direction),

Viz,y,z2) = Z Vo(y, 2)Azd(x — ), (1.36)

where V,(y,2) = & [ dxV(z,y,z) which is a good approximation if Az < &.

= Az Tp—1
In a next step, we compute the scattering matrix SC(;Q of the n-th slice potential
Valy, 2)Azé(x — x,,) between two leads. This can be done in Born approximation
where the transmission block is ¢ ~ 1+ iT with T,,,, = 3 <w§3;|vn(y, z)A:c\w}jn>

and r ~ iR where R,,, = %<wﬁ,“,‘;£|vn(y,z)A:UWEfn>, valid if 7" and R have only
entries with magnitude much smaller than unity. This can be assured for every
disorder potential by choosing Az small enough. In the Weyl node example,
where lead modes are plane waves in transversal direction labeled by k,, k., and
o, eigenstates (with eigenvalues depending on their propagation direction, see
Equation 1.24), T is essentially given by a two dimensional Fourier transform in
transverse directions and R = 0 due to vanishing spinor overlap between right- and
left-moving lead modes. The remaining task is to restore unitarity of the scattering
matrices Sy by replacing t ~ 1+ 4T — (1 — iT/2)~* (1 + iT/2) where the latter
expression agrees to the first one up to linear order in 7" but is evidently unitary.
Finally, using the concatenation formula for scattering matrices, Equation 1.10,
we find the scattering matrix of the disordered sample as

S =S, (Az)® SV & Sy (Ar)©SP - @ st (1.37)

where Sy (Ax) is the scattering matrix for a clean slice of the material in question.
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Figure 1.7: Iterative method to calculate a scattering matrix for disordered sys-
tems with smooth disorder potential that can be approximated by slices. The
slice scattering matrices can be computed perturbatively and are concatenated
sandwiched with free propagation in between to yield the full sample scattering
matrix.

Self-consistent Born approximation One of the most useful and basic quantities
for the models studied in this thesis is the (imaginary time) Green function in the
presence of the disorder potential V' (r),

1

Clin) = o R -V @)

(1.38)

As the Green function contains information about quasiparticle propagation, its
disorder average could provide us with valuable insights for quasiparticle scatter-
ing, density of states or enters as building blocks into various correlation functions.
We will now calculate the disorder average, following reference [42]. Due to the
appearance of V (r) in the denominator in Equation 1.38, before the disorder av-
erage can be computed, a perturbative expansion in powers of V' is performed as
schematically shown in Figure 1.8(a). In (b), the disorder average is taken, making
use of the the Gaussian disorder correlations assumed: Any disorder average over
a diagram with an odd number of disorder scattering events vanishes, while for
even numbers, we apply Wick’s theorem

(Vi Vie - Vian 1 Via,), = zpj (Viepiy Viorn ) .+ (Viepnny Vicpon ). (1:39)

where the sum is over all permutations P. The individual disorder correlators
(depicted by dashed lines) need to be specified for the particular disorder model in
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use, see Equation 1.33. Due to translational invariance (V (r)V (r')),, = K (r — ')
we have (ViVy) 4, X Ok,—q and the disorder averaged Green function (G (iwy)) 4, is
diagonal in momentum k. The resulting terms in (b) can be divided into 'reducible’
and ’irreducible’ diagrams, a diagram is reducible’ if it can be cut in two pieces
by cutting a single internal fermion line. All irreducible diagrams, with external
legs amputated constitute the self-energy ¥, shown in (c). It is easy to see that
the disorder averaged Green function can be obtained iteratively using the self-
energy as in (d) where the summation of the series yields the Dyson equation with
solution

(G (i0n)) o = !

iwn - H (k) - Zk,wn '

(1.40)

The interpretation of the self-energy is straightforward when divided in a real
(hermitian) and imaginary (anti-hermitian) part. The real part accounts for the
disorder induced renormalization of the clean Hamiltonian H. While in ordinary
metals this effect is quantitatively and qualitatively negligible, for the topological
insulator model studied in chapter 2 it will be shown that this effect is responsible
for a variety of disorder induced topological phase transitions [43]. The imaginary
part can be rewritten by Im Y. = —isgn (w) /27 which, by transforming to a real
space Green function can be interpreted as a finite lifetime 7 of the quasiparticles
which propagate through the disordered environment.

Having arrived at Equation 1.40 we are left to calculate the self-energy accord-
ing to Figure 1.8(c) where the first few terms are labeled as (i), (ii) and (iii).
Unfortunately, it is impossible to sum up the series of diagrams exactly so we
have to discuss approximations in Figure 1.9. The simplest approximation is the
Born approximation (lowest order in V') which takes into account only diagram
(i). By replacing the bare propagator in the Born approximation expression for
Y by (G (iwy)),, (which already contains X), also the rainbow like diagrams of
type (iii) are captured in the self-energy. Due to the self-consistency condition on
Y. (appearing on both sides of the equation), this is called the self-consistent Born
approximation (SCBA). The remaining type of diagram in the exact expression of
the self energy is said to be of ’crossing’-type, (ii). It can be shown to be para-
metrically suppressed relative to diagram (iii) by a factor 1/kpl where | = Tvp is
the mean free path. It is obvious that for Dirac materials like Weyl nodes with
Fermi energy at the nodal point, i.e. kr = 0, the suppression of diagram (ii) is not
operational and we will have to resort to exact numerical calculations.
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Figure 1.8: Diagrammatic treatment of disorder in perturbation theory. After a
perturbative expansion of the Green function is performed in (a), the disorder
average in taken in (b), assuming Gaussian disorder. The resulting diagrams
can be reorganized in (d) using the self-energy (c). Green functions of the clean
Hamiltonian are denoted by single lines.

1.4 OQOutline of the thesis

We now give an outline of the structure of this thesis. After having introduced the
materials and some of their model Hamiltonians followed by a brief introduction of
theoretical tools to study disorder effects in chapter 1 we now proceed to present
the results of this thesis. Next, chapter 2 is concerned with selected disorder
effects in three dimensional topological insulators and chapter 3 with topological
Weyl semimetals. Each chapter starts with an introductory paragraph giving
further details on the methods and models before the reprinted journal papers
are presented. Conclusions reflecting about the wider picture are presented in
chapter 4. There we also provide an outlook to possible future research.
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Figure 1.9: Approximate calculation of the self-energy in Born- and self-
consistent Born approximation (SCBA).
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2 Disorder effects in topological
insulators

2.1 Topological phase diagram in the presence of
on-site disorder

After having introduced topological insulators and argued for the importance of
disorder in chapter 1, we will now discuss the main conceptual idea behind the first
paper presented in this chapter, reference [1] titled “Z2 Phase diagram of three-
dimensional disordered topological insulators via a scattering matriz approach”,
DOI: 10.1103/PhysRevB.89.155311. The question is if and how topological insu-
lators reveal their non-trivial topological nature in terms of their scattering matrix
if they are opened up by attaching leads. On an intuitive level, the answer is clearly
affirmative: A topological insulator as a gapped state of matter should not sup-
port any transmission from one side to the other if the system is large enough,
thus the transmission amplitudes in the scattering matrix vanish, ¢ = 0. On the
other hand, the properties of the unitary reflection block r should be sensitive to
the electronic structure at the surface of the topological insulator and thus to the
presence of surface states.

Time-reversal symmetry and scattering matrices In the following, we will put
this intuition on a solid analytical footing following earlier works of Meidan, Mick-
litz and Brouwer [44, 45] as well as Fulga, Hassler and Akhmerov [46]. In a
scattering setup with a time-reversal invariant Hamiltonian H, let {¢""} be a
basis in the space of incoming lead modes, and accordingly {¥2*} ~a basis in the
space of outgoing modes. By definition, the scattering matrix at energy E satisfies

(H - E) <¢;n + Z Smn¢gt + 7v/}loc> =0 (21)

where the right parentheses represent the scattering wavefunction for incoming
mode 1. We will now investigate what time-reversal symmetry, defined for H as
TH = HT, means at the level of the scattering matrix S.
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We prepare Equation 2.1 for acting with the antiunitary time-reversal operator 7.
By definition, TTH = HT and thus the incoming lead state at momentum k is
transformed to a state at momentum —k and the same energy F,

Toy (r) = Te™ ) (0) = e Ty (0).

Using the expression for the group velocity, v oc dE/dk, we find that Ty is
an outgoing state and as such is related to the basis {¢2**} by some unitary
transformation V. Repeating the argument for the time reversed partner of 1)%“

we arrive at
TYr = > V™, (2.2)
k
Tz/J,‘;ft = ZQmﬂ/}f” (2.3)

We now apply T' from the left to Equation 2.1, which just acts as complex conju-
gation on the complex scalar S,,,,

T(H - E) <¢Zn + Z Smn¢$r1;t + l/Jloc) =0 (24)

(1 = B) (T 4 5 S50 + T ) =0 25)

(H - E) (Z Vnszut + Z (S*)mn lew;m + wl/oc) =0 (26)
k m,i

where the time-reversed wavefunction in the sample region is 1j,. = Ty, We

multiply with >, ([STQ}I) and compare to Equation 2.1 to read off

n
S =vTsTy* (2.7)
Finally, acting with T on Equation 2.2 and using Equation 2.3, we obtain 7%y =
Sk TV = 34 Vi Quit0l™ and employing 7% = —1 for spinful electrons, we

find —1 = V* Q) which can be inserted in Equation 2.7 to simplify the time-reversal
invariance constraint on S,

SV =-vTst, (2.8)

Topological classification of time-reversal invariant scattering matrix So far,
Equation 2.8 applies in all dimensions. We now aim to specialize to two dimen-
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sional systems, where we argued for a Z, classification in chapter 1 based on the
phase winding of Bloch wavefunctions as the crystal momentum k = (k,, k) swept
certain trajectories in the Brillouin zone. In the scattering approach, the system
is necessarily finite (and not periodic) in the transport direction taken to be the
the z-direction. We control £, in y-direction by wrapping one unit cell of the sys-
tem on a cylinder and applying a flux ¢ = ak,, see Figure 2.1(a). For disordered
systems, the Bloch momentum £, is meaningless but the flux construction (that
is equivalent to periodic boundary conditions twisted by a phase €*®) still can be
applied [47]. Note that the flux changes its sign under the action of time-reversal
symmetry, ¢ — —¢@. Repeating the above derivation for this 'adiabatic quantum
pump’ setting with the flux ¢ as a parameter, we find as a condition

S(p)V = —VTST(—g). (2.9)
(a) (b)
A?
AN
-0 : :

]/:—1 Uzl

Figure 2.1: Schematic drawing of a two dimensional adiabatic quantum pump
with left and right lead attached (a) and topological classification of associated
eigenvalue phase winding of the scattering matrix S as the pump parameter is
varied from ¢ =0 to 7 (b). (Figure adapted from reference [45].)

Like for the Brillouin zone topological classification, the topological invariant is
encoded in the evolution of S(¢) as ¢ varies on a trajectory. To see how the
invariant is constructed in an intuitive way, let us fix the basis {¢)2*} such that
VT = —V. Writing the unitary S (¢) as a matrix exponential with a Hermitian
matrix h (¢), S (¢) = @ Equation 2.9 yields

S (¢) = @) = _YTh" Oyt = _yTht Oyt = yeih® (ot = giVht (o)t

where we read off that at the time-reversal invariant points of the pump cycle,
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¢ = 0,7 (where ¢ = —¢mod2r) the Hermitian matrix fulfills h = VA*VT,
i.e. Hamiltonian time-reversal symmetry. Then, by Kramer’s theorem, h has
degenerate (real) Eigenvalue pairs and thus the Eigenvalues e'® of S come in
pairs at ¢ = 0,m. The topological classification rests on the Eigenvalue evolu-
tion as ¢ : 0 — m. In the nontrivial case, the eigenvalues switch partners, see
Figure 2.1(b). Any crossing of eigenvalues at 0 < ¢ < 7 is non-generic and will be
avoided by perturbations.

The classification scheme outlined above can be conveniently implemented nu-
merically. As discussed in the paper below, the adaption for three dimensional
time-reversal insulators is straightforward. It turns out that the actual calculation
of the scattering matrix for a large tight-binding system as detailed in chapter 1 is
by far more efficient numerically than an exact diagonalization of the same system.
As an application, this enables us to determine the topological phase diagram for
large disordered tight-binding systems where other approaches based on diagonal-
ization would be vastly inefficient. In this way, we are able to shed light on some
aspects of these phase diagrams that have been speculative before.
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The role of disorder in the field of three-dimensional time-reversal-invariant topological insulators has become
an active field of research recently. However, the computation of Z, invariants for large, disordered systems

still poses a considerable challenge. In this paper, we apply and extend a recently proposed method based on
the scattering matrix approach, which allows the study of large systems at reasonable computational effort with
few-channel leads. By computing the Z, invariant directly for the disordered topological Anderson insulator, we

unambiguously identify the topological nature of this phase without resorting to its connection with the clean

case. We are able to efficiently compute the Z, phase diagram in the mass-disorder plane. The topological phase
boundaries are found to be well described by the self-consistent Born approximation, both for vanishing and

finite chemical potentials.

DOI: 10.1103/PhysRevB.89.155311

I. INTRODUCTION

Time-reversal-invariant (TRI) topological insulators, a
class of insulating materials with strong spin-orbit coupling,
have attracted a great amount of attention in recent years. While
clean systems are fairly well understood [1,2], an important
theme in current topological insulator research is the study
of disorder. Aside from being crucial for the interpretation
of experimental data, disorder is of fundamental interest:
Generically, disorder localizes electron wave functions and
thus is expected to counteract nontrivial topology, which, as
a global property, requires the existence of extended wave
functions in the valence and conduction bands. One of the
defining properties of strong topological insulator (STI) phases
is their unusual stability: extended bulk states and gapless
edge states persist for weak to moderately strong disorder.
With increasing disorder strength, the bulk gap gets filled with
localized electronic states, the mobility gap decreases, and,
finally, at the topological phase transition, the mobility gap
closes and the surface states at opposite surfaces gap out via
an extended bulk wave function [3].

However, disorder physics in topological insulators is much
richer than suggested by the simple scheme above. A drastic
example is provided by the topological Anderson insulator
transition, where increasing disorder drives an ordinary insula-
tor (OI) into a topologically nontrivial phase [4—8]. Moreover,
the role of different disorder types [9] or spatially correlated
disorder [10] has been addressed in the literature. Further, weak
topological insulator (WTI) phases known to be protected
by translational symmetry were shown to be surprisingly
stable against almost all disorder types allowed by discrete
symmetries [11-13].

One of the challenges in the field of disordered topological
insulators is the computation of the Z, invariants that charac-
terize strong and weak topological insulator phases. (Without
disorder, the Z, invariants can be computed directly from
the band structure [1,2,14].) While methods based on exact
diagonalization are applicable for two-dimensional systems,
their performance for three-dimensional systems is rather
poor [8,15,16]. For example, a recent study [16] was only
able to map the Z, invariant for a few lines in the disorder
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strength—Fermi energy plane for a system of 8 x 8 x 8 lattice
sites, leaving uncertainties about the possibility to infer
qualitative and quantitative behavior in the experimentally
relevant thermodynamic limit. As an example of an indirect
method for calculating the Z, invariant, the three-dimensional
topological Anderson insulator was argued to be topologically
nontrivial by employing the Witten effect [7]. The transfer-
matrix method can be used to obtain Lyapunov exponents
in a finite-size scaling analysis [17,18], which is then used to
infer information on topological phase boundaries. Drawbacks
of this method include difficulties in the determination of
the phase boundary between two insulating phases since size
dependence of the decay length is intrinsically small on both
sides of the transition. In the case of a transition between
an insulating topologically trivial and nontrivial phase, appli-
cation of open boundary conditions allows for a facilitated
detection of the resulting insulator- (surface-)metal transition.
However, this causes a much stronger finite-size effect and
renders the interpretation of the results for finite system sizes
rather difficult. For example, a recent transfer-matrix study
[19] speculates about a novel “defeated WTI” region in the
phase diagram, whose precise nature and properties have not
been finally resolved.

As a numerically inexpensive alternative, Fulga et al.
proposed to obtain the topological invariants from a topo-
logical classification of the scattering matrix of a topological
insulator [20]. As a Fermi surface quantity, the computational
requirements for the calculation of the scattering matrix
scale favorably, so that it is accessible with modest effort.
The method requires the application of periodic boundary
conditions and considers the dependence of the scattering
matrix on the corresponding Aharonov-Bohm fluxes. In two
dimensions, there is only one flux, and the method effectively
classifies a “topological quantum pump” [21-23], via a
mapping similar to that devised by Laughlin to classify the
integer quantized Hall effect [24].

In this paper, we report on the application of a scattering-
matrix-based approach to a disordered three-dimensional
topological insulator model [25-27] that features both strong
and weak topological insulator phases. In Sec. II, we review the
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theory and discuss the practical implementation of the method,
which more closely follows the ideas of Ref. [22], and differs
from that of Ref. [20] at some minor points. The relation to
the band-structure-based approach is discussed in Sec. III. In
Sec. IV, we present the phase diagram in the mass-disorder
strength plane. In contrast to Ref. [19], we see no evidence
of a “defeated WTI” phase. We conclude in Sec. V. Two ap-
pendices contain details on analytic modeling of the scattering
matrix for the clean limit and an assessment of finite-size
effects.

II. SCATTERING THEORY OF THREE-DIMENSIONAL
TOPOLOGICAL INSULATORS

The tight-binding model we consider is a variant of the
widely used low-energy effective Hamiltonian of the Bi,Ses
material family [25-27]. In the absence of disorder, the
momentum-representation Hamiltonian reads as

Hy(k) =1, |:mo +2m; Z (1 — cos ki):|

i=x,y,z

+ Aty Z o; sink; + u, (1)

i=x,y,z

where Pauli matrices o; and t; refer to spin and orbital
degrees of freedom, respectively. For definiteness, we set
A =2m; and choose energy units such that m, = 1. The
system has time-reversal symmetry 7 Hy(k)T ! = Hy(—k),
inversion symmetry IHy(k)I~' = Hy(—K), and, if 4 =0,
particle-hole symmetry P Hy(k)P~! = —Hy(—k). Here, T =
ioyK is the time-reversal operator (K complex conjugation,
T2 = —1), I = t, the inversion operator, and P = 7,0,K the
particle-hole conjugation operator (P2 = 1).
The full Hamiltonian

H=Hy+V )

includes an onsite disorder potential V' that respects time-
reversal symmetry. The most general form of the disorder
potential V is

6
VE) =YY war(ot),, 3)
d=1

r

where the summation is over all lattice sites 7, and {oT} =
{1,7¢,7y0¢,7,0y,7,0;,7;}. The amplitudes wy  are drawn from
a uniform distribution in the interval —W,; /2 < wy; < Wy/2.
The disorder potential breaks inversion symmetry; the terms
w1, w3, wyg, and ws also break particle-hole symmetry. We
consider a lattice of size L, x L, x L, and apply periodic
boundary conditions in the x and z directions, but open
boundary conditions at the surfaces at y =0 and L, — 1.
Following, we first discuss the case of potential disorder only
(W, =W, W, =0ford > 1), and return to the other disorder
types at the end of our discussion.

Our main focus will be on the case u = 0 where, without
disorder, three different topological phases appear inside the
parameter range mg € [—5,4], which is the parameter range
we consider here. For my < —4, the model is in the WTI
phase, with topological indices (vo,v,vyv;) = (0,111); for
—4 < mgy < 0, it is in the STI phase with indices (1,000);
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FIG. 1. (Color online) (a) Setup of the scattering problem with
leads in the y direction and twisted periodic boundary conditions in
the x and z directions. (b) Typical eigenphase evolution of S, (¢.,¢.)
under continuous variation ¢, : 0 — 7 formy = —1 (red)and u = 0
in the clean case W = 0 [panels (i), (iii)] and with potential disorder
W = 10 [panels (ii), (iv)]. For ¢, = O [panels (i), (ii)], a nontrivial
winding is obtained, while ¢, = m [panels (iii), (iv)] shows a trivial
winding.

for my > 0, the system is in the OI phase with indices (0,000).
The inversion symmetry of the clean model with © = O ensures
that bulk gap closings exist at the topological phase transitions
at mo = 0 and —4 only [28].

In order to obtain a scattering matrix, we open up the
system by attaching two semi-infinite, translation-, and time-
reversal invariant leads to both surfaces orthogonal to, say, the
y direction, as shown in Fig. 1(a). The leads are described by
a tight-binding model, defined on the same lattice grid as the
bulk insulator. In principle, for the scattering matrix method,
the leads can be generic and are to be chosen as simple as
possible for fast computation. However, for reasons related to
numerical robustness, we choose a lead that is one site wide
in the x direction, but two sites wide in the z direction. (We
refer to Appendix A for a detailed discussion why in this
case a strictly one-dimensional chain is less well suited for the
purpose of topological classification.) The y coordinates of the
lead sites 7 are y < O and y > L. Without loss of generality,
the x and z coordinates of the lead sites are fixed at x = 0 and
7 =0, 1. Using &, and ¢, to denote unit vectors in the x and z
directions, respectively, the Hamiltonian for the left lead reads
as (see also Appendix A)

Hy =Y Y [tlf) (1,0, + 1,00 + ) (F|

y<0z=0,1
+ity(IF)T0x (F = €y] — |F — &) Te0: (7))
+ 8.0t (IF)(F + €| + |F + &) (F)] “

with lattice vector 7 = (0,y,z). In our calculations, we have
set o =1, =1 and ¢, = % For this choice of parameters,
the lead supports four right-propagating modes and their
left-propagating time-reversed partners. The coupling between
the leads and the bulk sample is described by the coupling
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term

WL =iyty Y (F)To(F — &, —IF = &)r0 (F),  (5)
z=0,1

with7 = (0,0,7). Similar expressions apply to the Hamiltonian
Hp of the right lead and the coupling Wy between the right lead
and the sample. In our calculations we have chosen the value
y =5, optimized empirically for the numerical detection of
the scattering resonances.

To find the topological invariants for a disordered sample,
we employ the twisted boundary conditions method [16,29].
This amounts to inserting additional phase factors ¢’ and
e'%: in the hopping matrix elements connecting sites at x = 0
and L, — l,and z = O and L, — 1, respectively. The resulting
system can be thought of as a large unit cell defined on a
torus with two independent Aharonov-Bohm fluxes threading
the two holes around the x and z axes. For the purpose of
classifying insulating phases, it is sufficient to focus on the
reflection matrix Sy(¢,,¢.) of the left (y < 0) lead, which is
a unitary matrix for an insulating sample. For our choice of
parameters, the leads have four propagating modes at the Fermi
energy (¢ = 0), so that S, is a 4 x 4 matrix.

To obtain topological invariants from the scattering matrix,
we note that, because of time-reversal invariance, S, satisfies
the condition

Sy(prsp)V = =V (=, —), (6)

where T denotes the matrix transpose and the unitary matrix
V describes the action of the time-reversal operator T in the
space of scattering states [20]. Since T flips the sign of the ve-
locity v = dE /dk, it connects incoming and outgoing modes
Ty = Dk VM. Reference [20] chooses a convention
wherein, after redefinition of the incoming scattering states,
S,V — §| the scattering matrix becomes antisymmetric at
the “time-reversal-invariant fluxes” ¢, . = 0,7, and, thus,
acquires the same symmetry properties as the matrix w(k) used
by Fu and Kane to classify time-reversal-invariant topological
insulators without disorder in terms of their band structure
[14]. Here, we follow the formulation of scattering theory
as it is most commonly used in the theory of quantum
transport [30,31], in which one makes the choice VV* = —1.
At the time-reversal-invariant fluxes ¢, ;, = 0,7 this gives the
condition that S, is “self-dual” ST = V'S, V. Then Kramers

degeneracy ensures that the eigenphases {¢/%/ }j=1,..40f S, are
twofold degenerate at ¢, ; = 0,7. The topological classifica-
tion rests on the eigenvalue evolution as one of the fluxes ¢,
or ¢, changes from 0 to 7, so that the system evolves from
one time-reversal-invariant flux configuration into another one
[23]: In the topologically trivial case, labeled by Q[S,] = 0,
degenerate eigenvalue pairs, which generically split upon
departing from a time-reversal-invariant flux, are reunited
upon reaching the other time-reversal-invariant fluxes. In the
nontrivial case, which we label by Q[S,] = 1, the eigenphases
from a degenerate pair are united with eigenphases from
different pairs. (If S, is a 2 x 2 matrix, so that there is only
a single eigenvalue pair, the question of topological triviality
is connected to the winding of the eigenphase pair around
the unit circle [23].) One easily verifies that this definition
is independent of the choice which eigenphase pair is being
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“tracked”: if one eigenphase pair “switches partners,” then all
eigenphase pairs must do so. Similar considerations have been
applied to Kramers degenerate energy level pairs in order to
argue for topological nontriviality of time-reversal-invariant
topological insulators [14,21,32]. The strong and weak topo-
logical invariants of the sample are then defined as [20]

vo = {Q[Sy(¢; = 0,0, : 0 — )]
+ O[Sy (¢, = m,¢x : 0 — 7)]} mod 2
={QISy(¢px = 0,¢,: 0 — )]
+ O[Sy (¢ = 7,¢, : 0 — 7))} mod 2, @)

vy = QIS (px = 7,0 : 0 — )], ®)
v, = QISy(¢: = 7,95 : 0 — 7)]. ©)

The two expressions for vy are equivalent because the
evolution of an eigenphase pair for a contractable loop in the
¢y, ¢, plane is always trivial. The relations (7)-(9) remain
valid under circular permutation of spatial indices, so that,
e.g., the weak topological index v, can be calculated by
attaching a lead in the x or z directions.

Using the KWANT software package [33], we performed nu-
merical calculations of vy and v, on a system with dimensions
L, .~ 9andvariable L, = 9...160. Here, the length L, was
increased until an (almost) unitary reflection matrix Sy (¢, ;)
was found, where we used the condition ||detS,|— 1| <
10~ as an empirical cutoff where unitarity is reached. The
possibility of large system sizes L, is needed to accommodate
cases with a long localization length, as it occurs close to a
topological phase transition. If the condition ||detS,| — 1| <
10~* could not be met for L y < 160, the system is empirically
labeled as metallic. (Note that a full assessment of the
metal/insulator transition requires an analysis of the scaling
behavior of conductivity, which is beyond the scope of this
work.) The approach to a unitary scattering matrix is illustrated
in Fig. 2, which shows the evolution of |det[S, (¢, . = 0)]|

107 4
I (metal)
= 4
ZaLU i Nl i R
3 | (insulator)
o
- 10-6 L
L W=6 )
10°F me=0.3 1
0 50 100 150
LY

FIG. 2. (Color online) Evolution of |det[S, (¢, . = 0)]] as a func-
tion of L, for L,, =11 and a specific disorder realization with
disorder strength W = 6 and . = 0. The three curves are for m, are
0.3, 0.4, and 0.5, corresponding to the STI phase, the immediate
vicinity of the topological phase transition, and the OI phase,
respectively. The dashed line indicates the empirical cutoff used in
the calculations.
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as a function of L, at disorder strength W = 6 across the
OI-STI transition for three different values of m. During the
sweep of the flux ¢, and ¢,, the eigenphases have been tracked
using a dynamical step-width control, allowing us to resolve
sharp features in the eigenphase trajectory. Note that the use of
twisted boundary conditions in the x and z directions allows
us to chose moderate L, , since we are not required to separate
any surface states. We found the system size L,, L, =9
sufficient to suppress finite-size issues: Beyond a parity effect
for L, . (see the discussion in the next section), there is no
dependence of the results on increased L, . (see Appendix B).

As an example, Fig. 1(b) shows a typical eigenphase
evolution for my = —1 and u = Oin the clean and a disordered
case (W = 0 and 10). For ¢, = 0, a topologically nontrivial
winding is obtained, while ¢, = 7 shows a trivial winding for
both the clean and the disordered case. With Egs. (7) and (9)
we obtain vy = 1 and v, = 0, respectively. Similarly, we con-
firmed v, = v, = 0 which, in summary, leads to (vp, v, vyv,) =
(1000) for the particular points in parameter space.

III. COMPARISON WITH BAND-STRUCTURE-BASED
APPROACH

In this section, we focus on u = 0. For a clean bulk system,
the topological indices vy and vy , . can also be calculated
from the band structure. The weak indices one obtains from the
scattering approach agree with those for the bulk system if and
only if the sample dimensions L, L, and L are odd. (For even
sample dimension, the scattering method yields trivial weak
indices.) The advantage of the scattering approach is that the
weak indices can be calculated for a disordered system as well.

In order to show that the scattering-matrix-based topologi-
cal indices of Egs. (7)—(9) are the same as the band-structure-
based indices if the sample dimensions are odd, we make use
of the relation between scattering phases and bound (surface)
states: A surface state exists at energy ¢ if and only if §,
for energy ¢ has an eigenphase 7. This relation follows from
the observation that capping the lead by a “hard wall,” which
has scattering matrix —1, restores the original surface-state
spectrum without coupling to an external lead. A nontrivial
winding requires that an odd number of eigenphases passes
the reference phase m upon sweeping the fluxes ¢, and ¢,
as specified in Eqs. (7)—(9), whereas an even number of
eigenphases passes the reference phase m if the winding is
trivial [23]. Note that depending on the definition of the lead
modes, the numerical value of the reference phase might differ
from 7. (In Appendix A, we show that for the clean and weak
coupling limit, all phase-winding signatures can be reproduced
quantitatively from an analytical calculation of the scattering
matrix in terms of the surface states at the y = O surface.)

In a clean system, translation invariance in the x and z
directions implies that the surface states are labeled by a wave
vectorg = (g,,q,) inthe surface Brillouin zone. Possible Dirac
cones in the (g,,q;) plane are centered around the four time-
reversal-invariant momenta (g,,q,) = (0,0), (0,7), (;r,0), and
(r,m) (see Fig. 3). For a finite-size sample with twisted bound-
ary conditions, only discrete values g, = (2mn — ¢y)/L,,
q; = 2mn — ¢;)/ L. are allowed. A resonance (i.e., scattering
phase ) is found if one of the allowed g vectors crosses one
of the surface Dirac cones.
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FIG. 3. (Color online) Brillouin zone for a surface orthogonal to
the y direction. Black arrows indicate the trajectories of surface wave
vectors { = (¢y,q,) corresponding to L, and L, both odd (left) or
even (right) for fixed ¢, =7 and a sweep of ¢, from O to .
Dots indicate time-reversal-invariant momenta which are possible
positions for surface Dirac cones at u = 0.

For definiteness, we now consider the weak index v,
which is determined by the phase winding Q along the path
¢y 1 0 — 7 atfixed ¢, = 7. While sweeping ¢, , the allowed g
values build a set of trajectories in the (g, ,q;) plane, which are
shown in Fig. 3 for the cases of L, and L even or odd. From
inspection of Fig. 3 one immediately concludes that a Dirac
cone gives rise to an odd number of scattering resonances if and
only if its center is at one of the “allowed” g vectors for ¢, = 0
or for ¢, = m, which requires odd L, for Dirac points with
q. = m. Hence, we conclude that if and only if L, is odd, the
index v, of Eq. (9) measures the parity of the number of Dirac
points with g, = m. Similarly, the index v, of (8) measures
the parity of the number of Dirac points with ¢, = 7 if and
only if L, is odd, whereas the index vy of Eq. (7) measures
the parity of the total number of Dirac points for both even
and odd sample dimensions. In all three cases, the parities of
number of Dirac points correspond to the very same quantities
as those that are computed from the band structure [1,2,34].

There is a simple argument that shows that the scattering-
matrix-based weak indices are always trivial if the sample
dimensions are even, irrespective of the value of the bulk
index: Any three-dimensional weak topological insulator
is adiabatically connected to a stack of two-dimensional
topological insulators. The stacking direction can be taken to
be G, = (vy,vy,v;). A “mass term” that couples these layers
in pairs connects the system adiabatically to a trivial insulator
[11,12,35].If L,, Ly, L. are all even, such a mass term can be
applied for any G, . Since the indices of Eqgs. (8) and (9) are true
topological invariants, they can not change upon inclusion of
such a mass term, i.e., they can only acquire a value compatible
with the topologically trivial phase.

For odd sample dimensions, this argument does not apply
and, as is shown above, for the clean case, the topological
indices derived from the scattering matrix agree with the
indices obtained from the band structure.

IV. PHASE DIAGRAM IN THE PRESENCE OF DISORDER

We now discuss the Z, phase diagram of the three-
dimensional Hamiltonian H in the (m(, W) parameter plane
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FIG. 4. (Color online) Topological phase diagram of model H as
calculated with the scattering matrix method with potential disorder
in the mass (my), disorder strength (W) plane for © =0 (a) and
w1 = 0.35 (b). The sample dimensions are L, ;, =9, L, < 160. Solid
lines denote the SCBA phase boundaries of insulating phases with
Im¥ = 0.

with potential disorder. We study the cases © =0 and u =
0.35. Topological indices vy and v, are computed as described
in Sec. II for a dense grid of parameter values. The result is
shown in Fig. 4. For u = 0, it confirms similar topological
phase diagrams computed on the basis of conductance and
scaling methods as in Refs. [17,19]. Due to the large maximum
system size of 9 x 160 x 9 we relied on self-averaging and
worked with only a single disorder realization per point
in parameter space. The results indicate that this is indeed
justified for the range of weak and moderate disorder strengths;
only for the strong disorder region W > 25, where Anderson
localization and a trivial insulator is expected, a minority of
data points yields diverging results.

Studies of disorder effects of the three-dimensional quan-
tum critical point between STI and OI at © = 0 employing the
self-consistent Born approximation [3], renormalization group
[36], or a numerical approach [37] show the existence of a
critical disorder strength below which a direct phase transition
without extended metallic phase is realized. This conclusion,
however, is valid only for systems with chemical potential
at the clean band-touching energy (here p = 0) which also
preserve inversion symmetry (after disorder average). Indeed,
our numerical results for 4 = 0 show that the width of the
metal region at the my-induced transition between WTI, STI,
and Ol for weak disorder is considerably smaller than in other
studies of the Z, invariant for disordered systems [16,20],
indicating that finite-size effects are much less severe for the
large system sizes we can reach. Further indication for the
successful suppression of finite-size effects is that the phase
diagram in Fig. 4(a) remains unchanged if we increase the
system volume by 50% to 11 x 160 x 11 (see Appendix B).

An analytical approach to disordered topological insulators
is the calculation of the disorder-averaged self-energy X using
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the self-consistent Born approximation (SCBA) [3,7]. Due to
symmetry arguments, X can be expanded as X,t, + X7,
where 1 is the 2 x 2 unit matrix, and the SCBA equation
reads as [3,7]

PR R

= keBZ

I (k) 5 (@0 (10)

where the notation (ot); was introduced below Eq. (3).
Consequently, the disorder averaged propagator features renor-
malized mass and chemical potential values 11 = my + ReX,
and i = u — ReXy, respectively. If In¥ =0 and & in the
bands above and below energies +min(|m|,|m + 4|) the
system is metallic; otherwise, if 1 is in the band gap, the value
of m determines the nature of the resulting insulator: For 0 < m
we expect an Ol, —4 < m yields a WTI, and —4 <m <0
indicates a STI. Nonzero imaginary parts Im¥, and ImZXZ,
translate into a finite lifetime 7 < oo and a finite density
of states at the Fermi level, indicating either a compressible
diffusive metal phase [36] or, if these states are localized, an
insulator. SCBA can not distinguish between both possibilities.

The coupled set of SCBA equations (10) is numerically
solved self-consistently. For potential disorder (W; = 0 for
d > 1), the resulting phase boundaries of insulating phases
with Im¥ = 0 are shown in Fig. 4 as solid lines. For u = 0,
we find excellent agreement of the SCBA phase boundaries
with the results from the scattering matrix method. Since
SCBA as a disorder-averaged theory is free of finite-size
effects, this further supports the applicability of the scattering
matrix results in the thermodynamic limit. The situation is
different for u = 0.35, where for strong disorder (W 2 10)
the insulating states slightly but numerically significantly
exceed the regions where Im¥ = 0 as obtained from SCBA,
indicating localized states at the Fermi energy. A similar
observation was reported in Ref. [16].

In closing, we comment on the effect of the five remaining
disorder types. By inspection of Eq. (10) we find that mass-
type disorder (0 7)¢ = t, has the same effect as pure potential
disorder, i.e., bending the phase boundaries between insulating
phases to increased values of mg. All other disorder types
have the opposite effect on m, as was noticed for the two-
dimensional case in Ref. [9]. We have confirmed the agreement
between scattering matrix results and the trends predicted by
SCBA in these cases (results not shown). We conclude that
qualitative features of the phase diagram, as, for example,
the occurrence of a disorder-induced topological Anderson
insulator transition, crucially rely on the microscopic details
of the disorder potential.

V. CONCLUSION

We have demonstrated the potential of the scattering matrix
method for the computation of Z, topological indices for a
three-dimensional disordered tight-binding model featuring
strong and weak topological phases. We studied the Z, phase
diagram in the mass-disorder plane for system sizes up to
11 x 160 x 11 and found excellent agreement with SCBA
predictions. The latter have been studied in the literature
before [3,17,36] (only for the OI/STI case and for u = 0)
but have never been compared quantitatively to a real-space
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disordered three-dimensional TI tight-binding model. We
conclude that SCBA should have predictive value also for
similar scenarios. In particular, we showed that SCBA is
quantitatively correct also for finite chemical potential and
weak disorder, where extended metal regions occur even
for weak disorder, whenever the (renormalized) chemical
potential lies within a bulk band. This possibility has been
overlooked in Ref. [18]. For the insulator-metal transition at
larger disorder strength, SCBA’s precision suffers from its
inherent inability to take into account localization effects [18]
which occur at the edges of topological nontrivial bands.

The scattering matrix method can be regarded as comple-
mentary to a finite-size scaling analysis. While the latter is
ideally suited to detect a phase boundary, the scattering matrix
method can unambiguously identify the topological phase at
each parameter point where the system is insulating. This
proves the nontrivial Z, nature of the topological Anderson
insulator phase without referring to adiabatic connection to the
clean STI phase or involving other indirect arguments. For the
disordered WTI, we find no evidence for a “defeated WTI”
region in the phase diagram, as suggested recently in Ref.
[19]. We point out that the scattering matrix method should
be an ideal tool to identify the topological invariants for (so
far hypothetical) disordered topological phases that are not
adiabatically connected to the clean case.

The scattering matrix method is able to find weak indices
even if the strong index is nonzero, as has been checked using
a modified Hamiltonian H (as in Ref. [27]) with anisotropic
mass parameters which realize many more topological phases,
e.g., (vo,v,yvyv;) = (1,001). Moreover, our results explicitly
demonstrate the intricate interplay between system size and
topological phase in the parameter region supporting a WTI
phase. Adding a single layer to the system can change the
topological phase from OI to WTI or vice versa, a behavior not
reflected in conductance simulations. The case of a disordered
WTI phase has been previously discussed in Refs. [38,39],
where it is argued that average translational symmetry in
stacking direction is sufficient to protect the weak topological
insulator phase. This is in agreement with our findings
since an odd number of stacked layers prohibit any average
translational symmetry breaking, while such a dimerization
can be adiabatically applied to an even number of layers.
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APPENDIX A: ANALYTIC MODELING OF THE PHASE
WINDING IN THE CLEAN LIMIT

In the clean case, it is possible to understand the scattering
matrix eigenvalue phase-winding signatures (and thus the

PHYSICAL REVIEW B 89, 155311 (2014)

topological classification) from a microscopic point of view.
We employ the Fisher-Lee relation [40] to calculate the
elements of the scattering matrix from the retarded Green’s
function GX:

JUn .
m]nm +i/UnA/U.GE,,

Sum = — (A)

where the right-hand side represents the current in outgoing
lead mode n after a normalized local excitation of incoming
mode m. The mode velocities v, and v,, link this quantity
to the usual amplitude propagation described by G* and any
direct transition into outgoing modes (c<1,,,, not contributing
to the system’s scattering matrix) is subtracted. The Green’s
function depends on the scattering region (i.e., the topological
insulator surface), the lead, and their mutual coupling. We
first discuss the effective description of the topological
insulator surface and specify a simplified lead H{. We then
compare the analytical prediction with the full-scale numerical
calculation. Finally we motivate the lead choice in the main
text Hy..

1. Surface states and surface Hamiltonian

Following the convention of the main text, we consider a
clean topological insulator described by Eq. (1), occupying
the half space y > 0. We make the same parameter choice as
described in Sec. II. For energies in the bulk gap, a description
in terms of the effective surface theory is sufficient. The Bloch
wave functions for the surface states at surface momentum
q = (¢.,q-) close to a Dirac point at momentum Q = (Q,, 0,)
can be found using the method applied in Ref. [35]. For the
STI (—4 < my < 0), the two surface states around the single
Dirac point at Q = (0,0) read as

1/v2

Yy (xy.2) = ;ﬁ%fjeﬁf 0 e @
/32
0
é”(ac,y,z):ﬁeiﬁ U2 o0, @y

1/32
0

in the same basis as Eq. (1) and with ¢(y) a normalized,
decaying function for y — oo [35]. In the basis of these two
Bloch states, the effective surface Hamiltonian becomes a 2 x
2 matrix which reads as

FSTI = qx -4z
HP () =A (—qz —qx>' (A4)
The constant A was defined in Eq. (1).

For the WTI (m(y < —4) there are four surface bands, which
form two Dirac cones centered around Q; = (;,0) and Q, =
(0,7). The basis states are the same as in Egs. (A2) and (A3),
but with surface momenta q; = (¢;,v,q;,;) defined around Q;
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for j = 1,2, respectively. We find

—q1x —q1,z 0
AN Ggy =a| e A
0 q2.x q2,z
92z;  —q2x

(A5)

In a system with finite L, , and given fluxes ¢y ;, a finite
subset of surface wave vectors are compatible with the twisted
boundary conditions (see the discussion in Sec. III). During
the sweep of the “flux” ¢, or ¢., the allowed g values form
a set of trajectories in the surface Brillouin zone (see Fig. 3).
For an approximate description of the scattering process, it is
sufficient to further restrict the effective surface Hamiltonian
to the few allowed wave vectors on trajectories which are
closest to the Dirac points. As we will show momentarily, the
arrangement of the trajectories in the surface Brillouin zone
relative to the locations of the gapless points then determines
the phase-winding structure.

2. Lead and its self-energy

The leads are modeled as semi-infinite, translational- and
time-reversal-invariant tight-binding systems. To motivate the
special choice of lead Hy, described by Eq. (4), we first consider
a simpler (thinner) lead as in Fig. 5(a), realized as a tight-
binding chain of lattice sites at coordinates |¥) = (0,y,0), with
y < 0 and Hamiltonian

H] =Y [FYH (F = &y| + |F — &) Hnop (7.

y<0

(A6)

where Hyop = t,[1,0x —iT,0,]. The wave functions of the
four scattering channels at the four Fermi points g, = 7 /4
and g, = +37 /4 are denoted |y, withn = 1,2,3,4. They
are chosen such that the matrix V, defined below Eq. (6),
fulfills the condition V - V* = —1. Finally, the lead H is
coupled to the system Hg (i.e., the topological insulator) by
Hyop times a real constant y,

W =y [IF) H,, (A7)

<7 - Ev| + |7 - gy>Hhop<7|]
for ¥ = (0,0,0).
For a semi-infinite lead, the retarded Green’s function

GF is an infinite-dimensional matrix. However, employing

(@) (b)y
:}#”’ :
Hj Hy,
LX I-x

FIG. 5. (Color online) Tight-binding realization of system with
Hamiltonian H with attached lead realized as a translation-invariant
chain. In (a), the height of the lead, described by Hamiltonian H; , is
a single lattice site while the lead Ay in (b) has a height of two lattice
sites.
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the concept of lead self-energy [41], the degrees of freedom
corresponding to the lead can be eliminated. The calculation
of the Green’s function GX in Eq. (A1) is most efficient if
we retain the lead site y = —1. Thus, the lead self-energy
should take into account only lead sites y < —1. It reads as

[41] B = H, G| Hyop = —it~/2 where G| is the Green’s
function of the lead without the coupling W] . Finally, at zero

energy we have GR = (—Hs — W/ — £{)~" and

GR, ="y =—D|G®|gh(y =-1).  (A8)
where |¢") and |¢°"!) are incoming and outgoing scattering
states for the lead terminated at y = —1, i.e., without the
coupling W/ .

3. STI phase

As a first specific example, we consider the case of a
strong topological insulator, for which the surface Hamiltonian

has a single Dirac cone centered at é = (0,0). We chose
mg = —2 since then ¢(y) = 8, ¢ (see Ref. [35]). Employing
the boundary conditions for, say, ¢, =0 and L, odd, the
resulting trajectories for the surface momenta are shown in
Fig. 6 (inset). For the effective low-energy theory (encircled
region in the surface Brillouin zone) we find from Eq. (A4)

HySTI (6,) = A <¢x6Lx _¢?/Lx) . (A9)

In order to calculate the Green’s function G ¥, we assume weak
system-lead coupling y. Then, Hs can be approximated by the
ideal effective surface theory without lead [Eq. (A9)], and we

7 T T T x

8 + Numerical

n

s L

i:) [ 4 - > > > > ]

g . - > > > -

g_)D qg.o0, - »@» > -

3= 6. =0 1

q,)_ STI L,.=odd

/?-2 o Gp 0= ]

& - 0 s

n q, ]
0.02

FIG. 6. (Color online) Scattering matrix eigenvalue phase wind-
ings in the case my = —2 (STI), ¢, = 0 with lead as in Eq. (A6),
and L, , . =9 in the weak coupling regime (y = 0.1, t, = 1). The
remaining parameters are as in the main text. Dots indicate numerical
results based on the full-scale three-dimensional model, while solid
lines denote analytical results based on Eq. (A10). The inset shows
the surface Brillouin zone with the position of the Dirac cone for a
STI and trajectories of allowed surface momenta for the boundary
conditions indicated. The encircled region of the surface Brillouin
zone gives rise to the effective model in Eq. (A9).
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find in the basis of Egs. (A9) and (A6)

A (-1
nt 0 L
0 Ao, 0
—(I+i)y i
(GFy = AL 0 l«/ity
- 0 (—Dy 0
V2L.L,
(-1
0 mr 0
(+i)y 0 0
V2L.L,
Finally, Eq. (A1) yields
1 @
7 0 e 0
0o e
S = o i—P . —i+® , (AlO)
7 0 @ 0
@ 1
0 =% 0 =
where @ = li;;;‘é". The resulting eigenvalue phase winding

is compared to the full-scale numerical calculation in Fig. 6,
the excellent agreement between both curves quantitatively
confirms the model leading to Eq. (A10). For larger coupling
strength y [i.e., y = 5 as used in the numerics for Figs. 1(b)
and 4], the assumption Hg ~ I:IfTI becomes invalid as surface
states strongly hybridize with the lead and can no longer be
labeled with surface momenta. Accordingly, Eq. (A10) then
deviates from the full numerical solution.

The phase winding shown in Fig. 6 (STI, ¢, : 0 — 7 and
¢, = 0) is nontrivial. In a similar fashion, all other phase
windings in the absence of disorder can be modeled using
the effective low-energy and agree with the KWANT results.
In general, a surface momentum trajectory that leaves or
enters an odd number of surface Dirac points corresponds
to a nontrivial phase winding. In the following, as we discuss
the only case where two Dirac points are reached for the same
flux configuration, we show why we prefer using the extended
lead Hi, [Eq. (4)] instead of the strictly one-dimensional lead
H{ [Eq. (A6)].

4. Motivation for an extended lead

Consider the situation my < —4 and even system di-
mensions. For ¢, =0 and ¢, : 0 — m the trajectories of
surface momenta simultaneously leave the two Dirac cones
at Qm = (0,7) and (7r,0), respectively. The effective surface
Hamiltonian is

- ¢x 0

0 &

A (¢ =2 (ALD)

¢ 0
0 - ¢x

with basis states in Eqgs. (A2) and (A3) for 3 = Q i J=
1,2. Now consider a lead which is weakly coupled to just a
single site at the surface of the system, say at F= (0,0), and
calculate the Green’s function G* = (=AM — W] — =)~
Crucially, the coupling matrix elements (denoted by I'’ in the
following) for the two different surface Dirac cones j = 1,2

PHYSICAL REVIEW B 89, 155311 (2014)

-9
0 0 T
—(+y  =(+iy 0
0 0 0
—i/2t, 0 0
0 —i/21, 0
0 0 —i/2t,

(

are identical in such a situation since they fail to resolve the
different in-plane momenta of the surface states. Representing
the 2 x 2 blocks of Eq. (A11) by &, we obtain generically

-1

—h 0 —I’
GFk=1 0 h -’ , (A12)
B A ) -3

where (after matrix inversion) the relevant onsite part at
y = —1is just —1/X,, leading to a scattering matrix inde-
pendent of ¢,. This trivial phase winding is consistent with
the discussion in Sec. III. However, any small perturbation
that acts differently on the two Dirac cones invalidates the
exact cancellations and causes a steep but still trivial phase
winding that is increasingly harder to track for a decreasing
perturbation strength. In numerical practice, finite precision
of the arithmetics plays the role of a tiny perturbation which
prevents proper eigenvalue phase tracking. Although even a

FIG. 7. (Color online) Comparison of topological phase dia-
grams for (a) L,, =9 and (b) L, =11 which show excellent
agreement. For the larger system, the resolution in parameter
space is reduced. SCBA phase boundaries are included to facilitate
comparison.
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small amount of disorder (W = 0.1) is a sufficiently strong
perturbation to overcome the problem, an improved lead and
lead-system coupling than can distinguish between the two
surface Dirac cone basis states are desirable.

A lead which is extended in, say, the z direction [see
Fig. 5(b)] can carry modes that probe the different in-plane
momenta of surface states. Such a lead is realized by our
default choice Hp in Eq. (4). The modes are proportional
to ¢'% or ¢/ and are thus mutually orthogonal to the the
surface modes if these belong to Dirac cones with O, = Qor .
Thus, the scattering scenario described in this section becomes
an effective double copy of the scenario in Sec. A 3. Now,

PHYSICAL REVIEW B 89, 155311 (2014)

the steepness of the (double) phase winding is conveniently
controlled by y, which justifies the increased numerical cost
due to the doubling of scattering channels.

APPENDIX B: FINITE-SIZE EFFECTS

Figure 7 proves the successful suppression of finite-size
effects for the system dimensions reached in this work. The
phase diagram of Sec. IV remains unchanged if we increase
L, , from9to 11 (and thus the volume by 50%).
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Disorder effects in topological insulators

2.2 The weak side of strong topological insulators

Dislocation lines are a special form of disorder in crystal lattices. Such imperfec-
tions play a crucial role in material science and have major technological implica-
tions as they can affect the yield strength of materials. In the case of topological
insulators, it turned out that dislocations dramatically affect the local electronic
properties. Ran and coworkers formulated a condition under which topologically
protected helical zero modes propagate along dislocation lines [48]. The topo-
logical nature of such electronic states is an important distinction from impurity
or dislocation line states in non-topological materials, which in principle can be
gapped out and are not protected from localization.

In a strong topological insulator slab, the topological surface states are a direct
consequence of non-trivial bulk topological invariants, their protection rests on
the presence of a robust energy gap in the bulk material separating these surface
states. These very same properties - topological invariants of bulk band struc-
tures - however ensure the presence of robust dislocation line modes that should
consequently be able to couple distant surface states directly. Below we explore
the rich implications of this dichotomy. Before we present a scattering matrix
approach to this problem in the paper titled “The weak side of strong topological
insulators”, DOI: 10.1103/PhysRevB.93.161105, we turn to the understanding of
the origin of these peculiar electronic states bound to dislocation lines. We follow
the exposition in reference [48].

Dislocation line zero modes from weak topological indices A dislocation is
a one dimensional extended object characterized by its Burgers vector B that
accounts for the extra lattice vector required to close a loop of primitive lattice
vectors that was opened by the insertion of a dislocation line, see Figure 2.2. For
screw dislocations, B is parallel to the dislocation line, in edge dislocations, it is
perpendicular.

We prove a condition for the presence of one dimensional helical zero modes bound
to dislocation lines in a three-dimensional topological insulator with weak topo-
logical indices v = (v, 19, 3). It only depends on the Burgers vector’s projection
to the vector

1
Ml, = §<V1G1 —+ VQGQ + 1/3G3> (210)

where G 2 3 are the three reciprocal lattice vectors. The condition for the presence
of topological zero modes reads

M, - B = 7 (mod 27) (2.11)
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and does notably not depend on the strong index 1. We next turn to a proof of
this condition.

(a) (b)

S
S
H...Of. SRS
ni;}

NS (©
Ay
...l
NN
R
Hl..
l.:

Figure 2.2: (a) Screw dislocation in a three-dimensional cubic lattice with Burg-
ers vector B, aligned in parallel with the dislocation line. (From reference [48].)
(b) Schematic lattice configuration in the two crystal planes below and above
the dislocation line. (¢) Examples for the relation of the topological invariants
v, v (top row) to the quantities d,, defined at time-reversal invariant momenta
m in the bulk Brillouin zone (middle row) and to the surface state structure on
the 001 - surface (bottom row). (From reference [18].)

Proof of the condition M, - B = 7 (mod2xw) We start the argument with a
review of the definition of the vector v and its consequence for the form of surface
states [18]. The quantities d,, introduced in chapter 1 are defined at eight time-
reversal invariant momenta (TRIM) in the Brillouin zone,

1
My nong = 5(711(}1 +n2Ga + n3Gs) (2.12)

with n; € {0,1}. For two neighboring TRIMs in the surface Brillouin zone of the,
say, 001 - surface, m,; (with ng = 0), the parity of Fermi level crossings along
their connection N, is given by

(‘UNCTOSS = 6ﬁ1a5rha+G3/2 : 5rh,,5ﬁlb+c;3/2, (2.13)

which is a gauge invariant quantity and various configurations are exemplified in
Figure 2.2(c). Moreover, it can be shown that there exists a convenient gauge
choice such that there is at most one nontrivial ¢ in the set of the seven § with
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nonzero TRIM my,,, ,,, »,. If such a § exists, it must occur at momentum m =M,,.
The value of dyg at the origin then controls the value of the strong index vy. In
summary, a weak topological insulator has dy;, = —1 and dy = —1 and a strong
topological insulator has oy, = —1 as the only nontrivial 4.

We now specialize to a screw dislocation that is generated by sliding the top front
part of the lattice plane stack in Figure 2.2(a) to the right by |B|, where B is the
Burgers vector, see also (b) for a detailed view of the two lattice planes closest
to the dislocation line. Consider cutting the crystal bonds between the blue and
the black planes before the sliding takes place. The exposed surfaces have an
electronic structure that is either fully gapped or can be adiabatically deformed
to harbor Dirac cone dispersions placed at zero, one or two surface TRIMS. In the
case of a single Dirac cone at a time-reversal invariant surface momentum mp the
Hamiltonian of top and bottom surface reads

H (f{) = {l_{xaz + Eyay} T,

where the Pauli matrix 7, labels top and bottom surface and the surface momentum
k is measured relative to mp. Sliding the top front part of the upper portion of the
crystal and reconnecting the surface bonds, the coupling between the two layers
depends on the overlap of local wavefunctions at surface position r, for the bottom
surface and the top surface in the non-shifted area, the wavefunctions can written
as ¢ (r) o< e™PT¢ (t) where ¢ is a slowly varying function of ¥. In contrast, for
the top surface in the shifted area v (F) oc €™ =B)¢ (¥) where again ¢ is slowly
varying. In summary, the total Hamiltonian of the reconnected, partially shifted
surfaces can be written

H= {l_{xam + (—iho,) O'y} T, +m(x2) 7, (2.14)

where we used that translational symmetry is preserved along x-direction. The
coupling amplitude m(xy < 0) = m and m(zy > 0) = ™2Bm takes into ac-
count a possible phase shift of the hopping matrix element as the coordinate x,
traverses the dislocation line (placed at x5 = 0). In the case mp - B = 7 (mod 27),
Equation 2.14 gives rise to a Kramers pair of domain wall fermions [49] with linear
dispersion inherited from the k,o, part.

This derivation can be repeated for more than one Dirac cone surface state, each
of which possibly yields a domain wall fermion while only an odd number of the
latter are protected from gapping out. Candidate positions of surface Dirac nodes
mp that produce domain wall fermions for our (generic) choice of B = a; are
mp = G;/2 and mp = (G; + G2)/2. However, the parity of Dirac cones at these
points in the surface Brillouin zone can be computed from the Fermi level crossings
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in between, according to Equation 2.13

NC’I'DSS
(1) = 0G,/20(G1+G3)/2 * 0(G14+@2)/20(G1+GatGs)/2-

The condition for the four TRIM appearing as labels on the right-hand side of the
above equation is m - B = 7. In the gauge choice with at most one non-trivial
0 at non-zero TRIM M,, the above condition of N.... = 1 is thus satisfied if
M, -B=nm.

Note that the above derivation can be generalized for Burgers vectors equal to a
multiple of a primitive lattice vector. In the case of an odd multiple, the derivation
holds as above, for an even multiple the phase shift ¢™7B is always trivial and no
zero modes result. All these cases are captured by Equation 2.11.

The Burgers vector B is constant along the full extent of the dislocation line. The
direction of the dislocation line may however change as it propagates through the
lattice, giving rise to mixed dislocation of screw- and edge type. In the former, B is
parallel to the local tangent to the dislocation line, in the latter it is perpendicular.
Since a topological zero mode established along a screw dislocation by the above
arguments and protected by a bulk band gap and time-reversal symmetry cannot
simply terminate inside the crystal, it will also be present after the dislocation line
changed direction and continues as an edge type dislocation. This generalizes the
above proof also for edge type dislocations.
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Strong topological insulators may have nonzero weak indices. The nonzero weak indices allow for the existence
of topologically protected helical states along line defects of the lattice. If the lattice admits line defects that
connect opposite surfaces of a slab of such a “weak-and-strong” topological insulator, these states effectively
connect the surface states at opposite surfaces. Depending on the phases accumulated along the dislocation lines,
this connection results in a suppression of in-plane transport and the opening of a spectral gap or in an enhanced

density of states and an increased conductivity.

DOI: 10.1103/PhysRevB.93.161105

Introduction. Band insulators come in topologically distinct
classes, where the topologically nontrivial classes have ex-
tended surface states, which are robust to small deformations
of the Hamiltonian [1-6]. The topological classification of
generic band insulators in three dimensions distinguishes
“strong” and “weak” topological indices [5,7]. A nonzero
value of the strong index signifies a ‘“strong topological
insulator;” Surface states of strong insulators have a spectrum
with an odd number of Dirac cones, and they are robust to
disorder or other perturbations that break the lattice translation
symmetry. In a “weak topological insulator,” i.e., if the strong
invariant is trivial and the weak invariant is nontrivial, the
lattice translation symmetry is essential for the protection of
the surface states, although, as was pointed out in a seminal
article by Ringel et al. [8], the surface states of a weak
topological insulator show a remarkable robustness in the
presence of perturbations that preserve the lattice translation
symmetry on the average [9,10].

An important property of insulators with nontrivial weak
indices is that a line dislocation may have topologically
protected helical states, similar to the helical edge states of
a two-dimensional topological insulator [11,12]. The precise
conditions for the existence of such strongly protected states
depends on the Burgers vector b of the dislocation [12,13]. The
helical states along the dislocation line remain topologically
protected as long as the notion of a separate dislocation with
a well-defined Burgers vector remains valid. The presence of
nonzero weak and strong indices is not mutually exclusive, and
it is possible that a band insulator is at the same time a weak
topological insulator and a strong topological insulator. Such
a scenario is expected to be relevant, e.g., for BiSb compounds
or for the putative Kondo topological insulator SmBg [14].
In principle, such a “weak-and-strong topological insulator”
combines an odd number of Dirac cones in the surface-state
spectrum with topologically protected helical states along
lattice defects.

Realistic topological insulators are often layered materials,
and flakes of such materials are usually investigated in a quasi-
two-dimensional slab geometry, in which the slab thickness is
large enough that surface states at the bottom and top surfaces
remain well separated. The presence of dislocation lines that
connect the top and bottom surfaces of a weak-and-strong
topological insulator, as shown schematically in Fig. 1(a), may,
however, provide a mechanism by which the two surfaces
are coupled nevertheless. As we show here, a finite density
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of dislocation lines may lead to the opening of a gap in the
surface-state spectrum of a slab and to a strong suppression of
electron transport parallel to the surface, although the precise
scenario depends on the phase that electrons accumulate along
the dislocation line. The possibility of a coupling of surface
states at bottom and top surfaces via dislocation lines presents
a “weak side” of topological insulators with nontrivial strong
and weak indices; it does not exist for strong topological
insulators with trivial weak indices, for which dislocation lines
do not carry protected helical states. We now proceed with a
description of our results.

Description of dislocation line defect in terms of a 7w -flux
line. The weak indices v; = 0,1, j = 1,2,3, of a topological
insulator are defined with respect to a basis (Gi,G3,G3)
of reciprocal lattice vectors. Together they uniquely define
a reciprocal lattice vector M = (1/2)(v1G1 4+ v,G2 + 13G3)
[12]. As shown by Ran, Zhang, and Vishwanath, a lattice
dislocation binds an odd number of helical modes if and only
if its Burgers vector b satisfies [12]

&M = 1, 1)

In that case, there is an odd number of surface-state Dirac
cones within which electrons pick up a phase 7 upon going
around the position ry at which the dislocation line pierces the
surface. The low-energy Dirac Hamiltonian for such surface
states is accordingly

H=v(p+eA/c)-o, 2)

where v is the surface-state velocity, p = (py,py), 0 =
(0y,0y), and A(r) is the vector potential corresponding to a
flux line with flux hc/2e at position rq, a “m-flux [13].” Since
the total number of Dirac cones in the surface-state spectrum
is odd if the strong index vy = 1, the number of surface cones
described by a Dirac Hamiltonian without 7 -flux line is even
if b - M is an odd multiple of v [12]. For simplicity we focus
on the minimal model, in which there is a single surface state
with low-energy effective Hamiltonian (2) in the vicinity of a
dislocation line for which the condition (1) holds.

To elucidate the relation between the surface states and
the helical states propagating along the dislocation line, it is
instructive to analyze the eigenstates of the Hamiltonian (2) at
energy &€ = hvk using polar coordinates (r,6). We choose the
7 -flux line—the location where the dislocation line pierces the
surface—as the origin. This is a problem that previously was
considered in the context of graphene [15,16]. With the choice

©2016 American Physical Society
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FIG. 1. (a) Topological insulator slab of size L x W, with top
and bottom surfaces connected via randomly placed dislocation lines
with mean distance d. Ideal contacts are attached to the left and right,
for top and bottom surfaces separately. (b) Zero-angular-momentum
(m = 0) radial waves for nonzero wave number k at the surface of
the topological insulator are transmitted perfectly into and out of the
one-dimensional helical states along the dislocation line.

A = (h/2er)ey, where ey is the unit vector for the azimuthal
angle, the Hamiltonian (2) is invariant under rotations, so that
we can look for eigenstates of the total angular momentum
J. = I + (h/2)0,. These have the form

el ()
"y (r) )’

where m is an integer and the radial wave functions ¢+ (r)
satisfy

Y (r) = ( 3

m=+1/2 .
(8r + f)(ﬁmx(r) = ik +(r). “)
For generic m there is a single regular solution of Eq. (4), which
describes the scattering of radial waves off the flux line. An
exception is the case m = 0, for which there are rwo linearly
independent solutions

e
¢0:|:(r) = aout7 + ain?a (5)

for which the amplitudes oq, and o4, of outgoing and
incoming radial waves can be freely chosen. Since time-
reversal symmetry rules out backscattering for the m =0
states and for the helical states propagating along the defect
line [17], the incoming m = 0 mode must be fully transmitted
into the outgoing defect state, and the incoming defect state
is fully transmitted into the outgoing m = 0 mode, as shown
schematically in Fig. 1(b).

Surface states in the presence of dislocation lines. We now
consider transport properties and density of states of surface
states for a slab geometry with multiple dislocation lines,
piercing the top and bottom surfaces at random positions, see
Fig. 1(a). We choose coordinates such that the bottom and
top surfaces are parallel to the xy plane, with transport taking
place in the x direction. For simplicity we take the dislocation
lines to pierce bottom and top surfaces at the same in-plane
position rq = (x4,yq), an assumption that is appropriate for a
low-energy, long-wavelength description of a thin slab. The
in-plane dimensions of the slab are L x W, and we assume
that the slab thickness is sufficient large, so that surface states
at the bottom and top surfaces do not overlap in the absence of
lattice dislocations. We take periodic boundary conditions in
the y direction, choosing the aspect ratio W/L large enough
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that the results of our calculation do not depend on this choice
of boundary conditions.

We calculate the density of states and the transport
properties of the surface states using a scattering approach. The
scattering matrix S, . links the amplitudes of incoming and
outgoing waves in an “ideal” part of the two surfaces, to the left
and right of a section with a finite density of dislocation lines.
The indices 0,0’ = +1, —1 for the top and bottom surface,
respectively. Dislocation lines connect the top and bottom
surfaces, so that in general S,, is not block diagonal. We
denote the amplitudes of incoming and outgoing waves to the
left (right) of the section by vectors a}j‘an and ap, (ali{‘an and
aﬁt‘;n), respectively, where the index n refers to the transverse
momentum ¢, = 2zn/W. With this notation, the scattering
matrix S, , relates outgoing and incoming waves as

out in
a5 _ g 6
out | T S"* o’ in . (©6)
a a
Ro o'=+ Ro’

Each component S, ., can be decomposed into transmission
and reflection blocks in the standard way,

/
Spr = (r t‘f"”). %
low'  Tog

Our strategy will be to first calculate the scattering matrix
S for a “short” slab of length 8 L with only a pair of dislocation
lines, and then calculate the scattering matrix S of a slab of
full length L by concatenating scattering matrices of individual
slices [18], see Fig. 2 (top). We place a pair of dislocation lines
atry = (xd,yd,l) and rq = (x4,y4,2), With 0 < x4 < 6L and
0 < y4.1 < ya2 < W randomly chosen. Since the aspect ratio
W/L > 1, the pairwise placement of dislocation in a slab
(compared to placement of single dislocation lines) does not
affect the in-plane conductivity or the density of states. It
does, however, allow us to choose a gauge such that the vector

potential A(r) is nonzero for x = x4 only,

_h 1 ifyg <y < yao.
A(r) = ZS(x — Xg)e; X {0 else. (8)

An important further parameter in the calculation is the phase
shift €% that electrons accumulate along the dislocation

W~
o .

FIG. 2. Schematic picture of a top view (a) and side view (b)
of the topological insulator slab. The calculational scheme involves
the computation of the scattering matrix S for a slab of width 8L,
followed by the concatenation of scattering matrices of individual
slabs to obtain the scattering matrix S of the full structure.

161105-2

47



WEAK SIDE OF STRONG TOPOLOGICAL INSULATORS

line. For our calculations we found it advantageous to
generalize the above procedure to slabs with an even number
2n of dislocation lines.

The calculation of the scattering matrix S for a slab with a
single pair of dislocation lines turned out to be an interesting
problem in its own right. Although the scattering problem for a
single dislocation line is easily solved in polar coordinates, see
Eq. (4), we could not find a practical way to extract a scattering
matrix for the geometry of Fig. 1(a) from this solution. Instead,
we compute S from a solution of the Dirac equation for a
regularized (i.e., smeared out) 7 flux. (Without regularization
the scattering problem with a m-flux line cannot be solved
numerically.) The details of this calculation are given in the
Supplemental Material [19].

Results. By concatenation of scattering matrices for slices
of length § L, each with an even number 2n of dislocation lines,
we can construct the full scattering matrix S for a slab of length
L with randomly placed dislocation line pairs at concentration
1/ d*> =Ny /W L, with Ny the total number of dislocation lines,
see Fig. 2(a). The Landauer formula expresses the in-plane
conductance G and the cross conductance G | in terms of the
transmission and reflection blocks of the scattering matrix S,

62 T 62 T
Gy = > trtget] Gr="trS Sl O

o,0'=%1
For the calculation of the density of states, we consider a

periodic array of slabs of length L. In this case the spectrum
of Bloch states can be obtained from the condition that

—ikyL
Se(e) = (EIEL ‘5 )S(s) (10)

has a unit eigenvalue, where fik, is the crystal momentum.

FIG. 3. Zero-energy in-plane conductivity o (a) and cross con-
ductance G (b) for a slab of weak-and-strong topological insulator
with a concentration 1/d” of randomly placed dislocation lines. The
different curves refer to different choices for the phases 64(rq), as
shown in the figure. The dashed line in (a) denotes the clean-limit
in-plane conductivity oy o = 2¢?/mh. Data points denote an average
over 500 disorder realizations, statistical error bars are typically
smaller than the markers.
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Results of the transport calculations are shown in Fig. 3
for an average over 500 random realizations of the dislocation
lines. The energy ¢ is set to zero throughout the calculation,
to maximize the effect of the dislocation lines. The sample
length L is measured in units of the mean distance d between
dislocation lines, which is the only fundamental length scale
in the system at zero energy. The trivial W dependence of G
is eliminated by considering the in-plane conductivity o =
G L/W.For L/d — 0 we recover the clean-limit conductiv-
ity 0y.0 = 2¢*/mh of a pair of decoupled topological-insulator
surfaces [20,21]. Anticipating a proportionality G; « W/d,
in Fig. 3(b) we show G d/ W as a function of L/d. Unlike the
longitudinal conductivity oy, the cross conductance vanishes
in the clean limit L/d — 0.

We observe that the in-plane conductivity has a strong
dependence on the phase that electrons pick up while traveling
along the dislocation lines. In particular, if all phases are equal,
0d4(rq) = 64 for all ry, oy is strongly suppressed for L 2> d
except for 8y = /2, for which we find that o is independent
of L/d within numerical accuracy [22] Figure 3 shows the
representative cases 63 =0, 0.77, and /2, and we also
present the case 0 < 64(rg) <27 uniformly distributed, which
shows a slight increase of oy with L /d. The 64 dependence of
the cross conductance is not as strong; 4 mainly determines
the value at which G saturates for large L/d. An exception
is 84 = 1 /2, for which we could not observe a saturation for
the system sizes we could achieve.

Results for the density of states are shown in Fig. 4, again for
four representative choices of the phase shifts 64(r4). For fixed
04(rq) = 0 we observe one or two gaps placed asymmetrically
around ¢ = 0. For generic fixed 6(rg) = 64 (such as the case
64 = 0.77 shown in the figure) we observe an asymmetric gap
around & = 0. For 64(rq) = /2 a symmetric gap is restored,
but with one midgap state at ¢ = 0 per dislocation line. Finally,
for random 0 < 64(rg) <27 the gap is closed and the density
of states near £ = 0 is essentially constant. The gap sizes and
the occurrence of states at energy ¢ = 0 can be heuristically

60 T T | p—

0, = 0.57 1

40 .

.@ |
20 g
= i
E 0 T f | —
0, €10, 27|

< 40 ]
E .
<3 20 i

O l} l l

1.0 -1.0 0.0 1.0
Einhv/d

FIG. 4. Density of states d N/dE of a sample with dislocation
line density 1/d%. The four curves represent the four representative
scenarios for the choice of the phase shifts 84(rq), as explained in the
text. The vertical dashed lines correspond to energies calculated from
Eq. (11). The thin black lines denote the ideal surface-state density
of states without dislocation lines. The arrow represents a Dirac delta
function at zero energy. Data points denote an average over five
disorder realizations and 80 values of the crystal momentum «,.
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explained by inspecting the phase matching condition for
periodic trajectories traveling between the two surfaces at two
neighboring dislocation lines at positions ry and r/;. Including
the Berry phase m for two-dimensional Dirac particles, this
phase matching condition reads

2¢e
%|rd,,~ —1rq ;| + 6a(rq) + Hd(r&) + 7 =0 (mod2m). (11)

Setting |[rq — r}j] = W/2n, which is the largest typical distance
between neighboring dislocation lines with 2n = 6 disloca-
tions in a slice gives a good estimate of the numerically
obtained gap sizes, see Fig. 4. The absence of states around
& = 0 indicates that pairing of more distant dislocation lines
does not occur.

Conclusion. We have investigated the effects of dislocation
line zero modes coupling top and bottom surfaces of a
strong-and-weak topological insulator slab. Our numerical
calculations based on a scattering approach reveal a rich
phenomenology for transport properties and density of states
depending on the phase shifts 64(rq) that electrons accumulate
along the dislocation lines. For a thin, homogenous slab, a
constant phase shift 64 for all dislocation lines can be expected
to be a good approximation. Except for the special cases
04 = £m/2, this results in a spectral gap around zero energy
and a corresponding strong suppression of in-plane transport.
For a thick slab, where dislocation lines are not necessarily
straight, it is conceivable that the phase shifts 64(rq) are
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uniformly distributed. In this case, the in-plane conductivity
and the density of states at the nodal energy are enhanced by
the presence of dislocation lines. In this work, we neglected the
wavefunction overlap for neighboring dislocation line modes.
Recently, such hybridization effects were studied in Ref. [23].

In principle, the dislocation-line-mediated coupling be-
tween the top- and bottom surfaces can be described by an
effective Hamiltonian involving two Dirac cones coupled by
a matrix-valued “potential.” Such an effective model was
considered by Mong ef al. in the context of the transport
through a single surface of a weak topological insulator with
two (coupled) Dirac cones [9]. The same description can also
be applied to the system studied here, although the two Dirac
cones now refer to different surfaces. Our analysis shows that
the disorder type in such a model depends strongly on the
phases accumulated along the dislocation lines: While a mass
term is responsible for the opening of a spectral gap (as for
04(rq) = 64 constant, 64 # +m/2), a constant scalar potential
creates the asymmetry around ¢ = 0 (which we observe for
generic0 < |64] <m/2), and zero-average disorder terms lead
to the “flattening” of the density-of-states singularity at zero
energy. Establishing a more rigorous understanding of our
results in terms of a Hamiltonian theory would be a formidable
task for future work.
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Supplemental Material
I. SCATTERING MATRIX FOR SCATTERING OFF A DISLOCATION LINE

A. Polar coordinates

In the main text we derived the scattering states for a 7 flux line. For a true flux line, the scattering states for a
7w flux and a —m flux are identical. Here, we consider the same problem, but include a regularization of the flux line.
The regularization will lead to a complete backscattering of the “m = 0” mode, see Eq. (5). With regularization, the
backscattering phase shift depends on the sign of the flux.

We start with a sharp flux tube for which the vector potential in a polar gauge reads

A(r)= ——ey, (1)

where @ labels the “flux” of the dislocation line in units of the flux quantum (i.e. ® = £1/2 for a +n-flux). With
this choice for the vector potential A the Dirac equation has the form

vip+eAje)-op = —ilw < DO+ DO_ ) P = e, (2)

with operators
D

Dy =08, + 28, F —). (3)
r r

Since Eq. (1) uses a rotationally symmetric gauge the states can be assumed to be eigenstates of the total angular

momentum j, = [, + %o’z. For j, = h(m — 1/2) they have the form of Eq. (3), where m € Z. The radial part of the

wavefunction is then determined by the equations

(04 52 1) = ik 1 1), @
(0 = "EE2) 6 1) = ik -0 o)

where k = ¢/hv.

It is convenient to introduce the kinematic angular momentum

h
jz,kin:[rx(p+eA/c)}z+§az:ﬁ(m—l/2+¢) (6)
The case of interest is j, kin = 0, 4.e., m = 1/2 — ®. Here, the radial equations become
(0r + 5-) D (r) = iko=(r), (7)

where we dropped the index m. These equations are straightforward to solve, and one finds independent incoming

and outgoing radial solutions.
o (r IR A | 1 (1
( ¢t§7’; - aout \/Fe k 1 + ain \/Fe k _1 . (8)

As argued in the main text, the interpretation of the fact that the coefficients ays and «;, can be chosen independently
is that the incoming j, xin = 0 surface mode is fully transmitted into the outgoing mode in the dislocation line, whereas
the incoming dislocation line mode is transmitted in the outgoing surface mode.

Next, we regularize the w-flux tube. This requires the breaking of time-reversal symmetry and induces full backscat-
tering of the j; kin = 0 modes. The simplest way to regularize the flux line using polar coordinates is to take ® in Eq.
(1) r dependent. We choose ®(r) = 0 for r < p and & = £1/2 for r > p, which corresponds to a situation in which
the flux is not located at the origin, but on a circle of radius p. Obviously, the problem is now well-defined at the
origin, and for r < p we can take the known solution of the Dirac equation with ® = 0, matching to the solution (8)
at r = p. For ® = 1/2 and m = 0 this procedure yields aoyt = —ain. For ® = —1/2 and m = 1 we find aout = Qin.

Summarizing: For a regularized flux line the zero-angular-momentum mode is fully backscattered, but with opposite
phase factors for a regularization as a positive or as a negative flux. This property will be used in the numerical
approach to find the scattering matrix of a dislocation line in Cartesian coordinates, which is outlined in the next
Sections.
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B. Cartesian coordinates: Scattering off a regularized flux line

We first consider the scattering problem for a single surface Hamiltonian (2) with a regularized vector potential
A(r). We consider scattering off a string of 2n flux lines, all with the same x coordinate x4, but with different y
coordinates 0 < yq; <W,j=1,2,...,2n.

For compatibility with the use of cartesian coordinates, we use a different gauge for the vector potential than in
the previous subsection,

Al) = 25(a — zaecaly), (9)

where the function o(y) jumps by one at y = ya ;, see Eq. (8) of the main text. The vector potential (9) corresponds
to the matching condition

lim v (z,y) = s(y) lim (2, y), (10)

xlxg
where
s(y) = e~ ime(y), (11)

For sharp flux lines [see Fig. 1(a)], the phase of s(y) changes by m at each flux line. Since s(y) is confined to the
unit circle in the complex plane, regularization of the flux line corresponds to “smearing out” the 7 jumps of the phase
factor. There are two possibilities to regularize these jumps: A continuous increase by 7 or a continuous decrease by
m, corresponding to the two signs of the flux in a regularized flux line. In our numerical calculations we smear out
each flux line over a distance a, see Fig. 1(b), where we make sure that the distance between neighboring flux lines
is much larger than a. We encode the different regularization possibilities by taking the expression

37-1,,.7-2”(y) _ 76’2}' 3 1T [f(y*?;d,i)+f<y*yd(,ljfw)+f<y*yd(,ljJrW)_l], (12)

where 7; = £1 labels the sign of the regularization for the jth flux line and the function f(p) is defined as

if p<—1,
flp) = tanhﬂp/\/l— 2) if —1<p<1, (13)
if p>1.

The function f(p) is infinitely differentiable at p = 41. All 2" functions s,, ., have the smeared step as their
real part, but different imaginary parts, with positive and negative peaks at each yq ;, thus realizing all 227 possible
realizations of the 2n flux lines.

The scattering matrix is written in the basis of propagating eigenstates in ideal reference regions immediately to
the left and right of the string of flux lines. Following Ref. 1, we take the Hamiltonian for these reference regions as
Hief = vpgo,. The omission of the term vpyo, is inconsequential, since the reference regions are used for reference
purposes only and their length is sent to zero at the end of the calculation. In each reference region we expand the
wavefunction ¢(r) in basis states |g,, =), where the sign + refers to right-/leftmoving states, and ¢, = 27n/W labels
the transverse momenta for periodic boundary conditions. The corresponding wavefunctions are

s (w,9) = {2yl £) = etk ( L ) . (14)

To obtain the scattering matrix of the string of (regularized) dislocation lines, we solve for scattering states of the
form

S b @) ahow)] for <
V@) {Z [ 2 Pn,— (T, )+a°R,L¢n+( )] for = > zg4, (15)

and obtain the scattering matrix from the linear relation

out in /
ayg . ajy [t
() =s(ih) s=(07) 1)
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FIG. 1: Setup of the scattering problem for a string of 2n dislocation lines / m-fluxes located at x = x4. The curved arrows
denote the phase shift of wavefunctions s(y) that jumps (a) abruptly for sharply defined 7-fluxes or (b) is smeared out over
distance a in a regularized setup that also features free propagation in the transport direction of total length J L.

The amplitudes rnm, 7., tam, and ¢, of the reflection and transmission blocks of the scattering matrix can be
calculated from the matching condition (10). Since the matching condition does not relate to the pseudospin and only

affects the phase of the wavefunction, we directly conclude that there is no reflection caused by the dislocation line,
Tnm = Thm = 0. (17)

To obtain ¢,,,, we substitute Eq. (15) into Eq. (10) and perform a Fourier transform to y,

tom = tin =7 | " dys(y)eiom -, (18)
W Jo

We have suppressed the dependence of the transmission matrices ¢ and ¢’ and the function s(y) on the flux regular-
ization parameters 7; to keep our notation simple.

Up to this point the number of transverse modes has been infinite. For a practical implementation, we need to
employ a mode cutoff N such that n = —N +1,...,0,..., N — 1. Naive truncation of the transmission matrices ¢t and
t', however, leads to a non-unitary scattering matrix. To circumvent this problem, we add segments of a finite width
0L /2 to the left and to the right of the impurity lines, as shown in Fig. 1(b). The scattering matrix for such slices
are known. For zero energy the reflection and transmission amplitudes p,,, and 7, read [2]

Prm = —Pyn = — tanh(gndL/2)6pm,

1
7 = / = 75 . 19
Tam = T nm cosh(qnéL/2) nm ( )

Since modes with high momenta ¢, > 2/0L are blocked from propagation, we should be allowed to safely truncate
the scattering matrix of the dislocation line string with the two dislocation-line free sigments of length §L/2 on each

side, once N is much larger than W/§L. Thus, we consider the concatenated scattering matrix of a single surface in
a geometry of Fig. 1(b) with regularized fluxes which reads

oo p 7_/ 0 t/Tl...TQn p 7_/ _ p + 7./.t/ 17p%§p'tlpt7— T/t/ — 1tp,t,7_/
Sreg - / & tT1~~-7'2n O ® / - 1 t / f t It/ / (20)
T p T p Tiktp't'p T P +7717tp,t,p pt'T

where ® denotes concatenation of scattering matrices and we restored the regularization indices 7;. For sufficiently
large N the matrix S7i; 7" is unitary to within our numerical accuracy.

C. Structure of regularized scattering matrices

The calculation of Sec. I A showed, that in the limit dL > a the choice of the regularization of the dislocation lines
affects precisely one mode. This can also be verified numerically for plane-wave scattering states.
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For the numerical analysis, we take a < 0L < d, with d = min; |yq; — ya,j—1| the minimum distance between
neighboring flux lines, and choose the mode cut-off N > W/6L. We then find that the difference

ASr(gé = S;'ég,--<77'j—1,+,Tj+17---,7'2n _ S;'elgw--ﬂ'j—l7_7Tj+17---77'2n (21)
is (i) independent of the regularization parameters 7,...,7j_1,Tj4+1,...,Ton, (ii) of unit rank, and (iii) with norm

two. Hence, there exists a normalized vector v; such that

ASH) = 2v0], (22)
independent of 71,...,7j—1,Tj41,...,T2n. (Since at zero energy the problem at hand has chiral symmetry, o, Ho, =

—H, the scattering matrix is hermitian and the single non-vanishing eigenvalue of ASr(ég has to be £2. For our choice
of the function s(y), we find the positive sign realized.) The interpretation of this result is that difference ASr(gg
relates to the choice of the regularization of the jth flux line only. Since the change of the regularization of the jth

flux line changes the sign of the scattering amplitude of the zero angular momentum mode (defined with respect to

the jth flux line) and leaving all other scattering amplitudes unchanged, the difference ASr(éé precisely describes that
contribution to the total scattering matrix Sye, that originates from scattering of the zero angular momentum mode
for the jth flux line off that same flux line. As long as the separation between flux lines is much larger than the slice
width 6L, contributions from different flux lines do not interfere, which is why ASr(éé and, hence, the vector v; is
independent of the regularization parameters 71,...,7;—1,Tj4+1,. .., Ton of the remaining 2n — 1 flux lines.

Repeating this procedure for all 2n flux lines, we find that we can write

2n
Sie ™ =So+ > 70 (23)
j=1
with
1 _

the part of the scattering matrix that describes transport not affected by the choice of regularization of any dislocation
line. It has rank 2N — 1 — 2n. In keeping with the above interpretation, the matrix Sy describes scattering from the
non-zero-angular momentum modes, whereas the term vjv; describes the contribution to Syeg from the zero-angular
momentum mode at the jth flux line.

It is instructive (though inessential for future calculations) to look at the Fourier spectrum of the vectors v; whose
first (second) 2NN + 1 entries encode the real space structure of the eigenmodes scattering at the dislocation lines at
position © = FIL/2 at the left (right) lead. The Fourier transforms are real and depicted in Fig. 2 where dashed
lines indicate the positions of the dislocation lines.

D. Time-reversal symmetry

The scattering matrices S3; ™" are not time-reversal symmetric because of the presence of the smeared flux line.
However, the matrix Sy is time-reversal symmetric. We here summarize how time reversal symmetry is implemented
in the present problem.

The time-reversal operator is 7 = ioy K, with K complex conjugation. It satisfies 72 = —1. Time reversal
symmetry applied to basis states gives

T lqn, £) = £ |=qn, F) - (25)

If the Hamiltonian is time-reversal symmetric, the scattering matrix satisfies (f|S]i) = (77i|S|Tf). From that, one
finds the conditions

/ ’ /
tom = t_m,_n, Tnm = —T—m,—ny Tpm = "T—m,—n
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FIG. 2: Fourier transform of the first 2N + 1 entries v; 1 of the vectors v;, j = 1,2,3,4 (2n = 4) that describes the real space
wavefunction of the eigenmodes scattering at the dislocation lines at y = yq,; at the left lead at © = —§L/2. The parameters
are L = 0.03W, a = 0.36L, N = 400.

for the reflection and transmission amplitudes. One rewrite these equations using the matrix

0... 01
0... 10

U=| . . (26)
10 ...0

with U? = 1, which switches from positive to negative momenta. Then:
t=Ut""U, r=-Ur'U, ' =-Ur'""u,

or, equivalently,

S:—(%_%)ST(g_OU). (27)

As remarked above, the scattering matrices S’fe‘g are not time-reversal symmetric because of the presence of the
smeared flux tube. However, the matrix Sy is time-reversal symmetric. Similarly, the difference ASr(ég acquires a
minus sign under time reversal. This property can be used to remove the over-all phase factor ambiguity of the vectors

v; [the phase was not specified in the definition (23)], up to a sign ambiguity,
U 0 .
v; = ( 0 —U)Uj' (28)

E. Scattering scattering matrix S for a thin slice

The key element of our calculation of the scattering scattering matrix S for a thin slice is that a regularization of
the 7-flux lines does not affect the way angular modes with nonzero (kinetic) angular momentum are scattered off the
flux line, see Eq. (4), but that regularization does lead to full backscattering of the zero angular momentum modes.
In the real weak-and-strong topological insulator, it is these latter modes that are fully transmitted from the surface
into the dislocation line and vice versa.

As we have discussed above, the backscattering phase shift for the zero angular momentum mode depends on
whether one chooses to regularize the 7w-flux line with a magnetic field in the positive z direction, or with a magnetic
field in the negative z direction. By calculating the scattering matrices with different regularizations of the m-flux lines,
we can separate the contributions from angular modes with nonzero angular momentum, which are independent of the
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FIG. 3: (i) Scattering setup for two dislocation lines impinging on a top surface. The dislocation lines are explicitly treated
as terminals in the unitary scattering relation Eq. (29) involving the scattering matrix S+ (ii) Enlarged scattering matrix S
describing scattering between top and bottom surface via a pair of dislocation lines.

regularization and which do not transmit into the dislocation line from modes with zero angular momentum, which
are dependent on the regularization, and which are fully transmitted into the dislocation line. The decomposition
(23) allows us to uniquely separate these different contributions to the scattering matrix.

These arguments can be used to construct a larger scattering matrix for a surface and the 2n helical modes
corresponding to the 2n dislocation lines piercing the surface at x* = z4. We denote the amplitudes for the surface-
state modes in the top surface by a}i’ﬁ?j, and the amplitudes for surface-state modes in the bottom surface by a}j’g’f.
We denote the amplitudes of the upward and downward traveling helical modes in the jth dislocation line at the top
surface by bln ", and b;"j’j, respectively, and we denote the amplitudes of the upward and downward traveling helical
modes in the jth dislocation line at the bottom surface by bout and b;“_,
the scattering matrix S+ relating the surface states in the top surface and the helical modes along the dislocation
lines at the top surface then reads

respectively. Following the above arguments,

acﬁu}%_ﬁ_ SO : V1 ... VU2p afl,R-l-
out % in
by! ev] 0 ... 0 Tt
= . (29)
out i in
bon+ eW?nv;n 0 ... 0 D+

A similar expression can be found for the scattering matrix S_ relating the surface states in the top surface and
the helical modes along the dislocation lines at the bottom surface. The phases ¢; can not be determined using the
above arguments. Instead, we can determine these phases from the condition of time-reversal symmetry. With the
convention

Tlin) = —|out) and T lout) = |in) (30)

for the time-reversal symmetry operation 7 (with 72 = —1) on the in and outgoing dislocation line states |in) and
lout), we find that S; must obey the condition

) U 0 0 (U 0 o0
S,=—10-U 0 Syl o-Uu o , (31)
0 0 —12” 0 0 _12n

where the matrix U was defined in Eq. (26) and where 15, is the 2n x 2n unit matrix. Comparison with Eq. (29) and
using Eq. (28) then gives that ¢; = 0.

In the next step we connect the scattering matrices §+ and S_ to obtain the scattering matrix S describing

the scattering off a string of dislocation lines of surface states in both surfaces of the weak-and-strong topological
insulator. The procedure is shown schematically in Fig. 3(ii). In order to connect the two layers we need the
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FIG. 4: Schematic picture of a sideview of the topological insulator slab, together with the definitions of the potentials and
currents at the four contacts.

additional requirement

bty = eBpl, (32)

b = ety
which relates the helical-state amplitudes at the top and bottom layers. The phase 64 ; describes the phase accu-
mulated during the propagation along the dislocation line. The minus sign ensures that the time-reversal convention
Eq. (30) applies to each layer separately. Eliminating the amplitudes for the dislocation line and using the same sign
choice for v; for top and bottom layer, c.f. Eq. (28), one arrives at the scattering matrix

out in
Ly Lt 2 gy, o
ou in N IRY I
aR 4 =9 aR 4 S = So Zj:l €I U;V; 34
out - in ’ - 2n 04 - T . ( )
_ ” 104,59y .9y1 S
ar,— ar_ > m €7 vjv; 0

One easily verifies that this scattering matrix is time-reversal symmetric.

II. TRANSPORT PROPERTIES

For a description of transport properties, four ideal contacts are added to the top and bottom surfaces for z < 0 and
x > L. Following Ref. 2 these are described by the Hamiltonian H,ef = vp,o,. We do not place dislocation lines in
the contact regions, so that the scattering states in the contacts remain unaffected by the presence of the dislocation
lines. Voltages V1, and Vg, and currents I, and I, at the four contacts are defined as shown in Fig. 4.

The different transport properties require different configurations for the voltages at the four contacts. The in-plane

conductance G| = I|/V} is obtained by setting Vi, = Vi,_ = V| and Vry = Vr— = 0 and measuring the current
Iy = Iry + Ir— = Iy + IL—. The cross conductance G| = I,/V, between the bottom and top surface is defined
by setting V1,4 = Vg4 = Vi, Vi, = Vg— = 0, and measuring the total current I, = I,_ + Ig— = —(In4+ + Ir+)-

Expressions for G| and G| in terms of the scattering matrix and the results of numerical calculations of G and G
are given in the main text.

In addition to GH and G, we also considered the drag resistance Rq = Vg/I4q, which is the ratio of an open-
circuit voltage at one surface induced by an applied current at the other surface. It is based on the configuration
Iy = —Ipy =1y, I—- =Ig_ =0, Vg— =0, and V,_ = V3. For the calculation of the drag resistance Rq we start
from the conductance matrix connecting a generic configuration of voltages and currents. Using current conservation
and the reference Vi_ = 0, we have

Iy Gr+,L— + GLtr+ + GLy R —Gr+,L- —GL+ R+ Vi

I | = -G L+ Gr-1+ +GL-r+ +GL-Rr- —GL- R+ Vi-

I+ —GRr+ L+ —GRr4,L- Gr+Lt+ +GryL— + GRy R VR+
(35)
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FIG. 5: Zero-energy drag resistance R for a slab of weak-and-strong topological insulator with a concentration 1/d? of randomly
placed dislocation lines. The different curves refer to different choices for the phases 64(rq4), as shown in the figure. Data points
denote an average over 500 disorder realizations, statistical error bars are typically smaller than the markers.

where, in terms of the scattering matrix defined in Eq. (7),

2

GLo Lo = %trrgamla,, (36)
e
GLO'7R0" = Ztrtgglto_o_/7 (37)
e? +
GRU,LU’ = Ztrtgalta_o_[7 (38)
e,
GRroRo' = Etrrw,rw,. (39)
Inverting Eq. (35), the resistance matrix is obtained as
Vit Riyi+ Riyi- Rotr+ Iy
Vi | =| Ri—1+ Ri—1- Ri_pRr+ I — (40)
VR4 Rrt 1+ Rryn- Rrirt Irt

and the configuration specified for the drag resistance (I, = —Ir+ = Iq, In— = Ir— =0, Vg— =0, and Vi,_ = V)
can be applied. Solving for Ry = Vg /14 yields

Rq=Vy/lqg=Ry_ 1Ly — RL_ R+ (41)

Figure 5 shows the ensemble averaged drag resistance, multiplied by d/W to remove a trivial dependence on
the sample width. Analogous to the in-plane and cross conductances discussed in the main text, there is a strong
dependence on the choice of the phases 64(rq) accumulated along the dislocation lines.

III. PARAMETERS FOR SIMULATION

For the numerical simulation, we chose W/L = 5 for the aspect ratio of the slab, we verified that this is large
enough that G| | and Rq were proportional and inversely proportional to W, respectively. We divided the slab in
transport direction in 10 slices with 2n = 6 dislocation lines each, so that d/W = 0.058. For each slice of width
0L, the scattering matrix is calculated with mode cutoff N = 600. For the concatenation of scattering matrices of
different slices we imposed a smaller cut-off Neg = 65 for the number of modes. We verified that N and N.g are large
enough that the results do not depend on these numbers.

IV. DENSITY OF STATES

We discuss how the density of states can be calculated for a periodic array of segments of length L. Equivalently,
one may apply “twisted” boundary conditions in the z direction, in which electrons pick up an additional phase e*=x,

kg being the crystal momentum, while passing across the “boundary”.
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FIG. 6: Calculation of density of states of a periodic array (right) from scattering matrix S(¢) of an open system (left). The
incoming and outcoming states should match, up to a phase factor & = k. L from the crystal momentum.

The procedure is illustrated in Fig. 6. We start from the scattering matrix of the open slice at energy e, which we

calculate as described previously,
Lout _ r t/ Lin
Rout n t T/ Rin '
——

S(e)

The matching conditions on the in- and outgoing states for a Bloch state with crystal momentum k, read
Rout _ emILLin
Lout N e_ZRmLRin
which has a non-trivial solution (indicating an eigenstate of the closed system at energy ¢) if and only if the matrix

0 —ikg L
S, (€) = (emzL ¢ 0 ) S (e)

has a unit eigenvalue. In practice, since the matrix Sy (¢) is unitary, we track the eigenvalue phases with varying
¢ and identify states at energies where a phase crosses zero. The phase k,L controls the boundary condition in z
direction and averaging over k,L € [0,27] thus reduces finite-size effects (we used 80 equally spaced values for kL
from the interval [0, 27]). A similar procedure could be applied with a phase controlling the boundary conditions in
transversal direction.

V. ADDITIONAL CHOICES FOR THE PHASES 604(rq)

We have also studied the cases in which the phases 64(rq) randomly fluctuate between the values 0 and 7, or
between 7/2 and —7/2. Results for transport properties and for the density of states are shown in Figs. 7 and 8.

J. H. Bardarson, J. Tworzydlo, P. W. Brouwer, and C. W. J. Beenakker, Phys. Rev. Lett. 99, 106801 (2007).

(1
[2] J. Tworzydlo, B. Trauzettel, M. Titov, A. Rycerz, and C. W. J. Beenakker, Phys. Rev. Lett. 96, 246802 (2006).
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topological insulator with a concentration 1/d? of randomly placed dislocation lines. The different curves refer to the phases
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FIG. 8: Density of states dN/dE of a sample with dislocation line density 1 /d2. The two curves represent are for phases
04(rq) randomly chosen from {0,7} or from {—7/2,7/2}, as indicated in the figure. The thin black lines denotes the ideal
surface-state density of states without dislocation lines. The arrow denotes a Dirac delta function at zero energy. Data points
denote an average over 5 disorder realizations and 80 values of the crystal momentum k.
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3 Disorder effects in topological
semimetals

3.1 Disorder induced quantum phase transition in
Weyl nodes

In chapter 1 we have discussed the basic notions of topological Weyl (semi-)metals.
We considered the Bloch-Hamiltonian

and argued for the stability of the degeneracy point with respect to perturbations.
However, all of our discussion above including the definition of the topological
charge of a Weyl point took place in reciprocal space. We now consider the fate
of a Weyl point in a disordered environment, where crystal momentum is not a
good quantum number any more. Obviously, to address the stability of the Weyl
point, concepts that do not rely on the notion of k-space have to be invoked. One
particular simple concept that is well defined in the presence of disorder is the
density of states per volume and energy interval. For Equation 3.1 it reads,

E2

= ST (3.2)

po(E)

The characteristic property of a clean Weyl node is thus a quadratically vanishing
density of states around the nodal point. One could ask how disorder affects
this density of states profile qualitatively and quantitatively. The earliest study
of this problem dates back to the 1980s, when Fradkin [50, 51], based on some
type of mean field theory argued for a disorder induced quantum phase transition
to occur, the order parameter being p (E = 0): For weak disorder, the situation
as in the clean case is maintained p(E = 0) = 0, only above a critical disorder
strength, p (E' = 0) becomes finite. Similar conclusions can be drawn from SCBA
[52] or from a RG calculation [53] based on the replicated, disorder averaged action.
We do not want to detail on the above approaches but give a simple qualitative
argument for the appearance of a quantum phase transition.
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Figure 3.1: Qualitative explanation for the presence of a disorder induced phase
transition for Dirac type Hamiltonians. While fitting a Dirac particle wave
packet in a single disorder valley (a) might not succeed for weak disorder, the
energy conditions can always be matched for larger disorder in less than two
spatial dimensions (b).

Let us generalize to d-dimensional Dirac Hamiltonians £ ~ hAvk subject to dis-
order with correlation length £&. The typical peaks and valleys of the disorder
potential are extended regions of linear size ¢ with finite potential of magnitude
V = hwvK /¢, found as the standard deviation /(V2 (r)),, from Equation 1.33
up to numerical factors. Let us consider the question if an electron can be trapped
in such a volume ¢4 with potential V. This is the case if for wavelengths A of
order ¢ the potential energy exceeds the kinetic energy V' > hv/€ equivalent to
K > 1, see Figure 3.1(a). If the disorder is weaker, K < 1, one can ask if we can
instead increase the wavelength to A = 2§, 2 € N to cover a larger hypercube, see
Figure 3.1(b). The kinetic energy thus decreases to hv/z¢ and the typical average
potential energy is the standard deviation of the sum of z¢ uncorrelated potential
values with standard deviation V', which is V/ V/z4. The corresponding condition
for a bound state is

V/Vzd > ho/z€ (3.3)

or VK > z%?71_ For d < 2, this equation can be solved for any finite K since
the right hand side converges to zero as z — oo. Thus for d < 2, arbitrarily
small disorder causes a finite density of states. For d > 2, the right hand side
increases with z and for weak disorder K < 1, there are no states at zero energy,
in agreement with the assertions for Weyl nodes in d = 3 quoted above.

The qualitative argument above obviously lacks some rigor but also the existent
analytical calculations are not fully controlled at the nodal point. RG calculations
use an epsilon expansion, treating e as a small parameter which is set to unity at
the end, the SCBA omits potentially important crossing diagrams as discussed at
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the end of chapter 1. Although a numerical calculation for the density of states of
a disordered Dirac semimetal existed when we gained interest in the problem [54],
internode scattering effects could not be controlled in this simulation.

The first paper of this chapter, reference [3] “Quantum transport of disordered
Weyl semimetals at the nodal point”, DOI: 10.1103 /PhysRevLett.113.026602, now
trades the density of states perspective on the phase transition in favor for the
study of quantum transport properties like conductance and shot noise. We answer
the question in which respect these properties of a mesoscopic system signal the
predicted quantum criticality. As discussed in chapter 1, for the clean Weyl node,
K =0, we have
2

Gy = 0.1112/2, Fy=0.574, (3.4)
for the conductance and the Fano factor, respectively. We will show in a fully
controlled numerical simulation that these ballistic transport properties persist in
large enough samples for weak (subcritical) disorder strength. We thus call this
transport regime 'pseudoballistic’. Beyond the critical disorder strength, trans-
port characteristics change drastically - diffusive transport with a conductivity o
increasing with disorder is observed. We compare our numerical results for the
conductivity to predictions of the SCBA and show that it is the omission of the
crossing diagrams which leads to a ~50% quantitative error in the diagrammatic
analytical calculation. We also explain how the underlying nontrivial Weyl node
topology can be in agreement with the previous prediction of vanishing bulk con-
ductivity, ¢ = 0, in the pseudoballistic phase.

We emphasize that the results in this chapter, where single, independent Weyl
nodes are considered, do not necessarily hold for realistic Weyl semimetals which
harbor at least a pair of Weyl nodes. In the presence of disorder, Weyl nodes
can only be considered as independent if the disorder scattering does not couple
quasiparticles from different Weyl nodes. Weyl nodes separated a distance Ak
in reciprocal space are connected by a scattering rate proportional to the Fourier
transform amplitude of the disorder correlator at momentum Ak. If the disorder
potential varies on a typical length scale £ > 1/Ak, the effective internode scat-
tering is negligible. Thus our results should apply to Weyl semimetals with Weyl
nodes distant in k-space and subject to a smooth disorder potential.

Moreover, some of our results only apply in the case of chemical potential posi-
tioned strictly at the Weyl node. None of the Weyl semimetal materials available
to date fulfill this property, although chances to realize ideal materials are growing
[55]. However, for finite chemical potential p* we predict a crossover lengthscale
L* ~ p*/hv below which the system properties can be well approximated by p = 0.
For realistic material parameters p* and v, crossover lengthscales L* can be well
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in the range of microns, feasible for experiments.
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Weyl semimetals are paradigmatic topological gapless phases in three dimensions. We here address the
effect of disorder on charge transport in Weyl semimetals. For a single Weyl node with energy at the
degeneracy point and without interactions, theory predicts the existence of a critical disorder strength
beyond which the density of states takes on a nonzero value. Predictions for the conductivity are divergent,
however. In this work, we present a numerical study of transport properties for a disordered Weyl cone at
zero energy. For weak disorder, our results are consistent with a renormalization group flow towards an
attractive pseudoballistic fixed point with zero conductivity and a scale-independent conductance; for
stronger disorder, diffusive behavior is reached. We identify the Fano factor as a signature that

discriminates between these two regimes.

DOI: 10.1103/PhysRevLett.113.026602

Introduction.—Topological considerations not only
can be used to describe and classify band insulators and
superconductors [1,2], they were also found to apply to
gapless phases of matter [3—10]. Perhaps the best known
example of a topologically nontrivial gapless band structure
is that of graphene [11], which has four topologically
protected band touchings. The paradigmatic example of a
topological gapless phase in three dimensions is the Weyl
semimetal [12—14], which features pairs of topologically
protected gap closing points in its Brillouin zone. The
dispersion in the vicinity of a single isotropic nodal point
can be described by the effective Hamiltonian

Hy(k) = +hve - k, (1)

where v is the Fermi velocity, o is the vector of Pauli
matrices, + denotes the chirality, and k measures the Bloch
wave vector relative to the momentum in the Brillouin zone
at which the gap closing appears.

Weyl semimetals have attracted considerable attention
due to the prediction of protected surface states with a
Fermi arc [13] and the chiral anomaly in an electromagnetic
response [15]. An ideal Weyl semimetal with Fermi energy
at the Weyl point e = 0 has a vanishing conductivity o, but
a finite conductance [16], making it neither conducting nor
insulating. The excitement is further fueled by the existence
of concrete theoretical proposals for material candidates
for Weyl semimetals, both in the solid state [13,17,18] and
in cold atom systems [19], as well as the experimental
identification of “Dirac semimetals” [20-22], which have a
pair of Weyl nodes forced to overlap by time-reversal and
inversion symmetry. Although spectroscopic confirmation
of a Weyl node in a real material is still lacking, magneto-
transport signatures consistent with Weyl nodes were
reported for BiSb [23].

0031-9007/14/113(2)/026602(5)

026602-1

PACS numbers: 72.10.Bg, 03.65.Vf, 05.60.Gg, 72.10.Fk

An important question that concerns the comparison of
theory and experimental realizations is about the stability
of the Weyl nodes to the presence of disorder [24]. This
question is of particular fundamental interest if the disorder
is sufficiently smooth that scattering between different
Weyl nodes is avoided, since disorder that does not satisfy
this condition immediately removes any topological pro-
tection and leads to a trivial gapping of the spectrum and/or
localization of the wave functions.

In the theoretical literature, the study of the effect of
disorder on a single Weyl node, without the inclusion of
electron-electron interactions, goes back to the mid 1980s
[25,26]. Far away from the Weyl point, the expected
behavior resembles that of normal metals: Disorder leads
to diffusive dynamics, with a conductivity ¢ that decreases
with increasing disorder strength. However, unlike a normal
metal, a Weyl semimetal has no transition into an Anderson-
localized phase in the limit of strong disorder [27]. Exactly
at the Weyl point ¢ =0 a completely different picture
emerges: There is consensus that weak disorder is irrelevant
[25,26,28,29], so that the vanishing density of states v(e) «
€2 of the Hamiltonian, Eq. (1), is maintained at finite disorder
strength [30,31], up to possible rare-region effects [32]. For
stronger disorder, a quantum phase transition takes place,
beyond which v(0) is finite. There is no consensus for the
implications of this scenario for the conductivity o, however.
Using the self-consistent Born approximation (SCBA),
Ominato and Koshino [31] find ¢ = 0 up to the critical
disorder strength, and a finite conductivity that increases
for stronger disorder, whereas the renormalization group
approach of Ref. [29] gives a finite conductivity for
subcritical disorder strengths. Boltzmann theory also gives
a Weyl-point conductivity that is a decreasing function of
disorder strength, but there is no critical disorder strength
and o is finite throughout [28,31,33].

© 2014 American Physical Society
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Remarkably, the question about the effect of disorder on
a single Weyl node has never been put to the test numeri-
cally. Recently, similar physics has been investigated for a
disordered Dirac semimetal employing diagonalization of a
large tight binding model [34]. The extension of these
results to a Weyl semimetal is problematic, however,
because any tight binding model with a Weyl node
inevitably comes with its opposite-chirality partner node
[35], coupling to which cannot be fully avoided. Yet,
resorting to a numerical test is particularly relevant in
the present case, because none of the theoretical methods
applied in the analytical theory cited above are fully
controlled at the Weyl point e =0 (see Ref. [29] for a
critical discussion).

In this Letter, we report numerical calculations of the
transport properties of a single Weyl node in the presence
of a random potential. We limit ourselves to transport
at the Weyl point € = 0, which is the energy at which the
differences between a Weyl semimetal and a normal metal
are most pronounced. The focus on the nodal point is not
entirely academic: In contrast to the two-dimensional case
(graphene or surface states of topological insulators), where
unintended doping generically shifts the chemical potential
away from the nodal point, in the bulk of three-dimensional
Weyl semimetals ¢ = 0 can be expected from the stoichio-
metric filling of the energy bands [30].

Our results for the conductivity are qualitatively similar
to the predictions of the SCBA [31], although quantitatively
the numerical results for the critical disorder strength and
for the conductivity approximately differ by a factor of 2. In
the weak-disorder phase the system is better characterized
by its conductance, which is finite, than by its conductivity,
which is zero within the accuracy of our calculations.
A transport signature that is nonzero in both phases is the
Fano factor F, the ratio of the shot-noise power and the
conductance, which we show to be an excellent indicator
to discriminate between the pseudoballistic transport of the
weak-disorder phase and the diffusive transport of the
strong-disorder phase.

Model and numerical method.—Our numerical pro-
cedure closely follows Refs. [36,37], which considered
the effect of disorder on the conductivity of graphene.
We consider a Weyl semimetal of length 0 < x < L and
transverse dimensions 0 < y,z < W with Hamiltonian

H = Hy+ U(r), (2)

where U(r) is a Gaussian random potential with zero mean
(Ug) = 0 and fluctuations

« K§h21)2 2
<Uqu,> = WZL e q°¢ /26q,q/, (3)

where £ is the correlation length and K the dimensionless
disorder strength. A similar random potential has been used

in studies of the Dirac equation in two dimensions [36].
For x < 0 and x > L the Weyl semimetal is connected to
ideal leads, which we model as Weyl semimetals with
Hamiltonian H + V, taking the limit V — —oco [38]. We
numerically compute the transmission matrix ¢ at zero
energy and determine the zero-temperature conductance
using the Landauer formula G(L, W) = (e?/h)trt¢" and the
Fano factor F(L) = tr[t¢7(1 — t7)]/trtt". To quantize trans-
verse momenta, we apply periodic or antiperiodic boundary
conditions in the y and z directions, and truncate at
lgyl.|q.] <2M/&, where we verified that the results do
not depend on the cutoff M. To ensure bulk behavior, the
width W is taken large enough that the results do not
depend on the boundary conditions and the scaling
G « W2, F independent of W, holds.

Pseudoballistic regime.—For the low-disorder regime,
we rescale the calculated conductance G(L, W) to find
the dimensionless conductance g(L) of a cube with linear
dimension L,

e’w?
G(L,W)=——=g¢(L). 4
(L.W) =5 2 olL) )
In the absence of disorder, g and the Fano factor F are
independent of L [16], taking the values

In2 11
e F =+ ——~0574, 5
=776 Fo=3T6m2 (5)

with ¢ a numerical factor that takes the value ¢ = 1 (so that
go =~ 0.110) for an isotropic Weyl cone. The results of
numerical calculations of ¢g(L) and F(L) for disorder
strengths K =1, 2, and 3 are shown in Fig. 1. The
numerical data show that the presence of the random
potential U(r) leads to a bulk conductance ¢ that is always
larger than the pseudoballistic value gy, but also that the
conductance g(L) is a bounded function of L and mono-
tonically decreases in the large-L limit. For the system sizes
within our reach this decrease is most pronounced for
weak disorder (K = 1), and less pronounced for stronger
disorder (K = 3), which is consistent with the theoretical
expectation that weak disorder is an irrelevant perturbation
at e = 0 [28,29]. The fact that g(L) remains bounded as a
function of L is consistent with a vanishing conductivity
0 =0. [A finite conductivity would correspond to
g(L) « L; see the inset in Fig. 1.] The Fano factor F takes
the pseudoballistic value F, for all system sizes considered.
We postpone a further discussion of these results until the
end of this article.

Diffusive regime.—For stronger disorder, the conduc-
tivity o becomes finite. Although ¢ can, in principle, be
obtained from the conductance using the relation
G(L,W)=0W?/L, we employ a slightly different pro-
cedure to obtain ¢ from the numerically calculated con-
ductance G(L, W), in order to eliminate the effect of a
finite contact resistance. Figure 2 shows the resistance
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FIG. 1 (color online). Dimensionless conductance g referred to
a cubic sample of size L (top) and Fano factor F (bottom) for a
single Weyl cone with a random potential for disorder strengths
K =1, 2, and 3 in the pseudoballistic regime. The data represent
a disorder average over at least 10 realizations. The dashed lines
refer to the clean limits g, and F for an isotropic Weyl cone
(¢ = 1). For comparison, diffusive scaling of g for K = 6, 10 is
shown in the insets.

R(L,W)=1/G(L,W) and the Fano factor F(L) as a
function of length L, for disorder strengths K =6, 10,
and 18. In the diffusive regime, one expects
R(L,W)  L/W?s, so that the conductivity can be calcu-
lated as 6! = W2OR/OL. We indeed observe a linear R vs
L dependence for sufficiently large L. The Fano factor F
takes the diffusive value F = 1/3 for large L for the
stronger disorder strengths such as K = 18. For K =6
and K = 10, the Fano factor F is below the pseudoballistic
limit and decreases with increasing L, but no limiting value
could be determined for the system sizes available in our
calculations. The dependence of the conductivity ¢ on
disorder strength K is summarized in Fig. 3. We estimate
that the conductivity is nonzero above a critical disorder
K. =5, the behavior for K just above K, being consistent
with a linear increase « K — K. [26,31,39]. Finite-size
effects prohibit a more accurate determination of the critical
disorder strength. Although we adopted the expression
“critical disorder strength,” we note that our numerical
analysis does not allow us to determine the precise nature
of the transition. In passing, we also note that the
conductance distribution is widest around K, (data not
shown), a behavior well known from the three-dimensional
Anderson phase transition [40].

A recent work by Ominato and Koshino [31] calculates
the Weyl-point conductivity ¢ using the SCBA but without
further approximations, employing a correlated disorder
potential compatible with the random potential used in the
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FIG. 2 (color online). Resistance R (top) and Fano factor F
(bottom) for a single Weyl cone vs system length L, for disorder
strengths K = 6, 10, and 18. The thin solid lines indicate the linear
fit for the conductivity . The dashed lines refer to the pseudobal-
listic and diftusive limits for the Fano factor F. The data represent a
disorder average over at least 100 realizations.

present numerical simulation. Relating the impurity model
of Ref. [31] to our Gaussian model we find a theoretical
value K3CBA ~ 11.3 and a conductivity as shown by the
dashed line Fig. 3 [41]. Both the value of K3CBA and the
slope of the SCBA conductivity vs disorder strength K are
roughly off by a factor of 2 from the numerical results.
In order to understand the quantitative failure of the
SCBA, we have analyzed the corrections to the SCBA
result for the self-energy X(k, w), which is related to the
single-particle Green function G(k, ») through the standard
relation G(k,w) = [w — Hy — Z(k,®)]”!. The diagram-
matic expression for X(k,®) in the SCBA is shown in
Fig. 4(a), where the double lines denote the single-particle

T T T T T T
Ve
7 X
AOQ— zi/II E
W
= A
2 = 7
?0.1— I:t// B
- ,7scBA
= /
0.0 el ! ! ! ! !

FIG. 3 (color online). Conductivity ¢ for the disordered Weyl
cone as a function of the disorder strength K. The data represent a
disorder average over at least 50 disorder realizations. The dashed
line refers to the SCBA theory of Ref. [31].
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FIG. 4. Diagrammatic representation of the SCBA self-energy
¥SCBA (a) and the leading correction 8% (b). The double solid
lines denote the SCBA propagator; dashed lines are disorder
correlators.

Green function G with T replaced by X5“BA, Figure 4(b)
contains the leading correction 6T to X5BA, The consis-
tency of the SCBA requires that 60X is parametrically
smaller than XS5CBA  Indeed, for a standard disordered
metal one finds §X/Z5BA = O(1/kgl) [42], where kj is
the Fermi wave vector and / the mean free path.

For the Weyl semimetal at zero energy one has kr = 0
and this standard argument does not apply. We have
calculated the leading correction X at k =0 and @ =0
using a simplified model for the disorder potential [31],
in which the Gaussian correlator (3) is replaced by a cutoff

at g = 2/¢,

K'&n*o?

(UgUy) = WG(z/f —q)8qq- (6)

In this simplified model, one has the critical disorder
strength K = 7% and the SCBA self-energy (0, 0)SCBA =
(4zinv/E)(1/K' —1/K.)B(K' — K,.") [31]. The calcula-
tion of the diagram of Fig. 4(b) for K’ close to the critical
disorder strength K.’ then gives [43]

52(0,0) 11

which is not parametrically small. Since the simplified
model, Eq. (6), does not qualitatively differ from the
Gaussian model used in the numerical calculations [31],
we expect that this result carries over to that case, too.

Discussion.—In the framework of Drude transport theory
for normal metals, the quasiparticles at the Fermi energy
are endowed with a mean free path, which becomes shorter
if the disorder becomes stronger. At the same time, the
presence of a random impurity potential has a negligible
effect on the density of states. The result is a conductivity
that decreases upon increasing the disorder strength.
In contrast, for a Weyl node at the degeneracy point it is
the disorder which generates the density of states
[25,26,28-31], a finite density of states appearing only
above a certain critical disorder strength. As a result of this
vastly different physical mechanism, a Weyl node at the
degeneracy point shows behavior opposite to that of a
normal metal: Increasing disorder beyond the critical
disorder strength leads to an increase of the conductivity.
This remarkable theoretical prediction has been confirmed
in our numerical calculations.

The increase in conductivity with disorder is reminiscent
of the two-dimensional Dirac Hamiltonian H3? «
v(kyo, + kyo,), for which the conductivity ¢ was also
found to be an increasing function of disorder strength
[36,37,44]. A fundamental difference with H3¢ is, however,
that H3? has a finite conductivity for all disorder strengths,
whereas the Weyl semimetal at the degeneracy point
requires a minimum disorder strength for diffusive behavior
to set in.

For the two-dimensional Dirac Hamiltonian, the inverted
dependence of conductivity on disorder strength was found
to be related to the fact that H3? (with a disorder term but
without the condition that the disorder be smooth, because
of the absence of other Dirac nodes) is the surface theory
of a three-dimensional time-reversal invariant topological
insulator [27]. Similarly, the surface theory of a hypotheti-
cal four-dimensional topological insulator is described by
the Hamiltonian H, of Eq. (1). Thus, it is expected on
general grounds that H, evades localization [27]. Our
numerical results are consistent with this expectation.
Indeed, although the conductivity ¢ vanishes in the
weak-disorder regime, the conductance ¢ remains finite.
It is a finite conductance, not a finite conductivity, which is
the proper signature of the absence of localization [45].

There is a subtle but important difference between the
numerical calculations we performed here and the analyti-
cal theories of the conductivity cited in the Introduction:
In our calculations, the conductivity ¢ is obtained from the
conductance G of a finite-size sample, for which the energy
€ is set to zero at the beginning of the calculation. In
contrast, in the renormalization group, SCBA, and
Boltzmann theories, the sample size is infinite and the
limit € — O is taken at the end of the calculation [28-31].
This different order of limits may be responsible for the
qualitative difference with Refs. [28-30], which predict a
finite conductivity in the limit ¢ — 0. Which order of limits
is relevant for experiments depends on the competition
between the finite sample size L and the finite temperature
or doping [29,30]—although the latter is expected to be
intrinsically small. The order of the limits ¢ — 0 and
L — oo does not affect the comparison to the SCBA,
because this theory predicts 6 =0 even if the limit
e — 0 is taken at the end of the calculation [31]. Above
the critical disorder strength, the self-energy at e =0
acquires a nonzero (imaginary) value and the order of
limits issue is no longer relevant.

Our numerical calculations have shown that the con-
ductance ¢ and the Fano factor F contain important
additional information that is not contained in the conduc-
tivity o. This is particularly relevant for the pseudoballistic
weak-disorder regime, where ¢ vanishes, whereas g and F
take on nonzero values. A three-dimensional phase with a
finite scale-independent bulk conductance is known from
the Anderson metal-insulator transition, where it occurs at
the critical disorder strength. A crucial difference of the
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pseudoballistic phase at the Weyl point is that its scale-
independent conductance represents an attractive fixed
point, which requires no fine-tuning of disorder strength.
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Supplemental Material: Quantum transport of disordered Weyl semimetals at the nodal point

LEADING CORRECTION TO SCBA SELF ENERGY

We compute the leading correction §X to the SCBA self energy L5CBA at zero momentum k = 0 and zero energy

w = 0. The diagrammatic representation for the correction 6% (k,w) is shown in Fig. 4(b) in the main text,

=Y Gk +ki,w)G(k + ki +ka,w)G(k + ko, w) (Ui, [*) (Ui, |*), (1)

ki, k2

where G(k,w) = [w— Hy — 3(k,w)5“BA] 71 is the SCBA propagator and U the disorder potential. Taking the disorder
correlator (|Uy|?) from Eq. (6) of the main text, setting k = 0, w = 0, and replacing the summation over k; and ks
by an integration one finds

520,0=K'22h4/ ﬁ/ K2 ks, 006 (k1 + ko, 0)G (ks 0).
(©.0) & () kr<2/e (2T)3 Jiy<ose (2m)3 {amp 9 ke, 0)G (ks + k2, 0)G ks, 0)

Employing the identity (a —b-o)™! = (a+b-0o)/(a® — |b|?) and substituting [1]

dwihv - -, 1 @)
K¢’ - 1/K'—1/K!’

Z(O, O)SCBA _
for disorder strength K’ > K/, one finds that (for a positive helicity Weyl node) the single-particle propagator G is

given by the expression

B (20 /K"i — (¢/2)k - o
Gk, 0) = <2h> /K2 1 (€/2%K2

(3)

Switching to the dimensionless variables x1,2 = k; 2£/2 we arrive at

§%(0,0) KK’
$(0,0)SCBA 32774

y / dxl/ ixs <2m‘/f<~' — X g> (2771'/;? — (x1 +x3) .g> (2m/1~(~/ —x ;,> -
@<l @<l 2m/K")? + a3 ) \ 2n/K')? + [x1 + x| (2m/K')? + o7
Finally, after introducing polar coordinates for the integrations over x; and x» one finds after some standard manip-
ulations

_0%(0,0) K" rixd [5 o 1
— d d _ 6—|Z(2 K/ 2 + = 2 + 2
=(0,0) S0 47r4/ “/ P [@r/EN2 v A[(2n/K)? + a3 g (2K et rz)

cos( — cos

></ dg/ d ;
\/ [(27/K")2 + 22 + 22 4 2x129 cos (][(27/ K')2 4 22 + 22 + 22125 cos 6]

()

Numerical evaluation of the fourfold integral for K’ in the vicinity of the critical disorder strength K then results in
the estimate (7) quoted in the main text.

[1] Y. Ominato and M. Koshino , Phys. Rev. B 89 054202 (2014).
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3.2 Critical exponents for a disordered
three-dimensional Weyl node

After having discussed the nature of the weak and strong disorder phase of the
Weyl node in some detail from the quantum transport perspective, we now turn our
attention to the critical point that separates the two phases. In the modern theory
of continuous phase transitions building on RG ideas, a variety of microscopic
models can have critical behavior that share the same exponents for its associated
power laws. If this is the case, these models are said to be in the same universality
class [56]. The universality class is usually determined by the physical dimension
of the model and its specific symmetries.

The paper below, reference [4] titled “ Quantum critical exponents for a disordered
three-dimensional Weyl node”, DOI: 10.1103/PhysRevB.92.115145, is devoted to
the study of the universal properties belonging to the disorder induced quantum
phase transition in Weyl nodes. For that purpose, we tune the disorder strength
K and energy ¢ in the vicinity of the critical point at K = K. and ¢ = 0 and
fit numerically obtained transport properties of these close-to-critical samples to
scaling functions that involve the correlation length and dynamical exponent v
and z. In detail, to assess v, we study the interplay of a finite system size L and
the correlation length ¢ (that diverges at the critical point as (K — K.)™") by
a method termed finite-size scaling. A similar analysis, using finite energies but
(practically) infinite system size can be repeated to obtain z.

Previous approaches to the problem (see e.g. [54]), studied the density of states
as a function of K and . Due to inherent difficulties of the method employed,
the estimates for v and z had large errors, partially propagating from uncertainty
in the value of K.. Instead, we devise a novel scheme that allows to employ the
conductance and Fano factor for the scaling analysis. Our efficient and reliable
scattering matrix based computational scheme described above allows unprece-
dented precision for estimates of the critical exponents. The paper concludes that
the disorder induced critical point is of a novel and so far unknown universality
class.
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Three-dimensional Dirac and Weyl semimetals exhibit a disorder-induced quantum phase transition between
a semimetallic phase at weak disorder and a diffusive-metallic phase at strong disorder. Despite considerable
effort, both numerically and analytically, the critical exponents v and z of this phase transition are not known
precisely. Here we report a numerical calculation of the critical exponent v = 1.47 £ 0.03 using a minimal
single-Weyl node model and a finite-size scaling analysis of conductance. Our high-precision numerical value
for v is incompatible with previous numerical studies on tight-binding models and with one- and two-loop
calculations in an e-expansion scheme. We further obtain z = 1.49 & 0.02 from the scaling of the conductivity

with chemical potential.

DOI: 10.1103/PhysRevB.92.115145

Introduction. Materials with an electronic band structure
dispersing linearly from a Fermi point are among the driving
themes in contemporary condensed matter physics [1-3].
After the experimental verification of such a Dirac-type
band structure in single-layer graphene [4], the focus has
now turned to three-dimensional materials. The compounds
Na3Bi and Cd;As, have been confirmed as Dirac semimetals
[5-9]. In materials that break either time- or space-inversion
symmetry, the twofold band degeneracy of Dirac semimetals
is lifted and the resulting phase is termed Weyl semimetal.
The noncentrosymmetric compounds TaAs and NbAs have
recently proven experimentally to harbor such Weyl nodes in
their band structures [10-12]. Similar band structures have
been achieved in a photonic crystal realization in Ref. [13].

Theoretical work accompanied and, in part, preceded
the recent experiments. Beyond the single-particle picture,
Coulomb interactions were argued to be marginally irrelevant
in the renormalization group (RG) sense due to the vanishing
density of states at the Fermi point [14,15]. Quenched disorder,
however, inevitably present in realistic materials, is a much
more subtle issue. Dating back to work from the 1980s [16,17],
the presence of a disorder-induced quantum phase transition
is by now firmly established analytically [14,18-20] and
numerically [21-26]. In the weak-disorder phase, the random
potential is irrelevant in an RG sense. Thus, for large system
sizes and low temperatures, a weakly disordered system
qualitatively behaves as a clean system with renormalized
Fermi velocity. This leads to a number of experimentally
important predictions for weak disorder, such as quadratically
vanishing density of states [20,22] or pseudoballistic charge
transport [21] at the nodal point. In contrast, for strong disorder
one finds a metallic phase with finite density of states at the
Fermi energy and diffusive transport characteristics [21,27].

Signatures of the disorder-induced quantum criticality are
expected in almost any experimentally relevant observable,
from heat capacity to transport properties. Standard scaling
theory [28] predicts power-law dependences on disorder,
chemical potential, or temperature in the vicinity of the critical
point [19,22]. The only input to this variety of predicted
power laws is a pair of critical exponents characteristic of
the universality class. Denoting the dimensionless disorder
strength and chemical potential by K and u, respectively,
close to the critical point K = K, i = 0 the correlation length

1098-0121/2015/92(11)/115145(5)
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exponent v and the dynamical critical exponent z govern the
relation between reduced disorder strength k = |K — K.|/K,
and the emerging correlation length ¢ as ¢ o< kY, and the
relation between emergent energy and length scales as & «
¢ %, Although the critical point is located at zero chemical
potential, predictions of scaling theory persist for small finite
doping.

To date, the best analytical estimates for v and z for a
single Weyl or Dirac node follow from a Wilsonian momentum
shell RG calculation in an e-expansion scheme around critical
dimension two. The results of the one-loop calculation by
Goswami and Chakravarty are v = 1 and z = 1.5 [14]. The
accuracy of the one-loop exponents was challenged by a
calculation of two-loop diagrams by Roy and Das Sarma [29],
who found v = 1.14 and z = 1.31. On the other hand, there
are instances where the € expansion strategy is known to fail
completely, the Anderson metal-insulator transition in three
dimensions being a well-known example [30]—although the
present transition is of a different type as it connects two
noninsulating phases [23]. Numerical results for the critical
exponents obtained from tight-binding models harboring
multiple Weyl or Dirac nodes [22-26] are in reasonable
agreement with the one-loop results above, albeit with large
uncertainties in v, z, and K.

Motivated by the lack of a firm theoretical prediction and
in view of potential experiments, we performed a numerical
calculation of the critical exponents in a single Weyl node
using state-of-the-art finite-size scaling for quantum transport
properties. Our results, which we report in detail below,
have significantly reduced uncertainties in comparison to
the previously known estimates. Whereas our result for the
dynamical critical exponent, z = 1.49 +0.02, is consistent
with the previous numerical calculations and with the one-loop
calculation (but not with the two-loop calculation), our value
for the correlation length exponent, v = 1.47 £ 0.03, deviates
rather significantly.

Minimal model and numerical method. The minimal model
for the disorder-induced quantum criticality is a single Weyl
node with potential disorder,

H=hve -k+u+U(), e

where v is the Fermi velocity, ¢ denotes the vector of Pauli
matrices, and k measures the Bloch wave vector relative to

©2015 American Physical Society
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the nodal point. We connect the Weyl semimetal to two ideal
leads, both modeled as Weyl nodes with p taken to infinity
and without the random potential U. The Weyl semimetal
has dimension 0 <x < L and 0 < y,z < W in transport
and transverse directions, respectively. To quantize transverse
momenta k, , we apply periodic or antiperiodic boundary
conditions (PBCs or APBCs). An ultraviolet cutoff A restricts
the magnitude of transverse wave vector |k, .| < A and 1/A
sets the microscopic length scale. The random potential U (r)
is assumed to have zero mean and Gaussian white-noise
fluctuations

K
(UmU)) = X(fw)25(r — 1), (@)

with K the dimensionless disorder strength. The chemical
potential u has to vanish to reach the critical point, however,
we will work with finite p below to assess the dynamical
critical exponent z.

We study the signatures of disorder-induced quantum
criticality of Eq. (1) in a quantum transport framework at
zero temperature, employing the numerical scattering matrix
method of Ref. [21], which is based on related studies of
disordered Dirac fermions in two dimensions [31,32]. The
conductance can be computed from the scattering matrix’s
transmission block ¢ using the Landauer formula G = tr¢¢f
and is measured in units of 2/ i throughout.

Correlation length exponent v: Finite-size scaling of the
conductance for p = 0. The standard method to assess the
correlation length exponent v is finite-size scaling [28]. To
perform such an analysis, one needs to identify a dimensionless
observable that assumes different values on the two sides
of the (bulk) phase transition. In Ref. [21] we showed
numerically that the conductance G fulfills these requirements.
For large aspect ratio r = W/L > 1 and in the thermo-
dynamic limit L — oo, the conductance takes the values
Gx—o = r’(In2/2m) ~ 0.11r? in the pseudoballistic phase at
disorder strength K = 0[33]and Gx 00 = or*L — ocointhe
diffusive phase for K > K. (with bulk conductivity o) [21].
In the vicinity of the critical point K = K., when the system
dimensions L, W are larger than all internal length scales other
than the emerging correlation length ¢, G assumes a scaling
form G = G(L/¢,W/¢). Using ¢ o k™" and fixing the aspect
ratio » = W/L, we arrive at G = G,(L'/k), with universal
correlation length exponent v and a scaling function G, that
depends on r and the boundary conditions.

Numerically, the conductance G is found to vary con-
siderably for different disorder realizations, however, with
the restriction G > Gg—o for every disorder realization.
The histogram of 6G = G — Gkg—o is shown in Fig. 1
for the specific choice L = 2 /(Ar) x 11, PBC. For weak
disorder, K <5, we find that the distribution of §G can
be well fitted by a log-normal distribution piN(§G) =
e~ In8G—n’/200x /) \ §G /27, with parameters 11y and o7 N,
see Fig. 1. A feature not captured by this fit is the tail of large
but rare conductances, which are possibly related to rare region
effects [34]. As G is not self-averaging (analogous to Anderson
localization), we choose the median m of the distribution as
a scaling quantity, i.e., we search a scaling function m =
m,(L'k). The standard error of the median is calculated using
the asymptotic variance formula o> = 1/4p(m)>N, where N
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FIG. 1. (Color online) Probability distribution of the difference
8G = G — Gg— of the conductance with and without disorder
potential. The aspect ratio r = W/L =5, periodic boundary con-
ditions were applied in the transverse direction, and the sample
length L = (27/A) x 11/r. The dimensionless disorder strength
is indicated in the figure. The number of disorder realizations is
4000. Dots indicate the value of the median m, which is used as the
scaling variable. Dashed lines show fits to a log-normal probability
distribution. The data for K > 4.25 is offset in vertical direction for
clarity.

is the total number of disorder realizations and the unknown
exact probability density p is approximated by a smooth
interpolation of the measured histogram. For further research,
it would be desirable to understand the occurrence of the
empirical log-normal conductance distribution.

We compute m for a range of disorder strengths K and
lengths L, for aspect ratios r = 5 and 7, and we also varied the
boundary condition between periodic and antiperiodic. The
data for r = 5, PBC, is shown in Fig. 2, the other data sets
can be found in the Supplemental Material [35]. At criticality,
where ¢ diverges, m, is independent of L and the data traces in
Fig. 2 cross in one point. In the Supplemental Material [35], we
show the details of a least-squares fit for 2, (L'/Vk) for small
k to a polynomial of fourth order in L'/”k (solid lines). An
excellent and stable fit was achieved even without including
any irrelevant scaling variable that we took in leading order
as LY with y < 0. Taking into account the fitting results of all
other parameter sets in a standard procedure (see Ref. [35] and
Refs. [36-39]) we find v = 1.47 £ 0.03. The conductance data
for smaller aspect ratios r < 3 (data not shown) reveals a large
irrelevant contribution to the scaling function that hindered a
successful fit in terms of a simple low-order polynomial.

In Ref. [21] it was argued that the Fano factor F (the ratio of
shot-noise power and conductance) is an alternative quantity
to distinguish the pseudoballistic from the diffusive phase. In
the pseudoballistic phase one has F(K < K.) >~ 0.574 while
in the diffusive phase F(K > K.) = 1/3. In the Supplemental
Material we show that our result for v is consistent with the
value obtained from a finite-size scaling analysis using the
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FIG. 2. (Color online) Scaling plot for the logarithm of the me-
dian m of the distribution of §G = G — G g for a disordered Weyl
node with W/L =5 and periodic transverse boundary conditions.
For better visibility we plot log(m) — K vs. K on the vertical
axis. The solid curves show the results of a least-squares fit to a
scaling form m = m,(L'/"k), expanded in a fourth-order polynomial
(for details, see Ref. [35]). The estimates for the most important
fit parameters and their standard error are K. = 5.024 &+ 0.004,
log(m.) = 0.12 £ 0.004, v = 1.47 £ 0.02. The quality of the fit is
x2/N = 0.93. The sample lengths are indicated in the figure. The
gray vertical line indicates the position of the estimated critical
disorder strength. The inset shows a scaling collapse of the data
in the main panel using the estimated values of K, and v.

Fano factor (v = 1.40 £ 0.05). This method however suffers
from an inferior quality of the data set, both in terms of error
bars of the individual data points as well as in the range of
system sizes available.

Dynamical critical exponent: Scaling of critical bulk con-
ductivity. We now turn to the dynamical critical exponent z that
connects the emergent length scale ¢ and the corresponding
energy scale ¢ in the vicinity of the fixed point. In our transport
geometry, a natural choice of a quantity that has a scaling
involving the dynamical exponent z is the bulk conductivity
o, which is also of immediate experimental relevance.

To connect the dynamical critical exponent to the conduc-
tivity, we again start with a scaling form around criticality [19].
Since the unit of ¢ in three dimensions is inverse length, we
find o(k,;u) = ¢~ f(uu/e) with an unknown dimensionless
scaling function f. We define a new scaling function f(x) =
x2 f(x~") in terms of which o (k,p) = '/ f(k? /). At
K = K., the critical conductivity o, thus scales as

o) oc 'z, (3)

The scaling form (3) is valid with small corrections within an
extended quantum critical region [20] for finite X when the
argument of f is sufficiently small, i.e., k < k*(u) oc u!/2.
This allows us to numerically compute an estimate of z in spite
of the fact that the value of K is known only within error bars.

We compute G (L) for fixed large W, PBC, a range of x and
for K = 5.0, which is within the K. confidence interval [35].

PHYSICAL REVIEW B 92, 115145 (2015)

o.h/Ae?

10* 10°
u=p/(hwA)

FIG. 3. (Color online) Scaling of the conductivity o(K,u) for
(near) critical disorder strengths K = 5.0 (dots) with chemical
potential w. The solid line is a power-law fit o o< u!/* to the data
points, with z = 1.49 & 0.02. The dashed line indicates a o o >
power law as expected from Drude transport theory when scaling
breaks down. The sample width W = (2w /A) x 29 and periodic
boundary conditions were applied. For chemical potentials below the
values shown in the figure a bulk conductivity could not be reliably
obtained from the calculated conductance data.

We perform a disorder average over at least ten disorder
realizations. Since transport in a Weyl node at finite w is
diffusive, we expect G = o w? /L, which is confirmed in the
simulation. Finite-size effects are irrelevant once W,L are
larger than the characteristic 1-induced length scale oc pu=!/%.
We show o, vs u for K = K. in Fig. 3 (dots) and indeed
observe a power law (solid line) for u < hvA with inverse
exponent z = 1.49 £ 0.02. For larger chemical potentials, u
comparable to the band edge hv A, the scaling breaks down and
from Drude transport theory we expect a crossover to o o< 12,
proportional to the density of states (dashed line).

Discussion. We numerically studied the disorder-induced
quantum phase transition in three-dimensional Dirac materials
in terms of a minimal model, a single Weyl node with potential
disorder. In contrast to the well-known Anderson metal-
insulator transition, this disorder-induced phase transition for
a single Weyl node is between two noninsulating phases.
In addition to the correlation-length exponent v, it features
a nontrivial dynamical critical exponent z, which has no
counterpart in the standard metal-insulator transition.

Our high-precision results for the exponents v and z not only
allow for a variety of quantitative predictions of experimentally
observable power laws around criticality—such as the density-
of-states exponent 8 = v(3 — z) for K > K. [22]—but also
improve on previously reported theoretical predictions. Our
result v = 1.47 £ 0.03 differs significantly from analytical
results obtained from a one- or two-loop e-expansion RG
calculation (v = 1, 1.14, respectively [14,29]). The failure of
the e-expansion calculation is reminiscent of the situation for
the Anderson localization in three dimensions [30], where
v = 1.375 in the symplectic class [40]. Our estimate for the
dynamical critical exponent is z = 1.49 £+ 0.02, in agreement
with the one-loop RG calculation (z = 1.5), but not with the
two-loop prediction (z = 1.31).
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In principle, the model of Eq. (1), which has white-noise
disorder and a sharp momentum cutoff, could be modified
to include a more faithful representation of the microscopic
disorder, albeit at an increased numerical cost. For example,
Ref. [21] employed a finite disorder correlation length that sets
the microscopic length scale; the mode cutoff then can safely
be taken to infinity. However, the difference between these
two models is irrelevant in the RG sense and thus both models
are in the same universality class. To see this, recall that a
finite disorder correlation length is equivalent to a higher-order
momentum dependence of the disorder-induced interaction
vertex in the replicated disorder-averaged action and is thus
irrelevant [41]. On the other hand, the numerical value of K.
is nonuniversal and, thus, sensitive to the disorder model. In
this context we note that a model with sharp momentum cutoff
has also been used in Ref. [31], where it was found to give
the same results as a model with finite disorder correlation
length. Moreover, in a realistic band structure the linear form
of Eq. (1) is only an approximation. Quadratic corrections,
however, are RG irrelevant and thus will not change the critical
exponents [14].

Realistic Weyl and Dirac semimetals. Realistic Weyl or
Dirac semimetals have multiple Weyl nodes [42], either
separated in momentum space or distinguished by their
transformation properties under point group symmetries. The
same applies to numerical studies based on tight-binding
models [22-26], which confirmed the presence of a disorder-
induced phase transition on the basis of density-of-states cal-
culations. With multiple Weyl nodes, disorder might not only
cause intranode but also internode scattering of quasiparticles.
The latter process is not captured by our minimal model.
Symmetries in more realistic models with multiple Weyl
nodes may also be different from the minimal model: While
our minimal model has an effective time-reversal symmetry
mapping the single Weyl node onto itself, in realistic models,
time-reversal or inversion symmetries can relate different
nodes or be absent. Although the precise nature of disorder
potentials in realistic three-dimensional Dirac materials is
yet to be determined, there are plausible scenarios in which
intranode scattering dominates over internode scattering, a
priori justifying the use of our minimal model. For example,
in Weyl semimetals the ratio of scattering rates is controlled
by the smoothness of the disorder potential and the separation
of Weyl nodes in momentum space [43].

The applicability of the minimal model in the presence
of sizable internode scattering, i.e., the question whether
or not the presence of some amount of internode scatter-
ing changes the universality class of the disorder-induced
semimetal-metal transition, is an issue that has not been
conclusively settled [44]. Internode scattering is omitted in
field-theoretical approaches [14,19]. Empirical evidence that
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internode scattering does not affect the universality of the
transition comes from Ref. [24], which found a remarkable
universality for three different disorder types in a tight-binding
Dirac semimetal model, albeit with large error bars on the
critical exponents.

If the assertion of a single universality class insensitive to
intercone or intracone scattering (and the related symmetry
differences) is correct, the observed critical exponents should
match with those obtained in tight-binding models. However,
such studies [22-26] yield a value for v inconsistent with our
result, for a typical example see Ref. [22], which finds v =
0.924+0.13at K > K. and v =0.81 £0.21 at K < K.. The
value of the dynamical critical exponent z = 1.5 & 0.1 from
Ref. [22] is in agreement with our result. Assuming that the
type of scattering is indeed immaterial for critical exponents,
we attribute the large difference with the tight-binding model
exponent v to difficulties in accurately estimating the critical
disorder strength from density-of-states data. The uncertainty
of K, translates to a large uncertainty in the critical exponent
v. In contrast, our very precise estimate of K. was possible
using the finite-size scaling method where K. can be obtained
from the unique crossing of the data in Fig. 2.

In the Supplemental Material [35], we exemplify this
interpretation by revisiting the density of states data from
Ref. [22] [cf. Fig. 3(a)] obtained at zero energy for a range
of disorder values around the critical disorder strength. Using
the critical exponent B = 2.22 calculated with our estimates
for v and z we are able to produce an excellent fit for the data
points in the vicinity of the critical disorder strength, though
we find a much smaller critical disorder strength than asserted
in Ref. [22]. Since the microscopic model in Ref. [22] and in
this work are different, the values of the nonuniversal critical
disorder strengths cannot be compared. Uncertainty in K. does
not cause comparable problems when determining the critical
exponent z, because the large size of the critical region in
the chemical potential-disorder parameter plane renders the
extraction of z much less sensitive to the uncertainty in K.
This is consistent with the mutual agreement between our
estimate for z and the value in Ref. [22].
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Supplemental information

Details of the finite-size scaling analysis. We here provide details of the finite-size scaling procedure, following
Refs. [1-3]. In addition to the data set presented in the main text — aspect ratio » = 5 and periodic boundary
conditions (PBC) —, we have obtained conductance distributions for antiperiodic boundary conditions (APBC) with
r =5 and for aspect ratio r =7, PBC.

The sample width W = L - r is set to be W = (2n/A)(M — 1/2) for APBC and W = (2r/A)M for PBC, with M
a positive integer. The transverse wavenumbers are k, . = (20/W)n, ., with n, , = —M,-M +1,..., M for PBC
and ny, =—-M+1/2,—M +3/2,...,M —1/2 for APBC. A summary of all data sets used in this work is given in
Table 1.

For each data set, the median m(K, M) of the conductance distribution is determined. We perform a least-squares
fit to a polynomial of the form

m(K, M) ao(l —|— b01Ly —|— . quOLqu) + ay - (Ll/yk‘) . (1 —|— bllLy —|— . + blqlLy(h)

+ootay (LYYE)P - (1 +big LY + ..byg, LV9P)

for medians obtained at the same value of the aspect ratio  and the same boundary conditions. Data points (i.e.,
medians of conductance distributions) and fits are shown in Fig. 2 of the main text for » = 5 and PBC, and in Fig.
1 for r =5, APBC, and and r = 7, PBC. The following algorithm for the fitting procedure is used: The order of the
polynomials in Eq. (1) is increased by adding a new fit parameter a; or b;; if (i) the merit function x%/N € [0, oo]
(N is the number of data points) for the resulting fit is lowered by more than 2% compared to the previous fit and
(ii) the error of any fitting parameter (as calculated from error propagation theory) does not exceed the parameter’s
estimate in magnitude. Initial values for each fitting procedure are chosen randomly and the parameter estimates for
the best fit out of a few hundred fitting trials is reported in Table I along with the error estimates and the value of
x2/N. A fit is acceptable if x?/N < 1, another measure is the ‘goodness of the fit’ G € [0, 1] where G = 1 indicates
a perfect fit (for definitions of G and x2/N see, for example, Ref. [3]).

Ideally, fitting parameters should not strongly depend on the number of different values of M within a data set.
We successfully checked the stability of the fitting results by repeating the fitting procedure above for reduced data
sets (deleting data points of the largest or smallest M in the data set r = 5, PBC), as indicated in Table I. Finally,
the estimate for v is calculated as an average of the best fit estimates for v for each data set whereas the total error
bars are unions of error bars from each single data set (’practical-error-bar procedure’, see Ref. [4]).

’rzW/L‘ B.C. ‘ M ‘NHXQ/N‘ g ‘ v K, ‘log(mc):ao‘ ap - 10! ‘ asz - 10? ‘—a3~102 —aq - 103
5 PBC |11,16,21,26,31|70|| 0.93 | 0.4 {1.47 +0.02|5.024 + 0.004| 0.12 + 0.004 |{5.0£0.1|3.0£+0.3/1.3+0.1|{1.8+ 0.9
5 PBC 16,21,26,31 |56| 0.62 [0.94]1.46 + 0.02|5.007 & 0.007{0.102 + 0.006{4.9 +0.2|13.3£0.4{1.2+0.1|2.6 £ 1.2
5 PBC 11,16,21,26 |56 0.84 [0.55]1.48 £ 0.02|5.036 4+ 0.006|0.128 +0.004|5.0 +0.1|3.2+04|1.4£0.1|2.3£ 1.3
5 APBC| 14,19,24,29 |56| 0.97 |0.29]1.47 +0.02{5.031 +0.005|0.169 £+ 0.004{4.9 £ 0.1{2.8 £0.3|1.1 £ 0.1|1.7+ 0.8
7 PBC 19, 26, 33 421 0.64 |0.87|1.47 +0.03]4.983 £0.009|0.782 £ 0.007{4.8 £ 0.2{2.1 £ 0.2|1.5+ 0.2 -

Table I: Details of the finite-size scaling procedure. The left part of the table specifies the data sets subject to a least squares
fit with model (1) while the right part gives the fitting results. Numbers with + are error bars (one standard deviation). The
range of disorder strength for all data sets is K = 4.25, 4.375, ..., 5.875.
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Figure 1: (color online) Scaling plots for the logarithm of the median m of the distribution of the difference G = G — Gk=o
of the two-terminal conductance with and without disorder potential, for a Weyl cone with aspect ratio r = W/L = 5 and
antiperiodic boundarity conditions (left) and r = 7 and periodic boundary conditions (right). For clarity, we plot log(m) — K
vs. K. The solid curves show the results of a least-squares fit to a scaling form m = m,. (Ll/”k) expanded in a fourth (r = 5)
and third (r = 7) order polynomial, respectively. The estimates for the most important fit parameters are given in Table I.
The gray vertical line indicates the position of the estimated critical disorder strength.

Comparison with finite-size scaling for Fano factor. As discussed in the main text, besides the conductance,
also the Fano factor can be expected to be a suitable observable for a finite-size scaling analysis. A scaling plot is
shown in Fig. 2 and the details of the analysis (done as above for the conductance data) are reported in Table II.
Although the number of disorder realizations is comparable to the corresponding conductance data in Fig. 1 (left),
for the Fano factor error bars are much larger. Moreover, while for conductance scaling data traces for system sizes
M = 14,19,24,29 all cross in a single point, the Fano factor data for M = 14 does not cross with the traces of the
larger system sizes, indicating that shot noise around criticality is controlled by larger emergent length scales than
conductance. For the remaining system sizes, the analysis yields ¥ = 1.40 4+ 0.05. Given the intrinsic difficulties for
the Fano factor data discussed above we consider the error bar overlap with the conductance result v = 1.47 + 0.03
as a confirmation for consistency of the two finite-size scaling methods.

w/L=r[BC.| M N[N G| v | K. Jloglme) =ao] ar-10" | as - 10 [as - 10°[as - 107
| 5 [APBC[19,24,2942[ 0.72 [0.69]1.40 + 0.05[4.994 +0.015] —3.4 +0.01 [4.3+0.5[5.9 + 1.5] -6 + 2[5 + 3|

Table II: Details of the finite-size scaling procedure for the Fano factor. The left part of the table specifies the data sets subject
to a least squares fit with model (1) while the right part gives the fitting results. Numbers with + are error bars (one standard
deviation). The range of disorder strength is K = 4.25, 4.375, ..., 5.875.
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Figure 2: (color online) Scaling plots for the logarithm of the median m of the distribution of the difference 6F = Fx—o — F'
of the two-terminal Fano factor without and with disorder potential, for a Weyl cone with aspect ratio r = W/L = 5 and
antiperiodic boundarity conditions. For clarity, we plot log(m) — K vs. K. The solid curves show the results of a least-squares
fit to a scaling form m = m,. (Ll/”k) expanded in a fourth order polynomial. The data set for M = 14 was not included in
the analysis. The estimates for the most important fit parameters are given in Table II. The gray vertical line indicates the
position of the estimated critical disorder strength.

Comparison with density-of-states scaling for tight-binding model. We revisit the results of a recent density-of-
states simulation in a disordered Dirac semimetal from Ref. [5]. The study is based on a large four-band tight-binding
model tuned at the topological phase transition between a strong and weak topological insulator. If inter-node
processes can be neglected, around criticality the density of states at zero energy should increase as p(e = 0)
(K — K.)? with 8 = (3 — z)v. Using our estimate 3 = 2.2, we successfully fit the data from from Ref. [5], (cf. Fig.
3a) in Fig. 3 (solid line), except for the three data points with largest disorder strength. In contrast, the emphasis
in the interpretation of Ref. [5] was laid on data points for larger K, excluding the immediate vicinity of the critical
point at K = K. This leads to a larger estimate for K. and a smaller estimate for g.
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Figure 3: (color online) Bulk density of states of a disordered tight-binding model of a Dirac semimetal at zero energy as a
function of disorder strength around criticality. The data (dots) is adapted from Ref. [5], Fig. 3a. The solid line is a fit to
the scaling form p(e = 0) o (K — K.)? with 8 = (3 — 2)v fixed to 2.22 from our finite-size scaling analysis taking into account
data points with K < 7 only. The vertical gray line shows the corresponding estimate K. = 6.03. The dashed line is a fit of
the eight data points with the largest K with setting K. = 6.4 [5], the estimate for the exponent is 3 = 1.16.
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4 Conclusion

Topological semimetals and topological insulators are closely related, indeed, as
Altland and Bagrets put it [57]:

“Where the latter support a gapped spectrum, and gap closure means
a topological phase transition, the former have a gapless spectrum, and
gap opening requires a phase transition.”

In special cases, these two bandstructure classes are even more intricately inter-
twined: In the absence of inversion symmetry, a topological semimetal may ap-
pear as an intermediate phase between topological trivial and nontrivial insulating
phases when a tuning parameter is varied [58].

In this thesis, we have theoretically studied topological insulator and semimetal
phases and in particular their various phase transitions in the presence of elas-
tic disorder scattering. As a powerful, versatile and well developed framework,
we employed scattering theory as our main method of numerical investigation.
We have demonstrated the topological content of the scattering matrix in the
case for topological insulators and its ability to efficiently capture the coupling
of two-dimensional topological surface states to one-dimensional dislocation line
zero modes propagating in the bulk material. For Weyl topological semimetals, we
indirectly inferred information about various phases and their critical points from
the quantum transport properties like conductance and shot noise computed from
the scattering matrix.

Wherever possible, we have corroborated our results by analytical calculations like
the self-consistent Born approximation to the self energy. Often, only the unified
picture stemming from both numerical and analytical approaches enabled us to
fully grasp the underlying physics.

An overarching theme in all chapters of this thesis is the concept of disorder induced
quantum phase transitions. In the topological insulator model, the phase transi-
tions, which separate various topological and non-topological insulating phases are
also known from the clean model, where they can be triggered by a tuning param-
eter in the Hamiltonian. In realistic topological insulators, alloy composition has
been shown to serve as such a tuning knob experimentally. For the disordered sam-
ple, we studied the topological invariant by tracking the evolution of the eigenvalue
phases of the reflection matrix under Aharonov-Bohm flux insertion. In this way,
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Conclusion

we could show that variations in disorder strength alone enable similar topologi-
cal phase transitions, an effect captured by band structure renormalization in the
framework of the self-consistent Born approximation. In this setting the superior
properties of our scattering matrix method, in particular its applicability for large
systems, were instrumental to establish a high resolution phase diagram of the
topological invariant without resorting to indirect measures of topology like the
presence of edge states or the Witten effect. Even the subtle odd-even effect in the
dependence of weak topological invariants on system size could be observed and
previous poorly founded claims in literature about putative phase pockets could
safely be rejected.

In the topological Weyl semimetal model, the effects of disorder are even more
interesting in the sense that, first, the phase transition is genuinely disorder driven
and thus has no counterpart in the clean system and, second, all previously em-
ployed analytical methods have limited applicability around the phase transition
point. Our main results, based on the exact scattering matrix approach include

e The characterization of the semimetal to diffusive metal phase transition in
terms of quantum transport properties which are of immediate interest for
putative experiments involving mesoscopic samples.

e The prediction of a finite scale-invariant cube conductance in the weakly
disordered pseudoballistic phase, as required by the inherent topology of a
Weyl node and usually only found at the critical point of an Anderson metal-
insulator transition.

e The identification of the Fano factor as a well suited signature for experi-
mental observation of the pseudoballistic phase in a measurement based on
just a single sample.

e For the pseudoballistic phase, the demonstration of a non-commutativity of
the limits of zero chemical potential and infinite system size in this phase.

e The numerical determination of correlation length and dynamical critical
exponents at the critical point with unprecedented precision enabled by a
novel finite size scaling scheme.

While our research on topological insulators mainly demonstrated the performance
and versatility of scattering matrix methods, we are optimistic that our results on
disordered semimetals can be confirmed in future experiments as material science
and the degree of control in sample fabrication makes tremendous progress. A
particular promising research avenue, especially for experiments, is the field of
magnetotransport in novel semimetals. Various quantum phenomena, some of
topological origin, have been reported in such experiments [59, 60, 61, 62|. Part
of the excitement stems from the fact that Weyl semimetals provide a solid state
realization of the chiral anomaly known from field theory. We expect that a careful
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study of disorder effects on transport physics in the presence of a magnetic field
(and correspondingly another - magnetic - length scale) could be a fruitful, highly
appreciated and rewarding research endeavor. Likewise, quantum transport prop-
erties of the Weyl metal surface states, although featured prominently in a recent
magnetotransport experiment [60] has not enjoyed corresponding attention from
the theory side.

In the case of dislocation line zero modes in a strong topological insulator slab,
first steps towards the characterization of the emergent electronic phases have been
demonstrated. The resulting electronic structure is controlled by the phase shifts
associated to wave-packet propagation along the dislocation line. Characteristic
properties easily accessible within the scattering matrix approach are the density
of states at zero energy or the longitudinal conductivity. As an intriguing problem
for further research beyond our work based on the scattering approach, we suggest
the formulation of a corresponding theory in terms of a Hamiltonian and the
experimental confirmation of our predictions.
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