
On Hamilton cycles and other spanning
structures

DISSERTATION
zur Erlangung des akademischen Grades

doctor rerum naturalium

(Dr. rer. nat.)

im Fach Mathematik

eingereicht am

Fachbereich Mathematik und Informatik

der Freien Universität Berlin

von
Roman Glebov

1



Erstgutachter: Prof. Tibor Szabó,
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1 Introduction

1.1 Historical background

In their highly influential papers [28] and [29], Erdős and Rényi defined two related notions
of a random graph. In the model G(n,M), a graph is drawn uniformly at random among all
n-vertex graphs with exactly M edges, whereas G(n, p) can be seen as a product probability
space with every unordered pair of vertices becoming an edge with probability p uniformly
at random. In the probabilistic graph theory, we are usually interested in events happening
asymptotically almost surely, or for short a.a.s., that is, with probability tending to one as n
tends to infinity. We also say that this event happens in a typical graph G ∼ G(n, p). The close
relation between the two models is given by the fact that for every monotone graph property
Q, the graph G ∼ G(n, p) has this property a.a.s. if and only if the graph G′ ∼ G

(
n, p
(
n
2

))
has

this property a.a.s. (see e.g. [14]).
Erdős and Rényi found out that for a number of fundamental structural properties Q, there

exists a function t = t(n) such that the random graph G ∼ G(n, p) has the property a.a.s. if
p� t, and G 6∈ Q a.a.s. if p� t. We call t the threshold function for Hamiltonicity. They also
observed that some properties Q have a so-called sharp threshold t, such that for every ε > 0,
we obtain G ∈ Q a.a.s. for p ≥ (1 + ε)t, and G 6∈ Q a.a.s. for p � t. They showed that the
property of being connected has the sharp threshold log n/n by proving that G(n, (1+ε) log n/n)
is a.a.s. connected, whereas G(n, (1−ε) log n/n) a.a.s. contains an isolated vertex. (In fact, they
provided even a more detailed view on the probability of the random graph being connected for
p being close to log n/n.) In a question in [29], they asked about the threshold probability for
a Hamilton path to appear.

Clearly, since G(n, (1 − ε) log n/n) is a.a.s. not connected, it contains neither a Hamilton
path nor a Hamilton cycle. Komlós and Szemerédi [63] showed that G

(
n, c exp

(√
log n

)
/n
)

is
hamiltonian a.a.s. for a sufficiently large constant c, before Pósa [78] improved their result by
proving that G (n, c log n/n) is hamiltonian a.a.s. for a sufficiently large constant c. Notice that
this already settles the threshold function for Hamiltonicity as well as for a Hamilton path to
be of order log n/n.

It is well known (see e.g. [14]) that for p ≤ logn+log logn−ω(1)
n , a.a.s. G(n, p) contains more

than two vertices of degree at most one, and therefore G(n, p) contains no Hamilton cycle and
no Hamilton path in this range of p a.a.s. Similarly, replacing ω(1) by any function with a finite
limit leads to a constant positive probability for the random graph to contain more than two
vertices of degree at most one. Komlós and Szemerédi [64] and Korshunov [65] were the first to
show that this bound is tight, i.e., G(n, p) is a.a.s. hamiltonian for every p ≥ logn+log logn+ω(1)

n .
We could interpret the whole question as a search for the one edge in the random graph process

that makes the graph universal for some prescribed class of bounded degree spanning trees, or
creates a copy of a given bounded degree spanning tree. In this context, we could reformulate the
above results in terms of the random graph model G(n,M), where the graph is chosen uniformly
at random among all n-vertex graphs with exactly M edges. Using a known equivalence between
the two random graph models (see e.g. [14]), the results from [64] and [65] on the threshold
probability for Hamiltonicity can be seen as follows. Let π = e1, . . . , e(n2)

be a random ordering
of the edges of the complete graph on the vertex set [n], and let GM = ([n], {e1, . . . , eM}) be
the graph on the vertex set [n] with the edge set consisting of the initial M edges of π. Clearly,
GM ∼ G(n,M). Hence, [64] and [65] state that The Edge (the one that makes the random
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1 Introduction

graph GM hamiltonian) has index at most (logn+ log log n+ω(1))n a.a.s., whereas its index is
more than (log n+ log logn−ω(1))n a.a.s. by the argument on the number of vertices of degree
at most one. From this point of view, the achievement of the above result was to determine an
interval of length around n in a random ordering of the edges such that The Edge lies in this
interval a.a.s.

We have already seen that this length of the interval is best possible if we are aiming to
determine The Edge only by its index. However, this is not necessary, and it is similarly
interesting to find The Edge e.g. by the number of vertices of degree at most one in the graph
GM . Formally, for an i < n, we are searching for the smallest integer M such that G(i) := GM
contains at most i vertices of degree at most one, but GM−1 contains at least i + 1 of them.
Bollobás [13] and independently Ajtai, Komlós, and Szemerédi [1] proved the hitting time
version of the statement from [64] and [65] for the Hamilton cycle, showing that in the random
graph process, the very edge that increases the minimum degree to two also makes the graph
hamiltonian a.a.s. Formally, they showed that G(0) is a.a.s. hamiltonian. In the light of the
previous discussion, this decreases the length of the “interval of uncertainness” from something
of order at least n to one! This is an big improvement of the previous results from [64] and [65].

1.2 Main results

The results from [64], [65], [13], and [1] can be seen as a common motivation for most of
the results presented in this thesis. We know now perfectly well when the random graph
becomes hamiltonian. An intuitive (and informal) question to ask now is: how hamiltonian
is the random graph, once it is hamiltonian? Probably the best known way to formalize this
question among those approaches that are not considered in this thesis is the concept of resilience
(see e.g. [88], [39], [11] and [73] for results on resilience with respect to Hamiltonicity). We,
however, concentrate on the following interpretations of the question. In Chapter 2, we estimate
the number of Hamilton cycles in the random graph and observe that it is relatively close to the
expected number of Hamilton cycles in the considered range of edge probability. The results
of this section are based on joint work with Michael Krivelevich [44]. In Chapter 3, we are
interested in the smallest number of Hamilton cycles needed to cover all edges of the random
graph. According to a joint project with Michael Krivelevich and Tibor Szabó [45], we show that
this number is a.a.s. close to being optimal in the sense that a.a.s. this number asymptotically
equals the maximum degree divided by two. And in Chapter 4, we investigate the game theoretic
approach. We consider a game between two players, Maker and Breaker, on the edge set of
a graph G. In every move, first Breaker claims b previously unclaimed edges of G, and then
Maker claims one. Maker wins, if at some moment there exists a Hamilton cycle in the graph
induced by his edges, otherwise Breaker wins. The largest bias b such that Maker still has a
winning strategy can be seen as a measure of Hamiltonicity of G. Jointly with Asaf Ferber,
Michael Krivelevich, and Alon Naor, we show in [31] that for every ε > 0 and p = ω(log n/n),
in the game played on the edge set of G ∼ G(n, p), Maker a.a.s. has a winning strategy if
b ≤ (1− ε)np/ log n, and Breaker a.a.s. has a winning strategy if b ≥ (1 + ε)np/ log n.

An other direction to generalize the results from [64], [65], [13], and [1] is to consider other
spanning structures. Similarly to these results, with a light increase of technicalities one can
show that in the random graph process, the edge that leaves only two vertices of degree at
most one also creates the first Hamilton path a.a.s., that is, G(2) contains a Hamilton path
a.a.s. In Chapter 5 we generalize this and obtain hitting time thresholds for the appearance of
bounded degree spanning trees with linearly long bare paths or linearly many leaves. The results
are based on joint work in preparation with Daniel Johannsen and Michael Krivelevich [43].

Finally, in Chapter 6 we consider Hamiltonicity in hypergraphs. There exist several definitions
of a Hamilton cycle in hypergraphs, we follow the definition established by Katona and Kierstead
in [60]. A Hamilton cycle for us is a spanning subhypergraph whose vertices can be cyclically
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1.2 Main results

ordered in such a way that the edges are segments of that ordering and every two consecutive
edges intersect in the same number of vertices. Although this concept recently became more and
more popular in research, we are not only missing the understanding of the random hypergraph
process concerning the Hamilton cycle (for the recent developments, see e.g. [36], [24], [?],
and [25]), but even the equivalent statements of the most basic graph theoretic Hamiltonicity
results such as the theorem of Ore [76] and the theorem of Dirac [22] are not known. Aiming to
fill this gap a bit more, we obtain both Turán- and Dirac-type results. While the Turán-type
result gives an exact threshold for the appearance of a Hamilton cycle in a hypergraph depending
only on the extremal number of a certain path, the Dirac-type result yields a sufficient condition
relying solely on the minimum vertex degree. The corresponding results were obtained jointly
with Yury Person and Wilma Weps in [40].

Our goal is to make the result from each chapter understandable for the interested reader
without referring to other chapters, except for the general introduction. For this sake, we may
prove similar statements in different chapters, trying to minimize the number of cross-references.
Our notation also varies slightly depending mostly on the convenience in the corresponding
settings (e.g. because of the expansion properties used in Chapter 2 and Chapter 3, it is
convenient to use the concept of external neighborhood of a set; however, for the technical
details in Section 5.2, it is simply not sufficient, hence in Chapter 5, the set is not by definition
excluded from its neighborhood).

1.2.1 On the number of Hamilton cycles in sparse random graphs

The goal of Chapter 2 is to estimate the number of Hamilton cycles in the random graph G(n, p).
To be more formal, we show that the number of Hamilton cycle is asymptotically almost surely,
or a.a.s. for brevity, concentrated around the expectation up to a factor (1 + o(1))n, provided
the minimum degree is at least 2.

There exists a rich literature about Hamiltonicity of G(n, p). Recent results include packing
and covering problems (see e.g. [38], [62], [61], [69], [45], and [54]), local resilience (see e.g. [88],
[39], [11], and [73]), and Maker-Breaker games ([87], [51], [9], and [31]). In Chapter 2, we
are interested in estimating the typical number of Hamilton cycles in a random graph when
it is a.a.s. hamiltonian. Several recent results about Hamiltonicity ([62],[69], [88],[31]) can be
used to show fairly easily that G(n, p) with p = p(n) above the threshold for Hamiltonicity
contains typically many, or even exponentially many Hamilton cycles. Here we aim however for
(relatively) accurate bounds.

Using linearity of expectation we immediately see that the expected value of the number
of Hamilton cycles in G(n, p) is (n−1)!

2 pn. As the common intuition for random graphs may
suggest, we expect the random variable to be concentrated around its mean, perhaps after
some normalization (it is easy to see that the above expressions for the expectation become
exponentially large in n already for p inverse linear in n).

The reality appears to confirm this intuition – to a certain extent. Denoting by X the number
of Hamilton cycles in G(n, p), we immediately obtain X <

(np
e

)n a.a.s. by Markov’s inequality.
Janson [56] considered the distribution of X for p = Ω (1/

√
n) and proved that X is log-normal

distributed, implying that X =
(np
e

)n (1+o(1))n a.a.s. It is instructive to observe that assuming
p = o(1), the distribution of X is in fact concentrated way below its expectation, in particular
implying that X/E(X)

p→ 0. For random graphs of density p = o
(
n−1/2

)
not much appears to

be known about the asymptotic behavior of the number of Hamilton cycles in corresponding
random graphs. We nevertheless mention the result of Cooper and Frieze [20], who proved that
in the random graph process typically at the very moment the minimum degree becomes two,
not only the graph is hamiltonian but it has (log n)(1−o(1))n Hamilton cycles.

Our main result is the following theorem, which can be interpreted as an extension of Janson’s
results [56] to the full range of p(n).
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1 Introduction

Theorem 1.2.1. Let G ∼ G(n, p) with p ≥ logn+log logn+ω(1)
n . Then the number of Hamilton

cycles is n!pn(1− o(1))n a.a.s.

Improving the main result of [20], we also show the following statement.

Theorem 1.2.2. In the random graph process, at the very moment the minimum degree
becomes two, the number of Hamilton cycles becomes (log n/e)n(1− o(1))n a.a.s.

We continue with a short overview of related results for other models of random and pseudo-
random graphs. For the model G(n,M) of random graphs with n vertices and M edges, notice
the result of Janson [56] showing in particular that for the regime n3/2 � M ≤ 0.99

(
n
2

)
, the

number of Hamilton cycles is indeed concentrated around its expectation. The situation ap-
pears to change around M = Θ

(
n3/2

)
, where the asymptotic distribution becomes log-normal

instead. Notice also that the number of Hamilton cycles is more concentrated in G(n,M) com-
pared to G(n, p); this is not surprising as G(n,M) is obtained from G(n, p) by conditioning on
the number of edges of G being exactly equal to M , resulting in reducing the variance.

For the probability space of random regular graphs, it is the opposite case of very sparse
graphs that is relatively well understood. Janson [57], following the previous work of Robinson
and Wormald [79], [80], described the asymptotic distribution of the number of Hamilton cycles
in a random d-regular graph G(n, d) for a constant d ≥ 3. The expression obtained is quite
complicated, and we will not reproduce it here. For the case of growing degree d = d(n), the
result of Krivelevich [68] on the number of Hamilton cycles in (n, d, λ)-graphs in addition to
known eigenvalue results for Gn,d imply an estimation on the number of Hamilton cycles in Gn,d
with a superpolylogarithmic lower bound on d.

For an overview of these results as well as of the corresponding results in pseudorandom
settings, we refer the interested reader to [68].

1.2.2 On covering expander graphs by Hamilton cycles

For an r-uniform hypergraph G and a family F of its subgraphs, we call a family F ′ ⊂ F an
F-decomposition of G if every edge of G is contained in exactly one of the hypergraphs from
F ′. We call a family F ′ ⊂ F an F-packing of G, if every edge of G is contained in at most one
of the hypergraphs from F ′. Naturally, one tries to maximize the size of an F-packing of G.
The dual concept is that of an F-covering: a family F ′ is called an F-covering of G, if every
edge of G is contained in at least one of the hypergraphs from F ′. Here the minimum size of an
F-covering of G is sought.

Decompositions, packings and coverings are in the core of combinatorial research (see [41]
for a survey). One of the most famous problems in this area was the conjecture of Erdős and
Hanani [27], dealing with the case when G is the complete r-uniform hypergraph on n vertices
and F is the family of all k-cliques in G for some k ≥ r. Clearly, if there was an F-decomposition
of G, its size would be

(
n
r

)
/
(
k
r

)
. Hence

(
n
r

)
/
(
k
r

)
is an upper bound on the size of a largest F-

packing of G and a lower bound on the size of a smallest F-covering of G. Erdős and Hanani
conjectured both inequalities to be asymptotically tight for constant r and k, i.e., that the size
of a largest F-packing of G and the size of a smallest F-covering of G are asymptotically equal
to each other. Rödl [81] verified the conjecture by one of the first applications of the nibble
method. Observe that in this setting, the two parts of the conjecture are trivially equivalent.
The reason for this is that the size of the elements of the family F does not grow with n: from
a packing F ′ of G of size (1−ε)

(
n
r

)
/
(
k
r

)
, one obtains a covering F ′′ of G of size (1+ε

(
k
r

)
)
(
n
r

)
/
(
k
r

)
by simply taking additionally one k-clique for every r-edge that was not contained in any clique
from F ′.

In Chapter 3 we study a covering problem where the sets in F grow with n and the above
equivalence is not entirely clear. Let r = 2, so our objects are usual graphs. For a graph G,
we consider the family H = H(G) of all Hamilton cycles of G. The corresponding concepts of
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1.2 Main results

decomposition, packing, and covering are called Hamilton decomposition, Hamilton packing and
Hamilton covering, respectively.

The most well-known fact about Hamilton decompositions is the nearly folklore result of
Walecki (see e.g. [5]), stating that for every odd n, the complete graph Kn has a Hamilton
decomposition. In general, however, not many graphs are known to have a Hamilton decompo-
sition; the interested reader is referred to [6].

Given that the minimum degree of a Hamilton cycle is 2, the maximum size of a Hamilton
packing of a graph with minimum degree δ is bδ/2c. Interestingly, the random graph G(n, p)
seems to match this bound tightly. There has been an extensive research considering Hamilton
packings of the random graph G(n, p). A classic result of Bollobás [13] and Komlós and Sze-
merédi [64] states that as soon as the minimum degree of the random graph is 2, it contains a
Hamilton cycle a.a.s. This result was extended by Bollobás and Frieze [16] who showed that we
can replace 2 by 2k for any constant k and obtain a Hamilton packing of size k a.a.s. Frieze
and Krivelevich [39] proved that for every constant and slightly subconstant p, G ∼ G(n, p)
contains a packing of (1 + o(1))δ(G)/2 Hamilton cycles a.a.s. They also conjectured that for
every p = p(n) there exists a Hamilton packing of G ∼ G(n, p) of size bδ(G)/2c (and, in the case
where δ(G) is odd, an additional (disjoint to the Hamilton cycles of the packing) matching of size
bn/2c) a.a.s. Frieze and Krivelevich [38] proved their conjecture as long as p = (1+o(1)) log n/n,
which was extended to the range of p ≤ 1.02 log n/n by Ben-Shimon, Krivelevich and Su-
dakov [11]. Meanwhile, Knox, Kühn and Osthus [62] extended the result from [39] to the range
of p = ω(log n/n), and then proved the conjecture for log50 n/n < p < 1 − n−1/4 log9 n [61].
Very recently it was also proven by Krivelevich and Samotij [69] that there exists a positive
constant ε > 0 such that for the range of log n/n ≤ p ≤ nε−1, G ∼ G(n, p) contains a Hamilton
packing of size bδ(G)/2c a.a.s., implying the conjecture in this range of p up to the existence of
the additional matching.

To the best of our knowledge the dual concept of Hamilton covering of G(n, p) has not been
studied. Obviously, the size of any Hamilton covering of graph G is at least d∆(G)/2e, where
∆(G) denotes the maximum degree of G. Recall that for p = p(n) � log n/n, ∆(G(n, p)) =
(1+o(1))np = δ(G(n, p)) a.a.s., hence the minimum size of a Hamilton cover and the maximum
size of a Hamilton packing have a chance to be asymptotically equal. We prove that this, in
fact, is the case for the range p > nα−1 where α > 0 is an arbitrary small constant.

Theorem 1.2.3. For any α > 0, for p ≥ nα−1 a.a.s. G(n, p) can be covered by (1 + o(1))np/2
Hamilton cycles.

1.2.3 Biased games on random boards

In Chapter 4 we consider Maker-Breaker games, played on the edge set of a random graph
G ∼ G(n, p).

Let F ⊆ 2X be any hypergraph. In an (a, b) Maker-Breaker game F , the two players are
called Maker and Breaker, alternately claim a and b previously unclaimed elements of the board
X, respectively. Maker’s goal is to claim all the elements of some target set F ∈ F . If Maker
does not fully claim any target set by the time all board elements are claimed, then Breaker wins
the game. The most basic case, where a = b = 1, is called the unbiased game. Any other case
is called a biased game. Since being the first player is never a disadvantage in a Maker-Breaker
game, in order to prove that Maker wins a certain game, it is enough to prove that he can win
as a second player. Hence, throughout Chapter 4 we assume that Maker is the second player to
move. We may also assume that there are no F1, F2 ∈ F such that F1 ⊂ F2, since in this case
Maker wins once he claims all the elements in F1, and so the two (a, b) games F and F \ {F2}
are identical.

It is natural to play positional games on the edge set of a graph G. In this case, the board
is X = E(G) and the target sets are all the edge sets of subgraphs H ⊆ G which possess some
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1 Introduction

given graph property P. In the connectivity game, Maker wins if and only if his edges contain
a spanning tree. In the perfect matching game Mn(G) the winning sets are all sets of bn/2c
independent edges of G. Note that if n is odd, then such a matching covers all vertices of G but
one. In the Hamiltonicity game Hn(G) the winning sets are all edge sets of Hamilton cycles of
G. Given a positive integer k, in the k-connectivity game Ckn(G) the winning sets are all edge
sets of k-vertex-connected spanning subgraphs of G.

Maker-Breaker games played on the edge set of the complete graph Kn are well studied. In
this case, many natural unbiased games are drastically in a favor of Maker (see e.g. [32], [50],
[55], and [74]). Hence, in order to even out the odds, it is natural to give Breaker more power
by increasing his bias (that is, to play a (1, b) game instead of a (1, 1) game), and/or to play on
different types of boards.

Maker-Breaker games are bias monotone. That means that if Maker wins some game with
bias (a, b), he also wins this game with bias (a′, b′), for every a′ ≥ a, b′ ≤ b. Similarly, if Breaker
wins a game with bias (a, b), he also wins this game with bias (a′, b′), for every a′ ≤ a, b′ ≥ b.
This bias monotonicity allows us to define the critical bias (also referred to as the threshold
bias): for a given game F , the critical bias b∗ is the value for which Maker wins the game F
with bias (1, b) for every b < b∗, and Breaker wins the game F with bias (1, b) for every b ≥ b∗.

In their seminal paper [18], Chvatál and Erdős proved that playing the (1, b) connectivity game
on the edge set of the complete graph Kn, for every ε > 0, Breaker wins for every b ≥ (1+ε)n

logn ,
and Maker wins for every b ≤ n

(4+ε) logn . They conjectured that b = n
logn is (asymptotically)

the threshold bias for this game. Gebauer and Szabó proved in [42] that this is indeed the case.
Later on, Krivelevich proved in [67] that b = n

logn is also the threshold bias for the Hamiltonicity
game.

Stojaković and Szabó suggested in [87] to play Maker-Breaker games on the edge set of a
random board G ∼ G(n, p). They examined some games on this board such as the connectivity
game, the perfect matching game, the Hamiltonicity game and building a k-clique game. Since
then, much progress has been made in understanding Maker-Breaker games played on G ∼
G(n, p). For example, it was proved in [9] that for p = (1+o(1)) logn

n , G ∼ G(n, p) is typically
such that Maker wins the (1, 1) games M(G), H(G) and Ck(G). Moreover, the proofs in [9]
are of a “hitting time” type. That means that, in the random graph process (see e.g. [58]),
typically at the moment the graph reaches the needed minimum degree for Maker to win the
desired game, Maker indeed win this game. Later on, in [?] fast winning strategies for Maker
in various games played on G ∼ G(n, p) were considered, and in [89] a hitting time result was
established for the “building a triangle” game, and it was proved that the threshold probability
for the (monotone) property “Maker can build a k-clique” game is p = Θ

(
n−2/(k+1)

)
.

In [87], Stojaković and Szabó conjectured the following:

Conjecture 1.2.4 (Conjecture 1 in [87]). There exists a constant C such that for every p ≥
C logn
n , G ∼ G(n, p) is typically such that the threshold bias for the game H(G) is b = Θ

(
np

logn

)
.

In Chapter 4 we prove Conjecture 1.2.4, and in fact, for p = ω
(

logn
n

)
we prove the following

stronger statement:

Theorem 1.2.5. Let p = ω
(

logn
n

)
. Then G ∼ G(n, p) is typically such that np

logn is the
asymptotic threshold bias for the games M(G), H(G) and Ck(G).

In order to prove Theorem 1.2.5 we prove the following two theorems:

Theorem 1.2.6. Let 0 ≤ p ≤ 1, ε > 0 and b ≥ (1 + ε) np
logn . Then G ∼ G(n, p) is typically

such that in the (1, b) Maker-Breaker game played on E(G), Breaker has a strategy to isolate a
vertex in Maker’s graph, as a first or a second player.

12
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Theorem 1.2.7. Let p = ω
(

logn
n

)
, ε > 0 and b = (1 − ε) np

logn . Then G ∼ G(n, p) is typically
such that Maker has a winning strategy in the (1, b) games M(G), H(G) and Ck(G) for a fixed
positive integer k.

In the case p = Θ
(

logn
n

)
we establish two non-trivial bounds for the critical bias b∗. This

also settles Conjecture 1.2.4 for this case but does not determine the exact value of b∗ (notice
that in this case, b∗ is a constant!).

Theorem 1.2.8. Let p = c logn
n , where c > 1600 and let ε > 0. Then G ∼ G(n, p) is typically

such that the threshold bias for the games M(G), H(G) and Ck(G) lies between c/10 and c+ ε.

Remark: In the terms of Theorem 1.2.8, if 1 < c ≤ 1600, we get by Theorem 1.2.6 that
b∗ ≤ c + ε, and by the main result of [10] that b∗ > 1, so indeed b∗ = Θ( np

logn) in this case as
well.

1.2.4 Hitting time appearance of certain spanning trees in the random graph
process

In Chapter 5 we approach the question about universality of the binomial random graph for
a special class of bounded degree spanning trees. The trees we deal with have either a long
(almost linear) bare path or almost linearly many leaves. We show a hitting time statement,
generalizing the famous hitting time result on the appearance of the first Hamilton path in the
random graph process.

Given thebreakthrough knowledge about the behavior of the random graph process with re-
spect to the Hamilton path, one has every reason to wonder if it can be generalized to other span-
ning trees. Given that the maximum degree of G(n, p) in the interesting range of p = Θ(log n)
is of order log n a.a.s., we naturally restrict the considered trees to have bounded maximum
degree. (In fact, in our results, the maximum degree might grow slightly sub-logarithmic in n).
In this setting, the problem of nearly spanning bounded degree trees (where by nearly spanning
we mean trees on (1− ε)n many vertices for some ε > 0) is very well studied, see, e.g., [33], [2],
[35], [34], [49], and recently [7]. In particular, Theorem 4 in [7] states that for every ε > 0
and d ≥ 2, there exists a c > 0 such that the random graph G(n, c/n) is a.a.s. universal for
the class of bounded degree (1 − ε)n-vertex trees with maximum degree at most d, i.e., a.a.s.
G(n, c/n) contains all of them. Notice that their bound on c is close to being linear in d and
inverse linear in ε, significantly improving the previous bounds from [2].

However, the picture changes drastically when we switch back to spanning trees. To our
best knowledge, after the above mentioned well-known result on the Hamilton path, Alon,
Krivelevich and Sudakov [2] were the first to consider a class of bounded degree spanning trees
with respect to their appearance in the random graph process. Namely, they observed that if an
n-vertex tree has a linear (in n) number of leaves, then a.a.s. it is contained in G(n,C log n/n)
for some sufficiently large C > 0; the proof is not that hard and utilizes the embedding result
for nearly spanning trees from the same paper.

A substantial step forward in solving this class of problems was made by the third author
in [66]. He showed in Theorem 1 that for every ε > 0 and every n-vertex tree with maximum
degree much smaller than nε/ log n, a.a.s. this tree is contained in the random graph G(n, nε−1).

However, since the number of bounded degree n-vertex trees grows with n (in fact, it grows
exponentially), the above result does not imply the universality of G(n, nε−1) for the class of
all bounded degree spanning trees. This question was addressed by the two last authors and
Samotij in [59], who showed as a consequence of their Theorem 2.3 the existence of a constant
c > 0 such that a.a.s. the random graph G(n, cn−1/3 log2 n) is universal for the class of all
bounded degree spanning trees. The probability p = cn−1/3 log2 n, however, in the light of the
previous results and some intuition obtained from the strong result on the Hamilton path seems
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to be far from the correct threshold probability; for further speculations, the reader is referred
to Section 5.5 of this paper.

To improve the estimations from [66] and [59] on the threshold for the probability p, Hefetz,
Krivelevich, and Szabó [53] considered special classes of bounded degree spanning trees. They
proved that for every ε > 0, the random graph G(n, (1 + ε) log n/n) is a.a.s. universal for the
class of bounded degree spanning trees with a linearly long bare path. Furthermore, they showed
for every bounded degree spanning tree with linearly many leaves that it is a.a.s. contained
in G(n, (1 + ε) log n/n); notice that this statement is not universal. The probability p = (1 +
ε) log n/n is tight in the sense that, as we observed earlier, a.a.s. G(n, (1 − ε) log n/n) is not
connected, and thus contains no n-vertex tree as a subgraph.

We could interpret the whole question as a search for the one edge in the random graph process
that makes the graph universal for some prescribed class of bounded degree spanning trees, or
creates a copy of a given bounded degree spanning tree. In this context, we could reformulate the
above results in terms of the random graph model G(n,M), where the graph is chosen uniformly
at random among all n-vertex graphs with exactly M edges. Using a known equivalence between
the two random graph models (see, e.g., [14]), the results from [64] and [65] on the threshold
probability for Hamiltonicity can be seen as follows. Let π = e1, . . . , e(n2)

be a random ordering
of the edges of the complete graph on the vertex set [n], and let GM = ([n], {e1, . . . , eM}) be
the graph on the vertex set [n] with the edge set consisting of the initial M edges of π. Clearly,
GM ∼ G(n,M). Hence, [64] and [65] state that The Edge (the one that makes the random
graph GM Hamiltonian) has index at most (log n+ log log n+ω(1))n a.a.s., whereas its index is
more than (log n+ log logn−ω(1))n a.a.s. by the argument on the number of vertices of degree
at most one. From this point of view, the achievement of the above result was to determine an
interval of length around n in a random ordering of the edges such that The Edge lies in this
interval a.a.s.

We have already seen that this length of the interval is best possible if we are aiming to
determine The Edge only by its index. However, this is not necessary, and it is similarly
interesting to find The Edge considering, e.g., the number of vertices of degree at most one in
the graph GM . Formally, for an i < n, we are searching for the smallest integer M such that
G(i) := GM contains at most i vertices of degree at most one, but GM−1 contains at least i+ 1
of them. Bollobás [13] and independently Ajtai, Komlós, and Szemerédi [1] proved the hitting
time version of the statement from [64] and [65] for the Hamilton cycle, showing that in the
random graph process, the very edge that increases the minimum degree to two also makes the
graph Hamiltonian a.a.s. Formally, they showed that G(0) is a.a.s. Hamiltonian. Somewhat
similarly with a light increase of technicalities one can show that in the random graph process,
the edge that leaves only two vertices of degree at most one also creates the first Hamilton path
a.a.s., that is, G(2) contains a Hamilton path a.a.s. In the light of the previous discussion, this
decreases the length of the uncertainness interval from something of order at least n to one!
This is an big improvement of the previous results from [64] and [65].

In general, one might wonder if this hitting time statement is true for arbitrary bounded
degree spanning trees, i.e., if for an n-vertex tree T with exactly k leaves, the random graph
G(k) a.a.s. contains a copy of T (or G(k) is not connected). In fact, as far as we are concerned
with the degree sequences of T and G(k), it is not hard to see that the degree sequence of T
is a.a.s. smaller or equal than the degree sequence of G(k) in every coordinate. However, a
relatively simple example shows that the above question can be answered negatively. Let T be
the n-vertex tree consisting of a path of length n − 1 and one additional vertex joined to the
neighbor of an endpoint of the path. This tree has three leaves. However, as we will see in
Property (P2) of Lemma 5.1.1, a.a.s. no two of the three vertices of degree one in G(3) have a
common neighbor, making it impossible to embed T into G(3).

This example provides some intuition for the simple fact that for a “hardcore” hitting time
statement, we need a set of leaves in the tree that are sufficiently far from each other. In
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the following theorem, this is only interpreted in terms of pairwise distance of leaves; a more
technical Theorem 5.3.3 is presented in Section 5.3.

Our aim is to show the hitting time analogs of the statements from [53] as well as to make
the statement on the trees with linearly many leaves universal. For the trees with a long bare
path, we obtain the following result.

Theorem 1.2.9. In the random graph process on n vertices, a.a.s. for every k < n, if G(k) is
connected, then it contains every spanning tree of maximum degree at most logn

2 log logn log log logn
containing a k-set of leaves of pairwise distances at least (4.2 log n/ log logn) and a bare path of
length at least 23n

log log logn .

Theorem 1.2.9 is tight in the sense of the following observation.

Observation 1.2.10. Let k,∆ ∈ N and let T be an n-vertex tree with maximum degree at
most ∆ containing no k-set of leaves with pairwise distances at least 2 logn

3 log logn . Then a.a.s. in
the random graph process on n vertices, for every j > k the graph G(j) does not contain T .

For trees with linearly many leaves, we prove the following.

Theorem 1.2.11. Let ε > 0 and ∆ ∈ N, and let M∗ be the random variable denoting the
smallest integer M such that in the random graph process on n vertices, GM is connected. Then,
GM∗ a.a.s. contains a copy of every n-vertex tree of maximum degree at most ∆, provided the
tree has at least εn leaves.

1.2.5 On extremal hypergraphs for Hamilton cycles

For a fixed graph G and an integer n the extremal number ex (n,G) of G is the largest integer
m such that there exists a graph on n vertices with m edges that does not contain a subgraph
isomorphic to G. The corresponding graphs are called extremal graphs. Naturally, one can
extend this definition to a forbidden spanning structure, e.g. a Hamilton cycle. In [76] Ore
proved that a non-hamiltonian graph on n vertices has at most

(
n−1

2

)
+ 1 edges, and further,

that the unique extremal example is given by an (n− 1)-clique and a vertex of degree one that
is adjacent to one vertex of the clique.

A k-uniform hypergraph H, or k-graph for short, is a pair (V,E) with a vertex set V = V (H)
and an edge set E = E(H) ⊆

(
V
k

)
. Since in Chapter 6 we always deal with k-graphs, and the

usual 2-uniform graphs have no special meaning for us, we also might use the simplified term
graph for k-graphs.

There are several definitions of Hamilton cycles in hypergraphs, e.g. Berge Hamilton cycles
[12]. Chapter 6 yet follows the definition of Hamilton cycles established by Katona and Kierstead
[60] as it has become more and more popular in research.

An l-tight Hamilton cycle in H, 0 ≤ l ≤ k−1, (k−l)
∣∣|V (H)|, is a spanning sub-k-graph whose

vertices can be cyclically ordered in such a way that the edges are segments of that ordering
and every two consecutive edges intersect in exactly l vertices. More formally, it is a graph
isomorphic to ([n], E) with

E =
{
{i(k − l) + 1, i(k − l) + 2, . . . , i(k − l) + k} : 0 ≤ i < n

k − l

}
,

where addition is made modulo n. We denote an l-tight Hamilton cycle in a k-graph H on n

vertices by C(k,l)
n , and call it tight if it is (k − 1)-tight.

Working on her thesis [92] in coding theory, Woitas raised the question whether removing(
n−1

2

)
− 1 edges from a complete 3-uniform hypergraph on n vertices leaves a hypergraph con-

taining a 1-tight Hamilton cycle. A generalization of this problem is to estimate the extremal
number of Hamilton cycles in k-graphs.
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Katona and Kierstead were the first to study sufficient conditions for the appearance of a
C

(k,k−1)
n in k-graphs. In [60] they showed that for all integers k and n with 2 ≤ k and 2k−1 ≤ n,

ex(n,C(k,k−1)
n ) ≥

(
n− 1
k

)
+
(
n− 2
k − 2

)
.

In the same paper Katona and Kierstead proved, that this bound is not tight for k = 3 by
showing that for all integers n and q with q ≥ 2 and n = 3q + 1,

ex(n,C(3,2)
n ) ≥

(
n− 1

3

)
+ n− 1.

In [90] Tuza gave a construction for general k and tight Hamilton cycles, improving the lower
bound to

ex(n,C(k,k−1)
n ) ≥

(
n− 1
k

)
+
(
n− 1
k − 2

)
,

if a Steiner system S(k − 2, 2k − 3, n − 1) exists. Also for all k, n and p such that a partial
Steiner system PS(k − 2, 2k − 3, n − 1) of order n − 1 with p

(
n−1
k−2

)
/
(

2k−3
k−2

)
blocks exists, Tuza

proved the bound

ex(n,C(k,k−1)
n ) ≥

(
n− 1
k

)
+ p

(
n− 1
k − 2

)
.

An intuitive approach to forbid Hamilton cycles in hypergraphs is to prohibit certain struc-
tures in the link of one fixed vertex. For a vertex v ∈ V , we define the link of v in H to be the
(k − 1)-graph H(v) = (V \{v}, Ev) with {x1, . . . , xk−1} ∈ Ev iff {v, x1, . . . , xk−1} ∈ E(H).

The structure of interest in this case is a generalization of a path for hypergraphs.
An l-tight k-uniform t-path, denoted by P (k,l)

t , is a k-graph on t vertices, (k − l) | (t − l),
such that there exists an ordering of the vertices, say (x1, . . . , xt), in such a way that the edges
are segments of that ordering and every two consecutive edges intersect in exactly l vertices.
Observe that a P (k,l)

t has t−l
k−l edges. A k-uniform (k−1)-tight path is called tight, and whenever

we consider a path we assume it to be tight unless stated otherwise.
For arbitrary k and l we give the exact extremal number and the extremal graphs of l-tight

Hamilton cycles in Chapter 6. The extremal number and the extremal graphs rely on the
extremal number of P (k, l) := P

(k−1,l−1)

b k
k−lc(k−l)+l−1

, and its extremal graphs, respectively.

Theorem 1.2.12. For any k ≥ 2, l ∈ {0, . . . , k− 1} there exists an n0 such that for any n ≥ n0

and (k − l)|n,

ex
(
n,C(k,l)

n

)
=
(
n− 1
k

)
+ ex (n− 1, P (k, l))

holds. Furthermore, any extremal graph on n vertices contains an (n − 1)-clique and a vertex
whose link is P (k, l)-free.

Notice, that P (k, l) contains
⌊

k
k−l

⌋
hyperedges.

For k = 3 and l = 1 Theorem 1.2.12 answers the aforementioned question of Woitas [92] that
indeed

(
n−1

3

)
+ 1 hyperedges ensure an existence of a 1-tight Hamiltionian cycle C(3,1)

n for n
large enough.

For k = 3 and l = 2 Theorem 1.2.12 states that there exists an n0 such that for any n ≥ n0,

ex
(
n,C(3,2)

n

)
=
(
n− 1

3

)
+ ex

(
n− 1, P (2,1)

4

)
=

{(
n−1

3

)
+ n− 1, 3 |n− 1(

n−1
3

)
+ n− 2, otherwise.
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Note that this not only goes along with Katona and Kierstead’s remark, but further specifies
it for the special case k = 3.

Actually, in Chapter 6 we prove a stronger statement, namely that with one more edge we
find a Hamilton cycle that is l-tight in the neighborhood of one vertex and is (k − 1)-tight on
the rest.

Using the result by Györi, Katona, and Lemons [46] stating that

(1 + o(1))
(
n− 1
k − 2

)
≤ ex

(
n− 1, P (k−1,k−2)

2k−2

)
≤ (k − 1)

(
n− 1
k − 2

)
,

we obtain lower and upper bounds for l = k − 1:(
n− 1
k

)
+ (1 + o(1))

(
n− 1
k − 2

)
≤ ex

(
n,C(k,l)

n

)
≤
(
n− 1
k

)
+ (k − 1)

(
n− 1
k − 2

)
.

Note that the upper bound also holds for l 6= k − 1.
In our proof we make use of the absorbing technique that was originally developed by Rödl,

Ruciński and Szemerédi.

Dirac-type Results

The problem of finding Hamilton cycles and perfect matchings in 2-graphs has been studied
very intensively. There are plenty beautiful conditions guaranteeing the existence of such cycles,
e.g. Dirac’s condition [22].

Over the last couple of years several Dirac-type results in hypergraphs were shown, and along
with them, different definitions of degree in a k-graph were introduced. They all can be captured
by the following definition. The degree of {x1, . . . , xi}, 1 ≤ i ≤ k − 1, in a k-graph H is the
number of edges the set is contained in and is denoted by deg(x1, . . . , xi). Let

δd(H) := min{deg(x1, . . . , xd)|{x1, . . . , xd} ⊂ V (H)}

for 0 ≤ d ≤ k − 1. If the graph is clear from the context, we omit H and write for short δd.
Note that δ0 = e(H) := |E(H)| and δ1 is the minimum vertex degree in H.

Following the definitions of Rödl and Ruciński in [82], denote for every d, k, l and n with
0 ≤ d ≤ k − 1 and (k − l)|n the number hld(k, n) to be the smallest integer h such that every
n-vertex k-graph H satisfying δd(H) ≥ h contains an l-tight Hamilton cycle. Observe that
hl0(k, n) = ex

(
n,C

(k,l)
n

)
+ 1.

In [60] Katona and Kierstead showed that hk−1
k−1(k, n) ≥

⌊
n−k+3

2

⌋
by giving an extremal

construction. Their implicit conjecture that this bound is tight was confirmed for k = 3 by
Rödl, Ruciński and Szemerédi in [83] asymptotically and in [86] exactly. For k ≥ 4 the same
authors showed in [85] that hk−1

k−1(k, n) ∼ 1
2n. Generalizing the results to other tightnesses,

Markström and Ruciński proved in [75] that hlk−1(k, n) ∼ 1
2n if (k − l)|k, n. In [71] Kühn,

Mycroft and Osthus proved that

hlk−1(k, n) ∼ n⌈
k
k−l

⌉
(k − l)

if k − l does not divide k and (k − l)|n, proving a conjecture by Hàn and Schacht [48]. For
further information, an excellent survey of the recent results can be found in [82].

Rödl and Ruciński conjectured in [82] that for all 1 ≤ d ≤ k − 1, k|n,

hk−1
d (k, n) ∼ h0

d(k, n).
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Further notice that 0-tight Hamilton cycles C(k,0)
n are perfect matchings covering all vertices.

A perfect matching may be considered the “simplest” spanning structure and there are several
results about h0

d(k, n), see e.g. [84], [47], and [72].
Noting the fact that there are virtually no results on hld(k, n) for d ≤ k−2, Rödl and Ruciński

remarked in [82] that it does not even seem completely trivial to show h2
1(3, n) ≤ c

(
n−1

2

)
for

some constant c < 1. Further, they gave the following bounds(
5
9

+ o(1)
)(

n− 1
2

)
≤ h2

1(3, n) ≤
(

11
12

+ o(1)
)(

n− 1
2

)
.

We show the following upper bound on hk−1
1 (k, n).

Theorem 1.2.13. For any k ∈ N there exists an n0 such that every k-graph H on n ≥ n0

vertices with δ1 ≥
(

1− 1

22(1280k3)k−1

) (
n−1
k−1

)
contains a tight Hamilton cycle.

Note that Theorem 1.2.13 implies

hld(k, n) ≤

(
1− 1

22 (1280k3)k−1

)(
n− d
k − d

)
for all l ∈ {0, . . . , k − 1} and all 1 ≤ d ≤ k − 1. This shows that there exists a constant c < 1
such that for all l, d

hld(k, n) ≤ c
(
n− d
k − d

)
holds, although this constant is clearly far from being optimal.

1.3 Chernoff bounds

In many estimations we will have to bound the probability for a random variable to deviate far
from its expectation. For this aim, we extensively use Chernoff bounds. We decided to state
them explicitly in the following lemma, see e.g. Appendix A of [3].

Lemma 1.3.1. Let X be a binomially distributed random variable with parameters n and p.
Then the following is true.

• For every ε > 0 we obtain Pr(X > (1 + ε)np) < e−
ε2np

2
+ ε3np

2 .

• For every ε > 0 we obtain Pr(X < (1− ε)np) < e−
ε2np

2 .

• For every ε > 0 there exists a c = c(ε) > 0 such that Pr(|X − np| > εnp) < 2e−cnp.

• For a > 2np, Pr(X > a) <
( enp
a

)a.
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2 On the number of Hamilton cycles in sparse
random graphs

2.1 Introduction

As we pointed out before, the results of this section are based on joint work with Michael
Krivelevich [44].

2.1.1 Definitions and notation

The random oriented graph ~G(n, p) is obtained from G(n, p) by randomly giving an orientation
to every edge (every of the two possible directions with probability 1/2). Notice that whenever
we use the notation ~G for an oriented graph, there exists an underlying non-oriented graph
obtained by omitting the orientations of the edges of ~G; it is denoted by G. Making the
notation consistent, when omitting the vector arrow above an oriented graph, we refer to the
underlying non-oriented graph.

Given a graph G, we denote by h(G) the number of Hamilton cycles in G. We call a spanning
2-regular subgraph of G a 2-factor. Notice that every connected component of a 2-factor is
a cycle. We denote by f(G, s) the number of 2-factors in G with exactly s cycles. Similarly,
a 1-factor of an oriented graph ~G is a spanning 1-regular subgraph, i.e., a spanning subgraph
with all in- and outdegrees being exactly one. Analogously, the number of 1-factors in ~G with
exactly s cycles is denoted by f

(
~G, s
)

. For the purposes of our proofs, we relax the notion of
a 2-factor and call a spanning subgraph H ⊆ G an almost 2-factor of G if H is a collection of
vertex-disjoint cycles and at most |V (G)|/ log2(|V (G)|) isolated vertices. We denote the number
of almost 2-factors of G containing exactly s cycles by f ′(G, s). Similarly to the notation for
non-oriented graphs, we call an oriented subgraph ~H of ~G an almost 1-factor of ~G if ~H is a
1-regular oriented graph on at least |V (~G)| − |V (~G)|/ log2(|V (~G)|) vertices. The number of
almost 1-factors of ~G with exactly s cycles is denoted by f ′

(
~G, s
)

.

As usual, in a graphG for a vertex x ∈ V (G) we denote by dG(x) := |NG(x)| its degree, i.e., the
size of its neighborhood. We denote by δ(G) and respectively ∆(G) its minimum and maximum
degrees. For a set S ⊆ V (G), we denote by NG(S) the set of all vertices outside S having a
neighbor in S. Whenever the underlying graph is clear from the context we might omit the graph
from the index. Similarly, in an oriented graph ~G for a vertex x ∈ V

(
~G
)

we call din, ~G(x) :=∣∣∣{y ∈ V (~G) : yx ∈ E
(
~G
)}∣∣∣ the indegree of x and dout, ~G(x) :=

∣∣∣{z ∈ V (~G) : xz ∈ E
(
~G
)}∣∣∣

the outdegree of x. We denote by δin
(
~G
)

, ∆in

(
~G
)

, δout
(
~G
)

, and ∆out

(
~G
)

the minimum and

maximum in- and outdegrees of ~G.
In a graph G for two sets A,B ⊆ V (G) we denote by eG(A,B) the number of edges incident

with both sets. In an oriented graph ~G, for two sets A,B ⊆ V (G) the notation e ~G(A,B) stands
for the number of edges going from a vertex in A to a vertex in B. We write eG(A) := eG(A,A)
and e ~G(A) := e ~G(A,A) for short. Similarly to the degrees, whenever the underlying graph is
clear from the context we might omit the graph from the index.

To simplify the presentation, we omit all floor and ceiling signs whenever these are not crucial.
Whenever we have a graph on n vertices, we suppose its vertex set to be [n].
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2 On the number of Hamilton cycles in sparse random graphs

2.1.2 Outline of the proofs

In Section 2.2, the lower bounds for Theorems 1.2.1 and 1.2.2 are proven in the following steps.

• In Lemma 2.2.1 we show using the permanent of the incidence matrix that under certain
pseudorandom conditions, an oriented graph contains sufficiently many oriented 1-factors.

• In Lemma 2.2.2 we prove that the random oriented graph ~G(n, p) a.a.s. contains a large
subgraph with all in- and outdegrees being concentrated around the expected value. This
subgraph then satisfies one of the conditions of Lemma 2.2.1.

• In Lemma 2.2.3 we show that the random graph G(n, p) contains many almost 2-factors
a.a.s. In the proof, we orient the edges of G(n, p) randomly and apply Lemma 2.2.1 to the
subgraph with almost equal degrees whose existence is guaranteed by Lemma 2.2.2 a.a.s.

• In Lemma 2.2.4 we prove that most of these almost 2-factors have few cycles a.a.s.

• We then call a graph p-expander if it satisfies certain expansion properties and show in
Lemma 2.2.6 that in the random graph process, the graph G(n, p) has these properties in
a strong way.

• Lemma 2.2.7 shows that in any graph having the p-expander properties and minimum
degree 2, for any path P0 and its endpoint v1 many other endpoints can be created by a
small number of rotations with fixed endpoint v1.

• Lemma 2.2.8 contains the main technical statement of this chapter. It states that in a
graph satisfying certain pseudorandom conditions, for almost every almost 2-factor F with
few components, there exists a Hamilton cycle with a small Hamming distance from F .
The proof is a straightforward use of Lemma 2.2.7.

• The proofs of Theorems 1.2.1 and 1.2.2 are completed with a double counting argument.
On the one hand, by Lemma 2.2.4 there exist many almost 2-factors with few cycles a.a.s.
Furthermore, for each of these almost 2-factors there exists a Hamilton cycle with small
Hamming distance from it a.a.s. by Lemma 2.2.8. On the other hand, for each Hamilton
cycle, there are not many almost 2-factors with few cycles having a small Hamming
distance from it. Hence, the number of Hamilton cycles is strongly related to the number
of almost 2-factors with few cycles, finishing the proof.

2.2 The proofs

Let G ∼ G(n, p). Since E(h(G)) = (n− 1)!pn/2, we obtain

h(G) < log n(n− 1)!pn/2 <
(np
e

)n
a.a.s., using just Markov’s inequality. Thus, for the remainder of the section we are only
interested in the lower bound on the typical number of Hamilton cycles in the random graph.

We know from [62] and using e.g. the results from [61] and [69] that in G ∼ G(n, p) there
are at least

(
bδ(G)/2c

n

)n
n! 2-factors a.a.s. We now want to give an a.a.s. lower bound on the

number of 2-factors in G, and we want to do it within a multiplicative error term of at most
2o(n) from the “truth”, basically deleting the 2 from the denominator in the above expression
in the case p� log n/n, and replacing the term bδ(G)/2c by asymptotically np.

We first prove a pseudo-random technical statement that will give us the desired inequality
once we show that G (or a large subgraph of it) satisfies the pseudo-random conditions. The
proof is based on the permanent method as used in [37].
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2.2 The proofs

Lemma 2.2.1. Let r = r(n) = ω(log log n), and let ~G be an oriented graph on n vertices
satisfying the following (pseudo-random) conditions:

• δin(~G), δout(~G),∆in(~G),∆out(~G) ∈ (r − 4r/ log log n, r + 4r/ log logn)

• for any two sets A,B ⊂ V (~G) of size at most |A|, |B| ≤ 0.6n, there are at most 0.8r
√
|A||B|

edges going from A to B.

Then ~G contains at least
(
r−100r/ log logn

e

)n
oriented 1-factors, provided that n is sufficiently

large.

Proof Create an auxiliary bipartite graph G′ from ~G in the following way: take two
copies X and Y of the vertex set [n] by doubling each vertex v ∈ [n] into vX ∈ X and vY ∈ Y .
We put a (non-oriented) edge uv ∈ E(G′) between vertices uX ∈ X and vY ∈ Y if ~uv ∈ E(~G) is
an edge oriented from u to v in ~G. We observe a one-to-one correspondence between oriented
1-factors in ~G and perfect matchings in G′.

In order to use the permanent to obtain a lower bound on the number of perfect matchings
of G′, we need a (large) spanning regular subgraph of G′. Its existence is guaranteed by the
following claim.

Claim 1. G′ contains a spanning regular subgraph G′′ with regularity at least d = r−100r/ log logn.

Proof Applying the Ore-Ryser theorem [77] we see that the statement of the claim is
true provided that for every Y ′ ⊆ Y we have

d|Y ′| ≤
∑
x∈X

min{d, eG′(x, Y ′)}.

Suppose to the contrary that this contrition does not hold, i.e., there exists a Y ′ ⊆ Y s.t.

d|Y ′| >
∑
x∈X

min{d, eG′(x, Y ′)}.

We examine the number of edges incident to Y ′ that can be deleted from G′ without disturbing
the right hand side of the above inequality. Formally, we denote it by c =

∑
x∈X max{0, eG′(x, Y ′)−

d}. Notice that

c = eG′(X,Y ′)−
∑
x∈X

min{d, eG′(x, Y ′)} > eG′(X,Y ′)− d|Y ′|

as supposed above.
Since (r − 4r/ log log n)|Y ′| ≤ δ(G′)|Y ′| ≤ eG′(X,Y ′) < d|Y ′|+ c, we obtain

c >
96r

log logn
|Y ′|.

On the other hand, denoting by X ′ the set of vertices that have at least d neighbors in Y ′, and
noticing that ∆(G′) ≤ r + 4r/ log logn, we obtain

c ≤ 104r
log logn

|X ′|.

Hence,
|X ′| > 0.9|Y ′|. (2.1)

Notice that by the choices of Y ′ and X ′, we have

d|Y ′| >
∑
x∈X

min{d, eG′(x, Y ′)} = d|X ′|+ eG′(X \X ′, Y ′). (2.2)
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2 On the number of Hamilton cycles in sparse random graphs

For the number of edges between Y \ Y ′ and X \X ′ we see that

(r + 4r/ log logn)|Y \ Y ′| ≥ eG′(X \X ′, Y \ Y ′) = eG′(X \X ′, Y )− eG′(X \X ′, Y ′)
(2.2)
> δ(G′)|X \X ′| − d(|Y ′| − |X ′|)

≥ 96r
log log n

|X \X ′|+ (r − 100r/ log log n)|Y \ Y ′|, (2.3)

leading to
|X \X ′| < 1.1|Y \ Y ′|. (2.4)

Furthermore, notice that by (2.2) it holds that

|X ′| < |Y ′|. (2.5)

We prove the claim by case analysis.

• If |Y ′| ≤ n/2, we obtain for the number of edges between X ′ and Y ′

eG′(X ′, Y ′)
Choice of X′

≥ d|X ′|
(2.1)
> 0.9d

√
|X ′||Y ′| > 0.8r

√
|X ′||Y ′|,

contradicting the second condition of the lemma.

• If |Y ′| > n/2, then again by the definition of X ′ we obtain eG′(X ′, Y ′) ≥ d|X ′|, leading to

eG′(X \X ′, Y ′)
(2.2)
< d(|Y ′|−|X ′|) = d(|X \X ′|−|Y \Y ′|)

(2.4)
< 0.1d|Y \Y ′|

(2.5)
< 0.1d|X \X ′|.

Thus, using the fact that δ(G′) > d, we see that

eG′(X \X ′, Y \ Y ′) ≥ 0.9d|X \X ′|
(2.5)
> 0.8r

√
|X \X ′| · |Y \ Y ′|,

again contradicting the same condition of the lemma, since now both X \X ′ and Y \ Y ′
have size less than 0.6n by (2.4).

�

We observe that the number of perfect matchings in G′′ equals the permanent of the incidence
matrix of G′′. Hence the result of Egorychev [26] and Falikman [30] on the conjecture of van
der Waerden implies that the number of perfect matchings in G′′ is at least dnn!/nn >

(
d
e

)n
. �

In order to use Lemma 2.2.1, we first prove the a.a.s. existence of a large subgraph of ~G(n, p)
satisfying the degree-conditions of Lemma 2.2.1 a.a.s.

Lemma 2.2.2. Let ~G ∼ ~G(n, p) with p ≥ log n/n. Then there exists a set V ′ ⊆ [n] of at least n−
n/ log2 n vertices of ~G such that the graph ~C := ~G[V ′] satisfies δin(~C), δout(~C),∆in(~C),∆out(~C) ∈(
np−3np/ log logn

2 , np+np/ log logn
2

)
a.a.s.

Proof We observe using Lemma 1.3.1 that for p � log n(log log n)2/n the statement
holds for V ′ = [n] a.a.s. Hence, from now on we assume np = O(log n(log log n)2).

Let L be the set of all vertices whose in- or outdegree is at most np−np/ log logn
2 + 1. For every

y ∈ [n], we can estimate using Lemma 1.3.1

Pr(y ∈ L) = exp
(
−Ω

(
log n/(log log n)2

))
.
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2.2 The proofs

Thus, by Markov’s inequality we obtain

|L| ≤ log n · E(|L|) = log n · (n− 1) exp
(
−Ω

(
log n/(log log n)2

))
= n exp

(
−Ω

(
log n/(log log n)2

))
(2.6)

a.a.s.
Fix an arbitrary vertex x ∈ [n]. We denote

Lx =
{
y ∈ [n] \ {x} : din, ~G−x(y) ≤ np− np/ log log n

2
or dout, ~G−x(y) ≤ np− np/ log logn

2

}
.

Notice that Lx ⊆ L, and thus (2.6) bounds |Lx| as well.
Since for every y ∈ [n]\{x} the events “xy ∈ E(G)” and “y ∈ Lx” are independent, we obtain

using Lemma 1.3.1 again

Pr
[(
|NG(x) ∩ Lx| ≥

np

2 log log n

)
|
(
|Lx| = n exp

(
−Ω

(
log n/(log log n)2

)))]
≤ exp

(
− np

2 log log n
Ω
(
log n/(log log n)2

))
= o(1/n). (2.7)

Similarly, we let R be the set of all vertices whose in- or outdegree is at least np+np/ log logn
2 −1

and obtain
|R| ≤ n exp

(
−Ω

(
log n/(log log n)2

))
(2.8)

a.a.s.
We define analogously

Rx =
{
y ∈ [n] \ {x} : din, ~G−x(y) ≥ np+ np/ log logn

2
− 1 or dout, ~G−x(y) ≥ np+ np/ log log n

2
− 1
}
,

and observe analogously to (2.7) that Rx ⊆ R and

Pr
[(
|NG(x) ∩Rx| ≥

np

2 log log n

)
|
(
|Rx| = n exp

(
−Ω

(
log n/(log log n)2

)))]
= o(1/n). (2.9)

We denote by V ′ the set of all vertices from [n] whose in- an outdegrees in ~G lie in(
np−np/ log logn

2 , np+np/ log logn
2

)
. Notice that [n] \ V ′ ⊆ Lx ∪Rx for every x ∈ [n]. Hence, we see

that |V ′| > n − n
log2 n

a.a.s. by (2.6) and (2.8). Furthermore, from (2.7) and (2.9) we obtain

that all in- an outdegrees in ~G[V ′] lie in
(
np−3np/ log logn

2 , np+np/ log logn
2

)
a.a.s., completing the

proof of the lemma. �

From now on, whenever we have n and p chosen, we denote

d = d(n, p) = np− 100np/ log logn .

In the following lemma, we show that the random graph contains a.a.s. many 2-factors.

Lemma 2.2.3. The random graph G ∼ G(n, p) with p ≥ log n/n satisfies∑
s∈[n/3]

2sf ′(G, s) ≥ d−n/ log2 n(d/e)n

a.a.s.
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2 On the number of Hamilton cycles in sparse random graphs

Proof In order to use Lemma 2.2.1, we orient G at random to obtain ~G (as always in this
chapter, for every edge each of the two possible orientations gets probability 1/2 independently
of the choices of other edges).

First we show that the second condition of Lemma 2.2.1 holds a.a.s. for ~G with the intuitive
choice r = np/2. Since the maximum degree of G is at most 3np a.a.s. (see e.g. [14]), we
obtain that in G a.a.s. for any two sets A and B with |A| > 100|B| the number of edges
between them is at most 3np|B| < 0.4np

√
|A||B|. Hence, e ~G(A,B) ≤ 0.4np

√
|A||B| and

e ~G(B,A) ≤ 0.4np
√
|A||B|. Thus, we are left with the case of sets A and B of sizes |A| ≤ 100|B|

and |B| ≤ 100|A|.
For small disjoint sets, we obtain using Lemma 1.3.1

Pr
(
∃A′, B′ ⊂ [n], A′ ∩B′ = ∅, |A′||B′| ≤ n2

log logn
, |A| ≤ 100|B| ≤ 104|A| : e ~G(A′, B′) ≥ 0.4np

√
|A′||B′|

)
≤

∑
a,b=o(n), a=Θ(b)

(
n

a

)(
n− a
b

)
exp

(
−Ω

(
np
√
ab log

(
np
√
ab

pab

)))

≤
∑

a,b=o(n)

(ne
a

)a (ne
b

)b
exp

(
−Ω

(
a log n log

(
Ω
(n
a

)))
− Ω

(
b log n log

(
Ω
(n
b

))))
≤

∑
a,b=o(n)

exp
(
a log

(ne
a

)
+ b log

(ne
b

)
− Ω

(
a log

(n
a

)
log n

)
− Ω

(
b log

(n
b

)
log n

))
= o(1).

Similarly, for large disjoint sets we obtain using Lemma 1.3.1

Pr
(
∃A′, B′ ⊂ [n], A′ ∩B′ = ∅, |A′||B′| > n2

log logn
, |A|, |B| ≤ 0.6n : e ~G(A′, B′) ≥ 0.4np

√
|A′||B′|

)
≤

∑
a,b≤n, ab> n2

log logn

(
n

a

)(
n− a
b

)
exp (−Ω (abp))

≤ 4n exp
(
−Ω

(
n log n

log logn

))
= o(1).

Hence, a.a.s. for every pair of disjoint sets A′ and B′, the number of edges going from A′ to B′

satisfies
e ~G(A′, B′) < 0.4np

√
|A′||B′|. (2.10)

Analogously, we see that a.a.s. for every M ⊆ [n] of size at most 0.6n,

eG(M) < 0.4np|M |. (2.11)

Thus, a.a.s. for every A,B ⊂ [n] of size |A|, |B| ≤ 0.6n, the number of edges going from A to
B in ~G is bounded by

e ~G(A,B) = e ~G(A \B,B \A) + eG(A ∩B)
(2.10), (2.11)

< 0.4np
√
|A \B||B \A|+ 0.4np|A ∩B|

≤ 0.4np
√
|A||B|,

establishing that the second condition of Lemma 2.2.1 holds a.a.s. for every subgraph of ~G.
Hence, by Lemma 2.2.2 the graph G ∼ G(n, p) a.a.s. is such that for a random orientation

~G, there a.a.s. exists a vertex set V ′ ⊆ [n] of size at least n − n/ log2 n such that the induced
subgraph ~G[V ′] satisfies the conditions of Lemma 2.2.1 with r = np/2. Applying Lemma 2.2.1
to this induced subgraph, we obtain∑

s∈[n/3]

f
(
~G[V ′], s

)
≥
(
d

2e

)n−n/ log2 n
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2.2 The proofs

a.a.s. Thus, we obtain

∑
s∈[n/3]

E
(
f ′
(
~G, s
))
≥ (1− o(1))

(
d

2e

)n−n/ log2 n

a.a.s., where the expectation is taken over the random choice of orienting the edges of G, the
process creating ~G from G.

On the other hand, when we orient the edges, an almost 2-factor of G with exactly s cycles
becomes an almost 1-factor of ~G with probability at most 2

n
log2 n

−n+s, implying∑
s∈[n/3]

2sf ′(G, s) ≥
∑

s∈[n/3]

2n−
n

log2 nE
(
f ′
(
~G, s
))

.

Putting these two facts together, we obtain

∑
s∈[n/3]

2sf ′(G, s) ≥ (1 + o(1))
(
d

e

)n−n/ log2 n

≥ d−n/ log2 n(d/e)n

a.a.s., completing the proof of the lemma. �

We show now that there are typically many almost 2-factors in G with a small number of
cycles. We denote

s∗ = s∗(n) =
n

log n
√

log logn
.

Lemma 2.2.4. For every p ≥ log n/n, the random graph G ∼ G(n, p) satisfies

s∗∑
s=1

f ′(G, s) ≥ (np/e)n (1− o(1))n

a.a.s.

Proof By Lemma 2.2.3 we know that
∑

s∈[n/3] 2sf ′(G, s) ≥ d−n/ log2 n(d/e)n a.a.s.
We show now that the contribution of almost 2-factors with too many cycles is negligible.

We use the estimate (5) of [62]: in the random graph H ∼ G(n′, p), for every s ≥ log n′,

E(f(H, s)) ≤ (n′ − 1)! (log n′)s−1 pn
′

(s− 1)!2s
.

We obtain

n/3∑
s=s∗

E(2sf ′(G, s)) ≤
∑

`≤n/ log2 n

(
n

`

) n/3∑
s=s∗

n! (log n)s pn−`

s!

≤ n!pn
(
n

p

)n/ log2 n n/3∑
s=s∗

(
s

e log n

)−s
= (d/e)neO(n/ log logn)

(
s∗

e log n

)−s∗
= o

(
d−n/ log2 n (d/e)n

)
.
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2 On the number of Hamilton cycles in sparse random graphs

Hence, using this estimate together with Markov’s inequality, we see that the number of
almost 2-factors of G with at most s∗ cycles is

s∗∑
s=1

f ′(G, s) ≥ 1
2

2−s
∗
d−n/ log2 n (d/e)n = (np/e)n (1− o(1))n

a.a.s. �

The next technicality we need to prove in order to be ready to prove the main theorem is the
expansion of G(n, p).

To collect all but one expansion properties that we need, we make the following definition.

Definition 2.2.5. We call a graph G with the vertex set [n] a p-expander, if there exists a set
D ⊂ [n] such that G and D satisfy the following properties:

• |D| ≤ n0.09.

• The graph G does not contain a non-empty path of length at most 2 logn
3 log logn such that

both of its (possibly identical) endpoints lie in D.

• For every set S ⊂ [n] \ D of size |S| ≤ 1
p , its external neighborhood satisfies |N(S)| ≥

np
1000 |S|.

The following lemma shows that these properties are pseudo-random.

Lemma 2.2.6. Consider the two-round expansion of the random graph and fix G ∼ G(n, p)
with log n/n ≤ p ≤ 1− 2 log log n/n and G ⊆ Ĝ ∼ G(n, p̂) with p̂ = p+ 2 log log n/n. Then it is
a.a.s. true that every graph G′ satisfying G ⊆ G′ ⊆ Ĝ is a p-expander.

Proof We first expose G and fix D = {v ∈ [n] : dG(v) < np/100} to be the set of all
vertices of G with degree less than np/100 in G. Since for a fixed set D the second property is
decreasing and the third property is increasing, it suffices to prove the second statement for Ĝ
and the third statement for G.

The first property is satisfied by Claim 4.3 from [11] a.a.s. The second property can be proven
to hold in Ĝ a.a.s. similarly to Claim 4.4 from [11] (there it is proven to hold for G a.a.s.)

For the third property, suppose to the contrary that there exists a set S ⊂ [n] \ D of size
at most |S| ≤ 1

p such that its external neighborhood in G satisfies |NG(S)| < np
1000 |S|. By the

definition of D, the number of edges incident to S in G is

eG(S,NG(S) ∪ S) ≥ |S|np/200.

But Lemma 1.3.1 tells us that

Pr
(
∃A,B ⊆ [n], |A| ≤ 1

p
, |B| < np

1000
|A| : eG(A,B ∪A) ≥ |A|np/200

)
<

∑
A,B⊂[n], |A|≤1/p, |B|<|A|np/1000

(
e · E (|eG(A,B ∪A)|)

|A|np/200

)|A|np/200

<
∑

A,B⊂[n], |A|≤1/p, |B|<|A|np/1000

(
200e|A||A ∪B|p

|A|np

)|A|np/200

<
∑
a≤1/p

anp

(
n

a

)(
n
anp
1000

)(
3ap
5

)anp/200

<
∑
a≤1/p

anp

(
3ap
5

)anp/400

= o(1),
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2.2 The proofs

providing that the third property holds in G a.a.s. �

The proof of the next lemma is based on the ingenious rotation-extension technique, developed
by Pósa [78], and applied later in a multitude of papers on Hamiltonicity, mostly of random or
pseudorandom graphs (see for example [15], [37], and [64]).

Let G be a graph and let P0 = (v1, v2, . . . , vq) be a path in G. If 1 ≤ i ≤ q − 2 and (vq, vi) is
an edge of G, then there exists a path P ′ = (v1v2 . . . vivqvq−1 . . . vi+1) in G with the same set
of vertices. The path P ′ is called a rotation of P0 with fixed endpoint v1 and pivot vi. The edge
(vi, vi+1) is called the broken edge of the rotation. We say that the segment vi+1 . . . vq of P0 is
reversed in P ′. In case the new endpoint vi+1 has a neighbor vj such that j /∈ {i, i+ 2}, then we
can rotate P ′ further to obtain more paths of the same length. We will use rotations together
with the expansion properties from Lemma 2.2.6 and the necessary minimum degree condition
to find a path on the same vertex set as P0 with large rotation endpoint sets.

The next lemma shows that in any graph having the p-expander property and minimum
degree 2, for any path P0 and its endpoint v1, after a small number of rotations with fixed
endpoint v1, we either create many other endpoints or extend the path. Its proof has certain
similarities to the proofs of Lemma 8 from [45] and of Claim 2.2 from [52].

Lemma 2.2.7. Let n be a sufficiently large integer and G be an n-vertex p-expander with
minimum degree δ(G) ≥ 2 and np ≥ log n. Let P0 be a v1w-path in G. Denote by B(v1) ⊂ V (P0)
the set of all vertices v ∈ V for which there is a v1v-path on the vertex set V (P0) which can be
obtained from P0 by at most 3 logn

log(np) rotations with fixed endpoint v1. Then B(v1) satisfies one
of the following properties:

• there exists a vertex v ∈ B(v1) with a neighbor outside V (P0), or

• |B(v1)| ≥ n/3000.

Proof Assume that B(v1) does not have the first property (i.e., for every v ∈ B(v1) it
holds that N(v) ⊆ V (P0)).

Let t0 be the smallest integer such that
( np

3000

)t0−1 ≥ 1
p ; note that t0 ≤ 2 logn

log(np) . Since G is a
p-expander, there is a corresponding vertex set D as in Definition 2.2.5.

At the first step, we find a neighbor u 6∈ D ∪ N(D) of w that is not a neighbor of w along
P0. Its existence is guaranteed since w has at least two neighbors along P0, and by the second
p-expansion property, at most one of them can have a neighbor in D. We rotate the initial
path P0 with pivot u and call the resulting path P ′ = (v1, . . . , vq). Notice that this way, vq is
guaranteed not to belong to D.

We construct a sequence of sets S0, . . . , St0 ⊆ B(v1) \ D ⊆ V (P0) \ {v1} of vertices, such
that for every 0 ≤ t ≤ t0 and every v ∈ St, v is the endpoint of a path which can be obtained
from P ′ by a sequence of t rotations with fixed endpoint v1, such that for every 0 ≤ i < t, the
non-v1-endpoint of the path after the ith rotation is contained in Si. Moreover, |St| =

( np
3000

)t
for every t ≤ t0 − 2, |St0−1| = 1

p , and |St0 | ≥ n
3000 .

We construct these sets by induction on t. For t = 0, one can choose S0 = {vq} and all
requirements are trivially satisfied.

Let now t be an integer with 0 < t ≤ t0 − 1 and assume that the sets S0, . . . , St−1 with the
appropriate properties have already been constructed. We will now construct St. Let

T =

vi ∈ N(St−1) : vi−1, vi, vi+1 6∈
t−1⋃
j=0

Sj ∪D


be the set of potential pivots for the tth rotation, and notice that T ⊂ V (P0) due to our
assumption, since T ⊆ N(St−1) and St−1 ⊆ B(v1). Assume now that vi ∈ T , y ∈ St−1 and
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2 On the number of Hamilton cycles in sparse random graphs

(vi, y) ∈ E(G). Then, by the induction hypothesis, a v1y-path Q can be obtained from P ′ by t−1
rotations such that after the jth rotation, the non-v1-endpoint is in Sj for every 0 ≤ j ≤ t− 1.
Each such rotation breaks an edge which is incident with the new endpoint, obtained in that
rotation. Since vi−1, vi, vi+1 are not endpoints after any of these t − 1 rotations, both edges
(vi−1, vi) and (vi, vi+1) of the original path P ′ must be unbroken and thus must be present in
Q.

Hence, rotating Q with pivot vi will make either vi−1 or vi+1 an endpoint (which of the two,
depends on whether the unbroken segment vi−1vivi+1 is reversed or not after the first t − 1
rotations). Assume without loss of generality that the endpoint is vi−1. We add vi−1 to the set
Ŝt of new endpoints and say that vi placed vi−1 in Ŝt. The only other vertex that can place
vi−1 in Ŝt is vi−2 (if it exists).

Observe now that if t < 0.1 log n/ log log n, the distance between any vertex from St−1 and vq
is at most 2t−2 < 0.2 log n/ log logn by the way the sets were constructed. Hence, between any
two vertices from N(St−1) ∪N(N(St−1)), there is a path of length at most 0.5 log n/ log logn.
Thus at most one vertex from D can be in N(St−1) ∪ N(N(St−1)). On the other hand, it
t ≥ 0.1 log n/ log log n, then |D| ≤ n0.09 = o(|St−1|) = o(|N(St−1)|). Thus, in both cases
|D ∩ (N(St−1) ∪N(N(St−1)))| = o(|N(St−1)|).

Combining all this information together, we obtain

|Ŝt| ≥
1
2
|T |

≥ 1
2

(|N(St−1)| − 3(1 + |S1|+ . . .+ |St−1|+ |D ∩ (N(St−1) ∪N(N(St−1)))|))

≥
( np

3000

)t
.

Clearly we can delete arbitrary elements of Ŝt to obtain St of size
( np

3000

)t if t ≤ t0 − 2 and of
size 1

p if t = t0 − 1. So the proof of the induction step is complete and we have constructed the
sets S0, . . . , St0−1.

To construct St0 we use the same technique as above, only the calculations are slightly
different.

|Ŝt0 | ≥
1
2
|T |

≥ 1
2

(|N(St0−1)| − 3(1 + |S1|+ . . .+ |St0−2|+ |St0−1|+ |D ∩ (N(St−1) ∪N(N(St−1)))|))

≥ n/3000.

The set St0 := Ŝt0 is by construction a subset of B(v1), and the number of rotations needed
to make any of its vertices an endpoint of the current path is at most t0 + 1, concluding the
proof of the lemma. �

The proof of the following lemma relies on the final part of the proof of Theorem 1 from [68]
and uses Lemma 2.2.7. It shows that under certain pseudorandom conditions in a graph G for
every almost 2-factor, after adding few random edges, there exists a Hamilton cycle within a
small Hamming distance from it a.a.s.

Lemma 2.2.8. Let G be a connected n-vertex p-expander with minimum degree 2 and S be
a set of vertices of G of size |S| = o(n) such that there exist at least n non-edges in G not
incident to S. Let F be an almost 2-factor of G with at most s∗ cycles. Choose n non-edges
e1, . . . , en of G i.a.r. under the condition that none of them is incident to S and denote by G′

the (random) graph obtained from G by turning them into edges. Then, if it is a.a.s. true that
every graph G ⊆ Ĝ ⊆ G′ is a p-expander, then G′ a.a.s. contains a Hamilton cycle H with
Hamming distance at most 17s∗ log n/ log(np) from F .
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Proof Fix an arbitrary component C ⊆ F . Since G is connected, there exists an edge
in G connecting a vertex v ∈ V (C) and y 6∈ V (C) - unless of course C is already Hamiltonian.
We denote by C ′ the component of y in F . Opening C up by deleting an edge of C incident
to v (no need to do so if C is just one isolated vertex), we get a path P . We append the edge
vy to P , go through it to C ′, and if C ′ is a cycle, then we open it up by deleting an edge of
C ′ incident to y to get a longer path P ′ and repeat the argument. If at some point there are
no edges between the endpoints of the current path P ′′ and other components from F , then
we can fix one endpoint x of P ′′ and rotate P ′′ using Lemma 2.2.7 to extend it outside or to
obtain a set B(x) of size at least |B(x)| ≥ n/3000 of potential other endpoints. For every vertex
z ∈ B(x), we can rotate the resulting path fixing z as one endpoint to obtain a set A(z) of
size at least |A(z)| ≥ n/3000 of potential other endpoints or to extend the path outside. If the
path still cannot be extended outside and we can still not close it to a cycle, we have a set E′

of at least 10−8n2 non-edges of G not incident to S, so that turning any of them into an edge
would close the path to a cycle. We add pairs e1, e2, . . . to E(G), until one of them falls inside
E′. Notice that for every i ∈ [n], the pair ei falls into E′ with at least some constant positive
probability. This means that considering events “ei ∈ E′”, every event has probability Θ(1)
regardless of the previous events. Notice that in a successful round, the number of components
gets reduced or a Hamilton cycle is created, since the edge that appeared in E′ closed the path
into a cycle or extended the path directly. To reduce the number of components by one, we do
at most log n/ log(np) rotations by Lemma 2.2.7, therefore increasing the Hamming distance
from F by at most 4 + 12 log n/ log(np). Since it is enough to have s∗ + n/ log2 n successful
events to obtain a Hamilton cycle, the expected number of needed turns of non-edges into
edges is at most O(1) · (s∗ + n/ log2 n) = o(n). Hence the n additional edges suffice to create
a Hamilton cycle H from F by Markov’s inequality a.a.s., replacing at most 8 log n/ log(np)
edges for every component of F . Thus, the Hamming distance between F and H is at most
2 · 8 logn

log(np)(s∗ + n/ log2 n) ≤ 17s∗ log n/ log(np). �

We are now ready to prove Theorem 1.2.1.
Proof Notice that only the lower bound is of interest for us. We expose G in two rounds.
We choose a function p1 = p1(n) such that logn+log logn+ω(1)

n ≤ p1 ≤ p − ω(1)
n , p1 ≤ 1 −

2 log log n/n, and p1 = (1− o(1))p. In the first round, we expose G1 ∼ G(n, p1). We determine
D := {v ∈ [n] : dG1(v) < np1/100}.

In the second round, we expose the binomial random graph G2 by including every edge from
Kn \G1 into E(G2) with probability p2 := p−p1

1−p1 . Since (1− p1)(p2) = 1− p, we obtain a graph
G := G1 ∪G2 ∼ G(n, p). We know by Lemma 2.2.6 that a.a.s. every graph between G1 and G
including them both is a p1-expander. Furthermore, notice that the expected number of edges
in G2 is

(
n
2

)
p2 ≥

(
n
2

)
(1− p1) = ω(n), hence a.a.s. at least n additional random edges appeared

in the second round of expansion by Markov’s inequality. Since these edges were chosen i.a.r.,
and G1 is a.a.s. connected with minimum degree at least 2 (see e.g. [14]), the conditions of
Lemma 2.2.8 are satisfied for G1 and the first n edges exposed in the second round with S = ∅.

Now, we put all we know together:

• By Lemma 2.2.4 we obtain
∑s∗

s=1 f
′(G1, s) ≥ (np1/e)

n (1− o(1))n a.a.s.

• For every almost 2-factor F of G1 with at most s∗ cycles, there a.a.s. exists a Hamilton
cycle in G with Hamming distance at most k := 17s∗ log n/ log(np1) = 17n

log(np1)
√

log logn
=

o(n) from F by Lemma 2.2.8.

• On the other hand, for every Hamilton cycle H in G, to obtain an almost 2-factor of G1

of distance at most k from H, we can first delete at most k edges of H, thus obtaining
a collection of at most k paths. These paths should then be tailored into an almost 2-
factor, and the choices here are for each of the at most 2k endpoints of the paths to be
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2 On the number of Hamilton cycles in sparse random graphs

connected to one of its ∆(G1) neighbors in G1 or to stay isolated. Thus, there are at most(
n
k

)
(∆(G1) + 1)2k almost 2-factors of G with Hamming distance at most k from H.

• Hence, by double counting almost 2-factors of G with at most s∗ cycles, we obtain

h(G) ≥
∑s∗

s=1 f
′(G′, s)(

n
k

)
(∆(G1) + 1)2k

≥ (np1/e)
n (1− o(1))n

2o(n)(4 log(np1))2k
= (np/e)n (1− o(1))n

a.a.s. �

To strengthen the result of Cooper and Frieze [20], we now prove Theorem 1.2.2.
Proof The proof goes along the argument of Theorem 1.2.1, but now we expose the

graph in three rounds. We first expose G1 ∼ G(n, log n/n) and fix the set D of vertices of
degree at most logn/100. Notice that similarly to the argument in the proof of Lemma 2.2.6,
Claim 4.3 from [11] implies that |D| ≤ n0.09. In the second round of exposure, in addition
to G1 we expose those edges that are incident to D one by one, until the minimum degree
becomes two; the resulting graph is called G′. In the third round of exposure we consider the
binomial random graph G2 by including every edge of Kn\G1 not incident to D with probability
p2 := log logn

2n .
Let us denote by G the graph obtained by stopping the random graph process at the mo-

ment the minimum degree becomes two. Notice first that since in the random graph process
δ
(
G
(
n, logn+0.5 log logn

n

))
= 1 a.a.s., we obtain G′ ∪ G2 ⊆ G a.a.s., where by the union of

two graphs with vertex sets [n] we denote the graph on the same vertex set where the union
is taken over the edge sets. Furthermore, observe that since in the random graph process
δ
(
G
(
n, logn+2 log logn

n

))
≥ 2 a.a.s., we obtain G′ ∪ G2 ⊆ G

(
n, logn+2 log logn

n

)
a.a.s. (The two

statements above can be found e.g. in [14].) Finally, G′ is connected a.a.s. because of the
expansion properties and the fact that the edge set between two linearly large sets is not empty
(see e.g. [52]).

Since p2 = ω(1/n) and |D| = o(n) a.a.s., we obtain |E(G2)| = ω(n) a.a.s. Furthermore, these
edges are random under the only conditions of being non-edges of G1 and being not incident to
D. Hence, the conditions of Lemma 2.2.8 are satisfied for G′ and the first n edges exposed in
the third round.

Thus, following the lines of the proof of Theorem 1.2.1, we obtain the desired estimate. �

2.3 Concluding remarks

In this chapter we have proven that for any value of the edge probability p = p(n), for which
the random graph G G(n, p) is a.a.s. Hamiltonian, the number of Hamilton cycles in G is
n!pn(1 + o(1))n a.a.s., thus being asymptotically equal to the expected value – up to smaller
order exponential terms. Of course, it would be very nice to extend Janson’s result [56] to smaller
values of p and to understand more accurately the distribution of the number of Hamilton cycles
in relatively sparse random graphs. However, given that the machinery used in [56] is rather
involved, and the result (limiting distribution) is somewhat surprising, this will not necessarily
be an easy task.

Our bound on the number of Hamilton cycles in G(n, p) can be used to bound the number
of perfect matching similarly to [68]. Let m(G) denote the number of perfect matchings in the
graph G. Since every Hamilton cycle is a union of two perfect matchings, we obtain h(G) ≤(
m(G)

2

)
. Hence, for G ∼ G(n, p) the a.a.s. lower bound on h(G) from Theorem 1.2.1 provides

the a.a.s. lower bound m(G) ≥ (np/e)n/2(1− o(1))n. Since the upper bound is easily obtained
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2.3 Concluding remarks

from the expected value by Markov’s inequality similarly to the first paragraph of Section 2.2,
we have m(G) = (np/e)n/2(1−o(1))n. The corresponding hitting time statement is obtained by
a straightforward modification of the proof of Theorem 1.2.2: In the random graph process, the
edge that makes the graph connected a.a.s. creates (log n/e)n/2(1− o(1))n perfect matchings.
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3 On covering expander graphs by Hamilton
cycles

3.1 Introduction

As we pointed out before, the results in this chapter are based on joint work with Michael
Krivelevich and Tibor Szabó [45].

3.1.1 Pseudorandom setting

Our argument will proceed in an appropriately chosen pseudorandom setting.
By the neighborhood N(A) of a set A, we mean all the vertices outside A having at least one

neighbor in A. Note that we explicitly exclude A from N(A).
The following definition contains the most important notions of the chapter.

Definition 3.1.1. We say that a graph G has the small expansion property S(s, g) with expan-
sion factor s and boundary g, if for any set A ⊂ V (G) of size |A| ≤ g, the neighborhood of A
satisfies |N(A)| ≥ |A|s.

We say that G has the large expansion property L(l) with frame l, if there is an edge between
any two disjoint sets A,B ⊂ V (G) of size |A|, |B| ≥ l.

We call a graph (s, g, l)-expander, if it satisfies properties S(s, g) and L(l).
We refer to an

(
s, 4n log s

s logn ,
n log s

3000 logn

)
-expander on n vertices briefly as an s-expander.

Notice that the expander-property is monotone in all three parameters, meaning that every
(s, g, l)-expander is also an (s− 1, g, l)-, an (s, g − 1, l)- and an (s, g, l + 1)-expander.

The proof of Theorem 1.2.3 is based on the following result.

Theorem 3.1.2. For every constant α > 0 there exists n0 = n0(α) such that for every n ≥ n0

and every h > 0, every nα-expander graph G on n vertices with a Hamilton packing of size h
has a Hamilton covering of size at most h+ 28000(∆(G)−2h)

α4 .

3.1.2 Structure of the chapter and outline of the proofs

In Section 3.2, we prove Theorem 3.1.2 in the following main steps:

• in Lemma 3.2.2 we show that the small expansion property is “robust” in the sense that
after deleting a small linear-size set of vertices from a graph satisfying S, we still have a
large subgraph satisfying S with slightly worse parameters;

• in Lemma 3.2.4 we show that vertex-disjoint paths in an expander can be joined together
without losing or gaining too many edges;

• in Lemma 3.2.5, Fact 3.2.6 and Lemma 3.2.7, we learn how to apply the rotation-extension
technique, developed by Pósa [78], without losing too many important edges;

• Lemma 3.2.8 contains the main proof of the chapter. There we show applying the previous
technical statements that a small matching in an expander can mostly be covered by a
Hamilton cycle of the same graph.
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3 On covering expander graphs by Hamilton cycles

• After having digested the statement of Lemma 3.2.8 in Corollary 3.2.9, we prove Theo-
rem 3.1.2 in 6 easy lines.

Section 3.3 contains the proof of Theorem 1.2.3. There, we first prove in Lemma 3.3.1
that G(n, p) is a 5

√
np-expander a.a.s., and prove Theorem 1.2.3 using this fact and the result

from [62].
And finally, in Section 3.4, we give some concluding remarks leading to further open questions.
In general, we may drop floor and ceiling signs to improve the readability when they do not

influence the asymptotic statements.

3.2 Proof of Theorem 3.1.2

The maximum over all pairs of vertices x, y ∈ V (G) of the length of a shortest xy-path in a
graph G is called the diameter of G and is denoted by diam(G). We start with an observation
showing that graphs with appropriate expander properties have small diameter.

Observation 3.2.1. Any n-vertex graph satisfying S(s, g) and L(l) for some s, g, l with s > 1
and l ≤ sg has diameter at most 2 log n/ log s+ 3.

Proof Let G be a graph on n vertices. By the small expansion property of G, we know
for every vertex x ∈ V (G) that |N(x)| ≥ s. In the following, for any x ∈ V (G) and any i ∈ N,
let us denote by Bi(x) the set of all vertices with distance at most i to x, i.e., Bi(x) contains
all those vertices y ∈ V (G), for which there exists an xy-path of length at most i. Inductively,
as long as for an i ∈ N and an x ∈ V (G) it holds that |Bi(x)| ≤ g, we obtain |Bi+1(x)| ≥ si+1.
Now, the last index i such that |Bi(x)| ≤ g is obviously at most blog n/ log sc− 1, since sg ≤ n.
Hence, |Bblogn/ log sc(x)| ≥ g, and |Bblogn/ log sc+1(x)| ≥ sg ≥ l. Thus, for any two vertices
x, y ∈ V (G) we know that both sets Bblogn/ log sc+1(x) and Bblogn/ log sc+1(y) have at least l
vertices. This guarantees that by property L(l) of G, either these sets are not disjoint or there
exists an edge between these sets. Each of these facts implies an x, y-path of length at most
2 blog n/ log sc+ 3, and the observation follows. �

The following lemma shows that if we have a graph satisfying the small expansion property
and we remove an arbitrary subset of small size from the vertex set, then with the additional
removal of a (possibly) even smaller subset we can recover some of the small expansion property
again.

Lemma 3.2.2 (Induced expander lemma). For any s, g, every graph G = (V,E) satisfying
S(s, g) has the following induced expansion property. For every D ⊂ V of size |D| ≤ gs

4 , there
exists a set Z ⊂ V of size |Z| ≤ 2|D|

s , such that the graph G[V \ (D ∪ Z)] satisfies S( s2 ,
g
2).

Proof Let Z be a largest set in V \ D among subsets of V \ D of size at most g not
satisfying the small expansion property with expansion factor s/2 in G[V \ D], meaning that
|N(Z) \D| < |Z| s2 (assuming there exists such a set; otherwise we are done by setting Z = ∅ in
the statement of the lemma). We denote U = V \ (D ∪ Z) and remember that

|N(Z) ∩ U | < |Z|s
2
.

Thus, by the property S(s, g) of G,

|D|+ |N(Z) ∩ U | ≥ |N(Z)| ≥ |Z|s,

implying that

|Z| ≤ 2|D|
s
≤ g

2
.
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Assume now for the sake of contradiction that G[U ] does not satisfy S( s2 ,
g
2), i.e. there exists

an A ⊂ U with |A| ≤ g
2 and |N(A) ∩ U | < |A| s2 . Then the set A ∪ Z ⊂ V \ D satisfies both

properties
|A ∪ Z| ≤ g

and

|N(A ∪ Z) ∩ U | ≤ |N(A) ∩ U |+ |N(Z) ∩ U | < |A ∪ Z|s
2

,

contradicting the assumption that Z is a largest set in V \D with these properties. �

The following concept allows us to join together paths in an appropriate way.
By the k-end of a path we mean the at most 2k vertices of this path’s vertex set with distance

at most k− 1 to one of the two endpoints, whereas the endpoints have distance 0 to themselves
and so are part of any k-end with k ≥ 1. We call a path non-trivial if its length is at least
one. Given a family M of non-trivial vertex-disjoint paths, we call a family M′ of non-trivial
vertex-disjoint paths a (d, k)-extension of M, if we have that

• µ := |M| − |M′| ≥ 0,

• |
⋃
P∈ME(P ) \

⋃
P ′∈M′ E(P ′)| ≤ 2(k − 1)µ, and

• |
⋃
P ′∈M′ E(P ′) \

⋃
P∈ME(P )| ≤ (d+ 2)µ.

Informally speaking, we neither gain nor lose too many edges relative to the decrease in the
number of paths, while passing from M to M′. Behind the definition, in our mind lies the
iterative algorithm which in each step either deletes a path of length less than 2k − 1 from the
family M or joins the k-ends of two paths in M by paths of length at most d+ 2 (and deletes
the k-ends). At the end, when one cannot do either, we have a size-minimal (d, k)-extension,
the main object we use in our proofs. This intuition is to be formalized in Lemma 3.2.3.

To clarify the notation, when speaking about the size |M| of a family of non-trivial vertex-
disjoint paths M, we mean the number of these paths. Note that any extension of M has at
most as many paths as M. Notice that the definition of extension is transitive, i.e., if for some
pair (d, k), M′ is a (d, k)-extension of M and M′′ is a (d, k)-extension of M′, then M′′ is a
(d, k)-extension ofM. Furthermore, the relation is also reflexive, i.e.,M is a (d, k)-extension of
itself for any k ≥ 1 and every d ≥ 0. We say that M′ is a size-minimum (d, k)-extension of M,
if every (d, k)-extension M′′ of M has size at least |M′′| ≥ |M′|. Notice that the transitivity
and reflexivity of extensions imply that then M′ is a size-minimum (d, k)-extension of itself.

We use the notation V (M) :=
⋃
P∈M V (P ) for the set of all vertices appearing in one of the

paths of M and E(M) :=
⋃
P∈ME(P ) for the corresponding edge set.

For our applications we will mostly be interested in size-minimum extensions. The following
lemma provides us with two basic properties of size-minimum extensions: namely that they do
not contain very short paths and that there are no short paths between the ends of two distinct
paths from such an extension.

Lemma 3.2.3. Let G be a graph, k ≥ 1 and d ≥ 0 arbitrary integers and M a family of
non-trivial vertex-disjoint paths, which is a size-minimum (d, k)-extension of itself. Then the
following holds:

1. there exists no path in M of length less than 2k − 1 and

2. for every two distinct paths P1, P2 ∈ M, for every vertex x in the k-end of P1 and every
vertex y in the k-end of P2, for every a ∈ N(x)\V (M) and b ∈ N(y)\V (M), there exists
no ab-path of length at most d in G− V (M).
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Proof 1. Suppose for the sake of contradiction that there exists a path P of length
at most 2k − 2 in M. Delete this path from M and call the resulting family of non-empty
vertex-disjoint paths M′. Then since |M| − |M′| = 1, we obtain

|E(M) \ E(M′)| = |E(P )| ≤ 2k − 2 = 2(k − 1)
(
|M| − |M′|

)
,

and
|E(M′) \ E(M)| = 0 ≤ (d+ 2)

(
|M| − |M′|

)
.

Hence, M′ is a (d, k)-extension of M, contradicting the minimality of M as a (d, k)-extension
of itself.

2. Suppose to the contrary that there exist two distinct paths P1, P2 ∈M with a vertex x in
the k-end of P1, a vertex y in the k-end of P2, and vertices a ∈ N(x)\V (M) and b ∈ N(y)\V (M)
such that in G− V (M), there is an ab-path of length at most d. Let us call this path P3.

The vertex x splits P1 into two subpaths, the shorter one has length at most k−1. Let us call
the longer one Px and construct Py from P2 analogously. By connecting the paths Px, P3 and Py
via the edges xa and by, we obtain a new path P ′. Replace the two paths P1 and P2 inM by P ′

and call the resulting family of non-trivial vertex-disjoint pathsM′. Then µ = |M|− |M′| = 1.
By construction E(M) contains all but at most k − 1 edges from each of P1 and P2, so

|E(M) \ E(M′)| = |E(P1) ∪ E(P2) \ E(P ′)| ≤ 2(k − 1) = 2(k − 1)µ,

Furthermore, E(M′) contains at most |E(P ′) \ (E(P1) ∪ E(P2)) | ≤ d+ 2 edges that are not
contained in E(M), so

|E(M′) \ E(M)| ≤ d+ 2 = (d+ 2)µ.

In conclusion, M′ is a (d, k)-extension of M, contradicting the minimality of M as a (d, k)-
extension of itself. �

Lemma 3.2.4. For every k ≥ 1, in every n-vertex graph G satisfying S(s, g) and L(l) for
some s, g and l with sg ≥ 4l, s ≥ 18, and n sufficiently large the following holds. For every
family of non-trivial vertex-disjoint pathsM on at most |V (M)| ≤ αgs/20 vertices in G, where
α = log s/ log n, there exists a (6/α, k)-extension M′ of M of size |M′| ≤ 5|V (M)|

2αks + 1.

Proof Let M′ be a size-minimum (6/α, k)-extension of M. (One exists, since M is a
(6/α, k)-extension of itself.) Apply Lemma 3.2.2 with D = V (M′) to find the corresponding
sets Z and U (meaning that |Z| ≤ 2|V (M′)|/s, U = V (G) \ (V (M′) ∪ Z) and G[U ] satisfies
S(s/2, g/2)). Lemma 3.2.2 can be applied since

|D| = |V (M′)| = |E(M′)|+ |M′|
≤ |E(M)|+ (6/α+ 2)(|M| − |M′|) + |M′|
= |V (M)|+ (6/α+ 1)(|M| − |M′|)
< (1 + (6/α+ 1)/2)|V (M)| < 5|V (M)|/α ≤ gs/4.

In the last line we used that the paths of M are non-trivial (implying that |M| ≤ |V (M)|/2)
and that α < 1.

Let now x and y be two vertices from the k-ends of two distinct paths P1 and P2 ∈ M′,
respectively, and suppose each of them has a neighbor in U . Let a ∈ U be a neighbor of x and
let b ∈ U be a neighbor of y. Since G[U ] satisfies both S(s/2, g/2) and L(l) with l ≤ s/2 · g/2,
Observation 3.2.1 implies that the diameter of G[U ] is at most

diam(G[U ]) ≤ 2 log n/ log(s/2) + 3 ≤ 2
log n
2
3 log s

+ 3 <
6
α
,
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3.2 Proof of Theorem 3.1.2

where the next to last inequality holds since s ≥ 8. Hence, there exists an ab-path of length at
most 6

α in G[U ] ⊆ G[V (G) \ V (M)], contradicting the size-minimality of M′ by Lemma 3.2.3.
Consequently, there can be at most one such path inM′ that has a vertex in its k-end with a

neighbor in U . Hence the k-ends of at least |M′| − 1 paths have neighbors only in V (M′) ∪ Z.
By Lemma 3.2.3 each such path has length at least 2k − 1 so we found a set S of 2k(|M′| − 1)
vertices such that S together with its neighborhood contains at most

|S|+ |N(S)| ≤ |Z|+ |V (M′)|
< 2|V (M′)|/s+ |V (M′)| ≤ 10|V (M′)|/9

<
10
9

(|V (M)|+ (6/α+ 1)|M|)

< 5|V (M)|/α < gs

vertices. Here in the next to last inequality we use the fact that M contains no path of length
0, implying that |M| ≤ |V (M)|/2. Now, if S contained at least g elements, then taking
a subset S′ ⊆ S of size g would lead to a contradiction via the small expansion property:
gs = |S′|s ≤ |N(S′) ∪ S′| ≤ |N(S) ∪ S| < gs. Hence |S| < g and then the small expansion
property implies that

2sk(|M′| − 1) = s|S| ≤ |N(S)| < 5|V (M)|/α.

�

The proof of the main theorem is based on the ingenious rotation-extension technique, de-
veloped by Pósa [78], and applied later in a multitude of papers on Hamiltonicity, mostly of
random or pseudorandom graphs (see for example [15], [37], and [64]).

Let G be a graph and let P0 = (v1, v2, . . . , vq) be a path in G. If 1 ≤ i ≤ q − 2 and (vq, vi)
is an edge of G, then there exists a path P ′ = (v1v2 . . . vivqvq−1 . . . vi+1) in G. P ′ is called a
rotation of P0 with fixed endpoint v1 and pivot vi. The edge (vi, vi+1) is called the broken edge
of the rotation. We say that the segment vi+1 . . . vq of P0 is reversed in P ′. In case the new
endpoint vi+1 has a neighbor vj such that j /∈ {i, i+ 2}, then we can rotate P ′ further to obtain
more paths of maximum length. We use rotations together with properties S and L to find a
path on the same vertex set as P0 with large rotation endpoint sets.

The next lemma is a slight strengthening of Claim 2.2 from [52] with a similar proof. It
shows that in any graph having the small and large expansion properties for any path P0 and
its endpoint v1 many other endpoints can be created by a small number of rotations with fixed
endpoint v1. In our setting we must also care about not breaking any of the edges from a small
“forbidden” set F .

Lemma 3.2.5. Let G = (V,E) be a graph on n vertices that satisfies S(s, g) and L(l) with
s ≥ 21, sg/3 > l, and l ≤ n/24. Let P0 = (v1, v2, . . . , vq) be a path in G and F ⊆ E(P0) with
|F | ≤ s/24 − 1/2. Denote by B(v1) ⊂ V (P0) the set of all vertices v ∈ V for which there is a
v1v-path on the vertex set V (P0) which can be obtained from P0 by at most 3 logn

log s rotations with
fixed endpoint v1 not breaking any of the edges of F . Then B(v1) satisfies one of the following
properties:

• there exists a vertex v ∈ B(v1) with a neighbor outside V (P0), or

• |B(v1)| ≥ n/3.

Proof Assume B(v1) does not have the first property (i.e., for every v ∈ B(v1) it holds
that N(v) ⊆ V (P0)).

Let t0 be the smallest integer such that
(
s
3

)t0−2 ≥ g; note that t0 ≤ log g
log(s/3) + 3 ≤ 3 logn

log s ,
because 21 ≤ s.
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3 On covering expander graphs by Hamilton cycles

We construct a sequence of sets S0, . . . , St0 ⊆ B(v1) ⊆ V (P0) \ {v1} of vertices, such that
for every 0 ≤ t ≤ t0 and every v ∈ St, v is the endpoint of a path which can be obtained
from P0 by a sequence of t rotations with fixed endpoint v1, such that for every 0 ≤ i < t, the
non-v1-endpoint of the path after the ith rotation is contained in Si. Moreover, |St| =

(
s
3

)t for
every t ≤ t0 − 3, |St0−2| = g, |St0−1| = l, and |St0 | ≥ n/3. Furthermore, for any 1 ≤ t ≤ t0,
V (F ) ∩ St = ∅, and hence no edge from F got broken in any of the rotations.

We construct these sets by induction on t. For t = 0, one can choose S0 = {vq} and all
requirements are trivially satisfied.

Let now t be an integer with 0 < t ≤ t0 − 2 and assume that the sets S0, . . . , St−1 with the
appropriate properties have already been constructed. We will now construct St. Let

T = {vi ∈ N(St−1) : vi−1, vi, vi+1 6∈
t−1⋃
j=0

Sj ∪ V (F )}

be the set of potential pivots for the tth rotation, and notice that T ⊂ V (P0) due to our
assumption, since T ⊆ N(St−1) and St−1 ⊆ B(v1). Assume now that vi ∈ T , y ∈ St−1 and
(vi, y) ∈ E. Then, by the induction hypothesis, a v1y-path Q can be obtained from P0 by t− 1
rotations not breaking any edge from F such that after the jth rotation, the non-v1-endpoint
is in Sj for every 0 ≤ j ≤ t − 1. Each such rotation breaks an edge which is incident with the
new endpoint, obtained in that rotation. Since vi−1, vi, vi+1 are not endpoints after any of these
t− 1 rotations and also not in V (F ), both edges (vi−1, vi) and (vi, vi+1) of the original path P0

must be unbroken and thus must be present in Q \ F .
Hence, rotating Q with pivot vi will make either vi−1 or vi+1 an endpoint (which of the two,

depends on whether the unbroken segment vi−1vivi+1 is reversed or not after the first t − 1
rotations). Assume without loss of generality that the endpoint is vi−1. We add vi−1 to the set
Ŝt of new endpoints and say that vi placed vi−1 in Ŝt. The only other vertex that can place
vi−1 in Ŝt is vi−2 (if it exists). Thus we have

|Ŝt| ≥
1
2
|T | ≥ 1

2
(|N(St−1)| − 3(1 + |S1|+ . . .+ |St−1|+ 2|F |))

≥ s

2

(s
3

)t−1
− 3

2
(s/3)t − 1
s/3− 1

− (s/8− 3/2) ≥
(s

3

)t
,

where in the third inequality we use the small expansion property for the set St−1 (where
|St−1| ≤ g by the definition of t0) and the last inequality follows since s ≥ 21. Clearly we can
delete arbitrary elements of Ŝt to obtain St of size

(
s
3

)t if t ≤ t0 − 3 and of size g if t = t0 − 2.
So the proof of the induction step is complete and we have constructed the sets S0, . . . , St0−2.

To construct St0−1 and St0 we use the same technique as above, only the calculations are
slightly different. If g = 1, then t0 − 1 = 1, and analogously to the above calculation we obtain
Ŝ1 with |Ŝ1| ≥ s/3 ≥ l. Otherwise, for g ≥ 2, since |N(St0−2)| ≥ sg, we have

|Ŝt0−1| ≥
1
2
|T | ≥ 1

2
(|N(St0−2)| − 3(1 + |S1|+ . . .+ |St0−4|+ |St0−3|+ |St0−2|+ 2|F |))

≥ gs/2− 3
2

(s/3)t0−2 − 1
s/3− 1

− 3g/2− (s/8− 3/2)

≥ gs/2− 2 ·
(s

3

)t0−3
− 3

2
g − (s/8− 3/2)

≥ gs/2− 2g − 3
2
g − (s/8− 3/2) ≥ gs/3 > l,

where the inequality in the last but one line and the last but one inequality follow since s ≥ 21
and g ≥ 2. We delete arbitrary elements of Ŝt0−1 to obtain St0−1 of size l.
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3.2 Proof of Theorem 3.1.2

For St0 the difference in the calculation comes from using the expansion guaranteed by the
property L, rather than the property S. That is, we use the fact that |N(St0−1)| ≥ n − 2l.
Hence, we obtain

|St0 | ≥
1
2
|T | ≥ 1

2
(|N(St0−1)| − 3(1 + |S1|+ . . .+ |St0−2|+ |St0−1|+ 2|F |))

≥ n

2
− l − 4g − 3

2
l − (s/8− 3/2)

>
n

3
,

where the last inequality follows since 4g ≤ sg/3 ≤ l, s ≤ sg ≤ 3l and l ≤ n/24.
The set St0 is by construction a subset of B(v1), concluding the proof of the lemma. �

Let H be a graph with a spanning path P = (v1, . . . , vm). For 2 ≤ i < m, let us define
the auxiliary graph H+

i = H+
vi by adding a vertex and two edges to H as follows: V (H+

i ) =
V (H) ∪ {w}, E(H+

i ) = E(H) ∪ {(vm, w), (vi, w)}. Let Pi = Pvi be the spanning path of H+
i

which we obtain from the path P ∪{(vm, w)} by rotating with pivot vi. Note that the endpoints
of Pi are v1 and vi+1.

For a vertex vi ∈ V (H), let Svi be the set of those vertices of V (P )\{v1}, which are endpoints
of a spanning path of H+

i obtained from Pi by a series of rotations with fixed endpoint v1.
A vertex vi ∈ V (P ) is called a bad initial pivot (or simply a bad vertex) if |Svi | < m

43 and
is called a good initial pivot (or a good vertex) otherwise. We can rotate Pi and find a large
number of endpoints, provided that vi is a good initial pivot.

Hefetz et al. [52] showed that H has many good initial pivots provided that property L is
satisfied.

Fact 3.2.6 ([52] Lemma 2.3). Let H be a graph satisfying L(m/43) with a spanning path
P = (v1, . . . , vm). Then

|R| ≤ 7m/43,

where R = R(P ) ⊆ V (P ) is the set of bad vertices.

With these statements in our toolbox, we can prove the following important technical lemma.
It states that we can rotate a path until it can be extended, and still do not break too many of
the important edges.

Lemma 3.2.7. For every sufficiently large n and every s = s(n) with s ≥ 21, in every s-
expander graph G on n vertices every path P0 in G has the following property. For every pair
of sets F ⊂ F ′ ⊆ E(P0) of at most |F | ≤ s/24 − 1/2 and |F ′| ≤ n log s

9200 logn edges of P0, there
exists a path P ′ in G between some x, y ∈ V (P0), such that V (P ′) = V (P0), F ⊂ E(P ′),
|F ′ \ E(P ′)| ≤ 6 log n/ log s, and G contains the edge {x, y}, or the set {x, y} has neighbors
outside P ′.

Proof Assume for the sake of contradiction that the statement is not true. Let P0 =
(v1, v2, . . . , vq), and let A0 = B(v1) ⊂ V (P0) be the set corresponding to P0 and F as in
Lemma 3.2.5, meaning that for every v ∈ B(v1) there is a v1v-path of maximum length which
can be obtained from P0 by at most t0 = 3 logn

log s rotations with fixed endpoint v1 not breaking

any of the edges of F . Clearly, at most 3 logn
log s edges from F ′ were broken by the rotations, thus

by our assumption every v ∈ A0 has no neighbors outside P0, hence by Lemma 3.2.5 we obtain
|A0| ≥ n/3. For every v ∈ A0 fix a v1v-path P (v) with the above properties and, again using
our assumption and Lemma 3.2.5, construct sets B(v), |B(v)| ≥ n/3, of endpoints of paths with
fixed endpoint v, obtained from the path P (v) by at most t0 rotations not breaking any edge
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3 On covering expander graphs by Hamilton cycles

from F . To summarize, for every a ∈ A0 and b ∈ B(a) there is a path P (a, b) joining a and b
on the vertex set V (P0), which is obtainable from P0 by at most ρ := 2t0 = 6 logn

log s rotations not
breaking any of the edges from F . Moreover, this clearly entails |V (P0)| ≥ n/3.

We consider P0 to be directed from v1 to vq and divided into 2ρ consecutive undirected vertex
disjoint segments I1, I2, . . . , I2ρ of length at least b|V (P0)|/2ρ− 1c each. As every P (a, b) is
obtained from P0 by at most ρ rotations, and every rotation breaks at most one edge of P0, the
number of segments of P0 which also occur as segments of P (a, b), although perhaps reversed,
is at least ρ. We say that such a segment is unbroken. Although the segments themselves are
undirected, they have an absolute orientation given to them by P0, and another, relative to this
one, given to them by P (a, b), which we consider to be directed from a to b. We consider tuples
σ = (Ii, oi, Ij , oj), where Ii and Ij are unbroken segments of P0, which occur in this order on
P (a, b), and oi and oj denote their corresponding relative orientation. We call such a tuple σ
unbroken, and say that P (a, b) contains σ.

For a given unbroken tuple σ, we consider the set C(σ) of ordered pairs (a, b), a ∈ A0, b ∈
B(a), such that P (a, b) contains σ.

The total number of unbroken tuples is at most 22(2ρ)2. Any path P (a, b) contains at least ρ
unbroken segments, and thus at least

(
ρ
2

)
unbroken tuples. The average, over unbroken tuples,

of the number of pairs (a, b) such that P (a, b) contains a given unbroken tuple is therefore at
least

n2

9
·
(
ρ
2

)
22(2ρ)2

≥ 0.003n2.

Thus, there is an unbroken tuple σ0 and a set C = C(σ0), |C| ≥ 0.003n2 of pairs (a, b), such that
for each (a, b) ∈ C, the path P (a, b) contains σ0. Let Â = {a ∈ A0 : C contains at least 0.003n/2
pairs with a as first element}. Since |A0|, |B(a)| ≤ n, we have 0.003n2 ≤ |C| ≤ |Â|n+n · 0.003n

2 ,
entailing |Â| ≥ 0.003n/2. For every a ∈ Â, let B̂(a) = {b : (a, b) ∈ C}. Then, by the definition
of Â, for every a ∈ Â we have |B̂(a)| ≥ 0.003n/2.

For an unbroken tuple σ0 = (Ii, oi, Ij , oj), we divide it into two oriented segments, σ1
0 = ~Ii

and σ2
0 = ~Ij , both of them maintaining the orientation in σ0. Notice that for every a ∈ Â and

b ∈ B̂(a), in the path P (a, b) the segment σ1
0 comes before σ2

0. For i = 1, 2, let us denote by
|σi0| the number of vertices in the segment σi0. Then for both segments σ1

0 and σ2
0, we have that

|σi0| > n/(7ρ). Let s1 be the first vertex of σ1
0, x be the last vertex of σ1

0, and let y be the first
vertex of σ2

0 and s2 be the last vertex of σ2
0.

We construct a graph H1 with V (σ1
0) as vertex set. The edge set of H1 is defined as follows.

First, we add all edges of G[V (σ1
0)], except for those that are incident with s1, x or a vertex in

V (F ′). Further, we add all the edges from E(σ1
0). Note that all the edges in H1 are also edges

of G. By its construction, σ1
0 is a spanning path in H1 starting at s1 and ending at x. Let us

denote the path reversed to σ1
0 (spanning path in H1, starting at x and ending at s1) by P . We

would like to apply Fact 3.2.6 to H1 with m = |V (σ1
0)| and P as the corresponding spanning

path. The condition of the Fact holds since G satisfies property L(l). Indeed, l = n log s
3000 logn ,

m > n/(7ρ) = n log s
42 logn , the edges of H1 differ from the edges of G only at V (F ′) and at the

endpoints of the segment σ1
0, and |V (F ′)∪{x, s1}| ≤ n log s

4600 logn+2, implying l+|V (F ′)∪{x, s1}| <
n log s

43·42 logn < m/43. Notice that this are the lines justifying the choices of the integers 3000 and
9200 in the bounds for l and |F ′|. Hence, H1 satisfies L(m/43), thus by Fact 3.2.6 at least a
36
43 -fraction of the vertices of H1 are good.

For σ2
0 we act similarly: construct a graph H2 from σ2

0 by adding all edges of G with both
endpoints in the interior of σ2

0 but not in V (F ′) and edges from E(σ2
0) to H2. Then σ2

0 forms
an oriented spanning path in H2, starting at y and ending at the last vertex s2 of σ2

0. Again,
due to property L, Lemma 3.2.6 applies here, so at least a 36

43 -fraction of the vertices of H2 are
good.

Recall that s1 is the first vertex of σ1
0. Since |Â| ≥ 0.003n/2 > l + 1 and H1 has at least
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3.2 Proof of Theorem 3.1.2

36
43m > l + |V (F ′) ∪ {x, s1}| good vertices, there is an edge of G between a vertex â ∈ Â \ {s1}
and a good vertex g1 ∈ V (σ1

0) \ (V (F ′) ∪ {x, s1}).
Similarly, as |B̂(â)| ≥ 0.003n/2 > l + 1 and there are more than l + |V (F ′) ∪ {y, s2}| good

vertices in H2, there is an edge from some b̂ ∈ B̂(â)\{s2} to a good vertex g2 ∈ V (σ2
0)\(V (F ′)∪

{y, s2}).
Consider the path P (â, b̂) on the vertex set of P0 connecting â and b̂ and containing σ0. The

vertices x and y split this path into three sub-paths: R1 from â to x, R2 from y to b̂ and R3

from x to y. We will rotate R1 with x as a fixed endpoint and R2 with y as a fixed endpoint,
making sure that no edge from F ′ gets broken. We will show that the obtained endpoint sets
V1 and V2 are sufficiently large (clearly, they are disjoint). Then by property L there will be an
edge of G between V1 and V2. Since we did not touch R3, this edge closes the path into a cycle,
contradicting the assumption from the beginning of the proof.

First we construct the endpoint set V1, the endpoint set V2 can be constructed analogously.
Recall the notation from Fact 3.2.6: Let H+

g1 denote the graph we obtain from H1 by adding
the extra vertex w and the edges (w, g1) and (w, s1). The spanning path of H+

g1 obtained by
rotating P ∪ {(w, s1)} with fixed endpoint x at pivot g1 is denoted by Pg1 . By the definition of
a good vertex, the set Sg1 of vertices which are endpoints of a spanning path of H+

g1 that can
be obtained from Pg1 by a sequence of rotations with fixed endpoint x, has at least |σ1

0|/43 > l
vertices.

We claim that also in G, any vertex in Sg1 can be obtained as an endpoint by a sequence
of rotations of R1 with fixed endpoint x without breaking any edge from F ′. The role of the
vertex w will be played by â in G (note that we made sure that â 6= s1, so â is not contained in
V (σ1

0)). Hence, the edge (â, g1) is present in G, while we will consider the edge (â, s1) artificial.
For any endpoint z ∈ Sg1 there is a sequence of pivots, such that performing the sequence of

rotations with fixed endpoint x at these pivots results in an xz-path spanning H+
g1 . We claim

that in G[V (R1)] it is also possible to perform a sequence of rotations with the exact same pivot
sequence and eventually to end up in an xz-path spanning V (R1). When performing these
rotations, the subpath of R1 that links â to s1 corresponds to the artificial edge (w, s1) in H+

g1 .
Problems in performing these rotations in G could arise if a rotation is called for where (1)

the pivot is connected to the endpoint of the current spanning path via an artificial edge of H+
g1 :

this rotation might not be possible in G as this edge might not exist in G, or (2) the broken
edge is artificial: after such a rotation in G the endpoint of the new spanning path might be
different from the one we have after performing the same rotation in H+

g1 , or (3) the broken
edge is in F ′. However, the construction of H+

g1 ensures that these problems will never occur.
Indeed, in all three cases (1), (2) and (3) the pivot vertex has an artificial edge or an edge from
F ′ incident with it, while having degree at least 3 (as all pivots). However, both endpoints of
an artificial edge and both endpoints of edges from F ′ ∩H+

g1 have degree 2 in H+
g1 (for this last

assertion we use the fact that g1 6∈ {x, s1} ∪ V (F ′); this is important as g1 is the first pivot.)
Hence we have ensured that there is indeed a spanning path of G[V (R1)] from x to every

vertex of V1 = Sg1 containing all edges from E(R1) ∩ F ′.
Similarly, since there is an edge from b̂ to a good vertex g2 in H2, g2 6∈ V (F ′), we can rotate

R2, starting from this edge to get a set V2 = Sg2 of at least l endpoints not breaking any more
edges from F ′. In other words we have a spanning path of G[V (R2)] from y to every vertex of
V2 = Sg2 containing the edges from E(R2) ∩ F ′.

As we noted earlier, since by Fact 3.2.6 |V1|, |V2| ≥ m
43 > l, property L(l) ensures that there

is an edge between V1 and V2 in G, say a′b′ ∈ E(G) with a′ ∈ V1 and b′ ∈ V2. This contradicts
our assumption, since the rotations we did to obtain P (a′, b′) from P0 did not break any edges
from F and also all but at most ρ ≤ 6 log n/ log s edges from F ′ are on the path P (a′, b′). �

We are now able to prove the main lemma, stating that for every matching there is a Hamilton
cycle almost covering it. Notice that we use the same calligraphic letterM to denote a matching
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3 On covering expander graphs by Hamilton cycles

as for families of paths, since we are going to apply extension on the matching and hence we
see it as a family of paths of length 1 each.

Lemma 3.2.8. For every constant α ∈ (0, 1] and for every sufficiently large n the following
holds. Let G be an nα-expander graph on n vertices. For every matching M in G of size at
most |M| ≤ α3n/9200 there exists a Hamilton cycle C in G with

|E(M) \ E(C)| ≤
⌊

1036|M|
α3nα/2

⌋
.

Proof First we proceed inductively to construct a single path via (d, k)-extensions that
contains most of the matching edges.

Using Lemma 3.2.4 with s = nα, g = 4αn1−α, l = αn/3000, k = 1, and setting d = 6/α, we
find a (d, 1)-expansion M2 of M1 =M of size at most

⌊
5|M|
αnα + 1

⌋
containing all edges of M.

For i ≥ 2, given a family of vertex-disjoint non-trivial paths Mi of size

2 ≤ |Mi| ≤
⌊

45|M|
2α2niα/2

+ 1
⌋

on at most
|V (Mi)| ≤ (d+ 3)|M|

vertices containing all but at most

(i− 2)
45|M|
α2nα/2

edges from M, we construct a size-minimum (d, n(i−1)α/2)-extension Mi+1 of Mi. Then Mi+1

satisfies the above properties by construction: it contains all but at most

|E(M) \ E(Mi+1)| ≤ |E(Mi) \ E(Mi+1)|+ |E(M) \ E(Mi)|

≤ 2n(i−1)α/2(|Mi| − 1) + (i− 2)
45|M|
α2nα/2

≤ (i− 1)
45|M|
α2nα/2

edges fromM. Furthermore, sinceMi+1 was constructed fromM by a series of (d, k)-extensions
with varying k but fixed d, at most d+1 vertices on average were added for every path removed,
thus Mi+1 has at most (d+ 3)|M| vertices.

Finally, by Lemma 3.2.4 Mi+1 has size at most

|Mi+1| ≤
⌊

5|V (Mi)|
2αn(i−1)α/2nα

+ 1
⌋
≤
⌊

5(d+ 3)|M|
2αn(i+1)α/2

+ 1
⌋
≤
⌊

45|M|
2α2n(i+1)α/2

+ 1
⌋
.

The family Mlast, where last ≤ 2/α + 1 < 3/α is the index we stop the induction with,
contains only one path P . Let us apply Lemma 3.2.2 with D = V (P ). This is possible, since
P contains at most (d+ 3)|M| < αn = gs/4 vertices. We obtain the corresponding sets Z and
U = V \(D∪Z) and conclude that the induced graph G[U ] satisfies the small expansion property
S(s/2, g/2). Theorem 2.5 from [52] states that for every choice of the expansion parameter r with
12 ≤ r ≤

√
n, every n-vertex graph G satisfying S

(
r, n log r
r logn

)
and L

(
n log r

1035 logn

)
is Hamiltonian.

Hence, applying this statement to G[U ] with s = nα, g = 4αn/nα and r = nα/2, we see that
G[U ] is Hamiltonian.

Furthermore, by Lemma 3.2.2 we know that

|Z| ≤ 2|V (P )|/nα. (3.1)
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3.2 Proof of Theorem 3.1.2

Using the small expansion property ofG, we obtain an edge between a vertex x in the
⌈
|M|/nα/2

⌉
-

end of P and a vertex y in U in the following way. Take a subset S of size min{2
⌈
|M|/nα/2

⌉
, 4αn1−α}

of the
⌈
|M|/nα/2

⌉
-end of P . If 2

⌈
|M|/nα/2

⌉
> 4αn1−α = g, then by the small expansion prop-

erty |N(S)| ≥ sg > |V (P ) ∪ Z|. Otherwise, |S| = 2
⌈
|M|/nα/2

⌉
≤ 4αn1−α = g, and hence

|N(S)| ≥ 2nα
⌈
|M|/nα/2

⌉
> |V (P ) ∪ Z|.

The vertex x breaks the path P into two subpaths, one of which contains all but at most
|M|/nα/2 edges from P . Connecting this path via the edge xy with a Hamilton path in G[U ],
we create a path R containing all but at most

|M \ E(R)| ≤
⌊

3
α
· 45|M|
α2nα/2

⌋
+
⌊
|M|/nα/2

⌋
≤
⌊

136|M|
α3nα/2

⌋
(3.2)

edges from M and all vertices from U . Note that if |M| < α3nα/2/136 then
⌊

136|M|
α3nα/2

⌋
= 0, so

that no edges of M are lost in forming R. Furthermore, notice that from (3.1) we have that R
is missing only

n− |E(R)| ≤ |Z|+ |M|/nα/2 + 1 < 2|M|/nα/2 + 1. (3.3)

vertices to be Hamiltonian.
We aim to use Lemma 3.2.7 to rotate/extend R into a Hamilton cycle without losing many

edges of M that are already on it.
For this we set P0 = R and F ′ = F =M, in case |M| < α3nα/2/136 (and thusM is contained

in R by (3.2)). Otherwise, if |M| ≥ α3nα/2/136, let F = ∅ and F ′ =M∩ E(R).
We will now use Lemma 3.2.7 iteratively, in each step rotating/extending our current path

with an edge until it is spanning and then closing it into a Hamilton cycle. Notice that
Lemma 3.2.7 can be applied throughout the process since |F ′| ≤ |M| < αn/9200 and |F | =
o(nα).

Consider the x, y-path P ′ arising from the application of Lemma 3.2.7 to F , F ′ and P0.
If one of the two vertices x or y has neighbors outside P ′, we can extend P ′ with one more
edge to obtain a longer path P̂ containing P ′. We update for our iteration P0 := P̂ and
F ′ := M∩ E(P̂ ) and start the iteration step again. Notice that in this step, the size of F ′

decreased by at most 6/α. If x and y have no neighbors outside P ′, then there is a cycle C
containing P ′. If C is Hamilton, we stop the procedure since this is what we are aiming at.
Otherwise, by the connectivity of G (guaranteed by properties S and L and stated implicitly
in Observation 3.2.1), there is a vertex w ∈ V (C) with a neighbor outside C, say aw ∈ E(G),
a ∈ V (G) \ V (C). Notice that only one of the edges incident with w in C can be in F ′, since
F ′ ⊂M is a matching. Removing an edge incident with w in C which is not in F ′ and adding
the edge aw, we obtain a path P̂ of length |P̂ | ≥ |P ′|+ 1 containing all edges from F ′ ∩E(P ′).
We update for our iteration P0 := P̂ and F ′ := M∩ E(P̂ ) and start the iteration step again.
Notice that again, in this step, the size of F ′ decreased by at most 6/α.

Using (3.3), we see that after at most n − |R| ≤ 2|M|/nα/2 + 1 steps the iteration ends
and we obtain a Hamilton cycle C. If |M| < α3nα/2/136, then C contains all edges from M.
Otherwise, C contains all but at most

|M \ E(C)| ≤ |E(R) \ E(C)|+ |M \ E(R)| ≤
(

2|M|/nα/2 + 1
)
· 6
α

+
136|M|
α3nα/2

=
6
α

+
12|M|
αnα/2

+
136|M|
α3nα/2

<
7
α
· 148|M|
α3nα/2

edges from M, completing the proof of the lemma. �

The following corollary condenses all the previous technical work. It states that every match-
ing of an nα-expander graph can be covered with a constant-size collection of Hamilton cycles.
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3 On covering expander graphs by Hamilton cycles

Corollary 3.2.9. For every constant α, 0 < α ≤ 1, there exists n0, such that for every n ≥ n0

the following holds. In every nα-expander graph G on n vertices, for every matching M of G
there exist at most 14000/α4 Hamilton cycles such that M is contained in their union.

Proof We start by splitting M into at most
⌈
4600/α3

⌉
< 4601/α3 matchings of size

at most α3n/9200 each. For every such matching M1 we set i = 1 and perform the following
iterative procedure:

• take a Hamilton cycle Ci covering as many of the edges of Mi as possible. If Mi ⊂ E(Ci),
then we found our covering and finish the procedure.

• otherwise, we set Mi+1 := Mi \ E(Ci) and remark that by Lemma 3.2.8

|Mi+1| ≤
1036|Mi|
α3nα/2

≤
(

1036
α3nα/2

)i+1

|M1|. (3.4)

Update i := i+ 1 and start again from the first iteration step.

From (3.4) we see that after at most b2/α + 1c < 3/α iteration steps, we get a collection of at
most 3/α Hamilton cycles C1, C2, . . . covering M1. Hence, there exist a collection of at most
3
α ·

4601
α3 Hamilton cycles covering M , implying the statement of the lemma. �

We are now able to prove Theorem 3.1.2.
Proof We start by taking h disjoint Hamilton cycles into our covering. Removing the

union of these cycles from G, we are left with a graph H of maximum degree exactly ∆(H) =
∆(G) − 2h. Using at most 2∆(H) colors we color the edges of H greedily, partitioning them
into at most 2∆(H) matchings. By Corollary 3.2.9 for every of these matchings there exist
14000/α4 Hamilton cycles covering it, completing the proof of the theorem.

�

3.3 Proof of Theorem 1.2.3

In this section we derive the proof of Theorem 1.2.3 from Theorem 3.1.2 by checking that G(n, p)
is an s-expander a.a.s. with the appropriate choice of p and s. Notice that this choice of s is
clearly not optimal, but suffices for our purposes.

Lemma 3.3.1. For every constant α with 0 < α < 1 and every function p = p(n) ≥ nα−1,
G(n, p) is a 5

√
np-expander a.a.s.

Proof Let s = 5
√
np.

First we prove that G(n, p) has the small expansion property S(s, 4n log s
s logn ).

Let A ⊂ V (G(n, p)) be an arbitrary subset of size at most |A| ≤ 4n log s
s logn ≤

4n
5s . The random

variable |N(A)| is the sum of the n − |A| characteristic variables of the events v ∈ N(A) for
v ∈ V \A. Hence for the expectation we obtain

E[|N(A)|] =
∑

v∈V \A

Pr[v ∈ N(A)] = (n− |A|)
(

1− (1− p)|A|
)
> (n− |A|) |A|p

1 + |A|p

≥ (1 + o(1))n
|A|p

1 + |A|p
≥ (1 + o(1))|A|s np/s

1 + 4
5np/s

= |A|s
(

5
4

+ o(1)
)
.

Here we first used the simple fact that (1− p)|A| < 1
1+|A|p , then a couple of times that |A| ≤ 4n

5s .
Since the elementary events v ∈ N(A) that make up |N(A)| are mutually independent the
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3.4 Concluding remarks and open questions

Chernoff bound can be applied to estimate the probability that A is not expanding. We use the
above estimate on E[|N(A)|] several times.

Pr [|N(A)| ≤ s|A|] < exp
[
−(E[|N(A)|]− |A|s)2

2E[|N(A)|]

]
< exp

(
−
((

1
5 + o(1)

)
E[|N(A)|]

)2
2E[|N(A)|]

)

= exp
(
−
(

1
50

+ o(1)
)

E[|N(A)|]
)
< exp

(
−
(

1
40

+ o(1)
)
|A|s

)
.

By the union bound the probability that G(n, p) does not satisfy property S
(
s, 4n log s

s logn

)
is

bounded by

Pr
[
∃A ⊂ V, |A| ≤ 4n

5s
: |N(A)| ≤ s|A|

]
<

n∑
a=1

(
n

a

)
exp

[
−
(

1
40

+ o(1)
)
as

]

<
∞∑
a=1

(
n exp

[
−0.01nα/5

])a
= o(1).

To complete the proof we show that G(n, p) has the large expansion property L
(

αn
15000

)
.

Let A,B ⊆ V (G(n, p)) be fixed subsets of size |A|, |B| ≥ αn
15000 with A∩B = ∅. Then we have

that

Pr[there are no edges between A and B] = (1− p)|A||B| < exp
(
− α

2n2p

150002

)
.

Using union bound over all pairs of such disjoint sets A,B ⊆ V (G(n, p)), we get the desired
probability

Pr
[
G(n, p) satisfies L

( αn

15000

)]
≥ 1− 4n exp

(
− α

2n2p

150002

)
= 1− o(1),

proving the lemma. �

We are now able to prove Theorem 1.2.3 using Theorem 3.1.2.
Proof Let p be in the range of the theorem. By Lemma 3.3.1 G(n, p) is an nα/5-expander

a.a.s. We know from [62] that there exists a packing of (1 − o(1))np/2 Hamilton cycles into
G(n, p). Finally, the maximum degree a.a.s. satisfies ∆(G(n, p)) = (1 + o(1))np. Hence, by
Theorem 3.1.2, we obtain a covering of G(n, p) by (1− o(1))np/2 + 28000((1 + o(1))np− 2(1−
o(1))np/2)/(α/5)4 = (1 + o(1))np/2 Hamilton cycles, finishing the proof of the theorem. �

3.4 Concluding remarks and open questions

In this chapter we verified that the size of a largest Hamilton cycle packing and the size of a
smallest Hamilton cycle covering are asymptotically equal a.a.s. in the random graph G(n, p),
provided p ≥ nα−1 for an arbitrary constant α > 0. Our result calls for at least two natural
directions of possible improvement.

First of all, the only explanation why the lower bound on the edge probability needs to be at
least nα−1 and the corresponding expansion factor s needs to be at least nα/5 is that for lower
values of p and s most of our technical arguments would break down. We think these bounds
on p and s are only artifacts of our proof. Since the minimum and maximum degrees of the
random graph have to be asymptotically equal in order for the minimum Hamilton covering
and the maximum Hamilton packing to be asymptotically of the same size, we need to assume
that p = ω(log n)/n. We strongly believe though that Theorem 1.2.3 holds already whenever
p = ω(log n)/n.
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3 On covering expander graphs by Hamilton cycles

Conjecture 3.4.1. For any p = ω(log n)/n the random graph G(n, p) admits a covering of its
edges with at most (1 + o(1))np/2 Hamilton cycles a.a.s.

Even though [62] provides the corresponding packing result for this range, we were not able
to extend our techniques to prove e.g. the analog of Lemma 3.2.8 for α = o(1), not to mention
for α = (log log n+ ω(1))/ log n.

Another direction in which Theorem 1.2.3 could be tightened is to make the statement exact
instead of approximate. The trivial lower bound on the size of a Hamilton covering in terms of
the maximum degree is d∆(G)e. In what range of p will this be tight.

Question 3.4.2. In what range of p does there exist a Hamilton covering of G ∼ G(n, p) of
size d∆(G)/2e a.a.s.?

Recall that the analogous precise statement in terms of the minimum degree is true for
Hamilton packings [61], [69]. To have a positive answer for the question, we clearly need to be
above the Hamiltonicity threshold, but it is plausible that the statement is true immediately
after that. Very recently, Hefetz, Kühn, Lapinskas and Osthus [54] answered Question 3.4.2
positively for log117n/n ≤ p ≤ 1− n1/8.

The question of covering the edges of a graph by Hamilton cycles can also be considered in
the pseudorandom setup. A graph G is called an (n, d, λ)-graph if it is d-regular on n vertices
and the second largest absolute value of its eigenvalues is λ. The concept of (n, d, λ)-graphs is
a common way to formally express pseudorandomness, as (n, d, λ)-graphs with λ = o(d) behave
in many ways as random graphs are expected to do. (See, e.g., [70] for a general discussion on
pseudorandom graphs and (n, d, λ)-graphs.) Theorem 2 from [38] implies that for (n, d, λ)-graph
with d = Θ(n) and λ = o(d) there exists a Hamilton packing of size d/2− 3

√
λn = d/2− o(d).

The expansion properties of (n, d, λ)-graphs are also well-known. For example, it is stated
in Section 3.1 of [68], it is stated for example that every (n, d, λ)-graph is an

(
(d−2λ)2

3λ2 , λ
2n
d2

)
-

expander (translated into our notation). This implies that for every α > 0, every (n, d, λ)-graph
with λ ≤ d

2nα/2
is an nα-expander. Hence, Theorem 3.1.2 implies that any such (n, d, λ)-graph

has a Hamilton covering of size d/2 + o(d), which is of course asymptotically best possible.
It would be interesting to decide whether a similar statement holds for sparser pseudorandom
graphs, maybe as sparse as d = nε, for arbitrarily small ε > 0.

A Hamilton cycle is a particular spanning structure of the complete graph, which can be used
to decompose its edges. A further group of problems related to our result is to determine the
typical sizes of a largest packing and of a smallest covering of various other spanning structures
in the random graph. Here often the corresponding decomposition result for the complete graph
is not known or is just conjectured. Still asymptotic packing and covering results would be of
interest, for example for trees of bounded maximum degree.
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4 Biased games on random boards

4.1 Introduction

As we already mentioned, this chapter is based on joined work with Asaf Ferber, Michael
Krivelevich, and Alon Naor [31].

4.1.1 Notation and terminology

Our graph-theoretic notation is standard and follows that of [91]. In particular, we use the
following:

For a graph G, let V = V (G) and E = E(G) denote its sets of vertices and edges, respectively.
For subsets U,W ⊆ V , and for a vertex v ∈ V , we denote by EG(U) all the edges with
both endpoints in U , by EG(U,W ) all the edges e with both endpoints in U ∪W , for which
e ∩ U 6= ∅ and e ∩ W 6= ∅, and by EG(v, U) all the edges with one endpoint being v and
the other endpoint in U . We further denote eG(U) := |E(U)|, eG(U,W ) := |E(U,W )| and
eG(v, U) := |E(v, U)|. For a subset U ⊆ V (G) we denote by NG(U) the external neighborhood
of U , that is: NG(U) := {v ∈ V \ U : ∃u ∈ U s.t. uv ∈ E}. For simplicity of notation, whenever
the underlying graph is clear from the context we omit the graph from the index.

Assume that some Maker-Breaker game, played on the edge set of some graph G, is in
progress. At any given moment during the game, we denote the graph formed by Maker’s edges
by M , the graph formed by Breaker’s edges by B, and the edges of G \ (M ∪B) by F . For any
vertex v ∈ V , dM (v) and dB(v) denote the degree of v in M and in B, respectively. The edges
of G \ (M ∪B) are called free edges, and dF (v) denotes the number of free edges incident to v,
for any v ∈ V .

Whenever we say that G ∼ G(n, p) typically has some property, we mean that G has that
property with probability tending to 1 as n tends to infinity.

We use the following notation throughout this chapter:

f(n) :=
np

lnn
.

For the sake of simplicity and clarity of presentation, and in order to shorten some of our
proofs, no real effort has been made here to optimize the constants appearing in our results.
We also omit floor and ceiling signs whenever these are not crucial. Most of our results are
asymptotic in nature and whenever necessary we assume that n is sufficiently large.

4.2 Auxiliary results

In this section we present some auxiliary results that will be used throughout the chapter.

4.2.1 Basic positional games results

The following fundamental theorem, due to Beck [8], is a useful sufficient condition for Breaker’s
win in the (a, b) game (X,F). It will be used in the proof of Theorem 1.2.7.
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4 Biased games on random boards

Theorem 4.2.1 ([8], Theorem 20.1). Let X be a finite set and let F ⊆ 2X . Breaker, as a
first or a second player, has a winning strategy in the (a, b) game (X,F), provided that:

∑
F∈F

(1 + b)−|F |/a <
1

1 + b
.

While Theorem 4.2.1 simply shows that Breaker can win certain games, the following lemma
shows that Maker can win certain games quickly (see [8]):

Lemma 4.2.2 (Trick of fake moves). Let X be a finite set and let F ⊆ 2X . Let b′ < b be positive
integers. If Maker has a winning strategy for the (1, b) game (X,F), then he has a strategy to
win the (1, b′) game (X,F) within

⌈
|X|
b+1

⌉
moves.

The main idea of the proof of Lemma 4.2.2 is that, in every move of the (1, b′) game (X,F),
Maker (in his mind) gives Breaker b− b′ additional board elements. The straightforward details
can be found in [8].

Recall the classic box game which was first introduced by Chvátal and Erdős in [18]. In the
Box Game Box(m, `, b) there are m pairwise disjoint boxes A1, . . . , Am, each of size `. In every
round, the first player, called BoxMaker, claims b elements of

⋃m
i=1Ai and then the second

player, called BoxBreaker, destroys one box. BoxMaker wins the game Box(m, `, b) if and only
if he is able to claim all elements of some box before it is destroyed. We use the following
theorem which was proved in [18]:

Theorem 4.2.3. Let m, ` be two integers. Then, BoxMaker wins the game Box(m, `, b) for
every b > `

lnm + 1.

4.2.2 (R, c)-Expanders

Definition 4.2.4. For every c > 0 and every positive integer R we say that a graph G = (V,E)
is an (R, c)-expander if |N (U) | ≥ c|U | for every subset of vertices U ⊆ V such that |U | ≤ R.

In the proof of Theorem 1.2.7 Maker builds an expander and then he turns it into a Hamil-
tonian graph. In order to describe the relevant connection between Hamiltonicity and (R, c)-
expanders, we need the notion of boosters.

Given a graph G, we denote by ` (G) the maximum length of a path in G.

Definition 4.2.5. For every non-Hamiltonian graph G, we say that a non-edge uv /∈ E (G) is a
booster with respect to G, if either G∪{uv} is Hamiltonian or ` (G ∪ {uv}) > ` (G). We denote
by BG the set of boosters with respect to G.

The following is a well-known property of (R, 2)-expanders (see e.g. [39]).

Lemma 4.2.6. If G is a connected non-Hamiltonian (R, 2)-expander, then |BG| ≥ R2/2.

Our goal is to show that during a game on an appropriate graph G, assuming Maker can
build a subgraph of G which is an (R, 2)-expander, he can also claim sufficiently many such
boosters, so that his (R, 2)-expander becomes Hamiltonian. In order to do so, we need the
following lemma:

Lemma 4.2.7. Let a > 0 and p > 50000a lnn
n . Then G ∼ G(n, p) is typically such that every

subgraph Γ ⊆ G which is a non-Hamiltonian (n/5, 2)-expander with an lnn
2 ln lnn ≤ |E(Γ)| ≤ 100an lnn

ln lnn

satisfies |E(G) ∩ BΓ| > n2p
100 .
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4.2 Auxiliary results

Proof. First, notice that any (n/5, 2)-expander is connected. Indeed, let C be a connected
component of G. If |C| ≤ n/5 then clearly C has neighbors outside, a contradiction. Otherwise,
since G is an (n/5, 2)-expander, C must be of size at least 3n/5 > n/2. Hence there is exactly
one such component and G is connected. Now, fix a non-Hamiltonian (n/5, 2)-expander Γ in
the complete graph Kn. Then clearly Pr (Γ ⊆ G) = p|E(Γ)|. By definition, the set of boosters
of Γ, BΓ, is a subset of the potential edges of G. Therefore, |E(G)∩BΓ| ∼ Bin (|BΓ|, p) and the
expected number of boosters is |BΓ|p ≥ n2p

50 by Lemma 4.2.6. Now, by Lemma 1.3.1 we get that

Pr
(
|E(G) ∩ BΓ| ≤ n2p

100

)
≤ exp

(
−n2p

8

)
. Running over all choices of Γ with an lnn

2 ln lnn ≤ |E(Γ)| ≤
100an lnn

ln lnn and using the union bound we get

Pr
(
∃ Γ such that Γ ⊆ G, an lnn

2 ln lnn
≤ |E(Γ)| ≤ 100an lnn

ln lnn
, and |E(G) ∩ BΓ| ≤

n2p

100

)

≤

100an lnn
ln lnn∑

m= an lnn
2 ln lnn

((n
2

)
m

)
pm exp

(
−n

2p

400

)

≤

100an lnn
ln lnn∑

m= an lnn
2 ln lnn

(
en2p

2m

)m
exp

(
−n

2p

400

)

≤

100an lnn
ln lnn∑

m= an lnn
2 ln lnn

exp
(
m ln

(
en2p

2m

)
− n2p

400

)
= ♥

To complete the proof we should show that ♥ = o(1). For that goal we consider each of the
cases np = ω

(
ln2 n

)
and np = O

(
ln2 n

)
separately. For the former we have that

♥ ≤

100an lnn
ln lnn∑

m= an lnn
2 ln lnn

exp
(
n ln2 n− n2p

400

)
= o(1);

and for the latter, recalling that p > 50000a lnn
n , we have

♥ ≤

100an lnn
ln lnn∑

m=an lnn
ln lnn

exp
(

100an lnn
ln lnn

ln
(
enp ln lnn
a lnn

)
− n2p

400

)

≤

100an lnn
ln lnn∑

m= an lnn
2 ln lnn

exp
(

100an lnn
ln lnn

ln (C lnn ln lnn)− n2p

400

)

=

100an lnn
ln lnn∑

m= an lnn
2 ln lnn

exp
(

(1 + o(1)) 100an lnn− n2p

400

)

<
100an lnn

ln lnn
exp (−24an lnn) = o(1).

This completes the proof. �

The following lemma shows that an (R, c)-expander with the appropriate parameters is also
k-vertex-connected.

Lemma 4.2.8 ([10], Lemma 5.1). For every positive integer k, if G = (V,E) is an (R, c)-
expander such that c ≥ k, and Rc ≥ 1

2(|V |+ k), then G is k-vertex-connected.
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4 Biased games on random boards

4.2.3 Properties of G ∼ G(n, p)

Throughout this chapter we use the following properties of G ∼ G(n, p):

Theorem 4.2.9. Let p ≥ lnn
n and recall our notation f(n) := np

lnn . A random graph G ∼ G(n, p)
is typically such that the following properties hold:

(P1) For every v ∈ V , d(v) ≤ 4np. For every α > 0 there are only o(n) vertices with degree at
least (1 + α)np.
If f(n) = ω(1) then for every 0 < α < 1 and for every v ∈ V ,

(1− α)np ≤ d(v) ≤ (1 + α)np.

(P2) For every subset U ⊆ V , e(U) ≤ max
{

3|U | lnn, 3|U |2p
}

.

(P3) For every subset U ⊆ V of size |U | ≤ 3n ln lnn
lnn , e(U) ≤ 100|U |f(n) ln lnn.

(P4) Let ε > 0. For every constant α > 0 and for every subset U ⊆ V where 1 ≤ |U | ≤ α
p ,

|N(U)| ≥ β|U |np, for β =
1−
√

(2+ε)(α+1)
f(n)

α+1 .

(P5) For every U ⊆ V , 1
p ≤ |U | ≤

n
lnn , |N(U)| ≥ n/4.

(P6) Let ε > 0. For every α ≥
√

4
f(n) +ε and for every set U ⊆ V , the number of edges between

the set and its complement U c satisfies:

e(U,U c) ≥ (1− α)|U |(n− |U |)p.

(P7) Let ε, α be two positive constants which satisfy α2εf(n) > 4, and denote m := εn ln lnn
lnn .

For every two disjoint subsets A,B ⊆ V with |A| = |B| = m, e(A,B) ≥ (1− α)m2p.

(P8) e(A,B) ≥ (1 − α)|A||B|p for every two disjoint subsets A,B ⊆ V with |A| = 10000n
ln lnn ,

|B| = n/10 and for every α > 0.

(P9) For every subset U ⊆ V such that 1 ≤ |U | ≤ n
ln2 n

, and for every ε > 0,
∣∣{v ∈ V \ U : d(v, U) ≤ εnp

lnn

}∣∣ =
(1− o(1))n.

Proof. For the proofs of (P4),(P5) below we will use the following:
Let U ⊆ V . For every vertex v ∈ V \ U we have that Pr (v ∈ N(U)) = 1 − (1 − p)|U |

independently of all other vertices. Therefore |N(U)| ∼ Bin
(
n− |U |, 1− (1− p)|U |

)
. Notice

that for any 0 < p < 1 (all the properties above trivially hold for p = 1) and for any positive
integer k we have the following variation of Bernoulli’s inequality: (1−p)−k ≥ 1+kp. Therefore,(
1− (1− p)|U |

)
≥
(

1− 1
1+|U |p

)
= |U |p

1+|U |p . It follows that:

E (|N(U)|) = (n− |U |)
(

1− (1− p)|U |
)
≥ (n− |U |) |U |p

1 + |U |p
. (4.1)

(P1) For every v ∈ V , since d(v) ∼ Bin(n− 1, p) , it follows by Lemma 1.3.1 that

Pr (d(v) ≥ 4np) ≤
(
enp

4np

)4np

< e−1.2np ≤ e−1.2 lnn = n−1.2.

Applying the union bound we get that

Pr (∃v ∈ V with d(v) ≥ 4np) ≤ n · n−1.2 = o(1).
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Now let α > 0. By Lemma 1.3.1 we get that for every v ∈ V :

Pr (d(v) > (1 + α)np) ≤ exp
(
−α′np

)
≤ n−α′ ,

for some constant α′. Denote by S the set of all vertices with such degree. E(|S|) ≤ n1−α′ .
|S| is a nonnegative random variable, so by Markov’s inequality we get that:

Pr
(
|S| > n1−α

′
2

)
≤ n1−α′

n1−α′
2

= n−
α′
2 = o(1).

Therefore, w.h.p. |S| ≤ n1−α
′

2 = o(n).

Assume now that f(n) = ω(1), and let 0 < α < 1 be a constant. By Lemma 1.3.1 and the
union bound we get that

Pr (∃v ∈ V with d(v) ≥ (1 + α)np) ≤ n exp
(
−α

2

3
np

)

= n exp
(
−α

2

3
f(n) lnn

)
= n−ω(1) = o(1).

The lower bound is achieved in a similar way.

(P2) Since e(U) ∼ Bin
((|U |

2

)
, p
)

, using Lemma 1.3.1 and the union bound we get that:

Pr
(
∃U ⊆ V with e(U) > max

{
3|U | lnn, 3|U |2p

})
≤

lnn
p∑
t=1

(
n

t

)(
e
(
t
2

)
p

3t lnn

)3t lnn

+
n∑

t= lnn
p

(
n

t

)(
e
(
t
2

)
p

3t2p

)3t2p

≤

lnn
p∑
t=1

[
n

(
tp

2 lnn

)3 lnn
]t

+
n∑

t= lnn
p

[
n

(
1
2

)3tp
]t

≤
n∑
t=1

(e
8

)t lnn
≤

n∑
t=1

n−t = o(1).

(P3) Let U ⊂ V be a subset of size at most 3n ln lnn
lnn . Since e(U) ∼ Bin

((|U |
2

)
, p
)

, by Lemma
1.3.1 we get that

Pr (e (U) ≥ 10|U |f (n) ln lnn) ≤
(

e|U |2p
20|U |f (n) ln lnn

)10|U |f(n) ln lnn

.

Applying the union bound we get that

Pr
(
∃ U such that |U | ≤ 3n ln lnn

lnn
with e (U) ≥ 10|U |f (n) ln lnn

)
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≤

3n ln lnn
lnn∑
k=1

(
n

k

)(
ek2p

20kf (n) ln lnn

)10kf(n) ln lnn

≤

3n ln lnn
lnn∑
k=1

[
en

k

(
ekp

20f (n) ln lnn

)10f(n) ln lnn
]k

=

3n ln lnn
lnn∑
k=1

[
e2np

20f (n) ln lnn

(
ekp

20f (n) ln lnn

)10f(n) ln lnn−1
]k

≤

3n ln lnn
lnn∑
k=1

[
e2 lnn

20 ln lnn

(
3enp ln lnn

20f (n) lnn ln lnn

)10f(n) ln lnn−1
]k

≤

3n ln lnn
lnn∑
k=1

[
e2 lnn

20 ln lnn

(
3e
20

)10f(n) ln lnn−1
]k

=o (1) .

(P4) Since n− |U | = (1− o (1))n in this range, by (4.1) we have that:

E (|N (U) |) ≥ (n− |U |) |U |p
1 + |U |p

≥ (1− o (1))
|U |np
α+ 1

.

By Lemma 1.3.1 we have that for any δ > 0:

Pr (|N (U) | < (1− δ) E (|N (U) |)) ≤ e−
δ2

2
E(|N(U)|) ≤ e−α′|U |np,

where α′ = δ2

(2+o(1))(α+1) . Now, by taking δ =
√

(2+ε)(α+1)
f(n) (for some ε > 0) we get that

α′f (n) > 1 + ε
3 , and so by applying the union bound we get that:

Pr
(
∃U ⊆ V, |U | ≤ α

p
, |N(U)| < (1− δ)E(|N(U)|)

)
≤

α/p∑
k=1

(
n

k

)
e−α

′knp ≤
α/p∑
k=1

[
ne−α

′f(n) lnn
]k

= o (1) .

Therefore, w.h.p. for every U of size at most α/p, we obtain |N (U) | ≥ (1− δ) E (|N (U) |) ≥

β|U |np with β =
1−
√

(2+ε)(α+1)
f(n)

α+1 .

(P5) Let 1
p ≤ |U | ≤

n
lnn . By (4.1), E (|N (U) |) ≥ (n−|U |)|U |p

1+|U |p ≥ n/3.

By Lemma 1.3.1 we have that Pr (|N (U) | ≤ n/4) ≤ e−0.01n.

Applying the union bound we get that

Pr (∃ such U) ≤
n/ lnn∑
k=1/p

(
n

k

)
e−0.01n ≤ n

(
n
n

lnn

)
e−0.01n

≤ n (e lnn)
n

lnn e−0.01n = n exp
( n

lnn
ln (e lnn)− 0.01n

)
= o (1) .

(P6) Assume first that |U | ≤ n/2, otherwise switch the roles of U and U c. Since every edge
between U and U c is chosen independently, e (U,U c) ∼ Bin (|U ||U c|, p). By Lemma 1.3.1
we have that for given α > 0 and U ⊆ V :

Pr (e (U,U c) < (1− α) |U | (n− |U |) p) ≤ exp
(
−α

2

2
|U | (n− |U |) p

)
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≤ exp
(
−α

2

4
|U |np

)
≤ exp

(
−
(

1
f (n)

+ δ

)
|U |np

)
= exp (−|U | (lnn+ δnp)) ,

for some δ = δ (ε) > 0. By the union bound we get that:

Pr (∃ such U) ≤
n/2∑
k=1

(
n

k

)
exp (−k (lnn+ δnp)) ≤

n/2∑
k=1

[n exp (− lnn− δnp)]k

=
n/2∑
k=1

(
n−δf(n)

)k
= o (1) .

(P7) Similarly to (P6), given A,B ⊂ V , |A| = |B| = m, e (A,B) ∼ Bin
(
m2, p

)
. Therefore, by

Lemma 1.3.1 we have that:

Pr
(
e (A,B) ≤ (1− α)m2p

)
≤ exp

(
−α

2

2
m2p

)
.

Applying the union bound we get that:

Pr (∃ such A,B) ≤
(
n

m

)2

exp
(
−α

2

2
m2p

)
≤
[(en

m

)2
exp

(
−α

2

2
mp

)]m

=

[(
e lnn
ε ln lnn

)2

exp
(
−α

2

2
εf (n) ln lnn

)]m
<
( e

ε ln lnn

)2m
= o (1) .

(P8) Given subsets A,B ⊆ V as described, since e (A,B) ∼ Bin (|A||B|, p), by Lemma 1.3.1 we
get that

Pr (e (A,B) ≤ (1− α) |A||B|p) ≤ exp
(
−α

2

2
|A||B|p

)
= exp

(
−α

′n2p

ln lnn

)
,

for some constant α′. Applying the union bound we get that:

Pr (∃ such A,B) ≤
(

n
10000n
ln lnn

)(
n

n/10

)
exp

(
−α

′n2p

ln lnn

)
≤ 4n exp (−ω (n)) = o (1) .

(P9) Suppose towards a contradiction that there exists a subset U ⊆ V such that 1 ≤ |U | ≤ n
ln2 n

and that there are Θ (n) vertices v ∈ V \ U with d (v, U) ≥ εnp
lnn . Therefore, the average

degree of the vertices in U is at least Ω
(
n · nplnn ·

1
|U |

)
= Ω (np lnn). But by (P1), d (v) ≤

4np for every v ∈ V — a contradiction. Hence,
∣∣{v ∈ V \ U : d (v, U) ≤ εnp

lnn

}∣∣ = o (n). �

The following lemma will be a key ingredient in the main proof of the next subsection.

Lemma 4.2.10. Let p = ω
(

lnn
n

)
. Then G ∼ G (n, p) is typically such that the following holds:

For every subset JN = {v1, . . . , vN} ⊆ V we have that

N∑
j=1

e (vj , Jj)
j

= o (np)

where N = n
ln3 n

and Jj = {v1, . . . , vj}, 1 ≤ j ≤ N .
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Proof. Let t = blog2 (N + 1)c. We have that:

N∑
j=1

e (vj , Jj)
j

≤
t∑
i=0

min(N,2i+1−1)∑
j=2i

e (vj , Jj)
2i

≤
t∑
i=1

e (J2i+1)
2i

= ♠.

Now, note that |Jj | = j for every 1 ≤ j ≤ N and distinguish between the following two cases:

(i) pn = ω
(
ln2 n

)
. In this case, using Property (P2) of Theorem 4.2.9 we have that:

♠ ≤
log2

(
lnn
p

)∑
i=1

3|J2i+1 | lnn
2i

+
t∑

i=log2

(
lnn
p

)
3|J2i+1 |2p

2i

≤
log2

(
lnn
p

)∑
i=1

3 · 2i+1 lnn
2i

+
t∑

i=log2

(
lnn
p

)
3 · 22i+2p

2i

≤ log2

(
lnn
p

)
6 lnn+ 12p · 2t+1 − 1

2− 1
≤ c1 ln2 n+ c2Np,

for some positive constants c1 and c2. This is clearly o (np) as desired.

(ii) pn = O
(
ln2 n

)
. In this case we need a more careful calculation. First, we prove the

following claim:

Claim 2. If np = O
(
ln2 n

)
, then for every c > 3, G ∼ G (n, p) is typically such that

e (X) ≤ c|X| for every subset X ⊆ V of size |X| ≤ n
ln3 n

.

Proof of Claim 2. Let X ⊂ V be a subset of size at most n
ln3 n

. Since e (X) ∼

Bin
((|X|

2

)
, p
)

, by Lemma 1.3.1 we get that Pr (e (X) ≥ c|X|) ≤
(
e|X|2p
c|X|

)c|X|
. Applying

the union bound we get that

Pr
(
∃X such that |X| ≤ n

ln3 n
and e (X) ≥ c|X|

)

≤

n
ln3 n∑
k=1

(
n

k

)(
ek2p

ck

)ck
≤

n
ln3 n∑
k=1

[
en

k

(
ekp

c

)c]k

=

n
ln3 n∑
k=1

[
e2np

c

(
ekp

c

)c−1
]k
≤

n
ln3 n∑
k=1

[
O
(
ln2 n

)
O
(
ln−1 n

)c−1
]k

=

n
ln3 n∑
k=1

[
O (lnn)3−c

]k
= o (1) .

�

Now, applying Claim 2 with c = 4, we get that

♠ ≤
t∑
i=1

4|J2i+1 |
2i

≤
t∑
i=1

8 = O (lnn) = o (np) .

This completes the proof of Lemma 4.2.10. �
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4.2.4 The minimum degree game

In the proof of Theorem 1.2.7, Maker has to build a suitable expander which possesses some
relevant properties. The first step towards creating a good expander is to create a spanning
subgraph with a large enough minimum degree. The following theorem was proved in [42]:

Theorem 4.2.11 ([42], Theorem 1.3). Let ε > 0 be a constant. Maker has a strategy to
build a graph with minimum degree at least ε

3(1−ε) lnn while playing against Breaker’s bias of
(1− ε) n

lnn on E (Kn).

In fact, the following theorem can be derived immediately from the proof of Theorem 4.2.11:

Theorem 4.2.12. Let ε > 0 be a constant. Maker has a strategy to build a graph with minimum
degree at least c = c (n) = ε

3(1−ε) lnn while playing against a Breaker’s bias of (1− ε) n
lnn on

E (Kn). Moreover, Maker can do so within cn moves and in such a way that for every vertex
v ∈ V (Kn), at the same moment v becomes of degree c in Maker’s graph, there are still Θ (n)
free edges incident with v.

Using Theorem 4.2.12, Krivelevich proved in [67] that Maker has a strategy to build a good
expander. Here, we wish to prove an analog of Theorem 4.2.12 for G(n, p):

Theorem 4.2.13. Let p = ω
(

lnn
n

)
, ε > 0 and let b = (1− ε) np

lnn . Then G ∼ G(n, p) is typically
such that in the (1, b) Maker-Breaker game played on E (G), Maker has a strategy to build a
graph with minimum degree c = c (n) ≤ ε

6 lnn. Moreover, Maker can do so within cn moves and
in such a way that for every vertex v ∈ V (G), at the same moment that v becomes of degree c
in Maker’s graph, at least εnp/3 edges incident with v are free.

Proof of Theorem 4.2.13. The proof is very similar to the proof of Theorem 4.2.11 so we
omit some of the calculations (for more details, the reader is referred to [42]). Since claiming
an extra edge is never a disadvantage for any of the players, we can assume that Breaker is the
first player to move. A vertex v ∈ V is called dangerous if dM (v) < c. The game ends at the
first moment in which either none of the vertices is dangerous (and Maker won), or there exists
a dangerous vertex v ∈ V with less than εnp/3 free edges incident to it (and Breaker won). For
every vertex v ∈ V let dang (v) := dB (v) − 2b · dM (v) be the danger value of v. For a subset
X ⊆ V , we define dang (X) =

∑
v∈X dang(v)

|X| (the average danger of vertices in X).
The strategy proposed to Maker is the following one:
Maker’s strategy SM : As long as there is a vertex of degree less than c in Maker’s graph,

Maker claims a free edge vu for some v which satisfies dang (v) = max {dang (u) : u ∈ V } (ties
are broken arbitrarily).

Suppose towards a contradiction that Breaker has a strategy SB to win against Maker who
plays according to the strategy SM as suggested above. Let g be the length of this game and
let I = {v1, . . . , vg} be the multi-set which defines Maker’s game, i.e, in his ith move, Maker
plays at vi (in fact, according to the assumption Maker does not make his gth move, so let
vg be the vertex which made him lose). For every 0 ≤ i ≤ g − 1, let Ii = {vg−i, . . . , vg}.
Following the notation of [42], let dangBi (v) and dangMi

(v) denote the danger value of a
vertex v ∈ V directly before Breaker’s and Maker’s ith move, respectively. Notice that in his
last move, Breaker claims b edges to decrease the minimum degree of the free graph to at
most εnp/3. In order to be able to do that, directly before Breaker’s last move Bg, there
must be a dangerous vertex vg with dM (vg) ≤ c − 1 and dF (vg) ≤ εnp

3 + b. By (P1) of
Theorem 4.2.9 we can assume that δ (G) ≥

(
1− ε

12

)
np. Therefore we have that dangBg (vg) ≥(

1− ε
12 −

ε
3

)
np− (c− 1)− b− 2b (c− 1) =

(
1− 5

12ε
)
np− (c− 1)− b (2c− 1) >

(
1− 3

4ε
)
np.

Analogously to the proof of Theorem 4.2.11 in [42], we state the following lemmas which
estimate the change of the average danger after each move of any of the players. In the first
lemma we estimate the change after Maker’s move:
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Lemma 4.2.14. Let i be an integer, 1 ≤ i ≤ g − 1. Then
(i) if Ii 6= Ii−1, then dangMg−i (Ii)− dangBg−i+1

(Ii−1) ≥ 0, and

(ii) if Ii = Ii−1, then dangMg−i (Ii)− dangBg−i+1
(Ii−1) ≥ 2b

|Ii| .

In the second lemma we estimate the change of the average danger during Breaker’s moves:

Lemma 4.2.15. Let i be an integer, 1 ≤ i ≤ g − 1. Then
(i) dangMg−i (Ii)− dangBg−i (Ii) ≤ 2b

|Ii| , and

(ii) dangMg−i (Ii) − dangBg−i (Ii) ≤ b+e(vg−i,Ii)+a(i−1)−a(i)
|Ii| , where a (i) denotes the number of

edges spanned by Ii which Breaker claimed in the first g − i− 1 rounds.

Combining Lemmas 4.2.14 and 4.2.15, we get the following corollary which estimates the
change of the average danger after a full round:

Corollary 4.2.16. Let i be an integer, 1 ≤ i ≤ g − 1. Then
(i) if Ii = Ii−1, then dangBg−i (Ii)− dangBg−i+1

(Ii−1) ≥ 0,

(ii) if Ii 6= Ii−1, then dangBg−i (Ii)− dangBg−i+1
(Ii−1) ≥ − 2b

|Ii| , and

(iii) if Ii 6= Ii−1, then dangBg−i (Ii)− dangBg−i+1
(Ii−1) ≥ − b+e(vg−i,Ii)+a(i−1)−a(i)

|Ii| , where a (i)
denotes the number of edges spanned by Ii which Breaker took in the first g − i− 1 rounds.

In order to complete the proof, we prove that before Breaker’s first move, dangB1
(Ig−1) > 0,

thus obtaining a contradiction.
Let N := n

ln3 n
. For the analysis, we split the game into two parts: the main game, and the

end game which starts when |Ii| ≤ N .
Let |Ig−1| = r and let i1 < . . . < ir−1 be those indices for which Iij 6= Iij−1. Note that
|Iij | = j + 1. Note also that since Iij−1 = Iij−1 and ij−1 ≤ ij − 1, a (ij − 1) ≤ a (ij−1).

Recall that the danger value of vg directly before Bg is at least

dangBg (vg) >
(

1− 3
4
ε

)
np. (4.2)

Assume first that r < N .

dangB1
(Ig−1) = dangBg (I0) +

g−1∑
i=1

(
dangBg−i (Ii)− dangBg−i+1

(Ii−1)
)

≥ dangBg (I0) +
r−1∑
j=1

(
dangBg−ij

(
Iij
)
− dangBg−ij+1

(
Iij−1

))
[by Corollary 4.2.16(i)]

≥ dangBg (I0)−
r−1∑
j=1

b+ e
(
vg−ij , Iij

)
+ a (ij − 1)− a (ij)
j + 1

[by Corollary 4.2.16(iii)]

≥ dangBg (I0)− b ln r −
r−1∑
j=1

e
(
vg−ij , Iij

)
j + 1

− a (0)
2

+
r−1∑
j=2

a (ij−1)
(j + 1) j

+
a (ir−1)

r

≥ dangBg (I0)− b ln r − o (np) [by Lemma 4.2.10]

>

(
1− 3

4
ε

)
np− (1− ε+ o (1))np [by (4.2)]

> 0. (4.3)
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Assume now that r ≥ N .

dangB1
(Ig−1) = dangBg (I0) +

g−1∑
i=1

(
dangBg−i (Ii)− dangBg−i+1

(Ii−1)
)

≥ dangBg (I0) +
r−1∑
j=1

(
dangBg−ij

(
Iij
)
− dangBg−ij+1

(
Iij−1

))
[by Corollary 4.2.16(i)]

= dangBg (I0) +
N−1∑
j=1

(
dangBg−ij

(
Iij
)
− dangBg−ij+1

(
Iij−1

))
+

r−1∑
j=N

(
dangBg−ij

(
Iij
)
− dangBg−ij+1

(
Iij−1

))

≥ dangBg (vg)−
N−1∑
j=1

b

j + 1
− o (np)−

r−1∑
j=N

2b
j + 1

[by Corollary 4.2.16(ii) and (4.3)]

≥
(

1− 3
4
ε

)
np− b lnn− o (np)− 2b

(
lnn− ln

n

ln3 n

)
[by (4.2)]

=
(

1− 3
4
ε

)
np− (1− ε)np− o (np)− 6b ln lnn

=
ε

4
np− o (np)

> 0.

This completes the proof. �

4.3 Maker-Breaker games on G(n, p)

4.3.1 Breaker’s win

In this subsection we prove Theorem 1.2.6.
Chvátal and Erdős proved in [18] that playing on the edge set of the complete graph Kn, if

Breaker’s bias is b = (1 + ε) n
lnn , then Breaker is able to isolate a vertex in his graph and thus

to win a lot of natural games such as the perfect matching game, the Hamiltonicity game and
the k-connectivity game.

In their proof, Breaker wins by creating a large clique which is disjoint of Maker’s graph and
then playing the box game on the stars centered in this clique. Our proof is based on the same
idea.

Proof of Theorem 1.2.6: First, we may assume that p ≥ lnn
n , since otherwise G ∼ G(n, p)

typically contains isolated vertices and Breaker wins no matter how he plays. Now we introduce
a strategy for Breaker and then we prove it is a winning strategy. At any point during the game,
if Breaker cannot follow the proposed strategy then he forfeits the game. Breaker’s strategy is
divided into the following two stages:

Stage I: Throughout this stage Breaker maintains a subset C ⊆ V which satisfies the fol-
lowing properties:

(i) EG (C) = EB (C).

(ii) dM (v) = 0 for every v ∈ C.

(iii) dG (v) ≤ (1 + ε/2)np for every v ∈ C.
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Initially, C = ∅. In every move, Breaker increases the size of C by at least one. This stage ends
after the first move in which |C| ≥ n

ln2 n
.

Stage II: For every v ∈ C, let Av = {vu ∈ E (G) : vu /∈ E (B)}. In this stage, Breaker claims
all the elements of one of these sets.

It is evident that if Breaker can follow the proposed strategy, then he isolates a vertex in
Maker’s graph and wins the game. It thus remains to prove that Breaker can follow the proposed
strategy. We consider each stage separately.

Stage I: Notice that in every move Maker can decrease the size of C by at most one. Hence,
it is enough to prove that in every move Breaker is able to find at least two vertices which are
isolated in Maker’s graph and have bounded degree as required, and to claim all the free edges
between them and C, as well as the edge between the two vertices, if it exists in G. For this
it is enough to prove that Breaker can always find two vertices u, v ∈ V \ C which have the
proper degree in G and are isolated in Maker’s graph, and such that e (u,C), e (v, C) ≤ b−1

2 .
Since this stage lasts o (n) moves, and the number of vertices with too high degree in G is o (n)
by property (P1) of Theorem 4.2.9, the existence of such vertices is trivial by property (P9) of
Theorem 4.2.9.

Stage II: Notice that |C| ≥ n
ln2 n

and that Av ∩ Au = ∅ for every two vertices u 6= v in C.
In addition, by the way Breaker chooses his vertices we have that |Av| ≤ (1 + ε/2)np for every
v ∈ C. Recall that b = (1 + ε) np

lnn >
(1+ε/2)np

ln |C| + 1. Therefore, by Theorem 4.2.3 Breaker (as
BoxMaker) wins the Box Game on these sets.

This completes the proof. �

4.3.2 Maker’s win

In this subsection we prove Theorems 1.2.7 and 1.2.8. We start with providing Maker with a
winning strategy in the Hamiltonicity game for each case (which implies the perfect matching
game) and then we sketch the changes which need to be done in order to turn it into a winning
strategy in the k-connectivity game as well.

Proof of Theorem 1.2.7. First we describe a strategy for Maker and then prove it is a
winning strategy.

At any point during the game, if Maker is unable to follow the proposed strategy (including
the time limits), then he forfeits the game. Maker’s strategy is divided into the following three
stages:

Stage I: Maker builds an
(

10000n
ln lnn , 2

)
-expander within 100n lnn

ln lnn moves.
Stage II: Maker makes his graph an (n/5, 2)-expander within additional 300n lnn

ln lnn moves.
Stage III: Maker makes his graph Hamiltonian by adding at most n boosters.
It is evident that if Maker can follow the proposed strategy without forfeiting the game he

wins. It thus suffices to prove that indeed Maker can follow the proposed strategy. We consider
each stage separately.

Stage I: In his first 100n lnn
ln lnn moves, Maker creates a graph with minimum degree c = c (n) =

100 lnn
ln lnn . Maker plays according to the strategy proposed in Theorem 4.2.13 except of the seem-

ingly minor but crucial change that in every move, when Maker needs to claim an edge incident
with a vertex v, Maker randomly chooses such a free edge. We prove that, with a positive prob-
ability, this non-deterministic strategy ensures that Maker’s graph is an

(
10000n
ln lnn , 2

)
-expander

and then, since our game is a perfect information game, we conclude that indeed there exists a
deterministic such strategy for Maker. Recall that according to the strategy proposed in The-
orem 4.2.13, at any move Maker claims a free edge vu with dang (v) = max {dang (u) : u ∈ V }.
In this case we say that the edge vu is chosen by v. We wish to show that the probability of
having a subset A ⊆ V with |A| ≤ 10000n

ln lnn and |NM (A) | ≤ 2|A| − 1 is o (1). To that end, we can
assume that G satisfies all the properties listed in Theorem 4.2.9 and Theorem 4.2.13.
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Assume that there exists a subset A ⊂ V of size |A| ≤ 10000n
ln lnn such that after this stage

NM (A) is contained in a set B of size at most 2|A| − 1. This implies that

|EM (A,A ∪B) | ≥ c|A|/2 =
50|A| lnn

ln lnn
.

Recall that f (n) := np
lnn . We distinguish between the following two cases:

Case I: At least c|A|/4 edges of Maker which are incident to A were chosen by vertices from
A.

Notice that if |A| ≤ n ln lnn
lnn , then there are at most o (|A|) vertices v ∈ A such that e (v,A ∪B) =

Ω
(
f (n) (ln lnn)2

)
, since otherwise we have that e (A ∪B) = Ω

(
f (n) (ln lnn)2|A|

)
which con-

tradicts (P3) of Theorem 4.2.9. Furthermore, if n ln lnn
lnn < |A| ≤ 10000n

ln lnn , then there are at most
o (|A|) vertices v ∈ A such that e (v,A ∪B) = Ω (np) (follows from (P2) of Theorem 4.2.9).
Consider an edge e = ab with a ∈ A and b ∈ A ∪ B and assume that e has been chosen by a.
Notice that by Theorem 4.2.13, when Maker chose e, the vertex a had at least εnp/3 free neigh-
bors. Therefore, for at least (1− o (1)) |A| such vertices a ∈ A, the probability that Maker chose
an edge with a second endpoint in A∪B is at most

(
f(n)(ln lnn)2

εnp/3

)
= 3(ln lnn)2

ε lnn when |A| ≤ n ln lnn
lnn

or an arbitrarily small constant δ > 0 when n ln lnn
lnn < |A| ≤ 10000n

ln lnn . Therefore, the probability

that all of Maker’s edges incident to A were chosen in A ∪B is at most
(

3(ln lnn)2

ε lnn

)(1−o(1))c|A|/4

for |A| ≤ n ln lnn
lnn and at most δ(1−o(1))c|A|/4 otherwise. Applying the union bound we get that

the probability that there exists such A (with |NM (A) | ≤ 2|A| − 1 and at least c|A|/4 edges
chosen by A) is at most

∑
|A|<n ln lnn

lnn

(
n

|A|

)(
n

2|A| − 1

)(
3 (ln lnn)2

ε lnn

)(1−o(1))c|A|/4

+

10000n
ln lnn∑

|A|=n ln lnn
lnn

(
n

|A|

)(
n

2|A| − 1

)
δ(1−o(1))c|A|/4

≤
∑

|A|<n ln lnn
lnn

n3|A|

(
3 (ln lnn)2

ε lnn

) 24|A| lnn
ln lnn

+

10000n
ln lnn∑

|A|=n ln lnn
lnn

(
e3n3

4|A|3

)|A|
δ

24|A| lnn
ln lnn

≤
∑

|A|<n ln lnn
lnn

[
n3 exp

(
24 lnn
ln lnn

ln

(
3 (ln lnn)2

ε lnn

))]|A|
+

10000n
ln lnn∑

|A|=n ln lnn
lnn

(
α

ln3 n

(ln lnn)3
δ

24 lnn
ln lnn

)|A|
≤

∑
|A|<n ln lnn

lnn

[
n3 exp (− (1− o (1)) 24 lnn)

]|A| + o (1) = o (1) .

Case II: At least c|A|/4 edges of Maker which are incident to A were chosen by vertices from
B.

As in Case I, notice that there are at most o (|B|) vertices v ∈ B such that e (v,A) ≥
f (n) (ln lnn)2 when |B| ≤ 2n ln lnn

lnn and at most o (|B|) vertices v ∈ B such that e (v,A) = Ω (np)
when 2n ln lnn

lnn ≤ |B|20000n
ln lnn . Similar to the previous case, with the only difference being that not

all the edges which were chosen by vertices from B have to touch A, we get that the probability
that all Maker’s edges incident to A were chosen in A ∪B is at most

(
c|B|
c|A|/4

)(
3 (ln lnn)2

ε lnn

)(1−o(1))c|A|/4

or (
c|B|
c|A|/4

)
δ(1−o(1))c|A|/4,

59



4 Biased games on random boards

for an arbitrarily small δ, for |B| ≤ 2n ln lnn
lnn or 2n ln lnn

lnn ≤ |B| ≤ 20000n
ln lnn , respectively (the binomial

coefficient corresponds to the number of possible choices of edges from EM (A,B) out of all edges
chosen by vertices from B). Applying the union bound, similar to the computations in Case
I, we get that the probability that there exists such A (with |NM (A) | ≤ 2|A| − 1 and at least
c|A|/4 edges incident to A chosen by N(A)) is o (1).

This completes the proof that Maker can build a
(

10000n
ln lnn , 2

)
-expander fast and thus is able

to follow Stage I of the proposed strategy.
Stage II: It is enough to prove that Maker has a strategy to ensure that EM (A,B) 6= ∅

for every two disjoint subsets A,B ⊆ V of sizes |A| = 10000n
ln lnn and |B| = n/10. Indeed, if there

exists a subset X ⊆ V of size 10000n
ln lnn ≤ |X| ≤ n/5 such that |X ∪ N (X) | < 3|X|, then there

exist two subsets A ⊆ X and B ⊆ V \ (X ∪N (X)) with |A| = 10000n
ln lnn and |B| = n/10 such that

EM (A,B) = ∅.
Recall that by Property (P8) of Theorem 4.2.9, G ∼ G(n, p) is typically such that for every

two such subsets A,B ⊆ V and for sufficiently small α > 0 we have that

eG (A,B) ≥ (1− α) |A||B|p ≥ 999n2p

ln lnn
.

To achieve his goal for this stage, Maker can use the trick of fake moves and to play as
F-Breaker in the

(
np ln lnn
100 lnn , 1

)
Maker-Breaker game where the winning sets are

F =
{
EF (A,B) : A,B ⊆ V , A ∩B = ∅, |A| = 10000n

ln lnn
and |B| = n/10

}
.

Notice that since so far Breaker has played at most 100n lnn
ln lnn rounds, we get that eF (A,B) ≥

899n2p
ln lnn for every A,B ⊂ V (G) of sizes |A| = 10000n

ln lnn and |B| = n/10. Finally, since the following
inequality holds (

n
10000n
ln lnn

)(
n

n/10

)
2−89900n lnn/(ln lnn)2 ≤ 4n2−ω(n) = o (1)

it follows by Theorems 4.2.1 and 4.2.2 that indeed Maker (or, as we called him in this stage,
F-Breaker) can achieve his goals for this stage within e(G)

np ln lnn/100 lnn < 300n lnn
ln lnn moves (recall

that e (G) ≤ 3n2p).
Stage III: So far Maker has played at most 400n lnn

ln lnn moves (and at least 50n lnn
ln lnn moves) and

his graph is an (n/5, 2)-expander. Notice that for the choice a = 2 Lemma 4.2.7 holds. In
addition, Maker and Breaker together claimed o

(
n2p
)

edges of G. Therefore, there are still
Θ
(
n2p
)

free boosters in G, so Maker can easily claim n boosters and to turn his graph into a
Hamiltonian graph.

This completes the proof that Maker wins the game H (G) (and of course also the game
M (G)). �

Now, we briefly sketch the proof of Theorem 1.2.8.
Sketch of proof of Theorem 1.2.8. Let K > 105, p = Kn

lnn and G ∼ G(n, p). The upper
bound on b∗ is obtained immediately from Theorem 1.2.6. We wish to show that G is typically
such that given b ≤ K/10, Maker has a winning strategy in the (1, b) game H (G). First, we
make the following modifications to Theorem 4.2.13:

• In the statement of the theorem, p = K lnn
n , b ≤ np

10 lnn = K
10 , and ε is some positive

constant.

• By similar calculations to those in (P1) of Theorem 4.2.9, we can assume that δ (G) ≥ 1
2np.
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4.3 Maker-Breaker games on G(n, p)

• We conclude that dangBg (vg) ≥
(

1
2 −

ε
3

)
np− (c− 1)− b (2c− 1) >

(
1
2 −

ε
3 −

ε
60

)
np.

• Finally, we use the following calculation:

dangB1
(Ig−1) ≥ dangBg (I0) +

r−1∑
j=1

(
dangBg−ij

(
Iij
)
− dangBg−ij+1

(
Iij−1

))

≥ dangBg (I0)−
r−1∑
j=1

2b
j + 1

≥ dangBg (I0)− 2b lnn

≥
(

1
2
− ε

3
− ε

60

)
np− 1

5
np

> 0

to get a contradiction (for sufficiently small ε).

With this variant of Theorem 4.2.13, adapted to the case p = Θ
(

lnn
n

)
, the proof of Theorem

1.2.8 goes the same as the proof of Theorem 1.2.7, mutatis mutandis. �

Remark: To win the k-connectivity game, Maker follows Stages I and II of the proposed
strategy SM with the following parameter changes:

• In Stage I, Maker creates an
(

10000n
ln lnn , k

)
-expander by creating a graph with minimum

degree at least c = 100k lnn/ ln lnn. The calculations are almost identical to these appear
in the proof of Theorem 1.2.7, Stage I.

• In Stage II, Maker makes his graph an
(
n+k
2k , k

)
-expander by claiming an edge between

any two disjoint subsets A,B ⊆ V such that |A| = 10000n
ln lnn , |B| = n

10k , in a similar way as
in Stage II of Theorem 1.2.7.

Then, by Lemma 4.2.8, Maker’s graph is k-connected and he wins the game. We omit
the straightforward details and the calculations, which are almost identical to those of the
Hamiltonicity game.
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5 Hitting time appearence of certain spanning
trees in the random graph process

As we mentioned earlier, the results of this chapter are based on joined work with D. Johannsen
and Michael Krivelevich [43].

We use standard graph theoretic notation (see e.g. [21]) with the following slight modifications.
In a graph G, we denote the degree of a vertex x by degG(x). The neighborhood NG(A) of a set
A ⊆ V (G) is the union of the neighborhoods of its vertices, i.e., a vertex x ∈ A could also lie in
NG(A). We denote by e(X,Y ) the number of ordered pairs (x, y) with x ∈ X and y ∈ Y (edges
in X ∩Y are therefore counted twice). For the sake of readability, for subgraphs S, S′ ⊆ G (not
necessarily vertex- or edge-disjoint), we denote S + S′ = (V (S) ∪ V (S′), E(S) ∪ E(S′)). For an
event E , we denote by I[E ] the random variable that equals one if E occurs and zero otherwise.

In general, we may drop floor and ceiling signs to improve the readability when they do not
influence the asymptotic statements. Whenever we have a graph on n vertices, we assume its
vertex set to be [n].

The chapter is organized as follows. Since we are aiming for universal statements, we have to
prove our results for pseudo-random instead of truly random graphs. In Section 5.1, we collect
all the pseudo-random properties we will need for the proofs of the later statements and show
that the random graph G(n, p) satisfies this properties a.a.s. for p in the considered range.
In Section 5.3, we prove Observation 1.2.10 and Theorem 1.2.9 in the pseudo-random setting
introduced in Section 5.1. In Section 5.4 we prove Theorem 1.2.11. Finally, in Section 5.5 we
state a conjecture generalizing the intuition obtained from Theorem 1.2.9 and Theorem 1.2.11.

5.1 The Random Graph Process

In this section, we collect all properties that we need that are a.a.s. satisfied in the random
graph process. Notice that our theorems are pretty demanding in terms of the pseudo-random
properties the process has to satisfy: we need that a.a.s. all graphs in the interesting part of
the random graph process behave pseudo-randomly. However, we deal with this explicitly in
the following lemma, proving a statement that holds a.a.s. for all these graphs simultaneously.

Lemma 5.1.1. Let n ∈ N, m = 2n log logn
logn , p1 = logn−log logn

n , and p2 = logn+2 log logn
n . Consider

the two-round exposure of the random graph: from G1 ∼ G(n, p1), we create G1 ⊆ G2 ∼ G(n, p2)
by turning every non-edge of G1 into an edge of G2 independently at random with probability
p2−p1
1−p1 . Let G be an arbitrary graph such that G1 ⊆ G ⊆ G2. Then the vertex set of G can a.a.s.

be partitioned into two parts U and D and contains disjoint sets W,P ⊆ U such that all the
following properties are satisfied.

(P1) The set D has size at most n0.9.

(P2) G does not contain a non-trivial path between two (not necessarily distinct) vertices from
D of length less than 2 logn

3 log logn .

(P3) Every vertex in D of degree one in G has its neighbor in P . Every vertex in D of degree
at least two in G has exactly two neighbors in P . There are no other vertices in P , i.e.,
P ⊆ N(D).

(P4) The set W has size at most 7m.
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(P5) The induced graph G[U ] satisfies
∣∣NG[U ](X) \ (W ∪ P )

∣∣ ≥ logn
5 log logn |X| for all X ⊆ U with

|X| ≤ 2m.

(P6) The induced graph G[U ] satisfies
∣∣NG[U ](X) ∩W

∣∣ > |X| for all X ⊆ U \ (W ∪ P ) with
|X| ≤ m.

(P7) The induced graph G[U ] satisfies e(X,Y ) > 0 for all X,Y ⊆ U with |X|, |Y | ≥ m.

It is well-known (see, e.g., [14]) that G1 is a.a.s. not connected, and G2 has a.a.s. minimum
degree at least two. Hence, the random graphs that are of interest for us a.a.s. lie between G1

and G2, making the lemma the key technical statement.

Proof. We fix D = {v ∈ [n] : dG1(v) < log n/100} to be the set of all vertices with degree less
than log n/100 in G1. Correspondingly, U is the complement of D.

Proof of (P1). Since the property is increasing, it suffices to prove it for G1 instead of G.
The proof is similar to the proof of Claim 4.3 in [11]. Setting t0 = log n/100, we bound the
probability that a vertex v ∈ [n] is in D as follows:

Pr (dG1(v) < t0) = Pr (Bin (n− 1, p1) < t0)

=
t0−1∑
i=0

(
n− 1
i

)
pi1(1− p1)n−1−i

< t0 ·
(
n− 1
t0

)
pt01 (1− p1)n−1−t0

< t0 ·
(
e(n− 1)p1

t0

)t0
e−p1(n−1−t0)

= exp
(
O(log log n) +

log n
100

(1 + log 100 + o(1))− (1− o(1))
log n
100

)
< n−0.92.

This implies that E(D) < n0.08, and the property follows from Markov’s inequality.

Proof of (P2). Since the property is increasing, it suffices to prove it forG2. The proof is similar
to the proof of Claim 4.4 in [11]. We prove the claim for two distinct endpoints in D and for
paths of length r with 2 ≤ r ≤ 2 logn

3 log logn . The other cases (i.e. identical endpoints or r = 1) are
similar and a little simpler. Fix two vertices u,w ∈ [n] and let (u = v0, . . . , vr = w) be a sequence
of vertices from [n], where 2 ≤ r ≤ 2 logn

3 log logn . Denote by A the event “{vi, vi+1} ∈ E(G2) for
every 0 ≤ i ≤ r − 1”, and by B the event that both u and w are elements of D. Clearly,
Pr (A) = pr2, hence

Pr (B ∧ A) = pr2 ·Pr (B|A) .

Let X denote the random variable which counts the number of edges in G2 incident with u or
w disregarding the pairs {u, v1}, {vr−1, w}, and {u,w}. We can therefore bound Pr (B|A) ≤
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Pr (X < 2t0 − 2) and as X ∼ Bin (2n− 6, p2), we derive setting t0 = log n/100 that

Pr (X < 2t0 − 2) ≤
2t0−2∑
i=0

(
2n− 6
i

)
pi2(1− p2)2n−6−i

< 2t0

(
2n− 6

2t0

)
p2t0

2 (1− p2)2n−6−2t0

< 2t0 ·
(
e(2n− 6)p2

2t0

)2t0

e−p2(2n−6−2t0)

= exp
(
O(log log n) + 2

log n
100

(1 + log 100 + o(1))− (2− o(1))
log n
100

)
< n−1.8.

Fixing the two endpoints u,w, the number of such sequences is at most (r − 1)!
(
n
r−1

)
≤ nr−1.

Applying a union bound argument over all such pairs of vertices and possible sequences con-
necting them we conclude that the probability of a path in G2 of length r ≤ 2 logn

3 log logn , connecting
two vertices of D is at most

2 logn
3 log logn∑
r=1

(
n

2

)
· nr−1 · pr2 · n−1.8 <

2 logn
3 log logn∑
r=1

nr+1

2
· (log n+ 2 log log n)r

nr
· n−1.8

<
2 log n

3 log log n
· n−0.8 · (log n+ 2 log log n)

2 logn
3 log logn

= o(1).

This completes the proof of the property.

Proof of (P3). For every vertex x ∈ D, if its degree in G is one, we add its neighbor to P , and if
it is at least two, we add arbitrary two of its neighbors to P . Since by Property (P2), the neigh-
borhoods of vertices from P do not intersect a.a.s., the created set P satisfies Property (P3)
a.a.s.

We denote W1 =
{

1, . . . ,
⌈

13.8n log logn
logn

⌉}
to be the set of the first 6.9m vertices. We denote

W2 = {x ∈ [n] \W1 : |NG1(x) ∩W1| ≤ 8 log log n}. Finally, we set W = W1 ∪W2 \ (D ∪ P ).

Proof of (P4). Observe that for every vertex x ∈ [n] \W1, the expected number of neighbors
of x in W1 in the graph G1 is

E (|NG1(x) ∩W1|) = |W1|p1 ∼ 13.8 log log n.

Thus, using Chernoff’s inequality (Lemma 1.3.1), we obtain

Pr (|NG1(x) ∩W1| ≤ 8 log log n)� 1
log n

. (5.1)

By Markov’s inequality, |W2| < n log logn
5 logn a.a.s. Hence, |W | ≤ |W1 ∪W2| < 7m a.a.s.

The next property of a typical graph G1 is not listed in the statement of the lemma, since it
is used here only as a tool to prove Property (P5).

Claim 3. The graph G1 is a.a.s. such that the induced graph G1[U ] satisfies eG1(X,Y ) > 0 for
all disjoint X,Y ⊆ U with |X| · |Y | ≥ 2n2

logn .

Notice that by definition, the set U only depends on G1, and so the statement of the claim
makes sense without specifying any graph G.
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Proof of Claim 3. For the probability of the complementary event, we obtain using the union
bound

Pr
(
∃X,Y ⊂ [n], X ∩ Y = ∅, |X| · |Y | ≥ 2n2

log n
: eG1(X,Y ) = 0

)
≤

∑
X,Y⊂[n],X∩Y=∅,|X|·|Y |≥ 2n2

logn

(1− p1)|X|·|Y | < 2n2ne−(2−o(1))n = o(1).

For the proof of the next property, the following claim bounds the degree in G2, and thus
also in G, of an arbitrary vertex into W ∪ P from above.

Claim 4. The largest degree in G2 of a vertex from [n] into W ∪ P a.a.s. satisfies the relation
max {eG2(x,W ∪ P ) : x ∈ [n]} ≤ 3 logn

log logn .

Proof of Claim 4. Recall that in G2, all edges are drawn independently with probability p2.
Furthermore, for vertices x ∈ [n] and y, z ∈ [n] \W1, the events “xy ∈ E(G2)” and “z ∈ W2”
as well as the events “y ∈ W2” and “z ∈ W2” are independent. Finally, notice crucially that
the events “xy ∈ E(G2)” and “y ∈W2” are independent if x 6∈W1, and negatively correlated if
x ∈W1. Thus, we can estimate

E (|NG2(x) ∩W |) ≤ E (|NG2(x) ∩W1|) + E (|NG2(x) ∩W2|)

≤
∑

y∈W1\{x}

Pr (xy ∈ E(G2)) +
∑

y∈[n]\(W1∪{x})

Pr (xy ∈ E(G2)) ·Pr(y ∈W2)

(5.1)
< |W1|p2 + np2 ·

1
log n

< 14 log log n.

Now, since for every x, y, z ∈ [n], the events “xy ∈ E(G2) and y ∈ W” and “xz ∈ E(G2)
and z ∈W” are mutually independent, we obtain using union bound and Chernoff’s inequality
(Lemma 1.3.1)

Pr
[
∃x ∈ [n] : eG2(x,W ) >

2 log n
log log n

]
< n

(
2 log n

14e(log log n)2

)− 2 logn
log logn

= o(1).

Combining it with the fact that every vertex x ∈ [n] a.a.s. has at most 2 neighbors in P by (P2)
and (P3) we have the statement of the claim.

Appropriate expansion properties of G[U ] are widely known. Similarly to Lemma 10 in [44],
the following statement is true.

Claim 5. The graph G1 is a.a.s. such that for every set X ⊂ U of size |X| ≤ n/ log n, its
neighborhood in G1[U ] satisfies

∣∣NG1[U ](X)
∣∣ ≥ logn

1000 |X|.

Proof. Suppose to the contrary that there exists a set X ⊂ U of size at most |X| ≤ n/ log n such
that its neighborhood in G1 satisfies |NG1(X)| < logn

1000 |X|. By the definition of U , the number
of edges incident to X in G1 is at least

eG1(X,NG1(X)) ≥ |X| log n/200.
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But Lemma 1.3.1 tells us that

Pr
(
∃A,B ⊂ [n], |A| ≤ n

log n
, |B| < log n

1000
|A| : eG1(A,B) ≥ |A| log n/200

)
<

∑
A,B⊂[n], |A|≤ n

logn
, |B|= logn

1000
|A|

(
e · E (|eG1(A,B)|)
|A| log n/200

)|A| logn/200

<
∑

A,B⊂[n], |A|≤ n
logn

, |B|= logn
1000
|A|

(
200e|A||B|p1

|A| log n

)|A| logn/200

<
∑

a≤ n
logn

(
n

a

)(
n

a logn
1000

)(
3ap1

5

)a logn/200

<
∑

a≤ n
logn

(
3ap1

5

)a logn/400

= o(1),

providing the claim.

We are now ready to prove Property (P5).

Proof of (P5). Provided that the graphs G1 and G2 are such as Claims 5, 4, and 3 prove them
to be a.a.s., we obtain for every set X ⊂ U of size |X| ≤ n/ log n∣∣NG[U ](X) \ (W ∪ P )

∣∣ ≥ ∣∣NG[U ](X)
∣∣− |X|max

x∈X
{e(x,W ∪ P )}

Claim 5, Claim 4
≥ |X|

(
log n
1000

− 3 log n
log log n

)
>

log n
5 log log n

|X|.

Furthermore, every set X ⊂ U of size |X| ≤ n log log log n/ log n contains a subset X ′ ⊂ X of
size |X ′| = n/ log n. Therefore, again applying Claim 5, we obtain

∣∣NG[U ](X) \ (W ∪ P )
∣∣ ≥ ∣∣NG[U ](X

′) \ (W ∪ P )
∣∣ ≥ n/1000 >

log n
5 log log n

|X|.

Finally, for a set X ⊂ U of size n log log log n/ log n ≤ |X| ≤ 2m, we obtain using Claim 3

∣∣NG[U ](X) \ (W ∪ P )
∣∣ ≥ |NG(X)|−|D∪W∪P | ≥ |NG1(X)|−|D∪W∪P | = n−o(n) >

log n
5 log log n

|X|.

The expansion of sets of potential leaves into W is a key property to prove the existence
of bounded degree spanning trees with many leaves. In fact, Property (P6) is the reason we
introduce W .

Proof of (P6). The property is increasing, hence it is again sufficient to prove it to hold in G1.
By the construction of W , G1 is a.a.s. such that every vertex x ∈ U \ (W ∪ P ) has more

than 8 log log n neighbors in W1 ⊆ W . Furthermore, x has at most one neighbor in P ∪D by
Property (P2). Hence, x has at least

⌊
log logn

8

⌋
neighbors in W ; in the following, we omit the
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5 Hitting time appearence of certain spanning trees in the random graph process

flooring signs. Now, for the event complementary to the statement of Property (P6) we obtain
using Chernoff’s inequality (Lemma 1.3.1)

Pr
(
∃X ⊂ U \ (W ∪ P ), |X| ≤ 2n log logn

log n
: |NG1(X) ∩W | ≤ |X|

)
≤ Pr

(
∃X,Y ⊂ [n], X ∩ Y = ∅, |X| = |Y | ≤ 2n log logn

log n
: eG1(X,Y ) ≥ 8 log log n|X|

)
<

∑
k≤ 2n log logn

logn

(
n

k

)2( e · k2p1

8k log logn

)8k log logn

<
∑

k≤ 2n log logn
logn

(ne
k

)2k
(

ek log n
8n log logn

)8k log logn

=
∑

k≤ 2n log logn
logn

(ne)2k

(
e log n

8n log log n

)8k log logn

k8k log logn−2k

<
∑

k≤ 2n log logn
logn

(ne)2k

(
e log n

8n log log n

)8k log logn(2n log log n
log n

)2k−8k log logn

=
∑

k≤ 2n log logn
logn

(
e log n

2 log log n

)2k

(e/4)8k log logn = o(1),

completing the proof of Property (P6).

Proof of (P7). It suffices to show (P7) for G1, since (P7) is a monotone increasing graph
property. Furthermore, we only need to show it for sets of size m, since all larger sets contain
subsets of size m.

Pr (∃X,Y ⊂ [n], X ∩ Y = ∅, |X| = |Y | = m : eG1(X,Y ) = 0) ≤
(
n

m

)2

(1− p1)m
2

<
(ne
m

)2m
e−p1m

2
=
(

e log n
2 log log n

)2m

e−2m log logn(1−log logn/ logn)

=
(

e

2 log log n
e(log logn)2/ logn

)2m

= o(1).

5.2 Embedding Paths and Trees in Expanders

The first breakthrough result on embedding trees of bounded degree into G(n, p) was achieved
by Friedman and Pippenger [35]. A later refinement of their result by Haxell [49] implies a
possibility to embed almost spanning bounded degree trees in sparse random graphs. The
following result is a corollary of Theorem 3 from [7], basically setting L = 0 there. We state it
because our technique is a modification of the approach in [49] and [7].

Theorem 5.2.1 (Corollary of Theorem 3 in [7]). Let d,m ∈ N and let T be a tree with maximum
degree at most d. Suppose that G is a graph satisfying the following conditions:

• NG(X) ≥ d|X|+ 1 for every set X ⊂ V (G) with 1 ≤ |X| ≤ m and
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5.2 Embedding Paths and Trees in Expanders

• NG(X) ≥ d|X|+ |V (T )| for every set X ⊂ V (G) with m+ 1 ≤ |X| ≤ 2m.

Then G contains a copy of T as a subgraph.

Another important tool of our proof that will be essential for the embedding of a spanning
tree with a long bare path is the result of Hefetz, Krivelevich, and Szabó [52] on Hamilton
connectivity of expanders. The following theorem is an adaptation of Theorem 1.2 in [52]
which takes into account that in the result of Hefetz et al. NG(X) is defined as the external
neighborhood of X, while in our case X can be part of its own neighborhood. In fact, we just
plug in (d + 2) for every d in [52] and estimate |NG(X) \ X| ≥ |NG(X)| − |X| for a graph G

and a vertex set X ⊆ V (G) as well as 2 log(d+2)
d+2 ≥ log d

d and log(d+2)
5000 ≤ log d

4130 for d ≥ 14.

Theorem 5.2.2 (Corollary of Theorem 1.2 in [52]). Let n ∈ N and let d = d(n) satisfy 14 ≤
d ≤ e 3√logn. Suppose that G is a graph on n vertices satisfying the following conditions:

(H1) |NG(X)| ≥ (d− 1)|X| for every set X ⊂ V (G) with |X| ≤ 2n log logn log d
d logn log log logn and

(H2) eG(X,Y ) > 0 for every two disjoint sets X,Y ⊂ V (G) with |X| ≥ n log logn log d
5000 logn log log logn and

|Y | ≥ n log logn log d
5000 logn log log logn .

Then G is Hamilton connected, provided that n is sufficiently large.

The following definition formalizes the crucial expansion property used for obtaining almost
spanning trees.

Definition 5.2.3. Let d,m ∈ N satisfy m ≥ 1 and d ≥ 3, let G be a graph, and let S ⊆ G be
a subgraph of G. We say that S is (d,m)-extendable if S has maximum degree at most d and

D(X;S) := |NG(X) \ V (S)| − (d− 1)|X|+
∑

x∈X∩V (S)

(
degS(x)− 1

)
≥ 0

holds for all sets X ⊆ V (G) with |X| ≤ 2m.
Furthermore, we call all sets X ⊆ V (G) of size at most 2m with D(X;S) = 0 critical with

respect to S (or shortly S-critical).

The following is the key lemma in working with crucial sets. It states that crucial sets are
closed under union and intersection.

Lemma 5.2.4 (Criticality Lemma). Let d,m ∈ N satisfy m ≥ 1 and d ≥ 3, let G be a graph,
and let S be a (d,m)-extendable subgraph of G. Suppose that G satisfies

|NG(X)| ≥ |V (S)|+ 2dm+ 1

for all X ⊆ V (G) with m ≤ |X| ≤ 2m. Then

(i) all S-critical sets have size at most m, and

(ii) the union and the intersection of two critical sets are critical.

Consequently, we may define the unique inclusion-minimal S-critical set X(S) that contains all
S-critical sets as subsets and has size at most m.

Proof. To show (i), consider an S-critical set X ⊆ V (G). By definition, we have |X| ≤ 2m and

|NG(X) \ V (S)| = (d− 1)|X| −
∑

x∈X∩V (S)

(
degS(x)− 1

)
≤ d|X|.
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5 Hitting time appearence of certain spanning trees in the random graph process

Since |NG(X) \ V (S)| ≥ |NG(X)| − |V (S)|, this implies

|NG(X)| ≤ |V (S)|+ d|X|.

Thus, as |NG(X)| ≥ |V (S)|+2dm+1 ≥ |V (S)|+d|X|+1 holds in the case that m ≤ |X| ≤ 2m,
we have that X is at most of size m.

To show (ii), let us first observe that the function D(·, S) is submodular, that is, that

D(X ∪ Y ;S) +D(X ∩ Y ;S) ≤ D(X;S) +D(Y ;S)

holds for all X,Y ⊆ V (G). The reason for this is that we have

|NG(X ∪ Y ) \ V (S)|+ |NG(X ∩ Y ) \ V (S)| ≤ |NG(X) \ V (S)|+ |NG(Y ) \ V (S)| ,∑
x∈(X∪Y )∩V (S)

(
degS(x)− 1

)
+

∑
x∈(X∩Y )∩V (S)

(
degS(x)− 1

)
=

∑
x∈X∩V (S)

(
degS(x)− 1

)
+

∑
x∈Y ∩V (S)

(
degS(x)− 1

)
,

and
(d− 1)|X ∪ Y |+ (d− 1)|X ∩ Y | = (d− 1)|X|+ (d− 1)|Y |

for all X,Y ⊆ V (G). Now, suppose that X,Y ⊆ V are critical. Then, by (i), |X| ≤ m and
|Y | ≤ m. Thus, it holds that |X ∪ Y | ≤ 2m and |X ∩ Y | ≤ 2m and therefore also that
D(X ∪ Y ;S) ≥ 0 and D(X ∩ Y ;S) ≥ 0. Hence, since D(·;S) is submodular, we obtain

0 ≤ D(X ∪ Y ;S) +D(X ∩ Y ;S) ≤ D(X;S) +D(Y ;S) = 0,

that is, both X ∪ Y and X ∩ Y are critical, too.

The following proposition will be crucial for the upcoming lemmas in this section. Here we
calculate the change of the value D(X;S) when S gets an additional vertex attached to the
previous vertex set by an edge.

Proposition 5.2.5. Let d ∈ N, let G be a graph, and let S be a subgraph of G. For arbitrary
s ∈ V (S) and y ∈ NG(s) \V (S), let Sy be the subgraph of G obtained from S by adding y to the
vertex set of Sy and adding {y, s} to the edge set of Sy. Then, for every X ⊆ V (G), we obtain

D(X;Sy) = D(X;S)− I [y ∈ NG(X)] + I[s ∈ X].

Proof. For every X ⊆ V (G) we have

|NG(X) \ V (Sy)| = |NG(X) \ V (S)| − I [y ∈ NG(X)]

and ∑
x∈X∩V (Sy)

(
degSy(x)− 1

)
=
∑

x∈X∩V (S)

(
degSy(x)− 1

)
+ (1− 1) =

∑
x∈X∩V (S)

(
degS(x)− 1

)
+ I[s ∈ X].

The following lemma is crucial for our embedding. It ensures that as long as we did not
embed too large proportion of the vertices, we can embed one more vertex without destroying
the (d,m)-extendability of the image subgraph.

Lemma 5.2.6 (Vertex Extension Lemma). Let d,m ∈ N satisfy m ≥ 1 and d ≥ 3, let G be a
graph, and let S be a (d,m)-extendable subgraph of G. Assume that G satisfies

|NG(X)| ≥ |V (S)|+ 2dm+ 1

for all X ⊆ V (G) with m ≤ |X| ≤ 2m. Then, for every vertex s ∈ V (S) with degS(s) ≤ d− 1,
there exists a vertex y ∈ NG(s) \ V (S) such that the graph Sy := (V (S) ∪ {y}, E(S) ∪ {{y, s}})
is (d,m)-extendable, too.
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5.2 Embedding Paths and Trees in Expanders

Proof. Let Y = NG(s) \ V (S). Since S is (d,m)-extendable, we have

0 ≤ D ({s};S) = |NG(s) \ V (S)| − (d− 1) +
(

degS(s)− 1
)
≤ |NG(s) \ V (S)| − 1

and therefore the set Y is non-empty.
For the sake of contradiction, suppose that for every y ∈ Y , the subgraph Sy defined in

the statement of the lemma is not (d,m)-extendable. Consider an arbitrary y ∈ Y . Since we
supposed that Sy is not (d,m)-extendable, there exists a set Xy of size |Xy| ≤ 2m such that

D (Xy;Sy) < 0. (5.2)

We have seen in Proposition 5.2.5 that

D (X;Sy) = D(X;S)− I [y ∈ NG(X)] + I[s ∈ X]

holds for all X ⊆ V (G). Thus, in order to satisfy inequality (5.2), the three conditions

(i) D (Xy;S) = 0 (that is, Xy has to be S-critical),

(ii) y ∈ NG(Xy), and

(iii) s /∈ Xy

have to be satisfied. Now, Lemma 5.2.4 implies that X∗ =
⋃
y∈Y Xy also satisfies these three

conditions (i)–(iii) in place of Xy, too. Because of (ii), we know that NG(s) \ V (S) = Y ⊆
NG(X∗) and therefore

|NG (X∗ ∪ {s}) \ V (S)| = |NG(X∗) \ V (S)| . (5.3)

Because of (iii), we know that

(d− 1) |X∗ ∪ {s}| = (d− 1) |X∗|+ d− 1. (5.4)

Finally, we have that∑
x∈(X∗∪{s})∩V (S)

(
degS(x)− 1

)
≤

∑
x∈X∗∩V (S)

(
degS(x)− 1

)
+ d− 2. (5.5)

Thus, together (5.3), (5.4), and (5.5) imply that

D (X∗ ∪ {s};S) ≤ D(X∗;S)− 1.

However X∗ is critical by condition (i) and therefore

D (X∗ ∪ {s};S) < 0.

But this is a contradiction to the fact that S is (d,m)-extendable and that by Lemma 5.2.4 |X∗ ∪ {s}| ≤
m+ 1 ≤ 2m. Hence, there exists y ∈ Y such that Sy is (d,m)-extendable, too.

Lemma 5.2.7 (Removal Lemma). Let d,m ∈ N satisfy m ≥ 1 and d ≥ 3, let G be a graph,
and let S be a subgraph of G. Furthermore, assume that there exist vertices s ∈ V (S) and
y ∈ NG(S) \V (S) such that the graph Sy := (V (S) ∪ {y}, E(S) ∪ {{y, s}}) is (d,m)-extendable.
Then S is (d,m)-extendable, too.

Proof. By Proposition 5.2.5, we have

D(X;S) = D(X;Sy) + I[y ∈ NG(X)]− I[s ∈ X].

for all X ⊆ V (G). Since y and s are neighbors, it holds that I[s ∈ X] ≤ I[y ∈ NG(X)].
Therefore,

D(X;S) ≥ D(X;Sy) ≥ 0

for every X ⊆ V (G) with |X| ≤ 2m.
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5 Hitting time appearence of certain spanning trees in the random graph process

Lemma 5.2.8 (Edge Insertion Lemma). Let d,m ∈ N satisfy m ≥ 1 and d ≥ 3, let G be a graph,
and let S be a (d,m)-extendable subgraph of G. If s, t ∈ V (S) such that degS(s), degS(t) ≤ d−1
and {s, t} ∈ E(G), then S + {s, t} is a (d,m)-extendable subgraph of G, too.

Proof. Lemma 5.2.8 follows directly from the definition of D(X; ·), since

D (X;S + {s, t}) = |NG(X) \ V (S)| − (d− 1)|X|+
∑

x∈X∩V (S)

(
degS+{s,t}(x)− 1

)
= D(X;S) + I[s ∈ X] + I[t ∈ X] ≥ 0

holds for all X ⊆ V (G).

Lemma 5.2.9 (Connection Lemma). Let n, d,m ∈ N satisfy m ≥ 1 and d ≥ 3, let G be a graph
on n vertices satisfying

eG(X,Y ) > 1

for all disjoint X,Y ⊆ V (G) with |X| ≥ m and |Y | ≥ m, and let S be a (d,m)-extendable
subgraph of G on at most n−10dm vertices. Let k = dlog(2m)/ log(d−1)e and let j ∈ {1, . . . , k}.
Assume that there are two disjoint vertex sets A and B in S such that both, A and B, are of
size at least 2m/(d−1)j and all vertices in A and B are of degree at most d/2 in S. Then there
exists a path P of length 2j + 1 in G with endpoints in A and B such that all vertices of P
except the two endpoints do not belong to S, and S + P is (d,m)-extendable.

Note that for j = k, the two sets A and B both consist of a single vertex, that is, we may
connect any two vertices of S by a path of length 2k + 1.

Proof. We first choose two sets A′ ⊆ A and B′ ⊆ B, each of size
⌈
m/(d− 1)j

⌉
. Next, for each

of the vertices in A′ and B′, we attach by an edge
⌈
d−1

2

⌉
complete rooted (d−1)-ary trees of

depth j − 1 by repeatedly applying the Vertex Extension Lemma (Lemma 5.2.6). In order to
apply this lemma, we have to make sure that S does not grow by too much (the degree constraint
is satisfied since every vertex in A′ and B′ is of degree at most d/2 in S). This is shown by the
following calculation. We attach at most (d − 1) trees to each of the at most 2

⌈
m/(d− 1)j

⌉
vertices of each set and at most 2(d − 1)j−1 vertices for each tree, that is, at most 8(d − 1)m
vertices in total. Therefore, since eG(X,Y ) > 1 holds for all disjoint X,Y ⊆ V (G) with |X| ≥ m
and |Y | ≥ m, we have

|NG(X)| ≥ n− 2m+ 1 ≥ |V (S)|+ 10dm− 2m+ 1 >
(
|V (S)|+ 8(d− 1)m

)
+ 2dm+ 1

for every set X ⊆ V (G) with m ≤ |X| ≤ 2m. Thus, we can indeed apply the Vertex Extension
Lemma to attach the (d−1)-ary trees.

In total the subtrees attached to each of the sets have at least m leaves each, and every leaf
is at distance j from the vertex in A′ or B′ the respective (d−1)-ary tree is attached to. Thus,
there is an edge between them closing a path of length 2j + 1 in G between A and B. We add
this edge to S by applying the Edge Insertion Lemma (Lemma 5.2.8). Finally, we repeatedly
apply the Removal Lemma (Lemma 5.2.7) to remove from the attached trees all vertices that
do not lie on the path closed by the additional edge, effectively adding only this single path of
length 2j + 1 between A′ and B′ to S.

5.3 Hitting Times of Spanning Trees with Long Bare Paths

In this section we prove Theorem 1.2.9 and Observation 1.2.10.
As we already mentioned in Chapter 1, in our tree we need a set of leaves that are sufficiently

far from each other. We formalize it in the following definition.
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Definition 5.3.1. Let ` ∈ N. For a forest F and a set A ⊆ V (F ), we call the skeleton of A
in F the subforest of F induced by all vertices in V (F ) that lie on a path between two vertices
of A (which includes all vertices of A). Furthermore, we say that A is `-scattered in F if there
exists an ordering u1, . . . , u|A| of the vertices of A such that, for all j ∈ {1, . . . , |A| − 1}, the
vertex uj+1 does not lie in the skeleton of Aj := {u1, . . . , uj} and the unique path (if any exists)
between uj+1 and the skeleton of Aj has length at least `.

First let us observe a connection between an `-scattered set A and the pairwise distances
between vertices from A.

Observation 5.3.2. Let T be a tree, ` a positive integer, and A ⊆ V (T ) a set of vertices with
pairwise distances at least 2`. Then A is `-scattered.

Proof. We show the observation by induction on |A|. In case |A| ≤ 2, the statement is trivial. If
|A| ≥ 3, we denote by TA the skeleton of A and consider it to be rooted at an arbitrary vertex.
Let u be a vertex of largest distance from the root among all vertices of degree at least 3 in
TA. Then TA consists of a tree T ′ with |A| − degTA(u) + 2 leaves, with u being a leaf of T ′, as
well as degTA(u)−1 =: i edge-disjoint paths between u and the vertices {a1, . . . , ai} ⊂ A. Since
vertices from A have pairwise distance at least 2`, we can assume without loss of generality that
the path between u and a1 has length at least `.

By induction, the set A \ {a1} is `-scattered. Furthermore, the path between a1 and u is
exactly the connection between u and the skeleton of A \ {a1}. And since this path is of length
at least `, the set A is `-scattered as well.

Observation 5.3.2 implies that Theorem 1.2.9 is an immediate corollary of the following more
technical statement, where the requirement on the pairwise distances is replaced by the corre-
sponding scatterness.

Theorem 5.3.3. In the random graph process on n vertices, a.a.s. the following holds. For
every t < n, if G(t) is connected, then it contains every n-vertex tree of maximum degree at most

logn
2 log logn log log logn containing a (2.1 log n/ log logn)-scattered t-set of leaves and a bare path of
length at least 23n

log log logn .

Proof. Let t ∈ N. For n ∈ N, let ∆ = logn
2 log logn log log logn , m = 2n log logn

logn , d =
⌈

logn
log logn log log logn

⌉
,

and ` = 2
⌈

log(2m)
log(d−1)

⌉
+ 3. Then, for sufficiently large n, we have ` < 2.1 logn

log logn and 11dm ≤
23n

log log logn .
By Lemma 5.1.1 and the connectivity threshold from [?], the random graph G(t) is a.a.s.

either not connected or satisfies the properties (P1)–(P7). Thus, let n ∈ N be sufficiently
large and let G be a graph with sets U , W , D, and P as in Lemma 5.1.1 that satisfies the
properties (P1)–(P7). (Notice that we actually do not use the set W in this section, so we
could leave out W , (P4), and (P6) here.) Let L be the set of vertices of degree one in G and let
L′ be the set of neighbors of L. Assume that the set L is of size exactly t. Furthermore, let F
be an n-vertex tree of maximum degree at most ∆ containing an `-scattered set of leaves LF of
size t and a bare path B in F of length at least 11dm. Let L′F be the set of neighbors of LF
in F and let F1 and F2 be the two subtrees of F intersecting B in one vertex each such that
F1 + B + F2 = F . In order to prove Theorem 5.3.3, we show that there exists an embedding
of F into G.

Notice that L ⊆ D by Property (P5), since for every vertex x ∈ U , applying Property (P5)
with X = {x}, we see that dG(x) ≥ logn

5 log logn > 1. Thus, L′ ⊆ P by Property (P3).
To be able to apply the results from Section 5.2, we create an auxiliary graph G′ from G by

deleting every vertex from D as well as all edges incident to D, and for every x ∈ D of degree at
least two, adding an auxiliary edge {p1, p2} between the two neighbors p1 and p2 of x in P . Note
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that by Property (P2) no two vertices in D share a common neighbor in P . Correspondingly, we

delete LF from F and replace B by a bare path B′ of length |E(B)|−|D|+|L|
(P1)

≥ (11−o(1))dm
to obtain a tree F ′ with the corresponding subtrees F ′1 +B′ + F ′2 = F ′.

If there exists an embedding of F ′ into G′ such that all vertices from L′F are embedded into
L′ and all auxiliary edges are edges of the image of B′, we can find in G a subgraph isomorphic
to F as follows:

• we take the embedding of F ′ into G′, and for every auxiliary edge p1p2, replace it by the
two edges p1x and p2x, where x is the (unique) neighbor of p1 and p2 in D, and

• for every vertex y ∈ L′, we add the edge xy between y and its (unique) neighbor x ∈ L.

As a first step, we start the embedding of F into G′ by setting S to be the subgraph of G′

consisting of the auxiliary edges and the vertices from L′. Note that due to our construction P
is the vertex set of S.

We will modify S using the statements in Section 5.2. However, during the embedding
process, while we will be using these statements, at least 10.5dm vertices from B will be not
embedded into S. Thus, we have to check that as long as |V (S)| ≤ n − 10.5dm, the following
two conditions that are necessary to apply the statements in Section 5.2 are satisfied.

First, we check that the initial graph S is (d,m)-extendable. Since S consists of isolated edges
and vertices, the maximum degree condition is clearly satisfied. Furthermore, since V (S) = P ,
notice that Properties (P3) and (P2) imply that (in both G and G′) every vertex has at
most two neighbors in V (S). Hence, for every X ⊆ V (G′), we have |NG′(X) ∩ V (S)| ≤ 2|X|.
Armed with this note and keeping in mind that every vertex has at most one neighbor in
P = V (G) \ V (G′), we see that in G′, for every set X ⊆ V (G′) of size at most 2m, Property
(P5) implies

D(X;S) ≥ |NG′(X) \ V (S)|−(d−1)|X| ≥ |NG(X) \ V (S)|−|X|−(d−1)|X|
(P5)

≥
(

log n
5 log log n

− 2− d
)
|X| ≥ 0,

and therefore S is indeed (d,m)-extendable.
For the second condition needed in order to apply lemmas from Section 5.2, we see that as

long as |V (S)| ≤ n− 10.5dm, we obtain for every X ⊂ V (G′) of size m ≤ |X| ≤ 2m

|NG′(X)| ≥ |NG(X) \D|
(P7)

≥ n− |D| − 2m+ 1
(P1)
> |V (S)|+ 2dm+ 1.

This implies that as long as at least 10.5dm vertices of B′ are not embedded into G′, we can
apply the Vertex Extension Lemma (Lemma 5.2.6) and the Connection Lemma (Lemma 5.2.9,
here only used with j = k) to extend the embedded subgraph.

Recall that we start with a graph S consisting of isolated vertices and (auxiliary) edges. First,
we connect (using only the Connection Lemma) all auxiliary edges to a path B̂ that does not
contain any other vertex from S. We do so by connecting the auxiliary edges one by one to the
current path, each time extending the path by `− 1 additional edges. Note that B̂ is of length
at most (`− 1)|P | = o(dm).

Then we consider the set of leaves A = V (F ′1)∩L′F . We embed A to arbitrary |A| vertices in
L′ ⊆ V (S). Since LF was `-scattered in F , we see that A ⊂ L′F is (`−2)-scattered in F ′. Thus, in
G′ we can connect (using the Vertex Extension Lemma and the Connection Lemma) the images
of vertices from A by paths of length at least `− 2 in the ordering given by Definition 5.3.1 to
obtain an embedding of the skeleton of A. We then extend this skeleton to a copy of F ′1 (using
the Vertex Extension Lemma). Similarly, we find a copy of F ′2 in G′ that maps V (F ′2) ∩ L′F to
the remaining vertices of L′ and is vertex-disjoint from the previously embedded part. Finally,
we again apply the Connection Lemma to connect the path B̂ by a path of length ` − 2 with
the image of the end-vertex of B′ in F ′1. Thus, B̂ becomes part of the embedding of B.
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We have now a (d,m)-extendable subgraph S ofG′ consisting of two trees such that connecting
two designated vertices x and y from S′ by a path from G′ using exactly the vertices that are
not yet in V (S) yields a copy of F ′ in G′. In other words, we are looking for a Hamilton path
between x and y in G′ [V (G′) \ (V (S′) \ {x, y})] =: Ĝ. Notice that Ĝ is a subgraph of G. We
assume without loss of generality that x and y have degree exactly one in F ′; otherwise, we just
embed the preimages of their neighbors in B using the Vertex Extension Lemma. Notice that,
as predicted before the beginning of the embedding, at least 10.5dm vertices from B are not
embedded yet.

To finish up the proof, we use Theorem 5.2.2. To that end, notice that n̂ :=
∣∣∣V (Ĝ)

∣∣∣ ≥
(11− o(1))dm, hence we obtain 2n̂ log log n̂ log d

d log n̂ log log log n̂ = o(m) and n̂ log log n̂ log d
5000 log n̂ log log log n̂ = ω(m). Since S

is (d,m)-extendable and every v ∈ V (S) ∩ V
(
Ĝ
)

has degree exactly one in S, we obtain for

every set X ⊂ V
(
Ĝ
)

of size |X| ≤ 2m∣∣NĜ(X)
∣∣ ≥ |NG′(X) \ V (S)| ≥ (d− 1)|X| −

∑
x∈V (S)∩X

(degS(x)− 1) = (d− 1)|X|,

thus Property (H1) of Theorem 5.2.2 holds. Furthermore, Property (H2) of Theorem 5.2.2 holds
for Ĝ by Property (P7). Hence, Ĝ is Hamilton connected by Theorem 5.2.2, and especially
there exists a necessary Hamilton path between x and y, completing the copy of F ′ in G′, and
therefore proving the theorem.

Finally, we prove Observation 1.2.10, giving some intuition on the tightness of Theorem 1.2.9.

Proof of Observation 1.2.10 . Fix an integer j ≥ k, and let us denote G = G(j). Suppose for the
sake of contradiction that there exists an embedding of T into G; fix an arbitrary one. Clearly,
a vertex of degree 1 in G can be only used to embed a leaf of T . Thus, there exists a set J of
size j of leaves of T that are embedded into the set of vertices of degree one in G. Since G is
connected and contains vertices of degree 1, a.a.s. the properties from Lemma 5.1.1 hold in G.
Now, the vertices in J a.a.s. have pairwise distance at least 2 logn

3 log logn by (P2), contradicting the
assumption about the structure of T .

5.4 Hitting Times of Spanning Trees with Many Leaves

The main purpose of this section is to present a proof of Theorem 1.2.11. To this end, we show
the following result.

Theorem 5.4.1. Let ∆ ∈ N and ε > 0. Then there exists an absolute constant n0 = n0(∆, ε)
such that for every n ≥ n0 the following holds. Let d =

⌊
ε logn

30∆ log logn

⌋
and let m = 2n log logn

logn .
Furthermore, let H be a host graph on at least n − m vertices containing a set of critical
vertices C of size at most 8m and let T be a tree of maximum degree at most ∆ which has at
most (1− ε/∆)n vertices and contains a set Q of special vertices of size at least εn/∆.

Assume that H satisfies the following two conditions:

(E1) |NH(X) \ C| ≥ d|X| holds for all X ⊆ V (H) with 1 ≤ |X| ≤ 2m,

(E2) eH(X,Y ) > 0 holds for all disjoint X,Y ⊆ V (H) with |X| ≥ m and |Y | ≥ m.

Then there exists an embedding of T into H with image S such that every critical vertex in H
is the image of a special vertex of T and |NH(X) \ V (S)| ≥ d|X| holds for all X ⊆ V (H) with
1 ≤ |X| ≤ 2m.

Next, before giving the proof of Theorem 5.4.1, we argue how it allows us to prove Theo-
rem 1.2.11.
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5 Hitting time appearence of certain spanning trees in the random graph process

5.4.1 Proof of Theorem 1.2.11

According to Lemma 5.1.1, the random graph GM∗ a.a.s. satisfies the properties (P1)–(P7).
Thus, we need to show that if G is an n-vertex graph satisfying (P1)–(P7) and if T ′ is a
n-vertex tree of maximum degree at most ∆ and has at least εn many leaves, then we can find a
copy of T ′ in G. For this, let D, U , W , and P be the vertex sets of G provided by Lemma 5.1.1.

Let H be the induced subgraph G[U ] and let C be the union of the sets W and P ′ , where P ′ is
a subset of P that contains exactly one neighbors for each vertex in D. Note that Property (P3)
together with Property (P2) ensure the existence of P ′ and that each vertex in D has distinct
neighbors in P ′. Furthermore, let Q be the set of vertices in T ′ that are parents of leaves and
let T be the subtree of T ′ obtained by deleting from T ′ one leave attached to each of the vertices
in Q. Note that the set Q has size at least εn/∆.

Then T is a tree of maximum degree at most ∆ and of size at most (1−ε/∆)n which contains
the set of special vertices Q. If we consider the graph H with the set of critical vertices C, then
the properties (P1)–(P7) guarantee that we can apply Theorem 5.4.1. Thus, we can find an
embedding of T into H (and thus into G) with image S such that every vertex in W ∪ P ′ (the
critical vertices in H) is embedded to a vertex in Q (the special vertices in T ).

To embed the remainder of T ′, we first embed the missing leaves attached to the vertices in Q
that have been mapped to P ′ to the respective (unique) neighbor in D. Afterwards, it remains
to show that we can embed the remaining leaves in T ′ without T to the vertices of G that are
not covered by S + D. In other words, we need to find a perfect matching between the set A
of vertices in S that lie in the image of Q but not in P ′ and the set B of vertices in H that are
not covered by S +D. Observe crucially that A contains W .

By Hall’s theorem (see, e.g., [21]), it is sufficient to show that the condition

|NH(X) ∩B| ≥ |X| (5.6)

holds for all X ⊆ A. To see this, we distinguish three cases based on the size of X. Inequal-
ity (5.6) holds for 1 ≤ |X| ≤ m by Theorem 5.4.1, for m ≤ |X| ≤ |A|−m because eH(X,Y ) > 0
holds for all Y ⊆ B with |Y | ≥ m, and for |A| −m ≤ |X| ≤ |A| because of property (P6) in
Lemma 5.1.1.

Thus, we find a matching between A and B in H which allows us to extend our current
embedding to the missing leaves of T ′.

The remainder of this section is devoted to the proof of Theorem 5.4.1.

5.4.2 Setup for the Proof of Theorem 5.4.1

Let us fix ∆ ∈ N and 0 < ε < 1 and let us assume that n is sufficiently large with respect to ∆
and 1/ε. Furthermore, let d = ε logn

30∆ log logn , m = 2n log logn
logn , k =

⌈
log(2m)
log(d−1)

⌉
, and ` = 2k + 1.

Let H be a host graph on n vertices and let C be a set of critical vertices in H. Finally, let T
be a tree of maximum degree ∆ which has at most εn/∆ that is, at most n − 11dm vertices
and let Q be a set of special vertices in T of size at least εn/∆.

Assume that H satisfies the conditions (E1) and (E2) in Theorem 5.4.1. Our aim is to give
an embedding of T into H such that every critical vertex in H is embedded to a special vertex
of T . To this end, we embed T successively into H. We say an embedding of a subforest F
of T into H is feasible if every critical vertex of H in the image S of F is the image of a special
vertex and, furthermore, the subgraph S + C ′ of H is (d,m)-extendable, where C ′ is the set of
critical vertices in H that are not in V (S).

At each point of the following embedding process, we denote by F the current subforest
of T for which we have already found a feasible embedding into H, and by S the corresponding
image, and let C ′ = C \V (S). Whenever we extend the embedding of F , we ensure that the new
embedding is still feasible. We guarantee this by only applying the operations from Section 5.2
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5.4 Hitting Times of Spanning Trees with Many Leaves

to extend S+C ′. In this, the challenge is to ensure at any point of the embedding process that
we are still able to cover the non-covered critical vertices C ′ by the remaining special vertices
in T − F .

Our two main tools are the Vertex Extension Lemma (Lemma 5.2.6) and the Connection
Lemma (Lemma 5.2.6). Recall that T and therefore at any point of the proof, also S + C ′ has
at most n − 11dm vertices. Thus, |NH(X)| ≥ |V (S)| + 2dm + 1 holds for all X ⊆ V (G) with
m + 1 ≤ |X| ≤ 2m, that is, throughout the remainder of this section, whenever we apply the
Vertex Extension Lemma or the Connection Lemma, the corresponding conditions are satisfied.

At any time in the construction of the embedding of T , we can (repeatedly) apply the Vertex
Extension Lemma to embed into H a subtree of T −F that has a neighbor in F . This operation
extends S +C ′ by the image of the embedded subtree while maintaining the property of being
(d,m)-extendable. In our proof this operation never touches the non-covered critical vertices
in C ′, thus the resulting embedding is always feasible. To cover the so far uncovered vertices C ′,
we apply the Connection Lemma in a rather involved construction which forms the core in our
proof of Theorem 5.4.1 and is laid out in the following subsections.

5.4.3 Meta-Trees

The first ingredient to our construction is the following decomposition of T into vertex-disjoint
subtrees, such that all but one of them contains a special vertex at a minimum depth but only
few special vertices in total. For this, we consider T to be rooted at an arbitrary special vertex.
This root of T never changes throughout the remainder of this section and implies a root vertex
for every subtree of T which is the vertex in the subtree that is closest to the root of T .

For the moment, let j ∈ {1, . . . , k} be fixed and consider the following procedure to find a
subtree of T . Starting with the root of T as the current vertex, we successively branch into the
root of a subtree of T pending from the current vertex, provided this subtree contains a special
vertex at depth at least 2j. Whenever this procedure stops, the current vertex is the root of a
subtree of T that contains a special vertex at depth 2j and none at a higher depth. Thus, this
subtree contains at most 2∆2j special vertices.

To decompose T into subtrees, we repeatedly apply the above procedure to find a subtree
of T with the above properties, remove it from T (together with the edge connecting it to T ),
add add it to the set of subtrees that forms the decomposition. This process stops when none
of the subtrees pending from the root of T contains a special vertex at depth at least 2j. The
remainder of T is the last subtree of the decomposition, it is the only subtree that might not
contain any special vertex.

Since all subtrees of T generated by the above process are connected, these subtrees together
with the edges of T that lie between them again form a tree structure. We call this structure
the (rooted) meta-tree 1 Tj of T with parameter j. That is, every (meta-)vertex of Tj is one
of the subtrees of T given by the decomposition (with the subtree containing the root of T
becoming the meta-root of the meta-tree) and every meta-edge in Tj corresponds to an edge
in T connecting two meta-vertices. With slight abuse of notation, we identify a subforest F
of Tj with the corresponding subtree F of T that is spanned by all vertices in T contained in
the meta-vertices of F .

The meta-tree Tj has two key properties. First, every meta-vertex other than the meta-root
contains a special vertex of T at depth exactly 2j. Second, every meta-vertex (including the
meta-root) contains less than 2∆2j special vertices. Therefore, the set of meta-vertices Vj of Tj

1Strictly speaking, for a fixed j there may be several possible decompositions of T (choice of the root, choice
of the subtrees while branching). However, we do not care for the particular decomposition and implicitly
assume it is chosen in some canonical way. In other words, we suppose that there exists a fixed meta-tree Tj
of T with parameter j.
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has size at least

|Vj | >
|Q|

2∆2j
≥ εn

2∆2j+1
. (5.7)

Proposition 5.4.2. Let j ∈ {1, . . . , k − 1}. Let F be a subforest of T and assume that there
exists a feasible embedding of F with image S and that the set C ′ of critical vertices outside S is
of size at least m

(d−1)j
. Assume further that there exists a set P = {v1, . . . , vr} of vertices in F

with m
(d−1)j

≤ r ≤ |C ′| and distinct (non-root) meta-vertices M1, . . . ,Mr in Tj, such that F and
the Mi’s are vertex-disjoint and such that, for every i ∈ {1, . . . , r}, the root of Mi is connected
by an edge ei to the vertex vi. Then we can extend the feasible embedding of F to a feasible
embedding of F +

∑r
i=1(ei +Mi) containing at least r −

⌊
m

(d−1)j

⌋
vertices from C ′.

Proof. We first show that there exists an i ∈ {1, . . . , r} such that we can extend the embedding
of F to a feasible embedding of F + ei +Mi.

For this, let A be the image of P in S. By the prerequisites of Proposition 5.4.2, both A
and C ′ are of size at least m

(d−1)j
. Thus, we may apply the Connection Lemma (Lemma 5.2.6) to

connect the vertex sets A and C ′ by a path of length 2j+ 1 outside of S+C ′. Let c ∈ C ′ be the
one end-point of this path and let i ∈ {1, . . . , r} be the index for which the other end-point ai
is the image of the vertex vi in the embedding of F .

Now, since the subtree Mi is a meta-vertex in the meta-tree Tj , it contains a special vertex w
at depth 2j. Thus, the vertices vi and w are connected by a path of length 2j + 1 in T . We
embed this path between vi and w in T to the path of the same length between ai and b in H.

Next, we apply the Vertex Extension Lemma (Lemma 5.2.6) to embed the remainder of Mi.
Note that the preimage of the critical vertex b is the special vertex w. Together with the
Connection Lemma and the Vertex Extension Lemma, this guarantees that our embedding
of F + ei +Mi is feasible.

So far, we have seen how to find one index i ∈ {1, . . . , r} such that we can extend the
embedding of F to a feasible embedding of F + ei +Mi. However, as long as the sets P and C ′

are of size at least m
(d−1)j

each, we can repeatedly do so, each time removing vi from P and b

from C ′ afterwards. Thus, we can embed the pending subtrees of r −
⌊

m
(d−1)j

⌋
vertices in P ,

such that each time a vertex in C ′ becomes the image of a special vertex in T . Hence, the
resulting embedding is feasible.

Finally, we embed the remaining
⌊

m
(d−1)j

⌋
pending Mi’s by applying only the Vertex Extension

Lemma, not covering any further of the remaining vertices in C ′.

Observe that a bare (meta)-path in the meta-tree that does not contain the meta-root has
a canonical ordering of its meta-vertices where each (except for the first) meta-vertex in the
meta-path is a rooted subtree of T pending by an edge from a vertex in the preceding meta-
vertex.

Proposition 5.4.3. Let j ∈ {1, . . . , k − 1}. Let F be a subforest of T and assume that there
exists a feasible embedding of F with image S and remaining critical vertices C ′ := C \ V (S).
Furthermore, suppose that there exist two vertices v and w in F with images a and b in S,
respectively, and a bare meta-path (not containing the meta-root) of length at least 2` in Tj such
that in T the root of the first meta-vertex is connected by an edge to v and the last meta-vertex
in the path is connected by an edge to w. Then we can extend the feasible embedding of F to
a feasible embedding of F plus the meta-path plus the two edges connecting the meta-path to v
and w. Moreover, if C ′ is non-empty, we can embed a special vertex of T that is contained in
the bare meta-path to one of the vertices in C ′.

Proof. Consider the (`+1)-st meta-vertex in the bare meta-path. Since it is not the meta-root,
it contains a special vertex u of T . Let us denote by u′ the (unique) vertex lying on all three
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paths between v and w, between u and v, and between u and w in T . Since the (`+1)-st
meta-vertex has distance (at least) ` in the bare meta-path from both (meta-)end-vertices, the
two paths in T , one from v to u′ and one from u′ to w, have length at least `.

We now distinguish two cases, depending on whether C ′ is empty or not. If C ′ is empty, we
apply the Connection Lemma (Lemma 5.2.9) with parameter j = k to find (and add to S) a
path of length distT (v, w) between a and b. Strictly speaking, since the Connection Lemma only
allows us to embed paths of length exactly `, we first embed all but the last ` vertices of this
path using the Vertex Extension Lemma (Lemma 5.2.6) and only then apply the Connection
Lemma. If C ′ is non-empty and c ∈ C ′, we use the same argument to find (and add to S) two
paths in H, one path of length distT (v, u) between a and c and one path of length distT (u′, w)
connecting the previous path and b. Like in Proposition 5.4.2, we afterwards apply the Vertex
Extension Lemma to embed the rest of the bare meta-path.

5.4.4 Many Leaves Versus Long Bare Paths

The second ingredient to our construction is a standard tool to find an embedding a given tree
in pseudo-random graphs (for example, used in [59, 66]). It guarantees that every tree has
(i) many leaves or (ii) a large number of vertex-disjoint bare paths of a certain length. The
following version is a corollary of Lemma 2.1 in [66].

Lemma 5.4.4 (Corollary of Lemma 2.1 in [66]). Every tree F on a sufficiently large vertex set
[n] that does not contain a collection of at least |V (F )|

10` vertex-disjoint bare paths of length 3` has
at least |V (F )|

10` leaves.

A typical application of Lemma 5.4.4 is a case distinction between the case that the embedded
tree has many leaves and the case that it has many bare paths of a certain length (note that these
cases do not need to be exclusive). In our proof, we also make a case distinction. However,
instead of applying Lemma 5.4.4 directly to the tree T , we apply it iteratively to the meta-
trees T1, . . . , Tk.

In case that the meta-tree with parameter j has many bare meta-paths of length roughly 3`,
we apply Proposition 5.4.3 to cover all (remaining) critical vertices with these bare meta-paths.
In case that the meta-tree with parameter j has many meta-leaves, however, we apply Propo-
sition 5.4.2 to cover all but roughly m/dj remaining critical vertices with these meta-leaves.
Afterwards, we iterate the same case distinction on the meta-tree with parameter j + 1.

Case 1: T1 has a (meta-)subtree on at least |V1|/2 meta-vertices that contains a collection of
at least |V1|

20` vertex-disjoint bare meta-paths of length 3` each.

Proposition 5.4.5. If T satisfies the condition of Case 1, then there exists a feasible embedding
of T into H.

We postpone the proof of this proposition to the next subsection.
Next, assume that we are not in Case 1. Then Lemma 5.4.4 implies that T1 contains a

collection of at least |V1|
20` meta-leaves. Now, we perform the following iterative procedure.

Starting with T1, we repeatedly remove |V1|
20` meta-leaves from the current meta-tree, until we

remove at least 10∆m meta-leaves in total. We call the meta-leaves that were removed in the
i-th iteration of this process the i-th level of meta-leaves. Since we remove less than 10∆m+ |V1|

20`
meta-leaves in total and since

10∆m+
|V1|
20`

< 11∆m =
22∆n log logn

log n
� εn

6∆3

(5.7)
<
|V1|
3
,

the current meta-tree has more than |V1|/2 meta-vertices throughout the process. Thus, we can
indeed remove |V1|

20` meta-leaves in each iteration until we removed at least 10∆m (and at most
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10∆m+ |V1|
20` < 11∆m) meta-vertices in total. Notice that there are in total at most

11∆m
|V1|
20`

<
22n log log n · 2∆3 · 40∆ log n

log n · εn · log logn
<

2000∆4

ε
(5.8)

layers.
Finally, we make a further case distinction, depending on whether one of the meta-trees
T2, . . . , Tk contains a collection of at least |V1|

10` vertex-disjoint bare meta-paths of length 3` each.

Case 2: T1 contains a (meta-)subtree that can be extended to T1 by successively adding layers
of at least |V1|

20` meta-leaves, such that between 10∆m and 11∆m meta-vertices are added in total.
Furthermore, there exists an index h ∈ {2, . . . , k} such that Th contains a collection of at least
|Vh|
10` vertex-disjoint bare meta-paths of length 3` each.

Proposition 5.4.6. If T satisfies the conditions of Case 2, then there exists a feasible embedding
of T into H.

We also postpone the proof of this proposition to the next subsection.

Case 3: T1 contains a (meta-)subtree that can be extended to T1 by successively adding layers of
at least |V1|

20` meta-leaves, such that between 10∆m and 11∆m meta-vertices are added in total.
Furthermore, for every index j ∈ {2, . . . , k}, Tj does not contain a collection of at least |Vj |10`
vertex-disjoint bare meta-paths of length 3` each.

Proposition 5.4.7. If T satisfies the conditions of Case 3, then there exists a suitable embedding
of T into H.

We again postpone the proof of this proposition to the next subsection.

5.4.5 The Embedding

Finally, we construct the actual embeddings for the three cases in the previous subsection, that
is, we give the proofs of Propositions 5.4.5, 5.4.6, and 5.4.7.

Proof of Proposition 5.4.5. Let T ∗1 be a (meta-)subtree of T1 containing a collection of |V1|
20` − 1

vertex-disjoint bare meta-paths of length 3` (none of which contains the root of T1) and let F
be the (meta-)subforest of T ∗1 obtained by removing from T ∗1 all meta-vertices in these |V1|

20` − 1
bare meta-paths except for the end-meta-vertices. Then, F contains exactly |V1|

20` components
that are connected in T ∗1 by these bare meta-paths.

Let us denote by F the subforest of T corresponding to F . We first embed F into H. Since
each component in F contains at least one non-root meta-vertex (indeed, every component of
F contains at least two meta-vertices by construction), every component of F contains a special
vertex. We embed each of these |V1|

20` special vertices of T to a distinct (arbitrary) critical vertex
of H. (Note that the set C of critical vertices has size 8m and there are less components in F ).
Let S′ be the image of this embedding and let C ′ be the set of critical vertices that are not
in S′. Then, by Property (E1) of Theorem 5.4.1, the subgraph S′+C ′ of H is (d,m)-extendable.
Thus, we can apply the Vertex Extension Lemma (Lemma 5.2.6) to extend S′+C ′ to a feasible
embedding of F + C ′.

It remains to embed the bare meta-paths such that the preimage of C ′ contains only special
vertices. We orient the chosen bare meta-paths arbitrarily and number the meta-vertices in
each of them from 1 to 3`− 1. For i ∈ [3`− 1], we denote by the i-th layer of subtrees the set
of all i-th meta-vertices in the bare meta-paths.
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In the first stage, we repeatedly apply Proposition 5.4.2 with the currently embedded subforest
being F , r = |V1|

20` , and the next (ith) layer of subtrees being M1, . . . ,Mr, to embed these subtrees
of T layer by layer, each time (except in the last iteration) covering |V1|

20` − 1 − m
d−1 additional

critical vertices in H. We proceed until at most m
d−1 critical vertices are not in the image of the

embedding.
In the second stage, we repeatedly apply Proposition 5.4.3 to embed one by one the remainders

of the bare meta-paths. Since we have more that m
d−1 bare meta-path, and their remainders

are of length at least 2` each, Proposition 5.4.3 allows us to cover the remaining non-covered
critical vertices of H in the process.

The following two claims are fundamental for our proof. They roughly state that, although
the meta-trees T1, . . . , Tk do not seem to necessarily have much of a common structure, we can
somewhat control their interaction where we need to do so. The statements of the claims are
not tight but they suffice for our purposes.

Claim 6. For any two indices i, j ∈ [k], i < j, every bare 3`-meta-path in Tj is vertex-disjoint
(in T ) from all but at most 7`∆2j meta-vertices of Ti.

Proof. Let us fix an arbitrary bare `-meta-path in Tj . The main observation of the proof is
that almost every meta-vertex of Ti is either contained in this bare meta-path, or it is vertex-
disjoint (in T ) from the meta-path. There are at most three exceptional meta-vertices in Ti that
intersect the bare meta-path, but are not contained in it: these are exactly the meta-vertices
containing the (at most) two edges connecting the bare meta-path with the rest of T , and the
meta-root of Ti. The proof is now a simple double-counting argument. Every meta-vertex of Tj
contains at most 2∆2j special vertices. On the other hand, every meta-vertex of Ti except of
the meta-root of Ti contains at least one special vertex. Hence, at most 6`∆2j meta-vertices of
Ti (not counting the meta-root of Ti) are completely contained in the chosen bare `-meta-path
in Tj . Adding the at most three exceptional meta-vertices of Ti, we obtain the statement of the
claim.

Claim 7. For any two indices i, j ∈ [k], i < j, every meta-leaf in Tj is vertex-disjoint (in T )
from all but at most 3∆2j meta-vertices of Ti.

Proof. The proof proceeds similarly to the proof of Claim 6. Let us fix an arbitrary meta-leaf in
Tj . Almost every meta-vertex of Ti is either contained in this meta-leaf, or it is vertex-disjoint
(in T ) from this meta-leaf. The only possible exception is the meta-vertex of Ti containing
the edge from T that connects the chosen meta-leaf of Tj to the rest of the tree. The double-
counting argument from the proof of Claim 6 (again taking care of the meta-root of Ti) provides
the statement of the claim.

We are now ready to prove the final two propositions.

Proof of Proposition 5.4.6. In Case 2, there exists an index h ∈ {2, . . . , k} such that Th contains
a collection of at least |Vh|10` vertex-disjoint bare meta-paths of length 3`. Without lost of gener-
ality, h is the smallest index from {2, . . . , k} with this property. Then, for j ∈ {2, . . . , h − 1},
Lemma 5.4.4 implies that the meta-tree Tj has at least |Vj |10` meta-leaves. Moreover, by the condi-
tions given in Case 2, the-meta tree T1 contains at least 10∆m and at most 11∆m meta-vertices
that can be successively stripped from T1 in layers of meta-leaves of size at least |V1|

20` .
The core of this proof is a decomposition of T into a forest F , bare meta-paths between the

components of F , and meta-leaves attached (in layers) to F .
First, we choose a collection of

⌈
m

(d−1)h

⌉
vertex-disjoint bare meta-paths of length 3` each

in Th not containing the meta-root. Second, for j ranging from h− 1 down to 2, we iteratively
reserve ∆m

(d−1)j−1 (non-root) meta-leaves of Tj , such that these meta-leaves neither intersect (in T )
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5 Hitting time appearence of certain spanning trees in the random graph process

the chosen bare meta-paths of Th nor the reserved meta-leaves of the meta-trees Tj+1, . . . , Th−1.
Finally, we reserve layers of meta-leaves of T1 such that these meta-leaves neither intersect the
chosen bare meta-paths of Th nor the reserved meta-leaves of the meta-trees Tj+1, . . . , Th−1.
Furthermore, we require every layer to contain at least |V1|

21` meta-vertices of T1, and in total, at
least 9.5∆m meta-vertices of T1 should be reserved.

To see that we can indeed do so, let us fix an arbitrary index j ∈ {1, . . . , h− 1} and assume
by induction that we already reserved ∆m

(d−1)i−1 meta-leaves in the meta-trees Ti for i ∈ {j +
1, . . . , h−1}. We call a meta-vertex in Tj forbidden if it intersects (in T ) the chosen meta-paths
of Th or the reserved meta-leaves of Tj+1, . . . , Th−1. We denote by fj the number of forbidden
vertices in Tj and note that by Claims 6 and 7, we can estimate

fj ≤ 7`∆2h

⌈
m

(d− 1)h

⌉
+

h−1∑
i=j+1

3∆2j+1m

(d− 1)i−1
� |Vj |

`
.

Now, for j ranging from h − 1 down to two, from the reserved ∆m
(d−1)j−1 non-root meta-

leaves of Tj , we choose m
(d−1)j−1 meta-leaves such that their roots have distinct neighbors in T .

Furthermore, from the layers of reserved meta-leaves of T1, we choose sublayers of at least |V1|
21∆`

(not unwanted) meta-leaves, such that the roots of all meta-vertices from one sublayer have
distinct neighbors in T , and the total number of chosen meta-vertices of T1 is at least 9.5m.

Furthermore, since we are aiming at embedding the meta-vertices starting with T1 and going
up to Th, chosen meta-vertices of T1 lying above a chosen meta-vertex of Tj in T for any j ≥ 2
might cause us additional technical difficulties. We call such meta-vertices of T1 unwanted.
Luckily, for every j ≥ 2, every meta-vertex M of Tj , and every layer of chosen meta-vertices
of T1, there exists at most one meta-vertex of T1 from this layer such that M lies below it in
T . Furthermore, for every j ≥ 2, every bare meta-path of Tj , and every layer of chosen meta-
vertices of T1, there exists at most one meta-vertex of T1 from this layer such that some vertex
of Tj from the bare meta-path lies below it in T . Hence, using (5.8) we see that the number of
unwanted meta-vertices from one layer of leaves of T1 is at most

h∑
j=2

2000∆4

ε

⌈
∆m

(d− 1)j−1

⌉
� |V1|

`
.

Thus, we can decompose T as desired into

• a subforest F (containing the root of T ) which contains all vertices of T except for the
following,

• the (non-endpoint) meta-vertices of the
⌈

m
(d−1)h

⌉(
� |Vh|

`

)
bare meta-paths of Th of length 3`

each connecting the components of F ,

• m
(d−1)j−1

(
� |Vj |

`

)
meta-leaves of Tj pending from distinct vertices of F for every j ∈

{2, . . . , h− 1} , and

• meta-vertices of T1 pending from F (and from meta-vertices of T1 from previous layers)
in at most 2000∆4/ε layers, such that the total number of these meta-vertices of T1 is
at least 9m. Furthermore, every layer contains a sublayer of size at least |V1|

22∆` such that
roots of meta-vertices from one sublayer have distinct neighbors in T .

With this decomposition at hand, we construct a feasible embedding of T . Similarly to the
proof of Proposition 5.4.5, we proceed in several stages.

In the first stage, we proceed exactly as in Proposition 5.4.5 and apply the Vertex Extension
Lemma (Lemma 5.2.6) to find a feasible embedding of F into H.
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In the second stage, we embed the layers of pending subtrees corresponding to the layers of
meta-leaves of T1 such that all butm of the critical vertices are covered. We do this layer by layer,
starting with the one that was stripped of last. For every layer, we first apply Proposition 5.4.2
to the chosen sublayer, i.e., the subtrees Mi are the meta-vertices of the sublayer, P is the set
of neighbors of the roots of these meta-vertices in T , and j = 1. After that, we complete the
embedding of the remainder of the layer by applying the Vertex Extension Lemma. With each
layer, we cover the sublayers size minus m

d−1 many critical vertices by the embedding. Thus,
since the number of layers is bounded by 2000∆4/ε by (5.8) and the cumulative size of all
sublayers is at least 9m � m

d−1 , we can cover all but m
d−1 of the at most 8m critical vertices

outside F during this stage.
In the third stage, we use the remaining subtrees pending from F to reduce the number of

non-covered critical vertices in H to m
(d−1)h−1 . This is done iteratively. For j ranging from 2

to h− 1, we use the m
(d−1)j−1 subtrees corresponding to the chosen meta-leaves of Tj to reduce

the number of non-covered critical vertices in H from m
(d−1)j−1 to m

(d−1)j
. In fact, we can do so by

a single application of Proposition 5.4.2, expectedly setting Mi’s to be the chosen meta-leaves.
In the fourth stage, we are only left with the meta-vertices of the chosen bare meta-paths of Th

to cover the remaining m
(d−1)h−1 yet non-covered critical vertices in H. Similarly to the proof of

Proposition 5.4.5, in the first sub-stage we apply Proposition 5.4.2 to embed the bare meta-paths
layer by layer until only

⌈
m

(d−1)h

⌉
critical vertices remain non-covered, after which we complete

the paths one by one (using Proposition 5.4.2) in the second sub-stage. We omit the details
now, as they are completely identical to those exposed in the proof of Proposition 5.4.5.

Proof of Proposition 5.4.7. This proof closely follows the proof of Proposition 5.4.6. The only
difference is that there is no index h ∈ {2, . . . , k} such that Th contains

⌈
|Vh|
10`

⌉
vertex-disjoint bare

meta-paths of length 3` each. However, instead of choosing
⌈

m
(d−1)h

⌉
vertex-disjoint bare meta-

paths in Th, we only choose one (non-root) meta-leaf M of Tk. Observe crucially that
⌈

m
(d−1)k

⌉
=

1.
The complete embedding process then proceeds exactly as in the proof of Proposition 5.4.6

with h = k, until we come to the forth stage and are left with exactly one remaining non-
covered critical vertices in H and the chosen meta-leaf M of Tk to embed it. To do so, we apply
Proposition 5.4.2 with r = 1 and M1 = M . This provides the statement of the proposition.

5.5 Concluding remark

The only aim of this section is to present the following conjecture. We hope that it will lead
the research in this area to new insights in the random graph process.

Conjecture 5.5.1. For every ∆ ∈ N, in the random graph process, when the graph contains a
Hamilton path, it a.a.s. contains all spanning trees with maximum degree at most ∆.
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6 On extremal hypergraphs for Hamilton cycles

6.1 Proofs

6.1.1 Outline of the Proofs

In the following we give a brief overview over the structure of the proofs of Theorems 1.2.12
and 1.2.13. For this section we define for every k ∈ N

ε =
1

22(1280k3)k−1

and
ρ = (22ε)

1
k−1 .

Suppose H = (V,E) is a k-graph on n vertices with δ1 ≥ (1−ε)
(
n−1
k−1

)
and n sufficiently large.

By an end of a path P (k,l)
t we mean the tuple consisting of its first k−1 vertices, (x1, . . . , xk−1),

or the tuple consisting of its last k − 1 vertices in reverse order, (xt, . . . , xt−k+2), considering
the ordered vertices. For an i-tuple (x1, . . . , xi) in H we write xi, 1 ≤ i ≤ n. We call xk−1

good if all xis are pairwise distinct and for all i ∈ {1, . . . , k − 1} it holds that

deg(x1, . . . , xi) ≥
(

1− ρk−i
)(n− i

k − i

)
. (6.1)

A path is called good if both of its ends are good.

Outline of the proofs and some definitions:

1. At first, we prove the existence of one l-tight good path or several vertex-disjoint good
tight paths containing the vertices of small degree, see Claim 8. (Note that we do not
need this step in the proof of Theorem 1.2.13.)

2. We say that a tuple x2k−2 absorbs a vertex v ∈ V if both x2k−2 and (x1, . . . , xk−1, v, xk, . . . , x2k−2)
induce good paths in H, meaning that the corresponding ordering of the paths is x2k−2 or
(x1, . . . , xk−1, v, xk, . . . , x2k−2), respectively, and the ends are good. Lemma 6.1.2 ensures
a set A, such that any remaining vertex can be absorbed by many tuples of A. We call
an element of A an absorber.

3. For xi,yj ∈ V k−1 we define

xi♦yj := (x1, . . . , xi, y1, . . . , yj).

Let xk−1 and yk−1 be good. We say that a tuple zk−1 connects xk−1 with yk−1 if
(xk−1, . . . , x1) ♦zk−1♦yk−1 induces a path in H with respect to the order. Notice that
the connecting-operation is not symmetric. Lemma 6.1.3 guarantees a set C such that any
pair of (k− 1)-tuples in H can be connected by many elements of C. We call the elements
of C connectors.

4. We modify A and C such that A, C and the element(s) of Step 1 are pairwise vertex-
disjoint.
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6 On extremal hypergraphs for Hamilton cycles

5. In Lemma 6.1.4 we create a good tight path that contains all elements of the modified A,
respecting their ordering.

6. Using Lemma 6.1.5, we extend the path from Step 5 until it covers almost all of the
remaining vertices that neither participate in (l-tight or tight) good paths of Step 1 nor
in the modified C.

7. Using connectors, we create a cycle containing the (l-tight or tight) good paths from Step
1 and the good path from Step 6.

8. In the final step all remaining vertices are absorbed by the absorbers in the cycle.

6.1.2 Auxiliary Lemmas

In this part we derive the main tools used to prove Theorems 1.2.12 and 1.2.13. For this
subsection let H = (V,E) be a k-graph on n vertices with

δ1 ≥ (1− ε)
(
n− 1
k − 1

)
. (6.2)

Recall ε = 1
22(1280k3)k−1 and n sufficiently large.

The following lemma provides us with an essential tool which we use to prove other statements
in this subsection.

Lemma 6.1.1. Let x2k−2 be chosen u.a.r. from V 2k−2. The probability that all xis are pairwise
distinct and both (x1, . . . , xk−1) and (x2k−2, . . . , xk) are good is at least 8

11 .

Proof. Let a be the number of (k− 1)-tuples that are not good and have k− 1 distinct entries,
i.e. that are taken from V without repetition. Further, let bj be the number of j-tuples
yj with deg(y1, . . . , yj) < (1 − ρk−j)

(
n−j
k−j
)
, j ∈ {1, . . . , k − 1}, and all yjs are again

pairwise distinct. Thus, by the definition of a good tuple, for each tuple yk−1 that is not
good and has pairwise distinct entries, there exists a j such that yj is one of the bj tuples
with small degree. Furthermore, for every yj there are at most (n−j)!

(n−k+1)! different (k− 1)-tuples
(y1, . . . , yj , z1, . . . , zk−1−j) with pairwise distinct zj ∈ V \{y1, . . . , yj}. Hence,

a ≤
k−1∑
j=1

(n− j)!
(n− k + 1)!

bj .

The second time we apply double counting, we recall that H has at most ε
(
n
k

)
non-edges.

Each of the bj j-tuples is by definition in at least ρk−j
(
n−j
k−j
)

non-edges, and from every non-edge

one obtains
(
k
j

)
j! different j-tuples. Thus,

ρk−j
(
n− j
k − j

)
bj ≤

(
k

j

)
j!ε
(
n

k

)
.
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Putting the two bounds together, we obtain for a vectwk−1 chosen u.a.r. from V k−1

Pr [wk−1 is not good and has pairwise distinct entries] =
a

nk−1

≤
k−1∑
j=1

(n− j)!
(n− k + 1)!

bj
1

nk−1

≤
k−1∑
j=1

(n− j)!
(n− k + 1)!

(
k
j

)
j!ε
(
n
k

)
ρk−j

(
n−j
k−j
) 1
nk−1

≤ ε
k−1∑
i=1

1
ρk−i

<
2ε
ρk−1

=
1
11
.

Then for a vectx2k−2 chosen u.a.r. from V 2k−2

Pr[(x1, . . . , xk−1) and (x2k−2, . . . , xk) are good]

≥ n(n− 1) . . . (n− 2k + 3)
n2k−2

− 2
11
≥ 1− 3

11
=

8
11
.

For a given set X of tuples or graphs, we write X when considering the corresponding vertex
set.

Lemma 6.1.2. For all γ, 0 < γ ≤ 1
64k2 , there exists a set A of size at most 2γn consisting of

disjoint (2k − 2)-tuples, each inducing a good path with respect to its order, such that for each
vertex v ∈ V at least γn

4 tuples in A absorb v.

Proof. By Lemma 6.1.1, we know that there are at least 8
11n

2k−2 tuples x2k−2 ∈ V 2k−2, such
that the xis are pairwise distinct and both (x1, . . . , xk−1) and (x2k−2, . . . , xk) are good. We
denote the set of such tuples by A′.

Let v be a vertex from V and denote by Av the set of tuples x2k−2 from A′ such that, in
addition,

• {xj , . . . , xj+k−1} ∈ E(H), 1 ≤ j ≤ k − 1, and

• {v, xj , . . . , xj+k−2} ∈ E(H), 1 ≤ j ≤ k.

Therefore, the set Av consists of those tuples that can absorb the vertex v. From the minimum
degree condition on H, see (6.2), it follows that

|Av| ≥
8
11
n2k−2 − 2kεn2k−2 ≥ 7

11
n2k−2. (6.3)

Fix γ with 0 < γ ≤ 1
64k2 . Let A be the set obtained by choosing each (2k − 2)-tuple x2k−2 ∈

V 2k−2 from A′ independently with probability γ
n2k−3 .

The expected size of |A| is at most γn and we apply Chernoff’s inequality:

Pr [|A| − γn > γn] < e−γn. (6.4)

This way, with high probability we obtain at most 2γn many (2k − 2)-tuples.
Let Y be the random variable taking the value 1 whenever a pair of tuples in A is not

vertex-disjoint and the value 0 else. Thus,

E[Y ] ≤ (2k − 2)2n4k−5 γ2

n4k−6
≤ 4k2γ2n. (6.5)
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Applying Markov’s inequality, we obtain:

Pr
[
Y > 8k2γ2n

]
<

1
2
. (6.6)

From (6.3) we infer by Chernoff’s inequality that

Pr
[
|Av ∩ A| <

γn

2

]
< e−

1
100

γn (6.7)

since E[|A′v ∩ A|] ≥ 7
11γn.

With (6.3), (6.6) and (6.7), we see that if we delete from A those pairs of tuples that have
vertices in common, we obtain with probability at least

1/2− e−γn − ne−
1

100
γn > 1/4

a new set satisfying the conditions of the lemma (note that γn
2 − 8k2γ2n ≥ γn

4 ).

The following lemma provides us with the essential tool to close the cycle.

Lemma 6.1.3. For all β, 0 < β ≤ 1
64k2 , there exists a set C of size at most 2βn consisting of

pairwise disjoint (k − 1)-tuples, such that for each pair of good (k− 1)-tuples there exist at least
βn
4 elements in C that connect this pair.

Proof. For two good vertex-disjoint tuples xk−1,yk−1 in H, let Cxk−1,yk−1
be the set of all

connectors that connect xk−1 with yk−1 and are vertex-disjoint from xk−1,yk−1. Recall that
the following conditions hold for z ∈ Cxk−1,yk−1

:

• {xk−i, . . . , x1, z1, . . . , zi} ∈ E(H) for i ∈ {1, . . . , k − 1}, and

• {zi−k+1, . . . , zk−1, y1, . . . , yi−k+1} ∈ E(H) for i ∈ {k, . . . , 2k − 2}.

From the condition (6.1), the definition of good tuples, and from (6.2), the minimum degree of
H, we infer

|Cxk−1,yk−1
| ≥

(
1− 2

k−1∑
i=1

ρi

)
nk−1 − o(nk−1) ≥ (1− 4ρk)nk−1.

Now, take β as asserted by the lemma and let C′ :=
⋃
Cxk−1,yk−1

, where the union is over all
vertex-disjoint good (k−1)-tuples xk−1 and yk−1. Define C to be the set obtained by choosing
each zk−1 ∈ C′ independently with probability β

nk−2 .
Similarly to (6.4), by Chernoff’s inequality:

Pr [|C| − βn > βn] < e−βn.

With probability at least 1
2 at most 4k2β2n ≤ βn/4 of the (k − 1)-tuples have to be removed

from C to obtain a set of vertex-disjoint tuples, analogously to (6.6).
Analogously to (6.7), for two good vertex-disjoint tuples xk−1,yk−1 in H,

Pr
[
|Cxk−1,yk−1 ∩ C| <

βn

2

]
< e−

1
16
γn.

Therefore, we deduce with positive probability that after removing from C all tuples that are
not vertex-disjoint, we are left with a set that satisfies the conditions in the lemma.

The next lemma helps us to connect a linear amount of small paths into a single path avoiding
a small forbidden vertex subset.
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Lemma 6.1.4. For any set X of vertex-disjoint (2k − 2)-tuples that each induce a good path
in H, |X | ≤ 1

4k2n, and any forbidden set F ⊂ V of size at most 1
8kn, there exists a path P

containing all tuples of X , respecting their individual ordering, such that (V (P )\X) ∩ F = ∅.
Proof. For arbitrary x2k−2,y2k−2 ∈ X , we choose a zk−1 ∈ V k−1 uniformly at random and
define the events

E1 = {x2k−2♦zk−1 induces a path, respecting the ordering}

and
E2 = {zk−1♦y2k−2 induces a path, respecting the ordering}.

With E2
i being the event that {zi, . . . , zk−1, y1, . . . , yi} ∈ E, i ∈ {1, . . . , k − 1}, we obtain that

Pr
[
E2
i

]
≥ 1− ρk−i − o(1),

since y2k−2 induces a good path, and the probability that at least two of the k vertices coincide
is o(1). Therefore,

Pr
[
E2
]
≥ 1 −

k−1∑
i=1

(1−Pr
[
E2
i

]
) ≥ 1 −

k−1∑
i=1

(
ρk−i + o(1)

)
≥ 1 − 2ρ.

The same holds for E1. Hence, by the union bound

Pr
[
E1 ∩ E2

]
≥ 1− 4ρ.

We choose an arbitrary ordering of X . Iteratively, we consider two consecutive elements
x2k−2,y2k−2 of X . The probability that a u.a.r. chosen zk−1 ∈ V k−1 connects x2k−2 with
y2k−2 (meaning that both E1 and E2 hold) is at least 1− 4ρ and the probability that it is not
vertex-disjoint to an already chosen element (connecting previous pairs of elements of X ), to X
or to F is at most (

k

4k2
+

2k
4k2

+
1
8k

)
k =

7
8
< 1− 4ρ

by the union bound.
Thus, we choose a zk−1 ∈ V k−1 satisfying the conditions in the lemma, and iterate.

The next lemma helps us find an almost spanning path in the hypergraph H.

Lemma 6.1.5. For every good path P and every set F ⊂ V of size at most kρn, there exists
a good path P ′ that contains P and covers all vertices except those from F and at most kρn
further vertices.

Proof. Consider the longest good path P ′ that contains P and suppose that |V (P ′) ∪ F | < n− kρn.
Then choose one end xk−1 of P ′. Note that from (6.1), i.e. from the condition deg (x1, . . . , xi) ≥(
1− ρk−i

) (
n−i
k−i
)

for every i, it follows that, for every i, the number of vertices v ∈ V (H) such
that

deg(v, x1, . . . , xi) ≥ (1− ρk−i−1)
(
n− i− 1
k − i− 1

)
(6.8)

is at least n− ρn, implying that |V (P ′) ∪ F | ≥ n− kρn.
Indeed, suppose for contradiction that there exists an i, such that the number of vs satisfy-

ing (6.8) is less than n− ρn. Then,

deg(x1, . . . , xi) =
∑

v∈V \{x1,...,xi}

1
k − i

deg(v, x1, . . . , xi)

<
(n− ρn)
k − i

(
n− i− 1
k − i− 1

)
+
ρn− i
k − i

(1− ρk−i−1)
(
n− i− 1
k − i− 1

)
≤
(

1− ρk−i
)(n− i

k − i

)
,
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contradicting (6.1).

6.2 Proofs of Theorem 1.2.12 and Theorem 1.2.13

Proof of Theorem 1.2.12. Suppose H = (V,E) is a k-graph on n vertices, n sufficiently large,
with at least (

n− 1
k

)
+ ex (n− 1, P (k, l))

edges and no vertex with a P (k, l)-free link. Then the vertex set can be partitioned into two
sets V = V ′ ∪ V ” with |V ′| = n′ and V ′′ = {v1, . . . , vt} such that

δ1

(
H ′
)
≥ (1− ε)

(
n′

k − 1

)
(6.9)

with H ′ = H[V ′] and ε = 1
22(1280k3)k−1 . To obtain V ′, we iteratively delete vertices v1, . . . , vt of

minimum degree from H till the δ1-condition (6.9) holds. Counting the non-edges one observes
that t ≤ 2

ε .
The following claim provides an embedding of the vertices of V ′′.

Claim 8. There exists a set S of t paths of type P (k,k−1)
2k−2 , if t ≥ 2, or of type P (k, l), if t = 1,

such that vi is in each edge of the ith element of S, 1 ≤ i ≤ t, for some ordering of S.

We apply Lemma 6.1.2 for γ = 1
64k2 and Lemma 6.1.3 for β = 1

1280k3 to H ′. As we want
disjoint sets A, C, and S, we delete all elements from A that are not vertex-disjoint to an
element from C ∪ S. Thus, we delete at most 2kβn′ + 4k

ε ≤
γn′

20 absorbers overall, and for every
vertex v ∈ V ′ there are at least γn′

5 elements in the new set A absorbing v. Similarly, we make
C disjoint from S still keeping at least βn′

5 connectors in C for each pair of good (k− 1)-tuples.
Applying Lemma 6.1.4 on the new set A, we obtain a good tight path in H ′ containing all

elements ofA and no vertex from C∪S. We extend this path to one good path with Lemma 6.1.5
such that it covers all but kρn′ vertices from V ′\(C ∪ S) and does not contain any vertex from
C ∪ S.

As a next step, we use connectors from C to connect the elements of S and the extended path
to one cycle. This cycle absorbs the remaining vertices including the unused connectors, since
2βn′ + kρn′ < γn′

5 . If S contains only one element, we obtain a Hamilton cycle that is tight
except for the l-tight path from S. Otherwise, we obtain a tight Hamilton cycle. Hence, there
exists an l-tight Hamilton cycle.

Note that we actually prove the bound for Hamilton cycles that are tight except in the link
of at most one vertex.

Now deliver the missing proof of the above claim.

Proof of the Claim 8. We consider two cases.

Case 1 (deg (v1) < ε
2

(
n−1
k−1

)
). In this case, the number of missing edges yields a sufficient

minimum degree in H − v1, hence t = 1.
Let a be the number of hyperedges {x1, . . . , xk−1} in H(v1) that contain a subset {x1, . . . , xj},

j ∈ {1, . . . , k − 1}, satisfying degH′(x1, . . . , xj) < (1 − ρk−j)
(
n−1−j
k−j

)
, i.e. if there is a tuple

(x1, . . . , xk−1) obtained by an ordering of the edge that is not good in H ′. We denote the
number of such j-sets by bj and observe that each of them lies in at most

(
n−1−j
k−1−j

)
edges in

H(v1). Hence, we obtain

a ≤
k−1∑
j=1

(
n− 1− j
k − 1− j

)
bj .
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6.2 Proofs of Theorem 1.2.12 and Theorem 1.2.13

We further call those a edges bad.
The second time we apply double counting, we set c to be the number of non-edges in H ′.

By definition, each of the bj j-sets lies in at least ρk−j
(
n−1−j
k−j

)
non-edges of H ′. Note that each

non-edge of H ′ has exactly 2k subsets. Henceforth,

k−1∑
j=1

ρk−j
(
n− 1− j
k − j

)
bj ≤ 2kc.

Combining the two bounds, there are at most

a ≤
k−1∑
j=1

(
n− 1− j
k − 1− j

)
bj =

k−1∑
j=1

ρk−j
(
n− 1− j
k − j

)
bj
k − j
n− k

ρj−k

≤ k − 1
n− k

ρ1−k
k−1∑
j=1

ρk−j
(
n− 1− j
k − j

)
bj

≤ k − 1
n− k

ρ1−k2kc ≤ c

edges in H(v1), which have an ordering producing a tuple that is not good in H ′. Observe that
equality can only be obtained with c = 0.

For c = 0, there exists a P (k, l) in the link of v1 by assumption on H, and this path is good,
hence, we are done. For c > 0, we obtain deg(v1) > c + ex(n − 1, P (k, l)). We disregard bad
hyperedges in H(v1) and using a < c, we still find a P (k, l) in the link of v1. The obtained path
is good, proving the claim.

Case 2 (deg (v1) ≥ ε
2

(
n−1
k−1

)
). In this case, we have for all 1 ≤ i ≤ t, deg (vi) ≥ 1

3

(
n−1
k−1

)
holds

because the vis are chosen greedily with ascending degree. In this case, we actually show that
each of the vis can be matched to a good tight path such that the assigned paths are pairwise
vertex-disjoint. Since the proportion of k-sets that are edges in H ′ is 1 − o(1), we know that
there are o(1)

(
n′

k−1

)
tuples that are not good in H ′. By the result from [46] mentioned in the

introduction it holds that

ex
(
n′, P

(k−1,k−2)
2k−2

)
≤ (k − 1)

(
n′

k − 2

)
= o(1)

(
n′

k − 1

)
.

There are at most O(1)
(
n−2
k−2

)
edges including at least two vertices from V ′′. We assign iteratively

vertex-disjoint good (2k − 1)-paths to each of the vi, 1 ≤ i ≤ t, such that vi is in each of its
edges. This is possible, since we disregard at most o(1)

(
n′

k−1

)
many edges in the link of each

vi that contain a tuple that is not good or a vertex contained in a previously assigned path or
another vertex from V ′′.

Proof of Theorem 1.2.13. The proof of Theorem 1.2.13 follows the same pattern as the proof of
Theorem 1.2.12 without making use of Claim 8. Therefore, we only give a brief sketch of it.

Suppose H is a k-graph on n vertices, n sufficiently large, with δ1 ≥ (1 − ε)
(
n−1
k−1

)
and

ε = 1
22(1280k3)k−1 . Similarly to the proof of Theorem 1.2.12, we apply Lemmas 6.1.2 and 6.1.3

and obtain via deletion of elements of A two vertex-disjoint sets A and C such that A and C
have the desired properties. Using Lemma 6.1.4 we find a good path containing all elements
of A such that C is vertex-disjoint from it. We extend this path with Lemma 6.1.5 such that
it contains all but at most ρkn vertices from V \C and no vertex from C. Using a connector,
we connect the ends of this path, obtaining a cycle. As 2βn + kρn < γn

5 holds, we absorb the
remaining vertices and obtain a tight Hamilton cycle.
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6 On extremal hypergraphs for Hamilton cycles

6.3 Concluding Remarks

The edge-density of extremal non-hamiltonian hypergraphs is 1 − o(1) (unlike the density of
F -extremal graphs for fixed k-graphs F ), since a Hamilton cycle is a spanning substructure.
In [40], we conjectured that an extremal graph of any bounded spanning structure consists of
an (n− 1)-clique and a further extremal graph.

Conjecture 6.3.1. For any k ∈ N there exists an n0 such that for every k-graph H on n ≥ n0

vertices without a spanning subgraph isomorphic to a forbidden hypergraph F of bounded
maximum vertex degree,

|e(H)| ≤
(
n− 1
k

)
+ ex (n− 1, {F (v) : v ∈ V })

holds, and the bound is tight.

However, recently Alon and Yuster [4] showed that the statement is wrong in this generality,
but true if we restrict it to 2-graphs.

A 2-graph is called pancyclic, if for any c with 3 ≤ c ≤ n it contains a c-cycle. Similarly to
the spanning structure of hamiltonian l-tight cycles, Katona and Kierstead [60] defined l-tight
cycles of any length. This allows us to generalize the concept of pancyclicity by calling a k-graph
l-pancyclic, if for any c with 3 ≤ c ≤ n/(k − l) it contains an l-tight cycle on c edges. In his
famous metaconjecture [17], Bondy claimed for 2-graphs that almost any non-trivial condition
on a graph which implies that the graph is hamiltonian also implies that the graph is pancyclic.
(There may be a simple family of exceptional graphs.)

It is not hard to see that both the condition in Theorem 1.2.12 and the condition in Theo-
rem 1.2.13 imply not only Hamiltonicity but also pancyclicity.
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[45] R. Glebov, M. Krivelevich, and T. Szabó, On covering expander graphs by Hamilton cycles,
to appear. (Cited on pages 8, 9, 27, and 33.)
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